Algebra & Number Theory

2014 No. 2

Volume 8

Geometry of Wachspress surfaces

Corey Irving and Hal Schenck

Corey II villg and Tial Schene

Geometry of Wachspress surfaces

Corey Irving and Hal Schenck

Let P_d be a convex polygon with d vertices. The associated Wachspress surface W_d is a fundamental object in approximation theory, defined as the image of the rational map

$$\mathbb{P}^2 \xrightarrow{w_d} \mathbb{P}^{d-1}$$
.

determined by the Wachspress barycentric coordinates for P_d . We show w_d is a regular map on a blowup X_d of \mathbb{P}^2 and, if d>4, is given by a very ample divisor on X_d so has a smooth image W_d . We determine generators for the ideal of W_d and prove that, in graded lex order, the initial ideal of I_{W_d} is given by a Stanley–Reisner ideal. As a consequence, we show that the associated surface is arithmetically Cohen–Macaulay and of Castelnuovo–Mumford regularity 2 and determine all the graded Betti numbers of I_{W_d} .

1. Introduction

Introduced by Möbius [1827], barycentric coordinates for triangles appear in a host of applications. Recent work in approximation theory has shown that it is also useful to define barycentric coordinates for a convex polygon P_d with $d \ge 4$ vertices (a d-gon). The idea is as follows. To deform a planar shape, first place the shape inside a control polygon. Then move the vertices of the control polygon, and use barycentric coordinates to extend this motion to the entire shape.

For a d-gon with $d \ge 4$, barycentric coordinates were defined by Wachspress [1975] in his work on finite elements; these coordinates are rational functions depending on the vertices $v(P_d)$ of P_d . Warren [2003] shows that Wachspress' coordinates are the unique rational barycentric coordinates of minimal degree. The Wachspress coordinates define a rational map w_d on \mathbb{P}^2 , whose value at a point $p \in P_d$ is the d-tuple of barycentric coordinates of p. The closure of the image of w_d is the Wachspress surface W_d , first defined and studied by Garcia-Puente and Sottile [2010] in their work on linear precision.

Irving is supported by Texas Advanced Research Program 010366-0054-2007. Schenck is supported by NSF 1068754 and NSA H98230-11-1-0170.

MSC2010: primary 13D02; secondary 52C35, 14J26, 14C20.

Keywords: barycentric coordinates, Wachspress variety, rational surface.

In Definition 1.3, we fix linear forms ℓ_i that are positive inside P_d and vanish on an edge. Let $A = \ell_1 \cdots \ell_d$, Z be the $\binom{d}{2}$ singular points of $\mathbb{V}(A)$, and $Y = Z \setminus \nu(P_d)$. We call Y the *external vertices* of P_d and show that w_d has basepoints only at Y. Let X_d be the blowup of \mathbb{P}^2 at Y. In Section 2, we prove that W_d is the image of X_d , embedded by a certain divisor D_{d-2} on X_d . The global sections of D_{d-2} have a simple interpretation in terms of the edges $\mathbb{V}(\ell_i)$ of P_d : we prove that

$$H^0(\mathbb{O}_{X_d}(D_{d-2}))$$
 has basis $\{\ell_3\cdots\ell_d,\ell_1\ell_4\cdots\ell_d,\ldots,\ell_2\cdots\ell_{d-1}\}.$

We show that D_{d-2} is very ample if d > 4; hence, $W_d \subseteq \mathbb{P}^{d-1}$ is a smooth surface.

1A. Statement of main results. For a d-gon P_d with $d \ge 4$:

- (1) We give explicit generators for $I_{W_d} \subseteq S = \mathbb{K}[x_1, \dots, x_d]$.
- (2) We determine in $\langle (I_{W_d}) \rangle$, where \prec is graded lex order.
- (3) We prove $\operatorname{in}_{\prec}(I_{W_d})$ is the Stanley–Reisner ideal of a graph Γ .
- (4) We prove that S/I_{W_d} is Cohen–Macaulay, and $reg(S/I_{W_d}) = 2$.
- (5) We determine the graded Betti numbers of S/I_{W_d} .

In Section 1B, we give some quick background on geometric modeling, and in Section 1C, we do the same for algebraic geometry (in particular, we define all the terms above). Our strategy runs as follows. In Section 2, we study I_{W_d} by blowing up \mathbb{P}^2 at the external vertices. Define a divisor

$$D_{d-2} = (d-2)E_0 - \sum_{p \in Y} E_p$$

on X_d , where E_0 is the pullback of a line and E_p is the exceptional fiber over p. We show that D_{d-2} is very ample and that I_{W_d} is the ideal of the image of

$$X_d \to \mathbb{P}(H^0(D_{d-2})).$$

Riemann–Roch then yields the Hilbert polynomial of S/I_{W_d} .

In Sections 3 and 4, we find distinguished sets of quadrics and cubics vanishing on W_d and use them to generate a subideal $I(d) \subseteq I_{W_d}$. In Section 5, we tie everything together, showing that, in graded lex order, $I_{\Gamma}(d) \subseteq \operatorname{in}_{\prec} I(d)$, where $I_{\Gamma}(d)$ is the Stanley–Reisner ideal of a certain graph. Using results on flat deformations and an analysis of associated primes, we prove

$$I_{\Gamma}(d) = \operatorname{in}_{\prec}(I(d)).$$

The description in terms of the Stanley–Reisner ring yields the Hilbert series for $S/I_{\Gamma}(d)$. We prove that $S/I_{\Gamma}(d)$ is Cohen–Macaulay and has Castelnuovo–Mumford regularity 2, and it follows from uppersemicontinuity that the same is true for S/I(d). The differentials on the quadratic generators of $I_{\Gamma}(d)$ turn out to

be easy to describe, and combining this with the regularity bound and knowledge of the Hilbert series yields the graded Betti numbers for $in_{\prec}(I(d))$.

Finally, we show that I(d) has no linear syzygies on its quadratic generators, which allows us to prune the resolution of $\operatorname{in}_{\prec}(I(d))$ to obtain the graded Betti numbers of I(d). Comparing Hilbert polynomials shows that up to saturation

$$S/I(d) = S/I_{W_d}.$$

Since I_{W_d} is prime, it is saturated, and a short-exact-sequence argument shows that S/I(d) is also saturated, concluding the proof.

1B. Geometric modeling background. Let P_d be a d-gon with vertices v_1, \ldots, v_d and indices taken modulo d.

Definition 1.1. Functions $\{\beta_i : P_d \to \mathbb{R} \mid 1 \le i \le d\}$ are barycentric coordinates if, for all $p \in P_d$,

$$\beta_i(p) \ge 0, \qquad p = \sum_{i=1}^d \beta_i(p) v_i, \qquad \sum_{i=1}^d \beta_i(p) = 1.$$

Wachspress coordinates have a geometric description in terms of areas of subtriangles of the polygon. Let A(a, b, c) denote the area of the triangle with vertices a, b, and c. For $1 \le j \le d$, set $\alpha_j := A(v_{j-1}, v_j, v_{j+1})$ and $A_j := A(p, v_j, v_{j+1})$.

Definition 1.2. For $1 \le i \le d$, the functions

$$\beta_i = \frac{b_i}{\sum_{j=1}^d b_j}$$
, where $b_i = \alpha_i \prod_{j \neq i-1, i} A_j$

are Wachspress barycentric coordinates for the d-gon P_d ; see Figure 1.

We embed P_d in the plane $z = 1 \subseteq \mathbb{R}^3$ and form the cone with $\mathbf{0} \in \mathbb{R}^3$. Explicitly, to each vertex $v_i \in v(P_d)$, we associate the ray $\mathbf{v}_i := (v_i, 1) \in \mathbb{R}^3$. Let \mathbf{P}_d denote the cone generated by the rays \mathbf{v}_i , and $v(\mathbf{P}_d) := \{\mathbf{v}_i \mid v_i \in v(P_d)\}$. The cone over

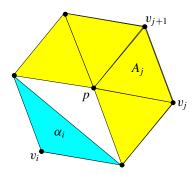


Figure 1. Wachspress coordinates for a polygon.

the edge $[v_i, v_{i+1}]$ corresponds to a facet of P_d with normal vector $\mathbf{n}_i := \mathbf{v}_i \times \mathbf{v}_{i+1}$. We redefine α_j and A_j to be the determinants $|\mathbf{v}_{j-1}\mathbf{v}_j\mathbf{v}_{j+1}|$ and $|\mathbf{v}_j\mathbf{v}_{j+1}\mathbf{p}|$, where $\mathbf{p} = (x, y, z)$. This scales the b_i by a factor of 2 so leaves the β_i unchanged, save for homogenizing the A_j with respect to z, and allows us to define Wachspress coordinates for nonconvex polygons, although Property 1 of barycentric coordinates fails when P_d is nonconvex.

Definition 1.3.
$$\ell_j := A_j = n_j \cdot p = |v_j v_{j+1} p|$$
.

The ℓ_j are homogeneous linear forms in (x, y, z) and vanish on the cone over the edge $[v_j, v_{j+1}]$. We use Theorem 1.6 below, but Warren's proof does not require convexity. Our results hold over an arbitrary field \mathbb{K} as long as no three of the lines $\mathbb{V}(\ell_i) \subseteq \mathbb{P}^2$ meet at a point. For the first condition of Definition 1.1 to make sense, \mathbb{K} should be an ordered field.

Definition 1.4. The *dual cone* to P_d is the cone spanned by the normals n_1, \ldots, n_d and is denoted P_d^* .

Triangulating P_d yields a triangulation of P_d , and the volume of the parallelepiped S spanned by vertices $\{v_i, v_i, v_k, 0\}$ is $a_S = |v_i v_i v_k|$.

Definition 1.5. Let C be a cone defined by a polygon P_d and T(C) a triangulation of C obtained from a triangulation of P_d as above. The *adjoint* of C is

$$\mathcal{A}_{T(C)}(\boldsymbol{p}) = \sum_{S \in T(C)} a_S \prod_{\boldsymbol{v} \in \nu(\boldsymbol{P}_d) \setminus \nu(S)} (\boldsymbol{v} \cdot \boldsymbol{p}) \in \mathbb{K}[x, y, z]_{d-3}.$$

Theorem 1.6 [Warren 1996]. $\mathcal{A}_{T(C)}(p)$ is independent of the triangulation T(C).

1C. *Algebraic geometry background.* Next, we review some background in algebraic geometry, referring to [Eisenbud 1995; Hartshorne 1977; Schenck 2003] for more detail. Homogenizing the numerators of Wachspress coordinates yields our main object of study:

Definition 1.7. The Wachspress map defined by a polygon P_d is the rational map $\mathbb{P}^2 \stackrel{w_d}{\dashrightarrow} \mathbb{P}^{d-1}$ given on the open set $U_{z\neq 0} \subseteq \mathbb{P}^2$ by $(x, y) \mapsto (b_1(x, y), \dots, b_d(x, y))$. The Wachspress variety W_d is the closure of the image of w_d .

The polynomial ring $S = \mathbb{K}[x_1, \dots, x_d]$ is a graded ring: it has a direct-sum decomposition into homogeneous pieces. A finitely generated graded S-module N admits a similar decomposition; if $s \in S_p$ and $n \in N_q$, then $s \cdot n \in N_{p+q}$. In particular, each N_q is a $(S_0 = \mathbb{K})$ -vector space.

Definition 1.8. For a finitely generated graded S-module N, the Hilbert series $HS(N, t) = \sum \dim_{\mathbb{K}} N_q t^q$.

Definition 1.9. A free resolution for an S-module N is an exact sequence

$$\mathbb{F}: \cdots \to F_i \xrightarrow{d_i} F_{i-1} \to \cdots \to F_0 \to N \to 0,$$

where the F_i are free S-modules.

