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Pair correlation of angles
between reciprocal geodesics

on the modular surface
Florin P. Boca, Vicent,iu Pas,ol,

Alexandru A. Popa and Alexandru Zaharescu

The existence of the limiting pair correlation for angles between reciprocal
geodesics on the modular surface is established. An explicit formula is provided,
which captures geometric information about the length of reciprocal geodesics,
as well as arithmetic information about the associated reciprocal classes of binary
quadratic forms. One striking feature is the absence of a gap beyond zero in the
limiting distribution, contrasting with the analog Euclidean situation.

1. Introduction

Let H denote the upper half-plane and 0 = PSL2(Z) the modular group. Consider
the modular surface X = 0\H, and let 5 : H→ X be the natural projection. The
angles on the upper half-plane H considered in this paper are the same as the
angles on X between the closed geodesics passing through 5(i) and the image of
the imaginary axis. These geodesics were first introduced in connection with the
associated “self-inverse classes” of binary quadratic forms in the classical work
of Fricke and Klein [1892, p. 164], and the primitive geodesics among them were
studied recently and called reciprocal geodesics by Sarnak [2007]. The aim of this
paper is to establish the existence of the pair correlation measure of their angles
and to explicitly express it.

For g ∈ 0, denote by θg ∈ [−π, π] the angle between the vertical geodesic [i, 0]
and the geodesic ray [i, gi]. For z1, z2 ∈ H, let d(z1, z2) denote the hyperbolic
distance, and set

‖g‖2 = 2 cosh d(i, gi)= a2
+ b2
+ c2
+ d2 for g =

(
a b
c d

)
∈ SL2(R).
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It was proved by Nicholls [1983] (see also [Nicholls 1989, Theorem 10.7.6])
that for any discrete subgroup 0 of finite covolume in PSL2(R), the angles θγ are
uniformly distributed, in the sense that for any fixed interval I ⊆ [−π, π],

lim
R→∞

#
{
γ ∈ 0 : θγ ∈ I, d(i, γ i)6 R

}
#
{
γ ∈ 0 : d(i, γ i)6 R

} =
|I |
2π
.

Effective estimates for the rate of convergence that allow one to take |I | � e−cR as
R→∞ for some constant c= c0> 0 were proved for 0=0(N ) by one of us [Boca
2007], and in general situations by Risager and Truelsen [2010] and by Gorodnik
and Nevo [2012]. Other related results concerning the uniform distribution of real
parts of orbits in hyperbolic spaces were proved by Good [1983], and more recently
by Risager and Rudnick [2009].

The statistics of spacings, such as the pair correlation or the nearest neighbor
distribution (also known as the gap distribution) measure the fine structure of
sequences of real numbers in a more subtle way than the classical Weyl uniform
distribution. Very little is known about the spacing statistics of closed geodesics.
In fact, the only result that we are aware of, due to Pollicott and Sharp [2006],
concerns the correlation of differences of lengths of pairs of closed geodesics on a
compact surface of negative curvature, ordered with respect to the word length on
the fundamental group.

This paper investigates the pair correlation of angles θγ with d(i, γ i) 6 R, or
equivalently with ‖γ ‖26Q2

= eR
∼2 cosh R as Q→∞. As explained in Section 2,

these are exactly the angles between reciprocal geodesics on the modular surface.
The Euclidean analog of this problem considers the angles between the line

segments connecting the origin (0, 0) with all integer points (m, n) satisfying
m2
+n2 6 Q2 as Q→∞. When only primitive lattice points are being considered

(rays are counted with multiplicity one), the problem reduces to the study of the pair
correlation of the sequence of Farey fractions with the L2 norm ‖m/n‖22 =m2

+n2.
Its pair correlation function is plotted on the left of Figure 1. When Farey fractions
are ordered by their denominator, the pair correlation is shown to exist and it is
explicitly computed in [Boca and Zaharescu 2005]. A common important feature
is the existence of a gap beyond zero for the pair correlation function. This is an
ultimate reflection of the fact that the area of a nondegenerate triangle with integer
vertices is at least 1

2 , which corresponds to the familiar inequality |b/d−a/c|>1/cd
satisfied by two lattice points P = (a, b) and Q = (c, d) with Area(4O P Q) > 0.

For the hyperbolic lattice centered at i , it is convenient to start with the (nonuni-
formly distributed) numbers tan(θγ /2) with multiplicities, rather than the angles θγ
themselves. Employing obvious symmetries explained in Section 3, it is further
convenient to restrict to a set of representatives 0I consisting of matrices γ with
nonnegative entries such that the point γ i is in the first quadrant in Figure 2. The
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pair correlation measures of the finite set AQ of elements θγ with γ ∈ 0I and
‖γ ‖6 Q (counted with multiplicities) is defined as

RA
Q(ξ)=

1
BQ

#
{
(γ, γ ′) ∈ 02

I : ‖γ ‖, ‖γ
′
‖6 Q, γ ′ 6= γ, 06 2

π

(
θγ ′ − θγ

)
6 ξ

BQ

}
,

where BQ ∼
3
8 Q2 denotes the number of elements γ ∈ 0I with ‖γ ‖6 Q. As it will

be used in the proof, we similarly define the pair correlation measure RT
Q(ξ) of the

set TQ of elements tan(θγ /2) with γ ∈ 0I and ‖γ ‖6 Q.
One striking feature, illustrated by the numerical calculations in Figure 1, points

to the absence of a gap beyond zero in the limiting distribution, in contrast with the
analog Euclidean situation.

The main result of this paper is the proof of existence and explicit computation
of the pair correlation measure RA

2 given by

RA
2 (ξ)= RA

2
(
(0, ξ ]

)
:= lim

Q→∞
RA

Q(ξ), (1-1)

and similarly for RT
2 , thus answering a question raised in [Boca 2007].

To give a precise statement, consider S, the free semigroup on two generators
L =

( 1
1

0
1

)
and R =

( 1
0

1
1

)
. Repeated application of the Euclidean algorithm shows

that S∪ {I } coincides with the set of matrices in SL2(Z) with nonnegative entries.
The explicit formula for RT

2 (ξ) is given as a series of volumes summed over S,
plus a finite sum of volumes, and it is stated in Theorem 2 (Section 7). The formula
for RT

2 (ξ) leads to an explicit formula for RA
2 (ξ), which we state here, partly

because the pair correlation function for the angles θγ is more interesting, being
equidistributed, and partly because the formula we obtain is simpler.

Theorem 1. The pair correlation measure RA
2 on [0,∞) exists and is given by

the C1 function

RA
2

( 3
4π
ξ
)
=

8
3ζ(2)

( ∑
M∈S

BM(ξ) +
∑

`∈[0,ξ/2)

∑
K∈[1,ξ/2)

AK ,`(ξ)

)
. (1-2)

For M ∈S, letting UM = ‖M‖2/
√
‖M‖4− 4, θM as above, and f+ = max{ f, 0},

we have

BM(ξ)=
π

4

∫ π/2

0

(
1/
√
‖M‖4− 4− sin(2θ − θM)/ξ

)
+

UM + cos(2θ − θM)
dθ.

For integers ` ∈ [0, ξ/2), K ∈ [1, ξ/2), we have

AK ,`(ξ)=

∫ π/4

0
AK ,`

( ξ

2 cos2 t
, t
) dt

cos2 t
,
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where AK ,`(ξ, t) is the area of the region defined by those reiθ
∈ [0, 1]2 such that

L`+1(eiθ ) > 0,
FK ,`(θ)

ξ
6 r2 6 cos2 t

max{1, L2
`(eiθ )+ L2

`+1(e
iθ )}

, (1-3)

with eiθ
= (cos θ, sin θ), the piecewise linear functions L i as defined in (5-5), and

FK ,`(θ) := cot θ +
∑̀
i=1

1
L i−1(eiθ )L i (eiθ )

+
L`+1(eiθ )

L`(eiθ )
(
L2
`(eiθ )+ L2

`+1(e
iθ )
) .

