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We determine the limiting distribution of the normalized Euler factors of an
abelian surface A defined over a number field k when A is Q-isogenous to the
square of an elliptic curve defined over k with complex multiplication. As an
application, we prove the Sato–Tate conjecture for Jacobians of Q-twists of the
curves y2

= x5
− x and y2

= x6
+ 1, which give rise to 18 of the 34 possibilities

for the Sato–Tate group of an abelian surface defined over Q. With twists of these
two curves, one encounters, in fact, all of the 18 possibilities for the Sato–Tate
group of an abelian surface that is Q-isogenous to the square of an elliptic curve
with complex multiplication. Key to these results is the twisting Sato–Tate group
of a curve, which we introduce in order to study the effect of twisting on the
Sato–Tate group of its Jacobian.
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1. Introduction

Let A be an abelian variety of dimension g, defined over a number field k. The
generalized Sato–Tate conjecture predicts that the Haar measure of a certain compact
subgroup G of the unitary symplectic group USp(2g) governs the distribution of
the normalized Euler factors Lp(A, T ) as p varies over the primes of k where A
has good reduction. The normalized Euler factor at a prime p is the polynomial
Lp(A, T )= Lp(A, T/q1/2), where q = ‖p‖ is the norm of p and

Lp(A, T )=
2g∏

i=1

(1−αi T )
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is the L-polynomial of A at p. The polynomial Lp(A, T ) has the defining property
that for each positive integer n,

#A(Fqn )=

2g∏
i=1

(1−αn
i ).

In order to give a precise statement of the Sato–Tate conjecture, we need to specify
the group G and to define what it means for G to “govern” the distribution of the
polynomials Lp(A, T ). Serre [2012] defined, in terms of `-adic monodromy groups,
a compact real Lie subgroup of USp(2g) associated to the abelian variety A, denoted
by ST(A) and called the Sato–Tate group of A, satisfying the following property:
for each prime p at which A has good reduction, there exists a conjugacy class s(p)
of ST(A) whose characteristic polynomial equals Lp(A, T ) :=

∑2g
i=0 ai (A)(p)T i .1

For i = 0, 1, . . . , 2g, let Ii denote the interval

Ii =

[
−

(2g
i

)
,
(2g

i

)]
,

and consider the map

8i : ST(A)⊆ USp(2g)→ Ii ⊆ R (1-1)

that sends an element of ST(A) to the i-th coefficient of its characteristic polynomial.
Let µ(ST(A)) denote the Haar measure of ST(A) and let 8i,∗(µ(ST(A))) denote
its image on Ii by 8i . We can now state the generalized Sato–Tate conjecture.

Conjecture 1.1. For i = 0, 1, . . . , 2g, the ai (A)(p) are equidistributed 2 on Ii with
respect to 8i,∗(µ(ST(A))).3

The original Sato–Tate conjecture addresses the case where A is an elliptic curve
E/Q without complex multiplication (CM), in which case g = 1 and ST(A) =
USp(2)= SU(2). This case of the conjecture has recently been proved; see [Serre
2012, p. 105] for a complete list of references. For elliptic curves E/k with
complex multiplication, there are two cases, depending on whether the CM field
M is contained in k or not. In the former case, ST(E) is isomorphic to the unitary
group U(1) (embedded in SU(2)), and in the latter case, ST(E) is isomorphic to
the normalizer of U(1) in SU(2). Both cases follow from classical results that we
recall in Section 3B.

In all three cases arising for g = 1, it is easy to see that the Sato–Tate group
of E is invariant under twisting: if E ′ is isomorphic to E over Q, then ST(E ′) is

1See also [Fité et al. 2012, §2] for a brief summary of this construction; there the Sato–Tate group
of A is denoted by STA, rather than ST(A).

2When we make equidistribution statements, we sort primes in increasing order by norm.
3There is a slightly stronger form of Conjecture 1.1 which asserts that in fact the conjugacy classes

s(p) are equidistributed with respect to the projection of µ(ST(A)) on the set of conjugacy classes of
ST(A); see [Fité et al. 2012, Conjecture 1.1].
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isomorphic to ST(E). However, when g > 1, this is no longer true.
In this article we study the possibilities for the Sato–Tate group of the Jacobians

of twists of genus-2 curves defined over Q with many automorphisms (these arise
for curves whose Jacobians are Q-isogenous to the square of an elliptic curve with
complex multiplication), and to prove that in these cases Conjecture 1.1 is true.4

The curves we consider give rise to 18 of the 34 Sato–Tate groups that can
occur for an abelian surface defined over Q, yet they all lie in one of the two
Q-isomorphism classes corresponding to the curves listed in the title of this article.
This makes apparent the importance of understanding the effect of twisting on the
Sato–Tate group.

In the remainder of this section, we describe the two points in the moduli
space of genus-2 curves that are the object of our study, and state our main result
(Theorem 1.4). We also describe the numerical computations used to obtain explicit
examples that realize all the possibilities permitted by our main theorem.

Let us first fix some notation. Throughout this paper, Q denotes a fixed algebraic
closure of Q that is assumed to include the number field k and all of its algebraic
extensions. Let Gk = Gal(Q/k) denote the absolute Galois group of k. For any
algebraic variety X defined over k and any extension L/k, we use X L to denote
the algebraic variety defined over L obtained from X by the base change k ↪→ L .
For abelian varieties A and B defined over k, we write A ∼ B to indicate that
there is an isogeny between A and B that is defined over k. We may write A ∼k B
to emphasize the field of definition, but this is redundant (to indicate an isogeny
defined over an extension L/k, we write AL ∼ BL ).

1A. Genus-2 curves with many automorphisms. Let C be a curve of genus g≤ 3
defined over k. In Section 2, we define the twisting Sato–Tate group STTw(C) of C ,
a compact Lie group with the property that the Sato–Tate group of the Jacobian
of any twist of C is isomorphic to a subgroup of STTw(C). There is a well-known
bijection between the set of twists of C up to k-isomorphism and the cohomology
group H 1(Gk,Aut(CQ)), given by associating to a twist C ′ of C the class of the
cocycle ξ(τ ) := φ(τφ)−1, where φ is an isomorphism from C ′

Q
to CQ. Thus the

group Aut(CQ) is a good measure of how complicated the twists of C can be.
For the rest of Section 1, we let k = Q and g = 2. The automorphism group

Aut(CQ) is then one of the following seven groups:

C2, D2, D4, D6, C10, 2D6, S̃4.

Here Cn denotes the cyclic group of n elements, Dn the dihedral group of order 2n,
and Sn the symmetric group on n letters. The groups 2D6 and S̃4 are 2-coverings of

4Using the techniques of this article, one can obtain analogous results for genus-3 curves with
many automorphisms, such as the Fermat and Klein quartics; see [Fité et al. ≥ 2014].
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D6 and S4, isomorphic to C3oD4 (with action kernel V4) and GL2(F3), respectively.
In the generic case, Aut(CQ) is isomorphic to C2. This implies that every twist C ′

of C is quadratic, and we have ST(Jac(C ′))= ST(Jac(C))= STTw(C).
We are interested in the opposite situation: the two exotic cases where Aut(CQ)

is as large as possible: S̃4 and 2D6. All genus-2 curves C with Aut(CQ) isomorphic
to S̃4 (resp. 2D6) are isomorphic to

y2
= x5
− x (resp. y2

= x6
+ 1), (1-2)

and thus they constitute a single Q-isomorphism class C2 (resp. C3) of curves.
We shall choose representative curves C0

2 and C0
3 for C2 and C3 that are defined

over Q and have particularly nice arithmetic properties. We write C0 (resp. C) to
denote either C0

2 or C0
3 (resp. either C2 or C3). The key arithmetic property we

require of C0 is that its Jacobian be Q-isogenous to E2, where E is an elliptic curve
defined over Q (with CM). This applies only to the curve y2

= x6
+1 listed in (1-2),

which we take as our representative C0
3 for the class C3, but it also applies to the

curve
y2
= x6
− 5x4

− 5x2
+ 1, (1-3)

which we take as a better representative C0
2 for the class C2 of y2

= x5
− x .

The classification in [Fité et al. 2012] gives an explicit description of each of
the 52 Sato–Tate groups that can and do arise in genus 2, as subgroups of USp(4),
of which 32 have identity component (isomorphic to) U(1). The two curves listed
in (1-2) both appear in [Fité et al. 2012], where they are shown to have Sato–Tate
groups with identity component U(1). It follows that if C is a twist of either
of these curves, then ST(Jac(C)) also has identity component U(1). In fact, the
representative curves for all 32 of the U(1) cases listed in [Fité et al. 2012] are
actually twists of one of the two curves in (1-2) (possibly using an extended field
of definition).

Among the 32 genus-2 Sato–Tate groups with identity component U(1), two are
maximal. The first has component group S4×C2 and is denoted by J (O), while
the second has component group D6×C2 and is denoted by J (D6). We will prove
that STTw(C0

2) = J (O) and STTw(C0
3) = J (D6), and, as a consequence, that the

Sato–Tate group of any twist of C0
2 (resp. C0

3 ) is isomorphic to a subgroup of J (O)
(resp. J (D6)). Conversely, we will show that every Sato–Tate group that can occur
over Q and is isomorphic to a subgroup of J (O) (resp. J (D6)) arises for some
Q-twist C of C0

2 (resp. C0
3 ), by giving explicit examples in each case.5 Most of the

Sato–Tate groups G with identity component U(1) are actually subgroups of both
J (O) and J (D6). In such cases we exhibit Q-twists of both C0

2 and C0
3 that have

Sato–Tate group G.

5We call C a Q-twist of C0 if C is defined over Q and C
Q
' C0

Q
.
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1B. Main result. Recall that C0 denotes either C0
2 or C0

3 . These are both genus-
2 curves defined over Q whose Jacobians are Q-isogenous to the square of an
elliptic curve E/Q with CM by an imaginary quadratic field M equal to Q(

√
−2)

or Q(
√
−3), respectively. Our main result is that Conjecture 1.1 holds for the

Jacobians of the Q-twists C of C0.
In order to state the theorem more precisely, we introduce some notation.

Definition 1.2. For any Q-twist C of C0, let K/Q (resp. L/Q) denote the minimal
extension over which all endomorphisms of Jac(C)Q (resp. homomorphisms from
Jac(C)Q to EQ) are defined. Then we write T (C) for the isomorphism class[

Gal(L/Q),Gal(K/Q),Gal(L/M)
]
.

We say that two triples of groups (H1, H2, H3) and (H ′1, H ′2, H ′3) are isomorphic
if Hi ' H ′i for i = 1, 2, 3. We write [H1, H2, H3] for the isomorphism class of
(H1, H2, H3), which we regard as a triple of abstract groups.

Definition 1.3. For any finite group H with a subgroup H0 and a normal sub-
group N , and any positive integers r and s with r | s, let o(s, r) (resp. ō(s, r)) count
the elements in H0 (resp. H \ H0) of order s whose projection in H/N has order r .
Let z(H, N , H0) denote the vector [z1, z2], where

z1 =
[
o(1, 1), o(2, 1), o(2, 2), o(3, 3), o(4, 2), o(6, 3), o(6, 6), o(8, 4), o(12, 6)

]
,

z2 =
[
ō(2, 2), ō(4, 2), ō(6, 6), ō(8, 4), ō(12, 6)

]
.

For any Q-twist C of C0, write

z(C) := [z1(C), z2(C)] := z
(
Gal(L/Q),Gal(L/K ),Gal(L/M)

)
.

We also define o(r) =
∑

s o(s, r) and ō(s) =
∑

r ō(s, r). We note that in the
cases of interest, z(H, N , H0) is z(C) for some Q-twist C of C0. In this situation,
o(r) is the number of elements in Gal(L/M) whose projection to Gal(K/M) has
order r , and o(s) is the number of elements of order s in Gal(L/Q) that are not in
Gal(L/M). Clearly ∑

r,s

o(s, r)=
∑
r,s

o(s, r)=
|Gal(L/Q)|

2
.

Moreover, we prove in Proposition 4.9 that the only pairs (s, r) for which o(s, r)
or ō(s, r) can be nonzero are those that appear in the vectors z1 and z2.

Finally, let L p(C, T ) denote the Euler factor of C at a prime p of good reduction.
We may write the normalized Euler factor L p(C, T )= L p(C, T/p1/2) as

L p(C, T )= T 4
+ a1(C)(p)T 3

+ a2(C)(p)T 2
+ a1(C)(p)T + 1.

We are now ready to state our main theorem.
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Theorem 1.4. Let C be a Q-twist of C0.

(i) There are exactly 20 possibilities for T (C) if C0
= C0

2 , and 21 if C0
= C0

3 .

(ii) The triple T (C) and the vector z(C) uniquely determine each other.

(iii) The triple T (C) (or z(C)) determines the Sato–Tate group ST(Jac(C)).

(iv) For i = 1, 2, the ai (C)(p) are equidistributed on Ii =
[
−
( 4

i

)
,
(4

i

)]
with respect

to a measure µ(ai (C)) that is uniquely determined by the vector z(C). More
precisely, the density function of µ(ai (C)) is continuous up to a finite number
of points, and it is therefore uniquely determined by its moments:

Mn[µ(a1(C))] =
1

[L :Q]

(
o(1)2n

+ o(3)+ o(4)2n/2
+ o(6)3n/2)b0,n,

Mn[µ(a2(C))] =
1

[L :Q]

(
o(1)b4,n + o(2)b0,n + o(3)b1,n + o(4)b2,n + o(6)b3,n

+ ō(2)2n
+ ō(4)(−2)n + ō(6)(−1)n + ō(12)

)
.

Here bm,n denotes the coefficient 6 of Xn in (X2
+m X + 1)n .

(v) Conjecture 1.1 holds for C.

We actually prove statement (iv) in greater generality, for an abelian surface A
defined over a number field k with AQ ∼ E2

Q
, where E is an elliptic curve de-

fined over k with CM by a quadratic imaginary field M . This is accomplished
in Section 3 via Corollary 3.12, whose proof relies on a study of the structure of
Hom(EL , AL)⊗M Q as a Galois Q[Gal(L/M)]-module and a refined equidistri-
bution statement of Frobenius elements of a CM elliptic curve when restricted to
certain Galois conjugacy classes (see Corollary 3.8). We compute the moments

Mn[ai (C)] := lim
x→∞

1
π(x)

∑
p≤x

ai (C)(p)n,

where p varies over primes of good reduction, and prove equidistribution of the
ai (C)(p) with respect to a measure µ(ai (C)). It follows that Mn[µ(a1(C))] =
Mn[ai (C)]. We devote Section 4 to the proofs of assertions (i), (ii), and (iii), which
follow from Corollary 4.18, Proposition 4.16, and Proposition 4.17, respectively.
The final assertion (v) follows from (iii) and (iv): it is enough to check that for
each of the 41 possibilities of T (C), the formulas obtained for µ[ai (C)] coincide
with the ones obtained for 8i,∗(µ(ST(Jac(C)))) in [Fité et al. 2012]. In fact, it has
very recently been shown that the generalized Sato–Tate conjecture (in its strong
form) holds in general for abelian surfaces with potential complex multiplication;
see [Johansson 2013].