If N is graded, then the F_i are also graded, so letting S(-m) denote a rank-1 free module generated in degree m, we may write $F_i = \bigoplus_j S(-j)^{a_{i,j}}$. By the Hilbert syzygy theorem [Eisenbud 1995], a finitely generated, graded S-module N has a free resolution of length at most d with all the F_i of finite rank.

Definition 1.10. For a finitely generated graded S-module N, a free resolution is minimal if, for each i, $\text{Im}(d_i) \subseteq \mathfrak{m}F_{i-1}$, where $\mathfrak{m} = \langle x_1, \dots, x_d \rangle$. The graded Betti numbers of N are the $a_{i,j}$ that appear in a minimal free resolution, and the Castelnuovo–Mumford regularity of N is $\max_{i,j} \{a_{i,j} - i\}$.

While the differentials d_i that appear in a minimal free resolution of N are not unique, the ranks and degrees of the free modules that appear are unique. The graded Betti numbers are displayed in a *Betti table*. Reading this table right and down, starting at (0,0), the entry $b_{ij} := a_{i,i+j}$, and the regularity of N is the index of the bottommost nonzero row in the Betti table for N.

Example 1.11. In Examples 2.9 and 3.11 of [Garcia-Puente and Sottile 2010], it is shown that I_{W_6} is generated by three quadrics and one cubic. The variety $\mathbb{V}(\ell_1 \cdots \ell_6)$ of the edges of P_6 has $\binom{6}{2} = 15$ singular points, of which six are vertices of P_6 , and S/I_{W_6} has Betti table

For example, $b_{1,2} = a_{1,3} = 1$ reflects that I_{W_6} has a cubic generator, and S/I_{W_6} has regularity 2. The Hilbert series can be read off the Betti table:

$$\operatorname{HS}(S/I_{W_6},t) = \frac{1 - 3t^2 - t^3 + 6t^4 - 3t^5}{(1 - t)^6} = \frac{1 + 3t + 3t^2}{(1 - t)^3}.$$

Theorem 5.11 gives a complete description of the Betti table of S/I_{W_d} .

2. $H^0(D_{d-2})$ and the Wachspress surface

2A. *Background on blowups of* \mathbb{P}^2 . Fix points $p_1, \ldots, p_k \in \mathbb{P}^2$, and let

$$X \xrightarrow{\pi} \mathbb{P}^2 \tag{1}$$

be the blowup of \mathbb{P}^2 at these points. Then $\operatorname{Pic}(X)$ is generated by the exceptional curves E_i over the points p_i and the proper transform E_0 of a line in \mathbb{P}^2 . A classical

geometric problem asks for a relationship between numerical properties of a divisor $D_m = mE_0 - \sum a_i E_i$ on X and the geometry of

$$X \xrightarrow{\phi} \mathbb{P}(H^0(D_m)^{\vee}).$$

First, we discuss some basics. Let m and a_i be nonnegative, let I_{p_i} denote the ideal of a point p_i , and define

$$J = \bigcap_{i=1}^{k} I_{p_i}^{a_i} \subseteq \mathbb{K}[x, y, z] = R. \tag{2}$$

Then $H^0(D_m)$ is isomorphic to the m-th graded piece J_m of J (see [Harbourne 2002]). Davis and Geramita [1988] show that, if $\gamma(J)$ denotes the smallest degree t such that J_t defines J scheme theoretically, then D_m is very ample if $m > \gamma(J)$, and if $m = \gamma(J)$, then D_m is very ample if and only if J does not contain m collinear points, counted with multiplicity. Note that $\gamma(J) \leq \operatorname{reg}(J)$.

2B. Wachspress surfaces. For a polygon P_d , fix defining linear forms ℓ_i as in Definition 1.3 and let $A := \ell_1 \cdots \ell_d$; the edges of P_d are defined by the $\mathbb{V}(\ell_i)$. Let Z denote the $\binom{d}{2}$ singular points of $\mathbb{V}(A)$ and $Y = Z \setminus \nu(P_d)$. Finally, X_d will be the blowup of \mathbb{P}^2 at Y. We study the divisor

$$D_{d-2} = (d-2)E_0 - \sum_{p \in Y} E_p$$

on X_d . First, we present some preliminaries.

Definition 2.1. Let *L* be the ideal in $R = \mathbb{K}[x, y, z]$ given by

$$L = \langle \ell_3 \cdots \ell_d, \ell_1 \ell_4 \cdots \ell_d, \dots, \ell_2 \cdots \ell_{d-1} \rangle = \langle A/\ell_1 \ell_2, A/\ell_2 \ell_3, \dots, A/\ell_d \ell_1 \rangle,$$

where $A = \prod_{i=1}^d \ell_i$.

For any variety V, we use I_V to denote the ideal of polynomials vanishing on V.

Lemma 2.2. The ideals L and I_Y are equal up to saturation at $\langle x, y, z \rangle$.

Proof. Being equal up to saturation at $\langle x, y, z \rangle$ means that the localizations at any associated prime except $\langle x, y, z \rangle$ are equal. The ideal I_p of a point p is a prime ideal. Recall that the localization of a ring T at a prime ideal p is a new ring T_p whose elements are of the form f/g with $f, g \in T$ and $g \notin p$. Localize R at I_p , where $p \in Y$. Then in R_{I_p} , ℓ_i is a unit if $p \notin \mathbb{V}(\ell_i)$. Without loss of generality, suppose forms ℓ_1 and ℓ_2 vanish on p (note that all points of Y are intersections of exactly two lines) and the remaining forms do not. Thus, $L_{I_p} = \langle \ell_1, \ell_2 \rangle = (I_Y)_{I_p}$. \square

The ideal L is not saturated.

Lemma 2.3. I_Y is generated by one form F of degree d-3 and d-3 forms of degree d-2. Hence, a basis for L_{d-2} consists of $F \cdot x$, $F \cdot y$, $F \cdot z$, and the d-3 forms.

Proof. First, note that I_Y cannot contain any form of degree d-4 since Y contains d sets of d-3 collinear points. So the smallest degree of a minimal generator for I_Y is d-3. Since Y consists of $\binom{d-1}{2}-1$ distinct points and the space of forms of degree d-3 has dimension $\binom{d-1}{2}$, there is at least one form F of degree d-3 in I_Y . We claim that it is unique. To see this, first note that no ℓ_i can divide F: by symmetry, if one ℓ_i divides F, they all must, which is impossible for degree reasons. Now suppose G is a second form of degree d-3 in I_Y . Let $p \in \nu(P_d)$ and $\mathbb{V}(\ell_i)$ be a line corresponding to an edge containing p. F(p) must be nonzero since if not $\mathbb{V}(F)$ would contain d-2 collinear points of $\mathbb{V}(\ell_i)$, forcing $\mathbb{V}(F)$ to contain $\mathbb{V}(\ell_i)$, a contradiction. This also holds for G. But in this case, F(p)G - G(p)F is a polynomial of degree d-3 vanishing at d-2 collinear points, again a contradiction. So F is unique (up to scaling), which shows that the Hilbert function satisfies

$$HF(R/L, d-3) = |Y|,$$

so HF(R/L, t) = |Y| for all $t \ge d-3$ (see [Schenck 2003]). As the polynomials $A/\ell_i\ell_{i+1}$ are linearly independent and there are the correct number, L_{d-2} must be the degree-(d-2) component of I_Y .

Theorem 2.4. The minimal free resolution of R/L is

$$0 \to R(-d) \xrightarrow{d_3} R(-d+1)^d \xrightarrow{d_2} R(-d+2)^d \xrightarrow{\left[\frac{A}{\ell_1\ell_2} \ \frac{A}{\ell_2\ell_3} \ \cdots \ \frac{A}{\ell_d\ell_1}\right]} R \to R/L \to 0,$$

$$where d_2 = \begin{bmatrix} \ell_1 & 0 & \cdots & \cdots & 0 & 0 & m_1 \\ -\ell_3 & \ell_2 & 0 & \cdots & \vdots & \vdots & m_2 \\ 0 & -\ell_4 & \ddots & \ddots & \vdots & \vdots & \vdots \\ \vdots & 0 & \ddots & \ddots & \ell_{d-2} & 0 & \vdots \\ \vdots & \vdots & \ddots & \ddots & -\ell_d & \ell_{d-1} & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & -\ell_1 & m_d \end{bmatrix}$$

and the m_i are linear forms.

Proof. By Lemma 2.3, the generators of I_Y are known. Since I_Y is saturated, the Hilbert–Burch theorem implies that the free resolution of R/I_Y has the form

$$0 \to R(-d+1)^{d-3} \to R(-d+3) \oplus R(-d+2)^{d-3} \to R \to R/I_Y \to 0.$$

Writing I_Y as $\langle f_1, \ldots, f_{d-3}, F \rangle$ and L as $\langle f_1, \ldots, f_{d-3}, xF, yF, zF \rangle$, the task is to understand the syzygies on L given the description above of the syzygies on I_Y . From the Hilbert–Burch resolution, any minimal syzygy on I_Y is of the form

$$\sum g_i f_i + q F = 0,$$

where g_i are linear and q is a quadric (or zero). Since

$$qF = g_1xF + g_2yF + g_3zF$$
 with g_i linear,

all d-3 syzygies on I_Y lift to give linear syzygies on L. Furthermore, we obtain three linear syzygies on $\{xF, yF, zF\}$ from the three Koszul syzygies on $\{x, y, z\}$. It is clear from the construction that these d linear syzygies are linearly independent. Since HF(R/L, d-1) = |Y|, this means we have determined all the linear first syzygies. Furthermore, the three Koszul first syzygies on $\{xF, yF, zF\}$ generate a linear second syzygy, so the complex given above is a subcomplex of the minimal free resolution. A check shows that the Buchsbaum–Eisenbud criterion [1973] holds, so the complex above is actually exact and hence a free resolution. The differential d_2 above involves the canonical generators $A/\ell_i\ell_{i+1}$ rather than a set involving $\{xF, yF, zF\}$. Since the d-1 linear syzygies appearing in the first d-1 columns of d_2 are linearly independent, they agree up to a change of basis; the last column of d_2 is a vector of linear forms determined by the change of basis.

Theorem 2.5.

(i)
$$H^0(D_{d-2}) \simeq \operatorname{Span}_{\mathbb{K}} \{ A/\ell_1 \ell_2, A/\ell_2 \ell_3, \ldots \}.$$

(ii)
$$H^1(D_{d-2}) = 0 = H^2(D_{d-2})$$
.

Proof. The remark following Equation (2) shows that $H^0(D_{d-2}) \simeq L_{d-2}$. Since $K = -3E_0 + \sum_{p \in Y} E_p$ (see [Hartshorne 1977]), by Serre duality,

$$H^2(D_{d-2}) \simeq H^0\bigg((-d-1)E_0 + \sum_{p \in Y} E_p\bigg),$$

which is clearly zero. Using that X_d is rational, it follows from Riemann–Roch that

$$h^{0}(D_{d-2}) - h^{1}(D_{d-2}) = \frac{D_{d-2}^{2} - D_{d-2} \cdot K}{2} + 1.$$

The intersection pairing on X_d is given by $E_i^2 = 1$ if i = 0 and -1 if $i \neq 0$, and

$$E_i \cdot E_i = 0$$
 if $i \neq j$.

Thus,

$$D_{d-2}^2 = (d-2)^2 - |Y|$$
 and $-D_{d-2}K = 3(d-2) - |Y|$, (3)

yielding

$$h^{0}(D_{d-2}) - h^{1}(D_{d-2}) = \frac{d^{2} - d - 2 - 2|Y|}{2} + 1 = d.$$
 (4)

Thus, $h^0(D_{d-2}) - h^1(D_{d-2}) = d$. Now apply the remark following Equation (2). \square

Corollary 2.6. If d > 4, D_{d-2} is very ample, so the image of X_d in \mathbb{P}^{d-1} is smooth.