Rates of convergence in (1-1) are effectively described in the proof of Theorem 2
and in Proposition 15.

When ξ 6 2, the second sum in (1-2) disappears and the derivative B ′M(ξ)
is explicitly computed in Lemma 17, yielding an explicit formula for the pair
correlation density function gA

2 (ξ) = dRA
2 (ξ)/dξ , which matches the graph in

Figure 1.

Corollary 1. For 0< ξ 6 2 we have

gA
2

( 3
4π
ξ
)
=

16
3ξ 2

∑
M∈S

ln
(
‖M‖2+

√
‖M‖4− 4

‖M‖2+
√
‖M‖4− 4− ξ 2

)
.

A formula valid for 0< ξ 6 4 is given in (8-11) after computing A′0,K (ξ).

0.5 1 1.5 2 2.5 3

0.5

1

1.5

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

Figure 1. The pair correlation functions gT
2 (left) and gA

2 (right),
plotted in gray, compared with the pair correlation function of Farey
fractions with L2 norm (left), and of the angles (with multiplicities)
of lattice points in Euclidean balls (right). The graphs are obtained
by counting the pairs in their definition, using Q= 4000, for which
BQ = 6000203. We used Magma [Bosma et al. 1997] for the
numerical computations, and SAGE [Stein et al. 2012] for plotting
the graphs.
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The computation is performed in Section 8.2, and it identifies the first spike
in the graph of gA

2 (x) at x = (3/4π)
√

5. A proof of an explicit formula for the
pair correlation density gA

2 (x) valid for all x , and working also when the point i is
replaced by the other elliptic point ρ = eπ i/3, will be given in [Boca et al. 2013].

Since the series in Corollary 1 is dominated by the absolutely convergent sum∑
M ξ

2
‖M‖−4, we can take the limit as ξ → 0:

gA
2 (0)=

2
3

∑
M∈S

(
‖M‖2√
‖M‖4− 4

− 1
)
= 0.7015 . . .

Remarkably, the previous two formulas, as well as (1-2) for ξ 6 2, can be written
geometrically as a sum over the primitive closed geodesics C on X which pass
through the point 5(i), where the summand depends only on the length `(C):

gA
2 (0)=

8
3

∑
C

∑
n>1

1
en`(C)− 1

.

This is proved in Section 2, where we also give an arithmetic version based on an
explicit description of the reciprocal geodesics C due to Sarnak [2007].

For the rest of the introduction we sketch the main ideas behind the proof,
describing also the organization of the article. After reducing to angles in the
first quadrant in Section 3, we show that the pair correlation of the quantities
9(γ )= tan(θγ /2) is identical to that of 8(γ )= Re(γ i). We are led to estimating
the cardinality of the set{

(γ, γ ′) ∈ 02
I : ‖γ ‖, ‖γ

′
‖6 Q, γ ′ 6= γ, 06 Q2(8(γ ′)−8(γ ))6 ξ

}
.

For a matrix γ =
( p′

q ′
p
q

)
with nonnegative entries, ‖γ ‖6 Q, and q, q ′ > 0, consider

the associated Farey interval [p/q, p′/q ′], which contains 8(γ ). In Section 4, we
break the set of pairs (γ, γ ′) above in two parts, depending on whether one of the
associated Farey intervals contains the other, or the two intervals intersect at most
at one endpoint. In the first case we have γ = γ ′M or γ ′ = γM with M ∈S, while
in the second we have a similar relation depending on the number ` of consecutive
Farey fractions there are between the two intervals. The first case contributes to the
series over S in (1-2), while the second case contributes to the sum over K , `. The
triangle map T whose iterates define the piecewise linear functions L i (x, y), first
introduced in [Boca et al. 2001], makes its appearance in the second case, being
related to the denominator of the successor function for Farey fractions.

To estimate the number of pairs (γ, γM) in the first case, a key observation is
that for each M ∈ 0 there exists an explicit elementary function 4M(x, y), given
by (5-1), such that

8(γ )−8(γM)=4M(q ′, q)
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for γ as above. Together with estimates for the number of points in two dimensional
regions based on bounds on Kloosterman sums (Lemma 7), this allows us to estimate
the number of pairs (γ, γM) with fixed M ∈S, in terms of the volume of a three
dimensional body SM,ξ given in (7-14). The absence of a gap beyond zero in the pair
correlation measure arises as a result of this estimate. The details of the calculation
are given in Section 7, leading to an explicit formula for RT

2 (Theorem 2).
Finally in Section 8 we pass to the pair correlation of the angles θγ , obtaining

the formulas of Theorem 1 and Corollary 1.
In this paper we focus on the full modular lattice centered at i , both because of

the arithmetic connection with reciprocal geodesics, and because in this case the
connection between unimodular matrices and Farey intervals is most transparent.
It is this connection and the intuition provided by the repulsion of Farey fractions
that guides our argument, and leads to the explicit formula for the pair correlation
function, which is the first of this kind for hyperbolic lattices.

In a subsequent paper [Boca et al. 2013], we abstract some of this intuition
and propose a different conjectural formula for the pair correlation function of an
arbitrary lattice in PSL2(R), centered at a point on the upper half plane, which
we prove for the full level lattice centered at elliptic points. While the formula in
that paper is more general, the method of proof, and the combinatorial-geometric
intuition behind it, is reflected more accurately in the formula of Theorem 1: the
infinite sum in the formula corresponds to pairs of matrices where there is no
repulsion between their Farey intervals, while the finite sum corresponds to pairs of
matrices where there is repulsion. The approach used in [Boca et al. 2013] builds
on the estimates and method of the present paper.

A proof of that paper’s conjecture by spectral methods has been proposed in
a preprint by Kelmer and Kontorovich [2013]. By comparison, our approach is
entirely elementary (using only standard bounds on Kloosterman sums), and via the
repulsion argument it provides a natural way of approximating the pair correlation
function. A key insight in the present paper, which is also the starting point of
[Boca et al. 2013] and [Kelmer and Kontorovich 2013], is that instead of counting
pairs (γ, γ ′) ∈ 0 × 0 in the definition of the pair correlation measure, we fix a
matrix M , count pairs (γ, γM), and sum over M . The same approach may prove
useful for the pair correlation problem for lattices in other groups as well.

2. Reciprocal geodesics on the modular surface

In this section we recall the definition of reciprocal geodesics and explain how the
pair correlation of the angles they make with the imaginary axis is related to the
pair correlation considered in the introduction. We also show that the sums over
the semigroup S appearing in the introduction can be expressed geometrically in
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terms of sums over primitive reciprocal geodesics. A description of the trajectory
of reciprocal geodesics on the fundamental domain seems to have first appeared in
the classical work of Fricke and Klein [1892, p.164], where it is shown that they
consist of two closed loops, one the reverse of the other. There the terminology
“sich selbst inverse Classe” is used for the equivalence classes of quadratic forms
corresponding to reciprocal conjugacy classes of hyperbolic matrices.

Oriented closed geodesics on X are in one-to-one correspondence with conjugacy
classes {γ } of hyperbolic elements γ ∈ 0. To a hyperbolic element γ ∈ 0 one
attaches its axis aγ on H, namely the semicircle whose endpoints are the fixed
points of γ on the real axis. The part of the semicircle between z0 and γ z0, for
any z0 ∈ aγ , projects to a closed geodesic on X , with multiplicity one if and only
if γ is a primitive matrix (not a power of another hyperbolic element of 0). The
group that fixes the semicircle aγ (or equivalently its endpoints on the real axis) is
generated by one primitive element γ0.

We are concerned with (oriented) closed geodesics passing through 5(i) on X .
Since the axis of a hyperbolic element A passes through i if and only if A is
symmetric, the closed geodesics passing through 5(i) correspond to the set R of
hyperbolic conjugacy classes {γ } which contain a symmetric matrix. The latter are
exactly the reciprocal geodesics considered in [Sarnak 2007], where only primitive
geodesics are considered.

