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We study the behavior of cohomological support loci of the canonical bundle
under derived equivalence of smooth projective varieties. This is achieved by
investigating the derived invariance of a generalized version of Hochschild ho-
mology. Furthermore, using techniques coming from birational geometry, we
establish the derived invariance of the Albanese dimension for varieties having
nonnegative Kodaira dimension. We apply our machinery to study the derived
invariance of the holomorphic Euler characteristic and of certain Hodge numbers
for special classes of varieties. Further applications concern the behavior of
particular types of fibrations under derived equivalence.

1. Introduction

It is now well-known that derived equivalent varieties share quite a few invariants.
For instance, the dimension, the Kodaira dimension, the numerical dimension and
the canonical ring are examples of derived invariants. By describing the behavior
under derived equivalence of the Picard variety, Popa and Schnell [2011] establish
the derived invariance of the number of linearly independent holomorphic one-
forms. In this paper, we study the behavior under derived equivalence of other
fundamental objects in the geometry of irregular varieties, i.e., those with positive
irregularity q(X) := h0(X, �1

X ), such as the cohomological support loci and the
Albanese dimension. Applications of our techniques concern the derived invariance
of the holomorphic Euler characteristic of varieties with large Albanese dimension
and the derived invariance of some of the Hodge numbers of fourfolds again with
large Albanese dimension. A further application concerns the behavior of fibrations
of derived equivalent threefolds onto irregular varieties. This work is motivated by
a well-known conjecture predicting the derived invariance of all Hodge numbers
and by a conjecture of Popa (see Conjectures 1.2 and 1.3 and [Popa 2013]).
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The main tool we use to approach the problems described above is the com-
parison of the cohomology groups of twists by topologically trivial line bundles
of the canonical bundles of the varieties in play. This is achieved by studying a
generalized version of Hochschild homology that takes into account an important
isomorphism due to Rouquier related to derived autoequivalences (see [Rouquier
2011, Théorème 4.18]). In this way, we obtain a theoretical result of independent
interest in the study of derived equivalences of smooth projective varieties, which
we now present. To begin with, we recall the Hochschild cohomology and homology
of a smooth projective variety X :

HH∗(X) :=
⊕

k ExtkX×X (i∗OX , i∗OX ),

HH∗(X) :=
⊕

k ExtkX×X (i∗OX , i∗ωX ),

where i : X ↪→ X × X is the diagonal embedding of X . The space HH∗(X) has
a structure of ring under composition of morphisms, and HH∗(X) is a graded
HH∗(X)-module with the same operation. Results of Căldăraru [2003, Theorem
8.1] and Orlov [2003, Theorem 2.1.8] show that the Hochschild cohomology and
homology are derived invariants. More precisely, if 8 : D(X) → D(Y ) is an
equivalence of derived categories of smooth projective varieties, then it induces an
isomorphism of rings HH∗(X)∼= HH∗(Y ) and an isomorphism of graded modules
HH∗(X)∼= HH∗(Y ) compatible with the isomorphism HH∗(X)∼= HH∗(Y ). We
now present the generalization of Hochschild homology mentioned above. For a
triple (ϕ, L ,m) ∈ Aut0(X)×Pic0(X)×Z, we define the graded HH∗(X)-module

HH∗(X, ϕ, L ,m) :=
⊕

k ExtkX×X

(
i∗OX , (1, ϕ)∗(ω⊗m

X ⊗ L)
)

with module structure given by composition of morphisms. We think of these spaces
as a “twisted” version of the Hochschild homology of X . Lastly, we recall that a
derived equivalence D(X)∼= D(Y ) induces an isomorphism of algebraic groups,
called Rouquier’s isomorphism

F : Aut0(X)×Pic0(X)→ Aut0(Y )×Pic0(Y ). (1)

(An explicit description of F is given in (3) (see [Rouquier 2011, Théorème 4.18;
Huybrechts 2006, Proposition 9.45; Rosay 2009, Theorem 3.1]; cf. [Popa and
Schnell 2011, footnote, p. 531]).) The following theorem describes the behavior
of the twisted Hochschild homology under derived equivalence. Its proof follows
the general strategy of the proofs of Orlov and Căldăraru, but further technicalities
appear due to the possible presence of nontrivial automorphisms of X and Y ; see
Section 2 for its proof.

Theorem 1.1. Let 8 : D(X)→ D(Y ) be an equivalence of derived categories of
smooth projective varieties defined over an algebraically closed field, and let m ∈ Z.
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If F(ϕ, L) = (ψ,M) (where F is the Rouquier isomorphism), then 8 induces an
isomorphism of graded modules

HH∗(X, ϕ, L ,m)∼= HH∗(Y, ψ,M,m)

compatible with the isomorphism HH∗(X)∼= HH∗(Y ).

We now move our attention to the main application of Theorem 1.1, namely, the
behavior of cohomological support loci under derived equivalence. These loci are
defined as

V k(ωX ) := {L ∈ Pic0(X) | hk(X, ωX ⊗ L) > 0}

where X is a smooth projective variety and k ≥ 0 is an integer. From here on, we
work over the field of the complex numbers. The V k(ωX )’s have been studied for
instance in [Green and Lazarsfeld 1987; 1991; Ein and Lazarsfeld 1997; Arapura
1992; Hacon 2004; Pareschi and Popa 2011]. They are one of the most important
tools in the birational study of irregular varieties; roughly speaking, they control the
geometry of the Albanese map and the fibrations onto lower-dimensional irregular
varieties. The following conjecture, and its weaker variant, predicts the behavior
of cohomological support loci under derived equivalence. As a matter of notation,
we denote by V k(ωX )0 the union of the irreducible components of V k(ωX ) passing
through the origin.

Conjecture 1.2 [Popa 2013, Conjecture 1.2]. If X and Y are smooth projective
derived equivalent varieties, then

V k(ωX )∼= V k(ωY ) for all k ≥ 0.

Conjecture 1.3 [Popa 2013, Variant 1.3]. Under the assumptions of Conjecture 1.2,
there exist isomorphisms

V k(ωX )0 ∼= V k(ωY )0 for all k ≥ 0.

It is important to emphasize that for all the applications we are interested in
(e.g., invariance of the Albanese dimension, invariance of the holomorphic Euler
characteristic and invariance of Hodge numbers) it is in fact enough to verify
Conjecture 1.3. We also remark that Conjecture 1.2 holds for varieties of general
type since the cohomological support loci are birational invariants while derived
equivalent varieties of general type are birational by [Kawamata 2002, Theorem 1.4].
Moreover, in [Popa 2013, §2], it has been shown that Conjecture 1.2 holds for
surfaces as well.

In Section 3, we try to attack the above conjectures for varieties of arbitrary
dimension. To begin with, we show that Theorem 1.1 implies the derived invariance
of V 0(ωX ) (see Proposition 3.1). On the other hand, due to the possible presence
of nontrivial automorphisms, the study of the derived invariance of the higher
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cohomological support loci is more involved. Nonetheless, by using a version of
the Hochschild–Kostant–Rosenberg isomorphism and Brion’s structural results on
the actions of nonaffine groups on smooth varieties, we are able to show the derived
invariance of V 1(ωX )0 (see Corollary 3.4). The next theorem summarizes the main
results on the derived invariance of these loci.

Theorem 1.4. Let X and Y be smooth projective derived equivalent varieties. Then
the Rouquier isomorphism induces isomorphisms of algebraic sets

(i) V 0(ωX )∼= V 0(ωY ),

(ii) V 0(ωX )∩ V 1(ωX )∼= V 0(ωY )∩ V 1(ωY ) and

(iii) V 1(ωX )0 ∼= V 1(ωY )0.

We note that (i) also holds if we consider arbitrary powers of the canonical
bundle (see Proposition 3.1). We point out also that cases in which the Rouquier
isomorphism induces the full isomorphism V 1(ωX )∼= V 1(ωY ) occur for instance
when either X is of maximal Albanese dimension (see Corollary 5.2) or when the
neutral component of the automorphism group, Aut0(X), is affine (see Remark 3.6);
Theorem 1.4 is proved in Section 3.

Next we study Conjectures 1.2 and 1.3 for varieties of dimension three. In
the process, we recover Conjecture 1.2 in dimension two as well, making the
isomorphisms on cohomological support loci explicit. In the following theorem, we
collect all results concerning the behavior of cohomological support loci of derived
equivalent threefolds. We denote by albX : X→ Alb(X) the Albanese map of X ,
and we say that X is of maximal Albanese dimension if dim albX (X)= dim X , i.e.,
albX is generically finite onto its image.

Theorem 1.5. Let X and Y be smooth projective irregular derived equivalent
threefolds. Then:

(i) Conjecture 1.3 holds.

(ii) Conjecture 1.2 holds if one of the following hypotheses is satisfied:
(a) X is of maximal Albanese dimension.
(b) V k(ωX ) = Pic0(X) for some k ≥ 0 (for instance, by [Pareschi and Popa

2011, Theorem E], V 0(ωX )= Pic0(X) whenever albX (X) is not fibered in
subtori and V 0(ωX ) 6=∅).

(c) Aut0(X) is affine (for instance, by a theorem of Nishi [Matsumura 1963,
Theorem 2], this again happens when albX (X) is not fibered in subtori).

(iii) If q(X)≥ 2, then dim V k(ωX )= dim V k(ωY ) for all k ≥ 0.

Point (iii) brings evidence to a further variant of Conjecture 1.2 predicting the
invariance of the dimensions of cohomological support loci [Popa 2013, Variant 1.4];
partial results for the case q(X)= 1 are described in Remark 6.10. Since the proofs
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of Theorems 1.4 and 1.5 extend to analogous results regarding cohomological
support loci of bundles of holomorphic p-forms, when possible, we will prove
them in such generality. Please refer to Theorem 4.2 and Section 6 for the proof of
Theorem 1.5.

Finally, we move our attention to applications of Theorems 1.4 and 1.5. The
first regards the behavior of the Albanese dimension, dim albX (X), under derived
equivalence. According to Conjecture 1.3, the Albanese dimension is expected to
be preserved under derived equivalence as it can be read off from the dimensions of
the V k(ωX )0’s (see (5)), which is the case in dimension three thanks to Theorem 1.5.
In higher dimension, we establish this invariance for varieties having nonnegative
Kodaira dimension κ(X) by using the derived invariance of the irregularity and
an extension of a result due to Chen, Hacon and Pardini [Hacon and Pardini 2002,
Proposition 2.1; Chen and Hacon 2004, Corollary 3.6] on the study of the geometry
of the Albanese map via the Iitaka fibration; see Section 5.

