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Algebraicity of the zeta function associated
to a matrix over a free group algebra

Christian Kassel and Christophe Reutenauer

Following and generalizing a construction by Kontsevich, we associate a zeta
function to any matrix with entries in a ring of noncommutative Laurent polyno-
mials with integer coefficients. We show that such a zeta function is an algebraic
function.

1. Introduction

Fix a commutative ring K . Let F be a free group on a finite number of generators
X1, . . . , Xn and

KF = K 〈X1, X−1
1 , . . . , Xn, X−1

n 〉

be the corresponding group algebra: equivalently, it is the algebra of noncommu-
tative Laurent polynomials with coefficients in K . Any element a ∈ KF can be
uniquely written as a finite sum of the form

a =
∑
g∈F

(a, g)g,

where (a, g) ∈ K .
Let M be a d×d matrix with coefficients in KF . For any n≥ 1, we may consider

the n-th power Mn of M and its trace Tr(Mn), which is an element of KF . We
define the integer an(M) as the coefficient of 1 in the trace of Mn:

an(M)= (Tr(Mn), 1). (1-1)

Let gM and PM be the formal power series

gM =
∑
n≥1

an(M)tn and PM = exp
(∑

n≥1

an(M)
tn

n

)
. (1-2)

They are related by

gM = t
d log(PM)

dt
.
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We call PM the zeta function of the matrix M by analogy with the zeta function
of a noncommutative formal power series (see next section); the two concepts will
be related in Proposition 4.1.

The motivation for the definition of PM comes from the well-known identity
expressing the inverse of the reciprocal polynomial of the characteristic polynomial
of a matrix M with entries in a commutative ring

1
det(1− t M)

= exp
(∑

n≥1

Tr(Mn)
tn

n

)
.

Note that, for any scalar λ ∈ K , the corresponding series for the matrix λM
become

gλM(t)= gM(λt) and PλM(t)= PM(λt). (1-3)

Our main result is the following; it was inspired by Theorem 1 of [Kontsevich
2011]:

Theorem 1.1. For each matrix M ∈ Md(KF) where K =Q is the ring of rational
numbers, the formal power series PM is algebraic.

The special case d = 1 is due to Kontsevich [2011]. A combinatorial proof in
the case d = 1 and F is a free group on one generator appears in [Reutenauer and
Robado 2012].

Observe that by the rescaling equalities (1-3) it suffices to prove the theorem
when K = Z is the ring of integers.

It is crucial for the veracity of Theorem 1.1 that the variables do not commute:
for instance, if a = x + y + x−1

+ y−1
∈ Z[x, x−1, y, y−1

], where x and y are
commuting variables, then exp(

∑
n≥1(a

n, 1)tn/n) is a formal power series with
integer coefficients but not an algebraic function (this follows from Example 3 in
[Bousquet-Mélou 2005, §1]).

The paper is organized as follows. In Section 2, we define the zeta function ζS

of a noncommutative formal power series S and show that it can be expanded as
an infinite product under a cyclicity condition that is satisfied by the characteristic
series of cyclic languages.

In Section 3, we recall the notion of algebraic noncommutative formal power
series and some of their properties.

In Section 4, we reformulate the zeta function of a matrix as the zeta function of
a noncommutative formal power series before giving the proof of Theorem 1.1; the
latter follows the steps sketched in [Kontsevich 2011] and relies on the results of the
previous sections as well as on an algebraicity result by André [2004] elaborating
on an idea of D. and G. Chudnovsky.

We concentrate on two specific matrices in Section 5. We give a closed formula
for the zeta function of the first matrix; its nonzero coefficients count the planar
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rooted bicubic maps as well as Chapoton’s “new intervals” in a Tamari lattice (see
[Chapoton 2006; Tutte 1963]).

2. Cyclic formal power series

General definitions. As usual, if A is a set, we denote by A∗ the free monoid on A:
it consists of all words on the alphabet A, including the empty word 1.