The reciprocal geodesics can be parametrized in a two-to-one manner by the set
S ⊂ 0, defined in the introduction, which consists of matrices distinct from the
identity with nonnegative entries. To describe this correspondence, let A⊂ 0 be
the set of symmetric hyperbolic matrices with positive entries. Then we have maps

S→A→R (2-1)

where the first map takes γ ∈S to A = γ γ t , and the second takes the hyperbolic
symmetric A to its conjugacy class {A}. The first map is bijective, while the
second is two-to-one and onto, as follows from [Sarnak 2007]. More precisely, if
A= γ γ t

∈A is a primitive matrix, then B = γ tγ 6= A is the only other matrix in A

conjugate to A, and {An
} = {Bn

} for all n > 0.
Note also that ‖γ ‖2 = Tr(γ γ t), and if A is hyperbolic with Tr(A)= T , then the

length of the geodesic associated to {A} is 2 ln N (A) with N (A)= 1
2(T +

√
T 2− 4).

Lemma 2. Let A ∈ 0 be a hyperbolic symmetric matrix and let γ ∈ 0 such that
A = γ γ t . Then the point γ i is halfway (in hyperbolic distance) between i and Ai
on the axis of A.

Proof. We have d(i, γ i) = d(i, γ t i) = d(γ i, Ai) where the first equality follows
from the hyperbolic distance formula and the second since 0 acts by isometries
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on H. Using formula (3-3), one checks that the angles of i, γ i and i, Ai are equal,
hence γ i is indeed on the axis of A. �

We can now explain the connection between the angles θγ in the first and second
quadrant in Figure 2, and the angles made by the reciprocal geodesics with the
image 5(i→ i∞)=5(i→ 0). Namely, points in the first and second quadrant
are parametrized by γ i with γ ∈ S, and by the lemma the reciprocal geodesic
corresponding to A = γ γ t

∈ A consists of the loop 5(i → γ i), followed by
5(i→ γ t i) (which is the same as the reverse of the first loop). Therefore to each
reciprocal geodesic corresponding to A = γ γ t

∈A correspond two angles, those
attached to γ i and γ t i in Figure 2, measured in the first or second quadrant so that
all angles are between 0 and π/2.

In conclusion, the angles made by the reciprocal geodesics on X with the fixed
direction 5(i→ i∞) consist of the angles in the first quadrant considered before,
each appearing twice. Ordering the points γ i in the first quadrant by ‖γ ‖ corre-
sponds to ordering the geodesics by their length. Therefore the pair correlation
measure of the angles of reciprocal geodesics is 2RA

2 (ξ/2), where RA
2 was defined

in the introduction.
The parametrization (2-1) of reciprocal geodesics allows one to rewrite the series

appearing in the formula for gA
2 (0) in the introduction, as a series over the primitive

reciprocal classes Rprim:∑
M∈S

(
‖M‖2√
‖M‖4− 4

− 1
)
=

∑
A∈A

2
N (A)2− 1

= 4
∑

{γ }∈Rprim

∑
n>1

1
N (γ )2n − 1

,

where we have used the fact that for a hyperbolic matrix A of trace T we have√
T 2− 4= N (A)− N (A)−1 and N (An)= N (A)n.

One can rewrite the sum further using the arithmetic description of primitive
reciprocal geodesics given in [Sarnak 2007]. Namely, let DR be the set of nonsquare
positive discriminants 2αD′ with α ∈ {0, 2, 3} and D′ odd divisible only by primes
p ≡ 1 (mod 4). Then the set of primitive reciprocal classes Rprim decomposes as a
disjoint union of finite sets:

Rprim
=

⋃
d∈DR

R
prim
d ,

with |Rprim
d | = ν(d), the number of genera of binary quadratic forms of discrimi-

nant d. If d ∈ DR has exactly λ odd prime factors, ν(d) equals 2λ if 8 divides d
and 2λ−1 otherwise. Each class {γ } ∈R

prim
d has

N (γ )= αd =
1
2(u0+ v0

√
d),
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with (u0, v0) the minimal positive solution to Pell’s equation u2
− dv2

= 4. We
then have ∑

{γ }∈Rprim

∑
n>1

1
N (γ )2n − 1

=

∑
d∈DR

∑
n>1

ν(d)
α2n

d − 1
.

In the same way, by Lemma 13 the pair correlation measure RT
2 (ξ) in Theorem 1

can be written for ξ 6 1 as a sum over classes {γ } ∈Rprim, where each summand
depends only on ξ and N (γ ).

3. Reduction to the first quadrant

In this section we establish notation in use throughout the paper, and we reduce the
pair correlation problem to angles in the first quadrant. A similar reduction can be
found in [Chamizo 2006], in the context of visibility problems for the hyperbolic
lattice centered at i .

For each matrix g =
(a

c
b
d

)
∈ SL2(R), define the quantities

Xg = a2
+ b2, Yg = c2

+ d2, Zg = ac+ bd, Tg = Xg + Yg = ‖g‖2,

8(g)= Re(gi)=
Zg

Yg
, εg = εTg =

1
2

(
Tg −

√
T 2

g − 4
)
. (3-1)

The upper half-plane H is partitioned into four quadrants:

I= {z ∈ H : Re z > 0, |z|< 1}, II= {z ∈ H : Re z > 0, |z|> 1},

III= {z ∈ H : Re z < 0, |z|> 1}, IV= {z ∈ H : Re z < 0, |z|< 1}.

Note that all the points gi for g ∈ 0 lie in one of the four open quadrants, with the
exception of i itself. This follows from the relation

XgYg − Z2
g = 1, (3-2)

which will be often used.
In this section, simply take X = Xg, Y =Yg, Z = Zg, θ = θg. A direct calculation

shows that the center of the circle through i and gi is α= (X−Y )/(2Z), leading to

tan θg =−
1
α
=

2Zg

Yg − Xg
for all θg ∈ [−π, π].

Plugging this into

tan θ
2
=

tan θ

1+
√

1+tan2 θ
if |θ |< π

2
or tan θ

2
=−

1+
√

1+tan2 θ

tan θ
if π

2
< |θ |< π,

and employing (3-2) and the equivalences |gi |< 1⇐⇒ X < Y and Re(γ i)> 0⇐⇒
Z > 0, we find the useful formulas
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9(g) := tan
θg

2
=

√

T 2
g −4+Xg−Yg

2Zg
=

Xg−εg

Zg
=

Zg

Yg−εg
(3-3)

for all θg ∈ [−π, π].
We set γ =

(a
c

b
d

)
, γ̃ =

( d
b

c
a

)
, s =

( 0
1
−1

0

)
. Let γ ∈ 0, γ 6= I, s. For γ i to be in

the right half-plane we need Re(γ i) > 0. This is equivalent to ac+ bd > 0, and
implies that ac > 0 and bd > 0 because abcd = bc+ (bc)2 > 0. Since ac > 0,
without loss of generality we will assume that a > 0 and c > 0 (otherwise consider
−γ instead). Without loss of generality, we will assume that b > 0, d > 0 as well
(otherwise, we consider −γ s =

(
−b
−d

a
c

)
instead, since γ i = γ si). Thus γ has only

nonnegative entries.
If a, b, c, d > 0 and ad − bc = 1, then c/a and d/b are both 6 1 or both > 1

(since open intervals between consecutive Farey fractions are either nonintersecting
or one contains the other). Since γ i ∈ I⇐⇒ a2

+b2 < c2
+d2, it follows that both

a/c and b/d are 6 1 for γ i ∈ I. We conclude that among the eight matrices ±γ ,
±γ s, ±γ̃ , ±γ̃ s, which have symmetric angles (see Figure 2), the one for which γ i
is in quadrant I can be chosen such that

a, b, c, d > 0 and 06 b
d
<

a
c
6 1.

The set of such matrices γ is denoted 0I.
Consider the subset RQ of 0I consisting of matrices with entries at most Q:

RQ :=

{(
p′ p
q ′ q

)
∈ 0 : 06 p, p′, q, q ′ 6 Q,

p
q
<

p′

q ′
6 1

}
,

and its subset R̃Q consisting of those γ with ‖γ ‖6 Q. The cardinality BQ of R̃Q

is estimated in Corollary 8 as BQ ∼ 3Q2/8, in agreement with formula (58) in
[Sarnak 2007] for the number of reciprocal geodesics of length at most x = Q2.

