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Localization of spherical varieties
Friedrich Knop

We prove some fundamental structural results for spherical varieties in arbitrary
characteristic. In particular, we study Luna’s two types of localization and use
them to analyze spherical roots, colors, and their interrelation. At the end, we
propose a preliminary definition of a p-spherical system.

1. Introduction

Let G be a connected reductive group defined over an algebraically closed ground
field k of arbitrary characteristic p. A normal G-variety X is called spherical if a
Borel subgroup B of G has an open orbit in X . In characteristic zero, there exists by
now an extensive body of research on spherical varieties culminating in a complete
classification [Luna and Vust 1983; Luna 2001; Losev 2009; Cupit-Foutou 2010;
Bravi and Pezzini 2011a; 2011b; 2011c].

In positive characteristic, much less work has been done. Most papers dealing
with spherical varieties in positive characteristic are restricted to particular examples
(like flag or symmetric varieties) or other special classes of spherical varieties (like
varieties obtained by reduction mod p).

This paper is part of a program to develop a general theory of spherical varieties
in arbitrary characteristic, possibly also leading to a classification. In this sense, the
old paper [Knop 1991] on a characteristic-free approach to spherical embeddings is
already part of the program.

A crucial portion of Luna’s theory of spherical varieties depends on Akhiezer’s
classification [1983] of spherical varieties of rank 1. In this paper, we present
results which are independent of that classification. On the other hand, in the
companion paper [Knop 2013], we determine all spherical varieties of rank 1 in
arbitrary characteristic and present results whose proofs depend (so far) on it.

More precisely, in this paper we recover most of Luna’s results [1997] on the
“big cell”. We start by generalizing Luna’s fundamental relations for the colors of a
spherical variety. At this point, we introduce additional data needed to describe a
spherical variety in positive characteristic. These are certain p-powers qD,α , where
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α is a simple root and D is a color “moved by α”. Our exposition of this part is
different from (and, we think, simpler than) Luna’s, and seems to be new even in
characteristic zero.

Next, we define the notion of spherical roots as properly normalized normal
vectors to the valuation cone. Luna’s method of viewing them as weights attached
to a wonderful variety does not generalize.

Next, we consider Luna’s construction [1997], called localization at S. Basically,
it consists of analyzing the open Białynicki-Birula cell with respect to a dominant
1-parameter subgroup of G. Our results are more general than Luna’s, even in
characteristic zero, since Luna restricts his attention to wonderful varieties, while
we formulate everything for so-called toroidal varieties. From this, we derive Luna’s
important result that the colors are, to a large extent, already determined by the
spherical roots.

Then we consider a construction called localization at6. This procedure amounts
to analyzing G-orbits of a toroidal variety. Since this technique is mostly classical,
only the proof for the behavior of type-(a) colors is new. Unfortunately, our results
remain somewhat incomplete, since it is unknown whether orbit closures in toroidal
spherical embeddings are normal or not.

We use localization at 6 to prove the important nonpositivity result Corollary 6.6.
Unlike Luna’s proof, which uses Wasserman’s tables [1996] of rank-2 varieties, our
proof is conceptual.

Finally, in Section 7 we attempt to generalize Luna’s notion of a spherical system
to positive characteristic. This is a combinatorial structure describing the roots and
the colors of a spherical variety. As additional data we propose the p-powers qα,D
mentioned above, and we hope that, at least for p 6= 2, 3, these data are enough
to describe a spherical variety. As for the axioms, we restrict ourselves to those
which immediately generalize axioms in characteristic zero. Conditions which are
only meaningful in positive characteristic (like bounding the denominators of the
pairings δD(α)) are deferred to future work.

So additional axioms will have to be added on at a later stage.

Notation. In the entire paper, the ground field k is algebraically closed. Its char-
acteristic exponent is denoted by p, that is, p = 1 if char k = 0 and p = char k
otherwise. The group G is connected reductive, B ⊆ G is a Borel subgroup, and
T ⊆ B is a maximal torus. Let 4(T ) = 4(B) be its character group. The set of
simple roots with respect to B is denoted by S ⊂4(T ).

A rational function f on X is B-semiinvariant if there is a character χ f ∈

X(B) = X(T ) such that f (b−1x) = χ f (b) f (x) for all b ∈ B and generic x ∈ X .
If X is spherical, the character χ f determines f up to a nonzero scalar. Let
4(X) ⊆ 4(T ) be the set of characters of the form χ f . It is a finitely generated
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abelian group whose rank is called the rank of X . We also use 4Q(X) :=4(X)⊗Q

and 4p(X) :=4(X)⊗Zp with Zp := Z[1/p].

2. Colors

Many properties of a spherical variety are determined by two sets of data and their
interrelation: colors and valuations. We start with colors. Our results generalize
those of [1997] in characteristic zero, but the approach is different. We do not use
compactifications, but use the completeness of flag varieties instead.

Let X be a spherical G-variety with group of characters 4(X), and let

NQ(X)= Hom(4(X),Q). (2-1)

A color of X is an irreducible divisor which is B- but not G-invariant. Every color
D produces an element δD ∈ NQ(X) by

δD(χ f ) := vD( f ) (2-2)

for all B-semiinvariants f . Here vD is the valuation of k(X) attached to D. The
color D is, in general, not uniquely determined by δD .

Since X is spherical, we can choose a point x0 ∈ X such that Bx0 is open and
dense in X . Let 1(X) be the set of colors of X . Since every color intersects the
open G-orbit Gx0, we have 1(X) =1(Gx0) =1(G/H), where H = Gx0 is the
isotropy subgroup scheme of x0. We start by recalling a well known formula for
the number of colors.

Proposition 2.1. Let G be a semisimple group and H ⊆ G a spherical subgroup.
Then

#1(G/H)= rk G/H + rk4(H). (2-3)

Proof. We compute the Picard group in two different ways. Set X = G/H . First,
we have an exact sequence

4(G)→ PicG X→ Pic X. (2-4)

The group on the left is trivial since G is semisimple. The cokernel of the homomor-
phism on the right is torsion by [Sumihiro 1974]. On the other hand, PicG X=4(H).
Thus rk Pic X = rk4(H). Now let X0 = Bx0 ⊆ X be the open B-orbit. Then the
colors are the irreducible components of X \ X0. Thus we have an exact sequence

k× = O(X)×→ O(X0)
×
→ Za

→ Pic X→ Pic X0 = 0, (2-5)

where a = #1(X). By definition, rk O(X0)
×/k× = rk X . Thus rk Pic X = a− rk X .

�
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Given a simple root α ∈ S, one can construct colors as follows: let Pα ⊆ G
be the minimal parabolic subgroup corresponding to α. Then Pαx0 is an open
B-stable subset of X which, according to [Knop 1995b, Lemma 3.2], decomposes
into at most three B-orbits. One of them is the open B-orbit Bx0; the others are of
codimension 1 in X , and hence their closures are colors. We say that these colors
are moved by α. Clearly, this just means that PαD 6= D. In particular, every color
is moved by some (not necessarily unique) simple root.

A more precise description is as follows. Let Hα := (Pα)x0 = H ∩ Pα such that
Pαx0= Pα/Hα . Then the B-orbits in Pαx0 correspond to H red

α -orbits in B\Pα∼= P1.
Let Hα denote the image of H red

α in Aut P1 ∼= PGL(2). Then, up to conjugation,
there are four possibilities for Hα:

Type of α Hα colors

(p) G0 —
(b) S0U0 D
(a) T0 D, D′

(2a) N0 D

(2-6)

Here G0= PGL(2). The subgroups B0, U0, and T0 of G0 are a Borel subgroup, a
maximal unipotent subgroup, and a maximal torus, respectively. Moreover, S0 ⊆ T0

and N0 = NG0(T0). Thus, the set of simple roots decomposes as a disjoint union
according to their type:

S = S(p) ∪ S(b) ∪ S(a) ∪ S(2a). (2-7)

Observe that α ∈ S(p) if and only if the open B-orbit Bx0 is Pα-invariant. Thus,
S(p) is the set of simple roots of the parabolic PX , the stabilizer of the open B-orbit.