Proof. By Theorem 2.4, the ideal L is d-2 regular. Furthermore, the set Y contains d sets of d-3 collinear points but no set of d-2 collinear points if d>4. The result follows from the Davis–Geramita criterion.

Theorem 2.7. $W_4 \simeq \mathbb{P}^1 \times \mathbb{P}^1$, and $X_4 \to W_4$ is an isomorphism away from the (-1) curve $E_0 - E_1 - E_2$, which is contracted to a smooth point.

Proof. The surface X_4 is \mathbb{P}^2 blown up at two points, which is toric, and isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ blown up at a point. By Proposition 6.12 of [Cox et al. 2011], D_2 is basepoint free. Since $D_2^2 = 2$, W_4 is an irreducible quadric surface in \mathbb{P}^3 . As $D_2 \cdot (E_0 - E_1 - E_2) = 0$, the result follows.

Replacing D_{d-2} with tD_{d-2} , a computation as in Equations (3) and (4) and Serre vanishing shows that the Hilbert polynomial $HP(S/I_{W_d}, t)$ is equal to

$$\frac{((d-2)^2 - |Y|)t^2 + (3(d-2) - |Y|)t}{2} + 1 = \frac{d^2 - 5d + 8}{4}t^2 - \frac{d^2 - 9d + 12}{4}t + 1. (5)$$

3. The Wachspress quadrics

In this section, we construct a set of quadrics that vanish on W_d . These quadrics are polynomials that are expressed as a scalar product with a fixed vector τ . The vector τ defines a linear projection $\mathbb{P}^{d-1} \dashrightarrow \mathbb{P}^2$, also denoted by τ , given by

$$x \mapsto \sum_{i=1}^d x_i v_i,$$

where $\mathbf{x} = [x_1 : \cdots : x_d] \in \mathbb{P}^{d-1}$. By the second property of barycentric coordinates, the composition $\tau \circ w_d : \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ is the identity map on \mathbb{P}^2 . Since $\mathbf{v}_i \in \mathbb{K}^3$, the vector τ is a triple of linear forms $(\tau_1, \tau_2, \tau_3) \in S^3$. The linear subspace \mathscr{C} of \mathbb{P}^{d-1} where the projection is undefined is the *center of projection*, and $I_{\mathscr{C}} = \langle \tau_1, \tau_2, \tau_3 \rangle$.

3A. *Diagonal monomials.* A *diagonal monomial* is a monomial $x_i x_j \in S_2$ such that $j \notin \{i-1, i, i+1\}$. We write \mathfrak{D} for the subspace of S_2 spanned by the diagonal monomials; identifying x_i with the vertex v_i , a diagonal monomial is a diagonal in P_d ; see Figure 2.

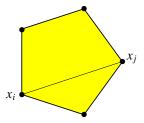


Figure 2. A diagonal monomial.

Lemma 3.1. Any quadric that vanishes on W_d is a linear combination of elements of \mathfrak{D} .

Proof. Let Q be a polynomial in $(I_{W_d})_2$. Then $Q(w_d) = Q(b_1, \ldots, b_d) = 0$. On the edge $[v_k, v_{k+1}]$, all the b_i vanish except b_k and b_{k+1} . Thus, on this edge, the expression $Q(w_d) = 0$ is

$$c_1 b_k^2 + c_2 b_k b_{k+1} + c_3 b_{k+1}^2 = 0 (6)$$

for some constants c_1 , c_2 , and c_3 in \mathbb{K} . Recall that $b_i(v_j) = 0$ if $i \neq j$ and $b_i(v_i) \neq 0$ for each i. Evaluating (6) at v_k and v_{k+1} , we conclude $c_1 = c_3 = 0$. At an interior point of edge $[v_k, v_{k+1}]$, neither b_k nor b_{k+1} vanishes. This implies that $c_2 = 0$. A similar calculation on each edge shows that all coefficients of nondiagonal terms in Q are zero.

3B. The map to $(I_{\ell})_2$. We define a surjective map onto $(I_{\ell})_2$ and use the map to calculate the dimension of the vector space of polynomials in $(I_{\ell})_2$ that are supported on diagonal monomials. Let S_1^3 denote the space of triples of linear forms on \mathbb{P}^{d-1} . Define the map $\Psi: S_1^3 \to (I_{\ell})_2$ by $F \mapsto F \cdot \tau$, where \cdot is the scalar product.

Lemma 3.2. The kernel of Ψ is three-dimensional.

Proof. Since $I_{\mathcal{C}}$ is a complete intersection, the kernel is generated by the three Koszul syzygies on the τ_i .

Next we determine conditions on F so that $\Psi(F) \in \mathfrak{D}$. If $\mathbf{u}_i \in \mathbb{K}^3$ for $i = 1, \ldots, d$, then

$$F = \sum_{i=1}^{d} x_i \boldsymbol{u}_i$$

is an element of S_1^3 . Viewing the projection τ as an element of S_1^3 , we have

$$\Psi(F) = F \cdot \tau = \left(\sum_{i=1}^{d} x_i \mathbf{u}_i\right) \cdot \left(\sum_{i=1}^{d} x_i \mathbf{v}_i\right) = \sum_{i,j=1}^{d} (\mathbf{u}_i \cdot \mathbf{v}_j + \mathbf{u}_j \cdot \mathbf{v}_i) x_i x_j.$$
 (7)

If $\Psi(F) \in \mathfrak{D}$, then the coefficients of nondiagonal monomials must vanish:

$$\mathbf{u}_i \cdot \mathbf{v}_i = 0$$
 and $\mathbf{u}_i \cdot \mathbf{v}_{i+1} + \mathbf{u}_{i+1} \cdot \mathbf{v}_i = 0$ for all i . (8)

Lemma 3.3. The dimension of the vector space $\mathfrak{D} \cap (I_{\mathscr{C}})_2$ is d-3.

Proof. We show the conditions in (8) give 2d independent conditions on the 3d-dimensional vector space S_1^3 , and the solution space is $\Psi^{-1}(\mathfrak{D} \cap (I_{\mathscr{C}})_2)$; thus,

 $\dim(\Psi^{-1}(\mathfrak{D}\cap (I_{\mathscr{C}})_2))=d$. The conditions are represented by the matrix equation

$$\begin{pmatrix}
\mathbf{v}_1 \cdot \mathbf{u}_1 \\
\vdots \\
\mathbf{v}_d \cdot \mathbf{u}_d \\
\mathbf{v}_1 \cdot \mathbf{u}_2 + \mathbf{v}_2 \cdot \mathbf{u}_1 \\
\vdots \\
\mathbf{v}_d \cdot \mathbf{u}_1 + \mathbf{v}_1 \cdot \mathbf{u}_d
\end{pmatrix} =
\begin{pmatrix}
\mathbf{v}_1^T & 0 & \cdots & 0 \\
0 & \mathbf{v}_2^T & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \mathbf{v}_d^T \\
\mathbf{v}_2^T & \mathbf{v}_1^T & & 0 \\
0 & & \ddots & \\
\mathbf{v}_d^T & & & \mathbf{v}_1^T
\end{pmatrix}
\begin{pmatrix}
\mathbf{u}_1 \\
\mathbf{u}_2 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\mathbf{u}_d
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
\vdots \\
\vdots \\
\vdots \\
0
\end{pmatrix},$$

where the v_i and u_i are column vectors and the superscript T indicates transpose. The matrix M in the middle is a $2d \times 3d$ matrix, and the proof will be complete if the rows are shown to be independent. Denote the rows of M by $r_1, \ldots, r_d, r_{d+1}, \ldots, r_{2d}$, and let $c_1r_1 + \cdots + c_dr_d + c_{d+1}r_{d+1} + \cdots + c_{2d}r_{2d}$ be a dependence relation among them. The first three columns of M give the dependence relation $c_1v_1 + c_{d+1}v_2 + c_{2d}v_d = 0$. Since v_d , v_1 , and v_2 define adjacent rays of a polyhedral cone, they must be independent, so c_1 , c_{d+1} , and c_{2d} must be zero. Repeating the process at each triple v_{i-1} , v_i , and v_{i+1} shows the rest of the c_i 's vanish. Since the restriction $\Psi : \Psi^{-1}(\mathfrak{D} \cap (I_{\mathfrak{C}})_2) \to \mathfrak{D} \cap (I_{\mathfrak{C}})_2$ remains surjective, we find $\dim(\mathfrak{D} \cap (I_{\mathfrak{C}})_2) = \dim(\Psi^{-1}(\mathfrak{D} \cap (I_{\mathfrak{C}})_2)) - \dim(\ker(\Psi)) = d - 3$.

3C. Wachspress quadrics. We now compute the dimension and a generating set for $(I_{W_d})_2$.

Definition 3.4. Let $\gamma(i)$ denote the set $\{1, \ldots, d\} \setminus \{i-1, i\}, \gamma(i, j) = \gamma(i) \cap \gamma(j)$, and $\gamma(i, j, k) = \gamma(i) \cap \gamma(j) \cap \gamma(k)$.

The image of a diagonal monomial $x_i x_j$ under the pullback map $w_d^*: S \to R$ is

$$b_i b_j = \alpha_i \alpha_j \prod_{k \in \gamma(i)} \ell_k \prod_{m \in \gamma(j)} \ell_m = \alpha_i \alpha_j \prod_{k=1}^d \ell_k \prod_{m \in \gamma(i,j)} \ell_m,$$

and each diagonal monomial has a common factor $A = \prod_{k=1}^d \ell_k$. To find the quadratic relations among Wachspress coordinates, it suffices to find linear relations among products $\prod_{m \in \gamma(i,j)} \ell_m \in R_{d-4}$ for diagonal pairs i and j. Define the map $\phi : \mathfrak{D} \to R_{d-4}$ by $x_i x_j \mapsto b_i b_j / A$, and extend by linearity; this is w_d^* restricted to \mathfrak{D} and divided by A. By Lemma 3.1, it follows that $(I_{W_d})_2 = \ker(\phi) \subseteq \mathfrak{D}$.

Lemma 3.5. The dimension of $(I_{W_d})_2$ is d-3.

Proof. We will show $\phi : \mathfrak{D} \to R_{d-4}$ is surjective with dim(ker ϕ) = d-3. To see this, note that there are d-3 diagonal monomials that have x_1 as a factor. We show

$$x_{2,4} \cdots x_{2,d} x_{3,5} \cdots x_{3,d} \cdots x_{d-3,d-1} x_{d-3,d} x_{d-2,d}$$
 $p_{1,3} *$
 $p_{1,d-1} *$
 $p_{2,4} *$
 $p_{2,d-1} *$

Table 1. Values of images of diagonal monomials at external vertices.

that the images of the remaining

$$d(d-3)/2 - (d-3) = (d-3)(d-2)/2 = \dim(R_{d-4})$$

diagonal monomials are independent. Let $p_{s,t} = \ell_s \cap \ell_t$ and $x_{p,q} = x_p x_q$. In Table 1, a star, *, represents a nonzero number and a blank space is zero. The (i, j) entry in the table represents the value of the image of the diagonal monomial in column j at the external vertex in row i. The external vertices not lying on ℓ_d are arranged down the rows with their indices in lexicographic order.

Since Table 1 is lower triangular, the images are independent. We have found $\dim(R_{d-4})$ independent images, and hence, ϕ is surjective. This is a map from a vector space of dimension d(d-3)/2 to one of dimension (d-2)(d-3)/2. The map is surjective, so the kernel has dimension d(d-3)/2 - (d-2)(d-3)/2 = d-3. \square

There is a generating set for $(I_{W_d})_2$ where each generator is a scalar product with the vector τ . The other vectors in these scalar products are

$$\Lambda_k = \frac{x_{k+1}}{\alpha_{k+1}} \boldsymbol{n}_{k+1} - \frac{x_k}{\alpha_k} \boldsymbol{n}_{k-1} \in S_1^3.$$

Lemma 3.6. The vectors $\{\Lambda_1, \ldots, \Lambda_d\}$ form a basis for the space $\Psi^{-1}(\mathfrak{D} \cap (I_{\mathscr{C}})_2)$.