Let FQ be the set of Farey fractions p/q with 06 p 6 q 6 Q and (p, q)= 1.
The Farey tessellation (Figure 3) consists of semicircles on the upper half-plane

è

Γ
�
i

Γi=ΓsiHΓ
� t
L-1i

HΓtL-1i

èè

è è

Θ

Θ

Θ

Θ

II

IIV

III i

Figure 2. Two symmetric geodesics through i .
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p
q

p0
q0

pCp0
qCq0

2pCp0
2qCq0

pC2p0
qC2q0

3pCp0
3qCq0




ˆ.
 /

Figure 3. The Farey tessellation.

connecting Farey fractions 06 p/q < p′/q ′ 6 1 with p′q− pq ′ = 1. We associate
to matrices γ ∈RQ with entries as above the arc in the Farey tessellation connecting
p/q and p′/q ′, and conclude that

#RQ = 2#FQ − 3=
Q2

ζ(2)
+ O(Q ln Q).

4. The coincidence of the pair correlations of 8 and 9

In this section we show that the limiting pair correlations of the sets {9(γ )} and
{8(γ )} ordered by ‖γ ‖→∞ do coincide. The proof uses properties of the Farey
tessellation, via the correspondence between elements of RQ and arcs in the Farey
tessellation defined at the end of Section 3.

For γ =
( p′

q ′
p
q

)
, set γ−= p/q , γ+= p′/q ′. From (3-1), (3-3), and the inequalities

Xγ < Zγ < Yγ , 2Yγ > Tγ and εγ < 1/Tγ , we have:

9(γ )−8(γ )=
Zγ

Yγ (ε−1
γ Yγ − 1)

�
1
‖γ ‖4

, (4-1)

γ− <8(γ ) < 9(γ ) < γ+. (4-2)

Denote by R9
Q(ξ) (resp. R8

Q(ξ)) the number of pairs (γ, γ ′) ∈ R̃2
Q , γ 6= γ ′, such

that 0 6 9(γ )−9(γ ′) 6 ξ/Q2 (resp. 0 6 8(γ )−8(γ ′) 6 ξ/Q2). For fixed
β ∈

( 2
3 , 1

)
, consider also

N9
Q,ξ,β := #

{
(γ, γ ′) ∈ R̃2

Q : Q
2
|9(γ )−9(γ ′)|6 ξ, ‖γ ‖6 Qβ

}
,

and the similarly defined N8
Q,ξ,β . The trivial inequality

R8
Q(ξ)6 2N8

Q,ξ,β

+ #
{
(γ, γ ′) ∈ R̃2

Q : γ 6= γ
′, Q2
|8(γ )−8(γ ′)|6 ξ, ‖γ ‖, ‖γ ′‖> Qβ

}
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and the estimate in (4-1) show that there exists a universal constant κ > 0 such that

R8
Q(ξ)6 2N8

Q,ξ,β

+ #
{
(γ, γ ′) ∈ R̃2

Q : γ 6= γ
′, −2κQ−4β 69(γ )−9(γ ′)6 ξQ−2

+ 2κQ−4β},
showing that

R8
Q(ξ)6 2N8

Q,ξ,β +R9
Q(2κQ2−4β)+R9

Q(ξ + 2κQ2−4β). (4-3)

In a similar way we show that

R9
Q(ξ)6 2N9

Q,ξ,β +R8
Q(2κQ2−4β)+R8

Q(ξ + 2κQ2−4β). (4-4)

We first prove that N8
Q,ξ,β and N9

Q,ξ,β are much smaller than Q2. For this goal and
for later use, it is important to divide pairs (γ, γ ′) ∈R2

Q in three cases, depending
on the relative position of their associated arcs in the Farey tessellation (it is well
known that two arcs in the Farey tessellation are nonintersecting):

(i) The arcs corresponding to γ and γ ′ are exterior, i.e., γ+ 6 γ ′− or γ ′
+
6 γ−.

(ii) γ ′ / γ , i.e., γ− 6 γ ′− < γ ′+ 6 γ+.

(iii) γ / γ ′, i.e., γ ′
−
6 γ− < γ+ 6 γ ′+.

Proposition 3. N8
Q,ξ,β � Q1+β ln Q and N9

Q,ξ,β � Q1+β ln Q.

Proof. N8
Q,ξ,β and N9

Q,ξ,β are increasing as an effect of enlarging R̃Q to RQ , so for
this proof we will replace R̃Q by RQ . We only consider N8

Q,ξ,β here. The proof
for the bound on N9

Q,ξ,β is identical. Both rely on (4-1) and (4-2).
Set K = [ξ ]+ 1. From (4-2) and the fact that |r ′− r |> 1/Q2 for all r, r ′ ∈ FQ

such that r 6= r ′, it follows that

#(FQ ∩ [γ+, γ
′

−
])6 K + 1

if γ+ 6 γ ′− and |8(γ ′)−8(γ )|6 ξ/Q2. In particular, γ ′
−
= γ+ when 0< ξ < 1.

We now consider the three cases listed before the statement of the proposition:

(i) The arcs corresponding to γ and γ ′ are exterior. Without loss of generality,
assume that γ+ 6 γ ′−. If i is such that γ+ = γi , the i-th element of FQ , then

γ ′
−
= γi+r =

pi+r

qi+r

for some r with 06r<K . The equality p′
+

q ′
−
−p′
−

q ′
+
=1 shows that if γ ′

−
= p′
−
/q ′
−

is fixed, then q ′
+

(and therefore γ ′
+
= p′

+
/q ′
+

) is uniquely determined in intervals
of length at most q ′

−
. Since q ′

±
6 Q, it follows that the number of choices for q ′

+
is

actually at most (Q/q ′
−
)+ 1= (Q/qi+r )+ 1.
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When 0< ξ < 1 one must have γ ′
−
= γ+. Knowing q− and q+ would uniquely

determine the matrix γ . Then there will be at most (Q/q+)+ 1 choices for γ ′, so
the total contribution of this case to N8

Q,ξ,β is at most∑
16q−6Qβ

∑
16q+6Qβ

( Q
q+
+ 1

)
� Q1+β ln Q.

When ξ > 1 denote by qi , qi+1, . . . , qi+K the denominators of γi , γi+1, . . . , γi+K .
Since qi < Qβ , we have

γi+K − γi 6
K
Q
6 1

Qβ
6 1

qi
6 1− γi ,

showing that i +K < #FQ so long as Q�ξ 1. As noticed in [Hall and Tenenbaum
1984],

q j+2 =

[
Q+ q j

q j+1

]
q j+1− q j .

As in [Boca et al. 2001], consider

κ(x, y) :=
[1+x

y

]
and Tk = {(x, y) ∈ (0, 1]2 : x + y > 1, κ(x, y)= k}.

Let Q be large enough so that δ0 := Qβ−1 < 1/(2K + 3). Then qi/Q < δ0, and it
is plain (see also [ibid.]) that

qi+1

Q
> 1− δ0, κ

(qi

Q
,

qi+1

Q

)
= 1,

and
κ
(qi+1

Q
,

qi+2

Q

)
= · · · = κ

(qi+K

Q
,

qi+K+1

Q

)
= 2,

because qi+1, qi+2, . . . , qi+K+1 must form an arithmetic progression. Hence(qi

Q
,

qi+1

Q

)
∈ T1 and

(qi+1

Q
,

qi+2

Q

)
, . . . ,

(qi+K

Q
,

qi+K+1

Q

)
∈ T2,

showing in particular that min{qi+1, . . . , qi+K } > Q/3. Therefore, we find that
max{Q/qi+1, . . . , Q/qi+K } < 3, and the contribution of this case to N8

Q,ξ,β is
at most ∑

16q−6Qβ

∑
16q+6Qβ

4K �ξ Q2β .

