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We prove a universal property of Deligne’s category Repab(Sd). Along the way,
we classify tensor ideals in the category Rep(Sd).

1. Introduction

1A. Let F be a field of characteristic zero and let I be a finite set. Let SI be
the symmetric group of the permutations of I and let Rep(SI ) be the category of
finite-dimensional F-linear representations of SI considered as a symmetric tensor
category. Let X I ∈Rep(SI ) be the space of F-valued functions on I with an obvious
action of SI . The object X I with pointwise operations has a natural structure of
associative commutative algebra with unit 1X I in the category Rep(SI ). We have
a morphism Tr : X I → F defined as a trace of the operator of left multiplication;
clearly the map X I ⊗ X I → F given by x⊗ y 7→ Tr(xy) is a nondegenerate pairing.
Finally, Tr(1X I )= dim(X I )= |I | where |I | ≥ 0 is the cardinality of I .

Now let G be a finite group acting on d-dimensional associative commutative
unital algebra T over F such that the pairing Tr(xy) is nondegenerate. It is easy
to see1 that there exists a finite set I with |I | = d and an essentially unique
tensor functor F : Rep(SI ) → Rep(G) such that F(X I ) ' T (isomorphism of
G-algebras); in this sense the category Rep(SI ) is a universal category (in the realm
of representation categories of finite groups) with object X I as above.

1B. For an arbitrary symmetric tensor category T one can consider objects T ∈ T

satisfying the following:

(a) T has a structure of associative commutative algebra (given by the multiplica-
tion map µT : T ⊗ T → T ) with unit (given by the map 1T : 1→ T ).

MSC2010: primary 18D10; secondary 19D23.
Keywords: tensor categories, symmetric group.

1Set I to be the set of F-algebra homomorphisms T → F̄ where F̄ is an algebraic closure of F
and use an obvious homomorphism G→ SI .
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(b) The object T is rigid. Moreover, if we define the map Tr : T → 1 as the
composition

T
idT ⊗ coevT
−→ T ⊗ T ⊗ T ∗

µT⊗idT∗
−→ T ⊗ T ∗ ' T ∗⊗ T

evT
−→ 1,

then the pairing T ⊗T
µT
→ T

Tr
→ 1 is nondegenerate, that is, it corresponds to an

isomorphism T ' T ∗ under the identification Hom(T ⊗ T, 1)= Hom(T, T ∗).

(c) We have dim(T )= t ∈ F (equivalently, Tr(1T )= t).

For an arbitrary t ∈ F , Deligne [2007] defined a symmetric tensor category
Rep(St) with a distinguished object X which is universal in the following sense:

Proposition 1.1 [Deligne 2007, Proposition 8.3]. Let T be a Karoubian symmetric
tensor category over F. The functor F 7→F(X) is an equivalence of the category of
braided tensor functors Rep(St)→ T with the category of objects T ∈ T satisfying
(a), (b), (c) above and their isomorphisms.

Note that for t = d ∈ Z≥0, Proposition 1.1 applied to T = X I (with |I | = d)
produces a canonical functor Rep(Sd)→Rep(Sd) (where Sd := SI ). It is known (see
[Deligne 2007, Théorème 6.2]) that this functor is surjective on Hom’s. Moreover,
the morphisms sent to zero by this functor are precisely the so-called negligible
morphisms (see [Deligne 2007, §6.1]).

1C. The category Rep(St) is a Karoubian category; it is not abelian for t = d ∈Z≥0.
Remarkably, in [2007, Proposition 8.19] Deligne defined an abelian symmetric
tensor category Repab(Sd) and a fully faithful braided tensor functor Rep(Sd)→

Repab(Sd).2 The main goal of this paper is to prove a certain universal property of
the category Repab(Sd) conjectured in [Deligne 2007, Conjecture 8.21].

To state this property we need to use the language of algebraic geometry within
an abelian symmetric tensor category T (see [Deligne 1990]). Namely, for an
object T ∈ T satisfying (a), (b), (c) above we can talk about the (affine) T-scheme
I := Spec(T ) and the affine group scheme SI of its automorphisms; see [Deligne
2007, §8.10]. Furthermore, assume that the category T is pre-Tannakian (see
Section 2A below), that is, it satisfies the finiteness conditions in [Deligne 1990,
2.12.1]. Recall that in this case a fundamental group of T is defined in [Deligne 1990,
§8.13]. This is an affine group scheme π ∈T which acts functorially on any object
of T and this action is compatible with a formation of tensor products. In particular,
the action of π on T gives a homomorphism ε :π→ SI. Let Rep(SI) be the category
of representations of SI (see [Deligne 2007, §8.10]) and let Rep(SI, ε) be the full
subcategory of Rep(SI) consisting of such representations ρ : SI→ GL(V ) that
the action ρ ◦ ε of π on V coincides with the canonical action (see [Deligne 2007,

2We refer the reader to [Deligne 2007, §5.8] for an example of Karoubian symmetric tensor
category which admits no braided tensor functor to an abelian symmetric tensor category.
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§8.20]). Rep(SI, ε) is an abelian symmetric tensor category and T is one of its
objects. It follows that the functor F : Rep(St)→ T constructed in Proposition 1.1
factorizes as Rep(St)

FT
→Rep(SI, ε)→ T, where the functor FT is constructed by

applying Proposition 1.1 to T ∈ Rep(SI, ε) and Rep(SI, ε)→ T is the forgetful
functor. Here is the main result of this paper:

Theorem 1.2 (compare [Deligne 2007, 8.21.2]). Let T be a pre-Tannakian category
and T ∈T be an object satisfying (a), (b), (c) from Section 1B with t = d ∈Z≥0⊂ F.
Then the category Rep(SI, ε) endowed with the functor FT : Rep(Sd)→ Rep(SI, ε)

is equivalent to one of the following:

(a) Rep(Sd) together with the functor Rep(Sd)→ Rep(Sd) from Section 1B.

(b) Repab(Sd) together with the fully faithful functor Rep(Sd)→Repab(Sd) above.

Remark 1.3. A similar (and easier) statement holds true for t 6∈ Z≥0; see [Deligne
2007, Corollary B2].

1D. The forgetful functor Rep(SI, ε)→T above is an exact braided tensor functor.
Thus Theorem 1.2 implies that for a pre-Tannakian category T a braided tensor
functor F : Rep(Sd)→ T either factorizes through Rep(Sd)→ Rep(Sd) or ex-
tends to an exact tensor functor Repab(Sd)→ T. A crucial step in our proof of
Theorem 1.2 is a construction of the pre-Tannakian category K0

d and fully faithful
embedding Rep(Sd)⊂ K0

d such that we have the following extension property: a
tensor (not necessarily braided) functor Rep(Sd)→ T either factorizes through
Rep(Sd)→Rep(Sd) or extends to an exact tensor functor K0

d→T; see Section 5A.
Then we use general properties of the fundamental groups from [Deligne 1990, §8]
in order to prove that K0

d satisfies the universal property as in Theorem 1.2 and, in
fact, is equivalent to Repab(Sd).

The following analogy plays a significant role in the proof of Theorem 1.2. Let
TL(q) be the Temperley–Lieb category; see, for example, [Freedman 2003, §A1].
Assume that q is a nontrivial root of unity. It is well known that the category TL(q)
is tensor equivalent to the category of tilting modules over quantum SL(2); see, for
example, [Ostrik 2008, proof of Theorem 2.4]. Thus TL(q) is a Karoubian tensor
category (braided but not symmetric) endowed with a fully faithful functor to the
abelian tensor category Cq of finite-dimensional representations of quantum SL(2).
On the other hand there exists a well known semisimple tensor category C̄q and a full
tensor functor TL(q)� C̄q ; see, e.g., [Andersen 1992, §4]. We consider the diagram
C̄q �TL(q)⊂Cq as a counterpart of the diagram Rep(Sd)�Rep(Sd)⊂Repab(Sd).