Theorem 1.6. Let X and Y be smooth projective derived equivalent varieties. If
dim X ≤ 3, or if dim X > 3 and κ(X)≥ 0, then

dim albX (X)= dim albY (Y ).

The second application concerns the holomorphic Euler characteristic. This is
expected to be the same for arbitrary derived equivalent smooth projective varieties
since the Hodge numbers are expected to be preserved (which is known to hold in
dimension up to three [Popa and Schnell 2011, Corollary C]). We deduce this for
varieties of large Albanese dimension as a consequence of the previous results and
generic vanishing.

Corollary 1.7. Let X and Y be smooth projective derived equivalent varieties. If
dim albX (X)= dim X , or if dim albX (X)= dim X − 1 and κ(X)≥ 0, then

χ(ωX )= χ(ωY ).

An immediate consequence is the derived invariance of two of the Hodge numbers
for fourfolds satisfying the hypotheses of Corollary 1.7.

Corollary 1.8. Let X and Y be smooth projective derived equivalent fourfolds. If
dim albX (X)= 4, or if dim albX (X)= 3 and κ(X)≥ 0, then

h0,2(X)= h0,2(Y ) and h1,3(X)= h1,3(Y ).

We remark that Popa and Schnell [2011, Corollary 3.4] establish the invariance
of h0,2 and h1,3 under different hypotheses, namely, when Aut0(X) is not affine
(we recall that h0,4, h0,3, h0,1 and h1,2 are always known to be invariant; see [Popa
and Schnell 2011]). Corollaries 1.7 and 1.8 are proved in Section 7.
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We now present our last application in a direction that is one of the main motiva-
tions for Conjectures 1.2 and 1.3 as explained in [Popa 2013]. From the classification
of Fourier–Mukai equivalences for surfaces [Kawamata 2002; Bridgeland and Ma-
ciocia 2001], it is known that, if X admits a fibration f : X→C onto a smooth curve
of genus≥2, then any of its Fourier–Mukai partners admits a fibration onto the same
curve. Here we use our analysis, and a theorem of Green and Lazarsfeld regarding
the properties of positive-dimensional irreducible components of the cohomological
support loci, to investigate the behavior of fibrations of derived equivalent threefolds
onto irregular varieties. Recall that a smooth variety X is called of Albanese general
type if albX is nonsurjective and generically finite onto its image. The proof of the
next corollary is contained in Proposition 7.3 and Remark 7.4.

Corollary 1.9. Let X and Y be smooth projective derived equivalent threefolds.
There exists a morphism f : X→W with connected fibers onto a normal variety W
of dimension ≤ 2 such that any smooth model of W is of Albanese general type if
and only if Y has a fibration of the same type. Moreover, there exists a morphism
f : X→ C with connected fibers onto a smooth curve C of genus ≥ 2 if and only if
there exists a morphism h : Y → D with connected fibers onto a smooth curve D of
genus ≥ 2.

To conclude, we remark that, while the approach in this paper relies in part on
techniques of [Popa and Schnell 2011], the key new ingredient is their interaction
with the twisted Hochschild homology, introduced and studied here. We are hopeful
that this general method will find further applications in the future.

2. Derived invariance of the twisted Hochschild homology

In this section, we aim to prove Theorem 1.1. Its proof is based on a technical lemma
extending previous computations carried out by Căldăraru [2003, Proposition 8.1]
and Orlov [2003, Isomorphism (10)].

Let X and Y be smooth projective varieties defined over an algebraically closed
field K , and let p and q be the projections from X×Y onto the first and second factor,
respectively. We denote by D(X) := Db(Coh(X)) the bounded derived category of
coherent sheaves on a smooth projective variety X . When there is no possibility of
ambiguity, we use the same symbol to denote a functor and its associated derived
functor. An object E in D(X ×Y ) defines Fourier–Mukai functors with kernel E as

8E : D(X)→ D(Y ), F 7→ q∗(p∗F⊗E),

9E : D(Y )→ D(X), G 7→ p∗(q∗G⊗E).

We say that X and Y are derived equivalent if there exists a K -linear exact equiv-
alence of triangulated categories 8 : D(X)→ D(Y ). By a fundamental result of



Derived invariants of irregular varieties and Hochschild homology 519

Orlov, any such equivalence is of Fourier–Mukai type; i.e., there exists an object E in
D(X×Y ) such that8∼=8E. Furthermore, the object E is unique up to isomorphism.

We recall that an equivalence 8E : D(X)→ D(Y ) induces an equivalence

8E∗�E : D(X × X)→ D(Y × Y )

with kernel
E∗�E := p∗13E∗⊗ p∗24E,

where E∗ := RHom(E,OX×Y ) ⊗ p∗ωX [dim X ] and prs is the projection from
X× X×Y ×Y onto the (r, s)-factor [Orlov 2003, Proposition 2.1.7]. Moreover, for
any automorphisms ϕ ∈ Aut0(X) and ψ ∈ Aut0(Y ) (here the superscript 0 denotes
the neutral component of the corresponding group), we define the embeddings
(1, ϕ) : X ↪→ X × X, x 7→ (x, ϕ(x)) and (1, ψ) : Y ↪→ Y × Y, y 7→ (y, ψ(y)).
Finally, we denote by i and j the diagonal embeddings of X and Y , respectively.

Lemma 2.1. Let X and Y be smooth projective varieties defined over an alge-
braically closed field, and let 8E : D(X)→ D(Y ) be an equivalence. Denote by F
the induced Rouquier isomorphism (see (1)), and let m ∈ Z. If F(ϕ, L)= (ψ,M),
then

8E∗�E

(
(1, ϕ)∗(ω⊗m

X ⊗ L)
)
∼= (1, ψ)∗(ω⊗m

Y ⊗M).

Proof. We denote by tr and trs the projections from Y × X × Y onto the r-th and
(r, s)-th factors, respectively. Moreover, we define the morphism λ : Y × X ×Y →
X × X ×Y ×Y as (y1, x, y2) 7→ (x, ϕ(x), y1, y2), and we look at the fiber product
diagram

Y × X × Y

t2
��

λ
// X × X × Y × Y

p12

��

X
(1,ϕ)

// X × X

so that, by base change and the projection formula, we get

8E∗�E

(
(1, ϕ)∗(ω⊗m

X ⊗ L)
)
∼= p34∗

(
p∗12(1, ϕ)∗(ω

⊗m
X ⊗ L)⊗ (E∗�E)

)
∼= p34∗

(
λ∗t∗2 (ω

⊗m
X ⊗ L)⊗ p∗13E∗⊗ p∗24E

)
∼= p34∗λ∗

(
t∗2 (ω

⊗m
X ⊗ L)⊗ λ∗ p∗13E∗⊗ λ∗ p∗24E

)
∼= t13∗

(
t∗2 (ω

⊗m
X ⊗ L)⊗ t∗21E∗⊗ t∗23(ϕ× 1)∗E

)
. (2)

By [Orlov 2003, p. 535], the equivalence 8E induces an isomorphism E⊗ p∗ωX ∼=

E ⊗ q∗ωY . Moreover, by [Popa and Schnell 2011, Lemma 3.1], the condition
F(ϕ, L)= (ψ,M) is equivalent to an isomorphism of objects in D(X × Y )

(ϕ× 1)∗E⊗ p∗L ∼= (1×ψ)∗E⊗ q∗M. (3)
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Therefore, we get an isomorphism of objects

p∗(ω⊗m
X ⊗ L)⊗ (ϕ× 1)∗E∼= q∗(ω⊗m

Y ⊗M)⊗ (1×ψ)∗E,

and by pulling it back via t23 : Y × X × Y → X × Y , we finally obtain

t∗2 (ω
⊗m
X ⊗ L)⊗ t∗23(ϕ× 1)∗E∼= t∗3 (ω

⊗m
Y ⊗M)⊗ t∗23(1×ψ)∗E. (4)

At this point, we rewrite the morphism t3 : Y × X × Y → Y as t3 = σ2 ◦ t13, where
σ2 : Y × Y → Y is the projection onto the second factor. Moreover, we denote by
ρ : Y × X→ X × Y the inversion morphism (y, x) 7→ (x, y). Then by (2) and (4),
we obtain

8E∗�E

(
(1, ϕ)∗(ω⊗m

X ⊗ L)
)
∼= t13∗

(
t∗3 (ω

⊗m
Y ⊗M)⊗ t∗21E∗⊗ t∗23(1×ψ)∗E

)
∼= t13∗

(
t∗13σ

∗

2 (ω
⊗m
Y ⊗M)⊗ t∗21E∗⊗ t∗23(1×ψ)∗E

)
∼= σ

∗

2 (ω
⊗m
Y ⊗M)⊗ t13∗

(
t∗21E∗⊗ t∗23(1×ψ)∗E

)
∼= σ

∗

2 (ω
⊗m
Y ⊗M)⊗ t13∗

(
t∗12ρ

∗E∗⊗ t∗23(1×ψ)∗E
)
.

Finally, by [Orlov 2003, Proposition 2.1.2], the object t13∗(t∗12ρ
∗E∗⊗ t∗23(1×ψ)∗E)

in D(Y × Y ) is the kernel of the composition

8(1×ψ)∗E ◦8ρ∗E∗
∼= ψ∗ ◦8E ◦9E∗

∼= ψ∗ ◦ idD(Y ) ∼= ψ∗,

where we used the fact that 9E∗ is the right adjoint to 8E. On the other hand, since
the kernel of the derived functor ψ∗ : D(Y )→ D(Y ) is the structure sheaf of the
graph of ψ , i.e., O0ψ

∼= (1, ψ)∗OY [Huybrechts 2006, Example 5.4], we have an
isomorphism

t13∗
(
t∗12ρ

∗E∗⊗ t∗23(1×ψ)∗E
)
∼= (1, ψ)∗OY

as the kernel of an equivalence is unique up to isomorphism. To recap,

8E∗�E

(
(1, ϕ)∗(ω⊗m

X ⊗ L)
)
∼= σ

∗

2 (ω
⊗m
Y ⊗M)⊗ (1, ψ)∗OY

∼= (1, ψ)∗
(
(1, ψ)∗σ ∗2 (ω

⊗m
Y ⊗M)

)
∼= (1, ψ)∗

(
ψ∗(ω⊗m

Y ⊗M)
)

∼= (1, ψ)∗(ω⊗m
Y ⊗M).