(ii) γ ′ / γ . Let i be the unique index for which γi <8(γ ) < γi+1 with γi < γi+1

successive elements in FQ . Since |8(γ ′)−8(γ )|6 ξ/Q2, either γ ′
−
<8(γ )< γ ′

+

or there exists 0 6 r 6 K with γ ′
+
= γi−r or with γ ′

−
= γi+r . In both situations

the arc corresponding to the matrix γ ′ will cross at least one of the vertical lines
above γi−K , . . . , γi , γi+1, . . . , γi+K . A glance at the Farey tessellation provides
an upper bound for this number Nγ,K of arcs γ ′ ∈ RQ . Actually, one sees that
the set Cγ,L consisting of 2+ 22

+ · · ·+ 2L arcs obtained from γ by iterating the
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mediant construction L = [Q/min{q−, q+}]+ 1 times (γ is not enclosed in Cγ,L )
contains the set {γ ′ ∈RQ : γ

′ / γ, γ ′ 6= γ }. The former set contains at most L arcs
that are intersected by each vertical direction, and so Nγ,K 6 (2K +1)L . Therefore,
the contribution of this case to N8

Q,ξ,β is (first choose γ , then γ ′) at most∑
16q6Qβ

∑
16q ′6Qβ

(2K + 1)
( Q

min{q, q ′}
+ 1

)
�ξ Q1+β ln Q.

(iii) γ / γ ′. We necessarily have γ = γ ′M , with M ∈S. In particular, this yields
γ ′
±
∈ FQβ . Considering the subtessellation defined only by arcs connecting points

from FQβ , one sees that the number of arcs intersected by a vertical line x = α with

γ− =
p
q
< α < γ+ =

p′

q ′
, where γ = (γ−, γ+) ∈ FQβ ,

is equal to s(q, q ′), the sum of digits in the continued fraction expansion of q/q ′< 1
when q < q ′, and respectively to s(q ′, q) when q ′ < q. A result from [Yao and
Knuth 1975] yields in particular that∑

0<q<q ′6Qβ

s(q, q ′)� Q2β ln2 Q,

and therefore

#{(γ, γ ′) ∈R2
Qβ : γ / γ ′}6 1+ 2

∑
0<q<q ′6Qβ

s(q, q ′)� Q2β ln2 Q.

This completes the proof of the proposition. �

Proposition 3 and inequalities (4-3) and (4-4) imply:

Corollary 4. For each β ∈
( 2

3 , 1
)
,

R9
Q(ξ)=R8

Q
(
ξ + Oξ (Q2−3β)

)
+R8

Q
(
Oξ (Q2−3β)

)
+ Oξ (Q1+β ln Q).

5. A decomposition of the pair correlation of {8(γ )}

To estimate R8
Q(ξ), recall the correspondence between elements of RQ and arcs in

the Farey tessellation from the end of Section 3. We consider the following two
possibilities for the arcs associated to a pair (γ, γ ′) ∈ R̃2

Q :

(i) One of the arcs corresponding to γ and γ ′ contains the other.

(ii) The arcs corresponding to γ and γ ′ are exterior (possibly tangent).

Denoting by ReQ(ξ) and R∩∩Q (ξ) the number of pairs in each case, we have

R8
Q(ξ)= ReQ(ξ)+ R∩∩Q (ξ).
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Figure 4. The case γ ′ / γ .

5.1. One of the arcs contains the other. In this case we have either γ = γ ′M or
γ ′ = γM with M ∈S (see also Figure 4). For each M ∈ 0 define

4M(x, y)=
xy(YM − X M)+ (x2

− y2)Z M

(x2+ y2)(x2 X M + y2YM + 2xy Z M)
, (5-1)

where X M , YM , Z M are defined in (3-1). For γ =
( p′

q ′
p
q

)
, a direct calculation shows

8(γ )−8(γM)=4M(q ′, q). (5-2)

Two remarks are in order now. First, notice that X M 6= YM for any M ∈S because
of (3-2) and since X M , YM , Z M > 1. Secondly, we also have

8(γ ) 6=8(γM). (5-3)

Suppose, ad absurdum, that 8(γ )=8(γM). Then (5-2) and (5-1) yield

2Z M

YM − X M
=

2qq ′

q2− q ′2
,

that is, tan θM = tan 2θ , where θ = tan−1(q ′/q) ∈ (0, π) and θM ∈ (0, π) because
Z M > 0. This gives

X M − εM

Z M
= tan

(
θM
2

)
= tan θ ∈Q,

hence
√
(X M + YM)2− 4= X M + YM − 2εM ∈Q, which is not possible because

X M + YM > 3.
From (5-2) and (5-3) we now infer:

Lemma 5. Using the notation introduced before Proposition 3, the number of pairs
(γ, γ ′) ∈ R̃2

Q , γ 6= γ ′, with 0 6 8(γ )−8(γ ′) 6 ξ/Q2 and γ / γ ′ or γ ′ / γ , is
given by

ReQ(ξ)= #
{
(γ, γM) ∈ R̃2

Q : γ =

(
p′ p
q ′ q

)
, M ∈S, |4M(q ′, q)|6 ξ

Q2

}
.
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 0K 6 k`C1

k`
k2k1

ˆ.
 /

Figure 5. The case where γ and γ ′ are exterior.

5.2. Exterior arcs. In this case we have γ, γ ′ ∈ R̃Q , γ ′
−
> γ+. Let ` > 0 be

the number of Farey arcs in FQ connecting the arcs corresponding to γ, γ ′ (see
Figure 5). In other words, writing γ =

( p′
q ′

p
q

)
and γ ′ =

( p`+1
q`+1

p`
q`

)
, we have that

p0/q0 := p′/q ′, p1/q1, . . . , p`/q` are consecutive elements in FQ . Setting also
p−1/q−1 := p/q , it follows that qi = ki qi−1−qi−2, where ki ∈N, i = 1, . . . , `, and

ki =

[
Q+ qi−2

qi−1

]
for 26 i 6 `.

The fractions p`/q` and p`+1/q`+1 are not necessarily consecutive in FQ , but
we have q`+1 = K q`− q`−1,

K 6 k`+1 =

[
Q+ q`
q`+1

]
.

It follows that γ ′ = γM with

M =
(

k1 1
−1 0

)
· · ·

(
k` 1
−1 0

)(
K 1
−1 0

)
.

We have ` < ξ because

8(γ ′)−8(γ ) >
∑̀
i=1

1
qi−1qi

> `

Q2 .

It is also plain to see that

p′

q ′
−8(γ )=

q
q ′(q2+ q ′2)

, 8(γ ′)−
p`
q`
=

q`+1

q`(q2
` + q2

`+1)
. (5-4)

The last equality in (5-4) and q2
` + q2

`+1 6 Q2 yield, for `> 1,

ξ

Q2 >8(γ
′)−8(γ )> 1

q`−1q`
+

q`+1

q`(q2
` + q2

`+1)

> 1
q`−1q`

+
K q`− q`−1

q`Q2 =
K
Q2 +

Q2
− q2

`−1

q`−1q`Q2 >
K
Q2 ,

while if `= 0 we have

8(γ ′)−8(γ )=
K (q ′2+ qq1)

(q2+ q ′2)(q ′2+ q2
1 )
> K

Q2 ,
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showing that K < ξ . Notice also that (5-4) yields

8(γ ′)−8(γ )=
q

q ′(q2+ q ′2)
+

∑̀
i=1

1
qi−1qi

+
q`+1

q`(q2
` + q2

`+1)
.