Proof. Suppose that $\sum_{k=1}^{d} c_k \Lambda_k = 0$ is a linear dependence relation among the Λ_k . The coefficient of a variable x_k is

$$\frac{1}{\alpha_k}(c_{k-1}\boldsymbol{n}_k - c_k\boldsymbol{n}_{k-1}).$$

By the dependence relation, this must be zero, which implies that n_{k-1} and n_k are scalar multiples. This is impossible since they are normal vectors of adjacent facets

of a polyhedral cone. Hence, $c_{k-1} = c_k = 0$ for all k, which shows that the Λ_k are independent.

In the proof of Lemma 3.3, we showed that $\dim(\Psi^{-1}(\mathfrak{D}\cap(I_{\mathscr{C}})_2))=d$, and we have just shown $\dim(\langle \Lambda_k \mid k=1,\ldots,d\rangle)=d$. To prove the result, it suffices to show $\langle \Lambda_k \mid k=1,\ldots,d\rangle \subseteq \Psi^{-1}(\mathfrak{D}\cap(I_{\mathscr{C}})_2)$. The conditions of (8) are required for $\Lambda_k \in S_1^3$ to lie in $\Psi^{-1}(\mathfrak{D}\cap(I_{\mathscr{C}})_2)$. We show these conditions are satisfied for each Λ_k .

Let $u_i = 0$ if $i \neq k, k+1$, $u_k = -n_{k-1}/\alpha_k$, and $u_{k+1} = n_{k+1}/\alpha_{k+1}$ for each fixed k. Then

$$\Lambda_k = \frac{x_{k+1}}{\alpha_{k+1}} \boldsymbol{n}_{k+1} - \frac{x_k}{\alpha_k} \boldsymbol{n}_{k-1} = \sum_{i=1}^d \boldsymbol{u}_i x_i.$$

Since $\mathbf{n}_{k-1} \cdot \mathbf{v}_k = 0$, $\mathbf{n}_{k+1} \cdot \mathbf{v}_{k+1} = 0$, and $\mathbf{u}_i = 0$ for $i \neq k, k+1$, we have that $\mathbf{u}_i \cdot \mathbf{v}_i = 0$ for each $i = 1, \dots d$. The expression $\mathbf{u}_i \cdot \mathbf{v}_{i+1} + \mathbf{u}_{i+1} \cdot \mathbf{v}_i$ is zero for all $i \neq k-1, k, k+1$ simply because $\mathbf{u}_i = 0$ for $i \neq k, k+1$. We have

$$\begin{aligned} \boldsymbol{u}_{k} \cdot \boldsymbol{v}_{k+1} + \boldsymbol{u}_{k+1} \cdot \boldsymbol{v}_{k} &= -\frac{\boldsymbol{n}_{k-1}}{\alpha_{k}} \cdot \boldsymbol{v}_{k+1} + \frac{\boldsymbol{n}_{k+1}}{\alpha_{k+1}} \cdot \boldsymbol{v}_{k} \\ &= -\frac{\boldsymbol{v}_{k-1} \times \boldsymbol{v}_{k} \cdot \boldsymbol{v}_{k+1}}{\alpha_{k}} + \frac{\boldsymbol{v}_{k+1} \times \boldsymbol{v}_{k+2} \cdot \boldsymbol{v}_{k}}{\alpha_{k+1}} \\ &= -\frac{|\boldsymbol{v}_{k-1} \boldsymbol{v}_{k} \boldsymbol{v}_{k+1}|}{\alpha_{k}} + \frac{|\boldsymbol{v}_{k+1} \boldsymbol{v}_{k+2} \boldsymbol{v}_{k}|}{\alpha_{k+1}} = 0 \end{aligned}$$

as $\alpha_j = |v_{j-1}v_jv_{j+1}|$. It is easy to show that the expression $u_i \cdot v_{i+1} + u_{i+1} \cdot v_i$ is zero for $i = k \pm 1$. Thus, the u_i satisfy the conditions in (8), so $\Lambda_k \in \Psi^{-1}(\mathfrak{D} \cap (I_{\mathscr{C}})_2)$. \square

Theorem 3.7 (Wachspress quadrics). The Wachspress quadrics $(I_{W_d})_2$ are those elements of S_2 that are diagonally supported and vanish on \mathscr{C} . The quadrics $Q_k = \Lambda_k \cdot \tau$ for $k = 1, \ldots, d$ span $(I_{W_d})_2$.

Proof. Let p be the vector (x, y, z). By definition of Wachspress coordinates,

$$\tau(w_d(\mathbf{p})) = \sum_{i=1}^d b_i(\mathbf{p}) \mathbf{v}_i = \mathbf{p} \sum_{i=1}^d b_i(\mathbf{p}).$$

We have

$$\begin{split} \Lambda_{k}(w_{d}(\boldsymbol{p})) &= \frac{b_{k+1}(\boldsymbol{p})}{\alpha_{k+1}} \boldsymbol{n}_{k+1} - \frac{b_{k}(\boldsymbol{p})}{\alpha_{k}} \boldsymbol{n}_{k-1} \\ &= \left(\prod_{j \neq k, k+1} \ell_{j} \right) \boldsymbol{n}_{k+1} - \left(\prod_{j \neq k-1, k} \ell_{j} \right) \boldsymbol{n}_{k-1} \\ &= \left(\prod_{j \neq k-1, k, k+1} \ell_{j} \right) (\ell_{k-1} \boldsymbol{n}_{k+1} - \ell_{k+1} \boldsymbol{n}_{k-1}) \\ &= H[\boldsymbol{n}_{k+1}(\boldsymbol{n}_{k-1} \cdot \boldsymbol{p}) - \boldsymbol{n}_{k-1}(\boldsymbol{n}_{k+1} \cdot \boldsymbol{p})], \end{split}$$

where $H = \prod_{i \neq k-1, k, k+1} \ell_i$. Set $\overline{H} := H \sum_{i=1}^d b_i(\mathbf{p})$. Then we have

$$Q_{k}(w_{d}(\mathbf{p})) = \tau(w_{d}(\mathbf{p})) \cdot \Lambda_{k}(w_{d}(\mathbf{p}))$$

$$= \overline{H} \mathbf{p} \cdot [\mathbf{n}_{k+1}(\mathbf{n}_{k-1} \cdot \mathbf{p}) - \mathbf{n}_{k-1}(\mathbf{n}_{k+1} \cdot \mathbf{p})]$$

$$= \overline{H}[(\mathbf{n}_{k+1} \cdot \mathbf{p})(\mathbf{n}_{k-1} \cdot \mathbf{p}) - (\mathbf{n}_{k-1} \cdot \mathbf{p})(\mathbf{n}_{k+1} \cdot \mathbf{p})] = 0.$$

We have just shown that $Q_k \in (I_{W_d})_2$. By Lemma 3.6, $\Psi^{-1}(\mathfrak{D} \cap (I_{\mathfrak{C}})_2)$ is spanned by the Λ_k . Observe that $\langle Q_1, \ldots, Q_d \rangle = \Psi(\langle \Lambda_k \rangle) = \mathfrak{D} \cap (I_{\mathfrak{C}})_2$. Thus, $\dim(\langle Q_1, \ldots, Q_d \rangle) = d - 3$, and by Lemma 3.5, $\dim((I_{W_d})_2) = d - 3$. Therefore, since $\langle Q_1, \ldots, Q_d \rangle \subseteq (I_{W_d})_2$, we have $\langle Q_1, \ldots, Q_d \rangle = (I_{W_d})_2 = \mathfrak{D} \cap (I_{\mathfrak{C}})_2$. \square

Corollary 3.8. The quadrics $\{\Lambda_2 \cdot \tau, \ldots, \Lambda_{d-2} \cdot \tau\}$ are a basis for the quadrics in I_{W_d} , and in graded lex order, $\{x_1x_3, \ldots, x_1x_{d-1}\}$ is a basis for $\text{in}_{\prec}(I_{W_d})_2$.

Proof. Expanding the expression for $\Lambda_i \cdot \tau$ yields

$$\Lambda_i \cdot \tau = x_1 x_{i+1} \left(\frac{\mathbf{v}_1 \cdot \mathbf{n}_{i+1}}{\alpha_{i+1}} \right) - x_1 x_i \left(\frac{\mathbf{v}_1 \cdot \mathbf{n}_{i-1}}{\alpha_i} \right) + \zeta_i,$$

where $\zeta_i \in \mathbb{K}[x_2, \dots, x_d]$. Since $\mathbf{n}_i = \mathbf{v}_i \times \mathbf{v}_{i+1}$,

$$\Lambda_2 \cdot \tau = x_1 x_3 \left(\frac{\boldsymbol{v}_1 \cdot \boldsymbol{n}_3}{\alpha_3} \right) + \zeta_2.$$

Since no three of the lines $V(l_i)$ are concurrent, $v_i \cdot n_j$ is nonzero unless $j \in \{i, i+1\}$, so we may use the lead term of $\Lambda_2 \cdot \tau$ to reduce $\Lambda_3 \cdot \tau$ to $x_1x_4 + f(x_2, \dots, x_d)$. Repeating the process proves that

$${x_1x_3,\ldots,x_1x_{d-1}} \subseteq \text{in}_{\prec}(I_{W_d})_2.$$

By Lemma 3.5, $(I_{W_d})_2$ has dimension d-3, which concludes the proof.

Corollary 3.9. There are no linear first syzygies on $(I_{W_d})_2$.

Proof. By Corollary 3.8, we may assume that a basis for $(I_{W_d})_2$ has the form

$$x_1x_3 + \zeta_3(x_2, \dots, x_d),$$

 $x_1x_4 + \zeta_4(x_2, \dots, x_d),$
 $x_1x_5 + \zeta_5(x_2, \dots, x_d),$
 \vdots
 $x_1x_{d-1} + \zeta_{d-1}(x_2, \dots, x_d).$

Since the ζ_i do not involve x_1 , this implies that any linear first syzygy on $(I_{W_d})_2$ must be a linear combination of the Koszul syzygies on $\{x_3, \ldots, x_{d-1}\}$. Now change the term order to graded lex with $x_i > x_{i+1} > \cdots > x_d > x_1 > x_2 > \cdots > x_{i-1}$. In

this order, arguing as in the proof of Corollary 3.8 shows that we may assume a basis for $(I_{W_d})_2$ has the form

$$x_i x_{i+2} + \zeta_{i+2}(x_1, \dots, \widehat{x_i}, \dots, x_d),$$

 $x_i x_{i+3} + \zeta_{i+3}(x_1, \dots, \widehat{x_i}, \dots, x_d),$
 $x_i x_{i+4} + \zeta_{i+4}(x_1, \dots, \widehat{x_i}, \dots, x_d),$
 \vdots
 $x_i x_{i-2} + \zeta_{i-2}(x_1, \dots, \widehat{x_i}, \dots, x_d).$

Hence, any linear first syzygy on $(I_{W_d})_2$ must be a combination of Koszul syzygies on $x_{i+2}, x_{i+3}, \ldots, x_{i-2}$. Iterating this process for the term orders above shows there can be no linear first syzygies on $(I_{W_d})_2$.

3D. Decomposition of $\mathbb{V}(\langle (I_{W_d})_2 \rangle)$. We now prove that $\mathbb{V}(\langle (I_{W_d})_2 \rangle) = \mathscr{C} \cup W_d$. The results in Sections 4 and 5 are independent of this fact.