6For m = 0, 1, 2, 3, 4, the bm,n form the sequences A126869, A0002426, A000984, A026375,
A081671, respectively, in the Online Encyclopedia of Integer Sequences [OEIS 2011].

http://oeis.org/A126869
http://oeis.org/A0002426
http://oeis.org/A000984
http://oeis.org/A026375
http://oeis.org/A081671
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1C. Numerical computations. In Section 5, we show that all 41 of the possible
triples T (C) determined in section Section 4 actually arise for some Q-twist C of
C0 by exhibiting a provable example of each case. The example curves C were
obtained by an extensive search that was made feasible by part (ii) of Theorem 1.4; it
is computationally much easier to approximate z(C) than it is to explicitly compute
T (C), which requires computing the Galois groups of number fields of fairly large
degree (48 or 96 in the most typical cases).

For an elliptic curve E with CM, the values a1(E)(p) can be computed very
quickly, and we show how to compute a1(C)(p) and a2(C)(p) from a1(E)(p)
using the fact that Jac(C) is Q-isogenous to E2 (see Proposition 4.9). This allows
us to efficiently compute an approximation of z(C) (using again Proposition 4.9)
of precision sufficient to provisionally identify T (C) (via part (ii) of Theorem 1.4).
Many curves were analyzed (tens of thousands) in order to obtain 41 candidate
examples, one for each possible triple T (C). For each of these 41 candidates,
we then proved that the provisional identification of T (C) is correct by explicitly
computing the Galois groups Gal(L/Q), Gal(K/Q), and Gal(L/M).

2. The twisting Sato–Tate group of a curve

In this section we define the twisting Sato–Tate group, which is our main object of
study. We do so in terms of the algebraic Sato–Tate group defined by Banaszak
and Kedlaya [2011]. Let A be an abelian variety of dimension g ≤ 3 defined over a
number field k, and fix an embedding of k into C. Fix a polarization on A and a
symplectic basis for the singular homology group H1(A

top
C
,Q). Use it to equip this

space with an action of GSp2g(Q). For each τ ∈ Gk , define

L(A, τ ) :=
{
γ ∈ Sp2g : γ

−1αγ = τα for all α ∈ End(AQ)⊗Q
}
. (2-1)

Here we view α as an endomorphism of H1(A
top
C
,Q). The algebraic Sato–Tate

group of A is defined by

AST(A) :=
⋃
τ∈Gk

L(A, τ ).

The Sato–Tate group ST(A) is a maximal compact subgroup of AST(A)⊗Q C; see
[Banaszak and Kedlaya 2011, Theorems 6.1 and 6.10].

Remark 2.1. As noted in the introduction, ST(A) is invariant under twisting when
g = 1. This does not hold for g > 1; however, ST(A) is invariant under quadratic
twisting. For g ≤ 3, this follows easily from the definitions above. Indeed, let
χ : Gk → C be a quadratic character. For every τ ∈ Gk , one has L(A⊗ χ, τ) =
L(A, τ )⊗χ(τ) (see (2-2) for a more general relation). Invariance under quadratic
twisting follows from the fact that L(A, τ )⊗χ(τ)= L(A, τ ). For A of arbitrary
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dimension, the invariance of ST(A) under quadratic twisting follows easily from
the definition of ST(A) given in [Serre 2012] (see also [Fité et al. 2012]), in terms
of the image of the `-adic representation attached to A.

We now assume that A is the Jacobian Jac(C) of a curve C defined over k, and
view Aut(CQ) as a subgroup of GL(H1(Jac(C)top

C
,Q)).

Definition 2.2. The twisting algebraic Sato–Tate group of C is the algebraic sub-
group of Sp2g/Q defined by

ASTTw(C) := AST(Jac(C)) ·Aut(CQ).

Observe that ASTTw(C) is indeed a group: for any γ1, γ2 ∈ AST(Jac(C)) and
α1, α2 ∈ Aut(CQ), we have

γ1α1(γ2α2)
−1
= γ1γ

−1
2 γ2[α1α

−1
2 ]γ

−1
2 = γ1(γ

−1
2 )τ

−1
2 (α1α2) ∈ ASTTw(C).

We will make the notational convention that the τi are such that γi ∈ L(A, τi )

until the end of the section. Now let C ′ be a twist of C , a curve defined over k for
which C ′L ' CL for some finite Galois extension L/k. Let φ : C ′L → CL be a fixed
isomorphism. It is easy to check that

L(Jac(C ′), τ )= φ−1 L(Jac(C), τ )(τφ). (2-2)

Here φ is seen as a homomorphism from H1
(
Jac(C ′)top

C
,Q
)

to H1
(
Jac(C)top

C
,Q
)
.

Lemma 2.3. Let γ ′ ∈ L(Jac(C ′), τ )⊆ AST(Jac(C ′)). Write γ ′ as φ−1γ (τφ) with
γ in L(Jac(C), τ ) as in (2-2). The map

3φ : AST(Jac(C ′))→ ASTTw(C), 3φ(γ
′)= γ (τφ)φ−1

is a (well-defined) monomorphism of groups.

Proof. Let γ ′1 = φ
−1γ1(

τ1φ) and γ ′2 = φ
−1γ2(

τ2φ) be elements of L(Jac(C ′), τ1)

and L(Jac(C ′), τ2), respectively. Then

3φ(γ
′

1γ
′

2)=3φ
(
φ−1γ1γ2γ

−1
2 [(

τ1φ)φ−1
]γ2(

τ2φ)
)

=3φ
(
φ−1γ1γ2(

τ2τ1φ)(τ2φ)−1(τ2φ)
)

=3φ
(
φ−1γ1γ2(

τ2τ1φ)
)
= γ1γ2(

τ2τ1φ)φ−1

= γ1γ2
[
(τ2τ1φ)(τ2φ)−1]γ−1

2 γ2(
τ2φ)φ−1

= γ1(
τ1φ)φ−1γ2(

τ2φ)φ−1
=3φ(γ

′

1)3φ(γ
′

2).

It is clear that 3φ is both well-defined and injective: 3φ(γ ′1)=3φ(γ
′

2) if and only
if γ ′1 = γ

′

2. �

We now define the twisting Sato–Tate group STTw(C) of C .
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Definition 2.4. The twisting Sato–Tate group STTw(C) of C is a maximal compact
subgroup of ASTTw(C)⊗C.

Remark 2.5. It follows from the previous lemma that for any twist C ′ of C , the
Sato–Tate group ST(Jac(C)) is isomorphic to a subgroup of STTw(C). We also note
that the component groups of STTw(C) and ASTTw(C)⊗C must be isomorphic,
and the identity components of STTw(C) and ST(Jac(C)) are equal.

Our next goal is to study the component group of STTw(C) when C is a hyperel-
liptic curve (of genus g ≤ 3). Consider the group7(

Aut(CQ)oAST(Jac(C))
)
/Z ,

where Z is the normal subgroup of Aut(CQ)oAST(Jac(C)) consisting of the pairs
(α, γ ) with α = γ , where α ∈ Aut(CQ) and γ ∈ AST(Jac(C)).

Lemma 2.6. The map

8 : ASTTw(C)→
(
Aut(CQ)oAST(Jac(C))

)
/Z , 8(γ α)= (α−1, γ )

is a (well-defined) isomorphism.

Proof. For any γ1, γ2 ∈ AST(Jac(C)) and α1, α2 ∈ Aut(CQ), we have

8(γ1α1γ2α2)=8
(
γ1γ2(

τ2α1)α2
)
=
(
α−1

2 (τ2α1)
−1, γ1γ2

)
= (α−1

1 , γ1)(α
−1
2 , γ2)=8(γ1α1)8(α2γ2).

The surjectivity of 8 is clear. It remains to prove that 8(γ1α1)=8(γ2α2) if and
only if γ1α1 = γ2α2. On the one hand, 8(γ1α1)=8(γ2α2) if and only if

Z 3 (α−1
2 , γ2)(α

−1
1 , γ1)

−1
=
(
τ−1

1 (α1α
−1
2 ), γ2γ

−1
1

)
.

On the other hand, γ1α1 = γ2α2 if and only if α1α
−1
2 = γ

−1
1 γ2, or equivalently,

τ−1
1 (α1α

−1
2 )= γ2γ

−1
1 . But then

(
τ−1

1 (α1α
−1
2 ), γ2γ

−1
1

)
∈ Z . �

We now assume C is a hyperelliptic curve (of genus g ≤ 3). As an endomor-
phism of H1

(
Jac(C)top

C
,Q
)
, the hyperelliptic involution w of C corresponds to the

matrix −1 ∈ Sp2g(Q). Recall that AST(Jac(C)) contains the matrix −1. Thus
(−1,−1) ∈ Z , and Lemma 2.6 implies that ASTTw(C) is isomorphic to a subgroup
of (

Aut(CQ)oASTJac(C)
)
/〈(−1,−1)〉.

Let K/k denote the minimal field extension over which all the endomorphisms of
Jac(C) are defined. Then, since the component group of ST(Jac(C)) is isomorphic
to Gal(K/k) (see [Banaszak and Kedlaya 2011, Remark 6.4, Theorem 6.10]), and

7The product of elements (α1, γ1) and (α2, γ2) in Aut(C
Q
) o AST(Jac(C)) is defined to be

(α2γ
−1
2 α1γ2, γ1γ2)= (α2 ·

τ2α1, γ1γ2), where γ2 ∈ L(A, τ2)⊂ AST(Jac(C)).
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the identity component of ST(Jac(C)) contains the matrix−1, the component group
of STTw(C) is isomorphic to a subgroup of

Aut(CQ)/〈w〉oGal(K/k).

By Lemma 2.3, for any twist C ′ of C , there exists a monomorphism of groups

λφ : Gal(K/k)→ Aut(CQ)/〈w〉oGal(K/k). (2-3)

It follows that if there exists a twist C̃ of C such that

|Gal(K̃/k)| = |Aut(CQ)| · |Gal(K/k)|/2, (2-4)

where K̃/k is the minimal extension over which all the endomorphisms of Jac(C̃)
are defined, then STTw(C)=ST(Jac(C̃)), and for every twist C ′ of C , the Sato–Tate
group ST(Jac(C ′)) is a subgroup of ST(Jac(C̃)).

Remark 2.7. Let C0
2 and C0

3 be the two curves defined in Section 1A. If C̃ is a
twist of C0

2 (resp. C0
3 ) such that ST(C̃)= J (O) (resp. J (D6)), then (2-4) is satisfied.

It follows that STTw(C0
2)= J (O) and STTw(C0

3)= J (D6).

3. Squares of CM elliptic curves

We shall work in the category of abelian varieties up to isogeny, so we call the
elements of Hom(A, B)⊗Q homomorphisms, the elements of End(A)⊗Q endo-
morphisms, and the surjective elements in Hom(A, B)⊗Q isogenies.

We henceforth assume that A is an abelian variety over k such that AQ ∼ E2
Q

,
where E is an elliptic curve defined over k with CM by an imaginary quadratic
field M (except in Section 3D, where we do not assume E has CM). Let L/k be the
minimal extension over which all the homomorphisms from EQ to AQ are defined,
and let K/k be the minimal extension over which all the endomorphisms of AQ are
defined. We note that k M ⊆ K ⊆ L , and we have Hom(EQ, AQ)' Hom(EL , AL)

and AL ∼ E2
L .

3A. The Galois modules Hom(EL, AL) and End(AL). Let σ and σ denote the
two embeddings of M into Q. Consider

Hom(EL , AL)⊗M,σ Q and End(AL)⊗M,σ Q,

where the tensor products are taken via the embedding σ : M ↪→ Q. If we let
Gal(L/k M) act trivially on Q and naturally on Hom(EL , AL), these products
become Q[Gal(L/k M)]-modules of dimensions 2 and 4, respectively, over Q, and
similarly for σ .

Definition 3.1. Let θ := θM,σ (E, A) (resp. θM,σ (A)) denote the representation af-
forded by the module Hom(EL , AL)⊗M,σ Q (resp. End(AL)⊗M,σ Q), and similarly
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define θ := θM,σ (E, A) and θM,σ (A). Let θQ := θQ(E, A) (resp. θQ(A)) denote
the representation afforded by the Q[Gal(L/k)]-module Hom(EL , AL)⊗Q (resp.
End(AL)⊗Q).

For each τ ∈ Gal(L/k M), we write

det(1− θ(τ )T )= 1+ a1(θ)(τ )T + a2(θ)(τ )T 2,

where a1(θ)= Tr θ and a2(θ)= det(θ) are elements of M . Observe that

Tr θQ(τ )= TrM/Q Tr θ(τ ) if τ ∈ Gal(L/k M). (3-1)

For z ∈ M , let |z| :=
√
σ(z)σ (z).

Proposition 3.2. There is an isomorphism of Q[Gal(L/k M)]-modules

End(AL)⊗M,σ Q'
(
Hom(EL , AL)⊗M,σ Q

)∗
⊗Hom(EL , AL)⊗M,σ Q.

Thus Tr θM,σ (A) = Tr θM,σ (E, A) · Tr θM,σ (E, A) = |Tr(θ)|2 ∈ Q, and therefore
θM,σ (A)' θM,σ (A).

Proof. Consider the natural inclusion of Q[Gal(L/k M)]-modules

End(AL)⊗M,σ Q ↪→ HomQ

(
Hom(EL , AL)⊗M,σ Q,Hom(EL , AL)⊗M,σ Q

)
,

which sends an element ψ in End(AL)⊗M,σ Q to the linear map of Q-vector spaces
that sends f in Hom(EL , AL)⊗M,σ Q to ψ ◦ f in Hom(EL , AL)⊗M,σ Q. Both
spaces have dimension 4 over Q, and thus must be isomorphic as Q[Gal(L/k M)]-
modules. �

Let π : Gal(L/k M)→ Gal(K/k M) be the natural projection. For each τ in
Gal(L/k M), let s = s(τ ) denote the order of τ and let r = r(τ ) denote the order of
π(τ) in Gal(K/k M). The possible values of r are 1, 2, 3, 4, and 6; see [Fité et al.
2012, §4.5].

Proposition 3.3. Suppose τ ∈ Gal(L/k) does not lie in Gal(L/k M). Then the
eigenvalues of θQ(E, A)(τ ) are as follows:

s = 2 : −1,−1, 1, 1 s = 8 : ζ8, ζ
3
8 , ζ

5
8 , ζ

7
8

s = 4 : i, i,−i,−i s = 12 : ζ12, ζ
5
12, ζ

7
12, ζ

11
12

s = 6 : ζ3, ζ
2
3 , ζ6, ζ

5
6

Here, ζr stands for an r-th root of unity.

Proof. We can assume that k M/k is quadratic; otherwise there is nothing to prove.
We first show the following properties of θQ(E, A):

(i) The least common multiple of the orders of the eigenvalues of θQ(E, A)(τ ) is
equal to s.
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(ii) If τ ∈ Gal(L/k) \Gal(L/k M), then Tr θQ(E, A)(τ )= 0.

It follows from the definition of L/k that the representation θQ(E, A) is faithful,
which implies (i). Let χ be the quadratic character of Gal(L/k) associated to
the quadratic extension k M/k. Then E ⊗ χ ∼k E (and, in fact, A ⊗ χ ∼k A),
which implies that Hom(EL , AL) = Hom(EL , AL)⊗ χ (by [Mazur et al. 2007,
Proposition 1.6], for example). This proves (ii).