Let D be a color moved by α. Then the morphism

ϕD,α : Pα ×B D→ X (2-8)

is generically finite. Its separable degree is 1, that is, ϕD,α is bijective if and only if
α is of type (b) or (a). It is 2 for α of type (2a). The inseparable degree of ϕD,α

will be denoted by qD,α ∈ pN.

Example. Assume p> 3 and let P ⊆G be a subgroup scheme which contains −B,
the Borel subgroup which is opposite to B. Wenzel [1993; 1994] showed that such
subgroup schemes are classified by functions f : S → Z≥0 ∪ {∞}, where f (α)
can be defined as the supremum of the set of all n ∈ Z≥0 such that P contains
the n-th Frobenius kernel of Pα. See also [Haboush and Lauritzen 1993] for a
simplified account. Now let X = G/P , a complete homogeneous G-variety. Then
the following is easy to see: A simple root α ∈ S is of type (p) if and only if
f (α) =∞. All other simple roots are of type (b) and they all move a different
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divisor Dα . Moreover, qDα,α = p f (α). In particular, this shows that in this example
the numbers qD,α may be arbitrary p-powers.

To formulate the following permanence property we renormalize δD as follows:

δ
(α)
D := qD,αδD. (2-9)

Lemma 2.2. Let π : X1→ X0 be a finite surjective equivariant morphism between
spherical G-varieties, let E be a color of X1, and let D = π(E) be its image in X0.
Let, moreover, α ∈ S be a simple root moving E (and D). Then δ(α)D = δ

(α)
E .

Proof. We consider first the case that α is of type (a) or (b) for X0. Then its type for
X1 is the same. Moreover, both ϕD,α and ϕE,α are bijective and, as an equality of
divisors, π−1(D)= q E , where q is some p-power. Thus δE = qδD . Now consider
the diagram

Pα ×B π−1(D) //

��

X1

��

Pα ×B D
ϕD,α

// X0

(2-10)

It is cartesian, and hence both horizontal arrows have the same (inseparable) degree,
namely qD,α. On the other hand, the top arrow has degree q qE,α. Hence

δ
(α)
D = qD,αδD = qqE,αδD = qE,αδE = δ

(α)
E . (2-11)

Now assume that α is of type (2a) for X0. Then there are two cases. If π−1(D)red

is irreducible then α is of type (2a) for X1, as well. Moreover, the degree of both
horizontal arrows is now 2qD,α. From here one argues as above.

The second case is when α is of type (a) for X0. Then π−1(D)red
= E1∪ E2 has

two components. As divisors, we have π−1(D)= q1 E1+ q2 E2. Thus δE1 = q1δD

and δE2 = q2δD . Moreover, as above, we get

2δ(α)D = 2qD,αδD = q1qE1,αδD + q2qE2,αδD = δ
(α)
E1
+ δ

(α)
E2
. (2-12)

Now we claim that actually δ(α)E1
= δ

(α)
E2

, which would prove our assertion.
To prove the claim, we may assume that X0 = G/H0 and X1 = G/H1 are

homogeneous. Moreover, the cases proved above allow replacement of H0 and H1

by H red
0 and H red

1 , respectively. We can even replace H1 by its connected component
of unity since E cannot split any further (otherwise D would split into more than
two components). Then H1 is normal in H0 and π is the quotient by the finite group
0 := H0/H1. Since 0 acts transitively on the connected components of the fibers
of π , there is an element g ∈ 0 which maps E1 to E2, which proves the claim. �

For any simple root α, let αr
∈ NQ(X) be the restriction of α∨ to 4Q(X):

αr (χ)= 〈χ, α∨〉 for all χ ∈4Q(X). (2-13)
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Proposition 2.3. Fix a simple root α ∈ S. Then the following relations hold:

Type of α

(p) αr
= 0

(b) δ
(α)
D = α

r

(a) δ
(α)
D + δ

(α)
D′ = α

r

α ∈4p(X), δ
(α)
D (α)= δ

(α)
D′ (α)= 1

(2a) δ
(α)
D =

1
2α

r

(2-14)

Proof. Let X = G/H be homogeneous and put X1 = G/H 0,red. We claim that it
suffices to prove the assertions for X1. Indeed, if α is of type (p) for X , then the
same holds for X1 and the claim follows from 4Q(X) = 4Q(X1). If α is not of
type (p) for X and X1, then the claim follows immediately from Lemma 2.2 if α
has the same type for X and X1. Otherwise, α is of type (2a) for X (moving one
color D) and of type (a) for X1 (moving two colors E1, E2). But then Lemma 2.2
implies

δ
(α)
D =

1
2

(
δ
(α)
E1
+ δ

(α)
E2

)
=

1
2α

r , (2-15)

proving the claim.
Thus we may assume that H is connected and reduced. Then consider the

diagram
G

p1

||||

p2

"" ""

X = G/H B\G =: F
(2-16)

Both morphisms p1 and p2 are smooth with connected fibers. Therefore, an
irreducible B-stable divisor D ⊂ X corresponds to an irreducible H -stable divisor
E ⊂F. Moreover, any B-semiinvariant rational function f on X corresponds to an
H -invariant rational section s of the homogeneous line bundle Lχ (with χ = χ f )
on F. Furthermore, (D, f ) is related to (E, s) by

vE(s)= vD( f )= δD(χ). (2-17)

Now consider the P1-fibration π : F = B\G → Fα := Pα\G. Moreover, let
y ∈ F be in the open H -orbit and let F ∼= P1 be the fiber through y.

Assume first that α is of type (p). Then the open B-orbit in X is Pα-stable,
which translates into the open H -orbit in F being the preimage of an open set in
Pα\G. But then Lχ is a pull-back from Pα\G, which implies 〈χ f , α

∨
〉 = 0.

Now assume that α ∈ S(b). Then E is the only H -invariant divisor mapping
dominantly onto Fα. Moreover, since E ∩ F consists of a single point, the map
E→ Fα is generically bijective, and hence purely inseparable. Its degree is qD,α.
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Thus we get

〈χ, α∨〉 = deg Lχ |F = (s) · F = vE(s)E · F = qD,αδD(χ)= δ
(α)
D (χ), (2-18)

proving the assertion.
If α ∈ S(a), then there are two divisors E , E ′ mapping generically injectively to

Fα with degree qD,α and qD′,α, respectively. Then

〈χ, α∨〉 = (s) · F =
(
vE(s)E+vE ′(s)E ′

)
· F = qD,αδD(χ)+qD′,αδD′(χ). (2-19)

Now we prove α ∈4p(X). By construction, there is an equivariant morphism
Pαx0 � PGL(2)/H̃ with H̃ red

= T0. Thus the pull-back of any nonconstant B0-
semiinvariant is a B-semiinvariant with character q0α for some p-power q0. The
Hα-linearization of Lq0α|F factors through a PGL(2)-linearization. One reason is,
for example, that L−α is the relative canonical bundle of the fibration π . This implies
that s|F has two zeroes of the same multiplicity on F . Hence δ(α)D (α) = δ

(α)
D′ (α),

and therefore both are equal to 1.
Finally, assume that α ∈ S(2a). Then there is one divisor E mapping generically

2 : 1 to Fα. The degree of inseparability of this map is qD,α. Then E · F = 2qD,α,
and therefore

〈χ, α∨〉 = (s) · F = vE(s)E · F = 2qD,αδD(χ)= 2δ(α)D (χ), (2-20)

as claimed. �

We note the following consequence:

Corollary 2.4. Let p 6= 2 and let α ∈ S be of type (2a). Then α 6∈ 4p(X) and
〈χ, α∨〉 is even for all χ ∈4(X).