Lemma 3.10. For any i, j, and k, we have

$$|n_i n_j n_k| = |v_j v_k v_{k+1}| \cdot |v_i v_{i+1} v_{j+1}| - |v_{j+1} v_k v_{k+1}| \cdot |v_i v_{i+1} v_j|.$$

Proof. Apply the formulas $a \times (b \times c) = b(a \cdot c) - c(a \cdot b)$ and $|abc| = a \times b \cdot c$:

$$|\mathbf{n}_{i}\mathbf{n}_{j}\mathbf{n}_{k}| = \mathbf{n}_{i} \times \mathbf{n}_{j} \cdot \mathbf{n}_{k} = (\mathbf{n}_{i} \times (\mathbf{v}_{j} \times \mathbf{v}_{j+1})) \cdot \mathbf{n}_{k}$$

$$= [\mathbf{v}_{j}(\mathbf{n}_{i} \cdot \mathbf{v}_{j+1}) - \mathbf{v}_{j+1}(\mathbf{n}_{i} \cdot \mathbf{v}_{j})] \cdot \mathbf{n}_{k}$$

$$= (\mathbf{v}_{j} \cdot \mathbf{n}_{k})(\mathbf{n}_{i} \cdot \mathbf{v}_{j+1}) - (\mathbf{v}_{j+1} \cdot \mathbf{n}_{k})(\mathbf{n}_{i} \cdot \mathbf{v}_{j})$$

$$= |\mathbf{v}_{i}\mathbf{v}_{k}\mathbf{v}_{k+1}| \cdot |\mathbf{v}_{i}\mathbf{v}_{i+1}\mathbf{v}_{i+1}| - |\mathbf{v}_{i+1}\mathbf{v}_{k}\mathbf{v}_{k+1}| \cdot |\mathbf{v}_{i}\mathbf{v}_{i+1}\mathbf{v}_{i}|. \quad \Box$$

Corollary 3.11. *We have* $|n_i n_j n_{j+1}| = \alpha_{j+1} |v_i v_{j+1}|$.

Proof. This follows from Lemma 3.10 and the definition of α_{i+1} .

Corollary 3.12. *We have* $|n_{i-1}n_in_{i+1}| = \alpha_i\alpha_{i+1}$.

Proof. This follows from Lemma 3.10 and the definition of α_i and α_{i+1} .

Lemma 3.13. Let $\mathbf{x} = [x_1 : \cdots : x_d] \in \mathbb{V}(\langle (I_{W_d})_2 \rangle) \setminus \mathcal{C}$. If $\tau(\mathbf{x})$ is a base point $p_{ij} = \mathbf{n}_i \times \mathbf{n}_j$, then \mathbf{x} lies on the exceptional line \hat{p}_{ij} over p_{ij} .

Proof. Since indices are cyclic, we assume that i = 1. Thus, $\tau(x) = p_{1,j} = n_1 \times n_j$ for some $j \notin \{d, 1, 2\}$. The relation $Q_1(x) = \Lambda_1 \cdot \tau(x) = \Lambda_1 \cdot (n_1 \times n_j) = 0$ yields

$$L(1) := x_2 \mathbf{n}_2 \cdot p_{1,j} - x_1 \mathbf{n}_d \cdot p_{1,j} = 0.$$
(9)

The relation $Q_i(x) = 0$ implies

$$L(j) := x_{j+1} |\mathbf{n}_{j+1} \mathbf{n}_1 \mathbf{n}_j| - x_j |\mathbf{n}_2 \mathbf{n}_1 \mathbf{n}_j| = 0.$$
 (10)

Also.

$$Q_2(\mathbf{x}) = (x_3\mathbf{n}_3 - x_2\mathbf{n}_1) \cdot \mathbf{n}_1 \times \mathbf{n}_j = x_3|\mathbf{n}_3\mathbf{n}_1\mathbf{n}_j| = 0,$$

implying $x_3 = 0$ since $|\mathbf{n}_3 \mathbf{n}_1 \mathbf{n}_j| \neq 0$ if $j \neq 3$. Assume $x_k = 0$ for $3 \leq k < j - 1$. Note that

$$Q_k(\mathbf{x}) = (x_{k+1}\mathbf{n}_{k+1} - x_k\mathbf{n}_{k-1}) \cdot \mathbf{n}_1 \times \mathbf{n}_j = x_{k+1}|\mathbf{n}_{k+1}\mathbf{n}_1\mathbf{n}_j| = 0;$$

hence, $x_{k+1} = 0$ since $|\mathbf{n}_{k+1}\mathbf{n}_1\mathbf{n}_j| \neq 0$ and by induction $x_k = 0$ for $3 \leq k \leq j-1$. An analogous argument shows that $x_k = 0$ for $j+2 \leq k \leq d$. Hence, \mathbf{x} lies on the line $\mathbb{V}(L(1), L(j), x_k \mid k \notin \{1, 2, j, j+1\})$, which is the exceptional line $\hat{p}_{1,j}$. \square

Theorem 3.14. The subset $\mathbb{V}(\langle (I_{W_d})_2 \rangle) \setminus \mathscr{C}$ is contained in W_d . It follows that the variety $\mathbb{V}(\langle (I_{W_d})_2 \rangle)$ has irreducible decomposition $W_d \cup \mathscr{C}$.

Proof. Let $\mathbf{x} = [x_1 : \cdots : x_d] \in \mathbb{V}(\langle (I_{W_d})_2 \rangle) \setminus \mathcal{C}$. The Wachspress quadrics give the relations

$$x_{r+1}\boldsymbol{n}_{r+1} \cdot \boldsymbol{\tau} = x_r \boldsymbol{n}_{r-1} \cdot \boldsymbol{\tau} \tag{11}$$

for each r = 1, ..., d. By Theorem 1.6, the adjoint is independent of triangulation,

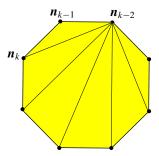


Figure 3. Triangulation used for adjoint.

so we use \mathcal{A} to denote the adjoint, specifying the triangulation if necessary. We now show, for each $k \in \{1, \ldots, d\}$, $b_k(\tau(x)) = \mathcal{A}(\tau(x))x_k$, where the triangulation above is used for the adjoint \mathcal{A} . It follows from the uniqueness of Wachspress coordinates that the denominator $\sum_{i=1}^{d} b_i$ of β_i is the adjoint of P_d^* , so it follows that

$$w_d(\tau(\mathbf{x})) = \mathcal{A}(\tau(\mathbf{x}))\mathbf{x}. \tag{12}$$

Provided $\mathcal{A}(\tau(x)) \neq 0$, the result follows since $w_d(\tau(x)) \in \mathbb{P}^{d-1}$ is a nonzero scalar multiple of x; hence, x is in the image of the Wachspress map and thus lies on W_d . If $x \in \mathbb{V}(\langle (I_{W_d})_2 \rangle) \setminus \mathcal{C}$ and $\mathcal{A}(\tau(x)) = 0$, then by (12) $w_d(\tau(x)) = 0$, and hence, $\tau(x)$ is a basepoint of w_d . Thus, $\tau(x) = n_i \times n_j$ for some diagonal pair (i, j). By Lemma 3.13,

x lies on an exceptional line and hence lies on W_d . To prove the claim, note that since all indices are cyclic it suffices to assume k = 3. Let $|n_i n_j n_k| = |n_{ijk}|$ and

$$\mathbf{n}_{i_1,\ldots,i_m}\cdot \tau := \prod_{i=1}^m (\mathbf{n}_{i_j}\cdot \tau).$$

This is the product of m linear forms in S, and with this notation,

$$b_3(\tau) = \mathbf{n}_{1.4.5...d} \cdot \tau.$$

For each $r \in \{3, ..., d\}$, define

$$\sigma_r := (\mathbf{n}_{4,\dots,r} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=3}^r \mathbf{v}_i (\mathbf{n}_{r+1,\dots,d} \cdot \tau) x_i + \sum_{i=r+1}^d \mathbf{v}_i (\mathbf{n}_{r-1,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) x_r \right],$$

where we set $\mathbf{n}_{i,\dots,j} \cdot \tau = 1$ if j < i. We show $x_3 \mathcal{A}(\tau(\mathbf{x})) = \sigma_3 = \sigma_d = b_3(\tau(\mathbf{x}))$. First, we show $\sigma_3 = x_3 \mathcal{A}(\tau)$: to see this, note that

$$x_3 \mathcal{A}(\tau) = |\mathbf{n}_{123}|(\mathbf{n}_{4,\dots,d} \cdot \tau)x_3 + \sum_{i=4}^{d} |\mathbf{n}_{1,i-1,i}|(\mathbf{n}_{2,\dots,i-2} \cdot \tau)(\mathbf{n}_{i+1,\dots,d} \cdot \tau)x_3, \quad (13)$$

where we express the adjoint \mathcal{A} using the triangulation in Figure 3. Applying the scalar triple product to $|\mathbf{n}_{123}|$ and $|\mathbf{n}_{1,i-1,i}|$ in the expression (13) yields

$$\mathbf{n}_1 \cdot (\mathbf{n}_2 \times \mathbf{n}_3) (\mathbf{n}_{4,\dots,d} \cdot \tau) x_3 + \sum_{i=4}^d \mathbf{n}_1 \cdot (\mathbf{n}_{i-1} \times \mathbf{n}_i) (\mathbf{n}_{2,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) x_3.$$
 (14)

Factoring an n_1 and noting that $n_i \times n_{i+1} = v_{i+1}$, (14) becomes

$$\boldsymbol{n}_1 \cdot \left[\boldsymbol{v}_3(\boldsymbol{n}_{4,\dots,d} \cdot \tau) x_3 + \sum_{i=4}^d \boldsymbol{v}_i(\boldsymbol{n}_{2,\dots,i-2} \cdot \tau) (\boldsymbol{n}_{i+1,\dots,d} \cdot \tau) x_3 \right] = \sigma_3.$$

Now we show $\sigma_d = b_3(\tau)$. Since $\mathbf{n}_{d+1,\dots,d} \cdot \tau = 1$,

$$\sigma_d = (\boldsymbol{n}_{4,\dots,d} \cdot \tau) \boldsymbol{n}_1 \cdot \left(\sum_{i+3}^d \boldsymbol{v}_i (\boldsymbol{n}_{d+1,\dots,d} \cdot \tau) x_i \right) = (\boldsymbol{n}_{4,\dots,d} \cdot \tau) \boldsymbol{n}_1 \cdot \left(\sum_{i+3}^d \boldsymbol{v}_i x_i \right). \tag{15}$$

Observing that $\mathbf{n}_1 \cdot \sum_{i=1}^{2} x_i \mathbf{v}_i = 0$, we see that (15) is

$$(\mathbf{n}_{4,\dots,d}\cdot\tau)(\mathbf{n}_1\cdot\tau)=\mathbf{n}_{1,4,\dots,d}\cdot\tau=b_3(\tau).$$

We now claim that for $r \in \{3, ..., d-1\}$ we have $\sigma_r = \sigma_{r+1}$. Indeed,

$$\sigma_{r} = (\mathbf{n}_{4,\dots,r} \cdot \tau) \mathbf{n}_{1} \cdot \left[\sum_{i=3}^{r} \mathbf{v}_{i} (\mathbf{n}_{r+1,\dots,d} \cdot \tau) x_{i} + \sum_{i=r+1}^{d} \mathbf{v}_{i} (\mathbf{n}_{r,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) (\mathbf{n}_{r-1} \cdot \tau) x_{r} \right]$$

$$= (\mathbf{n}_{4,\dots,r} \cdot \tau) \mathbf{n}_{1} \cdot \left[\sum_{i=3}^{r} \mathbf{v}_{i} (\mathbf{n}_{r+1,\dots,d} \cdot \tau) x_{i} + \sum_{i=r+1}^{d} \mathbf{v}_{i} (\mathbf{n}_{r,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) (\mathbf{n}_{r+1} \cdot \tau) x_{r+1} \right],$$

where we have applied (11) to the last term. Factoring out $n_{r+1} \cdot \tau$ yields

$$(\mathbf{n}_{4,\dots,r+1} \cdot \tau)\mathbf{n}_1 \cdot \left[\sum_{i=3}^r \mathbf{v}_i (\mathbf{n}_{r+2,\dots,d} \cdot \tau) x_i + \sum_{i=r+1}^d \mathbf{v}_i (\mathbf{n}_{r,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) x_{r+1} \right].$$

Lastly, since the expressions in both summations agree at the index i = r + 1, we can shift the indices of summation,

$$(\mathbf{n}_{4,\dots,r+1} \cdot \tau) \mathbf{n}_1 \cdot \left[\sum_{i=3}^{r+1} \mathbf{v}_i (\mathbf{n}_{r+2,\dots,d} \cdot \tau) x_i + \sum_{i=r+2}^{d} \mathbf{v}_i (\mathbf{n}_{r,\dots,i-2} \cdot \tau) (\mathbf{n}_{i+1,\dots,d} \cdot \tau) x_{r+1} \right],$$

which is precisely σ_{r+1} , proving the claim. The claim shows that $\sigma_3 = \sigma_d$; hence, (12) holds, and so x lies in W_d if $\mathcal{A}(\tau(x)) \neq 0$.