The main technical result of [Ostrik 2008] states that tensor functors TL(q)→D

to certain abelian tensor categories D factorize either through TL(q) → C̄q or
through TL(q)⊂Cq (see [Ostrik 2008, §2.6]) which is reminiscent of the extension
property of the category K0

d above; see also [Ostrik 2008, Remark 2.10]. Thus
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in the construction of K0
d we follow the strategy from [Ostrik 2008] with crucial

use of information from [Comes and Ostrik 2011]. Namely, we find K0
d inside the

homotopy category of Rep(Sd) as a heart of a suitable t-structure (see Section 4B).
The definition of the t-structure is based on Lemma 3.11 (due to P. Deligne) and
almost immediately implies the extension property of the category K0

d mentioned
above. However, the verification of the axioms of a t-structure is quite nontrivial.
To do this we use a decomposition of the category Rep(Sd) into blocks described
in [Comes and Ostrik 2011, Theorem 5.3]. We provide a blockwise description of
the t-structure above in Section 4C2. We then observe that the description above
coincides with the description of a well known t-structure on the blocks of the
Temperley–Lieb category.

2. Preliminaries

2A. Tensor categories terminology. To us a tensor (or monoidal) category is a
category with a tensor product functor endowed with an associativity constraint
and a unit object 1; see, for example, [Bakalov and Kirillov 2001, Definition 1.1.7].
Recall that a tensor category is called rigid if any object admits both a left and right
dual; see [ibid., Definition 2.1.1]. A braided tensor category is a tensor category
equipped with a braiding; see [ibid., Definition 1.2.3]. A symmetric tensor category
is a braided tensor category such that the square of the braiding is the identity.

Recall that F is a fixed field of characteristic zero. All categories and functors
considered in this paper are going to be F-linear. So, an F-linear tensor category (or
tensor category over F) is a tensor category which is F-linear (but not necessarily
additive) and such that the tensor product functor is F-bilinear. A Karoubian tensor
category over F is an F-linear tensor category which is Karoubian as an F-linear
category (i.e., it is additive and every idempotent endomorphism is a projection to
a direct summand). A tensor ideal I in a tensor category T consists of subspaces
I(X, Y ) ⊂ HomT(X, Y ) for every X, Y ∈ T such that (i) h ◦ g ◦ f ∈ I(X,W )

whenever f ∈ HomT(X, Y ), g ∈ I(Y, Z), h ∈ HomT(Z ,W ), and (ii) f ⊗ idZ ∈

I(X ⊗ Z , Y ⊗ Z) whenever f ∈ I(X, Y ). For example, if the category T has a
well defined trace the collection of negligible morphisms3 forms a tensor ideal; see
[Freedman 2003, §A1.3].

Finally we say that an F-linear symmetric tensor category T is pre-Tannakian if
the following conditions are satisfied:

(a) All Hom’s are finite-dimensional vector spaces over F and End(1)= F .

(b) T is an abelian category and all objects have finite length.

(c) T is rigid.

3 Recall that a morphism f ∈ HomT(X, Y ) is negligible if Tr( f g)= 0 for any g ∈ HomT(Y, X).
We will call an object negligible if its identity morphism is negligible.
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Remark 2.1. In the terminology of [Deligne 1990] a pre-Tannakian category is the
same as a “catégorie tensorielle” (see [ibid., §2.1]) satisfying a finiteness assumption
[ibid., 2.12.1]. This is precisely the class of tensor categories over F for which a
fundamental group (see [ibid., §8]) is defined.

2B. The category Rep(St). We recall here briefly the construction of the category
Rep(St) following [Comes and Ostrik 2011, §2]. We refer the reader to loc. cit.
and [Deligne 2007, §8] for much more detailed exposition.

2B1. The category Rep0(St). Let A be a finite set. A partition π of A is a collection
of nonempty subsets πi ⊂ A such that A =

⊔
i πi (disjoint union); the subsets πi

are called parts of the partition π . We say that partition π is finer than partition
µ of the same set if any part of π is a subset of some part of µ. For three finite
sets A, B,C and the partitions π of A t B and µ of B tC we define the partition
µ?π of A t B tC as the finest partition such that parts of π and µ are subsets of
its parts. The partition µ?π induces a partition µ ·π of A tC such that parts of
µ ·π are nonempty intersections of parts of µ?π with AtC ⊂ At B tC ; we also
define an integer `(µ, π) which is the number of parts of µ?π contained in B.

Definition 2.2. Given t ∈ F , we define the F-linear symmetric tensor category
Rep0(St) as follows:

• Objects: finite sets; object corresponding to a finite set A is denoted [A].

• Morphisms: Hom([A], [B]) is the F-linear span of partitions of A t B;
composition of morphisms represented by partitions π ∈ Hom([A], [B]) and
µ ∈ Hom([B], [C]) is t`(µ,π)µ ·π ∈ Hom([A], [C]).

• Tensor product: disjoint union (see [Comes and Ostrik 2011, Definition 2.15]);
unit object is [∅]; tensor product of morphisms, associativity and commutativity
constraints are the obvious ones (see [ibid., §2.2]).

The category Rep0(St) has a distinguished object [pt] where pt is a one-element
set. The object [pt] has a natural structure of commutative associative algebra
in Rep0(St) where the multiplication (resp. unit) map is given by the partition
of ptt ptt pt (resp. pt) consisting of one part. It is immediate to check that the
object [pt] satisfies conditions (a), (b), (c) from Section 1B. Moreover, we have the
following universal property:

Proposition 2.3. Let T be an F-linear symmetric tensor category. The functor
from the category of braided tensor functors F : Rep0(St)→ T to the category of
objects T ∈T satisfying (a), (b), (c) from Section 1B and their isomorphisms, which
sends F 7→ F([pt]) and sends natural transformations (η : F→ F′) 7→ η[pt], is an
equivalence of categories.
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Sketch of proof. We restrict ourselves to a description of the inverse functor on
objects; for more details, see [Deligne 2007, §8]. So assume that T ∈T satisfies (a),
(b), (c) from Section 1B. We define F([A])= T⊗A (here T⊗A is a tensor product
of copies of T labeled by elements of A; since the category T is symmetric this is
well defined). The tensor structure on the functor F will be given by the obvious
isomorphisms T⊗AtB

= T⊗A
⊗ T⊗B . It remains to define F on the morphisms.

Observe that a morphism from Hom([A], [B]) represented by a partition π of AtB
is a tensor product of morphisms corresponding to partitions with precisely one
part π =

⊗
i πi . Thus it is sufficient to define F(π) only for π consisting of one

part A t B. In this case we set F(π) = T⊗A
→ T → T⊗B where the first map

is the multiplication morphism T⊗A
→ T and the second one is the dual to the

multiplication morphism T⊗B
→ T , where T and T ∗ are identified via (b) from

Section 1B. One verifies that the assumptions (a), (b), (c) from Section 1B ensure
that the tensor functor F is well defined. �

2B2. The categories Rep(St) and Repab(Sd).

Definition 2.4 (compare [Deligne 2007, Définition 2.17] or [Comes and Ostrik
2011, Definition 2.19]). The category Rep(St) is the Karoubian (or pseudoabelian)
envelope4 of the category Rep0(St).

It follows immediately from Proposition 2.3 that the category Rep(St) has univer-
sal property from Proposition 1.1. We now use this universal property to construct
Deligne’s category Repab(Sd) from the introduction.

It is known (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik 2011,
Corollary 5.21]) that the category Rep(St) is semisimple (and hence pre-Tannakian)
for t 6∈Z≥0. In particular, the category Rep(S−1) is pre-Tannakian, so its fundamental
group π is defined. For any d ∈ Z≥0 we can consider the commutative associative
algebra with nondegenerate trace pairing Td ∈ Rep(S−1) which is a direct sum of
[pt] and d + 1 copies of the algebra 1 = [∅]. Clearly, dim(Td) = d, so we can
use Proposition 1.1 to construct a symmetric tensor functor Rep(Sd)→ Rep(S−1).
Using the general properties of the fundamental group we get a factorization
of this functor as Rep(Sd) → Rep(SI, ε) → Rep(S−1) (here I = Spec(Td) and
ε : π→ SI is the canonical homomorphism). It is clear that the category Rep(SI, ε)

is pre-Tannakian; it is proved in [Deligne 2007, Proposition 8.19] that the functor
Rep(Sd)→ Rep(SI, ε) is fully faithful. We set Repab(Sd) := Rep(SI, ε); as ex-
plained above this is a pre-Tannakian category and we have a fully faithful braided
tensor functor Rep(Sd)→ Repab(Sd).

Remark 2.5. The existence of the embedding Rep(St) ⊂ Repab(St) implies that
Y1⊗ Y2 6= 0 for nonzero objects Y1, Y2 ∈ Rep(St) (this is true in any abelian rigid

4We refer the reader to [Deligne 2007, §1.7-1.8] for the discussion of this notion.