Let A+ = A−{1}. Recall that w ∈ A+ is primitive if it cannot be written as ur

for any integer r ≥ 2 and any u ∈ A+. Two elements w,w′ ∈ A+ are conjugate if
w = uv and w′ = vu for some u, v ∈ A∗.

Given a set A and a commutative ring K , let K 〈〈A〉〉 be the algebra of noncom-
mutative formal power series on the alphabet A. For any element S ∈ K 〈〈A〉〉 and
any w ∈ A∗, we define the coefficient (S, w) ∈ K by

S =
∑
w∈A∗

(S, w)w.

As an example of such noncommutative formal power series, take the charac-
teristic series

∑
w∈L w of a language L ⊆ A∗. In the sequel, we shall identify a

language with its characteristic series.
The generating series gS of an element S ∈ K 〈〈A〉〉 is the image of S under the

algebra map ε : K 〈〈A〉〉 → K [[t]] sending each a ∈ A to the variable t . We have

gS − (S, 1)=
∑
w∈A+

(S, w)t |w| =
∑
n≥1

(∑
|w|=n

(S, w)
)

tn, (2-1)

where |w| is the length of w.
The zeta function ζS of S ∈ K 〈〈A〉〉 is defined by

ζS = exp
(∑
w∈A+

(S, w)
t |w|

|w|

)
= exp

(∑
n≥1

(∑
|w|=n

(S, w)
)

tn

n

)
. (2-2)

The formal power series gS and ζS are related by

t
d log(ζS)

dt
= t

ζ ′S

ζS
= gS − (S, 1), (2-3)

where ζ ′S is the derivative of ζS with respect to the variable t .

Cyclicity.

Definition 2.1. An element S ∈ K 〈〈A〉〉 is cyclic if

(i) ∀u, v ∈ A∗, (S, uv)= (S, vu) and

(ii) ∀w ∈ A+, ∀r ≥ 2, (S, wr )= (S, w)r .
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Cyclic languages provide examples of cyclic formal power series. Recall from
[Berstel and Reutenauer 1990, §2] that a language L ⊆ A∗ is cyclic if

(1) ∀u, v ∈ A∗, uv ∈ L⇐⇒ vu ∈ L and

(2) ∀w ∈ A+, ∀r ≥ 2, wr
∈ L⇐⇒ w ∈ L .

The characteristic series of a cyclic language is a cyclic formal power series in the
above sense.

Let L be any set of representatives of conjugacy classes of primitive elements
of A+.

Proposition 2.2. If S ∈ K 〈〈A〉〉 is a cyclic formal power series, then

ζS =
∏
`∈L

1
1− (S, `)t |`|

.

Proof. Since both sides of the equation have the same constant term 1, it suffices to
prove that they have the same logarithmic derivative. The logarithmic derivative of
the right-hand side multiplied by t is equal to

∑
`∈L

|`|(S, `)t |`|

1− (S, `)t |`|
,

which in turn is equal to ∑
`∈L , k≥1

|`|(S, `)k tk|`|.

In view of (2-1) and (2-3), it is enough to check that, for all n ≥ 1,∑
|w|=n

(S, w)=
∑

`∈L , k≥1, k|`|=n

|`|(S, `)k . (2-4)

Now any word w = uk is the k-th power of a unique primitive word u, which is the
conjugate of a unique element ` ∈ L . Moreover, w has exactly |`| conjugates and,
since S is cyclic, we have

(S, w)= (S, uk)= (S, u)k = (S, `)k .

From this, Equation (2-4) follows immediately. �

Corollary 2.3. If a cyclic formal power series S has integer coefficients, that is, if
(S, w) ∈ Z for all w ∈ A∗, then so does ζS .



Algebraicity of zeta functions associated to a matrix over a free group algebra 501

3. Algebraic noncommutative series

This section is essentially a compilation of well-known results on algebraic non-
commutative series.