4. The Wachspress cubics

Theorem 3.14 shows that the Wachspress quadrics do not suffice to cut out the Wachspress variety W_d . We now construct cubics, the *Wachspress cubics*, that lie in I_{W_d} and do not arise from the Wachspress quadrics. These cubics are determinants of 3×3 matrices of linear forms. The key to showing that they are in I_{W_d} is to write them as a difference of adjoints $\mathcal{A}_{T_1(C)} - \mathcal{A}_{T_2(C)}$, where $T_1(C)$ and $T_2(C)$ are two different triangulations of a subcone C of the dual cone P_d^* . By Theorem 1.6, the difference is zero, so the cubic is in I_{W_d} .

4A. Construction of Wachspress cubics. As in Lemma 3.6, let

$$\Lambda_r = \frac{x_{r+1}}{\alpha_{r+1}} \boldsymbol{n}_{r+1} - \frac{x_r}{\alpha_r} \boldsymbol{n}_{r-1}.$$

Theorem 4.1. If $i \neq j \neq k \neq i$, then $w_{i,j,k} := |\Lambda_i, \Lambda_j, \Lambda_k| \in I_{W_d}$.

Proof. We break the proof into two parts. First, suppose no pair of (i, j, k) corresponds to an edge of P_d . We call such an (i, j, k) a T-triple. A direct

calculation shows that, if (i, j, k) is a T-triple, then evaluating the monomial $x_i x_j x_k$ at Wachspress coordinates yields

$$x_i x_j x_k(w_d) = b_i b_j b_k = A^2 \prod_{m \in \gamma(i,j,k)} \ell_m,$$
(16)

where $\gamma(i, j, k)$ is as in Definition 3.4. Since there are no T-triples if d < 6, we may assume $d \ge 6$. Changing variables by replacing x_i with x_i/α_i , we may ignore the constants α_i . Using the definition of the Λ 's, observe that

$$w_{i,j,k} = |\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{k+1}|x_{i+1}x_{j+1}x_{k+1} - |\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|x_{i+1}x_{j+1}x_{k}$$

$$- |\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{k+1}|x_{i+1}x_{j}x_{k+1} + |\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{k-1}|x_{i+1}x_{j}x_{k}$$

$$- |\mathbf{n}_{i-1}\mathbf{n}_{j+1}\mathbf{n}_{k+1}|x_{i}x_{j+1}x_{k+1} + |\mathbf{n}_{i-1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|x_{i}x_{j+1}x_{k}$$

$$+ |\mathbf{n}_{i-1}\mathbf{n}_{i-1}\mathbf{n}_{k+1}|x_{i}x_{j}x_{k+1} - |\mathbf{n}_{i-1}\mathbf{n}_{i-1}\mathbf{n}_{k-1}|x_{i}x_{j}x_{k}.$$

$$(17)$$

There are several situations to consider, depending on various possibilities for interactions among the indices. Interactions may occur if i+1=j-1 or j+1=k-1 or k+1=i-1, so there are four cases:

1. All three hold. 2. Two hold. 3. One holds. 4. None hold.

Case 1. The indices (i, j, k) satisfy Case 1 if and only if d = 6. For d = 6, there are only two T-triples: (1, 3, 5) and (2, 4, 6). We show that $w_{1,3,5}$ vanishes on Wachspress coordinates; the case of $w_{2,4,6}$ is similar. All but two of the determinants in Equation (17) vanish, leaving

$$w_{1,3,5} = |\Lambda_1, \Lambda_3, \Lambda_5| = |\mathbf{n}_2 \mathbf{n}_4 \mathbf{n}_6| x_2 x_4 x_6 - |\mathbf{n}_6 \mathbf{n}_2 \mathbf{n}_4| x_1 x_3 x_5.$$
 (18)

Notice that the coefficients are equal, and we conclude by showing that

$$x_1x_3x_5 - x_2x_4x_6$$

vanishes on Wachspress coordinates. The monomials $x_1x_3x_5$ and $x_2x_4x_6$ evaluated at Wachspress coordinates are $b_1b_3b_5$ and $b_2b_4b_6$, respectively. Both of these are equal to A^2 , so $x_1x_3x_5 - x_2x_4x_6$ vanishes on Wachspress coordinates.

Case 2. We can assume without loss of generality $i+1 \neq j-1$, j+1=k-1, and k+1=i-1. Four coefficients vanish in (17), yielding

$$w_{i,j,k} = |\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{i-1}|x_{i+1}x_{j+1}x_{i-1}$$

$$-|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{i-1}|x_{i+1}x_{j}x_{i-1}$$

$$+|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{j+1}|x_{i+1}x_{j}x_{i-2}$$

$$-|\mathbf{n}_{i-1}\mathbf{n}_{i-1}\mathbf{n}_{i+1}|x_{i}x_{i}x_{i-2}.$$

Evaluating this at Wachspress coordinates yields

$$\begin{split} w_{i,j,k} \circ w_d &= |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{i-1}| \prod_{m \in \gamma(i+1,j+1,i-1)} \ell_m + |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{i-1}| \prod_{m \in \gamma(i+1,j,i-1)} \ell_m \\ &- |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{j+1}| \prod_{m \in \gamma(i+1,j,i-1)} \ell_m - |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{j+1}| \prod_{m \in \gamma(i,j,i-1)} \ell_m \\ &= A^2 \bigg(\prod_{m \in \gamma(i-1,i+1,j+1,j)} \ell_m \bigg) \Big(|\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{i-1}| \ell_{j-1} - |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{i-1}| \ell_{j+1} \\ &+ |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{j+1}| \ell_{i-1} - |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{j+1}| \ell_{i+1} \Big) \\ &= A^2 \bigg(\prod_{m \in \gamma(i-1,i+1,j+1,j)} \ell_m \bigg) \Big[(|\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{i-1}| \ell_{j-1} + |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{j-1}| \ell_{i+1}) \\ &- (|\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{i-1}| \ell_{j+1} + |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{j-1}| \ell_{i-1}) \Big], \end{split}$$

where

$$A = \prod_{i=1}^{d} \ell_i.$$

The last factor is the difference of two adjoints with respect to the triangulations of the quadrilateral in Figure 4. The vanishing can be seen directly: write n_1, \ldots, n_4 for $n_{i-1}, n_{i+1}, n_{j-1}$, and n_{j+1} . Then the last factor is

$$|n_2n_3n_4|\ell_1 - |n_1n_3n_4|\ell_2 + |n_1n_2n_4|\ell_3 - |n_1n_2n_3|\ell_4.$$

Applying $\frac{d}{dx}$ to this shows the x coefficient is

$$|n_2n_3n_4|n_{11} - |n_1n_3n_4|n_{21} + |n_1n_2n_4|n_{31} - |n_1n_2n_3|n_{41}.$$

This is the determinant of the matrix of the n_i with a repeat row for the x coordinates n_{i1} , so it vanishes. Reason similarly for the y and z coefficients.

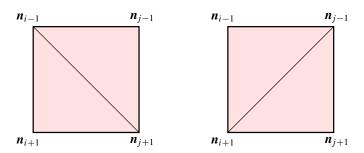


Figure 4. Case 2 triangulation.

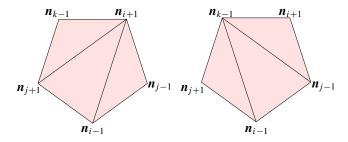


Figure 5. Case 3 triangulation.

Case 3. Assume without loss of generality $i + 1 \neq j - 1$, $j + 1 \neq k - 1$, and k + 1 = i - 1. In this case, two coefficients vanish in (17), and after evaluating at Wachspress coordinates, we obtain

 $w_{i,i,k} \circ w_d$

$$=|\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{i-1}|\prod_{m\in\gamma(i+1,j+1,k+1)}\ell_m-|\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|\prod_{m\in\gamma(i+1,j+1,k)}\ell_m$$

$$-|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{i-1}|\prod_{m\in\gamma(i+1,j,k+1)}\ell_m+|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{k-1}|\prod_{m\in\gamma(i+1,j,k)}\ell_m$$

$$+|\mathbf{n}_{i-1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|\prod_{m\in\gamma(i,j+1,k)}\ell_m-|\mathbf{n}_{i-1}\mathbf{n}_{j-1}\mathbf{n}_{k-1}|\prod_{m\in\gamma(i,j,k)}\ell_m$$

$$=A^2\bigg(\prod_{\substack{m\in\gamma(i,j,k,\\i+1,j+1,k+1)}}\ell_m\bigg)\big(|\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{i-1}|\ell_{j-1}\ell_{k-1}-|\mathbf{n}_{i+1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|\ell_{i-1}\ell_{j-1}$$

$$-|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{i-1}|\ell_{j+1}\ell_{k-1}+|\mathbf{n}_{i+1}\mathbf{n}_{j-1}\mathbf{n}_{k-1}|\ell_{j+1}\ell_{i-1}$$

$$+|\mathbf{n}_{i-1}\mathbf{n}_{j+1}\mathbf{n}_{k-1}|\ell_{i+1}\ell_{j-1}-|\mathbf{n}_{i-1}\mathbf{n}_{i-1}\mathbf{n}_{k-1}|\ell_{i+1}\ell_{j+1}\big).$$

The last factor is the difference of adjoints with respect to the triangulations of the pentagon in Figure 5.