On Deligne’s category Repab(Sd) 479

tensor category with simple unit object). The same result can be proved directly as
follows. Given finite sets A and B, it follows from the definition of tensor products
that the obvious map End([A])⊗End([B])→ End([A]⊗ [B])= End([A t B]) is
injective. Since any indecomposable object of Rep(St) is the image of a primitive
idempotent e ∈ End([A]) for some finite set A (see, e.g., [Comes and Ostrik 2011,
Proposition 2.20]), it follows that the tensor product of two nonzero morphisms in
Rep(St) is nonzero. The statement for objects follows by considering their identity
morphisms.

2B3. Indecomposable objects of the category Rep(St). The indecomposable ob-
jects of the category Rep(St) are classified up to isomorphism in [Comes and Ostrik
2011, Theorem 3.3]. The isomorphism classes are labeled by the Young diagrams of
all sizes in the following way. Let λ be a Young diagram of size n=|λ| and let yλ be
the corresponding primitive idempotent in FSn , the group algebra of the symmetric
group.5 The symmetric braiding gives rise to an action of Sn on [pt]⊗n; let [pt]λ

denote the image of yλ ∈ End([pt]⊗n). For any Young diagram λ of size |λ| there
is a unique indecomposable object L(λ) ∈ Rep(St) characterized by the following
properties:

(a) L(λ) is not a direct summand of [pt]⊗k for k < |λ|.

(b) L(λ) is a direct summand (with multiplicity 1) of [pt]λ.

It is proved in [Comes and Ostrik 2011, Theorem 3.3] that the indecomposable
objects L(λ) are well defined up to isomorphism, and any indecomposable object
of Rep(St) is isomorphic to precisely one L(λ).

2B4. Blocks of the category Rep(St). Let A be a Karoubian category such that
any object decomposes into a finite direct sum of indecomposable objects. The
set of isomorphism classes of indecomposable objects of A splits into blocks
which are equivalence classes of the weakest equivalence relation for which two
indecomposable objects are equivalent whenever there exists a nonzero morphism
between them. We will also use the term block to refer to a full subcategory of A

generated by the indecomposable objects in a single block.
The main result of [Comes and Ostrik 2011] is the description of blocks of the

category Rep(St). We describe the results of loc. cit. here. We will represent a
Young diagram λ as an infinite nonincreasing sequence (λ1, λ2, . . .) of nonnegative
integers such that λk = 0 for some k > 0; see [Comes and Ostrik 2011, §1.1]. For a
Young diagram λ and t ∈ F we define a sequenceµλ(t)= (t−|λ|, λ1−1, λ2−2, . . .).

Theorem 2.6 [Comes and Ostrik 2011, Theorem 5.3]. The objects L(λ) and L(λ′)
of Rep(St) are in the same block if and only if µλ(t) is a permutation of µλ′(t).

5Here yλ is a scalar multiple of the so-called Young symmetrizer (see, for instance, [Fulton and
Harris 1991]).
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Let B be the set of blocks of the category Rep(St); for any b ∈B let us denote
by Repb(St) the corresponding subcategory of Rep(St); we have a decomposition
Rep(St)=

⊕
b∈B Repb(St).

Proposition 2.7. Let b ∈B. One of the following holds:

(i) b is semisimple (or trivial): the category Repb(St) is equivalent to the category
VecF of finite-dimensional F-vector spaces as an additive category. We will
denote by L = L(b) the unique indecomposable object of this block. Then
dim(L)= 0, or, equivalently, idL is negligible.

(ii) b is nonsemisimple (or infinite): in this case the additive category Repb(St) is
described in [Comes and Ostrik 2011, §6] (in particular, it does not depend on
a choice of nonsemisimple block b). There is a natural labeling of indecompos-
able objects of the category Repb(St) by nonnegative integers; we will denote
these objects by L0, L1, . . . . Then dim(L i ) = 0 for i > 0 and dim(L0) 6= 0,
that is, idL i is negligible if and only if i > 0.

Further, it is shown in [Comes and Ostrik 2011] that for any t ∈ F there are
infinitely many semisimple blocks and finitely many (precisely the number of Young
diagrams of size t) nonsemisimple blocks. In particular, for t 6∈ Z≥0 all blocks are
semisimple (hence the category Rep(St) is semisimple).

2C. Temperley–Lieb category. The results on the category Rep(St) in many re-
spects are parallel to the results on the Temperley–Lieb category TL(q). We recall
the definition and some properties of this category here.

Definition 2.8 (see, for example, [Freedman 2003, §A1.2]). Let q be a nonzero
element of an algebraic closure of F such that q+q−1

∈ F . We define the F-linear
tensor category TL0(q) as follows:

• Objects: finite subsets of R considered up to isotopy; we will denote the object
corresponding to the set A by 〈A〉.

• Morphisms: Hom(〈A〉, 〈B〉) is the F-linear span of one-dimensional subman-
ifolds of R× [0, 1] with boundary A t B where A ⊂ R× 0 and B ⊂ R× 1
(such submanifolds are called embedded unoriented bordisms from A to B)
modulo the relation [bordismt circle] = (q + q−1)[bordism]; composition is
given by juxtaposition.

• Tensor product: disjoint union (write R = R<0 t 0 t R>0 and identify R<0

and R>0 with R); the unit object is 〈∅〉; tensor product of morphisms and
associativity constraint are the obvious ones.
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Next we define the category TL(q) as the Karoubian envelope of the category
TL0(q). The category TL(q) has a universal property (see, e.g., [Ostrik 2008,
Theorem 2.4]) but we don’t need it here. The indecomposable objects of the
category TL(q) are labeled by nonnegative integers: for any i ∈ Z≥0 there is a
unique indecomposable object Vi which is a direct summand (with multiplicity 1)
of 〈pt〉⊗i but is not a direct summand of 〈pt〉⊗k whenever k < i .

The category TL(q) is semisimple for generic values of q; more precisely the
category TL(q) is not semisimple precisely when there exists a positive integer l
such that 1+ q2

+ · · · + q2l
= 0 (we will denote the smallest such integer by lq).

Assume that the category TL(q) is not semisimple. Then we have a full tensor
functor TL(q)→ C̄q and a fully faithful tensor functor TL(q)→ Cq , where C̄q is
a semisimple tensor category (sometimes called the “Verlinde category”) and Cq is
the abelian tensor category of finite-dimensional representations of quantum SL(2);
see, e.g., [Ostrik 2008, Theorem 2.4].

The blocks of the category TL(q) are well known. Similarly to the case of the
category Rep(Sd) there are infinitely many semisimple blocks (which are equivalent
to the category VecF as an additive category) and finitely many (precisely lq)
nonsemisimple blocks. The following observation is very important for this paper:

Proposition 2.9 [Comes and Ostrik 2011, Remark 6.5]. All nonsemisimple blocks
of the category TL(q) are equivalent as additive categories. Moreover, they are
equivalent to the category Repb(Sd), where b is any nonsemisimple block of the
category Rep(Sd).

Remark 2.10. We can transport a labeling of indecomposable objects of Repb(Sd)

(see Proposition 2.7(ii)) to a nonsemisimple block of the category TL(q) via the
equivalence of Proposition 2.9 (it is easy to see that the resulting labeling does not
depend on a choice of the equivalence).

Recall that the category TL(q) has a natural spherical structure and so the
dimensions dimTL(q)(Y ) of objects Y ∈ TL(q) are defined; see, e.g., [Freedman
2003, §A1.3]. The following result is well known; see, e.g., [Andersen 1992, (1.6)
and Proposition 3.5]:

Lemma 2.11. Let L be a unique indecomposable object in a semisimple block of
TL(q). Then dimTL(q)(L)=0. For a nonsemisimple block we have dimTL(q)(L i )=0
for i > 0 and dimTL(q)(L0) 6= 0, where L i are indecomposable objects in this block
labeled as in Remark 2.10. �

3. Tensor ideals and the object 1 ∈ Rep(Sd)

In this section we define objects 1n ∈Rep(St) for n ∈ Z≥0 and t ∈ F . We then give
1n the structure of a commutative associative algebra in Rep(St) and study many
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1n-modules. Finally, using our results on the objects 1n , we classify tensor ideals
in Rep(Sd) when d is a nonnegative integer. Before defining the objects 1n we
prove the following easy observation which will be used throughout this section.