For s = 2, 6, 8, 12, the proposition follows from (i) and (ii). For s = 4, (i) implies
that i is an eigenvalue of θQ(E, A)(τ ), and (ii) leaves just two possibilities for the
four eigenvalues: i,−i, 1,−1, or i,−i, i,−i . We now show that only the latter can
arise. The eigenvalues of θQ(E, A)(τ ) are quotients of roots of Lp(E, T ) and roots
of Lp(A, T ), where p is a prime of k, inert in k M , of good reduction for A and E .
We can further assume that p has absolute degree 1. Then Lp(E, T )= 1+ T 2, and
the polynomial Lp(A, T ) is one of the following:

(1− T 2)2, 1− T 2
+ T 4, 1+ T 4, 1+ T 2

+ T 4, (1+ T 2)2. (3-2)

In no case can both 1 and i arise as quotients of a root of Lp(E, T )= 1+ T 2 and
roots of Lp(A, T ). �

In view of Proposition 3.2, we write θM(A) for θM,σ (A)' θM,σ (A).

Proposition 3.4. For each τ ∈ Gal(L/k M), we have

Tr θM(A)(τ )= 2+ ζr + ζ r .

Proof. It follows from [Fité et al. 2012, Proposition 9] that the eigenvalues of
θQ(A)(τ ) are 1, 1, 1, 1, ζr , ζr , ζ r , ζ r . Equation (3-1) leaves three possibilities
for the eigenvalues of θM(A): they must be either 1, 1, ζr , ζ r , or 1, 1, ζr , ζr , or
1, 1, ζ r , ζ r . By Proposition 3.2, Tr θM(A) is rational, so only the first possibility
can occur. �

3B. Equidistribution for Frobenius conjugacy classes. We first recall the well-
known notion of equidistribution on a compact topological space X (see [Serre 1998,
Chapter 1]). Let C(X) denote the Banach space of continuous, complex valued
functions f on X , with norm ‖ f ‖ = supx∈X | f (x)|. Let µ be a Radon measure
on X , a continuous linear form on C(X). Let {xi }i≥1 be a sequence of points of
X . The sequence {xi }i≥1 is said to be equidistributed with respect to µ if for every
f ∈ C(X), we have

µ( f )= lim
m→∞

1
m

m∑
i=1

f (xi ).

Note that if {xi }i≥1 is equidistributed with respect to µ, then µ is positive and
has total mass 1. We are particularly interested in the case where X is an interval
I of R. In this case, the n-th moment Mn[µ] of µ is the value µ(ϕn), where ϕn is
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the function of C(I ) defined by ϕn(z) = zn . Analogously, the n-th moment of a
sequence {xi }i≥1 on I , if it exists, is defined by

Mn[{xi }i≥1] = lim
m→∞

1
m

m∑
i=1

xn
i .

Thus if the sequence {xi }i≥1 is equidistributed with respect to µ on I , then its n-th
moment exists and is equal to Mn[µ].

Let F/k be a field extension, and let PEF denote the set of primes of F at which
the elliptic curve EF has good reduction. We write the normalized L-polynomial
for EF at a prime p of PEF as

Lp(EF , T )= 1+ a1(EF )(p)T + T 2.

Choose an ordering by norm {pi }i≥1 of PEF , that is, an ordering for which
‖p‖i ≤ ‖p‖ j for all 1≤ i ≤ j , and let a1(EF ) denote the sequence

{a1(EF )(pi )}i≥1

of real numbers in the interval [−2, 2]. Equidistribution statements about a1(EF )

do not depend on the particular ordering by norm we have chosen.
Until the end of this section, we assume that F contains k M . We begin by

recalling classical results of Hecke and Deuring that yield equidistribution for
a1(EF ) with respect to the measure

µcm =
1
π

dz
√

4− z2
,

supported on [2,−2]. Here dz denotes the restriction of the Lebesgue measure on
R to the interval [−2, 2]. The measure µcm is uniquely characterized by the fact
that it is continuous and its n-th moment is bn := b0,n (as in Theorem 1.4).

We actually require a slightly stronger equidistribution statement than the one
above. Let c be a Frobenius conjugacy class of an arbitrary finite Galois extension
F ′/F , and let Pc denote the set of primes in PEF that are unramified in F ′ and
whose Frobenius conjugacy class is c. We will show that the subsequence a1,c(EF )

of a1(EF ) obtained by restricting to the primes in Pc is also equidistributed with
respect to µcm.

Remark 3.5. Henceforth, for a compact group G, let µ(G) denote its Haar measure.
In terms of the (generalized) Sato–Tate conjecture, the measure µcm is seen as
81,∗(µ(ST(EF ))), where 81 is the trace map defined in (1-1) and ST(EF )=U(1).
Recall that the Sato–Tate group ST(E) of an elliptic curve E defined over k with
CM by M is U(1) (embedded in SU(2)) if M is contained in k, and the normalizer
of U(1) in SU(2) if M is not contained in k.
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We follow the presentation in [Gross 1980, Chapter 1]. Let p be a prime of F of
good reduction for EF . Let Fp denote the algebraic closure of the residue field of
F at p. The image of the injection

End(EQ)⊗Q= M ↪→ End(EFp
)⊗Q

contains the Frobenius endomorphism Frp : EFp
→ EFp

, which acts on a point by
raising its coordinates to the q-th power, where q=‖p‖. Let α(p) :=α(EF )(p)∈M∗

denote the preimage of Frp under this injection. Since the characteristic polynomial
of Frp is reciprocal to the L-polynomial of EF at p, we have

a1(EF )(p)=−
1
‖p‖1/2

(
σ(α(p))+ σ(α(p))

)
. (3-3)

For any place v of F , let Fv denote the completion of F at v and let Ov denote
the ring of integers of Fv. Let IF =

∏
′

v Fv denote the group of idèles of F . Here
the product runs over all places v of F , and the prime means that if s= (sv) belongs
to IF , then sv is in O∗v for all but finitely many v. We write vp for the valuation
associated to a finite prime p of F . We then attach to EF the group homomorphism

χEF : IF → M∗

uniquely characterized by the following three properties:

(i) Ker(χEF ) is an open subgroup of IF .

(ii) If s= (a) is a principal idèle (a ∈ F∗), then χEF (s)= NF/M(a).

(iii) If s= (sv) is an idèle with sv = 1 at all infinite places of F and at those finite
places where EF has bad reduction, then

χEF (s)=
∏
vp

α(p)vp(sp).

3B1. The 1-dimensional `-adic representation attached to EF . Fix a prime ` dif-
ferent from the characteristic of Fp and an embedding of Q into Q`, and let V`(EF )

denote the (rational) `-adic Tate module of EF . Define

Vσ (E) := V`(EF )⊗M,σ Q`, (3-4)

where the tensor product is taken via the embedding M ↪→ Q` induced by σ .
Similarly define Vσ (E). We then have an isomorphism of Q`[G F ]-modules:

V`(EF )⊗Q` ' Vσ (E)⊕ Vσ (E). (3-5)

Let %`,σ : G F → Aut(Vσ (E)) denote the `-adic character corresponding to the
action of G F on Vσ (E). If Frobp is an arithmetic Frobenius at p in G F , then the
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value of %`,σ (Frobp) is σ(α(p)). Define

ψ`,σ : IF →
(
M ⊗M,σ Q`

)∗
, ψ`,σ (s)= χEF (s)⊗

(
NF/M(s

−1)
)
`
,

where for an idèle s in IF , the component of the idèle NF/M(s) in IM corresponding
to the place w is

∏
v|w NFv/Mw

(sv), where the product runs over all places v of
F lying over w. We then have ψ`,σ (F∗) = 1, by property (ii). Thus ψ`,σ is a
continuous character on the group CF = IF/F∗ of classes of idèles. Since its
image is totally disconnected, it is a character of CF/C0

F , where C0
F is the identity

component of CF . Artin reciprocity yields an isomorphism Rec : Gab
F → CF/C0

F .
Property (iii) then implies that ψ`,σ ◦Rec(Frobp)= σ(α(p)), and thus

ψ`,σ ◦Rec(Frobp)= %`,σ (3-6)

as `-adic characters of G F .

3B2. The Hecke character attached to EF . A Hecke character of F is a continuous
homomorphism ψ : IF → C∗ such that ψ(F∗) = 1. For primes p where ψ is
unramified, let ψ(p) denote ψ(s), where sp is a uniformizer of Op and sv = 1 for
v 6= p, and let ψ(p)= 0 when ψ is ramified at p. The L-function of ψ is defined as

L(ψ, s) :=
∏
p

(
1−ψ(p)‖p‖−s)−1

.

Hecke [1920] showed that if ψ is nontrivial and takes values in U(1), then L(ψ, s)
is a nonzero holomorphic function for <(s) ≥ 1. Let us fix an embedding of Q

into C, so that we may view σ and σ as embeddings of M into C. Define

ψ∞,σ : IF →
(
M ⊗M,σ C

)∗
, ψ∞,σ (s)= χEF (s)⊗

(
NF/M(s

−1)
)
∞
,

where∞ denotes the only infinite place of M . Property (ii) of χEF implies that
ψ∞,σ is a Hecke character. It is unramified at the primes of good reduction for EF ,
and we note that ψ∞,σ = ψ∞,σ . Let |z| denote the absolute value of a complex
number z and define

ψ1
∞,σ : IF → U(1), ψ1

∞,σ (s)= ψ∞,σ (s)/|ψ∞,σ (s)|.

For every prime p of good reduction for EF , let

α1(p) := α1(EF )(p) := ψ
1
∞,σ ◦Rec(Frobp)= σ(α(p))/‖p‖1/2. (3-7)

Let α1 denote the sequence {α1(pi )}i≥1.

3B3. Equidistribution statements. For a finite Galois extension F ′/F and a con-
jugacy class c of Gal(F ′/F), let Pc be as above. Let α1,c := α1,c(EF ) denote the
subsequence of α1 obtained by restricting to the primes of Pc. Our goal is to prove
the following proposition.
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Proposition 3.6. Let c be any conjugacy class of Gal(F ′/F). Then α1,c is equidis-
tributed with respect to µ(U(1)).

We first recall a theorem of Serre. Let G be a compact group and X the set of its
conjugacy classes. Let P be an infinite subset of the primes of F , and let {pi }i≥1

be an ordering by norm of P . Assume that each prime p in P has been assigned a
corresponding element xp in X .

Theorem 3.7 [Serre 1998, p. I-23]. The sequence {xpi }i≥1 is equidistributed over X
with respect to the image on X of the Haar measure of G if and only if L(%, s)
is holomorphic and nonzero for <(s) ≥ 1 for every irreducible and nontrivial
representation % of G. Here L(%, s) stands for the infinite product∏

p∈P

det
(
1− %(xp)‖p‖−s)−1

.

We now use Theorem 3.7 to prove Proposition 3.6.

Proof. We first reduce to the case that F ′/F is abelian (in fact, cyclic). Let τ be an
element of c, and let f denote its order. Define

I (τ )=
{
i ∈ {0, 1, . . . , f − 1} | [τ i

] = c
}
.

Let H be the subfield of F ′ fixed by 〈τ 〉. The residue degree over F of a prime P

of H lying over p ∈ Pc is 1, and thus α1(EH )(P)= α1(EF )(p). Then α1,c(EF ) is
the disjoint union ⊔

i∈I (τ )

α1,τ i (EH ),

where we identify τ i with its conjugacy class in the cyclic group Gal(F ′/H). To
show that α1,c = α1,c(EF ) is µ(U(1))-equidistributed, it suffices to show that all its
subsequences α1,τ i (EH ) are (any sequence that can be partitioned into a finite set of
subsequences that are all equidistributed with respect to a fixed common measure
is clearly equidistributed with respect to the same measure), and if we assume the
proposition holds for abelian extensions, then this is true.

So suppose that F ′/F is abelian, and define G := U(1)×Gal(F ′/F) and xp :=
α1(p)× Frobp for each prime in PEF unramified in F ′/F . Since for such a prime,
xp ∈ U(1)× {c} if and only if p ∈ Pc, proving the proposition is equivalent to
showing that {xpi }i≥1 is equidistributed over the set X of conjugacy classes of G
with respect to the measure induced by the Haar measure of G. The irreducible
characters of G are of the form φa ⊗ χ , where φa : U(1)→ C∗ is a character of
U(1), which is of the form φa(z)= za for some integer a, and χ is an irreducible
character of Gal(F ′/F), which is 1-dimensional since Gal(F ′/F) is abelian. By
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Theorem 3.7, it is enough to show that if φa ⊗χ is nontrivial, then

L(φa ⊗χ, s)=
∏
p

(
1−ψ1

∞,σ (p)
aχ(p)‖p‖−s)−1

is holomorphic and nonzero for <(s) ≥ 1. Via Artin reciprocity, we may view
(ψ1
∞,σ )

a
⊗χ as a Hecke character (with values in U(1)), and then L(φa ⊗χ, s) is

equal, up to a finite number of factors, to the Hecke L-function L((ψ1
∞,σ )

a
⊗χ, s),

which is holomorphic and nonzero for <(s)≥ 1. �

Recalling that
µcm =

1
π

dz
√

4− z2

supported on [−2, 2] is the image by 81 of the Haar measure of U(1), we obtain
the following.

Corollary 3.8. Let E be an elliptic curve defined over k with CM by an imaginary
quadratic field M. Let F be any field containing k M , let F ′/F be a finite Galois
extension, and let c be a conjugacy class of Gal(F ′/F). Then:

(i) The sequence a1,c(EF ) is equidistributed with respect to the measure µcm.

(ii) Mn[a1,c(EF )] =Mn[a1(EF )].

3C. Equidistribution of a1(A) and a2(A). As in Section 3A, A is an abelian
surface defined over k with AQ ∼ E2

Q
, where E is an elliptic curve defined over k

with CM by M , and we have the tower of fields k M ⊆ K ⊆ L , where L/k is the
minimal extension over which all the homomorphisms from AQ to EQ are defined,
and K/k is the minimal extension over which all the endomorphisms of AQ are
defined.

For any field extension F/k, let PAF denote the set of primes of F at which AF

has good reduction. For p in PAF , we write the normalized L-polynomial for AF at
p as

Lp(AF , T )= 1+ a1(AF )(p)T + a2(AF )(p)T 2
+ a1(AF )(p)T 3

+ T 4.

Let P be the set of primes lying in PAF and PEF that are unramified in FL .
Choose an ordering by norm {pi }i≥1 of P , and let a1(AF ) and a2(AF ) denote the
sequences

{a1(AF )(pi )}i≥1, {a2(AF )(pi )}i≥1,

respectively. In this section, we use the results in Sections 3A and 3B to prove
equidistribution for a1(A) and a2(A).

Lemma 3.9. Let p be a prime of good reduction for A and E that splits in k M and
is unramified in L.
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(i) With u1 = Re a1(θ)(Frobp) and u2 = Im a1(θ)(Frobp), we have

a1(A)(p)= u1a1(E)(p)± u2

√
4− a1(E)(p)2.

(ii) With v1 = Re a2(θ)(Frobp) and v2 = Im a2(θ)(Frobp), we have

a2(A)(p)= v1a1(E)(p)2− 2v1+ |a1(θ)(Frobp)|2∓ v2a1(E)(p)
√

4− a1(E)(p)2.

Proof. Define Vσ (A) and Vσ (A) as in (3-4). We then have the following isomor-
phism of Q`[Gk M ]-modules:

V`(Ak M)⊗Q` ' Vσ (A)⊕ Vσ (A).