Case 4. In this case, evaluation at Wachspress coordinates yields

$$\begin{split} w_{i,j,k} \circ w_d &= |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{k+1}| \prod_{m \in \gamma(i+1,j+1,k+1)} \ell_m - |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{k-1}| \prod_{m \in \gamma(i+1,j+1,k)} \ell_m \\ &- |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{k+1}| \prod_{m \in \gamma(i+1,j,k+1)} \ell_m + |\textbf{\textit{n}}_{i+1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{k-1}| \prod_{m \in \gamma(i,j+1,k)} \ell_m \\ &- |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{k+1}| \prod_{m \in \gamma(i,j+1,k+1)} \ell_m + |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j+1} \textbf{\textit{n}}_{k-1}| \prod_{m \in \gamma(i,j+1,k)} \ell_m \\ &+ |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{k+1}| \prod_{m \in \gamma(i,j,k+1)} \ell_m - |\textbf{\textit{n}}_{i-1} \textbf{\textit{n}}_{j-1} \textbf{\textit{n}}_{k-1}| \prod_{m \in \gamma(i,j,k)} \ell_m \end{split}$$

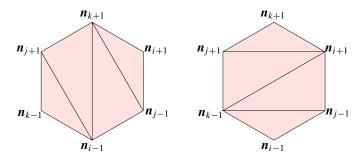


Figure 6. Case 4 triangulation.

$$=A^{2}\left(\prod_{\substack{m \in \gamma(i,j,k,\\i+1,j+1,k+1)}}\ell_{m}\right)$$

$$\times \left(|n_{i+1}n_{j+1}n_{k+1}|\ell_{i-1}\ell_{j-1}\ell_{k-1} - |n_{i+1}n_{j+1}n_{k-1}|\ell_{i-1}\ell_{j-1}\ell_{k+1} - |n_{i+1}n_{j-1}n_{k+1}|\ell_{i-1}\ell_{j+1}\ell_{k-1} + |n_{i+1}n_{j-1}n_{k-1}|\ell_{i-1}\ell_{j+1}\ell_{k+1} - |n_{i-1}n_{j+1}n_{k+1}|\ell_{i+1}\ell_{j-1}\ell_{k-1} + |n_{i-1}n_{j+1}n_{k-1}|\ell_{j+1}\ell_{i-1}\ell_{k+1} + |n_{i-1}n_{j-1}n_{k+1}|\ell_{i+1}\ell_{j+1}\ell_{i-1} + |n_{i-1}n_{j-1}n_{k-1}|\ell_{i+1}\ell_{i+1}\ell_{k+1}\right).$$

The last factor is the difference of adjoints expressed using the triangulations of the hexagon in Figure 6. This completes the analysis when (i, j, k) is a T-triple.

Next, we consider the situation when (i, j, k) contains a pair of consecutive indices. Suppose first that there are exactly two consecutive vertices; without loss of generality, we assume the indices are (2, 3, i) with i > 4. We have

$$w_{2,3,i} := |\Lambda_2 \Lambda_3 \Lambda_i| = |\mathbf{n}_2 \mathbf{n}_4 \mathbf{n}_{i+1}| x_3 x_4 x_{i+1} - |\mathbf{n}_3 \mathbf{n}_4 \mathbf{n}_{i-1}| x_3 x_4 x_i$$
$$- |\mathbf{n}_3 \mathbf{n}_2 \mathbf{n}_{i+1}| x_3 x_3 x_{i+1} + |\mathbf{n}_3 \mathbf{n}_2 \mathbf{n}_{i-1}| x_3 x_3 x_i$$
$$- |\mathbf{n}_1 \mathbf{n}_4 \mathbf{n}_{i+1}| x_2 x_4 x_{i+1} + |\mathbf{n}_1 \mathbf{n}_4 \mathbf{n}_{i-1}| x_2 x_4 x_i$$
$$+ |\mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_{i+1}| x_2 x_3 x_{i+1} - |\mathbf{n}_1 \mathbf{n}_2 \mathbf{n}_{i-1}| x_2 x_3 x_i.$$

We show that $w_{2,3,i} \circ w_d$ is a multiple of the difference between two expressions of the adjoint polynomial of a polygon with respect to two different triangulations. After evaluation at w_d , each monomial has a common factor of $A\prod_{j\neq 2,3}\ell_j$. Thus, we can express

$$\frac{w_{2,3,i}(w_d)}{A\prod_{i\neq 2,3}\ell_j}$$

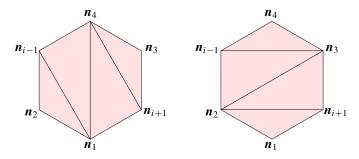


Figure 7. Triangulations for the non-*T*-triples.

as

$$\frac{w_{2,3,i}(w_d)}{A\prod\limits_{j\neq 2,3}\ell_j} = |n_2n_4n_{i+1}| \prod\limits_{j\neq 3,4,i+1}\ell_j - |n_3n_4n_{i-1}| \prod\limits_{j\neq 3,4,i-1}\ell_j \\ - |n_3n_2n_{i+1}| \prod\limits_{j\neq 2,3,i+1}\ell_j + |n_3n_2n_{i-1}| \prod\limits_{j\neq 2,3,i-1}\ell_j \\ - |n_1n_4n_{i+1}| \prod\limits_{j\neq 1,4,i+1}\ell_j + |n_1n_4n_{i-1}| \prod\limits_{j\neq 1,4,i-1}\ell_j \\ + |n_1n_2n_{i+1}| \prod\limits_{j\neq 1,2,i+1}\ell_j - |n_1n_2n_{i-1}| \prod\limits_{j\neq 1,2,i-1}\ell_j \\ = \left(\prod_{j\in \gamma(2,4,i,i+1)}\ell_j\right) \left(|n_2n_4n_{i+1}|\ell_1\ell_3\ell_{i-1} - |n_3n_4n_{i-1}|\ell_1\ell_2\ell_{i+1} \\ - |n_3n_2n_{i+1}|\ell_1\ell_4\ell_{i-1} + |n_3n_2n_{i-1}|\ell_1\ell_4\ell_{i+1} \\ - |n_1n_4n_{i+1}|\ell_2\ell_3\ell_{i-1} + |n_1n_4n_{i-1}|\ell_2\ell_3\ell_{i+1} \\ + |n_1n_2n_{i+1}|\ell_3\ell_4\ell_{i-1} - |n_1n_2n_{i-1}|\ell_3\ell_4\ell_{i+1}\right).$$

The factor in parentheses is the difference of the adjoints computed with respect to the triangulations of the polygon in Figure 7.

Finally, for the case where the three vertices are consecutive, assume without loss of generality the triple is (2, 3, 4), and proceed as above. In this case, the triangulations that arise are those that appear in Figure 5.

Definition 4.2. I(d) is the ideal generated by the Wachspress quadrics appearing in Corollary 3.8 and the Wachspress cubics appearing in Theorem 4.1.

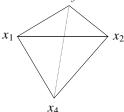
5. Gröbner basis, Stanley-Reisner ring, and free resolution

In this section, we determine the initial ideal of I(d) in graded lex order and prove $I(d) = I_{W_d}$. First, we present some preliminaries.

5A. Simplicial complexes and combinatorial commutative algebra. An abstract n-simplex is a set consisting of all subsets of an (n+1)-element ground set. Typically a simplex is viewed as a geometric object; for example, a 2-simplex on the set $\{a, b, c\}$ can be visualized as a triangle with the subset $\{a, b, c\}$ corresponding to the whole triangle, $\{a, b\}$ an edge, and $\{a\}$ a vertex. For this reason, elements of the ground set are called the vertices.

Definition 5.1 [Ziegler 1995]. A simplicial complex Δ on a vertex set V is a collection of subsets σ of V such that, if $\sigma \in \Delta$ and $\tau \subset \sigma$, then $\tau \in \Delta$. If $|\sigma| = i + 1$, then σ is called an i-face. Let $f_i(\Delta)$ denote the number of i-faces of Δ , and define $\dim(\Delta) = \max\{i \mid f_i(\Delta) \neq 0\}$. If $\dim(\Delta) = n - 1$, we define $f_{\Delta}(t) = \sum_{i=0}^{n} f_{i-1}t^{n-i}$. The ordered list of coefficients of $f_{\Delta}(t)$ is the f-vector of Δ , and the coefficients of $h_{\Delta}(t) := f_{\Delta}(t-1)$ are the h-vector of Δ .

Example 5.2. Consider the 1-skeleton of a tetrahedron with vertices x_1, x_2, x_3, x_4 , as in the figure. x_3



The corresponding simplicial complex Δ consists of all vertices and edges, so $\Delta = \{\emptyset, \{x_i\}, \{x_i, x_j\} \mid 1 \le i \le 4 \text{ and } i < j \le 4\}$. Thus, $f(\Delta) = (1, 4, 6)$ and $h(\Delta) = (1, 2, 3)$; the empty face gives $f_{-1}(\Delta) = 1$.

A simplicial complex Δ can be used to define a commutative ring, known as the Stanley–Reisner ring. This construction allows us to use tools of commutative algebra to prove results about the topology or combinatorics of Δ .

Definition 5.3. Let Δ be a simplicial complex on vertices $\{x_1, \ldots, x_n\}$. The Stanley–Reisner ideal I_{Δ} is

$$I_{\Delta} = \langle x_{i_1} \cdots x_{i_j} \mid \{x_{i_1}, \dots, x_{i_j}\} \text{ is not a face of } \Delta \rangle \subseteq \mathbb{K}[x_1, \dots, x_n],$$

and the Stanley–Reisner ring is $\mathbb{K}[x_1,\ldots,x_k]/I_{\Delta}$.

In Example 5.2, since Δ has no 2-faces,

$$I_{\Delta} = \langle x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_3 x_4, x_2 x_3 x_4 \rangle = \bigcap_{1 \le i < j \le 4} \langle x_i, x_j \rangle.$$

Definition 5.4. A prime ideal P is associated to a graded S-module N if P is the annihilator of some $n \in N$, and Ass(N) is the set of all associated primes of N.

Definition 5.5. Let $\operatorname{codim}(N) = \min\{\operatorname{codim}(P) \mid P \in \operatorname{Ass}(N)\}$ for a finitely generated graded *S*-module *N*. The projective dimension $\operatorname{pdim}(N)$ is the length of a minimal free resolution of *N*; *N* is Cohen–Macaulay if $\operatorname{codim}(N) = \operatorname{pdim}(N)$. S/I is arithmetically Cohen–Macaulay if it is Cohen–Macaulay as an *S*-module.

5B. Application to Wachspress surfaces.

Definition 5.6. Define $I_{\Gamma}(d) \subseteq \mathbb{K}[x_1, \dots, x_d]$ as

$$I_{\Gamma}(d) = \langle x_1 x_3, \dots, x_1 x_{d-1} \rangle + K_{2,d-1},$$

where $K_{2,d-1}$ consists of all square-free cubic monomials in x_2, \ldots, x_{d-1} .

Theorem 5.7. The quotient $S/I_{\Gamma}(d)$ is arithmetically Cohen–Macaulay, of Castel-nuovo–Mumford regularity two, and has Hilbert series

$$HS(S/I_{\Gamma}(d), t) = \frac{1 + (d-3)t + {d-3 \choose 2}t^2}{(1-t)^3}.$$

Proof. The ideal $I_{\Gamma}(d)$ is the Stanley–Reisner ideal of a one-dimensional simplicial complex Γ consisting of a complete graph on vertices $\{x_2, \ldots, x_{d-1}\}$ with a single additional edge $\overline{x_1x_2}$ attached. All connected graphs are shellable, so since shellable implies Cohen–Macaulay (see [Miller and Sturmfels 2005]), $S/I_{\Gamma}(d)$ is Cohen–Macaulay. Since $I_{\Gamma}(d)$ contains no terms involving x_d , if $S' = \mathbb{K}[x_1, \ldots, x_{d-1}]$, then

$$S/I_{\Gamma}(d) \simeq S'/I_{\Gamma}(d) \otimes \mathbb{K}[x_d].$$

The Hilbert series of a Stanley–Reisner ring has numerator equal to the h-vector of the associated simplicial complex (see [Schenck 2003]), which in this case is a graph on d-1 vertices with $\binom{d-2}{2}+1$ edges. Converting $f(\Gamma)=(1,d-1,\binom{d-2}{2}+1)$ to $h(\Gamma)$ yields the Hilbert series of $S'/I_{\Gamma}(d)$. The Hilbert series of a graph has denominator $(1-t)^2$, and tensoring with $\mathbb{K}[x_d]$ contributes a factor of 1/(1-t), yielding the result.

Theorem 5.8. In graded lex order, in $I(d) = I_{\Gamma}(d)$.