The last isomorphism follows as the action of Aut0(X) on Pic0(X) is trivial [Popa
and Schnell 2011, Footnote, p. 531]. �

Proof of Theorem 1.1. Let E be the kernel of the equivalence 8 so that 8 ∼= 8E.
By Lemma 2.1, the equivalence 8E∗�E induces isomorphisms between the graded
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components of HH∗(X, ϕ, L ,m) and HH∗(Y, ψ,M,m) as follows:

ExtkX×X
(
i∗OX , (1, ϕ)∗(ω⊗m

X ⊗ L)
)

∼= ExtkY×Y
(
8E∗�E(i∗OX ),8E∗�E

(
(1, ϕ)∗(ω⊗m

X ⊗ L)
))

∼= ExtkY×Y
(

j∗OY , (1, ψ)∗(ω⊗m
Y ⊗M)

)
.

Moreover, since 8E∗�E is a functor, it follows that it induces an isomorphism of
graded modules. �

Theorem 1.1 will be often used in the following weaker form:

Corollary 2.2. Let X and Y be smooth projective derived equivalent varieties
defined over an algebraically closed field of characteristic zero. If F(1, L)= (1,M),
then for any integers m and k ≥ 0 there exist isomorphisms

k⊕
q=0

H k−q(X, �dim X−q
X ⊗ω⊗m

X ⊗ L)∼=
k⊕

q=0

H k−q(Y, �dim Y−q
Y ⊗ω⊗m

Y ⊗M).

Proof. The corollary is a consequence of Theorem 1.1 and of the general fact that
the groups ExtkX×X (i∗OX , i∗F) decompose as

⊕k
q=0 H k−q(X, �dim X−q

X ⊗ω−1
X ⊗F)

for any coherent sheaf F and for all k ≥ 0 [Yekutieli 2003, Corollary 4.7; Swan
1996, Corollary 2.6]. �

3. Behavior of cohomological support loci under derived equivalence

In this section, we study the behavior of cohomological support loci under derived
equivalence. Applications of our analysis will be provided in Section 7. From now
on, we work over the field of the complex numbers.

3A. Cohomological support loci. Let X be a complex smooth projective irregular
variety. Given a coherent sheaf F on X , we define the cohomological support loci
of F as

V k
r (F) := {L ∈ Pic0(X) | hk(X,F⊗ L)≥ r}

for all integers k ≥ 0 and r ≥ 1. By semicontinuity, these loci are algebraic closed
subsets in Pic0(X). We set V k(F) := V k

1 (F), and we denote by V k
r (F)0 the union

of all the irreducible components of V k
r (F) passing through the origin of Pic0(X).

By following the work of Pareschi and Popa [2011], we say that F is a GV-sheaf if

codimPic0(X) V k(F)≥ k for all k > 0.

In the following, we study the behavior of the loci V k
r (F) under equivalence

of derived categories where F = ωX , ω
⊗m
X , �

p
X ⊗ω

⊗m
X with m, p ∈ Z and p ≥ 0.

We recall that the cohomological support loci V k(ωX ) associated to the canonical
bundle are invariant under birational modifications for all k ≥ 0. Furthermore, they



522 Luigi Lombardi

detect the Albanese dimension of X , namely, the dimension of the image of the
Albanese map albX : X→Alb(X), thanks to the following formula [Popa 2013, p. 7]
deduced from results of [Green and Lazarsfeld 1987; Lazarsfeld and Popa 2010]:

dim albX (X)= min
k=0,...,dim X

{dim X − k+ codim V k(ωX )0}. (5)

Finally, we point out that, if dim albX (X)= dim X − k, then there are inclusions

V k(ωX )⊃ V k+1(ωX )⊃ · · · ⊃ V dim X (ωX )= {OX } (6)

(see [Pareschi and Popa 2011, Proposition 3.14; Green and Lazarsfeld 1987, The-
orem 1] or [Ein and Lazarsfeld 1997, Lemma 1.8] for the case k = 0).

3B. Derived invariance of the zeroth cohomological support locus. The follow-
ing proposition proves and extends Theorem 1.4(i):

Proposition 3.1. Let X and Y be smooth projective varieties, and let8E : D(X)→
D(Y ) be an equivalence. Denote by F the induced Rouquier isomorphism, and let
m and r be integers such that r ≥ 1. If L ∈ V 0

r (ω
⊗m
X ) and F(1, L)= (ψ,M), then

ψ = 1 and M ∈ V 0
r (ω

⊗m
Y ). Moreover, F induces an isomorphism of algebraic sets

V 0
r (ω

⊗m
X )∼= V 0

r (ω
⊗m
Y ).

Proof. Let L be a line bundle in V 0
r (ω

⊗m
X ), and suppose that F(1, L)= (ψ,M) for

some ψ ∈ Aut0(Y ) and M ∈ Pic0(Y ). By Theorem 1.1 and the adjunction formula,
we have

r ≤ h0(X, ω⊗m
X ⊗ L)= dim HomX×X

(
i∗OX , i∗(ω⊗m

X ⊗ L)
)

= dim HomY×Y
(

j∗OY , (1, ψ)∗(ω⊗m
Y ⊗M)

)
= dim HomY

(
(1, ψ)∗ j∗OY , ω

⊗m
Y ⊗M

)
.

Since (1, ψ)∗ j∗OY is supported on the locus of fixed points of ψ (which is of
codimension ≥ 1 if ψ 6= 1) and since there are no nonzero morphisms from a torsion
sheaf to a locally free sheaf, we must have that ψ is the identity automorphism
on Y and consequently that M ∈ V 0

r (ω
⊗m
Y ). Therefore, we have an inclusion of

algebraic sets F(1, V 0
r (ω

⊗m
X ))⊂ (1, V 0

r (ω
⊗m
Y )).

In order to show the reverse inclusion, we consider the right adjoint 9E∗ to 8E

so that 9E∗ ◦8E
∼= 1D(X) and 8E ◦9E∗

∼= 1D(Y ). An easy computation shows that,
if F ′ is the Rouquier isomorphism induced by 9E∗ , then F ′= F−1 [Lombardi 2013,
Lemma 2.1.9]. Hence, by repeating the previous argument, we get an inclusion
F−1(1, V 0

r (ω
⊗m
Y ))⊂ (1, V 0

r (ω
⊗m
X )) inducing the wanted isomorphism. �
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3C. Behavior of higher cohomological support loci under derived equivalence.
In this section, we establish the isomorphism V 1(ωX )0 ∼= V 1(ωY )0 of Theorem 1.4.
It turns out that, by using the same techniques (i.e., invariance of twisted Hochschild
homology and Brion’s results on actions of nonaffine groups), one can show a
more general result involving cohomological support loci associated to bundles of
holomorphic p-forms, which we now present.

Theorem 3.2. Let X and Y be smooth projective varieties of dimension d, and let
8E : D(X)→ D(Y ) be an equivalence. Denote by F be the induced Rouquier
isomorphism, and let m be an integer. If L ∈

⋃
p,q≥0 V p(�

q
X⊗ω

⊗m
X )0 and F(1, L)=

(ψ,M), then ψ = 1 and M ∈
⋃

p,q≥0 V p(�
q
Y ⊗ ω

⊗m
Y )0. Moreover, F induces

isomorphisms of algebraic sets
k⋃

q=0

V k−q(�
d−q
X ⊗ω⊗m

X )0 ∼=

k⋃
q=0

V k−q(�
d−q
Y ⊗ω⊗m

Y )0 for any k ≥ 0.

Proof. To begin with, we recall some notation and facts from [Popa and Schnell
2011, Theorem A]. Let α : Pic0(Y )→ Aut0(X) and β : Pic0(X)→ Aut0(Y ) be
morphisms defined as

α(M)= pr1(F
−1(1,M)) and β(L)= pr1(F(1, L))

(pr1 denotes the projection onto the first factor from the product Aut0( · )×Pic0( · )).
We denote by A and B the images of α and β, respectively. We recall that A and B
are isogenous abelian varieties.

We first consider the case when A is trivial. Then F(1,Pic0(X))= (1,Pic0(Y )),
and by Corollary 2.2, we get inclusions

F
(
1,
⋃

q V k−q(�
d−q
X ⊗ω⊗m

X r)
)
⊂
(
1,
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y r)
)

for any k ≥ 0.

In order to prove the reverse inclusions, we note that B is trivial as well and that the
Rouquier isomorphism induced by the right adjoint 9E∗ to 8E is F−1. Therefore,
a second application of Corollary 2.2 yields inclusions

F−1
(
1,
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y r)
)
⊂
(
1,
⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )
)

for any k ≥ 0,

concluding the proof of this case.
We suppose now that both A and B are nontrivial. We first show the following:

Claim 3.3. There are inclusions F
(
1,
⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )0
)
⊂ (1,Pic0(Y )) for

all integers m and k ≥ 0.

Proof. Brion’s results on actions of nonaffine algebraic groups imply that X is an
étale locally trivial fibration ξ : X→ A/H where H is a finite subgroup of A (the
proof of this fact is analogous to the one of [Popa and Schnell 2011, Lemma 2.4];
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see also [Brion 2010]). Let Z be the smooth and connected fiber of ξ over the
origin of A/H . Via base change, we get a commutative diagram

A× Z

��

g
// X

ξ

��

A // A/H

where g(ϕ, z)= ϕ(z). Let (z0, y0) ∈ Z × Y be an arbitrary point, and let

f = ( f1× f2) : A× B→ X × Y

be the orbit map (ϕ, ψ) 7→ (ϕ(z0), ψ(y0)). In [Popa and Schnell 2011, p. 533], it
is shown that

L ∈ (Ker f ∗1 )0 =⇒ F(1, L)= (1,M) for some M ∈ Pic0(Y )

(here (Ker f ∗1 )0 denotes the neutral component of Ker f ∗1 ). So it is enough to show
the inclusion ⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )0 ⊂ (Ker f ∗1 )0 for any k ≥ 0. (7)

This is achieved by computing cohomology groups on A×Z via the étale morphism
g and by using the fact that these computations are straightforward on A. Let p1

and p2 be the projections from the product A× Z onto the first and second factors,
respectively. By denoting by ν : A× {z0} ↪→ A× Z the inclusion morphism, we
have g ◦ν = f1. Moreover, via the isomorphism Pic0(A× Z)∼= Pic0(A)×Pic0(Z),
we obtain g∗L ∼= p∗1 L1⊗ p∗2 L2, where L1 ∈ Pic0(A) and L2 ∈ Pic0(Z). Note also
that f ∗1 L ∼= ν∗g∗L ∼= L1. Finally, for all L ∈

⋃
q V k−q(�

d−q
X ⊗ ω⊗m

X ), there are
inclusions

0 6=
k⊕

q=0

H k−q(X, �d−q
X ⊗ω

⊗m
X ⊗L)⊂

k⊕
q=0

H k−q(A×Z , �d−q
A×Z⊗ω

⊗m
A×Z⊗g∗L) (8)

[Lazarsfeld 2004, Injectivity Lemma 4.1.14]. Therefore, thanks to Künneth’s
formula, the sum on the right-hand side of (8) is nonzero only if f ∗1 L ∼= OA, i.e.,
L ∈ Ker f ∗1 . This shows (7). �

By Claim 3.3 and Corollary 2.2, we obtain that for any k ≥ 0 the Rouquier
isomorphism maps

1×
⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )0 7→ 1×
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y )0.