By arguments analogous to those in [Fité 2013, Theorem 3.1], we have

Vσ (A)' θM,σ (E, A)⊗ Vσ (E), Vσ (A)' θM,σ (E, A)⊗ Vσ (E).

Thus there is an isomorphism of Q`[Gk M ]-modules:

V`(A)⊗Q` ' θM,σ (E, A)⊗ Vσ (E)⊕ θM,σ (E, A)⊗ Vσ (E). (3-8)

To shorten notation, we write α1(p) for α1(Ek M)(p) = σ(α(Ek M)(p))/‖p‖
1/2,

as defined in (3-7). Then α1(p)= σ(α(Ek M)(p))/‖p‖
1/2, and (3-8) implies that

a1(Ak M)(p)=−a1(p)α1(p)− a1(p)α1(p),

a2(Ak M)(p)= a2(p)α1(p)
2
+ a2(p)α1(p)

2
+ a1(p)a1(p),

(3-9)

where ai (p) denotes ai (θ)(Frobp). The proposition then follows from the fact that
a1(Ek M)(p)=−α1(p)−α1(p). �

Proposition 3.10. For τ ∈ Gal(L/k M), let u(τ )= |a1(θ)(τ )|. Then a1(Ak M) and
a2(Ak M) are equidistributed with respect to the measures

(i) µ(a1(Ak M)) :=
1

[L : k M]
1
π

∑
τ

dz√
4u(τ )2− z2

1[−2u(τ ),2u(τ )],

(ii) µ(a2(Ak M)) :=
1

[L : k M]
1
π

∑
τ

dz√
4− (u(τ )2− z)2

1[u(τ )2−2,u(τ )2+2],

whose support lies in the intervals I1 = [−4, 4] and I2 = [−6, 6], respectively. In
each sum, τ ranges over Gal(L/k M) and 1[a,b] is the characteristic function of the
interval [a, b] ⊆ R. Moreover, we have

(i) Mn[a1(Ak M)] =
1

[L : k M]

∑
τ

b0,nu(τ )n ,

(ii) Mn[a2(Ak M)] =
1

[L : k M]

∑
τ

bu(τ )2,n ,

where the integer bm,n is the coefficient of Xn in (X2
+m X + 1)n .
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Proof. We can rewrite the equations in (3-9) as follows:

a1(Ak M)(p)= |a1(p)|

(
−a1(p)

|a1(p)|
α1(p)+

−a1(p)

|a1(p)|
α1(p)

)
,

a2(Ak M)(p)= |a2(p)|

(
a2(p)

1/2

|a2(p)|1/2
α1(p)+

a2(θ)
1/2

|a2(p)|1/2
α1(p)

)2

− 2|a2(p)| + |a1(p)|
2

=
(
a2(p)

1/2α1(p)+ a2(p)
1/2
α1(p)

)2
− 2+ |a1(p)|

2,

where ai (p) denotes ai (θ)(Frobp), and we have used |a2(p)| = 1. The equidistri-
bution statements now follow from the Chebotarev density theorem and two facts
below:

(1) For any z ∈U(1) and any conjugacy class c of Gal(L/k M), the sequence zα1,c is
µ(U(1))-equidistributed on U(1). Indeed, Proposition 3.6 ensures equidistribution
of α1,c, and invariance under translations is in fact the defining property of the Haar
measure. Thus the sequence zα1,c + zα1,c is µcm-equidistributed on I1(Ek M) =

[−2, 2].

(2) If a sequence β = {βi }i≥1 is µcm-equidistributed on [−2, 2], then for u ∈ R>0:

• The sequence uβ is equidistributed on [−2u, 2u] with respect to the measure

1
π

dz
√

4u2− z2
.

• The sequence {β2
i − 2+ u2

}i≥1 is equidistributed on [u2
− 2, u2

+ 2] with
respect to the measure

1
π

dz√
4− (u2− z)2

.

Regarding the moments, the Chebotarev density theorem implies that

Mn[a1(Ak M)] =
1

[L : k M]

∑
τ

|a1(θ)(τ )|
n
·Mn

[
z([τ ])α1+ z([τ ])α1 | P[τ ]

]
,

where z([τ ])=−a1(θ)(τ )/|a1(θ)(τ )|. But now (1) implies that

Mn
[
z([τ ])α1+ z([τ ])α1 | P[τ ]

]
= b0,n.

The same argument is used to compute

Mn[a2(Ak M)] =
1

[L : k M]

∑
τ

n∑
i=0

(n
i

)(2i
i

)(
|a1(θ)(τ )|

2
− 2

)n−i
.
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One then applies

n∑
i=0

(n
i

)(2i
i

)
(m− 2)n−i

= [Xn
]
(
(X + 1)2+ (m− 2)X

)n

= [Xn
](X2
+m X + 1)n = bm,n,

where [Xn
] f (X) denotes the coefficient of Xn in the polynomial f (X). �

We now generalize the definitions of o(r) and o(s) given in Section 1B for k=Q.

Definition 3.11. Let o(r) count the elements in Gal(L/k M) whose projection in
Gal(K/k M) has order r . Let o(s) count the elements in Gal(L/k) \Gal(L/k M)
of order s.

If k = k M , the sequence ai (A) is equidistributed with respect to µ(ai (Ak M))

and Mn[ai (A)] =Mn[ai (Ak M)], for i = 1, 2.

Corollary 3.12. Suppose k 6= k M. Then a1(A) and a2(A) are equidistributed with
respect to the measures

(i) µ(a1(A)) := 1
2µ(a1(Ak M))+

1
2δ0,

(ii) µ(a2(A)) := 1
2µ(a1(Ak M))

+
1

2[L : k M]

(
ō(2)δ2+ ō(4)δ−2+ ō(6)δ−1+ ō(12)δ1

)
,

whose support lies in the intervals I1 = [−4, 4] and I2 = [−6, 6], respectively. Here
δz denotes the Dirac measure at z. We also have

(i) Mn[a1(A)] =
1
[L : k]

(
o(1)2n

+ o(3)+ o(4)2n/2
+ o(6)3n/2)b0,n,

(ii) Mn[a2(A)] =
1
[L : k]

(
o(1)b4,n + o(2)b0,n + o(3)b1,n + o(4)b2,n + o(6)b3,n

+ ō(2)2n
+ ō(4)(−2)n + ō(6)(−1)n + ō(12)

)
.

Proof. We focus on the proof of the statements about the moments, since the argu-
ments involved suffice to deduce the statements about the measures. Statement (i)
follows from Propositions 3.2, 3.4, and 3.10, and the equality

M2n[a1(Ak M)] = 2 ·M2n[a1(A)],

which follows from the fact that if p is a prime of k, where A has good reduction
and p is inert in k M , then A is supersingular at p and a1(A)(p)= 0.

For (ii), let ν denote the nontrivial conjugacy class of Gal(k M/k). Note that

Mn[a2(A)] = 1
2 Mn[a2(A) | P1] +

1
2 Mn[a2(A) | Pν].
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To compute Mn[a2(A) | P1] =Mn[a2(Ak M)], we apply Proposition 3.10. We then
claim that

Mn[a2(Ak) | Pν] =
1

[L : k M]

(
o(2)2n

+ o(4)(−2)n + o(6)(−1)n + o(12)
)
.

We may restrict to primes p of k that are inert in k M , of absolute residue degree 1,
and of good reduction for both A and E . The polynomial Lp(A, T ) must then be
one of the five listed in (3-2).

We now consider the Rankin–Selberg polynomial Lp

(
E, θQ(E, A), T

)
, whose

roots are all products of roots of Lp(E, T )= 1+T 2, and all roots of the polynomial
det
(
1−θQ(E, A)(Frobp)T

)
. More explicitly, if s is the order of Frobp in Gal(L/k),

one may apply Proposition 3.3 to compute Lp

(
E, θQ(E, A), T

)
. This yields:

s = 2 : (1+ T 2)4 s = 6 : (1− T 2
+ T 4)2 s = 12 : (1+ T 2

+ T 4)2

s = 4 : (1− T 2)4 s = 8 : (1+ T 4)2

By arguments analogous to those of [Fité 2013, Theorem 3.1], there is an inclusion
of Q`[Gk]-modules

V`(A)⊆ V`(E)⊗ θQ(E, A).

This implies that Lp(A, T ) divides Lp(E, θQ(E, A), T ). It immediately follows
that Lp(A, T ) is

s = 2 : (1+ T 2)2 s = 6 : 1− T 2
+ T 4 s = 12 : 1+ T 2

+ T 4

s = 4 : (1− T 2)2 s = 8 : 1+ T 4

Finally, we observe that the condition Lp(A, T ) divides Lp(E, θQ(E, A), T ) implies
that s can not attain any value other than the ones considered. �

3D. Additional remarks. As noted in the introduction, all 32 of the genus-2 Sato–
Tate groups with identity component isomorphic to U(1) can arise as the Sato–Tate
group of an abelian variety A defined over k with AQ ∼ E2

Q
, where E is an elliptic

curve defined over k (with CM).
However, not all 10 of the genus-2 Sato–Tate groups with identity component

isomorphic to SU(2) can arise as the Sato–Tate group of an abelian variety A
defined over k such that AQ ∼ E2

Q
, where E is an elliptic curve defined over k

(without CM).8 The Sato–Tate groups for which this is not true are the four whose
component group contains an element of order 4 or 6. Indeed, recall that θQ(E, A)
and θQ(A) are the representations afforded by Hom(EL , AL)⊗Q and End(AL)⊗Q.
As in the proof of Proposition 3.2, one can then show that θQ(A) = θQ(E, A)⊗2,

8All Sato–Tate groups with identity component SU(2) can occur for an A over k such that
A

Q
∼ E2

Q
for some elliptic curve E , but this curve need not be defined over k.
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that is, a1(θQ(A)) = a1(θQ(E, A))2. But if τ ∈ Gal(K/k) has order 4 or 6, then
a1(θQ(A))(τ )= 2 or 3, which are not squares in Q.

We end this section by computing the density z1(Ak) of zero traces of an abelian
variety A defined over k such that AQ ∼ E2

Q
for some elliptic curve E defined

over Q.

Lemma 3.13. Let A be an abelian variety defined over k such that AQ∼ E2
Q

, where
E is an elliptic curve defined over Q (not necessarily over k). Let M denote the CM
field if E has CM, and let M =Q otherwise. Then

z1(Ak)=


o(2)

|Gal(L/k M)|
if [k M : k] = 1,

1
2
+

1
2

o(2)
|Gal(L/k M)|

if [k M : k] = 2.

Proof. Except for a set of density zero, any prime p of k that does not split in k M is
supersingular, in which case a1(A)(p)= 0. This gives density 0 in the first case and
density 1

2 in the second case. Among the primes that split in k M , we wish to show
that exactly the proportion o(2)/|Gal(L/k M)| have trace 0. Among these primes,
the density of the supersingular primes is zero. Let p be a nonsupersingular prime
of good reduction for A that splits in k M . From Remark 4.8 in [Fité et al. 2012] in
the non-CM case, and from Proposition 3.4 in the CM case, the roots of Lp(A, T )
are α, α, ζrα, ζ rα, where r is the order of Frobp in Gal(K/k) and where α/α is
not a root of unity. It follows that α+α+ ζrα+ ζ rα = 0 if and only if r = 2. One
then applies the Chebotarev density theorem. �

4. Twists of y2 = x5− x and y2 = x6+ 1

In this section, we strengthen the results of Section 3 in the particular case that
k =Q and A∼Q Jac(C), where C is a twist of the curve y2

= x5
−x or y2

= x6
+1.

We first introduce some convenient notation. Let C0
2 and C0

3 denote the curves
defined over Q by the equations

C0
2 : y2

= x6
− 5x4

− 5x2
+ 1, C0

3 : y2
= x6
+ 1.

The curve C0
2 is a twist of y2

= x5
− x , as one may verify by computing their

respective Igusa invariants, as defined in [Igusa 1960]. As shown below, the
Jacobian of C0

2 is Q-isogenous to the square of an elliptic curve defined over Q, a
property that the curve y2

= x5
− x does not enjoy. We also note that the minimal

field of definition of the endomorphisms of the Jacobian of C0
2 is Q(

√
−2), but for

y2
= x5
− x it is Q(i,

√
−2).

Let E0
2 and E0

3 denote the elliptic curves defined over Q by the equations

E0
2 : Y 2

= X3
− 5X2

− 5X + 1, E0
3 : Y 2

= X3
+ 1.
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We note that j (E0
2)= 2653 and j (E0

3)= 0, and thus E0
2 has CM by Q(

√
−2) and

E0
3 has CM by Q(

√
−3).

To simplify notation, throughout this section d denotes either 2 or 3, and we
write C0 for C0

d , E0 for E0
d , and M for Q(

√
−d). We use C to denote a twist of

C0 defined over Q. In the context of Section 3, we are specializing AQ ∼ E2
Q

to
the case where A = Jac(C) and E = E0, as we now show.

4A. Fields of definition of isomorphisms.

Lemma 4.1. Jac(C0
d) is Q-isogenous to (E0

d)
2.

Proof. We proceed as in the proof of Lemma 4.1 in [Fité and Lario 2013]. The
quotient of C0

d by the nonhyperelliptic involution α(x, y)= (−x, y) is precisely the
elliptic curve E0

d , and thus Jac(C0
d)∼Q E0

d × E , where E is also an elliptic curve
defined over Q. The automorphism γ (x, y)= (1/x, y/x3) does not commute with α,
which implies that End(Jac(C0)) is nonabelian, and therefore Jac(C0

d)∼Q (E0
d)

2.
�

Lemma 4.2. The minimal number field over which all the automorphisms of CQ are
defined coincides with the minimal number field over which all the endomorphisms
of Jac(C)Q are defined.

Proof. Let Ka (resp. Ke) denote the minimal number field over which all the
automorphisms of CQ (resp. all the endomorphisms of Jac(C)Q) are defined. The
fact that Aut(CKa ) is nonabelian and contains a nonhyperelliptic involution implies
that Jac(C)Ka ∼ E2, where E is an elliptic curve defined over Ka . Since E has CM
by M , it follows that Ke= Ka M . But [Cardona 2001, Proposition 7.3.1] asserts that
M =Q(

√
−3) is already contained in Ka if C is a twist of C0

3 , whereas [Cardona
2006, Proposition 8] states that M =Q(

√
−2) is already contained in Ka if C is a

twist of C0
2 . �

We use K to denote the field given by Lemma 4.2. We note that K is a Galois
extension of Q, and we have M ⊆ K , with equality in the case C = C0.

Lemma 4.3. Let φ be an isomorphism from C0
Q

to CQ. The following number fields
coincide:

(i) the minimal field over which all isomorphisms from C0
Q

to CQ are defined;

(ii) the compositum of K (or even just M) and the minimal field Lφ over which φ
is defined;

(iii) the minimal field over which all homomorphisms from Jac(C0)Q to Jac(C)Q
are defined;

(iv) the minimal field over which all homomorphisms from E0
Q

to Jac(C)Q are
defined.
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Proof. Let L1, L2, L3, and L4 denote the fields defined by (i), (ii), (iii), and (iv),
respectively. Any isomorphism ψ from C0

Q
to CQ can be written as ψ = α ◦ φ

and φ ◦ α0 for some α ∈ Aut(CK ) and some α0
∈ Aut(C0

M). This implies that
L1 ⊆ MLφ ⊆ K Lφ = L2. Conversely, for any α0

∈Aut(C0
M) and α ∈Aut(CK ), the

compositions α ◦ φ and φ ◦ α0 are isomorphisms from C0
Q

to CQ. It follows that
L2 ⊆ L1. Thus we have shown L1 = MLφ = K Lφ = L2.