Let T= {(x, y) ∈ (0, 1]2 : x + y > 1} and consider the map

T : (0, 1]2→ T, T (x, y)=
(

y,
[1+x

y

]
y− x

)
,

whose restriction to T is bijective and area-preserving [Boca et al. 2001]. Consider
the iterates T i

= (L i−1, L i ) and the functions Ki =[(1+L i−2)/L i−1] if i=1, . . . , `,
K`+1 = K , and L`+1 = K L`− L`−1. One has:

• L−1(x, y)= x and L0(x, y)= y for (x, y) ∈ (0, 1]2;

• 0< L i (x, y)6 1 for i > 0 and (x, y) ∈ T;

• L i−1(x, y)+ L i (x, y) > 1 for i = 1, . . . , ` and (x, y) ∈ T;

• L i (x, y)= Ki (x, y)L i−1(x, y)− L i−2(x, y)

for i = 1, . . . , `+1 and (x, y) ∈ T;

• (qi−1, qi )= QT i
( q

Q
,

q ′

Q

)
=

(
QL i−1

( q
Q
,

q ′

Q

)
, QL i

( q
Q
,

q ′

Q

))
for i = 0, 1, . . . , `;

• q`+1 = K q`− q`−1 = Q
(

K L`
( q

Q
,

q ′

Q

)
− L`−1

( q
Q
,

q ′

Q

))
.

(5-5)

Define also the function ϒ`,K : (0, 1]2→ (0,∞) by

ϒ`,K =
L−1

L0(L2
−1+ L2

0)
+

∑̀
i=1

1
L i−1L i

+
L`+1

L`
(
L2
` + L2

`+1

) . (5-6)

We have proved the following statement:

Lemma 6. The number R∩∩Q (ξ) of pairs (γ, γ ′) of exterior (possibly tangent) arcs
in R̃Q for which 0<8(γ ′)−8(γ )6 ξ/Q2 is given by

R∩∩Q (ξ)=
∑
`∈[0,ξ)
K∈[1,ξ)

d`K ,

where the sums are over integers in the given intervals, d`K is the number of matrices( p′
q ′

p
q

)
such that the following hold:
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06 p 6 q, 06 p′ 6 q ′, p′q − pq ′ = 1,

p2
+ p′2+ q2

+ q ′2 6 Q2, 0< K q`− q`−1 6 Q,

p2
` + q2

` + (K p`− p`−1)
2
+ (K q`− q`−1)

2 6 Q2,

ϒ`,K
(
q/Q, q ′/Q

)
6 ξ,

(5-7)

and q−1 = q , q0 = q ′.

6. A lattice point estimate

Lemma 7. Suppose that � is a region in R2 of area A(�) and rectifiable boundary
of length `(∂�). For any integer r with (r, q)= 1 and 16 L 6 q , we have

N�,q,r := #
{
(a, b) ∈�∩Z2

: ab ≡ r (mod q)
}
=
ϕ(q)
q2 A(�)+E�,L ,q ,

where, for each ε > 0,

E�,L ,q �ε

q1/2+εA(�)
L2 +

(
1+ `(∂�)

L

)(L2

q
+ q1/2+ε

)
.

Proof. Replacing Z2 by LZ2 in the estimate{
(m, n) ∈ Z2

: (m,m+ 1)× (n, n+ 1)∩ ∂� 6=∅
}
� 1+ `(∂�),

(for a proof see [Narkiewicz 1983, Theorem 5.9]) we find that the number of
squares Sm,n = [Lm, L(m+ 1)]× [Ln, L(n+ 1)] such that S̊m,n ∩ ∂� is nonempty
is� 1+ (1/L)`(∂�). Therefore

#
{
(m, n)∈Z2

: (Lm, L(m+1))×(Ln, L(n+1))⊆�
}
=

A(�)
L2 +O

(
1+ `(∂�)

L

)
.

Weil’s estimates [1948] on Kloosterman sums, extended to composite moduli
in [Hooley 1957] and [Estermann 1961], show that each such square contains
(ϕ(q)/q2)L2

+ Oε(q1/2+ε) pairs of integers (a, b) with ab ≡ r (mod q) (see, e.g.,
[Boca et al. 2000, Lemma 1.7] for details). Combining these two estimates, we find

N�,q,r=

(
A(�)

L2 +O
(

1+`(∂�)
L

))(ϕ(q)
q2 L2

+O
(
q1/2+ε))

=
ϕ(q)
q2 A(�)+E�,q,L ,

as desired. �

Corollary 8. #R̃Q =
3Q2

8
+ Oε(Q11/6+ε).

Proof. Note first that one can substitute pq ′/q for p′= (1+ pq ′)/q in the definition
of R̃Q , replacing the inequality ‖γ ‖26 Q2 by (q2

+q ′2)(q2
+ p2)6 Q2q2, without

altering the error term. Applying Lemma 7 with

�q = {(u, v) ∈ [0, q]× [0, Q] : (q2
+ u2)(q2

+ v2)6 Q2q2
} and L = q5/6,
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and using A(�q)6 Qq and `(�q)6 2(Q+ q)6 4Q, we infer that

#R̃Q =

Q∑
q=1

ϕ(q)
q
·

A(�q)

q
+ Oε(Q11/6+ε).

Standard Möbius summation (see, e.g., [Boca et al. 2000, Lemma 2.3]) applied
to the decreasing function h(q)= (1/q)A(�q) with ‖h‖∞ 6 Q and the change of
variable (q, u, v)= (Qx, Qxy, Qz) further yield

#R̃Q =
Q2

ζ(2)
Vol(S)+ Oε(Q11/6+ε),

where
S = {(x, y, z) ∈ [0, 1]3 : (1+ y2)(x2

+ z2)6 1}.

The substitution y = tan θ yields

Vol(S)=
∫ π/4

0

dθ
cos2 θ

A
(
{(x, z) ∈ [0, 1]2 : x2

+ z2 6 cos2 θ}
)
=
π2

16
,

completing the proof of the corollary. �
The error bound in Corollary 8 can be improved using spectral methods (see

Corollary 12.2 in [Iwaniec 2002]). We have given the proof since it is the prototype
of applying Lemma 7 to the counting problems of the next section.

7. Pair correlation of {8(γ )}

The main result of this section is Theorem 2, where we obtain explicit formulas
for the pair correlation of the quantities {8(γ )} in terms of volumes of three-
dimensional bodies. The discussion is divided in two cases, as in Section 5.

7.1. One of the arcs contains the other. The formula for ReQ in Lemma 5 provides

ReQ(ξ)=
∑
M∈S

NM,Q(ξ), (7-1)

where NM,Q(ξ) denotes the number of matrices γ =
( p′

q ′
p
q

)
for which

06 p 6 q, 06 p′ 6 q ′, p′q− pq ′ = 1, |4M(q ′, q)|6 ξ

Q2 , ‖γM‖6 Q.
(7-2)

The first goal is to replace in (7-2) the inequality ‖γM‖6 Q by a more tractable
one. Taking γ of the given form and substituting p = (p′q − 1)/q ′ we write, using
the notation from (3-1):

‖γM‖2 =(
p′2

q ′2
+1
)(

q ′2 X M + q2YM + 2qq ′Z M
)
−
(p′q + pq ′)YM + 2p′q ′Z M

q ′2
. (7-3)
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The quantity NM,Q(ξ) can be conveniently related to ÑM,Q(ξ), the number of
integer triples (q ′, q, p′) such that

0< p′ 6 q ′ 6 Q, 0< q 6 Q, p′q ≡ 1 (mod q ′),

|4M(q ′, q)|6 ξ

Q2 , YγM = q ′2 X M + q2YM + 2qq ′Z M 6
Q2q ′2

p′2+ q ′2
.

(7-4)

We next prove that, given c0 ∈
( 1

2 , 1
)
, for all M ∈S and Q> 1 with YM < X M 6

Q2c0 and all ξ > 0,

ÑM,Q(ξ)6 NM,Q(ξ)6 ÑM,Q(1+
√

2Qc0−1)

(
ξ(1+

√
2Qc0−1)2

)
. (7-5)

For the first inequality, note that if the integral triple (q ′, q, p′) satisfies (7-4) then
by (7-3) we have

‖γM‖2 6 p′2+ q ′2

q ′2
YγM 6 Q2,

and thus if we define p := (p′q− 1)/q ′ then (7-2) holds. For the second inequality,
take γ as in (7-2). Using (7-3) we then have

p′2+ q ′2

q ′2
YγM 6 Q2

+
(p′q + pq ′)YM + 2p′q ′Z M

q ′2
6 Q2

+ 2qYM + 2Z M .