Proposition 3.1. Suppose A0, . . . , An and B0, . . . , Bm are finite sets with A0 = B0

and An = Bm . Suppose further that fi (resp. gi ) is an F-linear combination of
partitions of Ai−1 t Ai (resp. Bi−1 t Bi ) whose coefficients do not depend on t for
all 1 ≤ i ≤ n (resp. 1 ≤ i ≤ m). If fn · · · f1 = gm · · · g1 in Rep0(St) for infinitely
many values of t ∈ F , then fn · · · f1 = gm · · · g1 in Rep0(St) for all t ∈ F.

Proof. For each t ∈ F and partition π of A0 t An = B0 t Bm , let aπ (t) ∈ F (resp.
bπ (t) ∈ F) be such that fn · · · f1 =

∑
π aπ (t)π (resp. gm · · · g1 =

∑
π bπ (t)π) in

Rep0(St) where the sum is taken over all partitions π of A0 t An = B0 t Bm . Then
fn · · · f1 = gm · · · g1 in Rep0(St) if and only if aπ (t) = bπ (t) for all π . By the
definition of composition in Rep0(St), both aπ (t) and bπ (t) are polynomials in t
for each π . The result follows since a polynomial in t is determined by finitely
many values of t . �

3A. The objects 1n ∈ Rep(St). Suppose n is a nonnegative integer and let An =

{i | 1 ≤ i ≤ n}. Consider the endomorphism xn = xidn : [An] → [An] in Rep0(St)

(see [Comes and Ostrik 2011, Equation (2.1)]).

Proposition 3.2. xn is an idempotent which is equal to its dual for all n ≥ 0.

Proof. The fact that x∗n = xn follows from the definition of xn . By Proposition 3.1,
it suffices to show xn is an idempotent in Rep0(St) for infinitely many values of t .
It follows from [Comes and Ostrik 2011, Theorem 2.6 and Equation (2.2)] that xn

is an idempotent in Rep0(St) whenever t is an integer greater than 2n. �

Since Rep(St) is a Karoubian category (i.e., Rep(St) contains images of idempo-
tents) the following definition is valid.

Definition 3.3. Let 1n ∈ Rep(St) denote the image of the idempotent xn .6

Note that the commutative associative algebra structure on [pt] extends in an
obvious way to a commutative associative algebra structure on [An] ∼= [pt]⊗n . Let
µn : [An]⊗ [An]→ [An] be the multiplication map and 1n : 1→[An] the unit map.

Proposition 3.4. The multiplication map xnµn(xn⊗ xn) :1n⊗1n→1n gives1n

the structure of a commutative associative algebra in Rep(St) with unit given by
xn1n : 1→1n .

6In the notation of [Comes and Ostrik 2011], 1n = ([n], xn).
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Proof. We are required to show the following equalities hold in Rep0(St):

xnµn(xnµn(xn ⊗ xn)⊗ xn)= xnµn(xn ⊗ (xnµn(xn ⊗ xn)), (3-1)

xnµn(xn1n ⊗ xn)= xn = xnµn(xn ⊗ xn1n), (3-2)

xnµn(xn ⊗ xn)βn,n(xn ⊗ xn)= xnµn(xn ⊗ xn), (3-3)

where βn,n : An⊗An→ An⊗An is the braiding morphism (see for example [Comes
and Ostrik 2011, §2.2]). By Proposition 3.1, it suffices to show (3-1), (3-2) and
(3-3) hold for infinitely many values of t .7 Using Theorem 2.6 and Equation (2.2)
of the same reference it is easy to show (3-1), (3-2) and (3-3) hold whenever t is a
sufficiently large integer. �

By Proposition 3.4 we can consider the category 1n-mod of all left 1n-modules.

3B. Some 1n-modules. Suppose j is a nonnegative integer with 1 ≤ j ≤ n.
Given a finite set X , let 2 j

X : HomRep(St )(An, X) → HomRep(St )(An+1, X) and
2X

j : HomRep(St )(X, An) → HomRep(St )(X, An+1) be the F-linear maps defined
on partitions as follows: if π is a partition of X t An , then 2 j

X (π) = 2
X
j (π) is

the unique partition of X t An+1 which restricts to π and has j and n+ 1 in the
same part. Now let 2 j : EndRep(St )(An)→ EndRep(St )(An+1) be the F-linear map
2 j =2

j
An
◦2

An
j . It is easy to check that 2 j is an injective (nonunital) F-algebra

homomorphism for each 1≤ j ≤ n. In particular, by Proposition 3.2, xn, j :=2 j (xn)

is an idempotent for each j .

Definition 3.5. Let 1n( j) ∈ Rep(St) denote the image of xn, j .

Next we give 1n( j) the structure of a 1n-module. Let

α = xn, j2
An
j (xn)xn :1n→1n( j),

β = xn, j2 j (µn)(xn, j ⊗ xn, j ) :1n( j)⊗1n( j)→1n( j).

Finally, let φ = β(α⊗ xn, j ) :1n ⊗1n( j)→1n( j).

Proposition 3.6. (1) The map φ gives 1n( j) the structure of a 1n-module.

(2) The map xn, j2
An
j (idAn )xn : 1n → 1n( j) is an isomorphism of 1n-modules

with inverse xn2
j
An
(idAn )xn, j .

Proof. For part (1) we are required to show the following equation holds in Rep0(St):

xn, j2 j (µn)
(
(xn, j2

An
j (xn)xnµn(xn ⊗ xn))⊗ xn, j

)
= xn, j2 j (µn)

(
xn, j2

An
j (xn)xn ⊗ (xn, j2 j (µn)((xn, j2

An
j (xn)xn)⊗ xn, j ))

)
. (3-4)

7In fact, (3-1), (3-2) and (3-3) do not depend on t , so we only need to verify they hold for some t .
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For part (2) we are required to show the following equations hold in Rep0(St):

xn, j2
An
j (idAn )xn2

j
An
(idAn )xn, j = xn, j , (3-5)

xn2
j
An
(idAn )xn, j2

An
j (idAn )xn = xn. (3-6)

Now use Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and Equa-
tion (2.2)]. �

Next, we give the object 1n+1 the structure of a 1n-module. To do so, set
ψ = xn+1(µn ⊗ id[pt])(xn ⊗ xn+1) :1n ⊗1n+1→1n+1.

Proposition 3.7. The map ψ gives 1n+1 the structure of a 1n-module.

Proof. We are required to show the following equation holds in Rep0(St):

xn+1(µn ⊗ id[pt])
(
(xnµn(xn ⊗ xn))⊗ xn+1

)
= xn+1(µn ⊗ id[pt])

(
xn ⊗ (xn+1(µn ⊗ id[pt])(xn ⊗ xn+1))

)
. (3-7)

Now use Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and Equa-
tion (2.6)]. �

The following lemma will be important for us later.

Lemma 3.8. 1n ⊗[pt] ∼=1n+1⊕1n(1)⊕ · · ·⊕1n(n) in the category 1n-mod.

Proof. First, using Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and
Equation (2.6)] it is easy to show that the following identities hold in Rep0(St):

xn ⊗ id[pt] = xn+1+
∑

1≤ j≤n

xn, j , (3-8)

xn, j xn+1 = 0= xn+1xn, j (1≤ j ≤ n), (3-9)

xn, j xn,k = δ j,k xn, j (1≤ j, k ≤ n). (3-10)

Next, define 9 :1n ⊗[pt] →1n+1⊕1n(1)⊕ · · ·⊕1n(n) by

9 =


xn+1(xn ⊗ id[pt])

xn,1(xn ⊗ id[pt])
...

xn,n(xn ⊗ id[pt])

 .
Using (3-8) it is easy to check that 9 is an isomorphism in Rep(St) with inverse

9−1
=
[
(xn ⊗ id[pt])xn+1 (xn ⊗ id[pt])xn,1 · · · (xn ⊗ id[pt])xn,n

]
.

It remains to show that9 and9−1 are morphisms in the category1n-mod. Showing
that 9 is a morphism in 1n-mod amounts to showing the following equations hold
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in Rep0(St):

xn+1(µn ⊗ id[pt])(xn ⊗ (xn+1(xn ⊗ id[pt])))

= xn+1((xnµn(xn ⊗ xn))⊗ id[pt]),

xn, j2 j (µn)((xn, j2
An
j (xn)xn)⊗ (xn, j (xn ⊗ id[pt])))

= xn, j ((xnµn(xn⊗xn))⊗ id[pt]) (1≤ j ≤ n).