The isomorphism from C0
Lφ to CLφ induces an isogeny Jac(C0)Lφ ∼ Jac(C)Lφ ,

which we also denote by φ. Any homomorphism from Jac(C0)Q to Jac(C)Q
can be written as ψ ◦ φ for some ψ ∈ End(Jac(C)Q) ⊗ Q. This implies that
L3 ⊆ LφK , LφM = L2. Conversely, it is clear that L1 is contained in L3.

Any endomorphism φ from Jac(C0)Q to Jac(C)Q can be written as φ2 ◦ φ1,
where φ1 ∈ Hom(Jac(C0), (E0)2) ⊗ Q and φ2 ∈ (Hom(E0

L4
, Jac(C)L4) ⊗ Q)2.

Thus L3 ⊆ L4. Conversely, any homomorphism from E0
Q

to Jac(C)Q can be
written as φ2 ◦φ1, where φ1 ∈ Hom(E0, Jac(C0))⊗Q and φ2 is an element of
Hom(Jac(C0)L3, Jac(C)L3)⊗Q. Thus L4 ⊆ L3. �

We use L to denote the field given by Lemma 4.3, and we note that L is a Galois
extension of Q that contains K .

Remark 4.4. If A is the abelian three-fold E0
×Jac(C), we observe that L coincides

with the minimal field over which all the endomorphisms of AQ are defined. It
follows that the component group of ST(A) is isomorphic to Gal(L/Q).

4B. The Galois module Hom(E0
L, Jac(C)L). We now compute θM,σ (E0, Jac(C)),

strengthening Lemma 3.9 in the case where A ∼Q Jac(C). We take advantage of
the following fact: the group Gal(L/Q) is isomorphic to a subgroup of GC0 :=

Aut(C0
M)oGal(M/Q). Here the action of Gal(M/Q) on Aut(C0

M) is the natural
one (see [Fité and Lario 2013, §2]).

More precisely, let φ : CL → C0
L be an isomorphism. Then

λφ : Gal(L/Q) ↪→ GC0, λφ(σ )=
(
φ(σφ)−1, πL/M(σ )

)
is a monomorphism of groups, where πL/M :Gal(L/Q)→Gal(M/Q) is the natural
projection, as in [Fité and Lario 2013, Lemma 2.1]. Now let

ResQ
M λφ : Gal(L/M) ↪→ Aut(C0

M)

be the restriction of λφ at Gal(L/M). Consider the 2-dimensional M-rational
representation

θE0,C0 : Aut(C0
M)→ AutQ

(
Hom(E0

M , Jac(C0)M)⊗M,σ Q
)

defined by θE0,C0(α)(ψ)= α ◦ψ . As in [Fité and Lario 2013, Theorem 2.1], one
then has

θE0,C0 ◦ResQ
M λφ ' θM,σ (E0, Jac(C)), (4-1)



Sato–Tate distributions of twists of y2= x5 -- x and y2= x6+1 567

Class 1a 2a 2b 3a 4a 6a 8a 8b
Size 1 1 12 8 6 8 6 6
χ1 1 1 1 1 1 1 1 1
χ2 1 1 −1 1 1 1 −1 −1
χ3 2 2 0 −1 2 −1 0 0
χ4 2 −2 0 −1 0 1

√
−2 −

√
−2

χ5 2 −2 0 −1 0 1 −
√
−2

√
−2

χ6 3 3 1 0 −1 0 −1 −1
χ7 3 3 −1 0 −1 0 1 1
χ8 4 −4 0 1 0 −1 0 0

Table 1. Character table of Aut((C0
2)M)' 〈48, 29〉.

Class 1a 2a 2b 2c 3a 4a 6a 6b 6c
Size 1 1 2 6 2 6 2 2 2
χ1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 −1 1 −1 1 1 1
χ3 1 1 −1 −1 1 1 −1 −1 1
χ4 1 1 −1 1 1 −1 −1 −1 1
χ5 2 2 −2 0 −1 0 1 1 −1
χ6 2 −2 0 0 2 0 0 0 −2
χ7 2 2 2 0 −1 0 −1 −1 −1
χ8 2 −2 0 0 −1 0 −

√
−3

√
−3 1

χ9 2 −2 0 0 −1 0
√
−3 −

√
−3 1

Table 2. Character table of Aut((C0
3)M)' 〈24, 8〉.

where θM,σ (E0, Jac(C)) is the representation of Gal(L/M) in Definition 3.1.

Lemma 4.5. Let C be a twist of C0. Then

Tr θE0,C0 =

{
χ4 or χ5 if C0

= C0
2 (see Table 1),

χ8 or χ9 if C0
= C0

3 (see Table 2).

Proof. A glance at Tables 1 and 2 tells us that any M-rational faithful representation
of degree 2 must have trace χ4 or χ5 when C0

=C0
2 , or trace χ8 or χ9 when C0

=C0
3 .

The two possibilities in each case correspond to the two different embeddings of
M into Q. �

Proposition 4.6. The index of K in L is at most 2.

Proof. As in Lemma 4.1, let α be the nonhyperelliptic involution α(x, y)= (−x, y)
of C0. Let E be the elliptic curve CK /〈φ

−1αφ〉 defined over K (note that φ−1αφ

is an automorphism of C , all of which are defined over K ). The isomorphism
φ : CL → C0

L induces an isomorphism φ̃ : EL → E0
L . Thus E is a K -twist of E0.
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From characterization (iii) of L in Lemma 4.3, it is clear that L is the compositum
of K and the minimal field L φ̃ over which φ̃ is defined.

When C0
= C0

2 , we have j (E) 6= 0, 1728, and by [Silverman 2009, p. 304], it
follows that φ̃ is then defined over a quadratic extension of K and [L : K ] ≤ 2.
When C0

= C0
3 , we have j (E)= 0, and in this case L = K ( 6

√
γ ), for some γ ∈ K .

Let L0 = K (
√
γ ). It suffices to show that 3

√
γ ∈ L0.

Suppose for the sake of contradiction that 3
√
γ 6∈ L0. Then Gal(L/L0) ' C3.

Lemma 4.5 then implies that if τ is a nontrivial element of Gal(L/L0), then
Tr θM,σ (E0, Jac(C))(τ ) = −1. Therefore, the restriction of the representation
afforded by the Gal(L/M)-module Hom(E0

L , Jac(C)L)⊗M,σ Q to Gal(L/L0) is

ResM
L0
θM,σ (E0, Jac(C))' χ ⊕χ,

where χ is any of the two nontrivial characters of Gal(L/L0). As in [Fité 2013,
Theorem 3.1], we have

ResM
L0
θM,σ (E0, Jac(C))⊗ Vσ (E0)' Vσ (Jac(C)),

as Q`[GL0]-modules. This implies that

Vσ (Jac(C))'
(
χ ⊗ Vσ (E0)

)
⊕
(
χ ⊗ Vσ (E0)

)
, (4-2)

as Q`[GL0]-modules. However, as seen in Lemma 4.2, Jac(C)L0 ∼ E2
L0

, which
implies the following isomorphism of Q`[GL0]-modules:

Vσ (Jac(C))' Vσ (E)2⊕. (4-3)

But now (4-2) and (4-3) together imply Vσ (E0)' χ⊗Vσ (E0), which is impossible.
(We remark that if ResM

L0
θM,σ (E0, Jac(C))' χ2⊕, one does not reach a contradic-

tion; see Example 4.12). �

Proposition 4.7. Let w be the hyperelliptic involution of C0. Then [L : K ] = 2 if
and only if (w, 1) ∈ GC0 lies in the image of λφ . If [L : K ] = 2, then the preimage
of (w, 1) by λφ is the nontrivial element ω of Gal(L/K ).

Proof. We first suppose that [L : K ] = 2. Observe that for both C0
2 and C0

3 , if
α ∈ Aut(C0

M) and Tr θE0,C0(α)=−2, then α = w. In view of the isomorphism in
(4-1), it thus suffices to prove that θM,σ (E0, Jac(C))(ω)=−2. From the proof of
Proposition 4.6, we know that Jac(C)K ∼ E2, where E is an elliptic curve defined
over K with CM by M . Fix an isomorphism ψ1 : E0

L → EL . Fix an isogeny
ψ2 : EK × EK → Jac(C)K . For i = 1, 2, let ιi : EK → EK × EK denote the natural
injection to the i-th factor. Then ψ2 ◦ ι1 ◦ψ1 and ψ2 ◦ ι2 ◦ψ1 constitute a basis of
the Q[Gal(L/M)]-module Hom(E0

L , Jac(C)L)⊗M,σ Q. The claim follows from
the fact that ωψ1 =−ψ1, ωψ2 = ψ2, and ωιi = ιi .



Sato–Tate distributions of twists of y2= x5 -- x and y2= x6+1 569

Now suppose that [L : K ] = 1. Recall the monomorphism

λφ : Gal(K/Q) ↪→ Aut(C0
M)/〈w〉oGal(M/Q)

of (2-3). The commutativity of the diagram

GC0

''
Gal(L/Q)

* 


λφ

77

Gal(K/Q) �
� λφ // GC0/〈(w, 1)〉

implies that (w, 1) does not lie in the image of λφ . �

Remark 4.8. Let H0 := λφ(Gal(L/M)). If (1, τ ) lies in the image of λφ , then
λφ(Gal(L/Q))= H0 o 〈(1, τ )〉; indeed, H0 is normal in λφ(Gal(L/Q)), since its
index is 2, and H0 ∩ 〈(1, τ )〉 is trivial. In this case, H0 is stable under the action
of Gal(M/Q). However, it is not true in general that Gal(L/Q)' H0 o 〈(1, τ )〉 or
that H0 is stable under the action of Gal(M/Q).

Proposition 4.9. For τ in Gal(L/Q), let s= s(τ ), r = r(τ ), and t = t (τ ) denote the
orders of τ , the projection of τ on Gal(K/Q), and the projection of τ on Gal(M/Q),
respectively. The following hold:

(i) The triple (s, r, t) is one of the 13 triples listed in Table 3.

(ii) If τ fixes M , then the triple (s, r, 1) determines, up to sign, the quantities

a1(θ)(τ )= Tr θM,σ (E0, Jac(C))(τ ), (4-4)

a2(θ)(τ )= det θM,σ (E0, Jac(C))(τ ), (4-5)
as specified in Table 3.

(iii) For each triple (s, r, t), let F(s,r,t) : [−2, 2] → [−4, 4] × [−2, 6] be the map
defined in Table 3. For every prime p > 3 unramified in L of good reduction
for both Jac(C) and E0, there exists a unique triple (s, r, t) such that

F(s,r,t)
(
a1(E0)(p)

)
=
(
u · a1(Jac(C))(p), a2(Jac(C))(p)

)
, (4-6)

with u=±1 (in fact, u= 1 for (s, r, t) 6= (6, 6, 1) and (8, 4, 1)). Moreover, the
unique triple (s, r, t) for which (4-6) holds is ( fL(p), fK (p), fM(p)), where
fF (p) is the residue degree of p in F.

Remark 4.10. For a prime p unramified in L such that fM(p)= 1, we have

a2(Jac(C))(p)= a2(θ)(Frobp) · a1(E0)(p)2+ |a1(θ)(Frobp)|
2
− 2a2(θ)(Frobp),

where a2(θ)(Frobp)=±1. It follows that for any two twists C and C ′ of C0, we
have

â2(Jac(C))(p)≡±â2(Jac(C ′))(p) (mod p),
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(s, r, t) F(s,r,t)(x) a1(θ)(τ ) a2(θ)(τ )

(1, 1, 1) (2x, x2
+ 2) 2 1

(2, 1, 1) (−2x, x2
+ 2) −2 1

(2, 2, 1) (0,−x2
+ 2) 0 −1

(3, 3, 1) (−x, x2
− 1) −1 1

(4, 2, 1) (0, x2
− 2) 0 1

(6, 3, 1) (x, x2
− 1) 1 1

(6, 6, 1)
(√

3(4− x2),−x2
+ 5

)
±
√
−3 −1

(8, 4, 1)
(√

2(4− x2),−x2
+ 4

)
±
√
−2 −1

(2, 2, 2) (0, 2) − −

(4, 2, 2) (0,−2) − −

(6, 6, 2) (0,−1) − −

(8, 4, 2) (0, 0) − −

(12, 6, 2) (0, 1) − −

Table 3. The triples for (s, r, t) associated to τ ∈ Gal(L/Q) (as
defined in Proposition 4.9), and corresponding values of F(s,r,t)(x),
a1(θ)(τ ), and a2(θ)(τ ).

where âi (A)(p)= pi/2ai (A)(p) is the integer that appears as the coefficient of T i

in the (unnormalized) L-polynomial L p(A, T ).

Proof. For assertion (i), assume first that t = 1. Observe that s is the order of λφ(τ )
in Aut(C0

M), and r is the order of the projection of λφ(τ ) in Aut(C0
M)/〈w〉. Let c

denote the conjugacy class of λφ(τ ) in Aut(C0
M). One finds that the pairs (s, r) are

determined by the conjugacy class of τ as follows:

if C0
= C0

3 ,
{

c : 1a 2a 2b, 2c 3a 4a 6a, 6b 6c
(r, s) : (1, 1) (2, 1) (2, 2) (3, 3) (4, 2) (6, 6) (6, 3)

if C0
= C0

2 ,
{

c : 1a 2a 2b 3a 4a 6a 8a
(r, s) : (1, 1) (2, 1) (2, 2) (3, 3) (4, 2) (6, 3) (8, 4)

(see Tables 2 and 1 for the names of the conjugacy classes). Assertion (ii) now
follows immediately by applying the isomorphism in (4-1) and Lemma 4.5. If
t = 2, then r must be 2, 4, or 6, and the fact that [L : K ] ≤ 2 limits (s, r, t) to
either one of the last 5 triples in Table 3, or (4, 4, 2). The latter possibility is ruled
out by Proposition 3.3: if s = 4, then for every prime p for which Frobp lies in
the same conjugacy class of τ in Gal(L/Q), we have L p(Jac(C), T )= (1− T 2)2,
and the only quotients of roots of this polynomial are 1 and −1. This implies
that θM(Jac(C))(τ ) has order 2, and since θM(Jac(C)) is faithful, we must have
r = r(τ )= 2, not 4.

For t = 1, the existence statement in (iii) follows from combining Lemma 3.9
with statement (ii), and for t = 2, it follows from the proof of Corollary 3.12.
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The uniqueness of the map F(s,r,t) satisfying (4-6) at a prime p > 3 may be
verified by noting that the graphs of the 13 functions F(s,r,t) intersect in only
finitely many points in R3, none of which corresponds to a possible value of(
a1(E0)(p), a1(Jac(C))(p), a2(Jac(C))(p)

)
for any prime p > 3. Finally, we note

that if τ = Frobp, then
(
s(τ ), r(τ ), t (τ )

)
=
(

fL(p), fK (p), fM(p)
)
. �

We now give two examples of abelian varieties A such that AQ ∼ (E
0
Q
)2 for

which the conclusions of Propositions 4.6 and 4.9 do not hold because A is not
Q-isogenous to the Jacobian of a twist of C0. In the two examples below, we use
the elliptic curve

Ẽ0
3 : y2

= x3
+ 2

defined over Q, which is a twist of E0
3 .