Recall that a system of proper algebraic noncommutative equations is a finite set
of equations

ξi = pi , i = 1, . . . , n,

where ξ1, . . . , ξn are noncommutative variables and p1, . . . , pn are elements of
K 〈ξ1, . . . , ξn, A〉, where A is some alphabet. We assume that each pi has no
constant term and contains no monomial ξ j . One can show that such a system has
a unique solution (S1, . . . , Sn), i.e., there exists a unique n-tuple (S1, . . . , Sn) ∈

K 〈〈A〉〉n such that Si = pi (S1, . . . , Sn, A) for all i =1, . . . , n and each Si has no con-
stant term (see [Schützenberger 1962], [Salomaa and Soittola 1978, Theorem IV.1.1],
or [Stanley 1999, Proposition 6.6.3]).

If a formal power series S ∈ K 〈〈A〉〉 differs by a constant from such a formal
power series Si , we say that S is algebraic.

Example 3.1. Consider the proper algebraic noncommutative equation

ξ = aξ 2
+ b.

(Here A = {a, b}.) Its solution is of the form

S = b+ abb+ aabbb+ ababb+ · · · .

One can show (see [Berstel 1979]) that S is the characteristic series of Łukasiewicz’s
language, namely of the set of words w ∈ {a, b}∗ such that |w|b = |w|a + 1 and
|u|a ≥ |u|b for all proper prefixes u of w.

Recall also that S ∈ K 〈〈A〉〉 is rational if it belongs to the smallest subalge-
bra of K 〈〈A〉〉 containing K 〈A〉 and closed under inversion. By a theorem of
Schützenberger (see [Berstel and Reutenauer 2011, Theorem I.7.1]), a formal power
series S ∈ K 〈〈A〉〉 is rational if and only if it is recognizable, i.e., there exist an
integer n ≥ 1, a representation µ of the free monoid A∗ by matrices with entries
in K , a row-matrix α and a column-matrix β such that, for all w ∈ A∗,

(S, w)= αµ(w)β.

We now record two well-known theorems.

Theorem 3.2. (1) If S ∈ K 〈〈A〉〉 is algebraic, then its generating series gS ∈ K [[t]]
is algebraic in the usual sense.

(2) The set of algebraic power series is a subring of K 〈〈A〉〉.

(3) A rational power series is algebraic.
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(4) The Hadamard product of a rational power series and an algebraic power
series is algebraic.

(5) Let A = {a1, . . . , an, a−1
1 , . . . , a−1

n } and L be the language consisting of all
words on the alphabet A whose image in the free group on a1, . . . , an is the
neutral element. Then the characteristic series of L is algebraic.

Items (1)–(4) of the previous theorem are due to Schützenberger [1962] and
Item (5) to Chomsky and Schützenberger [1963] (see [Stanley 1999, Example 6.6.8]).

The second theorem is a criterion due to Jacob [1975].

Theorem 3.3. A formal power series S ∈ K 〈〈A〉〉 is algebraic if and only if there
exist a free group F , a representation µ of the free monoid A∗ by matrices with
entries in KF , indices i and j , and an element γ ∈ F such that, for all w ∈ A∗,

(S, w)= ((µw)i, j , γ ).

The following is an immediate consequence of Theorem 3.3:

Corollary 3.4. If S ∈ K 〈〈A〉〉 is an algebraic power series and ϕ : B∗→ A∗ is a
homomorphism of finitely generated free monoids, then the power series∑

w∈B∗
(S, ϕ(w))w ∈ K 〈〈B〉〉

is algebraic.

As a consequence of Theorem 3.2(5) and of Corollary 3.4, we obtain:

Corollary 3.5. Let f : A∗→ F be a homomorphism from A∗ to a free group F.
Then the characteristic series of f −1(1) ∈ K 〈〈A〉〉 is algebraic.

4. Proof of Theorem 1.1

Let M be a d × d matrix. As observed in the introduction, it is enough to establish
Theorem 1.1 when all the entries of M belong to ZF .

We first reformulate the formal power series gM and PM of (1-2) as the generating
series and the zeta function of a noncommutative formal power series, respectively.