Proof. We keep the notation of the proof of Proposition 2.3. Let N0 = 〈s0〉T0 and
let n ∈ Z with nα ∈ 4(X). Then s0 acts on the T0-invariant section of Lq0α|F

by multiplication with (−1)n . Hence n is even and α 6∈ 4p(X). The rest follows
directly from Proposition 2.3. �

Now we analyze the case where a color is moved by more than one simple root.

Lemma 2.5. Let D be a color which is moved by two distinct simple roots α1

and α2. Then either α1, α2 ∈ S(b) or α1, α2 ∈ S(a). In the latter case, let D′ and D′′

be the second color moved by α1 and α2, respectively. Then D′ 6= D′′.

Proof. Clearly, neither α1 nor α2 is of type (p). Recall from [Knop 1995b, §2] that
any B-orbit on X has a rank attached to it. Moreover, if α ∈ S moves the color D,
then rank D = rank X if α is of type (b), and rank D = rank X − 1 in case α is of
type (a) or (2a) [Knop 1995b, §2 and Lemma 3.2]. This entails that α1, α2 are
either both of type (b) or both of type (a) or (2a).
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Suppose they are both of type (2a). Then, since α1 ∈4Q(X),

0< q−1
D,α1
= q−1

D,α1
1
2α

r
1(α1)= δD(α1)= q−1

D,α2
1
2α

r
2(α1)≤ 0. (2-21)

Similarly, suppose α1 is of type (a) and α2 is of type (2a). Then

0< q−1
D,α1
= δD(α1)= q−1

D,α2
1
2α

r
2(α1)≤ 0. (2-22)

This finishes the proof of the first part.
Now let both α1 and α2 be of type (a) and suppose D′ = D′′. Then

0<
qD,α2

qD,α1

+
qD′,α2

qD′,α1

= qD,α2δD(α1)+ qD′,α2δD′(α1)= α
r
2(α1)≤ 0. �

Examples. 1. Let G = SL(2) × SL(2) and H = SL(2) embedded into G via
id×Fq , where Fq is a Frobenius morphism. Then X :=G/H has only one color D.
Moreover, both simple roots α1, α2 are of type (b), and D is moved by both of
them. Furthermore, qD,α1 = 1 and qD,α2 = q, which shows that qD,α may depend
on α.

2. Let G = SL(3), let q be a p-power, and let H be the subgroup consisting of the
matricestq+2

tq−1

t−2q−1

 ·
1 x y

1 xq

1

 with t ∈ Gm and x, y ∈ Ga . (2-23)

Then both simple roots are of type (a) and there are three colors D0, D1, D2 where
αi moves D0 and Di . Furthermore, qD1,α1 = qD0,α2 = qD2,α2 = 1, while qD0,α1 = q .
The values δD(αi ) are given by the following table:

δD0 δD1 δD2

α1 q−1 1 −1−q−1

α2 1 −q−1 1

(2-24)

So indeed qδD0 + δD1 = α
r
1 and δD0 + δD2 = α

r
2.

Both examples show that G contains for p≥ 2 infinitely many conjugacy classes
of self-normalizing spherical subgroups, a phenomenon which does not occur in
characteristic zero.

Remark. The Lemma shows, in particular, that one can assign unambiguously a
type to any color. Thereby, one gets a decomposition

1(X)=1(b)(X)∪1(a)(X)∪1(2a)(X). (2-25)
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3. Spherical roots

For a spherical variety X , let V(X) be the set of G-invariant Q-valued valuations
of the field k(X). The map

V(X)→ NQ(X)= Hom(4(X),Q) : v 7→ (χ f 7→ v( f )) (3-1)

is injective [Knop 1991, Corollary 1.8]. According to [ibid., Corollary 5.3],
it identifies V(X) with a finitely generated convex rational cone inside NQ(X)
which contains the image of the antidominant Weyl chamber under the projec-
tion Hom(4(T ),Q) � NQ(X). This can be phrased in terms of the dual cone
V(X)∨ of V(X): it is a finitely generated rational convex cone in 4Q(X) with
V(X) = (V(X)∨)∨ and −V(X)∨ ⊆ Q≥0S, where Q≥0S is the cone generated by
the simple roots of G. In particular, −V(X)∨ is a pointed cone. Thus, it has a
canonical set of generators:

Definition 3.1. An element σ ∈4Q(X) is called a spherical root of X if

• Q≥0σ is an extremal ray of −V(X)∨ (thus σ ∈QS) and

• σ is a primitive element of ZS ∩4p(X).

The set of spherical roots is denoted by 6(X).

Clearly, each extremal ray of−V(X)∨ contains a unique spherical root. Moreover,
the spherical roots determine the valuation cone via

V(X)= {v ∈ NQ(X) : σ(v)≤ 0 for all σ ∈6(X)}, (3-2)

and are in bijection with faces of codimension 1 of V(X).
The normalization for a spherical root is chosen such that the following statement

holds:

Lemma 3.2. Let ϕ : X1 → X2 be a morphism of spherical varieties which is
either purely inseparable or a quotient by a central subgroup scheme of G. Then
6(X1)=6(X2).

Proof. If ϕ is purely inseparable, then clearly V(X1) = V(X2) and 4p(X1) =

4p(X2). Hence 6(X1)=6(X2).
Now let ϕ be the quotient by A ⊆ Z(G) (which might be positive dimensional).

Then
4p(X2)= {χ ∈4p(X1) : χ |A = 1}. (3-3)

Since roots of G are trivial on A, this implies

ZS ∩4p(X2)= ZS ∩4p(X1). (3-4)

Also, NQ(X2) is a quotient of NQ(X1) and V(X1) is the preimage of V(X2) (this
follows, for example, from [Knop 1991, Theorem 6.1]). Then 6(X2)=6(X1). �
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4. Localization at S

There are two types of constructions, called localization at S and at 6, respectively,
which both allow reduction of a spherical variety to a simpler one. In this section
we describe localization at S, which, in characteristic zero, was first introduced
by Luna [1997]. To this end, we first recall and prove some properties of the
Białynicki-Birula decomposition [1976] of a Gm-variety.

Let X be a complete normal Gm-variety. Then for any x ∈ X , the limit

π(x) := lim
t→0

t · x ∈ X (4-1)

exists and is a Gm-fixed point. Thus, letting F be the set of connected components
of the fixed point set X G

m , we get a set partition of X by putting

X Z := {x ∈ X : π(x) ∈ Z}. (4-2)

These are the Białynicki-Birula cells which are indexed by F . Except when X is
smooth or projective, they are, in general, not very well behaved. One cell is always
good, though:

Proposition 4.1. Let X be a complete normal Gm-variety. Then there is a unique
connected component S of X G

m (the source of X ) such that X S is open. Moreover,
the map πS :=πS : X S→ S is affine and a categorical quotient by Gm . In particular,
the source S is irreducible and normal.

Proof. The statement is well known. For example, it follows from the theory in
[Białynicki-Birula and Świ

‘
ecicka 1982]: Let S be the source, that is, the connected

component of X G
m such that π(x) ∈ S for x ∈ X generic. By [Białynicki-Birula and

Świ
‘
ecicka 1982, Proposition 2.3], the set A+ = {S} defines a sectional set. Now

the assertion is [Białynicki-Birula and Świ
‘
ecicka 1982, Theorem 1.5]. �

Lemma 4.2. Let X be as above. Then the general fibers of πS are irreducible and
generically reduced.