Example 4.11. Let A = E0
3 × Ẽ0

3 . Then K = L = Q(
6
√

2, ζ3). If τ ∈ Gal(L/M)
and s(τ )= 3, then a1(θ)(τ )= 1+ ζ3 or 1+ ζ 3 and a2(θ)(τ )= ζ3 or ζ 3, which do
not lie in Q. Thus by Proposition 4.9, A is not Q-isogenous to the Jacobian of any
Q-twist of C0

3 . Moreover, for p = 7, one can compute that â2(A)(7)= 30, while
â2((E0

3)
2)(7)= â2(Jac(C0

3))(7)= 18. Thus

â2(A)(7) 6≡ ±â2(Jac(C0))(7) (mod 7).

Example 4.12. Let A = (Ẽ0
3)

2; then L = Q(
6
√

2, ζ3) and K = Q(ζ3); we have
[L : K ] = 6, and, by Proposition 4.6, A is not Q-isogenous to the Jacobian of any
Q-twist of C0

3 . In the context of the proof of Proposition 4.6, L0 = Q(
√

2, ζ3)

and ResQ
L0
θ(E0, A) ' χ2⊕, rather than ResQ

L0
θ(E0, A) ' χ ⊕ χ , which avoids

the contradiction used in the proof. Moreover, for A we may have s(τ ) = 3 and
r(τ )= 1, which gives a pair (s, r) that cannot occur for the Jacobian of any Q-twist
of C0

3 , by part (ii) of Proposition 4.9.

4C. The triples T (C). We determine the possible values of the triple T (C), which
denotes the isomorphism class

[
Gal(L/Q),Gal(K/Q),Gal(L/M)

]
. To specify

triples explicitly, we use identifiers from the Small Groups Library [Besche et al.
2002] found in computer algebra systems such as GAP and Magma. These identifiers
consist of a pair of positive integers 〈n,m〉, where n is the order of the group and m
distinguishes the group from other groups of order n but otherwise has no meaning.
We also recall from Section 4B the embeddings

λφ : Gal(L/Q) ↪→ GC0, Res λφ : Gal(L/M) ↪→ Aut(C0
M),

λφ : Gal(K/Q) ↪→ GC0/〈(w, 1)〉, Res λφ : Gal(K/M) ↪→ Aut(C0
M)/〈w〉,

where w denotes the hyperelliptic involution of C0.

Lemma 4.13. The groups GC0 , GC0/〈(w, 1)〉, Aut(C0
M), and Aut(C0

M)/〈w〉 are as
follows:
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C0 GC0 GC0/〈(w, 1)〉 Aut(C0
M) Aut(C0

M)/〈w〉

C0
2 〈96, 193〉 〈48, 48〉 〈48, 29〉 〈24, 12〉

C0
3 〈48, 38〉 〈24, 14〉 〈24, 8〉 〈12, 4〉

Proof. We show how to compute GC0 and Aut(C0
M); the respective quotients are

then easily obtained. Recall that if C/Q is a genus-2 curve, given by a hyperelliptic
equation y2

= f (x), where f (x) ∈ Q[x], then for any α ∈ Aut(CQ), there exist
m, n, p, q ∈Q such that

α(x, y)=
(

mx + n
px + q

,
mq − np
(px + q)3

y
)
; (4-7)

see, for example, [Cardona 2006]. Let

ι(α) :=
(m n

p q

)
.

The map ι :Aut(CQ)→GL2(Q) that sends α to ι(α) is a GQ-equivariant monomor-
phism. For d = 2, 3, we have Aut((C0

d)M)= 〈Ud , Vd〉, where

U2 =
1
2

(√
−2−1 1

1 1+
√
−2

)
, V2 =

1
2

(
1 −

√
−2+1

−1−
√
−2 1

)
.

U3 =

(
0 1
1 0

)
, V3 =

1
2

(
0 −1+

√
−3

1+
√
−3 0

)
,

One can readily check that Ud and Vd represent automorphisms of (C0
d)M , and

that they generate a group of order 48 if d = 2 and of order 24 if d = 3, which
are known to be the orders of Aut((C0

d)M). With this explicit representation, the
isomorphism type of 〈Ud , Vd〉 is then easily determined by a computer algebra
system. The group GC0

d
is then determined by explicitly computing the semidirect

product 〈Ud , Vd〉oGal(Q(
√
−d)/Q). �

Remark 4.14. We note that 〈48, 29〉 ' S̃4'GL2(F3) and 〈24, 8〉 ' 2D6'C3oD4

are the two automorphism groups mentioned in the introduction, with quotients
〈24, 12〉 ' S4 and 〈12, 4〉 ' D6, respectively. The group 〈24, 14〉 is isomorphic to
D6×C2, while the groups 〈48, 38〉 and 〈48, 48〉 are both degree-3 extensions of
D4×C2 and 〈96, 193〉 is a degree-3 extension of C8 oAut(C8).

Let T̃ (C) denote the triple(
λφ(Gal(L/Q)), λφ(Gal(L/M)), λφ(Gal(L/M))

)
in GC0×GC0×GC0 . Since λφ is injective, the conjugacy class of T̃ (C) determines
T (C) and z(C), where z(C) is the vector in Definition 1.3. In order to bound the
number of possibilities for T (C) and z(C), we first bound the number of possible
triples T̃ (C), up to conjugation.
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Lemma 4.15. Let H , N , and H0 be subgroups of GC0 . If T̃ (C)= (H, N , H0), then
the following conditions must be satisfied:

(i) H0 and H ∩Aut(C0
M)×〈1〉 coincide and have order |H |/2.

(ii) N and 〈(w, 1)〉 ∩ H0 coincide.

Proof. Let Gal(M/Q)= {1, τ }. Then

H0 = λφ(Gal(L/M))⊆ (Aut(C0
M)×{1})∩ H,

H1 := λφ
(
Gal(L/Q) \Gal(L/M)

)
⊆ (Aut(C0

M)×{τ })∩ H.

The injectivity of λφ implies that |H0| = |H1| = |H |/2, and (i) follows from the
fact that H = H0 t H1.

Proving (ii) is equivalent to showing that (w, 1) lies in the image of λφ if and
only if [L : K ] = 2. But this has already been proved; see Proposition 4.7. �

Proposition 4.16. Let H , N , and H0 be subgroups of GC0 that satisfy conditions
(i) and (ii) of Lemma 4.15.

(i) For C0
= C0

2 (resp. C0
= C0

3 ), there are 27 (resp. 38) possibilities for the
conjugacy class of (H, N , H0) in GC0 ×GC0 ×GC0 .

(ii) For C0
= C0

2 (resp. C0
= C0

3 ), the 27 (resp. 38) possibilities for the conju-
gacy class of (H, N , H0) give rise to the 23 (resp. 23) isomorphism classes
[H, H/N , H0] and vectors z(H, N , H0) listed in the top (resp. bottom) half
of Table 4. Moreover, [H, H/N , H0] and z(H, N , H0) determine each other
uniquely.

(iii) For C0
= C0

2 (resp. C0
= C0

3 ), the triple T (C) and the vector z(C) must be
among those listed in the corresponding half of Table 4, and T (C) and z(C)
determine each other uniquely.

Proof. For (i), recall that GC0
3
' 〈48, 38〉 and Aut((C0

3)M)' 〈24, 8〉. The following
three facts permit us to work with GC0

3
and Aut((C0

3)M) as abstract groups. First,
there are exactly two subgroups A1 and A2 of 〈48, 38〉 isomorphic to 〈24, 8〉. Second,
there is a unique nontrivial central involution ŵ in 〈48, 38〉, and it lies in both A1

and A2. Third, consider the two lists of triples of groups, up to conjugation,

Li =
{(

H, 〈ŵ〉 ∩ H, H ∩ Ai
)
| H ⊆ 〈48, 38〉, |H ∩ Ai | = |H |/2

}/
∼ , i = 1, 2,

where (H, 〈ŵ〉∩H, H ∩ Ai )∼ (H ′, 〈ŵ〉∩H ′, H ′∩ Ai ) if H and H ′ are conjugated
in 〈48, 38〉. Then the lists L1 and L2 coincide; write L for this list. For C0

= C0
2 ,

the three previous facts can be checked to hold verbatim when replacing 〈48, 38〉
and 〈24, 8〉 by 〈96, 193〉 and 〈48, 29〉, respectively. For C0

=C0
3 , L has 38 elements

and, for C0
= C0

2 , it has 27 elements.
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For (ii), for each of C0
2 and C0

3 , we enumerate the triples (H, N , H0) in L and
explicitly compute [H, H/N , H0] and z(H, N , H0) in each case using a computer
algebra system (we used Magma), obtaining the values listed in Table 4. One then
checks that [H, H/N , H0] = [H ′, H ′/N ′, H ′0] if and only if z(H, H/N , H0) =

z(H ′, H ′/N ′, H ′0).
Statement (iii) follows immediately from (ii) and Lemma 4.15. �

Proposition 4.17. The vector z(C) and the triple T (C) both uniquely determine
the Sato–Tate group ST(Jac(C)).

Proof. The 18 Sato–Tate groups G that can occur over Q with G0
'U(1) (see [Fité

et al. 2012, Theorem 4.3]) are uniquely determined by the combination of:

(a) the isomorphism classes of the groups G/G0 and Gns/Gns,0,

(b) the vector z2(G)=
(
z2,2(G), z2,−2(G), z2,−1(G), z2,0(G), z2,1(G)

)
,9

where Gns is the index-2 subgroup of G obtained by removing from G those
components all of whose elements have a constant characteristic polynomial.

On the one hand, the isomorphism classes of the groups G/G0 and Gns/Gns,0 are
determined by T (C), since G/G0

' Gal(K/Q) and Gns/Gns,0
' Gal(K/M). On

the other hand, z2(G) is determined by z(C); indeed, it follows from the construction
of the Sato–Tate group in terms of the image of the `-adic representation attached to
Jac(C) and from assertion (iii) of Proposition 4.9, that z2(G) · [L : K ] = z2(C). �

Corollary 4.18. For each triple [H, H/N , H0] in Table 4, there exists a twist C
of C0 such that T (C)= [H, H/N , H0] if and only if the corresponding row in the
table is not marked with an asterisk. Thus, for C0

= C0
2 (resp. for C0

= C0
3 ) there

are exactly 20 (resp. 21) possibilities for T (C).

Proof. Observe that the triples marked with an asterisk in Table 4 correspond
to Sato–Tate groups (equivalently, Galois types) that cannot arise for abelian
surfaces defined over Q (see [Fité et al. 2012, Proposition 4.11]). For each of
the triples [H, H/N , H0] that is not marked with an asterisk, a curve C with
T (C)= [H, H/N , H0] is exhibited in Tables 5 and 6 (for details on how the curves
have been found, see Section 5A; for details on how T (C) is computed for each of
the curves, see Section 5C.) �

Remark 4.19. If the triple [H, H, H0] appears in either half of Table 4, then so
does the triple [H ×C2, H, H0×C2]. In other words, if there exists a twist C of
C0 such that Gal(L/Q)= Gal(K/Q), then there exists a twist C ′ of C0 such that
Gal(K ′/Q)=Gal(K/Q) and Gal(L ′/Q)'Gal(K/Q)×C2. Here K ′ (resp. L ′) is

9Following the notation of [Fité et al. 2012], recall that z2,i (G) denotes the number of connected
components of G all of whose elements have a constant characteristic polynomial, for which the
coefficient of the quadratic term is equal to i . Note that the components of the vector z2(G) have been
permuted with respect to the definition of z2(G) given in [Fité et al. 2012].
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the minimal field over which all the automorphisms of C ′ (resp. all the isomorphisms
between C ′ and C0) are defined. Indeed, if C is given by the hyperelliptic equation
y2
= f (x), let C ′ be the curve given by dy2

= f (x), where d ∈Q∗ is not a square
in K . We will use this remark in Section 5 for the computation of some of the
curves.

Remark 4.20. Among the 18 Sato–Tate groups with identity component U(1) that
can occur over Q, there are 13 that are subgroups of J (O) and 11 that are subgroups
of J (D6) (6 are subgroups of both). From Table 6, we see that the 13 that are
subgroups of J (O) can all occur as Q-twists of C0

2 , and the 11 that are subgroups
of J (D6) can all occur as Q-twists of C0

3 .

5. Numerical computations

We now describe the methods used to obtain the example curves C listed in Tables
5 and 6. As in Section 4, each curve C is a Q-twist of C0

= C0
d , for d = 2, 3,

where Jac(C0
d) ∼ (E

0
d)

2 and E0
d is an elliptic curve with CM by M = Q(

√
−d).

For d = 2, we list 20 curves C that are Q-twists of the curve C0
2 defined by

y2
= x6
− 5x4

− 5x2
+ 1, realizing every possible triple

T (C)=
[
Gal(L/Q),Gal(K/Q),Gal(L/M)

]
that can occur when C is a Q-twist of C0

2 . Recall that the fields K and L are the
minimal fields of definition End(Jac(C)Q) and Hom(Jac(C)Q, EQ), respectively,
as in Definition 1.2. Similarly, for d = 3, we list 21 curves C that are twists of
the curve C0

3 defined by y2
= x6
+ 1, realizing every possible triple T (C) that can

occur when C is a Q-twist of C0
3 .

For each of the two curves C0, we followed the procedure outlined below:

(1) Generate a large set S of Q-twists of C0.

(2) For each C ∈ S, compute a provisional value of the triple T (C).

(3) Select a single representative C for each distinct triple T (C) and then verify
the provisional value of T (C) by explicitly computing the fields K and L and
the triple T (C)=

[
Gal(L/Q),Gal(K/Q),Gal(L/M)

]
.

The purpose of the “provisional” computation of T (C) in step (2) is to avoid
computing the fields K and L for all of the curves in S, which would have been
infeasible. Explicit computation of the fields K and L (and their Galois groups) for
even a single curve C can be quite time-consuming, taking hours or even days of
computer time, and the sets S that we used contained tens of thousands of curves.

In the rest of this section we fill in some of the details of the three steps listed
above.
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5A. Generating twists of C0. Explicit parametrizations of the families of twists of
C0

2 and C0
3 are given in [Cardona 2001; 2006]. One can easily obtain a large set S

using these parametrizations. However, the resulting curves tend to have large coef-
ficients, making the computation of K and L more difficult, and the vast majority of
curves in S are likely to represent the generic case, where Gal(K/Q) and Gal(L/Q)
are as large as possible. In principle, one can control the isomorphism type of
Gal(K/Q) by placing appropriate constraints on the input parameters, but this is not
enough to determine the Sato–Tate group, and it gives no control over Gal(L/Q).

We instead adapted the search method used in [Fité et al. 2012], generating S by
enumerating all curves of the form y2

=
∑6

i=0 ci x i satisfying coefficient bounds
|ci | ≤ Bi . To quickly identify curves C that are twists of C0, we first compute
a1(C)(p) for a handful of small primes p that are inert in M , and immediately
discard C if a1(C)(p) 6= 0 for any such p. We then compute the absolute Igusa
invariants of C , and compare them to the corresponding values for C0. With the
bounds Bi chosen to encompass some 250 curves with small coefficients, we obtain
a set S containing tens of thousands of twists of C0 in each case.