Let A be the alphabet whose elements are triples [g, i, j], where i and j are
integers such that 1≤ i, j ≤ d and g ∈ F appears in the (i, j)-entry Mi, j of M , i.e.,
(Mi, j , g) 6= 0. We define the noncommutative formal power series SM ∈ K 〈〈A〉〉
as follows: for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, the scalar (SM , w) vanishes
unless we have

(a) jn = i1 and jk = ik+1 for all k = 1, . . . , n− 1 and

(b) g1 · · · gn = 1 in the group F ,
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in which case (SM , w) is given by

(SM , w)= (Mi1, j1, g1) · · · (Min, jn , gn) ∈ K .

By convention, (SM , 1)= d .

Proposition 4.1. The generating series and the zeta function of SM are related to
the formal power series gM and PM of (1-2) by

gSM − d = gM and ζSM = PM .

Proof. For n ≥ 1, we have

Tr(Mn)=
∑

Mi1, j1 · · ·Min, jn

=
∑
(Mi1, j1, g1) · · · (Min, jn , gn)g1 · · · gn,

where the sum runs over all indices i1, j1, . . . , in, jn satisfying Condition (a) above
and over all g1, . . . , gn ∈ F . Then

an(M)= (Tr(Mn), 1)=
∑
(Mi1, j1, g1) · · · (Min, jn , gn),

where Conditions (a) and (b) are satisfied. Hence,

an(M)=
∑

w∈A∗, |w|=n

(S, w),

which proves the proposition in view of (1-2), (2-1) and (2-2). �

We next establish that SM is both cyclic in the sense of Section 2 and algebraic
in the sense of Section 3.

Proposition 4.2. The noncommutative formal power series SM is cyclic.

Proof. (i) Conditions (a) and (b) above are clearly preserved under cyclic permuta-
tions. Hence, we also have

(SM , w)= (Mi2, j2, g2) · · · (Min, jn , gn)(Mi1, j1, g1)

when w = [g1, i1, j1] · · · [gn, in, jn] such that Conditions (a) and (b) are satisfied.
It follows that (S, uv)= S(vu) for all u, v ∈ A∗.

(ii) If w satisfies Conditions (a) and (b), so does wr for r ≥ 2. Conversely, if wr

(r ≥ 2) satisfies Condition (a), then since

wr
= [g1, i1, j1] · · · [gn, in, jn][g1, i1, j1] · · ·

we must have jn = i1 and jk = ik+1 for all k = 1, . . . , n − 1, and so w satisfies
Condition (a).

If wr (r ≥ 2) satisfies Condition (b), i.e., (g1 · · · gn)
r
= 1, then g1 · · · gn = 1

since F is torsion-free. Hence, w satisfies Condition (b). It follows that (S, wr )=

((Mi1, j1, g1) · · · (Min, jn , gn))
r
= (S, w)r . �
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Proposition 4.3. The noncommutative formal power series SM is algebraic.

Proof. We write SM as the Hadamard product of three noncommutative formal
power series S1, S2 and S3.

The series S1 ∈ K 〈〈A〉〉 is defined for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+ by

(S1, w)= (Mi1, j1, g1) · · · (Min, jn , gn)

and by (S1, 1) = 1. This is a recognizable, hence rational, series with one-
dimensional representation A∗→ K given by [g, i, j] 7→ (Mi, j , g).

Next consider the representation µ of the free monoid A∗ defined by

µ([g, i, j])= Ei, j ,

where Ei, j denotes as usual the d × d matrix with all entries vanishing except the
(i, j)-entry, which is equal to 1. Set

S2 =
∑
w∈A∗

Tr((µw))w ∈ K 〈〈A〉〉.

The power series S2 is recognizable and hence rational. Let us describe S2 more
explicitly. For w = 1, µ(w) is the identity d × d matrix; hence, (S2, 1) = d. For
w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, we have

Tr((µw))= Tr(Ei1, j1 · · · Ein, jn ).