Proof. Since X S is normal, the generic fiber of πS is geometrically unibranch
[Grothendieck 1965, 6.15.6]. Since all irreducible components contain the Gm-
fixed point, it follows that the generic fiber is geometrically irreducible. Thus,
there is an open subset of S over which all fibers are also geometrically irreducible
[Jouanolou 1983, Theorem 4.10].

The second property follows from the fact that πS is a categorical quotient. This
entails that k(S) is separable inside k(X S). Therefore, πS is smooth generically
on X S . �

There is a second well-behaved cell. For this, let X− := X but with the opposite
Gm-action: t ∗ x := t−1

· x . Then the source T of X− is called the sink of X .
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It is characterized by the fact that π(x) ∈ T implies x ∈ T . Thus, T = XT is a
Białynicki-Birula cell by itself. Symmetrically, S is the sink of X− and therefore
X−S = S.

Now assume that X is a G-variety for some connected reductive group G and
that the Gm-action is induced by a 1-parameter subgroup λ : Gm→ G. Then we
put Xλ

:= S and Xλ := X S and πλ = πS . Observe that Xλ is not the entire fixed
point set of λ(Gm) but only a very special component.

Let Gλ
:= CG(λ(Gm)) be the fixed point set under the conjugation action and

let
Gλ :=

{
g ∈ G : πG(g) := lim

t→0
λ(t)gλ(t)−1 exists

}
. (4-3)

Then Gλ is a parabolic subgroup with Levi complement Gλ and the map

πG : Gλ→ Gλ

is the natural homomorphism with kernel Gu
λ, the unipotent radical of Gλ. The

following lemma is well known; for example, the proof given in [Luna 1997] carries
over verbatim to positive characteristic.

Lemma 4.3. The open cell Xλ is Gλ-invariant and πλ : Xλ→ Xλ is Gλ-equivariant
where Gλ acts on Xλ via πG : Gλ → Gλ, that is, πλ(gx) = πG(g)πλ(x) for all
g ∈Gλ and x ∈ Xλ. Moreover, Xλ consists of fixed points for the opposite unipotent
radical −Gu

λ.

We next provide a link between closed orbits in X and closed orbits in Xλ:

Lemma 4.4. Let X be a complete normal G-variety and let Z ⊆ Xλ be a closed
Gλ-orbit. Then GZ ⊆ X is a closed G-orbit with GZ ∩ Xλ

= Z.

Proof. Since Z is complete and homogeneous, it contains a unique fixed point
z for −Bλ, the Borel subgroup opposite to Bλ. Since z is in the source, it is a
−Gu

λ-fixed point. So z is fixed by −B = −Bλ −Gu
λ, which implies that Gz = GZ is a

complete, and hence closed, G-orbit of X . Moreover, since λ is dominant, we have
z ∈ (GZ)λ and therefore GZ ∩ Xλ

= (Gz)λ = Gλz = Z . �

Recall that a complete spherical G-variety X is called toroidal if no color of X
contains a G-orbit.

Proposition 4.5. Let λ be a dominant 1-parameter subgroup and let X be a
complete toroidal spherical variety. Then Xλ is a complete toroidal spherical
Gλ-variety.

Proof. This is basically [Luna 1997, Proposition 1.4]. We recall the proof and check
that it is characteristic-free.

First of all, completeness of Xλ is clear, while irreducibility and normality were
obtained in Proposition 4.1. Moreover, the dominance of λ implies B ⊆ Gλ. Hence
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the open B-orbit of X is contained in Xλ. Its image in Xλ is an open Bλ-orbit.
Thus, Xλ is spherical as well.

Now let D ⊆ Xλ be a color containing the closed Gλ-orbit Z . Then π−1
λ (D)

contains a unique component E ′ which maps onto D (by Lemma 4.2 and the fact
that D meets the open Gλ-orbit). Then E , the closure of D in X , is a color which
contains Z . Since GZ is a closed G-orbit by Lemma 4.4, we have GZ = B Z , and
therefore GZ ⊆ E . It follows that E is G-invariant since X is toroidal. From this
we get that D = πλ(E) is Gλ-invariant, in contradiction to D being a color. �

A toroidal spherical variety X determines a (pointed) fan F= F(X) in NQ(X)
whose support is V(X). More precisely, for any G-orbit Y ⊆ X , the invariant
valuations whose center in X contain Y form a cone CY ⊆ V(X). Then F is the
collection of cones of the form CY .

The fan F is precisely the piece of information needed to reconstruct X from
its open G-orbit X0. In fact, X is the compactification of X0 corresponding to the
colored fan (F,∅). See [Knop 1991] for more details.

Let λ be a dominant 1-parameter subgroup and let X be a complete toroidal
spherical variety with associated fan F. Then λ induces, via restriction to 4Q(X),
an element λr

∈ NQ(X). The dominance of λ implies −λr
∈ V(X). Thus we can

consider the fan
F̃λ
:= {C+Q≥0λ : −λ

r
∈ C ∈ F}. (4-4)

One may think of F̃λ as the restriction of F to a neighborhood of −λr . Visibly,
this fan is not pointed, since all its members contain the line Qλr . More precisely,
let C(λ) be the unique cone in F such that −λr is contained in its relative interior.
Then V (λ) := 〈C(λ)〉Q = C(λ)+Q≥0λ

r is the unique element of F̃λ which is a
subspace. Thus,

Fλ
:= {C/V (λ) : C ∈ F̃λ

}. (4-5)

is a pointed fan which lives in the vector space NQ(X)/V (λ) and is called the
localization of F at λ.

Theorem 4.6. Let λ and X as in Proposition 4.5. Then 4(Xλ)= 4(X)∩ V (λ)⊥,
NQ(Xλ)= NQ(X)/V (λ), and F(Xλ)= F(X)λ.

Proof. Let z be an arbitrary −B-fixed point in X . Then z corresponds to the complete
orbit Gz and therefore to a cone CGz of maximal dimension in F(X). Let P be the
parabolic which is opposite to the reduced stabilizer Gred

z . Then the local structure
theorem [Knop 1993, Satz 1.2] asserts the existence of a normal affine T -variety A
and a T -equivariant morphism ϕ0 : A→ X such that the morphism

ϕ : Pu × A→ X : (u, a) 7→ uϕ0(a) (4-6)
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is finite onto an open neighborhood of z in X . Moreover, the torus T has an open
orbit A in A such that 4Q(A)=4Q(X). The embedding A ↪→ A corresponds to
the cone CGz . In particular, A contains a unique T -fixed point, denoted by 0, such
that ϕ0(0)= z.