In complete analogy, one can also show that

M ∈
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y )0 =⇒ F−1(1,M)= (1, L) for some L ∈ Pic0(X).
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This concludes the proof since, by Corollary 2.2, F−1 maps

1×
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y )0 7→ 1×
⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )0

for any k ≥ 0. �

The following corollaries yield the proofs of Theorem 1.4(iii) and (ii):

Corollary 3.4. Under the assumptions of Theorem 3.2, the Rouquier isomorphism
F induces isomorphisms of algebraic sets

V 1
r (ωX )0 ∼= V 1

r (ωY )0 for any r ≥ 1.

Proof. Let L ∈ V 1
r (ωX )0. By Theorem 3.2, we have F(1, L) = (1,M) for some

M ∈ Pic0(Y ), and by Corollary 2.2, we get an isomorphism

H 1(X, ωX ⊗ L)⊕ H 0(X, �d−1
X ⊗ L)∼= H 1(Y, ωY ⊗M)⊕ H 0(Y, �d−1

Y ⊗M).

Moreover, by Serre duality and the Hodge linear-conjugate isomorphism, we obtain
equalities

h0(X, �d−1
X ⊗ L)= h1(X, ωX ⊗ L) and h0(Y, �d−1

Y ⊗M)= h1(Y, ωY ⊗M).

Hence, h1(X, ωX ⊗ L)= h1(Y, ωY ⊗M)≥ r , and therefore, F induces the wanted
isomorphisms as in the proof of Theorem 3.2. �

Corollary 3.5. Under the assumptions of Theorem 3.2, and for any integers l, m, r
and s with r, s ≥ 1, the Rouquier isomorphism F induces isomorphisms of algebraic
sets

V 0
r (ω

⊗m
X )∩

(⋃
q V k−q(�

d−q
X ⊗ω⊗l

X )
)
∼= V 0

r (ω
⊗m
Y )∩

(⋃
q V k−q(�

d−q
Y ⊗ω⊗l

Y )
)
,

V 0
r (ω

⊗m
X )∩ V 1

s (ωX )∼= V 0
r (ω

⊗m
Y )∩ V 1

s (ωY ).

Proof. In Proposition 3.1, we have seen that, if L ∈V 0
r (ω

⊗m
X ), then F(1, L)= (1,M)

for some M ∈ V 0
r (ω

⊗m
Y ). We argue then as in the proofs of Theorem 3.2 and

Corollary 3.4. �

Remark 3.6. It is important to note that, whenever F(1,Pic0(X))= (1,Pic0(Y )),
the proofs of Theorem 3.2 and Corollary 3.4 yield full isomorphisms⋃

q V k−q(�
d−q
X ⊗ω⊗m

X )∼=
⋃

q V k−q(�
d−q
Y ⊗ω⊗m

Y ) for any k ≥ 0,

V 1
r (ωX )∼= V 1

r (ωY ).

By Theorem 3.2, this occurs either if V p(�
q
X ⊗ω

⊗m
X )= Pic0(X) for some p, q ≥ 0

and m ∈ Z or if Aut0(X) is affine (since in this case the abelian variety A in the
proof of Theorem 3.2 is trivial).
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4. Popa’s conjectures in dimensions two and three

In this section, we aim to prove Theorem 1.5(i). In other words, we show that
Conjecture 1.3, predicting the derived invariance of cohomological support loci of
type V k(ωX )0, holds in dimension three. The proofs of (ii) and (iii) of the same
theorem are postponed to Section 6 since they use the derived invariance of the
Albanese dimension, which will be proved in Section 5. Before starting with the
proof of Theorem 1.5(i), we make a couple of considerations regarding the case of
surfaces.

4A. The case of surfaces. In dimension two, Popa [2013, Theorem 2.1] proves
the derived invariance of the full cohomological support loci V k(ωX ). His proof
is based on an explicit computation of cohomological support loci according to
the classification of surfaces up to Fourier–Mukai equivalences [Bridgeland and
Maciocia 2001]. As an application of Proposition 3.1 and Corollary 3.4, we recover
this result by making the isomorphisms between cohomological support loci explicit.
More precisely, if F is the Rouquier isomorphism induced by an equivalence of
derived categories, then F(1, V k

r (ωX )) = (1, V k
r (ωY )) for all integers k ≥ 0 and

r ≥ 1. Moreover, by using the same techniques, it is possible to show that F
induces further isomorphisms V 1

r (�
1
X )
∼= V 1

r (�
1
Y ) for all r ≥ 1 (see [Lombardi

2013, Theorem 5.1.2] for a detailed analysis).

Example 4.1 (Elliptic surfaces). Let X be an elliptic surface of Kodaira dimension
one and of maximal Albanese dimension (i.e., an isotrivial elliptic surface fibered
onto a curve of genus ≥ 2). By following [Beauville 1992], we recall an invariant
attached to this type of surfaces. First of all, we note that X admits a unique fibration
f : X→ C onto a curve of genus ≥ 2 (see for instance [Popa 2013, p. 5]). We then
denote by G the general fiber of f and by Pic0(X, f ) the kernel of the pull-back
of the inclusion u : G ↪→ X

0→ Pic0(X, f )→ Pic0(X)
u∗
−→ Pic0(G).

In [Beauville 1992, (1.6)], it is shown that there exists a finite group 00( f ) and an
isomorphism

Pic0(X, f )∼= f ∗ Pic0(C)×00( f ).

The group 00( f ) is the invariant mentioned above; it is identified with the group
of the connected components of Pic0(X, f ).

We now consider another smooth projective surface Y such that D(X)∼= D(Y ).
Then, by [Bridgeland and Maciocia 2001, Proposition 4.4], Y is an elliptic surface
fibered onto C . Moreover, Y is of maximal Albanese dimension as well. To see
this, we observe that, since the cohomological support loci are derived invariant in
dimension two, we have dim albY (Y )= dim albX (X)= 2 thanks to (5). Hence, we



Derived invariants of irregular varieties and Hochschild homology 527

denote by g : Y → C the unique fibration of Y and by 00(g) its invariant. Pham
[2011, Theorem 5.2.7] proves that the invariant 00( · ) attached to this kind of
surface is a derived invariant; in other words, he proves that

00( f )∼= 00(g). (9)

Here we note that (9) also follows from the derived invariance of the zeroth coho-
mological support locus. In fact, by results of Popa [2013, p. 5], we know that

V 0(ωX )= Pic0(X, f )∼= f ∗ Pic0(C)×00( f )

and similarly for V 0(ωY ). Therefore, Proposition 3.1 implies

f ∗ Pic0(C)×00( f )∼= V 0(ωX )∼= V 0(ωY )∼= g∗ Pic0(C)×00(g),

which in particular yields (9).

4B. Proof of Theorem 1.5(i).

Theorem 4.2. Let X and Y be smooth projective threefolds and8E : D(X)→ D(Y )
an equivalence, and let F be the induced Rouquier isomorphism. Then F induces
isomorphisms of algebraic sets

V p
r (�

q
X )0
∼= V p

r (�
q
Y )0 for any p, q ≥ 0 and r ≥ 1.

Proof. The isomorphisms V 0
r (ωX )∼= V 0

r (ωY ) and V 1
r (ωX )0 ∼= V 1

r (ωY )0 have been
proved in Proposition 3.1 and Corollary 3.4, respectively. On the other hand, the iso-
morphisms V 3

r (ωX )∼= V 3
r (ωY ) are trivial and follow by Serre duality. We now show

the isomorphisms V 2
r (ωX )0∼=V 2

r (ωY )0. To begin with, we note that, by Claim 3.3, if
L ∈ V 2

r (ωX )0, then necessarily F(1, L)= (1,M) for some line bundle M ∈Pic0(Y ).
Moreover, for k = 0, 1, we have equalities hk(X, ωX ⊗ L) = hk(Y, ωY ⊗ M)
whenever L ∈ V 2

r (ωX )0 and F(1, L)= (1,M) (see Corollary 2.2). Finally, since
the holomorphic Euler characteristic is both a derived invariant in dimension three
[Popa and Schnell 2011, Corollary C] and invariant under deformation, we have
equalities χ(ωX⊗L)=χ(ωX )=χ(ωY )=χ(ωY⊗M), from which we easily deduce
h2(X, ωX⊗L)=h2(Y, ωY⊗M). Thus, if L ∈V 2

r (ωX )0, then M ∈V 2
r (ωY )0 and con-

sequently F induces inclusions F(1, V 2
r (ωX )0)⊂ (1, V 2

r (ωY )0). Since F−1 is the
Rouquier isomorphism induced by the right adjoint9E∗ to8E, we can repeat the pre-
vious argument to obtain the reverse inclusions F−1(1, V 2

r (ωY )0)⊂ (1, V 2
r (ωX )0).