It follows that Tr((µw)) 6= 0 if and only if Tr(Ei1, j1 · · · Ein, jn ) 6= 0, which is equiv-
alent to jn = i1 and jk = ik+1 for all k = 1, . . . , n−1, in which case Tr((µw))= 1.
Thus,

S2 = d +
∑
n≥1

∑
[g1, i1, i2][g2, i2, i3] · · · [gn, in, i1],

where the second sum runs over all elements g1, . . . , gn ∈ F and all indices
i1, . . . , in .

Finally, consider the homomorphism f : A∗→ F sending [g, i, j] to g. Then
by Corollary 3.5 the characteristic series S3 ∈ K 〈〈A〉〉 of f −1(1) is algebraic.

It is now clear that SM is the Hadamard product of S1, S2 and S3:

SM = S1� S2� S3.

Since, by [Berstel and Reutenauer 2011, Theorem I.5.5] the Hadamard product
of two rational series is rational, S1� S2 is rational as well. It then follows from
Theorem 3.2(4) and the algebraicity of S3 that SM = S1� S2� S3 is algebraic. �

Since M has entries in ZF , the power series gSM = gM + d belongs to Z[[t]]. It
follows by Corollary 2.3 and Proposition 4.2 that the power series PM = ζSM has
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integer coefficients as well. Moreover, by Theorem 3.2(1) and Proposition 4.3,

t
d log(PM)

dt
= gM

is algebraic.
To complete the proof of Theorem 1.1, it suffices to apply the following alge-

braicity theorem:

Theorem 4.4. If f ∈ Z[[t]] is a formal power series with integer coefficients such
that t d log f/dt is algebraic, then f is algebraic.

Note that the integrality condition for f is essential: for the transcendental formal
power series f = exp(t), we have t d log f/dt = t , which is even rational.

Proof. This result follows from cases of the Grothendieck–Katz conjecture proved
in [André 2004] and in [Bost 2001]. The conjecture states that, if Y ′ = AY is a
linear system of differential equations with A ∈ Md(Q(t)), then far from the poles
of A it has a basis of solutions that are algebraic over Q(t) if and only if for almost
all prime numbers p the reduction mod p of the system has a basis of solutions
that are algebraic over Fp(t).

Let us now sketch a proof of the theorem (see also Exercise 5 of [André 1989,
p. 160]). Set g= t f ′/ f , and consider the system y′= (g/t)y; it defines a differential
form ω on an open set S of the smooth projective complete curve S associated
to g. We now follow [André 2004, §6.3], which is inspired from [Chudnovsky
and Chudnovsky 1985]. First, extend ω to a section (still denoted ω) of �1

S
(−D),

where D is the divisor of poles of ω. For any n ≥ 2, we have a differential form∑n
i=1 p∗i (ω) on Sn , where pi : Sn

→ S is the i-th canonical projection; this form
goes down to the symmetric power S(n). Now let J be the generalized Jacobian
of S parametrizing invertible fiber bundles over S that are rigidified over D. There
is a morphism ϕ : S→ J and a unique invariant differential form ωJ on J such
that ω = ϕ∗(ωJ ). For any n ≥ 2, ϕ induces a morphism ϕ(n) : S(n)→ J such that
(ϕ(n))∗(ωJ ) =

∑n
i=1 p∗i (ω). For n large enough, ϕ(n) is dominant, and if ωJ is

exact, then so is ω. To prove that ωJ is exact, we note that J , being a scheme of
commutative groups, is uniformized by Cn . We can now apply Theorem 5.4.3 of
[André 2004], whose hypotheses are satisfied because the solution f of the system
has integer coefficients.

Alternatively, one can use a special case of a generalized Grothendieck–Katz
conjecture proved by Bost, namely Corollary 2.8 in [Bost 2001, §2.4]: the vanishing
of the p-curvatures in Condition (i) follows by a theorem of Cartier from the fact
that the system has a solution in Fp(t), namely the reduction mod p of f for all
prime numbers p for which such a reduction of the system exists (see Exercise 3
of [André 1989, p. 84] or Theorem 5.1 of [Katz 1970]); Condition (ii) is satisfied
since Cn satisfies the Liouville property. �
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A nice overview of such algebraicity results is given in the Bourbaki report of
Chambert-Loir [2002]; see especially Theorem 2.6 and the following lines.