From this we see that z lies in the source of λ on X if and only if λ has a source
in Pu × A. This is automatically the case for Pu since λ is dominant and acts by
conjugation. The fixed point set is Pλu = Pu ∩Gλ. On the other hand, we have

fχ (λ(t)a)= t−λ
r (χ) fχ (a). (4-7)

For the limit when t→ 0 to exist for all a ∈ A, it is necessary and sufficient that
−λr (χ) ≥ 0 for all χ ∈ 4Q(A) with fχ ∈ O(A). This condition boils down to
−λr
∈CGz . In that case, one readily checks that the fixed point set Aλ is the closure

of the orbit corresponding to the face C(λ) of CGz . The restricted morphism

ϕλ : Pλu × Aλ→ Xλ (4-8)

describes the local structure of Xλ in a neighborhood of z.
From this we already infer that 4Q(Xλ) = 4Q(Aλ) = V (λ)⊥. We claim that

4(Xλ)=4Q(Xλ)∩4(X), which then proves the assertion4(Xλ)=4(X)∩V (λ)⊥.
In fact, only “⊇” is an issue. To prove it, let χ ∈4Q(Xλ)∩4(X). Then there are
n ∈ Z>0 and rational semiinvariants fχ on X and fnχ on Xλ such that f n

χ = π
∗

λ fnχ .
Let X ′ ⊆ Xλ be the open subset on which fnχ is regular. Then the normality of X
implies that fχ is regular on π−1

λ (X ′). Since fχ is also λ-invariant, we conclude
that fχ pushes down to a rational function on Xλ, which shows χ ∈ 4(Xλ), as
claimed. The equality NQ(Xλ)= NQ(X)/V (λ) follows immediately.

Finally, we compute the fan F(Xλ). Clearly, it suffices to determine its cones C of
maximal dimension corresponding to closed orbits. Lemma 4.4 and the discussion
above show that the closed Gλ-orbits in Xλ correspond precisely to those closed G-
orbits Gz in X such that−λr

∈CGz . In that case, it is easy to check that the toroidal
embedding Aλ ↪→ Aλ corresponds to the cone (CGz +Q≥0λ)/V (λ). But these are
precisely the cones of maximal dimension in Fλ, which shows F(Xλ)=F(X)λ. �

Corollary 4.7. Let λ and X be as above. Then

6(Xλ)=6(X)∩ V (λ)⊥ =6(X)∩ λ⊥. (4-9)

Proof. The valuation cone V(Xλ) equals the support of F(X)λ. Its codimension-1
faces are, by construction, the codimension-1 faces of V(X) which contain C(λ).
From4p(Xλ)=4p(X)∩V (λ)⊥ we get6(Xλ)=6(X)∩V (λ)⊥. The second equal-
ity follows from the fact that 〈σ,V(X)〉 ≥ 0 for all σ ∈6(X). Hence 〈σ, V (λ)〉 = 0
if and only if 〈σ,C(λ)〉 = 0 if and only if 〈σ, λ〉 = 0. �
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Proposition 4.8. Let λ and X be as above. Then G Xλ
= Y 0, where Y0 ⊆ X is the

G-orbit with CY0 = C(λ). Moreover, for any G-orbit Y ⊆ X ,

C(λ)⊆ CY ⇐⇒ Xλ
∩ Y 6=∅, (4-10)

C(λ)⊇ CY ⇐⇒ Xλ
⊆ Y . (4-11)

Proof. First note that Xλ is stable under −B = −Bλ−Gu
λ. Hence G Xλ is closed, and

hence an orbit closure Y0, in X . Choose a closed orbit Gz in Y0. The orbits of
X which contain Gz in their closure correspond precisely to the T -orbits in the
slice A. It follows from (4-8) that in this way, Y0 corresponds to Aλ, which shows
CY0 = C(λ), as claimed.

The two equivalences follow easily: we have Xλ
∩ Y 6= ∅ if and only if Y ⊆

G Xλ
= Y0 if and only if CY ⊇ C(λ); and Xλ

⊆ Y if and only if Y0 = G Xλ
⊆ Y if

and only if C(λ)⊇ CY . �

Next we compute the colors of Xλ. Let D ⊆ Xλ be a color and let D0 be its
restriction to the open Gλ-orbit. Then π−1

λ (D0) is irreducible by Lemma 4.2. Hence
its closure D∗ ⊂ X is a B-stable prime divisor.

Proposition 4.9. Let λ and X be as above.

a) Let α ∈ Sλ := S(Gλ)= S ∩ λ⊥ and let D be a color of Xλ. Then

i) α has the same type for Xλ as it has for X ,
ii) δD is the restriction of δD∗ to 4Q(Xλ)⊆4Q(X), and

iii) D is moved by α if and only if D∗ is moved by α. In that case qD,α = qD∗,α .

b) The map D 7→ D∗ is a bijection between the set of colors of Xλ and the set of
colors of X which are moved by some α ∈ Sλ.

Proof. The first part of iii) follows from Pα ⊆ Gλ and the equivariance of πλ. Then
b) is an immediate consequence. For ii), recall that π−1

λ (D0) is even a reduced
divisor by Lemma 4.2. Thus, vD∗(π

∗

λ f ) = vD( f ) for all f ∈ k(Xλ). Moreover,
there is a commutative diagram

Pα ×B D∗
ϕD∗,α

// X

Pα ×B π−1
λ (D0)

��

//

� ?

OO

Xλ
πλ
��

� ?

OO

Pα ×B D0 //
_�

��

Xλ

Pλα ×
Bλ D //

ϕλD,α
// Xλ

(4-12)
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where the middle square is cartesian and the injections are open embeddings. It
follows that ϕλD,α and ϕD∗,α have the same inseparable degree, showing the second
part of iii). Both morphisms also have the same separable degree (1 or 2). Thus, α
is of type (2a) for Xλ if and only if it is of type (2a) for X , proving part of i). The
other types (p), (b), and (a) are distinguished by the number of colors (0, 1, and 2,
respectively) moved by α. Thus, the rest of i) follows from iii). �

5. The interrelation of roots and colors

In practice, the 1-parameter subgroup λ has to be chosen diligently.

Lemma 5.1. Let X be a complete toroidal spherical G-variety and S′ ⊆ S. Then
there is a 1-parameter subgroup λ such that

a) S(Gλ)= S′ and

b) the connected center of Gλ acts trivially on Xλ.

Proof. Let F ⊆ NQ(T ) := Hom(4(T ),Q) be the open face of the Weyl chamber
defined by α = 0 for all α ∈ S′ and α > 0 for α ∈ S \ S′. Then λ ∈ F is equivalent
to a) (such λ are called adapted to S′).

Now consider the projection π : NQ(T )� NQ(X). Since π(F)⊆V(X), the fan
F associated to X induces a complete fan F′ on π(F). Let F0

:= F \
⋃
π−1(C),

where C runs through all C ∈ F′ with dim C < dimπ(F), which is obviously a
dense open subset of F . We claim that λ ∈ F0 ensures the second property b).

Indeed, π(λ) lies by construction in the relative interior of a maximal dimensional
cone C′ of F′. This implies that π(F)⊆ V ′, where V ′ is the span of C′. Now let
C ∈ F be minimal with C′ ⊆ C. Then π(λ) is also in the relative interior of C.
Thus, the subspace V spanned by C contains π(F). Hence 〈F〉Q ⊆ π−1(V ), which
implies b). �

If the fan is changed, one can do better.

Lemma 5.2. Let X0 be a homogeneous spherical G-variety and S′ ⊆ S. Then there
is a 1-parameter subgroup λ and a toroidal compactification X of X0 such that

a) S(Gλ)= S′ and

b) 4Q(Xλ)= 〈6(Xλ)〉Q.

Proof. Same construction as above, but this time we choose F such that dim C is as
large as possible, that is, the dimension of the smallest face of V which contains C′.
This means precisely b). �

Remark. A rather trivial application of the last lemma is when S′ = S. Then Xλ

has the same roots and colors as X0 but 4Q(Xλ) is spanned by 6(X).

Following Luna [1997], an important application of this technique is:
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Proposition 5.3. Let α ∈ S be a simple root. If p 6= 2, then:

a) α ∈6(X) if and only if α is of type (a). Thus S(a) = S ∩6(X).

b) 2α ∈6(X) if and only if α is of type (2a). Thus S(2a)
= S ∩ 1

26(X).