After applying the method in Section 5B below to all of the curves in S, we had
several candidate curves C for every possible triple T (C) that can arise when C
is defined over Q (the triples listed in Table 4 that are not marked with an asterisk).
We then selected a single representative C for each triple and computed K and L for
each of these C , as described in Section 5C, and then computed the Galois groups
Gal(L/Q), Gal(K/Q), and Gal(L/M), using the Magma computer algebra system,
to obtain the true value of the triple T (C). As expected, this computation confirmed
the provisional value in every case. Indeed, in all but the most time-consuming
cases we were able to repeat the computations using several different candidate
curves C and always obtained the expected value of T (C).

Remark 5.1. The computation of the triple T (C) in Magma is completely inde-
pendent of the calculations used to obtain a provisional value for T (C), which were
performed using the smalljac software library [Sutherland 2011]; the purpose of
the provisional computations was simply to obtain a set of candidate curves that is
much smaller than the initial set S. The fact that in every case we obtained the same
value for T (C) using two completely different methods gives us a high degree of
confidence in our numerical computations.

5B. Provisional computation of T (C). To provisionally identify the triple T (C),
we compute an approximation of the vector z(C) (see Definition 1.3), which, by
Theorem 1.4, uniquely determines T (C). To do this, it suffices to determine the
triples (s, r, t) of residue degrees ( fL(p), fK (p), fM(p)) for a sample set of primes
p (say, primes p ≤ 216 of good reduction for C), and then count how often each
triple appears. The components o(s, r) and ō(s, r) of the vector z(C) may be
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approximated by computing the relative frequencies of the triples (s, r, 1) and
(s, r, 2), respectively, and normalizing so that o(1, 1)= 1.

We can easily compute t = fM(p) ∈ {1, 2} by checking whether p splits in M ,
but we also need to compute r = fK (p) and s = fL(p), and we would like to do
so without knowing K or L . This can be achieved as follows: we first compute
a1(E0)(p) and the values a1(C)(p) and a2(C)(p), as described in Section 5B1,
and then determine the unique map F(s,r,t) from Proposition 4.9 for which

F(s,r,t)(a1(E0)(p))=
(
±a1(C)(p), a2(C)(p)

)
. (5-1)

5B1. Computation of a1(C)(p) and a2(C)(p). For an arbitrary genus-2 curve,
efficient computation of a1(C)(p) and a2(C)(p) is addressed in [Kedlaya and
Sutherland 2008], but in the special case of interest here, where C is a Q-twist of
C0, we use a faster approach. The Jacobian of C0 is Q-isogenous to the square of E0,
an elliptic curve defined over Q. Because E0 has complex multiplication, we can
very efficiently determine a1(E)(p). Taking C0

2 as an example, E0
2 is defined by the

Weierstrass equation y2
= x3
−5x2

−5x+1. This curve has CM by M =Q(
√
−2),

and for any prime p > 2 we may compute a = a1(E0
2)(p) as follows: a = 0 if p is

inert in M and otherwise a= 4x/
√

p, where the integer x satisfies p= x2
+2y2 for

some integer y. The positive integer z = |x | may be determined via Cornacchia’s
algorithm, and then x = (−1)εz, where ε = (z − 1)/2+ (p− 1)(p+ 5)/16; see
[Rubin and Silverberg 2010] for details. The computation for C0

3 is similar: in this
case E0

3 is defined by y2
= x3
+ 1, with CM by M =Q(

√
−3).

With a1(E0)(p) computed, there are only a handful of pairs (a1, a2) that are
compatible with (5-1), that is, for which there exists a triple (s, r, t) such that
F(s,r,t)(a1(E0)(p)) = (±a1, a2). Taking into account whether C is a twist of C0

2
or C0

3 , whether p splits in M or not, and that the sign of a1 is actually ambiguous
in only 2 cases, there are at most 8 possibilities. Each compatible pair (a1, a2)

determines an integer

n = p2
+ p3/2a1+ pa2+ p1/2a1+ 1,

one of which is equal to # Jac(C)(Fp). In most cases, if we pick a random point
P ∈ Jac(C)(Fp), the equation n P = 0 will hold for exactly one n and uniquely
determine a1 and a2. Even when this is not the case, after factoring the integers n,
we can determine the order of any point P in Jac(C)(Fp), using just Õ(log p)
operations in Fp; see [Sutherland 2007, Chapter 7]. This allows us to compute the
order of Jac(C)(Fp) using a probabilistic generic group algorithm (of Las Vegas
type) that runs in O(p1/4) expected time; see [Sutherland 2007; Kedlaya and
Sutherland 2008, Proposition 1].10 This compares to an O(p3/4) expected running

10The O(p1/4) bound is a worst-case estimate; it is faster than this for most p.
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time for an arbitrary genus-2 curve using a generic group algorithm.11

Having computed L p(C, 1)= # Jac(C)(Fp), we use the same method to deter-
mine L p(C,−1) = # Jac(C̃)(Fp), where C̃ is any nontrivial quadratic twist of C
over Fp, and these two values uniquely determine a1 and a2.

The algorithm described above is included in the most recent version of the
smalljac software library, whose source code is available at [Sutherland 2011].

5C. Computation of K and L. In this section, we describe the procedure used to
compute the fields K and L for the curves C listed in Tables 5 and 6.

For the field K , its characterization in Lemma 4.2 as the minimal field over which
all the automorphisms of C are defined turns out to be the most computationally
effective. For all 41 curves C : y2

= f (x) listed in Tables 5 and 6, one readily
checks that Aut(C0

Q
)' Aut(CQ)= Aut(CF(ζ24)), where F is the splitting field of

f (x) (see Remark 5.2 below). It is then a finite problem to identify the minimal
subfield K of F(ζ24) for which Aut(CK )= Aut(CF(ζ24)).

Having computed K , we determine L as follows. For any nonhyperelliptic
involution β ∈ Aut(C0

M), the elliptic quotient C0/〈β〉 is defined over M . If β1 and
β2 are conjugate in Aut(C0

M), then C0/〈β1〉 ' C0/〈β2〉. For C0
2 there is just one

conjugacy class of nonhyperelliptic involutions; hence in this case every elliptic
quotient C0/〈β〉 is isomorphic to E0

M . For C0
3 there are two conjugacy classes of

nonhyperelliptic involutions, of size 2 and 6 (see Table 2). The first corresponds to
the M-isomorphism class of E0

3 , and the second corresponds to the M-isomorphism
class of the elliptic curve y2

= x3
− 15x + 22.

Since we know K explicitly, we can compute Aut(CK ) and enumerate all the
nonhyperelliptic involutions α (there are 12 when d = 2 and 8 when d = 3). For
d = 2 we pick any α, and for d = 3 we pick α from the conjugacy class of size 2.
Define Ẽ := CK /〈α〉 and Ẽ0

:= C0
M/〈φαφ

−1
〉. The isomorphism φ induces an

isomorphism φ̃ : ẼL→ Ẽ0
L . As in the proof of Proposition 4.6, L is the compositum

of K and the minimal field over which φ̃ is defined. Our choice of α ensures that
Ẽ0
' E0

M ; thus ẼL ' E0
L .

By applying [Cardona et al. 1999, Lemma 2.2], we can compute an explicit
Weierstrass equation for Ẽ of the form

Ẽ : Y 2
= X3

+ AX + B, with A, B ∈ K .

Writing E0 in the form Y 2
= X3

+U X + V , there then exists γ ∈ L such that
U = γ 4 A and V = γ 6 B, and γ generates L as an (at most quadratic) extension
of K . We can easily derive γ from the coefficients A, B, U , and V .

11As noted in [Kedlaya and Sutherland 2008], the asymptotically faster polynomial-time algorithm
of Pila [1990] is not practically useful in the range of p relevant to the computations considered here.
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Remark 5.2. In fact, it is true in general that for any twist C of C0
2 (resp. C0

3 ), the
field K is contained in F(

√
−2) (resp. F(

√
−3, i)). We thank J. Quer for kindly

providing the following argument.
Let Aut(CQ)

∗ denote the subgroup of Aut(CQ) generated by those elements α
such that Trace(ι(α)) is nonzero. We claim that

Aut(CQ)
∗
= Aut(CFM)

∗.

Let WP(C) denote the set of Weierstrass points of C and let σ be an element of
G FM . It suffices to show that σα=α for every α in Aut(CQ)

∗ such that Trace(ι(α))
is nonzero. Observe that for every P in WP(C), one has σP = P . Then, writing
Q = α−1(P), we have

σα ◦α−1(P)= (σα)(Q)= σ(α(Q))= σP = P,

which implies that σα is either α orwα, since the action of Aut(CQ)/〈w〉 on WP(C)
is faithful. Provided that Trace(ι(α)) is in M , the latter option is not possible, since
otherwise we would have

Trace(ι(α))= σ Trace(ι(α))= Trace(ι(wα))=−Trace(ι(α)),

contradicting the fact that Trace(ι(α)) is nonzero. Since Aut(CQ) and Aut(C0
Q
) are

conjugated, the groups Aut(CQ)
∗ and Aut(C0

Q
)∗ are isomorphic. It is straightfor-

ward to check that

Aut
(
(C0

2)Q
)∗
' S̃4 and Aut

(
(C0

3)Q
)∗
' C2×C6.

Thus, for every twist C of C0
2 , the field K is contained in F(

√
−2); but for a

twist C of C0
3 , the order of Aut

(
(C0

3)F(
√
−3)
)

can be 12 or 24. By considering the
parametrizations given in [Cardona 2001, Proposition 7.4.1] of all the twists C of
C0

3 as well as of the corresponding embeddings ι(Aut(CQ)) in GL2(Q), one may
explicitly verify that K is always contained in F(

√
−3, i).

5C1. An example. Consider the twist C of C0
3 defined by the hyperelliptic equation

y2
= f (x)= x6

+ 15x4
+ 20x3

+ 30x2
+ 18x + 5

over Q. This curve is listed in Table 6 for the triple [〈24, 5〉, 〈12, 4〉, 〈12, 1〉]. Let
us prove that this is in fact the triple T (C)=

[
Gal(L/Q),Gal(K/Q),Gal(L/M)

]
.

We first compute K . Let F denote the splitting field of f (x). One checks (via
Magma) that |Aut(CMF )| = 24, where M = Q(

√
−3), and therefore K ⊆ MF

(since we know a priori that |Aut(CK )| = |Aut((C0
3)Q)| = 24). By enumerating

the various subfields of MF , we find that the minimal subfield K of MF for which
|Aut(CK )| = 24 is K = M(

√
5, a), where a3

+ 3a− 1= 0.
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To compute L , we choose the nonhyperelliptic involution α of Aut(CK ) whose
image under the map ι : Aut(CQ)→ GL2(Q) defined in (4-7) is

ι(α)=
1
5

( √
5 −2

√
5

−2
√

5 −
√

5

)
.

Applying [Cardona et al. 1999, Lemma 2.2] yields a Weierstrass equation for
Ẽ = C/〈α〉:

Ẽ : Y 2
= X3

+ B, with B =−
11

97656250

√
5+

1
3906250

.

Since E0 is the curve y2
= x3
+ 1, we have U = 0 and V = 1, so γ 6

= 1/B. This
implies that

γ 2
−

(
125
2

√
5+

375
2

)
a2
+

(
125

2

√
5+

125
2

)
a− 125

√
5− 375= 0,

and one finds that L = K
(√

2
√

5+ 10
)
.

Having explicitly computed the fields K and L , it is then straightforward to
verify that Gal(L/Q) ' 〈24, 5〉, Gal(K/Q) ' 〈12, 4〉, and Gal(L/M) ' 〈12, 1〉
using Magma.

6. Tables

This section contains the remaining tables described earlier, whose definitions we
briefly recall. Remember that C0 is one of the two curves C0

2 : y
2
= x6
−5x4

−5x2
+1

(in which case M =Q(
√
−2)) or C0

3 : y
2
= x6
+ 1 (in which case M =Q(

√
−3)).

Table 4 lists (up to isomorphism) the possible values of the triples T (C) that can
arise when C is a Q-twist of the curve C0.

Section 4C describes the computation of these tables. Each triple [H, H/N , H0]

is a possible value for T (C) =
[
Gal(L/Q),Gal(K/Q,Gal(L/M)

]
, and is deter-

mined by a subgroup H ⊂ GC0 whose intersection with Aut(C0
M) is an index-2

subgroup H0 of H , where N = H ∩ Z(GC0).
For each triple T (C) we list the corresponding Sato–Tate group G and its

matching Galois type, as defined in [Fité et al. 2012], as well as the vector z(C) given
by Definition 1.3, all of which are uniquely determined by T (C), by Theorem 1.4.
As proven in [Fité et al. 2012], the Sato–Tate groups J (C1), J (C3), and C4,1 cannot
arise for a genus-2 curve defined over Q, and the corresponding rows in Table 4
are marked with an asterisk.