5. Examples

Kontsevich [2011] computed Pω when ω= X1+ X−1
1 +· · ·+ Xn+ X−1

n considered
as a 1× 1 matrix, obtaining

Pω =
2n

(2n− 1)n−1 ·
(n− 1+ n(1− 4(2n− 1)t2)1/2)n−1

(1+ (1− 4(2n− 1)t2)1/2)n
, (5-1)

which shows that Pω belongs to a quadratic extension of Q(t).
We now present similar results for the zeta functions of two matrices: the first

one of order 2 and the second one of order d ≥ 3.

Computing PM for a 2 × 2 matrix. Consider the following matrix with entries in
the ring Z〈a, a−1, b, b−1, d, d−1

〉, where a, b and d are noncommuting variables:

M =
(

a+ a−1 b
b−1 d + d−1

)
. (5-2)

Proposition 5.1. We have

gM = 3
(1− 8t2)1/2− 1+ 6t2

1− 9t2 , (5-3)

PM =
(1− 8t2)3/2− 1+ 12t2

− 24t4

32t6 . (5-4)

Expanding PM as a formal power series, we obtain

PM = 1+
∑
n≥1

3 · 2n

(n+ 2)(n+ 3)

(2n+2
n+1

)
t2n.

Proof. View the matrix M under the form of the graph of Figure 1 with two vertices 1
and 2 and six labeled oriented edges. We identify paths in this graph and words
on the alphabet A = {a, a−1, b, b−1, d, d−1

}. Let B denote the set of nonempty
words on A that become trivial in the corresponding free group on a, b and d and
whose corresponding path is a closed path. Then the integer an(M) is the number
of words in B of length n. We have ε(B)= gM , where ε : K 〈〈A〉〉 → K [[t]] is the
algebra map defined in Section 2.

We define Bi (i = 1, 2) as the set of paths in B starting from and ending at the
vertex i ; we have B = B1+ B2. Each set Bi is a free subsemigroup of A∗, freely
generated by the set Ci of closed paths not passing through i (except at their ends).
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1 2

d

d−1

a

a−1

b

b−1

Figure 1. A graph representing M .

The sets Ci do not contain the empty word. We have

Bi = C+i =
∑
n≥1

Cn
i , i = 1, 2.

Given a letter x , we denote by Ci (x) the set of closed paths in Ci starting with x .
Any word of Ci (x) is of the form xwx−1, where w ∈ B j when i

x
−→ j ; such w does

not start with x−1. Identifying a language with its characteristic series and using the
standard notation L∗ = 1+

∑
n≥1 Ln for any language L , we obtain the equations

C1(a)= a(C1(a)+C1(b))∗a−1, (5-5)

C1(b)= b(C2(d)+C2(d−1))∗b−1. (5-6)

Applying the algebra map ε and taking into account the symmetries of the graph,
we see that the four noncommutative formal power series C1(a), C1(a−1), C2(d)
and C2(d−1) are sent to the same formal power series u ∈ Z[[t]] while C1(b) and
C2(b−1) are sent to the same formal power series v. It follows from (5-5) and (5-6)
that u and v satisfy the equations

u = t2(u+ v)∗ =
t2

1− u− v
and v = t2(2u)∗ =

t2

1− 2u
, (5-7)

from which we deduce

t2
= u(1− u− v)= v(1− 2u).

The second equality is equivalent to (u−v)(u−1)=0. Since C1(a) does not contain
the empty word, the constant term of u vanishes; hence, u−1 6= 0. Therefore, u= v.

Since C1=C1(a)+C1(a−1)+C1(b) and C2=C2(d)+C2(d−1)+C2(b−1), we
have ε(C1)= ε(C2)= 2u+ v = 3u. Therefore, ε(B1)= ε(B2)= 3u/(1− 3u) and

gM = ε(B)=
6u

1− 3u
. (5-8)

Let us now compute u using (5-7) and the equality u= v. The formal power series u
satisfies the quadratic equation 2u2

− u+ t2
= 0. Since u has zero constant term,
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we obtain

u =
1− (1− 8t2)1/2

4
.