If p = 2, then:

c) α ∈6(X) if and only if α is of type (a) or (2a). Thus S(a)∪ S(2a)
= S∩6(X).

Proof. Without loss of generality, we may replace X by a toroidal compactification
of its open G-orbit. The corresponding fan is denoted by F. Choose λ as in
Lemma 5.1 with S′ := {α}. Then Gλ acts on Xλ only via a semisimple quotient G0

of rank 1. Let G0/H0 be the open G0-orbit in Xλ.
Assume first p 6= 2. Then

α ∈ S(a)(X) ⇐⇒ α ∈ S(a)(Xλ) ⇐⇒ H red
0 ∼ T0 ⇐⇒ α ∈6(Xλ) ⇐⇒ α ∈6(X).

This proves a).
The argument for b) is analogous, with T0 replaced by N (T0). Finally, for p = 2

we argue with 6(G0/T0)=6(G0/N (T0))= {α}. �

Remarks. 1. The proposition shows that in case p 6= 2, the type of the simple
roots can be recovered from S(p) and 6(X) as follows:

α ∈ S is of type


(p) if α ∈ S(p),
(a) if α ∈6(X),
(2a) if 2α ∈6(X),
(b) otherwise.

(5-1)

This way, all colors can be recovered, but some might appear multiple times (see
Lemma 2.5). For colors of type (b), that behavior is controlled by 6(X) as well
(see Proposition 5.4 below).

2. For p = 2 and α ∈ S(2a), it is tempting to define the corresponding spherical root
to be 2α instead of α. This would make parts a) and b) of Proposition 5.3 work
uniformly in all characteristics. We opted against this procedure. The main reason
is that otherwise spherical roots would not be roots (possibly not simple) of some
root system. Example: For p = 2 and X = SL(3)/SO(3), the two roots are α1 and
α1+α2 (see [Schalke 2011]), which are visibly contained in an A2-root system. On
the other hand, the root α1 is of type (2a) and the set {2α1, α1+α2} is not part of
any root system.

Proposition 5.4. For two distinct simple roots α1, α2 ∈ S(b), there is equivalence
between:

a) α1 and α2 move the same color D.



Localization of spherical varieties 719

b) α1 and α2 are orthogonal to each other and q1α1 + q2α2 ∈ 6(X) for two
p-powers q1, q2 (one of which is necessarily equal to 1).

If these conditions hold, we have

q−1
1 αr

1 = q−1
2 αr

2, (5-2)

and D is not moved by any other simple root.

Proof. Again replace X by a toroidal compactification and choose λ as in Lemma 5.1
with S′ = {α1, α2}. Now Gλ acts on Xλ via a semisimple group G0 of rank 2. The
simple roots of G0 are α1 and α2, and both are of type (b) with respect to Xλ.

Assume first b). Then G0 is of type A1A1. An easy inspection of its subgroups
shows that Xλ has a spherical root of the given form if and only if its open orbit is
isogenous to SL(2)×SL(2)/(Fq1 × Fq2)SL(2) (with Fq = Frobenius morphism of
SL(2)). In that case one checks that a) holds for Xλ and therefore for X .

Conversely assume a). Then Xλ has precisely one color D which is moved by
both simple roots. Thus, (2-14) implies that a relation like (5-2) holds. In particular,
the rank of Xλ is 1.

Now one could use the classification of spherical varieties of rank ≤ 1 in [Knop
2013] and conclude that G0 is of type A1A1 having a root of the given form.
A self-contained argument goes as follows. We may assume that X = G/H is
homogeneous, where H is reduced and connected. The color and the half-line
V(X) lie opposite to each other. By [Knop 1991, Theorem 6.7], the variety X is
affine, and thus H is reductive. Since there is only one color, (2-3) implies that H
is semisimple. Moreover, the dimension formula [Knop 1991, Theorem 6.6] shows
that dim H = 3, 4, 5, 7 for G = A1A1,A2,B2,G2, respectively. This shows that G
is isogenous to SL(2)× SL(2) and that H ∼= SL(2) is embedded diagonally using
the Frobenius morphisms. The assertion b) follows.

Formula (5-2) follows immediately from (2-14). Finally, assume α3 ∈ S moves D
as well. Then α3 ∈ S(b) (Lemma 2.5). Thus, by the above, α3 would be orthogonal
to α1 and α2. Moreover, q ′1α1+q3α3 ∈6(X) for some p-powers q ′1, q3. Now (5-2)
implies the contradiction

2q ′1q−1
1 = 〈q

′

1α1+ q3α3, q−1
1 α∨1 〉 = 〈q

′

1α1+ q3α3, q−1
2 α∨2 〉 = 0. �

6. Localization at 6

Localization at S allows one to pass from S to a subset. There is a second, older,
kind of localization which does the same thing with 6(X). Geometrically, it simply
corresponds to looking at an orbit in a carefully chosen toroidal embedding. The
next result summarizes what was already known about localization at 6:
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Proposition 6.1. Let X be a toroidal spherical variety and let Y ⊆ X be an orbit.
Put V := 〈CY 〉

⊥
⊆4Q(X). Then:

a) 4p(Y )=4p(X)∩ V .

b) 6(Y )=6(X)∩ V .

c) S(p)(Y )= S(p)(X).

Proof. Part a) follows, for example, from [Knop 1991, Theorem 1.3]. Moreover,
V(Y )= (V(X)+V )/V , where V =〈C〉Q (this follows from [Knop 1993, Satz 7.4]),
which implies b). Part c) follows, for example, from the fact that all closed orbits
in any toroidal compactification of X are of the form G/Q with Qred

=
−P , where

P is the parabolic corresponding to S(p). �

If p 6= 2, then the remark after Proposition 5.3 allows us now to determine the
type of a simple root for Y .

S(p)(Y )= S(p)(X), (6-1)

S(a)(Y )= S(a)(X)∩ V, (6-2)

S(2a)(Y )= S(2a)(X)∩ V, (6-3)

S(b)(Y )= S(b)(X)∪
(
S(a)(X) \ V

)
∪
(
S(2a)(X) \ V

)
. (6-4)

For p = 2, equations (6-2) and (6-3) have to be replaced by the weaker equality

S(a)(Y )∪ S(2a)(Y )=
(
S(a)(X)∩ V

)
∪
(
S(2a)(X)∩ V

)
. (6-5)

The next lemma shows (in particular) that moreover

S(2a)(Y )⊆ S(2a)(X)∩ V . (6-6)

Lemma 6.2. Let X and Y be as above and let α ∈ S∩V be of type (a) for X. Then
α is also of type (a) for Y . Moreover, let D be a color of X which is moved by α.
Then E = (D ∩ Y )red is a color of Y which is moved by α and there is a p-power q
such that δE is the restriction of qδD to 4p(Y ).

Proof. We plan to use localization at S but face the problem that CY may not meet
N−

Q
(X), the image of the antidominant Weyl chamber in NQ(X). To bypass this

problem, we go one dimension up: the group G := G×Gm acts on X0
:= X ×Gm .

Then NQ(X0)= NQ(X)⊕Q and V(X0)= V(X)×Q. Now choose any v0 in the
relative interior of N−(X)∩ {α = 0} ⊆ V(X) and put C := (C× 0)+Q≥0(v0, 1).
Choose any fan F whose support is V(X0) and which contains C. This gives rise
to a toroidal G-variety X . Moreover, X contains Y ×Gm since CY is a face of C.
Its closure is denoted by Y .