This in turn yields isomorphisms V 0
r (�

1
X )0
∼= V 0

r (�
1
Y )0 thanks to Serre duality and

the Hodge linear-conjugate isomorphism.
We now prove the isomorphisms V 1

r (�
q
X )0
∼=V 1

r (�
q
Y )0 for q=1, 2. By Claim 3.3,

we have F(1, V 1
r (�

q
X )0) ⊂ (1,Pic0(Y )). By Serre duality and the Hodge linear-

conjugate isomorphism, h0(X, �1
X ⊗ L)= h2(X, ωX ⊗ L) and h0(Y, �1

Y ⊗M)=
h2(Y, ωY ⊗M) for all line bundles L ∈ Pic0(X) and M ∈ Pic0(Y ). Consequently, if
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L ∈ V 0(�1
X )0 and F(1, L)= (1,M), then by Corollary 2.2 with m= 0 and k= 2 we

have h1(X, �2
X ⊗ L)= h1(Y, �2

Y ⊗M). At this point, in order to prove the wanted
isomorphisms, it is enough to proceed as before. In complete analogy, one can also
prove the isomorphisms V 1

r (�
1
X )0
∼= V 1

r (�
1
Y )0, this time by using Corollary 2.2

with m = 0 and k = 3. �

5. Behavior of the Albanese dimension under derived equivalence

In this section, we prove Theorem 1.6. Our main tool is a generalization of a
result due to Chen, Hacon and Pardini saying that, if f : X→ Z is a nonsingular
representative of the Iitaka fibration of a smooth projective variety X of maximal
Albanese dimension, then

q(X)− q(Z)= dim X − dim Z

[Hacon and Pardini 2002, Proposition 2.1; Chen and Hacon 2004, Corollary 3.6].
We generalize this fact in two ways: (i) we consider all possible values of the
Albanese dimension of X , and (ii) we replace the Iitaka fibration with a more
general class of morphisms.

Lemma 5.1. Let X and Z be smooth projective varieties and f : X→ Z a surjective
morphism with connected fibers. If the general fiber of f is a smooth variety with
surjective Albanese map, then

q(X)− q(Z)= dim albX (X)− dim albZ (Z).

Proof. We follow [Hacon and Pardini 2002, Proposition 2.1; Chen and Hacon 2004,
Corollary 3.6]. Due to the functoriality of the Albanese map, we get a commutative
diagram

X

f
��

albX
// Alb(X)

f∗
����

Z
albZ

// Alb(Z)

where f∗ is surjective since f is [Beauville 1996, Remark V.14]. Furthermore, f∗ has
connected fibers. To see this, we denote by K the connected component of Ker f∗
through the origin and set A := Alb(X)/K . Then the natural map ν : A→ Alb(Y )
is étale and f factors through the induced map Y ×Alb(Y ) A→ Y , which is étale of
the same degree as ν. Since f has connected fibers, we see that ν is an isomorphism
and K = Ker f∗.

We now show that the image of a general fiber P of f via albX is a translate of
Ker f∗. Since albP is surjective, the image of P via albX is a translate of a subtorus
of Ker f∗. Furthermore, since P moves in a continuous family, such images are all
translates of a fixed subtorus T ⊂ Ker f∗. Our next step is to show T = Ker f∗. By
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setting B :=Alb(X)/T , we see that the induced morphism X→ B maps a general
fiber of f to a point. Therefore, it induces a rational map h : Z 99K B, which is a
morphism since B is an abelian variety. Furthermore, h(Z) generates the abelian
variety B since the image of the Albanese map generates the Albanese variety. This
leads to the inequality

dim B ≤ q(Z)= q(X)− dim Ker f∗,

which in turn yields dim T ≥ dim Ker f∗ as dim B = q(X)−dim T . For dimension
reasons, we get then T = Ker f∗. In particular, this says that albX (X) is fibered in
tori of dimension q(X)−q(Z) over albZ (Z), and by the theorem on the dimension
of the fibers of a morphism, we get the stated equality. �

Proof of Theorem 1.6. We begin with the case dim X ≤ 3. In Sections 4A and
4B, we have seen that in dimension up to three the cohomological support loci
associated to the canonical bundle around the origin are derived invariant, i.e.,
V k(ωX )0 ∼= V k(ωY )0 for all k ≥ 0. Therefore, (5), in combination with the fact
that derived equivalent varieties have the same dimension, immediately leads to
dim albX (X)= dim albY (Y ).

We now assume dim X > 3 and κ(X) ≥ 0. If κ(X) = κ(Y ) = 0, then the
Albanese maps of X and Y are surjective by [Kawamata 1981, Theorem 1]. Thus,
the Albanese dimensions of X and Y are q(X) and q(Y ), respectively, which are
equal by work of Popa and Schnell [2011, Corollary B].

We now suppose κ(X)=κ(Y )>0. Since the problem is invariant under birational
modification, with a little abuse of notation, we consider nonsingular representatives
f : X→ Z and g : Y →W of the Iitaka fibrations of X and Y , respectively [Mori

1987, (1.10)]. As the canonical rings of X and Y are isomorphic [Orlov 2003,
Corollary 2.1.9], it turns out that Z and W are birational varieties (see [Mori 1987,
Proposition 1.4] or [Toda 2006, p. 13]). By [Kawamata 1981, Theorem 1], the
morphisms f and g satisfy the hypotheses of Lemma 5.1, which yields

q(X)− dim albX (X)= q(Z)− dim albZ (Z)
= q(W )− dim albW (W )= q(Y )− dim albY (Y ).

We conclude as q(X)= q(Y ). �

As an application of Theorem 1.6, we have the following:

Corollary 5.2. Let X and Y be smooth projective derived equivalent varieties with
X of maximal Albanese dimension. If F denotes the induced Rouquier isomorphism
and F(1, L)= (ψ,M) with L ∈ V 1

r (ωX ), then ψ = 1 and M ∈ V 1
r (ωY ). Moreover,

F induces isomorphisms of algebraic sets

V 1
r (ωX )∼= V 1

r (ωY ) for any r ≥ 1.
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Proof. We have κ(X) ≥ 0 since X is of maximal Albanese dimension. Hence,
Theorem 1.6 ensures that Y is of maximal Albanese dimension as well. We ap-
ply then Corollary 3.5 after having noted the inclusions V 1

r (ωX ) ⊂ V 0(ωX ) and
V 1

r (ωY )⊂ V 0(ωY ) (see (6)). �

6. End of the proof of Theorem 1.5

6A. Proof of Theorem 1.5(ii). The following two propositions prove and extend
Theorem 1.5(ii):

Proposition 6.1. Let X and Y be smooth projective derived equivalent threefolds,
and let F be the induced Rouquier isomorphism. Assume that either Aut0(X) is
affine or that V p(�

q
X ⊗ω

⊗m
X )= Pic0(X) for some m, p, q ∈ Z with p, q ≥ 0. Then

F induces isomorphisms of algebraic sets

V p
r (�

q
X )
∼= V p

r (�
q
Y ) for all p, q ≥ 0 and r ≥ 1.

Proof. By Remark 3.6, we have F(1,Pic0(X))= (1,Pic0(Y )). The isomorphisms
V 0

r (ωX )∼= V 0
r (ωY ) and V 1

r (ωX )∼= V 1
r (ωY ) hold by Proposition 3.1 and Remark 3.6,

respectively. The isomorphisms V 2
r (ωX )∼= V 2

r (ωY ) follow since in dimension three
χ(ωX )= χ(ωY ) [Popa and Schnell 2011, Corollary C].

We now establish the isomorphisms V 1
r (�

2
X )
∼= V 1

r (�
2
Y ). Let L ∈ V 1

r (�
2
X )

so that F(1, L) = (1,M) for some M ∈ Pic0(Y ). By Corollary 2.2 with m = 0
and k = 2, Serre duality and the Hodge linear-conjugate isomorphism, we get
h1(X, �2

X ⊗ L) = h1(Y, �2
Y ⊗ M). This shows that F maps 1 × V 1

r (�
2
X ) 7→

1× V 1
r (�

2
Y ), inducing the wanted isomorphisms as in Proposition 3.1. Finally,

the isomorphisms V 1
r (�

1
X )
∼= V 1

r (�
1
Y ) are deduced in the same way by using

Corollary 2.2 with m = 0 and k = 3. �

Proposition 6.2. Let X and Y be smooth projective derived equivalent threefolds,
and let F be the induced Rouquier isomorphism. If X is of maximal Albanese
dimension, then F induces isomorphisms of algebraic sets

V k
r (ωX )∼= V k

r (ωY ) for all k ≥ 0 and r ≥ 1.

Proof. Proposition 3.1 and Corollary 5.2 yield the isomorphisms V k
r (ωX )∼= V k

r (ωY )

for any k 6= 2, so we only focus on the remaining case. Since X is of maximal
Albanese dimension, we obtain an inclusion V 2

r (ωX )⊂ V 0(ωX ) (see (6)) leading to
a further inclusion F(1, V 2

r (ωX ))⊂ (1,Pic0(Y )) thanks to Proposition 3.1. Hence,
by Corollary 2.2, hk(X, ωX ⊗ L) = hk(Y, ωY ⊗ M) whenever F(1, L) = (1,M)
with L ∈ V 2

r (ωX ) and k = 0, 1. Moreover, we get h2(X, ωX ⊗ L)= h2(Y, ωY ⊗M)
since χ(ωX )= χ(ωY ) [Popa and Schnell 2011, Corollary C]. Therefore, F maps
1 × V 2

r (ωX ) 7→ 1 × V 2
r (ωY ), and by arguing as in Proposition 3.1, F−1 maps

1× V 2
r (ωY ) 7→ 1× V 2

r (ωX ), finishing the proof. �
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6B. Proof of Theorem 1.5(iii). We show now the proof of Theorem 1.5(iii). Before
jumping into technicalities, we first present the plan of its proof.

Thanks to Propositions 6.1 and 6.2, we can assume that X is a threefold with
dim albX (X)≤ 2 and V 0(ωX )( Pic0(X) and with nonaffine automorphism group
Aut0(X). In particular, we can suppose that X is not of general type and that
χ(ωX ) = 0 [Popa and Schnell 2011, Corollary 2.6]. Thanks to Proposition 3.1,
Theorem 1.6 and [Popa and Schnell 2011, Theorem A(1)], the Fourier–Mukai
partner Y of X satisfies the same hypotheses as X . Hence, Theorem 1.5(iii) follows
as soon as we classify dim V i (ωX ) in terms of derived invariants. This classifica-
tion is carried out in the following Propositions 6.5–6.9 where dim V 1(ωX ) and
dim V 2(ωX ) are computed in terms of κ(X), q(X), dim albX (X) and dim V 0(ωX ).