(3-11)

To show the equations in (3-11) hold, use Proposition 3.1 and [Comes and Ostrik
2011, Theorem 2.6 and Equation (2.6)]. The proof for 9−1 is similar. �

3C. The category Rep1n(St). Let 1n-mod0 denote the full subcategory of 1n-
mod such that a1n-module M is in1n-mod0 if and only if M ∼=1n⊗Y in1n-mod
for some Y ∈ Rep(St). Let Rep1n (St) denote the Karoubian envelope of 1n-mod0.
The advantage of working in Rep1n (St) rather than in the category 1n-mod is that
we can give Rep1n (St) the structure of a tensor category with relative ease. Indeed,
given M,M ′ ∈1n-mod0 we know M ∼=1n⊗Y and M ′ ∼=1n⊗Y ′ as 1n-modules
for some Y, Y ′ ∈Rep(St). Set M⊗1n M ′ :=1n⊗Y ⊗Y ′. Given N , N ′ ∈1n-mod0

with N ∼=1n ⊗ Z and N ′ ∼=1n ⊗ Z ′ and morphisms f ∈ Hom1n-mod0(M, N ) and
g ∈ Hom1n-mod0(M

′, N ′), write

f̃ :1n ⊗ Y
∼=
→ M

f
→ N

∼=
→1n ⊗ Z ,

g̃ :1n ⊗ Y ′
∼=
→ M ′

g
→ N ′

∼=
→1n ⊗ Z ′.

Define f ⊗1n g : M ⊗1n M ′→ N ⊗1n N ′ to be the composition

M ⊗1n M ′ =1n ⊗ Y ⊗ Y ′
f̃⊗idY ′
−→ 1n ⊗ Z ⊗ Y ′

∼
→1n ⊗ Y ′⊗ Z

g̃⊗idZ
−→ 1n ⊗ Z ′⊗ Z

∼
→1n ⊗ Z ⊗ Z ′ = N ⊗1n N ′.

It is easy to check that⊗1n :1n-mod0×1n-mod0→1n-mod0 is a bifunctor which
(with the obvious choice of constraints) makes 1n-mod0 into a rigid symmetric
tensor category. The tensor structure on 1n-mod0 extends in an obvious way to
make Rep1n (St) a rigid symmetric tensor category too.

Notice that 1n+1 is an object in Rep1n (St). Indeed, by Lemma 3.8, the 1n-
module 1n+1 is the image of an idempotent of the form 1n ⊗ [pt] → 1n ⊗ [pt].
This idempotent is an element of End1n-mod0(1n ⊗ [pt]); hence its image is an
object in the Karoubian category Rep1n (St). The next two propositions concern
the structure of 1n+1 ∈ Rep1n (St). We start by computing its dimension:

Proposition 3.9. dimRep1n (St )(1n+1)= t − n.

Proof. First, by Lemma 3.8 and Proposition 3.6(2),

dimRep1n (St )(1n+1)= dimRep1n (St )(1n ⊗[pt])− n dimRep1n (St )(1n).
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Now, consider the tensor functor 1n ⊗ − : Rep(St) → Rep1n (St). Since ten-
sor functors preserve dimension, dimRep1n (St )(1n) = dimRep(St )([∅]) = 1 and
dimRep1n (St )(1n ⊗[pt])= dimRep(St )([pt])= t . �

Our next aim is to show 1n+1 ∈ Rep1n (St) satisfies (a) and (b) from Section 1B.
To do so, let inc : 1n+1 → 1n ⊗ [pt] and proj : 1n ⊗ [pt] → 1n+1 denote the
morphisms in Rep1n (St) determined by Lemma 3.8. Moreover, let

m : (1n ⊗[pt])⊗1n (1n ⊗[pt])→1n ⊗[pt]

denote the morphism1n⊗[pt]⊗[pt]
id1n ⊗µ1
−→ 1n⊗[pt]. Now consider the morphisms

1n+1⊗1n 1n+1
inc⊗1n inc
−→ (1n ⊗[pt])⊗1n (1n ⊗[pt])

m
−→1n ⊗[pt]

proj
−→1n+1

(3-12)

and
1n

id1n ⊗11
−→ 1n ⊗[pt]

proj
−→1n+1. (3-13)

Proposition 3.10. With the multiplication and unit maps given by (3-12) and (3-13)
respectively, 1n+1 ∈ Rep1n (St) satisfies (a) and (b) from Section 1B.

Proof. Write µ1n+1 and 11n+1 for the morphisms given by (3-12) and (3-13)
respectively. First, it is easy to see that m (resp. id1n ⊗11) is a morphism of
1n-modules. Hence, µ1n+1 (resp. 11n+1) is a morphism of 1n-modules too. Now,
to show 1n+1 satisfies (a) from Section 1B we must show the following equations
hold in Rep1n (St):

µ1n+1(µ1n+1 ⊗1n id1n+1)= µ1n+1(id1n+1 ⊗1nµ1n+1),

µ1n+1(11n+1 ⊗1n id1n+1)= id1n+1 = µ1n+1(id1n+1 ⊗1n 11n+1),

µ1n+1β1n+1,1n+1 = µ1n+1,

(3-14)

where β1n+1,1n+1 :1n+1⊗1n 1n+1→1n+1⊗1n 1n+1 denotes the braiding mor-
phism. To do so, first notice that by (3-8) the morphisms proj, inc, and id1n+1 are
all given by xn+1. Let τ (resp. ν) denote the identity morphism on 1n+1⊗1n 1n+1

(resp. 1n+1 ⊗1n 1n+1 ⊗1n 1n+1). Then, by the definition of ⊗1n , we have the
following realizations of τ and ν as morphisms in Rep0(St):

τ = (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)(xn+1⊗ id[pt]),

ν = (xn ⊗β1,2)(xn+1⊗ id[pt]⊗[pt])(xn ⊗β2,1)(τ ⊗ id[pt]),
(3-15)

where βn,m : An ⊗ Am→ Am ⊗ An denotes the braiding morphism in Rep0(St) for
each n,m ≥ 0. Moreover,

11n+1 = xn+1(xn ⊗ 11), µ1n+1 = xn+1(xn ⊗µ1)τ,

β1n+1,1n+1 = τ(xn ⊗β1,1)τ.
(3-16)
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Thus, showing the equations in (3-14) hold in Rep1n (St) amounts to showing the
following equations hold in Rep0(St):

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)
(
(xn+1(xn ⊗µ1)τ )⊗ id[pt]

)
ν

=xn+1(xn⊗µ1)τ (xn⊗β1,1)
(
(xn+1(xn⊗µ1)τ )⊗id[pt]

)
(xn⊗β1,2)(xn+1⊗id[pt]⊗[pt])ν,

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)(xn+1(xn ⊗ 11)⊗ id[pt])

= xn+1 = xn+1(xn ⊗µ1)τ (xn+1⊗β1,1)
(
(xn+1(xn ⊗ 11))⊗ id[pt]

)
xn+1,

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)τ = xn+1(xn ⊗µ1)τ.

All equations above are straightforward to check using Proposition 3.1 and [Comes
and Ostrik 2011, Theorem 2.6 and Equation (2.6)]. Thus 1n+1 satisfies part (a)
from Section 1B.

To show 1n+1 satisfies Section 1B(b), first notice that 1n+1 ∈ Rep1n (St) is
self-dual (because the morphism xn+1 is self-dual). Hence, we are required to show
that the following morphism is invertible in Rep1n (St):(

(Tr µ1n+1)⊗1n id1n+1

)
(id1n+1 ⊗1n coev1n+1) :1n+1→1n+1, (3-17)

where the morphism Tr :1n+1→1n is defined in Section 1B(b). In fact, we claim
the morphism in (3-17) is equal to the identity morphism id1n+1 . To prove this
claim, first notice that

Tr= ev1n+1 β1n+1,1n+1(µ1n+1 ⊗1n id1n+1)(id1n+1 ⊗1n coev1n+1). (3-18)

Also, ev1n+1 = xn(xn ⊗ ev[pt])τ and coev1n+1 = τ(xn ⊗ coev[pt])xn . Hence, using
(3-15), (3-16), and the definition of ⊗1n , we can realize the morphism in (3-17) as
a morphism in Rep0(St). Now use Proposition 3.1 and [Comes and Ostrik 2011,
Theorem 2.6 and Equation (2.6)] to show that this morphism is equal to xn+1. �

3D. Deligne’s lemma. Fix an integer d ≥ 0. Set 1 = 1d+1 ∈ Rep(Sd) and
1+ =1d+2 ∈ Rep1(Sd). By Proposition 3.9, dimRep1(Sd )(1

+) =−1. Hence, by
Propositions 1.1 and 3.10, there exists a tensor functor F1 :Rep(S−1)→Rep1(Sd)

with F1([pt]) =1+. Let ResSd
S−1

denote the tensor functor Rep(Sd)→ Rep(S−1)

described in Definition 2.4, i.e., the functor prescribed by Proposition 1.1 with
ResSd

S−1
([pt])= [pt]⊕ [∅]⊕d+1. Then we have the following:

Lemma 3.11. The functor 1⊗ − : Rep(Sd) → Rep1(Sd) is isomorphic to the
composition F1 ◦ResSd

S−1
.