Using also that Z M 6 Q2c0 and qYM =
√

q2YM
√

YM 6
√

YγM
√

YM 6 Q1+c0 , we
conclude that

p′2+ q ′2

q ′2
YγM 6 Q2

+ 2Q1+c0 + 2Q2c0 6 Q2(1+
√

2Qc0−1)2.

Also

|4M(q ′, q)|6 ξ

Q2 =
ξ(1+

√
2Qc0−1)2

Q2(1+
√

2Qc0−1)2
.

Hence (q ′, q, p′) satisfies (7-4) with the pair (Q, ξ) replaced by (Q +
√

2 Qc0,

ξ(1+
√

2 Qc0−1)2). This proves (7-5).
Next we show that NM,Q(ξ) vanishes when max{X M , YM} > Q2c0 and Q is

large enough.

Lemma 9. Let c0 ∈
(1

2 , 1
)
. There exists Q0(ξ) such that whenever M ∈ S,

max{X M , YM}> Q2c0 , and Q > Q0(ξ),

NM,Q(ξ)= ÑM,Q(ξ)= 0.

Proof. We show there are no coprime positive integer lattice points (q ′, q) for which

|4M(q ′, q)|6 ξ

Q2 , YγM = q ′2 X M + q2YM + 2qq ′Z M 6 Q2. (7-6)



Angles between reciprocal geodesics 1019

Noting from (7-3) that YγM 6 ‖γM‖2, this will ensure that NM,Q(ξ) = 0. The
equality ÑM,Q(ξ)= 0 follows as well from (7-4).

Suppose (q ′, q) is as in (7-6), write q ′i + q = (q, q ′) = (r cos θ, r sin θ), θ ∈
(0, π/2), and consider (X, Y, Z) = (X M , YM , Z M), T = ‖M‖2 = X + Y , and
UM = coth d(i,Mi)= T/

√
T 2− 4. Since

sin θM =
2Z

√
T 2− 4

and cos θM =
Y − X
√

T 2− 4
,

the inequalities in (7-6) can be described as

1
ξ
·
|sin(θM − 2θ)|

UM + cos(θM − 2θ)
6 r2

Q2 6
2(

UM + cos(θM − 2θ)
)√

T 2− 4
. (7-7)

Denoting δM = θM/2 − θ , from the first and last fraction in (7-7) we infer
|sin 2δM | � 1/T . Therefore δM is close to 0, or to ±π/2. When δM is close to 0
we have

|tan δM | � |δM | � |sin 2δM | �
1
T
.

When δM is close to ±π/2 we similarly have |δM ∓π/2| � 1
T , which is seen to be

impossible. Indeed, the inequality

|tan δM |

1+
UM − 1

1+ cos 2δM

=
|sin 2δM |

UM + cos 2δM
6 ξ

shows that it suffices to bound from above (UM − 1)/(1+ cos 2δM), which would
imply that |tan δM | � ξ , thus contradicting |δM ∓

π
2 | � 1/T . Since Z is a positive

integer, we have sin θM � 1/T . Since cos θ, sin θ > 0 and θM ∈ (0, π), we have

1+ cos 2δM = 1+ cos(θM − 2θ)> 1+ cos 2θ cos θM

> 1− | cos θM | = 1−
√

1− sin2 θM �
1

T 2 .

As UM − 1� 1/T 2, it follows that (UM − 1)/(1+ cos 2δM)� 1, a contradiction.
We have thus shown that |δM |6 |tan δM | � 1/T ; more precisely, there exists a

function 20(ξ), continuous in ξ , such that |δM |620(ξ)/T .

Case I: Y > X . Then 0< θM/2< π/4 and Z =
√

XY − 1< Y . Since

|δM | �
1
T
� Q−2c0,

one has 0< θ < π/3 for large Q. Employing the formula tan(θM/2)= Z/(Y −εT )

with εT as in (3-1), we infer∣∣∣∣ AC + B D
C2+ D2− εT

−
q ′

q

∣∣∣∣= | tan δM | ·

∣∣∣1+ tan θ tan θM
2

∣∣∣� 1
T
. (7-8)
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Combining (7-8) with

0< Z
Y−εT

−
Z
Y
�

1
T

and
∣∣∣ Z
Y
−

A+B
C+D

∣∣∣6 1
C2+ D2 �

1
T
,

we arrive at ∣∣∣∣ A+ B
C + D

−
q ′

q

∣∣∣∣� 1
T
6 Q−2c0 . (7-9)

If nonzero, the left-hand side in (7-9) must be at least 1/q(C + D). But

q(C + D)6 q
√

2(C2+ D2)6 Q
√

2,

and so Q2c0 � Q, a contradiction. The remaining case, in which q = C + D and
q ′ = A+ B, is not possible because Q2c0 6 (C + D)2 = q(C + D)6 Q

√
2.

Case II: X>Y . Then π/4<θM/2<π/2 and Y 6
√

XY − 1= Z . As |δM |�Q−2c0 ,
we must have 0< π/2− θ < π/3 for large values of Q. This time we have∣∣∣Y−εT

Z
−

q
q ′

∣∣∣= ∣∣∣ tan
(
π

2
−
θM
2

)
− tan

(
π

2
− θ

)∣∣∣
= | tan δM | ·

∣∣∣1+ tan
(
π

2
−
θM
2

)
tan

(
π

2
− θ

)∣∣∣
6 (1+

√
3) |tan δM | �

1
T
,

which leads (since D > C if and only if B > A) to∣∣∣C+D
A+B

−
q
q ′

∣∣∣� 1
T
+
εT

Z
+

∣∣∣YZ − C+D
A+B

∣∣∣� 1
T
+

|D−C |
(A+B)(AC+B D)

6 1
T
+

1
(A+ B)2

6 1
T
+

1
X
�

1
T
� Q−2c0 . (7-10)

As in Case I, this is not possible because q ′(A + B) 6 q ′
√

2X 6 Q
√

2 and
(A+ B)2 > Q2c0 . �

Our next goal is to apply Lemma 7, assuming YM < X M � Q2c0 and taking
r = 1, to the set �=�M,q ′,ξ of pairs (u, v) ∈ (0, Q]× (0, q ′] that satisfy

|4M(q ′, u)|6 ξ

Q2 and q ′2 X M + u2YM + 2uq ′Z M 6
Q2q ′2

v2+ q ′2
. (7-11)

Lemma 10. There exist continuous functions T0(ξ) and C(ξ) such that, for any
matrix M ∈S with YM < X M and T = ‖M‖2 > T0(ξ), the projection on the first
coordinate of the set �M,q ′,ξ is contained in the interval (0,C(ξ)q ′].

Proof. Using polar coordinates (u, q ′)= (r cos θ, r sin θ), θ ∈ (0, π/2), we see that
inequalities (7-11) imply (7-7). This shows that for the purpose of this lemma we
can replace�M,q ′,ξ by the set of (u, v)∈ (0, Q]×(0, q ′] satisfying (7-7). Therefore
we can use all estimates from the first part of the proof of Lemma 9 (because they
only rely on (7-7), the integrality of q being used only at the end).
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Note also that Y = YM < X = X M and Z2
= XY − 1 yield Y 6 Z . Replacing q

by u in the first part of the proof of Lemma 9, so that tan θ = u/q ′, θ ∈ (0, π/2), we
see (compare the last line before Case 1) that |δM |62(ξ)/T for some continuous
function 2. Next we look into the first estimates in Case 2 and see that there
exists a function T0(ξ), depending continuously on ξ , such that, for any M with
T = ‖M‖2 > T0(ξ), one has 0< π/2− θ < π/3 and∣∣∣ u

q ′
−

Y−εT
Z

∣∣∣6 (1+√3) |tan δM | .