Proof. First, note that

$$I_{\Gamma}(d) \subseteq \operatorname{in}_{\prec} I(d),$$

which follows from Corollary 3.8 and Theorem 4.1, combined with the observation that, in graded lex order, $\operatorname{in}(|\Lambda_i \Lambda_j \Lambda_k|) = x_i x_j x_k$ if i < j < k as long as $k \neq d$. Since $I(d) \subseteq I_{W_d}$, there is a surjection

$$S/I(d) \twoheadrightarrow S/I_{W_d};$$

hence, $HP(S/I(d), t) \ge HP(S/I_{W_d}, t)$. Since

$$HP(S/I(d), t) = HP(S/in \prec I(d), t)$$

and

$$I_{\Gamma}(d) \subseteq \operatorname{in}_{\prec} I(d),$$

we have

$$\operatorname{HP}(S/I_{\Gamma}(d), t) \ge \operatorname{HP}(S/\operatorname{in}_{\prec} I(d), t) = \operatorname{HP}(S/I(d), t) \ge \operatorname{HP}(S/I_{W_d}, t).$$

The Hilbert polynomial $HP(S/I_{W_d}, t)$ is given by Equation (5). The Hilbert series of $S/I_{\Gamma}(d)$ is given by Theorem 5.7, from which we can extract the Hilbert polynomial:

$$HP(S/I_{\Gamma}(d), t) = {\binom{d-3}{2}} {\binom{t}{2}} + (d-3) {\binom{t+1}{2}} + {\binom{t+2}{2}},$$

and a check shows this agrees with Equation (5). Since $I_{\Gamma}(d) \subseteq \text{in}_{\prec} I(d)$, equality of the Hilbert polynomials implies that in high degree (i.e., up to saturation)

$$I_{\Gamma}(d) = \operatorname{in}_{\prec} I(d)$$
 and $I(d) = I_{W_d}$.

Consider the short exact sequence

$$0 \to \operatorname{in}_{\prec} I(d)/I_{\Gamma}(d) \to S/I_{\Gamma}(d) \to S/\operatorname{in}_{\prec} I(d) \to 0.$$

By Lemma 3.6 of [Eisenbud 1995],

$$\operatorname{Ass}(\operatorname{in}_{\prec} I(d)/I_{\Gamma}(d)) \subseteq \operatorname{Ass}(S/I_{\Gamma}(d)). \tag{19}$$

Since $\operatorname{HP}(S/I_{\Gamma}(d), t) = \operatorname{HP}(S/\operatorname{in}_{\prec} I(d), t)$, the module $\operatorname{in}_{\prec} I(d)/I_{\Gamma}(d)$ must vanish in high degree so is supported at \mathfrak{m} , which is of codimension d. But $I_{\Gamma}(d)$ is a radical ideal supported in codimension d-3, so it follows from Equation (19) that $\operatorname{in}_{\prec} I(d)/I_{\Gamma}(d)$ must vanish.

Corollary 5.9. The ideal I(d) is the ideal of the image of

$$X_d \to \mathbb{P}(H^0(D_{d-2})).$$

In particular, $I(d) = I_{W_d}$, and S/I(d) is arithmetically Cohen–Macaulay.

Proof. By the results of Sections 2 and 3, $I(d) \subseteq I_{W_d}$, and the proof of Theorem 5.8 showed that they are equal up to saturation. Hence, $I_{W_d}/I(d)$ is supported at m. Consider the short exact sequence

$$0 \rightarrow I_{W_d}/I(d) \rightarrow S/I(d) \rightarrow S/(I_{W_d}) \rightarrow 0.$$

Since $S/I_{\Gamma}(d) = S/\inf_{\prec} I(d)$ is arithmetically Cohen–Macaulay of codimension d-3, by uppersemicontinuity [Herzog 2005], so is S/I(d), so $I_{W_d}/I(d) = 0$. \square

Corollary 5.10. The quotient S/I_{W_d} has regularity 2.

Proof. Since S/I(d) is Cohen–Macaulay, reducing modulo a linear regular sequence of length 3 yields an Artinian ring with the same regularity, which is equal to the socle degree [Eisenbud 2005]. By Theorems 5.7 and 5.8, this is 2, so the regularity of S/I_{W_d} is 2.

Theorem 5.11. The nonzero graded Betti numbers of the minimal free resolution of S/I(d) are given by $b_{12} = d - 3$ and for $i \ge 3$ by

$$b_{i-2,i} = {d-3 \choose i} - (d-3) {d-3 \choose i-1} + {d-3 \choose 2} {d-3 \choose i-2}.$$

Proof. By Corollary 5.10, there are only two rows in the Betti table of S/I(d). By Corollary 3.9, the top row is empty, save for the quadratic generators at the first step. Thus, the entire Betti diagram may be obtained from the Hilbert series, which is given in Theorem 5.7, and the result follows.

We are at work on generalizing the results here to higher dimensions.

Acknowledgments

Computations were performed using Macaulay2, by Grayson and Stillman, available at http://www.math.uiuc.edu/Macaulay2/. A script is available at http://www.math.uiuc.edu/~schenck/Wpress.m2/. Our collaboration began during a SIAM conference on applied algebraic geometry, and we thank the organizers of that conference, Dan Bates and Frank Sottile. We thank Frank Sottile and Greg Smith for useful comments. Irving also thanks his thesis advisor, Frank Sottile, for introducing him to Wachspress varieties and providing guidance during the dissertation process.

References

[Buchsbaum and Eisenbud 1973] D. A. Buchsbaum and D. Eisenbud, "What makes a complex exact?", *J. Algebra* **25** (1973), 259–268. MR 47 #3369 Zbl 0264.13007

[Cox et al. 2011] D. A. Cox, J. B. Little, and H. K. Schenck, *Toric varieties*, Graduate Studies in Mathematics **124**, American Mathematical Society, Providence, RI, 2011. MR 2012g:14094 Zbl 1223.14001

[Davis and Geramita 1988] E. D. Davis and A. V. Geramita, "Birational morphisms to **P**²: an ideal-theoretic perspective", *Math. Ann.* **279**:3 (1988), 435–448. MR 89a:14014 Zbl 0657.14003

[Eisenbud 1995] D. Eisenbud, *Commutative algebra, with a view toward algebraic geometry*, Graduate Texts in Mathematics **150**, Springer, New York, 1995. MR 97a:13001 Zbl 0819.13001

[Eisenbud 2005] D. Eisenbud, *The geometry of syzygies: a second course in commutative algebra and algebraic geometry*, Graduate Texts in Mathematics **229**, Springer, New York, 2005. MR 2005h:13021 Zbl 1066.14001

[Garcia-Puente and Sottile 2010] L. D. Garcia-Puente and F. Sottile, "Linear precision for parametric patches", *Adv. Comput. Math.* **33**:2 (2010), 191–214. MR 2011f:65030 Zbl 1193.65018

[Harbourne 2002] B. Harbourne, "Problems and progress: a survey on fat points in **P**²", pp. 85–132 in *Zero-dimensional schemes and applications* (Naples, 2000), edited by A. V. Geramita, Queen's Papers in Pure and Appl. Math. **123**, Queen's Univ., Kingston, ON, 2002. MR 2003f:13032 Zbl 1052.14052

[Hartshorne 1977] R. Hartshorne, *Algebraic geometry*, Graduate Texts in Mathematics **52**, Springer, New York, 1977. MR 57 #3116 Zbl 0367.14001

[Herzog 2005] J. Herzog, "Finite free resolutions", pp. 118–144 in *Computational commutative and non-commutative algebraic geometry*, edited by S. Cojocaru et al., NATO Sci. Ser. III Comput. Syst. Sci. **196**, IOS, Amsterdam, 2005. MR 2007a:13014 Zbl 1105.13012

[Miller and Sturmfels 2005] E. Miller and B. Sturmfels, *Combinatorial commutative algebra*, Graduate Texts in Mathematics **227**, Springer, New York, 2005. MR 2006d:13001 Zbl 1066.13001

[Möbius 1827] A. F. Möbius, Der barycentrische Calcul: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, Johann Ambrosius Barth, Leipzig, 1827.

[Schenck 2003] H. Schenck, *Computational algebraic geometry*, London Mathematical Society Student Texts **58**, Cambridge University Press, 2003. MR 2004k:13001 Zbl 1046.14034

[Wachspress 1975] E. L. Wachspress, *A rational finite element basis*, Mathematics in Science and Engineering **114**, Academic Press, New York, 1975. MR 54 #14403 Zbl 0322.65001

[Warren 1996] J. Warren, "Barycentric coordinates for convex polytopes", *Adv. Comput. Math.* **6**:2 (1996), 97–108. MR 97m:52026 Zbl 0873.52013

[Warren 2003] J. Warren, "On the uniqueness of barycentric coordinates", pp. 93–99 in *Topics in algebraic geometry and geometric modeling*, edited by R. Goldman and R. Krasauskas, Contemp. Math. **334**, Amer. Math. Soc., Providence, RI, 2003. MR 2005b:52022 Zbl 1043.52009

[Ziegler 1995] G. M. Ziegler, *Lectures on polytopes*, Graduate Texts in Mathematics **152**, Springer, New York, 1995. MR 96a:52011 Zbl 0823.52002

Communicated by Craig Huneke

Received 2013-01-06 Revised 2013-04-07 Accepted 2013-05-27

cfirving@scu.edu Department of Mathematics and Computer Science,

Santa Clara University, 500 El Camino Real,

Santa Clara, CA 95053, United States

schenck@math.uiuc.edu Department of Mathematics,

University of Illinois at Urbana-Champaign,

1409 West Green Street, Urbana, IL 61801, United States

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Susan Montgomery	University of Southern California, USA
Dave Benson	University of Aberdeen, Scotland	Shigefumi Mori	RIMS, Kyoto University, Japan
Richard E. Borcherds	University of California, Berkeley, USA	Raman Parimala	Emory University, USA
John H. Coates	University of Cambridge, UK	Jonathan Pila	University of Oxford, UK
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Victor Reiner	University of Minnesota, USA
Brian D. Conrad	University of Michigan, USA	Karl Rubin	University of California, Irvine, USA
Hélène Esnault	Freie Universität Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Edward Frenkel	University of California, Berkeley, USA	Michael Singer	North Carolina State University, USA
Andrew Granville	Université de Montréal, Canada	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Joseph Gubeladze	San Francisco State University, USA	J. Toby Stafford	University of Michigan, USA
•	•	Bernd Sturmfels	
Roger Heath-Brown	Oxford University, UK		University of California, Berkeley, USA
Ehud Hrushovski	Hebrew University, Israel	Richard Taylor	Harvard University, USA
Craig Huneke	University of Virginia, USA	Ravi Vakil	Stanford University, USA
Mikhail Kapranov	Yale University, USA	Michel van den Bergh	Hasselt University, Belgium
Yujiro Kawamata	University of Tokyo, Japan	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Yuri Manin	Northwestern University, USA	Efim Zelmanov	University of California, San Diego, USA
Barry Mazur	Harvard University, USA	Shou-Wu Zhang	Princeton University, USA
Philippe Michel	École Polytechnique Fédérale de Lausan	ne	

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US \$225/year for the electronic version, and \$400/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2014 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 8 No. 2 2014

Large self-injective rings and the generating hypothesis LEIGH SHEPPERSON and NEIL STRICKLAND	257
On lower ramification subgroups and canonical subgroups SHIN HATTORI	303
Wild models of curves DINO LORENZINI	331
Geometry of Wachspress surfaces COREY IRVING and HAL SCHENCK	369
Groups with exactly one irreducible character of degree divisible by p Daniel Goldstein, Robert M. Guralnick, Mark L. Lewis, Alexander Moretó, Gabriel Navarro and Pham Huu Tiep	397
The homotopy category of injectives AMNON NEEMAN	429
Essential dimension of spinor and Clifford groups VLADIMIR CHERNOUSOV and ALEXANDER MERKURJEV	457
On Deligne's category $\underline{\operatorname{Rep}}^{ab}(S_d)$ JONATHAN COMES and VICTOR OSTRIK	473
Algebraicity of the zeta function associated to a matrix over a free group algebra CHRISTIAN KASSEL and CHRISTOPHE REUTENAUER	497