Proof. Both 1⊗− and F1 ◦ResSd
S−1

are tensor functors which map [pt] ∈ Rep(Sd)

to an object isomorphic to 1+⊕1⊕d+1
∈ Rep1(Sd) (see Propositions 3.6(2) and

3.8). Hence, by Proposition 1.1, they are isomorphic. �
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The following corollary to Deligne’s lemma will be used in the next section to
classify tensor ideals in Rep(Sd).

Corollary 3.12. Every nonzero tensor ideal in Rep(Sd) contains a nonzero identity
morphism.

Proof. Suppose I is a nonzero tensor ideal in Rep(Sd). Since tensor ideals are
closed under composition, it suffices to show that I contains a morphism which has
a nonzero isomorphism as a direct summand. Let f be a nonzero morphism in I.
Then, by Remark 2.5, id1⊗ f is also a nonzero morphism in I. By Lemma 3.11,
we have id1⊗ f = F1( f ′) for some nonzero morphism f ′ in Rep(S−1). Since
Rep(S−1) is semisimple (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik
2011, Corollary 5.21]) it follows that f ′ (and therefore F1( f ′)) is the direct sum
of isomorphisms and zero morphisms. �

3E. Tensor ideals in Rep(Sd). In this section we use results from [Comes and
Ostrik 2011] along with Corollary 3.12 to classify tensor ideals in Rep(Sd) for
arbitrary d ∈ Z≥0.8 We begin by introducing an equivalence class on Young
diagrams:

Definition 3.13. Consider the weakest equivalence relation on the set of all Young
diagrams such that λ and µ are equivalent whenever the indecomposable object
L(λ) is a direct summand of L(µ)⊗ [pt] in Rep(Sd). When λ and µ are in the
same equivalence class we write λ≈

d
µ.

The following proposition contains enough information on the equivalence rela-
tion ≈

d
for us to classify tensor ideals in Rep(Sd).

Proposition 3.14. Assume d is a nonnegative integer and λ,µ are Young diagrams.

(1) A nonzero morphism of the form L(λ)→ L(µ) is a negligible morphism in
Rep(Sd) if and only if L(λ) or L(µ) is not the minimal indecomposable object
in an infinite block of Rep(Sd).

(2) λ≈
d
µ whenever L(λ) and L(µ) are in trivial blocks of Rep(Sd).

(3) λ≈
d
µ whenever L(λ) is a nonminimal indecomposable object in an infinite

block and L(µ) is in a trivial block of Rep(Sd).

(4) λ≈
d
µ whenever neither L(λ) nor L(µ) is a minimal indecomposable object in

an infinite block of Rep(Sd).

(5) Suppose λ≈
d
µ and I is a tensor ideal in Rep(Sd) containing idL(λ). Then

idL(µ) is also in I.

8If t 6∈Z≥0, then Rep(St ) is semisimple (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik
2011, Corollary 5.21]). Hence, there are no nonzero proper tensor ideals in Rep(St ) when t 6∈ Z≥0.
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Proof. Part (1) follows from [Comes and Ostrik 2011, Proposition 3.25, Corol-
lary 5.9, and Theorem 6.10]. Part (2) is easy to check using [Comes and Ostrik
2011, Propositions 3.12, 5.15 and Lemma 5.20(1)]. Part (4) follows from parts
(2) and (3). Part (5) is easy to check. Hence, it suffices to prove part (3). To do
so, let b denote the infinite block of Rep(Sd) containing L(λ). We will proceed by
induction on b with respect to ≺ (see [Comes and Ostrik 2011, Definition 5.12]).

If b is the minimal with respect to ≺, then using [Comes and Ostrik 2011,
Proposition 3.12 and Lemmas 5.18(1) and 5.20(1)] we can find a Young diagram ρ

with L(ρ) in a trivial block of Rep(Sd) such that λ≈
d
ρ. By part (2), ρ≈

d
µ and we

are done. Now suppose b is not minimal with respect to ≺. Then, using [Comes
and Ostrik 2011, Proposition 3.12 and Lemmas 5.18(2) and 5.20(2)], we can find a
Young diagram ρ ′ with λ≈

d
ρ ′ such that L(ρ ′) is in an infinite block b′ of Rep(Sd)

with b′ � b. By induction ρ ′≈
d
µ and we are done. �

We are now ready to classify tensor ideals in Rep(Sd).

Theorem 3.15. If d is a nonnegative integer, then the only nonzero proper tensor
ideal in Rep(Sd) is the ideal of negligible morphisms.

Proof. Assume I is a nonzero proper tensor ideal of Rep(Sd). Then I is contained
in the ideal of negligible morphisms (see [Freedman 2003, Proposition 3.1]), hence
we must show that I contains all negligible morphisms. Suppose λ is a Young
diagram such that L(λ) is not the minimal indecomposable object in an infinite
block of Rep(Sd). By Proposition 3.14(1), it suffices to show idL(λ) is contained
in I. By Corollary 3.12, there exists a nonzero identity morphism in I. It follows
that I contains idL(µ) for some Young diagram µ. In particular, idL(µ) is a negligible
morphism. Hence, by Proposition 3.14(1), L(µ) is not the minimal indecomposable
object in an infinite block of Rep(Sd). Thus, by Proposition 3.14(4), λ≈

d
µ. Finally,

by Proposition 3.14(5), idL(λ) is contained in I. �

Corollary 3.16. The tensor ideal in Rep(Sd) generated by id1 is the ideal of all
negligible morphisms.

Proof. id1 = xd+1 is a nonzero negligible morphism in Rep(Sd) (see [Comes and
Ostrik 2011, Remark 3.22]). Hence, the result follows from Theorem 3.15. �

4. The t-structure on K b(Rep(Sd))

4A. Homotopy category. Let A be an additive category. Let K b(A) be the bounded
homotopy category of A; see, e.g., [Kashiwara and Schapira 2006, §11]. Thus
the objects of K b(A) are finite complexes of objects in A and the morphisms
are morphisms of complexes up to homotopy. The category K b(A) has a natural
structure of a triangulated category; see loc. cit. In particular, for each integer n we
have a translation functor [n] : K b(A)→ K b(A).
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Any object A ∈A can be considered as a complex A[0] concentrated in degree 0
or, more generally, as a complex A[n] concentrated in degree −n. Thus we have a
fully faithful functor A→K b(A), A 7→ A[0]. We will say that an object K ∈K b(A)

is split if it is isomorphic to an object of the form
⊕

i Ai [ni ] with Ai ∈A, ni ∈ Z.
Now assume that A is an additive tensor category. The category K b(A) has a

natural structure of an additive tensor category. If the category A is braided or
symmetric then so is the category K b(A). The functor A→ K b(A), A 7→ A[0]
has an obvious structure of a (braided) tensor functor. If the category A is rigid so
is the category K b(A).

4B. Definition of t-structure. We can apply the construction from Section 4A to
the case A=Rep(Sd). We obtain a triangulated tensor category Kd :=K b(Rep(Sd)).

Proposition 4.1. For any K ∈ Kd the object 1⊗ K is split.

Proof. By Lemma 3.11, the functor 1 ⊗ − : Rep(Sd) → Rep(Sd) is naturally
isomorphic to a composition Rep(Sd) → Rep(S−1) → Rep(Sd). The category
Rep(S−1) is semisimple ([Deligne 2007, Théorème 2.18] or [Comes and Ostrik 2011,
Corollary 5.21]), so every object of K b(Rep(S−1)) is split. The result follows. �

We define K≤0
d as the full subcategory of Kd consisting of objects K such that

1⊗ K is concentrated in nonpositive degrees (that is, isomorphic to
⊕

i Ai [ni ]

with Ai ∈A and ni ∈ Z≥0). Similarly, we define K≥0
d as the full subcategory of Kd

consisting of objects K such that 1⊗ K is concentrated in nonnegative degrees.
The following result will be proved in Section 4C.