The main tools we use towards the proofs of Propositions 6.5–6.9 are generic
vanishing theorems [Green and Lazarsfeld 1987, Theorem 1; Pareschi and Popa
2011, Theorem 5.8], Kollár’s result on higher direct images of the canonical bundle
[Kollár 1986b, Theorem 3.1; 1986a, Theorem 2.1 and Proposition 7.6] and the
classification of smooth projective surfaces (see for instance [Beauville 1996]). The
following two lemmas will be useful to our analysis:

Lemma 6.3. Let X and Y be smooth projective varieties and f : X → Y be a
surjective morphism with connected fibers. If h denotes the dimension of the general
fiber of f , then

f ∗V k(ωY )⊂ V k+h(ωX ) for any k = 0, . . . , dim Y .

Proof. By [Kollár 1986a, Theorem 2.1 and Proposition 7.6], we have Rh f∗ωX ∼=ωY

and Rk f∗ωX = 0 for k > h. Moreover, by [Kollár 1986b, Theorem 3.1], we obtain
decompositions

H k+h(X, ωX ⊗ f ∗L)∼= H k(Y, ωY ⊗ L)⊕
⊕
l 6=k

H l(Y, Rh+k−l f∗ωX ⊗ L)

for any L ∈ Pic0(Y ). At this point, it is enough to note that the pull-back homomor-
phism f ∗ : Pic0(Y )→ Pic0(X) is injective as the fibers of f are connected. �

Lemma 6.4. Let X be a smooth projective variety with κ(X) = −∞. Then
V 0(ω⊗m

X )=∅ for any m > 0.

Proof. Suppose that L ∈ V 0(ω⊗m
X ) for some m > 0. By [Chen and Hacon 2004,

Theorem 3.2], we can assume that L is a line bundle of finite order, say, of order e.
If OX → ω⊗m

X ⊗ L is a nonzero section of ω⊗m
X ⊗ L , then it induces a nonzero

section OX → ω⊗me
X ; this yields a contradiction as κ(ωX )=−∞. �

Proposition 6.5. Let X be a smooth projective threefold such that κ(X) = 2,
dim albX (X) = 2, χ(ωX ) = 0 and V 0(ωX )  Pic0(X). If q(X) = 2, then we
have (i) dim V 2(ωX )= 0, (ii) dim V 1(ωX )= 1 if and only if dim V 0(ωX )= 1 and
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(iii) dim V 1(ωX ) = 0 if and only if dim V 0(ωX ) ≤ 0. If q(X) > 2, then we have
dim V 1(ωX )= dim V 2(ωX )= q(X)− 1.

Proof. Since the problem is invariant under birational modification, with a little
abuse of notation, we consider a nonsingular representative f : X→ S of the Iitaka
fibration of X [Mori 1987, (1.10)] so that X and S are smooth varieties and f is an
algebraic fiber space. We divide the proof into three cases according to the values
of the Albanese dimension of S.

Case I: dim albS(S)= 2. By the classification theory of smooth projective surfaces,
S is either a surface of general type, or birational to an abelian surface, or birational
to an elliptic surface fibered onto a curve of genus ≥ 2. Moreover, by Lemma 5.1,
we have q(X)= q(S).

If S is of general type, then by Castelnuovo’s theorem [Beauville 1996, Theorem
X.4] we have χ(ωS) > 0 and hence V 0(ωS)= Pic0(S). Therefore, by Lemma 6.3,
we get V 1(ωX )= Pic0(X), and consequently, V 0(ωX )= Pic0(X) since χ(ωX )= 0
and V 2(ωX )( Pic0(X) (see (5)). This contradicts our hypotheses, and hence, this
case does not occur.

If S is birational to an abelian surface, then we have q(X) = q(S) = 2 and
f ∗ Pic0(S)= Pic0(X). By using [Kollár 1986b, Theorem 3.1], we obtain decompo-
sitions

H 2(X, ωX ⊗ f ∗L)∼= H 2(S, f∗ωX ⊗ L)⊕ H 1(S, R1 f∗ωX ⊗ L)

for any L ∈Pic0(S). Moreover, we note that R1 f∗ωX ∼=ωS and R2 f∗ωX = 0 [Kollár
1986a, Proposition 7.6 and Theorem 2.1]. Therefore, since by [Pareschi and Popa
2011, Theorem 5.8] f∗ωX is a GV-sheaf on S (i.e., codimPic0(S) V k( f∗ωX )≥ k for
k > 0), we get dim V 2(ωX ) = 0. At this point, the statements (ii) and (iii) of the
proposition follow as χ(ωX ) = 0 and dim V 1(ωX ) ≥ 0 (note that OX ∈ V 1(ωX )

since q(X)= 2).
If S is birational to an elliptic surface h : S→ C fibered onto a curve C of genus

g(C)=q(S)−1=q(X)−1≥2, then X is fibered onto C as well. Therefore, we have
V 0(ωC)= Pic0(C), and consequently, V 2(ωX ) is of codimension one in Pic0(X)
by Lemma 6.3 and (5). Since χ(ωX )= 0, V 1(ωX ) is of codimension one as well.

Case II: dim albS(S) = 1. We have q(X) = q(S)+ 1 by Lemma 5.1. Moreover,
albS has connected fibers, and by [Beauville 1996, Proposition V.15], albS(S) is a
smooth curve of genus q(S). We distinguish two subcases: q(S)= 1 and q(S)≥ 2.

If q(S)= 1, then q(X)= 2 and albX is surjective. Let X
b
−→Z→ Alb(X) be the

Stein factorization of albX , and let b′ : X ′→ Z ′ be a nonsingular representative
of b. We note that Z ′ is a smooth surface with q(Z ′)= 2 and of maximal Albanese
dimension. Therefore, either Z ′ is of general type or it is birational to an abelian
surface. However, we have just seen that Z ′ cannot possibly be of general type;
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therefore, Z ′ is birational to an abelian surface, and the same calculations of the
previous case apply.

If q(S)≥ 2, then the Albanese map of S induces a fibration of S onto a smooth
curve C of genus g(C) = q(S). Therefore, X is fibered onto C as well, and we
conclude as in the previous case.

Case III: dim albS(S)= 0. As we have seen in the proof of Lemma 5.1, the image
of a general fiber of f is mapped via albX onto a fiber of the induced morphism
f∗ :Alb(X)→Alb(S). On the other hand, if dim albS(S)= 0, then Alb(S) is trivial.

This yields a contradiction, and therefore, this case does not occur. �

Proposition 6.6. Let X be a smooth projective threefold such that κ(X) = 2,
dim albX (X) = 1, χ(ωX ) = 0 and V 0(ωX ) ( Pic0(X). If q(X) = 1, then we
have dim V 1(ωX )≤ 0 and dim V 2(ωX )= 0. On the other hand, if q(X) > 1, then
we have V 1(ωX )= V 2(ωX )= Pic0(X).

Proof. As in the previous proof, we denote by f : X→ S a nonsingular representative
of the Iitaka fibration of X . We distinguish two cases: dim albS(S) = 0 and
dim albS(S)= 1.

If dim albS(S)= 0, then we have q(S)= 0 and therefore q(X)= 1 by Lemma 5.1.
Moreover, by [Ueno 1973, Lemma 2.11], albX is surjective and has connected fibers.
We set E :=Alb(X) and a := albX and note that by [Kollár 1986a, Proposition 7.6]
there is an isomorphism R2a∗ωX ∼= OE . Finally, by [Kollár 1986b, Theorem 3.1],
we get isomorphisms

H 2(X, ωX ⊗ a∗L)∼= H 1(E, R1a∗ωX ⊗ L)⊕ H 0(E, L)

for any L ∈ Pic0(E) ∼= Pic0(X). By [Hacon 2004, Corollary 4.2], R1a∗ωX is a
GV-sheaf on E . Hence, dim V 2(ωX )= 0, and consequently, V 1(ωX ) is either empty
or zero-dimensional as V 0(ωX )( Pic0(X) and χ(ωX )= 0.

We now suppose dim albS(S) = 1. In this case, albS has connected fibers and
its image is a smooth curve B of genus g(B) = q(S) > 1. Moreover, we have
q(X)= q(S) by Lemma 5.1. We distinguish two subcases: q(S)= 1 and q(S) > 1.
If q(S)= 1, then the image of albX is an elliptic curve and the same argument of
the previous case applies. If q(S)= g(B) > 1, then we get V 0(ωB)= Pic0(B) and
Pic0(X)∼= Pic0(S)∼= Pic0(B). Hence, by Lemma 6.3, there are inclusions

alb∗S Pic0(B)= alb∗S V 0(ωB)⊂ V 1(ωS)⊂ Pic0(S)

leading to V 1(ωS)= Pic0(S). Moreover, a second application of Lemma 6.3 gives

f ∗V 1(ωS)⊂ V 2(ωX )⊂ Pic0(X),

showing that V 2(ωX ) = Pic0(X). Finally, we also have V 1(ωX ) = Pic0(X) as
χ(ωX )= 0. �
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Proposition 6.7. Let X be a smooth projective threefold such that κ(X) = 1,
χ(ωX )= 0 and V 0(ωX )( Pic0(X).

(i) Assume dim albX (X) = 2. If q(X) = 2, then we have (i) dim V 2(ωX ) = 0,
(ii) dim V 1(ωX )= 1 if and only if dim V 0(ωX )= 1 and (iii) dim V 1(ωX )= 0
if and only if dim V 0(ωX ) ≤ 0. If q(X) ≥ 3, then we have dim V 1(ωX ) =

dim V 2(ωX )= q(X)− 1.

(ii) Assume dim albX (X) = 1. If q(X) = 1, then we have dim V 1(ωX ) ≤ 0 and
dim V 2(ωX )= 0. If q(X)≥ 2, then we obtain V 1(ωX )= V 2(ωX )= Pic0(X).

Proof. We start with the case dim albX (X)= 2. Let f : X → C be a nonsingular
representative of the Iitaka fibration of X where C is a smooth curve.