Now choose any v ∈ C0 small enough that v+ v0 is still in the relative interior
of N−(X)∩ {α = 0}, and choose a ∈ Z>0 such that v1 := a(v+ v0, 1) is the image
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of a 1-parameter subgroup λ of G. Then, by construction, Sλ = {α} and Gλ is of
semisimple rank 1. Moreover, Xλ is contained in Y by Proposition 4.8. Thus, we
get a diagram

Ỹλ // //

π̃λ��

Y λ
� � //

πλ
��

Xλ

πλ
��

Ỹ λ ν
// // Xλ Xλ

(6-7)

where Ỹ is the normalization of Y and where the vertical arrows represent Białynicki-
Birula contractions on the open cell. By Proposition 4.9, the type of α on Xλ is (a).
This means that the open Gλ-orbit in Xλ is of the form Gλ/H0, where H red

0 is
diagonalizable.

Now we argue that ν is purely inseparable. Indeed, the open orbit in Ỹ λ is
Gλ/H1, with H red

1 ⊆ H red
0 ⊆ T . This already shows that α is of type (a) for Ỹ , and

hence for Y and Y . Since both H red
1 and H red

0 are linearly reductive abelian groups,
we have [

H red
0 : H

red
1
]
=
[
4p(Ỹ λ) :4p(Xλ)

]
. (6-8)

On the other hand,

4p(Ỹ λ)=4p(Ỹ )=4p(Y )=4p(X)∩ V =4p(Xλ), (6-9)

where V := 〈C〉. This shows that ν is generically injective and therefore purely
inseparable.

The color D gives rise to the color D× Gm of X . Its image D0 in Xλ is a color
of Xλ. Now E0 = ν

−1(D0)
red is a color of Ỹ λ. Clearly ν−1(D0)= q E0 for some

p-power q . Finally, the closure of (π̃λ)−1(E0) is a color of Y which is of the form
E × Gm , where E = (D ∩ Y )red.

Recall V = 〈C〉⊥
Q

. Then

V = {(χ,−v0(χ)) : χ ∈ V } ∼= V (6-10)

and 4Q(X)=4Q(X)⊕Q, 4Q(Y )= V ⊕Q, and 4Q(Xλ). Thus, for χ ∈4Q(X),

δD(χ)= δD×Gm (χ, 0)= δD×Gm (χ,−v0(χ))= δD0(χ,−v0(χ)); (6-11)

and similarly, δE(χ)= δE0(χ,−v0(χ)) for all χ ∈ V . Thus, for χ ∈ V ,

δD(χ)= δD0(χ,−v0(χ))= qδE0(χ,−v0(χ))= qδE(χ). �

Remark. With these results it is possible to recover all colors of Y and which
color is being moved by which root. In characteristic zero this is good enough to
compute the entire spherical system of Y . In positive characteristic we are missing
information on the degrees qD,α of Y , though. We plan to return to this question in
the future.
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Localization at 6 is, a priori, not possible for all subsets of 6(X). Therefore,
we define:

Definition 6.3. A subset6′ of6(X) is called a set of neighbors if there is v∈V(X)
such that

6′ = {σ ∈6(X) : v(σ )= 0}. (6-12)

Equivalently, 6′ is a set of neighbors if Q≥06
′ is a face of Q≥06(X). Two

spherical roots α and β are called neighbors if they are distinct and if {α, β} is a
set of neighbors.

Clearly, if 6(X) is linearly independent, then all subsets are sets of neighbors.
This is always the case if p 6= 2 (see [Brion 1990] for char k = 0 and [Knop
2013, Corollary 4.8] for the general case). For p = 2 and X = SL(4)/SO(4),
Schalke has shown (unpublished) that 6(X) = {α1, α1+ α2, α2+ α3, α3}. Since
α1 + (α2 + α3) = (α1 + α2)+ α3, the pairs (α1, α2 + α3) and (α1 + α2, α3) are
not neighbors. In fact, V(X) is the cone over a quadrangle and the given pairs
correspond to opposite faces.

Lemma 6.4. If α, β ∈6(X) are multiples of simple roots, then they are neighbors.

Proof. The set Q≥0α+Q≥0β is already a face of Q≥0S and therefore also of the
smaller cone Q≥06(X). �

The following statement can be used to exclude certain configurations of colors
and roots (see [Knop 2013, Proof of Theorem 4.5]).

Proposition 6.5. Let D ∈ 1(X)(a) be moved by α ∈ S(a) and let σ ∈ 6(X) be a
neighbor of α with δD(σ ) > 0. Then σ ∈ S(a) and D is moved by σ , as well.

Proof. We first reduce to the case that X is of rank 2 with 6 = {α, σ }. Because α
and σ are neighbors, one can choose a pointed cone C inside V(X)∩ {α = σ = 0}
which is of codimension 2 in NQ(X). Let X be the simple embedding corresponding
to C and let Y be its closed orbit. Then Proposition 6.1 implies 6(Y ) = {α, σ }.
Moreover, using the remark after Lemma 5.2, there is a spherical variety Y ′ with
6(Y ′) = {α, σ } and rk Y ′ = 2. Moreover, Lemma 6.2 implies that Y ′ still has a
color E moved by α with δE(σ )= qδD(σ ) > 0. Let us assume that we can prove
that σ ∈ S(a)(Y ′) and that E is moved by σ . Clearly, D is moved by σ in X as well.
Moreover, since α ∈6(X), either α ∈ S(a)(X) or p = 2 and α ∈ S(2a)(X). But the
latter case cannot happen, since then D could not be moved by any other simple
root (Lemma 2.5). So σ ∈ S(a)(X), which finishes the reduction step.

From now on we assume that rk X = 2 and, without loss of generality, that X =
G/H where H is reduced. Since δD(σ ) > 0 by assumption and δD(α)= qD,α > 0,
the cone generated by V(X) and δD is the entire space N := NQ(X). From that
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we get a morphism X = G/H → G/P with rank G/P = dim N/N = 0 [Knop
1991, Corollary 4.6].1 Hence P is a parabolic subgroup with an identification
1(G/P) = 1(G/H) \ {D}. We may choose P in such a way that it is opposite
to B.

Every β ∈ S \ S(p) moves at least one color and α moves even two. Assume
first that these colors are not all different. Then, according to Lemma 2.5 and
Proposition 5.4, there are two possibilities:

a) σ = α1+ qα2 with α1, α2 ∈ S orthogonal. But then α1 and α2 would move the
same color in G/P , which is impossible.

b) S(a) contains another element β besides α. But then β ∈6(X) (Proposition 5.3),
and hence σ = β ∈ S(a). Moreover, there is a color D′ moved by both α and σ . We
claim that D′ = D. Suppose not. Then D and D′ are the two colors moved by α,
and Proposition 2.3 implies the contradiction

δ
(α)
D (σ )=〈σ, α∨〉−δ

(α)
D′ (σ )=〈σ, α

∨
〉−

qD′,α

qD′,σ
δ
(σ )
D′ (σ )=〈σ, α

∨
〉−

qD′,α

qD′,σ
<0. (6-13)

Thus, we are exactly in the asserted situation, that is, σ ∈ S(a) moving D.

So, assume from now on that the colors moved by all the β ∈ S \ S(p) are different.
Then

#1(G/P)≥ #S \ S(p). (6-14)

Consider a toroidal completion X of X . Then the morphism X → G/P extends
to X [Knop 1991, Theorem 4.1]. Every closed orbit in X is isogenous to G/−PX ,
where PX is the parabolic attached to S(p). Hence PX ⊆ P red. Thus (6-14) implies
P = PX .

Let Y = G/H1 ⊂ X be the rank-1 orbit corresponding to the half-line V(X)∩
{σ = 0}. Then 6(Y ) = {σ }. Because of P = PX , the fiber PX/H red

1 is one-
dimensional and therefore isomorphic to P1, Gm , or A1. The first case is impossible
since H1 is not parabolic. The second case is excluded since H1 is not horospherical.
Thus PX/H red

1
∼= A1.