Theorem 4.2. The pair (K≤0
d ,K≥0

d ) is a t-structure (see [Beı̆linson et al. 1982,
Définition 1.3.1]) on the category Kd .

Recall that the core of this t-structure is the subcategory K0
d =K≤0

d ∩K≥0
d . By

definition this means that K ∈ K0
d if and only if 1⊗ K is concentrated in degree

zero. In particular, for any A ∈ Rep(Sd) the object A[0] is in K0
d .

Corollary 4.3. (a) The category K0
d is abelian.

(b) The category K0
d is a tensor subcategory of Kd .

Proof. Part (a) follows from Theorem 4.2 and [Beı̆linson et al. 1982, Théorème
1.3.6]. For (b) we need to check that for K , K ′ ∈K0

d we have K⊗K ′ ∈K0
d . Assume

this is not the case. This means that the split complex1⊗K⊗K ′ is not concentrated
in degree zero. Since 1⊗ X 6= 0 for any 0 6= X ∈ Rep(Sd) (see Remark 2.5) we
get that 1⊗1⊗ K ⊗ K ′ is split and not concentrated in degree zero. But this is
not the case since 1⊗1⊗ K ⊗ K ′ ' (1⊗ K )⊗ (1⊗ K ′) and both 1⊗ K and
1⊗ K ′ are split and concentrated in degree zero. �
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We will show in Section 4C that the category K0
d is actually pre-Tannakian.

Thus we constructed a fully faithful tensor functor Rep(Sd)→ K0
d , where K0

d is
a pre-Tannakian category. Of course a priori this might be quite different from
Deligne’s functor Rep(Sd)→ Repab(Sd).

4C. Verification of t-structure axioms. The main goal of this section is to prove
Theorem 4.2.

4C1. We start by reformulating the definition of K≤0
d and K≥0

d in terms of negligible
objects, i.e., objects whose identity morphisms are negligible.

Proposition 4.4. Let K ∈ Kd . Then K ∈ K≤0
d if and only if Hom(K , A[n]) = 0

for any negligible A ∈ Rep(Sd) and n ∈ Z<0. Similarly, K ∈ K≥0
d if and only if

Hom(K , A[n])= 0 for any negligible A ∈ Rep(Sd) and n ∈ Z>0.

Proof. We prove only the characterization of K≤0
d (the case of K≥0

d is similar).
Assume first that Hom(K , A[n]) = 0 for any negligible A and n ∈ Z<0. By
Proposition 3.2 1∗ =1, thus by Corollary 3.16 1⊗ B =1∗⊗ B is negligible for
all B ∈ Rep(Sd). Hence, Hom(1⊗ K , B[n]) = Hom(K ,1∗⊗ B[n]) = 0 for any
B ∈ Rep(Sd) and n ∈ Z<0. Since by Proposition 4.1 the object 1⊗ K ∈Kd is split
we get immediately that K ∈ K≤0

d .
Conversely, assume that K ∈ K≤0

d . Then by definition Hom(1⊗ K , B[n])= 0
for any B ∈ Rep(Sd) and n ∈ Z<0. Hence Hom(K ,1∗ ⊗ B[n]) = 0. Since, by
Corollary 3.16, any negligible object is a direct summand of an object of the form
1⊗ B =1∗⊗ B we are done. �

4C2. Blockwise description of (K≤0
d ,K≥0

d ). Recall that the category Rep(Sd) de-
composes into a direct sum of blocks Rep(Sd)=

⊕
b Repb(Sd); see Section 2B4.

Similarly, we have a decomposition Kd =
⊕

b(Kd)b (in other words, for any object
K ∈Kd we have a canonical decomposition K =

⊕
b Kb where all the terms of the

complex Kb ∈ (Kd)b are in the block Repb(Sd)). Since1⊗
(⊕

b Kb

)
=
⊕

b1⊗Kb

we see that K =
⊕

b Kb ∈ K≤0
d if and only if Kb ∈ K≤0

d for any b (and similarly
for K≥0

d ). In other words K≤0
d =

⊕
b(K
≤0
d )b where (K≤0

d )b = K≤0
d ∩ (Kd)b, that is,

the subcategory K≤0
d is compatible with the block decomposition (and similarly for

K≥0
d =

⊕
b(K
≥0
d )b). Thus in order to verify that (K≤0

d ,K≥0
d ) is a t-structure on Kd

it is sufficient to verify that ((K≤0
d )b, (K

≥0
d )b) is a t-structure on (Kd)b for every

block b. Fortunately, Proposition 4.4 gives rise to an easy description of (K≤0
d )b

and (K≥0
d )b.

Proposition 4.5. Let K ∈ (Kd)b.

(a) Assume that b is a semisimple block and let L be a unique indecomposable
object in b. Then K ∈ (K≤0

d )b (resp. K ∈ (K≥0
d )b) if and only if K ∈ (Kd)b and

Hom(K , L[n])= 0 for any n ∈ Z<0 (resp. for n ∈ Z>0).
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(b) Assume that b is a nonsemisimple block with indecomposable objects L i for
i ∈ Z≥0 labeled as in Proposition 2.7(ii). Then K ∈ (K≤0

d )b (resp. K ∈ (K≥0
d )b)

if and only if K ∈ (Kd)b and Hom(K , L i [n])= 0 for all i > 0 and any n ∈Z<0

(resp. for n ∈ Z>0).

Proof. Combine Proposition 4.4 and Proposition 2.7. �

4C3. Analogy with Temperley–Lieb category. The definition of the t-structure in
Section 4B was motivated by the following analogy. Pick a nontrivial root of
unity q such that q+q−1

∈ F and recall the Temperley–Lieb category TL(q) from
Section 2C. Consider the category K b(TL(q)). It is well known (see, e.g., [Ostrik
2008, Proposition 2.7] that the embedding TL(q)⊂ Cq induces an equivalence of
triangulated categories K b(TL(q))'Db(Cq), where Db(Cq) is the derived category
of the abelian category Cq . In particular the category Dq := K b(TL(q)) inherits
a natural t-structure (D≤0

q ,D≥0
q ) from the category Db(Cq); see, e.g., [Beı̆linson

et al. 1982, Exemple 1.3.2(i)].9 This t-structure can be characterized as follows.
Let St := Vl−1 ∈ TL(q) be the so-called Steinberg module. It is known (see

[Andersen et al. 1991, Theorem 9.8]) that St is a projective object of the category
Cq . Thus St⊗Y is a projective object of Cq for any Y ∈ Cq ; see [Andersen et al.
1991, Lemma 9.10]. In particular, for any K ∈ Dq the object St⊗K ∈ Dq is
isomorphic to its cohomology (as a finite complex consisting of projective modules
and with projective cohomology). It is well known that each projective object of
Cq is contained in TL(q)⊂ Cq ; see [Andersen 1992, (5.7)]. Thus, in the language
of Section 4A, for any K ∈ K b(TL(q)) the complex St⊗K is split (analogous to
Proposition 4.1). It is clear that K ∈ D≤0

q if and only if St⊗K is concentrated in
nonpositive degrees and similarly for D≥0

q . This is a counterpart of the definition of
the t-structure (K≤0

d ,K≥0
d ).

Furthermore, it is known that each direct summand of St⊗Y for Y ∈ TL(q)
is negligible (see [Andersen 1992, Proposition 3.5 and Lemma 3.6]) and that
each negligible object of TL(q) is a direct summand of St⊗Y with Y ∈ TL(q) (see
[Andersen 1992, p. 158]). Thus we have the following counterpart of Proposition 4.4
(with a similar proof):

(a) Let K ∈ Dq . Then K ∈ D≤0
q (resp. K ∈ D≥0

q ) if and only if Hom(K , A[n])= 0
for any negligible A ∈ TL(q) and n ∈ Z<0 (resp. n ∈ Z>0).

Hence, following Section 4C2, we can give a blockwise description of the
t-structure (D≤0

q ,D≥0
q ). For a block b let (Dq)b denote the full subcategory of

Dq = K b(TL(q)) consisting of complexes with all terms from the block b. Using
Lemma 2.11 we obtain the following counterpart of Proposition 4.5:

9Thus the category D≤0
q consists of objects of Db(Cq ) with nontrivial cohomology only in

nonpositive degrees and similarly for D≥0
q .
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(b) Let b be a nonsemisimple block of TL(q) with indecomposable objects L i for
i ∈ Z≥0 labeled as in Remark 2.10. Let K ∈ (Dq)b. Then K ∈D≤0

q (resp. K ∈D≥0
q )

if and only if Hom(K , L i [n])= 0 for all i > 0 and any n ∈ Z<0 (resp. for n ∈ Z>0).