If g(C)≥2, then by Lemma 5.1 we have q(X)= g(C)+1≥3, and by Lemma 6.3,
we obtain a series of inclusions f ∗ Pic0(C) = f ∗V 0(ωC) ⊂ V 2(ωX ) ⊂ Pic0(X).
We conclude that

dim V 2(ωX )= q(X)− 1

since V 2(ωX ) ( Pic0(X) by (5). Therefore, we see that V 1(ωX ) ( Pic0(X) as
χ(ωX ) = 0 and V 0(ωX ) ( Pic0(X). Finally, thanks to the inclusion V 1(ωX ) ⊃

V 2(ωX ) of (6), we obtain dim V 1(ωX )= q(X)− 1.
If g(C) ≤ 1, then q(X) = 2 and a := albX is surjective. Let b : X ′→ Z ′ be a

nonsingular representative of the Stein factorization of a. Then, as we have seen in
the proof of Proposition 6.5, Z ′ is birational to an abelian surface, and therefore,
dim V 2(ωX ) = 0. Since OX ∈ V 1(ωX ), we obtain the statements (ii) and (iii) of
part (i).

We now study the case dim albX (X) = 1. If g(C) ≥ 2, then q(X) = g(C) and
f ∗ Pic0(C)= Pic0(X). Therefore, by Lemma 6.3, we get V 2(ωX )= Pic0(X), and
hence, we have V 1(ωX )= Pic0(X). On the other hand, if g(C)≤ 1, then q(X)= 1
and albX : X → Alb(X) is an algebraic fiber space onto an elliptic curve. We
conclude then as in the proof of Proposition 6.6. �

Proposition 6.8. Let X be a smooth projective threefold such that κ(X) = 0 and
χ(ωX ) = 0. If dim albX (X) = 2, then we have dim V 1(ωX )= dim V 2(ωX )= 0.
On the other hand, if dim albX (X) = 1, then we have dim V 1(ωX ) ≤ 0 and
dim V 2(ωX )= 0.

Proof. We recall that, by [Chen and Hacon 2002, Lemma 3.1], V 0(ωX ) consists
of at most one point. We start with the case dim albX (X) = 2. By [Kawamata
1981, Theorem 1], albX is surjective and has connected fibers. Therefore, we have
q(X)= h2(X, ωX )= 2 and hence OX ∈ V 1(ωX ) since χ(ωX )= 0. We set a := albX ,
and we note that, by [Hacon 2004, Corollary 4.2], a∗ωX is a GV-sheaf, i.e.,

codim V 1(a∗ωX )≥ 1 and codim V 2(a∗ωX )≥ 2.
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By using that R1a∗ωX ∼= OAlb(X) and R2a∗ωX = 0 [Kollár 1986a, Proposition 7.6
and Theorem 2.1] and by using [Kollár 1986b, Theorem 3.1], we get isomorphisms

H 1(X, ωX ⊗ a∗L)∼= H 1(Alb(X), a∗ωX ⊗ L)⊕ H 0(Alb(X), L)

for any L ∈ Pic0(Alb(X))∼= Pic0(X). Therefore, we have

codim V 1(ωX )≥ 1 and codim V 2(ωX )≥ 2,

and consequently, the hypothesis χ(ωX )= 0 implies dim V 1(ωX )= 0.
If dim albX (X) = 1, then as in the previous case we have dim V 2(ωX ) = 0.

Therefore, V 1(ωX ) is either empty or of dimension zero since χ(ωX )= 0. �

Proposition 6.9. Let X be a smooth projective threefold such that κ(X)=−∞ and
χ(ωX )= 0.

(i) Suppose dim albX (X) = 2. If q(X) = 2, then V 1(ωX ) = V 2(ωX ) = {OX }. If
q(X) > 2, then we obtain dim V 1(ωX )= dim V 2(ωX )= q(X)− 1.

(ii) Suppose dim albX (X) = 1. If q(X) = 1, then we have dim V 1(ωX ) ≤ 0 and
dim V 2(ωX )= 0. If q(X) > 1, then we obtain V 1(ωX )= V 2(ωX )= Pic0(X).

Proof. We start with the case dim albX (X) = 2. Let a : X → S ⊂ Alb(X) be the
Albanese map of X and b : X→ S′ be the Stein factorization of a, and let c : X ′→ S′′

be a nonsingular representative of b. We can easily check that q(X ′)= q(S′′) and
dim albS(S)= 2 and hence that κ(S′′)≥ 0. Furthermore, we have c∗ωX ′ = 0. To see
this, we point out that by [Pareschi and Popa 2011, Theorem 5.8] c∗ωX ′ is a GV-sheaf
on S′′ and moreover that, by Lemma 6.4, V 0(c∗ωX ′) = V 0(ωX ′) = V 0(ωX ) = ∅.
This immediately implies c∗ωX ′ = 0 as a GV-sheaf F is nonzero if and only if
V 0(F) 6=∅. We distinguish now three cases according to the values of κ(S′′).

If κ(S′′) = 0, then S′′ is birational to an abelian surface. This forces q(X) =
q(X ′) = q(S′′) = 2 and c∗ Pic0(S′′) = Pic0(X ′). By [Kollár 1986b, Theorem 3.1;
1986a, Theorem 2.1 and Proposition 7.6], we obtain isomorphisms

H 2(X ′, ωX ′⊗c∗L)∼=H 1(S′′, ωS′′⊗L) and H 1(X ′, ωX ′⊗c∗L)∼=H 0(S′′, ωS′′⊗L)

for any L ∈Pic0(S′′). Therefore, we have V 2(ωX )∼= V 2(ωX ′)= c∗V 1(ωS′′)={OX ′}

and V 1(ωX )∼= V 1(ωX ′)= c∗V 0(ωS′′)= {OX ′}.
If κ(S′′) = 1, then S′′ is birational to an elliptic surface of maximal Albanese

dimension fibered onto a curve of genus g(C) ≥ 2. Thus, X is fibered onto C
as well and q(X ′) = q(S′′) = g(C) + 1. By Lemma 6.3 and (5), we deduce
dim V 2(ωX ′)= g(C)= q(X ′)− 1, and therefore, we get dim V 1(ωX ′)= q(X ′)− 1
as χ(ωX ′)= 0 and V 0(ωX ′)=∅.

If κ(S′′)= 2, then by Castelnuovo’s theorem we have χ(ωS′′)> 0, which immedi-
ately yields V 0(ωS′′)=Pic0(S′′). By using Lemma 6.3, we see that dim V 0(ωX ′)>0.
This contradicts Lemma 6.4, and hence, this case does not occur.
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We now suppose dim albX (X)= 1. Let a : X → C ⊂ Alb(X) be the Albanese
map of X where C := Im a. Then a has connected fibers and q(X)= g(C) by [Ueno
1973, Lemma 2.11]. As in the previous case, we note that a∗ωX = 0. Moreover, by
[Kollár 1986b, Theorem 3.1; 1986a, Proposition 7.6], we obtain isomorphisms

H 1(X, ωX ⊗ a∗L)∼= H 0(C, R1a∗ωX ⊗ L),

H 2(X, ωX ⊗ a∗L)∼= H 1(C, R1a∗ωX ⊗ L)⊕ H 0(C, ωC ⊗ L)

for any L ∈Pic0(C). At this point, we distinguish two cases: g(C)=1 and g(C)>1.
If g(C) = q(X) > 1, then we have V 0(ωC) = Pic0(C), and by Lemma 6.3, we
get V 2(ωX ) = V 1(ωX ) = Pic0(X). On the other hand, if g(C) = q(X) = 1, then
by [Hacon 2004, Corollary 4.2] R1a∗ωX is a GV-sheaf on C = Alb(X). Hence,
we obtain dim V 2(ωX )= 0, and consequently, we see that dim V 1(ωX )≤ 0 since
χ(ωX )= 0 and V 0(ωX )=∅. �

Remark 6.10. In the case q(X)= 1, the previous propositions yield the following
statement: for each k, dim V k(ωX )= 1 if and only if dim V k(ωY )= 1. In general,
we have not been able to show that, if a locus V k(ωX ) is empty or of dimension
zero, then the corresponding locus V k(ωY ) is empty or of dimension zero, respec-
tively. This ambiguity is mainly caused by the possible presence of nontrivial
automorphisms.

An application of a sheafified version of the derivative complex [Ein and Lazars-
feld 1997, Theorem 3; Lazarsfeld and Popa 2010] can be shown to yield Conjecture
1.2 for threefolds having q(X)= 2 [Lombardi 2013, Proposition 5.2.15].

7. Applications

In this final section, we prove Corollaries 1.7, 1.8 and 1.9. Moreover, we present
a further result regarding the invariance of the Euler characteristic of powers of
the canonical bundle for derived equivalent smooth minimal varieties of maximal
Albanese dimension.

7A. Holomorphic Euler characteristic and Hodge numbers.

Proof of Corollary 1.7. Let d := dim X = dim Y . We begin with the case
dim albX (X) = d. By Theorem 1.6, Y is of maximal Albanese dimension, and
by (5), we get inequalities

codim V 1(ωX )≥ 1 and codim V 1(ωY )≥ 1.

We distinguish two cases: V 0(ωX )(Pic0(X) and V 0(ωX )=Pic0(X). If V 0(ωX )(
Pic0(X), then we also have V 0(ωY )( Pic0(Y ) by Proposition 3.1. Moreover, there
are inclusions Pic0(X)) V 0(ωX )⊃ V 1(ωX )⊃ · · · ⊃ V d(ωX )= {OX } and similarly
for the loci V k(ωY ) (see (6)). Therefore, if L /∈ V 0(ωX ) and M /∈ V 0(ωY ), then
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hk(X, ωX ⊗ L)= hk(Y, ωY ⊗M)= 0 for all k ≥ 0. Since the holomorphic Euler
characteristic is invariant under deformation, we finally obtain

χ(ωX )= χ(ωX ⊗ L)= 0= χ(ωY ⊗M)= χ(ωY ).

On the other hand, if V 0(ωX )= Pic0(X), then, by Proposition 3.1, F(1,Pic0(X))=
(1,Pic0(Y )), and thus,

there exists L0 ∈ V 0(ωX ) \

( d⋃
k=1

V k(ωX )

)
such that F(1, L0)= (1,M0) with M0 ∈ V 0(ωY ) \

( d⋃
k=1

V k(ωY )

)
.

Hence, by using Corollary 2.2 with m = k = 0, we have

χ(ωX )=χ(ωX⊗L0)=h0(X, ωX⊗L0)=h0(Y, ωY⊗M0)=χ(ωY⊗M0)=χ(ωY ).