In Tables 5 and 6, we list representative curves that realize every triple T (C)
that can occur when C is defined over Q. For each curve, we also give an explicit
description of the fields K and L , where K is the minimal field for which Aut(CK )=

Aut(CQ), and L is the minimal extension of K over which C is isomorphic to C0.
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G H H/N H0 Galois type z(H,N ,H0)

∗J (C1) 〈4,1〉 〈2,1〉 〈2,1〉 F[C2,C1,H] [1,1,0,0,0,0,0,0,0,0,2,0,0,0]
J (C2) 〈8,2〉 〈4,2〉 〈4,1〉 F[D2,C2,H] [1,1,0,0,2,0,0,0,0,2,2,0,0,0]
J (C2) 〈8,3〉 〈4,2〉 〈4,2〉 F[D2,C2,H] [1,1,2,0,0,0,0,0,0,2,2,0,0,0]
∗J (C3) 〈12,2〉 〈6,2〉 〈6,2〉 F[C6,C3,H] [1,1,0,2,0,2,0,0,0,0,2,0,0,4]
J (C4) 〈16,6〉 〈8,2〉 〈8,1〉 F[C4×C2,C4] [1,1,0,0,2,0,0,4,0,2,2,0,4,0]
J (D2) 〈16,11〉 〈8,5〉 〈8,3〉 F[D2×C2,D2] [1,1,4,0,2,0,0,0,0,6,2,0,0,0]
J (D2) 〈16,13〉 〈8,5〉 〈8,4〉 F[D2×C2,D2] [1,1,0,0,6,0,0,0,0,6,2,0,0,0]
J (D3) 〈24,6〉 〈12,4〉 〈12,4〉 F[D6,D3,H] [1,1,6,2,0,2,0,0,0,6,2,0,0,4]
J (D4) 〈32,43〉 〈16,11〉 〈16,8〉 F[D4×C2,D4] [1,1,4,0,6,0,0,4,0,10,2,0,4,0]
J (T ) 〈48,33〉 〈24,13〉 〈24,3〉 F[A4×C2,A4] [1,1,0,8,6,8,0,0,0,6,2,0,0,16]
J (O) 〈96,193〉 〈48,48〉 〈48,29〉 F[S4×C2,S4] [1,1,12,8,6,8,0,12,0,18,2,0,12,16]
C2,1 〈2,1〉 〈2,1〉 〈1,1〉 F[C2,C1,M2(R)] [1,0,0,0,0,0,0,0,0,1,0,0,0,0]
C2,1 〈4,2〉 〈2,1〉 〈2,1〉 F[C2,C1,M2(R)] [1,1,0,0,0,0,0,0,0,2,0,0,0,0]
∗C4,1 〈8,1〉 〈4,1〉 〈4,1〉 F[C4,C2] [1,1,0,0,2,0,0,0,0,0,0,0,4,0]
D2,1 〈4,2〉 〈4,2〉 〈2,1〉 F[D2,C2,M2(R)] [1,0,1,0,0,0,0,0,0,2,0,0,0,0]
D2,1 〈8,3〉 〈4,2〉 〈4,1〉 F[D2,C2,M2(R)] [1,1,0,0,2,0,0,0,0,4,0,0,0,0]
D2,1 〈8,5〉 〈4,2〉 〈4,2〉 F[D2,C2,M2(R)] [1,1,2,0,0,0,0,0,0,4,0,0,0,0]
D3,2 〈6,1〉 〈6,1〉 〈3,1〉 F[D3,C3] [1,0,0,2,0,0,0,0,0,3,0,0,0,0]
D3,2 〈12,4〉 〈6,1〉 〈6,2〉 F[D3,C3] [1,1,0,2,0,2,0,0,0,6,0,0,0,0]
D4,1 〈16,7〉 〈8,3〉 〈8,3〉 F[D4,D2] [1,1,4,0,2,0,0,0,0,4,0,0,4,0]
D4,1 〈16,8〉 〈8,3〉 〈8,4〉 F[D4,D2] [1,1,0,0,6,0,0,0,0,4,0,0,4,0]
D4,2 〈16,7〉 〈8,3〉 〈8,1〉 F[D4,C4] [1,1,0,0,2,0,0,4,0,8,0,0,0,0]
O1 〈48,29〉 〈24,12〉 〈24,3〉 F[S4,A4] [1,1,0,8,6,8,0,0,0,12,0,0,12,0]

∗J (C1) 〈4,1〉 〈2,1〉 〈2,1〉 F[C2,C1,H] [1,1,0,0,0,0,0,0,0,0,2,0,0,0]
J (C2) 〈8,2〉 〈4,2〉 〈4,1〉 F[D2,C2,H] [1,1,0,0,2,0,0,0,0,2,2,0,0,0]
J (C2) 〈8,3〉 〈4,2〉 〈4,2〉 F[D2,C2,H] [1,1,2,0,0,0,0,0,0,2,2,0,0,0]
∗J (C3) 〈12,2〉 〈6,2〉 〈6,2〉 F[C6,C3,H] [1,1,0,2,0,2,0,0,0,0,2,0,0,4]
J (C6) 〈24,10〉 〈12,5〉 〈12,5〉 F[C6×C2,C6] [1,1,2,2,0,2,4,0,0,2,2,4,0,4]
J (D2) 〈16,11〉 〈8,5〉 〈8,3〉 F[D2×C2,D2] [1,1,4,0,2,0,0,0,0,6,2,0,0,0]
J (D3) 〈24,5〉 〈12,4〉 〈12,1〉 F[D6,D3,H] [1,1,0,2,6,2,0,0,0,6,2,0,0,4]
J (D3) 〈24,6〉 〈12,4〉 〈12,4〉 F[D6,D3,H] [1,1,6,2,0,2,0,0,0,6,2,0,0,4]
J (D6) 〈48,38〉 〈24,14〉 〈24,8〉 F[D6×C2,D6] [1,1,8,2,6,2,4,0,0,14,2,4,0,4]
C2,1 〈2,1〉 〈2,1〉 〈1,1〉 F[C2,C1,M2(R)] [1,0,0,0,0,0,0,0,0,1,0,0,0,0]
C2,1 〈4,2〉 〈2,1〉 〈2,1〉 F[C2,C1,M2(R)] [1,1,0,0,0,0,0,0,0,2,0,0,0,0]
C6,1 〈6,2〉 〈6,2〉 〈3,1〉 F[C6,C3,M2(R)] [1,0,0,2,0,0,0,0,0,1,0,2,0,0]
C6,1 〈12,5〉 〈6,2〉 〈6,2〉 F[C6,C3,M2(R)] [1,1,0,2,0,2,0,0,0,2,0,4,0,0]
D2,1 〈4,2〉 〈4,2〉 〈2,1〉 F[D2,C2,M2(R)] [1,0,1,0,0,0,0,0,0,2,0,0,0,0]
D2,1 〈8,3〉 〈4,2〉 〈4,1〉 F[D2,C2,M2(R)] [1,1,0,0,2,0,0,0,0,4,0,0,0,0]
D2,1 〈8,5〉 〈4,2〉 〈4,2〉 F[D2,C2,M2(R)] [1,1,2,0,0,0,0,0,0,4,0,0,0,0]
D3,2 〈6,1〉 〈6,1〉 〈3,1〉 F[D3,C3] [1,0,0,2,0,0,0,0,0,3,0,0,0,0]
D3,2 〈12,4〉 〈6,1〉 〈6,2〉 F[D3,C3] [1,1,0,2,0,2,0,0,0,6,0,0,0,0]
D6,1 〈12,4〉 〈12,4〉 〈6,1〉 F[D6,D3,M2(R)] [1,0,3,2,0,0,0,0,0,4,0,2,0,0]
D6,1 〈24,8〉 〈12,4〉 〈12,1〉 F[D6,D3,M2(R)] [1,1,0,2,6,2,0,0,0,8,0,4,0,0]
D6,1 〈24,14〉 〈12,4〉 〈12,4〉 F[D6,D3,M2(R)] [1,1,6,2,0,2,0,0,0,8,0,4,0,0]
D6,2 〈12,4〉 〈12,4〉 〈6,2〉 F[D6,C6] [1,0,1,2,0,0,2,0,0,6,0,0,0,0]
D6,2 〈24,14〉 〈12,4〉 〈12,5〉 F[D6,C6] [1,1,2,2,0,2,4,0,0,12,0,0,0,0]

Table 4. Triples for twists of C0
2 (top) and C0

3 (bottom).
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G [Gal(L/Q),Gal(K/Q),Gal(L/M)] K L

y2 = x5− x
J (C2) 〈8, 2〉, 〈4, 2〉, 〈4, 1〉 M(i) K

(√√
2+ 2

)
y2 = x5+ 4x
J (C2) 〈8, 3〉, 〈4, 2〉, 〈4, 2〉 M(i) K ( 4√2)

y2 = x6+ x5− 5x4− 5x2− x+ 1
J (C4) 〈16, 6〉, 〈8, 2〉, 〈8, 1〉 M(

√√
17+ 17) K

(√
(
√

17+ 3)
√√

17+ 17− 8
√

17
)

y2 = x5+ 9x
J (D2) 〈16, 11〉, 〈8, 5〉, 〈8, 3〉 M(i,

√
3) K ( 4√3)

y2 = x5− 9x
J (D2) 〈16, 13〉, 〈8, 5〉, 〈8, 4〉 M(i,

√
3) K ( 4√3i)

y2 = x6+ 10x3− 2
J (D3) 〈24, 6〉, 〈12, 4〉, 〈12, 4〉 M(

√
−3, 3√

−2) K
(√√

6− 2
)

y2 = x5+ 3x
J (D4) 〈32, 43〉, 〈16, 11〉, 〈16, 8〉 M(i, 4√3) K ( 8√3)

y2 = x6+ 6x5− 20x4+ 20x3− 20x2− 8x+ 8
J (T ) 〈48, 33〉, 〈24, 13〉, 〈24, 3〉 M(u1, u2) K (

√
v1)

y2 = x6− 5x4+ 10x3− 5x2+ 2x− 1
J (O) 〈96, 193〉, 〈48, 48〉, 〈48, 29〉 M(

√
−11, u3, u4), K (

√
v2)

y2 = x6− 5x4− 5x2+ 1
C2,1 〈2, 1〉, 〈2, 1〉, 〈1, 1〉 M K

y2 =−x6+ 5x4+ 5x2− 1
C2,1 〈4, 2〉, 〈2, 1〉, 〈2, 1〉 M K (i)

y2 = x5+ x
D2,1 〈4, 2〉, 〈4, 2〉, 〈2, 1〉 M(i) K

y2 = x6+ 3x5− 20x4+ 30x3− 35x2+ 3x+ 10
D2,1 〈8, 3〉, 〈4, 2〉, 〈4, 1〉 M(

√
7) K

(√
3
√

7+ 7
)

y2 = x5+ 81x
D2,1 〈8, 5〉, 〈4, 2〉, 〈4, 2〉 M(i) K (

√
3)

y2 = x6− 18x5− 15x4− 20x3+ 135x2− 498x− 89
D3,2 〈6, 1〉, 〈6, 1〉, 〈3, 1〉 M(u5) K

y2 = x6+ 4x5− 10x4+ 80x3+ 140x2+ 144x− 184
D3,2 〈12, 4〉, 〈6, 1〉, 〈6, 2〉 M(u6) K (i)

y2 = x5− 2x
D4,1 〈16, 7〉, 〈8, 3〉, 〈8, 3〉 M(i 4√

−2) K ( 8√
−2)

y2 = x5+ 2x
D4,1 〈16, 8〉, 〈8, 3〉, 〈8, 4〉 M(i 4√2) K ( 8√2)

y2 = x6+ x5+ 10x3+ 5x2+ x− 2
D4,2 〈16, 7〉, 〈8, 3〉, 〈8, 1〉 M

(√√
−7+ 7

)
K
(√
−
√
−2
√√
−7− 7+ 2

√
−7

)
y2 = x6+ 7x5+ 10x4+ 10x3+ 15x2+ 17x+ 4
O1 〈48, 29〉, 〈24, 12〉, 〈24, 3〉 M(u7, u8) K

(√
−u3

8+ u2
8+ 5u8+ 4

)
u3

1− 7u1+ 7= 0 u4
2+ 4u2

2+ 8u2+ 8= 0 u3
3− 4u3+ 4= 0 u4

4+ 22u4+ 22= 0

u3
5+ 6u5− 8= 0 u3

6+ 5u6− 10= 0 u3
7+ 5u7+ 10= 0 u4

9+ 4u2
9+ 8u9+ 2= 0

v12
1 − 12v11

1 + 70v10
1 − 236v9

1 + 337v8
1 − 40v7

1 − 420v6
1 + 452v5

1 − 150v4
1 + 16v3

1 − 28v2
1 + 8v1+ 1= 0

v12
2 + 44v11

2 + 682v10
2 + 4048v9

2 + 3135v8
2 − 19844v7

2 + 306614v6
2 + 1783540v5

2
− 5571929v4

2 + 85184v3
2 + 1269774v2

2 − 1293732v2− 970299= 0

Table 5. Twists of C0
2 : y

2
= x6
− 5x4

− 5x2
+ 1 realizing each triple.
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G [Gal(L/Q),Gal(K/Q),Gal(L/M)] K L

y2 = x6+ 6x5+ 30x4+ 120x2− 96x+ 64
J (C2) 〈8, 2〉, 〈4, 2〉, 〈4, 1〉 M(

√
5) K

(√√
5+ 5

)
y2 = x5+ 10x3+ 9x
J (C2) 〈8, 3〉, 〈4, 2〉, 〈4, 2〉 M(i) K ( 4√3)

y2 = x6− 15x4− 20x3+ 6x+ 1
J (C6) 〈24, 10〉, 〈12, 5〉, 〈12, 5〉 M(i, u1) K ( 4√3)

y2 = x5+ 20x3+ 36x
J (D2) 〈16, 11〉, 〈8, 5〉, 〈8, 3〉 M(i,

√
2) K ( 4√6)

y2 = x6+ 15x4+ 20x3+ 30x2+ 18x+ 5
J (D3) 〈24, 5〉, 〈12, 4〉, 〈12, 1〉 M(

√
5, u1) K

(√
2
√

5+ 10
)

y2 = x6+ 6x5+ 40x3− 60x2+ 72x− 32
J (D3) 〈24, 6〉, 〈12, 4〉, 〈12, 4〉 M(i, u2) K ( 4√3)

y2 = x6+ 3x5+ 10x3− 15x2+ 15x− 6
J (D6) 〈48, 38〉, 〈24, 14〉, 〈24, 8〉 M(i,

√
2, u3) K ( 4√2)

y2 = x6+ 1
C2,1 〈2, 1〉, 〈2, 1〉, 〈1, 1〉 M K

y2 = x6+ 15x4+ 15x2+ 1
C2,1 〈4, 2〉, 〈2, 1〉, 〈2, 1〉 M K (

√
2)

y2 =−x6− 6x5+ 30x4− 20x3− 15x2+ 12x− 1
C6,1 〈6, 2〉, 〈6, 2〉, 〈3, 1〉 M(u1) K

y2 = x6+ 6x5− 30x4+ 20x3+ 15x2− 12x+ 1
C6,1 〈12, 5〉, 〈6, 2〉, 〈6, 2〉 M(u1) K (i)

y2 = x6− 1
D2,1 〈4, 2〉, 〈4, 2〉, 〈2, 1〉 M(i) K

y2 = 11x6+ 30x5+ 30x4+ 40x3− 60x2+ 120x− 88
D2,1 〈8, 3〉, 〈4, 2〉, 〈4, 1〉 M(

√
−2) K

(√√
6− 2

)
y2 = x6− 15x4+ 15x2− 1
D2,1 〈8, 5〉, 〈4, 2〉, 〈4, 2〉 M(i) K (

√
2)

y2 = x6+ 4
D3,2 〈6, 1〉, 〈6, 1〉, 〈3, 1〉 M( 3√2) K

y2 = x6+ 12x5+ 15x4+ 40x3+ 15x2+ 12x+ 1
D3,2 〈12, 4〉, 〈6, 1〉, 〈6, 2〉 M( 3√3) K (

√
−2)

y2 = x6+ 9x5− 60x4− 120x3+ 240x2+ 144x− 64
D6,1 〈12, 4〉, 〈12, 4〉, 〈6, 1〉 M(i, u4) K

y2 = x6+ 6x5− 30x4− 40x3+ 60x2+ 24x− 8
D6,1 〈24, 8〉, 〈12, 4〉, 〈12, 1〉 M(

√
−2, u5) K

(√√
6− 2

)
y2 = x6+ 3x5+ 15x4− 20x3+ 60x2− 60x+ 28
D6,1 〈24, 14〉, 〈12, 4〉, 〈12, 4〉 M(

√
−2, u2) K (

√
2)

y2 = x6+ 2
D6,2 〈12, 4〉, 〈12, 4〉, 〈6, 2〉 M( 6√2) K

y2 = x6+ 6x5− 15x4+ 20x3− 15x2+ 6x− 1
D6,2 〈24, 14〉, 〈12, 4〉, 〈12, 5〉 M(

√
−2, u6) K (i)

u3
1− 3u1+ 1= 0 u3

2− 3u2+ 4= 0 u3
3+ 3u3− 2= 0

u3
4− 15u4− 10 = 0 u3

5− 9u5− 6 = 0 u3
7− 6u7− 6

Table 6. Twists of C0
3 : y

2
= x6
+ 1 realizing each triple.
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The methods used to obtain these curves and the computation of K and L are
described in Section 5.
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