From this and (5-8), we obtain the desired form for gM .
Let P(t) be the right-hand side in Equation (5-4). To prove PM = P(t), we

checked that t P ′(t)/P(t)= gM and the constant term of P(t) is 1. �

Remark 5.2. We found Equation (5-4) for P(t) as follows. We first computed the
lowest coefficients of gM up to degree 10:

gM = 6(t2
+ 5t4

+ 29t6
+ 181t8

+ 1181t10)+ O(t12).

From this, it was not difficult to find that

PM = 1+ 3t2
+ 12t4

+ 56 t6
+ 288t8

+ 1584t10
+ O(t12). (5-9)

Up to a shift, the sequence (5-9) of nonzero coefficients of PM is the same as the
sequence of numbers of “new” intervals in a Tamari lattice computed in [Chapo-
ton 2006, §9]. (We learnt this from [OEIS 2010], where this sequence is listed
as A000257.) Chapoton gave an explicit formula for the generating function ν of
these “new” intervals (see Equation (73) in [Chapoton 2006]). Rescaling ν, we
found that P(t)= (ν(t2)− t4)/t6 has up to degree 10 the same expansion as (5-9).
It then sufficed to check that t P ′(t)/P(t)= gM .

By [OEIS 2010], the integers in the sequence A000257 also count the number of
planar rooted bicubic maps with 2n vertices (see [Tutte 1963, p. 269]). Planar maps
also come up in the combinatorial interpretation of (5-1) given in [Reutenauer and
Robado 2012, §5] for n = 2.

Note that the sequence of nonzero coefficients of gM/6 is listed as A194723 in
[OEIS 2010].

A similar d × d matrix. Fix an integer d ≥ 3, and let M be the d × d matrix with
entries Mi, j defined by

Mi,i = ai + a−1
i and Mi, j =

{
bi j if i < j ,
b−1

j i if j < i ,

where a1, . . . , ad , bi j (1≤ i < j ≤ d) are noncommuting variables. This matrix is
a straightforward generalization of (5-2).

Proceeding as above, we obtain two formal power series u and v satisfying the
following equations similar to (5-7):

u = t2(u+ (d − 1)v)∗ =
t2

1− u− (d − 1)v
,

v = t2(2u+ (d − 2)v)∗ =
t2

1− 2u− (d − 2)v
.
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We deduce the equality u = v and the quadratic equation u(1−du)= t2. We finally
have

gM =
d(d + 1)u

1− (d + 1)u
,

which leads to

gM =
d(d + 1)

2
(1− 4dt2)1/2− 1+ 2(d + 1)t2

1− (d + 1)2 t2 .

Its expansion as a formal power series is the following:

gM = d(d + 1)
{
t2
+ (2d + 1)t4

+ (5d2
+ 4d + 1)t6

+ (14d3
+ 14d2

+ 6d + 1)t8

+ (42d4
+ 48d3

+ 27d2
+ 8d + 1)t10}

+ O(t12).

When d = 2, 3, 4, the sequence of nonzero coefficients of gM/d(d + 1) is listed
respectively as A194723, A194724 and A194725 in [OEIS 2010] (it is also the d-th
column in Sequence A183134). These sequences count the d-ary words, either
empty or beginning with the first letter of the alphabet, that can be built by inserting
n doublets into the initially empty word.

We were not able to find a closed formula for PM analogous to (5-4). Using
Maple, we found that, for instance up to degree 10, the expansion of PM is

1+
d(d+1)

2
t2
+

d(d+1)(d2
+5d+2)

8
t4

+
d(d+1)(d4

+14d3
+59d2

+38d+8)
48

t6

+
d(d+1)(d6

+27d5
+271d4

+1105d3
+904d2

+332d+48)
384

t8.
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