We suppose now dim albX (X)= d−1 and κ(X)≥ 0. By Theorem 1.6, we have
dim albY (Y )= d−1, and therefore, there are inclusions V 1(ωX )⊃ V 2(ωX )⊃ · · · ⊃

V d(ωX ) and V 1(ωY )⊃ V 2(ωY )⊃ · · · ⊃ V d(ωY ). We distinguish four cases.
The first case is when V 0(ωX ) = V 1(ωX ) = Pic0(X). By Proposition 3.1 and

Corollary 3.4, it turns out that V 0(ωY )= V 1(ωY )= Pic0(Y ) as well. We claim that

there exists OX 6= L1 ∈ V 0(ωX )\V 2(ωX )

such that F(1, L1)= (1,M1) with OY 6= M1 ∈ V 0(ωY )\V 2(ωY ).

In fact, the Rouquier isomorphism maps F(1,Pic0(X))= (1,Pic0(Y )) by Remark
3.6, and therefore, it is enough to choose the image under F−1 of a generic element
(1,M) with M /∈ V 2(ωY ). By using Corollary 2.2 twice, first with k = 0 and then
with k = 1, we obtain

χ(ωX )= χ(ωX ⊗ L1)= h0(X, ωX ⊗ L1)− h1(X, ωX ⊗ L1)

= h0(Y, ωY ⊗M1)− h1(Y, ωY ⊗M1)= χ(ωY ⊗M1)= χ(ωY ).

The second case is when V 0(ωX ) = Pic0(X) and V 1(ωX ) ( Pic0(X). By
Proposition 3.1 and Corollary 3.4, V 0(ωY ) = Pic0(Y ) and V 1(ωY ) ( Pic0(Y ).
As before, F(1,Pic0(X))= (1,Pic0(Y )), and hence, we can pick an element

OX 6= L2 ∈ V 0(ωX )\V 1(ωX )

such that F(1, L2)= (1,M2) with OY 6= M2 ∈ V 0(ωY )\V 1(ωY ).

Hence, equalities χ(ωX )= χ(ωX ⊗ L2)= h0(X, ωX ⊗M2)= h0(Y, ωY ⊗M2)=

χ(ωY ⊗M2)= χ(ωY ) hold.
The third case is when V 0(ωX ) ( Pic0(X) and V 1(ωX ) = Pic0(X). By using

Proposition 3.1 and Corollary 3.4, it is easy to see that V 0(ωY ) ( Pic0(Y ) and
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V 1(ωY ) = Pic0(Y ). Moreover, Remark 3.6 yields F(1,Pic0(X)) = (1,Pic0(Y )).
Therefore, similarly to the previous cases, there exists a pair (L3,M3) 6= (OX ,OY )

such that

F(1, L3)= (1,M3) with L3 /∈ V 0(ωX )∪ V 2(ωX ) and M3 /∈ V 0(ωY )∪ V 2(ωY ),

and by Corollary 2.2, we have χ(ωX ) = χ(ωX ⊗ L3) = −h1(X, ωX ⊗ L3) =

−h1(Y, ωY ⊗M3)= χ(ωY ⊗M3)= χ(ωY ).
The last case is when both V 0(ωX ) and V 1(ωX ) are proper subvarieties of

Pic0(X). Then V 0(ωY ) and V 1(ωY ) are proper subvarieties as well, and hence,
χ(ωX )= χ(ωY )= 0. �

Proof of Corollary 1.8. By the derived invariance of Hochschild homologies
HH0(X) ∼= HH0(Y ) and HH1(X) ∼= HH1(Y ), we have h0(X, ωX ) = h0(Y, ωY )

and h1(X, ωX ) = h1(Y, ωY ). Therefore, Corollary 1.7 implies h0,2(X) = h0,2(Y )
since h3(X, ωX )= q(X)= q(Y )= h3(Y, ωY ) and h4(X, ωX )= 1= h4(YωY ).

For the second equality, we apply Corollary 2.2 with (L ,M)= (OX ,OY ) and k=2
so that h2(X, ωX )+h1(X, �3

X )+h0(X, �2
X )= h2(Y, ωY )+h1(Y, �3

Y )+h0(Y, �2
Y ).

Therefore, we obtain h1,3(X)= h1,3(Y ) since Serre duality and the Hodge linear-
conjugate isomorphism yield equalities h2(X, ωX )= h0(X, �2

X ) and h2(Y, ωY )=

h0(Y, �2
Y ). �

By using a result in [Pareschi and Popa 2011], we can also derive a consequence
about pluricanonical bundles.

Corollary 7.1. Let X and Y be smooth projective derived equivalent varieties
with X of maximal Albanese dimension and minimal. Then

χ(ω⊗m
X )= χ(ω⊗m

Y ) for all m ≥ 2.

Proof. By [Pareschi and Popa 2011, Corollary 5.5], ω⊗m
X and ω⊗m

Y are GV-
sheaves on X and Y , respectively, for any m ≥ 2.1 In particular, this implies
that codim V 1(ω⊗m

X ) ≥ 1 and codim V 1(ω⊗m
Y ) ≥ 1. At this point, we argue as

in the first part of the proof of Corollary 1.7 after having noted the inclusions
V 0(ω⊗m

X )⊃ V 1(ω⊗m
X ) and V 0(ω⊗m

Y )⊃ V 1(ω⊗m
Y ) [Pareschi and Popa 2011, Propo-

sition 3.14]. �

7B. Fibrations. In this subsection, we study the behavior of particular types of
fibrations under derived equivalence. We begin by recalling some terminology from
[Catanese 1991; Lazarsfeld and Popa 2010].

A smooth projective variety X is of Albanese general type if it is of maximal
Albanese dimension and has nonsurjective Albanese map. An irregular fibration or
a higher irrational pencil is a surjective morphisms with connected fibers f : X→ Z

1The minimality condition is necessary; see [Pareschi and Popa 2011, Example 5.6].
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onto a normal variety Z with 0< dim Z < dim X and such that any smooth model
of Z is of maximal Albanese dimension or Albanese general type, respectively.

Popa [2013, Corollary 3.4] observes that a consequence of Conjecture 1.3 is that,
if X admits a fibration onto a variety having nonsurjective Albanese map, then any
Fourier–Mukai partner of X admits an irregular fibration. With Theorem 1.4 at
hand, we can verify this statement under an additional hypothesis on X .

Proposition 7.2. Let X and Y be smooth projective derived equivalent varieties
with dim albX (X)≥ dim X −1. If X admits a surjective morphism f : X→ Z with
connected fibers onto a normal variety Z having nonsurjective Albanese map and
such that dim X > dim Z , then Y admits an irregular fibration.

Proof. Let Z
f ′
−→ Z ′→ albZ (Z) be the Stein factorization of albZ . By taking a non-

singular representative of f ′, we can assume Z ′ smooth. We can easily check that Z ′

is of maximal Albanese dimension (so that OZ ′ ∈ V 0(ωZ ′)) and that albZ ′ is not sur-
jective. Hence, by [Ein and Lazarsfeld 1997, Proposition 2.2], there exists a positive-
dimensional irreducible component V of V 0(ωZ ′) passing through the origin. More-
over, by Lemma 6.3, we have ( f ◦ f ′)∗V ⊂V k(ωX )0 where k=dim X−dim Z ′, and
by (5), we get ( f ◦ f ′)∗V ⊂V k(ωX )0⊂V 1(ωX )0. Finally, by Theorem 1.4(iii), there
exists a positive-dimensional irreducible component V ′ ⊂ V 1(ωY )0 We conclude
then by applying [Green and Lazarsfeld 1991, Theorem 0.1]. �

We point out that, thanks to Theorem 1.5, we can remove the hypothesis
“dim albX (X) ≥ dim X − 1” from the above proposition in the case of threefolds.
The following proposition, together with the subsequent remark, provides the proof
of Corollary 1.9:

Proposition 7.3. Let X and Y be smooth projective derived equivalent threefolds.
Fix k to be either 1 or 2. Then X admits a higher irrational pencil f : X→ Z with
0 < dim Z ≤ k if and only if Y admits a higher irrational pencil g : Y → W with
0< dim W ≤ k.

Proof. We start with the case k = 1, and therefore, we consider a higher irrational
pencil f : X→ Z onto a smooth curve Z of genus g(Z)≥ 2. By Lemma 6.3, we
have f ∗V 0(ωZ ) = f ∗ Pic0(Z) ⊂ V 2(ωX )0, and by Theorem 1.5(i), there exists a
component T ⊂ V 2(ωY )0 such that

dim T ≥ q(Z)≥ 2. (10)

Moreover, by [Green and Lazarsfeld 1991, Theorem 0.1] or by [Beauville 1992,
Corollaire 2.3], there exists an irrational fibration g :Y→W onto a smooth curve W
such that T ⊂ g∗ Pic0(W )+ γ for some γ ∈ Pic0(Y ). Therefore, we obtain the
inequality

q(W )= g(W )≥ dim T ≥ 2 (11)
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ensuring that g is a higher irrational pencil.
We suppose now k= 2, and we consider a higher irrational pencil f : X→ Z onto

a surface. It is a general fact that, by possibly replacing Z with a lower-dimensional
variety, one can furthermore assume χ(ωZ ′) > 0 for any smooth model Z ′ of Z
(see [Pareschi and Popa 2009, p. 271]). If dim Z = 1, then we apply the argument
of the previous case. On the other hand, if dim Z = 2 then by Lemma 6.3 we get

f ∗V 0(ωZ )= f ∗ Pic0(Z)⊂ V 1(ωX )0.

Moreover, by Theorem 1.5, there exists a component T ⊂ V 1(ωY )0 such that
dim T ≥ q(Z ′)≥ 3, and by [Green and Lazarsfeld 1991, Theorem 0.1], there exists
an irregular fibration g :Y→W such that T ⊂ g∗ Pic0(W )+γ for some γ ∈Pic0(Y ).
Therefore, q(W )≥ dim T ≥ 3 and g is a higher irrational pencil. �

Remark 7.4. We can slightly improve the statement of Proposition 7.3 in the case
of fibrations onto curves. In fact, by going back to the proof of Proposition 7.3 in the
case k = 1, we see that from the inequalities (10) and (11) we obtain the inequality
q(W )≥ q(Z). Then the following holds. Fix an integer g≥ 2. The variety X admits
a higher irrational pencil f : X→ C onto a curve of genus g(C) ≥ g if and only
if Y admits a higher irrational pencil h : Y → D onto a curve of genus g(D)≥ g.
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