From this description it is clear that the pair (D≤0
q ∩ (Dq)b,D≥0

q ∩ (Dq)b) of
subcategories of (Dq)b corresponds to the pair ((K≤0

d )b′, (K
≥0
d )b′) under the equiva-

lence (Dq)b ' (Kd)b′ induced by the equivalence of blocks from Proposition 2.9.
Since (D≤0

q ∩ (Dq)b,D≥0
q ∩ (Dq)b) is a t-structure on the category (Dq)b we have

the following:

Corollary 4.6. Let b be a nonsemisimple block of the category TL(q) and let
b′ be an equivalent block in the category Rep(Sd) as in Proposition 2.9. Then
((K≤0

d )b′, (K
≥0
d )b′) is a t-structure on the category (Kd)b′ . �

4C4. Proof of Theorem 4.2. It suffices to show ((K≤0
d )b, (K

≥0
d )b) is a t-structure

on (Kd)b for every block b. If the block b is semisimple then the category (Kd)b can
be identified with K b(VecF ) and Proposition 4.5(a) shows that ((K≤0

d )b, (K
≥0
d )b)

is the standard t-structure on K b(VecF ).
It remains to consider the case when b is a nonsemisimple block. Choose a

nontrivial root of unity q such that q + q−1
∈ F (for example, a primitive cubic

root of unity ζ will work for any F since ζ + ζ−1
= −1 ∈ F). Then there is a

nonsemisimple block in TL(q) which is equivalent to b (Proposition 2.9). Hence,
by Corollary 4.6, ((K≤0

d )b, (K
≥0
d )b) is a t-structure on (Kd)b. �

4C5. Complements. The proof in Section 4C4 implies the following:

Corollary 4.7. (a) The category K0
d is pre-Tannakian.

(b) Any object of the category K0
d is isomorphic to a subquotient of a direct sum of

tensor powers of [pt].

Proof. We already know that the category K0
d is an abelian tensor category (see

Corollary 4.3). It is obvious that Hom’s are finite-dimensional and End(1) = F
since this is true in the category Kd . The category K0

d is rigid: if 1 ⊗ K is
concentrated in degree zero then the same is true for 1⊗ K ∗ ' (1⊗ K )∗. It
remains to check that any object of K0

d has finite length. It is clear that we can
verify this block by block. The result is clear for semisimple blocks since by
Proposition 4.5(a) the core of the corresponding t-structure identifies with VecF .
This is also clear for nonsemisimple blocks since the corresponding t-structure
(described in Proposition 4.5) identifies with the t-structure on a block of the
Temperley–Lieb category and the corresponding core has all objects of finite length
since this is true for the category Cq . This proves (a).

For (b) we use the same argument as above: it is sufficient to verify the statement
block by block. Here the result is trivial for semisimple blocks and is known for
nonsemisimple ones since it is known to hold for the category Cq . �
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Remark 4.8. Using similar techniques of importing known results about the cate-
gory Cq to the category K0

d we can obtain detailed information about this category.
In particular, we see that the category K0

d has enough projective objects; all inde-
composable projective objects are direct summands of tensor powers of [pt] (but
powers of [pt] are not projective in general; for example [pt]⊗0

= 1 is not projective).
Thus Corollary 4.7(b) can be improved: any object of the category K0

d is isomorphic
to a quotient of a direct sum of tensor powers of [pt].

5. Universal property

5A. Extension property of the category K0
d .

Proposition 5.1. Let T be a pre-Tannakian category and let F : Rep(Sd)→ T be
a tensor functor. Assume that F(1) 6= 0. Then the functor F (uniquely) factorizes
as Rep(Sd)→ K0

d → T, where K0
d → T is an exact tensor functor.

Proof. Let K ∈ K0
d . We can consider F(K ) ∈ K b(T). Since the category T is

abelian we can talk about cohomology of F(K ).

Lemma 5.2. H i (F(K ))= 0 for i 6= 0.

Proof. Notice that for any 0 6= X ∈T we have X⊗F(1) 6= 0. Since the endofunctor
−⊗F(1) of the category T is exact (see, e.g., [Bakalov and Kirillov 2001, Proposi-
tion 2.1.8]) we see that H i (F(K⊗1))= H i (F(K )⊗F(1))= H i (F(K ))⊗F(1).
By the definition of K0

d the cohomology of F(K ⊗1) is concentrated in degree
zero and we are done. �

We now define the functor K0
d→T as K 7→ H 0(F(K )) with the tensor structure

induced by the one on F (or rather its extension to K b(Rep(Sd))→ Kb(T)). �

Remark 5.3. Here is an example of a tensor functor between abelian rigid tensor
categories which is not exact. Let k be a field of characteristic 2 and consider
the category Repk(Z/2Z) of finite-dimensional k-representations of Z/2Z. This
category has precisely 2 indecomposable objects: one is simple and 1-dimensional;
the other is projective and has categorical dimension 0. Thus the quotient of
Repk(Z/2Z) by the negligible morphisms is equivalent to the category Veck of finite-
dimensional vector spaces over k. Clearly the quotient functor Repk(Z/2Z)→Veck

is not exact since it sends the projective object to zero. One can also construct a
similar example over a field of characteristic zero using the representation category
of the additive supergroup of a 1-dimensional odd space.

5B. Fundamental groups of K0
d and Rep(Sd). Let π be the fundamental group

of the pre-Tannakian category K0
d . The action of π on [pt] ∈ Rep(Sd)⊂K0

d defines
a homomorphism π→ SI where I= Spec([pt]).

Proposition 5.4. The homomorphism ε : π→ SI is in fact an isomorphism.
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Proof. Since the object [pt] generates K0
d (see Corollary 4.7(b)) the homomorphism

ε : π→ SI is an embedding.
Consider the category Rep(SI, ε). It is shown in (the proof of) [Deligne 2007,

Proposition B1] that its fundamental group is precisely the group SεI =AutRep(SI,ε)(I).
We have an obvious tensor functor Rep(Sd)→ Rep(SI, ε); by Proposition 5.1 it
extends to a tensor functor F : K0

d → Rep(SI, ε). Thus we have a homomorphism
SεI →F(π). It is clear that the composition SεI →F(π)⊂F(SI)= SεI is the identity
map. The result follows. �

5C. Proof of Theorem 1.2. We start with the following result:

Proposition 5.5 [Deligne 1990, 8.14(ii)]. The fundamental group of the category
Rep(Sd) is the group Sd acting on itself by conjugation. �

Remark 5.6. It is explained in loc. cit. that we can replace Sd with any affine
algebraic group G in the statement of the proposition.

Theorem 5.7. Let T be a pre-Tannakian category and let F : Rep(Sd)→ T be a
tensor functor with T = F([pt]).

(a) If F(1) = 0, then the category Rep(SI, ε) endowed with the functor FT :

Rep(Sd) → Rep(SI, ε) is equivalent to Rep(Sd) equipped with the functor
Rep(Sd)→ Rep(Sd).

(b) If F(1) 6= 0, then the category Rep(SI, ε) endowed with the functor FT :

Rep(Sd)→Rep(SI, ε) is equivalent to K0
d equipped with the functor Rep(Sd)→

K0
d .

Proof. (a) In this case F factorizes as Rep(Sd)→Rep(Sd)→T (see Corollary 3.16).
The result follows from [Deligne 1990, Théorème 8.17] and Proposition 5.5.

(b) In this case F extends to a functor Rep(Sd)→K0
d→T by Proposition 5.1. The

result follows from [Deligne 1990, Théorème 8.17] and Proposition 5.4. �

If we apply Theorem 5.7(b) to the category T = Rep(S−1) and the functor
ResSd

S−1
: Rep(Sd)→ T described in Definition 2.4 and Section 3D we obtain the

following:

Corollary 5.8. The category Repab(Sd) endowed with the functor Rep(Sd) →

Repab(Sd) is equivalent to the category K0
d with the functor Rep(Sd)→K0

d . �

Clearly Theorem 5.7 and Corollary 5.8 together imply Theorem 1.2.
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