This means in particular that (a conjugate of) H1 contains the maximal torus T of
G and that H1 contains all root subgroups Uβ which are contained in PX except for
one, which is denoted by γ , and which lies in Pu

X . The Uβ corresponding to β ∈ S
generate the maximal unipotent subgroup of G. This implies γ ∈ S. Moreover, Uγ

is a 1-dimensional module for the Levi part of PX . This shows that H red
1 is, in fact,

induced from PGL(2)/Gm (on induction in arbitrary characteristic, see [Knop 2013,
§2, in particular Lemma 2.1]). Hence σ ∈ S(a). But in that case, (6-14) would be a
strict inequality, which is not true because of P = PX . �

1The idea for this construction is due to Guido Pezzini.
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Proposition 6.5 can be used to give bounds for δD(σ ):

Corollary 6.6. With α and σ as above, assume that σ 6∈ S or that σ ∈ S but does
not move either color moved by α. Then

q−1
D,α〈σ, α

∨
〉 ≤ δD(σ )≤ 0. (6-15)

Proof. The right-hand inequality follows directly from Proposition 6.5. For the
left-hand inequality, apply Proposition 6.5 to the other color D′ moved by α and
observe that δ(α)D′ = α

r
− δ

(α)
D (Proposition 2.3). �

In positive characteristic, these bounds are less valuable since we didn’t derive a
bound on the denominator of δD(σ ). Such a bound exists (in terms of the qD,α’s)
and will be included in a future paper. Then (6-15) leaves only finitely many
possibilities for δD(σ ).

7. The p-spherical system

We summarize what we have proved so far in terms of a combinatorial struc-
ture which generalizes Luna’s spherical systems. But first we need some more
terminology:

Definition 7.1. Let G be a connected reductive group.

a) An element σ ∈4Q(T ) is called a spherical root for G if there is a spherical
G-variety X such that σ is a spherical root for X . The set of spherical roots
for G is denoted by 6(G).

b) A spherical root σ ∈6(G) is compatible with a subset S(p) ⊆ S if there is a
spherical G-variety X with σ ∈6(X) and S(p) = S(p)(X).

Remarks. 1. Proposition 6.1 shows that in the definition above, one may assume,
without loss of generality, rk X = 1.

2. Spherical varieties of rank 1 have been classified by Akhiezer [1983] in char-
acteristic zero and Knop [2013] in general. In particular, for every G, there is a
complete description of 6(G) (see [Knop 2013, §2 and §7]).

3. One result of that classification is that 6(G) is infinite unless char k = 0 or G is
simple of rank ≤ 2.

For the following, recall that Zp = Z[1/p] and 4p := 4⊗Zp for any abelian
group 4.

Definition 7.2. Let p 6= 2. Then a p-spherical system for G consists of

• a subgroup 4⊆4(T ),

• a subset 6 ⊆4p ∩6(G),

• a subset S(p) ⊆ S,
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• a finite set 1(a),

• a map δ :1(a)→ Hom(4,Z) : D 7→ δD , and

• a map S \ (S(p) ∪ S(a))→ pN
: α 7→ qα, where S(a) := S ∩6.

Of course, these data are subject to some conditions. Here, we list only those
which are straightforward generalizations of Luna’s axioms. It is safe to say that
more axioms have to be imposed which deal specifically with issues of positive
characteristic. We keep the notation that αr denotes the restriction of α∨ to 4.

A1 All σ ∈6 are primitive vectors of ZS ∩4p.

A2 αr
= 0 for all α ∈ S(p).

A3 Every σ ∈6 is compatible with S(p).

A4 For all D ∈1(a) and σ ∈6 \ S(a), we have δD(σ )≤ 0.

A5 For every α ∈ S(a), there are exactly two D ∈1(a) with δD(α)> 0. Conversely,
for every D ∈1(a), there is at least one α ∈ S(a) with δD(α) > 0.

A6 For α ∈ S(a), let D+ 6= D− ∈1(a) with δD±(α)> 0. Then qα,D± := δD±(α)
−1
∈

pN and qα,D+δD+ + qα,D−δD− = α
r .

A7 Let α ∈ S with 2α ∈6. Then α 6∈4p and 1
2α

r (4p)⊆Zp. Moreover, αr (σ )≤ 0
for all σ ∈6 \ {2α}.

A8 Let qα1+α2 ∈6 with α1 ⊥ α2. Then q−1αr
1 = α

r
2 and q−1qα1 = qα2 .

The point is, of course, that for p 6= 2 every homogeneous spherical variety, X
gives rise to a p-spherical system. More specifically, we put

4 :=4(X), 6 :=6(X), S(p) := S(p)(X),

1(a) :=1(a)(X), δD := δ
X
D.

(7-1)

The only new constituents are the p-powers. For α ∈ S \ (S(p)∪ S(a))= S(b)∪ S(2a),
we define qα as qα,D from Proposition 2.3, where D is the unique color moved
by α.

Now we verify all axioms.

A1 Holds by definition of 6(X).

A2 See Proposition 2.3.

A3 Follows from the definition of “compatibility”.

A4 This is Corollary 6.6 in conjunction with [Knop 2013, Corollary 4.8], which
implies that for p 6= 2, any two spherical roots are neighbors.

A5 The first part follows also from Corollary 6.6 and Proposition 2.3. The second
part holds by definition of 1(a)(X).

A6 This follows from Proposition 2.3.
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A7 The first part is Proposition 5.3b) and Corollary 2.4. The second follows from
[Knop 2013, Theorem 4.5].

A8 This is Propositions 5.4 and 2.3.

Remarks. 1. In characteristic 0, Luna [2001, 5.1] used Wasserman’s tables [1996]
of spherical rank-2 varieties to verify the axioms. So our approach is more concep-
tual in that it uses only the classification of rank-1 but not of rank-2 varieties.2

2. The case p = 2 requires some modifications. To distinguish simple roots of type
(a) and (2a), we redefine S(a) as

S(a) :=
{
α ∈ S ∩6 : δD(α) > 0 for some D ∈1(a)

}
. (7-2)

This works indeed for spherical systems coming from spherical varieties: Suppose
there are α ∈ S(2a)(X) and D ∈1(a) with δD(α) > 0. Then D is moved by some
β ∈ S(a). Since α and β are neighbors (Lemma 6.4), we get a contradiction to
Proposition 6.5.

With this change, all axioms hold for p = 2 except for one: in A4, one has to
require that σ and α are neighbors. Observe that A7 is vacuously satisfied.

3. It is a natural question whether spherical varieties are classified by their p-
spherical system. In characteristic zero, the answer is “yes” according to work by
Luna [2001], Losev [2009], Cupit-Foutou [2010], and Bravi and Pezzini [2011a;
2011b; 2011c]. For p 6= 2 or 3, it might be possible that the p-spherical system
determines the variety uniquely. For example, all complete homogeneous varieties
are classified by p-spherical systems with4=0 (see the example before Lemma 2.2).
Furthermore, the author convinced himself that this also holds for spherical varieties
of rank 1. If p = 2 or p = 3, then uniqueness does not even hold for complete
homogeneous varieties (see [Wenzel 1994, Proposition 4]) due to exceptional
isogenies. If p = 2, then uniqueness is wrong already for G = SL(2), as then G
contains nonstandard horospherical subgroup schemes (see [Knop 1995a]).

4. The above list of axioms A1–A8 is definitely only preliminary. Even in the
rank-1 case, they do not suffice. For example, there is no axiom bounding the lattice
4 from below. We plan to return to this problem in the future.
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