In conjunction with the bound on δM , this shows the existence of a continuous
function C0(ξ) such that ∣∣∣u− Y−εT

Z
q ′
∣∣∣6 C0(ξ)q ′,

showing that u 6 (1+C0(ξ))q ′. �

Although this will not be used in this paper, we remark that if γ is as in (7-2),
then (7-4) is satisfied by the triple (q ′, q, p′) with the pair (Q, ξ) replaced by
(Q+
√

2Qc0, ξ(1+
√

2Qc0−1)2), by the proof of (7-5). Therefore Lemma 10 shows
that q/q ′�ξ 1 (with a different implicit constant than C(ξ) from Lemma 10).

Next notice that, as Q→∞,∑
M∈S

max{X M ,YM }6Q2c0

max{X M , YM}
−σ
�σ Q(2−2σ)c0, 0< σ < 1. (7-12)

This follows immediately from1∑
M∈S

YM<X M6Q2c0

X−σM 6
∑

16A2+B26Q2c0

(A2
+ B2)−σ

6
∫∫

x2+y262Q2c0

(x2
+ y2)−σ dx dy�σ Q(2−2σ)c0 .

Assume now that YM < X M 6 Q2c0 . When T = ‖M‖2 > T0(ξ) we apply
Lemma 10. The definition of �, seen after some obvious scaling as a section subset
in the body SM,ξ defined by the conditions in (7-14) below, shows that the range
of u consists of a union of intervals in [0, Q] with a (universally) bounded number
of components and of total Lebesgue measure�ξ q ′. This gives

A(�)�ξ

Qq ′
√

X M
and `(∂�)�ξ q ′+ q ′�

Q
√

X M
.

1Here A and B determine uniquely the matrix M =
( A B

C D
)
.
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Taking L = (q ′)5/6, we find Q� X1/2
M (q ′)1/6, and the error provided by Lemma 7

is E�,L ,q ′ �ε Q(q ′)−1/6+εX−1/2
M . Note also that in this case A > C and B > D.

As a result, applying (7-12) with σ = 11
12 , the error is seen to add up to

∑
A2
+B26Q2c0

‖M‖2>T0(ξ)

∑
q ′6Q/

√
X M

E�,q ′5/6,q ′ �ε Q
∑

A2+B26Q2c0

1

X1/2
M

(
Q

X1/2
M

)5/6+ε

�ε Q(11+c0)/6+ε.

Lemma 7 now provides

ÑM(Q, ξ)=
∑

16q ′6Q/
√

X M

ϕ(q ′)
q ′2

A(�M,q ′,ξ )+ Oε(Q(11+c0)/6+ε). (7-13)

The situation ‖M‖2 6 T0(ξ) (in this case there are Oξ (1) choices for M) is directly
handled by Lemma 7. The same choice for L provides E�,q ′5/6,q ′ �ε Q(q ′)−1/6+ε.
These error terms sum up to Oε,ξ (Q11/6+ε) in this situation.

Next we will apply Möbius summation (see, e.g., [Boca et al. 2000, Lemma 2.3])
to the function h1(q ′) = (1/q ′)A(�M,q ′,ξ ). Note that (1/Q)h1(q ′) represents the
area of the cross-section of the body SM,ξ by the plane x = q ′/Q, where SM,ξ

consists of those (x, y, z) ∈ [0, 1]3 such that

|4M(x, y)|6 ξ and x2 X M + y2YM + 2xy Z M 6 1
1+z2 . (7-14)

The intersection of the projection of SM,ξ onto the plane z = 0 with a vertical line
x = c is bounded by a quartic and an ellipse, showing that the cross-section function
c 7→ AM,ξ (c) := Area(SM,ξ ∩ {x = c}) is continuous and piecewise C1 on [0, 1]
and the number of critical points of AM,ξ is bounded by a universal constant C
independently of M and ξ . The graph on the right of Figure 6 illustrates one of the
possible cases that can arise, when AM,ξ (c) has the most number of critical points,
showing that we can take C = 3.

In particular, the total variation of h1 on [0, Q] is bounded above by

(C + 1)
(
sup[0,Q] h1− inf[0,Q] h1

)
�‖h1‖∞�ξ

Q
√

X M
,

and so we infer∑
16q ′6Q/

√
X M

ϕ(q ′)
q ′2

A(�M,q ′,ξ )=
1
ζ(2)

∫ Q/
√

X M

0
h1(q ′) dq ′+ O

(
Q
√

X M
ln Q

)
.

Using also the change of variables (q ′, u, v)= (Qx, Qy, Qxz), (x, y, z) ∈ [0, 1]3,
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0.4

Figure 6. Left: cross-sections of SM,ξ for z= 0 (vertical hatching)
and z = 1 (horizontal hatching). Right: the function c 7→ AM,ξ (c),
for M = R and ξ = 1.5.

(7-13), (7-5) and (7-12), we find that the contribution to ReQ(ξ) of matrices M with
YM < X M is

1
ζ(2)

∑
M∈S

YM<X M6Q2c0

(∫ Q
√

X M

0
A(�M,q ′,ξ )

dq ′

q ′
+ O

(Q ln Q

X1/2
M

))
+ Oε,ξ

(
Q(11+c0)/6+ε

)

=
Q2

ζ(2)

∑
M∈S

YM<X M6Q2c0

Vol(SM,ξ )+ Oε,ξ

(
Q1+c0+ε + Q(11+c0)/6+ε

)
. (7-15)

With η =
( 0

1
1
0

)
, notice the following important symmetries:

ηMη =
(

D C
B A

)
and 4ηMη(y, x)=−4M(x, y). (7-16)

This shows that the reflection (x, y, z) 7→(y, x, z)maps SM,ξ bijectively onto SηMη,ξ .
The situation X M < YM is handled similarly using (7-16), which results in

reversing the roles of q and q ′ with Lemma 7 applied for r =−1.
Now we give upper bounds for Vol(SM,ξ ). Let (x, y, z)=(r cos t,r sin t, z)∈ SM,ξ .

The proof of (7-9) and (7-10) does not use the integrality of q ′ and q , so denoting

ωM =
C+D
A+B

< 1 if YM < X M and ωM =
A+B
C+D

< 1 if X M < YM ,

we find that
y� x � X−1/2

M � T−1 and
∣∣∣ y
x
−ωM

∣∣∣� 1
T

in the former case, and

x � y� Y−1/2
M � T−1 and

∣∣∣ xy −ωM

∣∣∣� 1
T
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in the latter case. Writing the area in polar coordinates, we find r2
� T−1 and

Vol(SM,ξ )6 A
({
(x, y) ∈ [0, 1]2 : ∃ z ∈ [0, 1], (x, y, z) ∈ SM,ξ

})
6 1

2

∫ ωM+ξT−1
M

ωM−ξT−1
M

2T−1
M dt =

2ξ
T 2

M
=

2ξ
‖M‖4

. (7-17)

The bound (7-17) and an argument similar to the proof of (7-12) yields∑
M∈S

Vol(SM,ξ ) <∞ and
∑
M∈S

max{X M ,YM }>Q2c0

Vol(SM,ξ )�ξ Q−2c0 . (7-18)

From (7-15), (7-18) and c0 ∈
(1

2 , 1
)
, we infer

ReQ(ξ)=
Q2

ζ(2)

∑
M∈S

Vol(SM,ξ )+ Oε(Q(11+c0)/6+ε). (7-19)

The volume of SM,ξ can be evaluated in closed form using the substitution
z = tan t :

Vol(SM,ξ )=

∫ π/4

0
BM(ξ, t)

dt
cos2 t

, (7-20)

where BM(ξ, t) is the area of the region consisting of those (r cos θ, r sin θ)∈[0, 1]2

such that
1
ξ
·
|sin(2θ − θM)|

UT + cos(2θ − θM)
6 r2 6 1

√
T 2− 4

·
2 cos2 t

UT + cos(2θ − θM)
, (7-21)

with θM ∈ (0, π/2) having sin θM = 2Z M/
√

T 2− 4 and UT = T/
√

T 2− 4 (for
brevity we write T = TM ).

The following elementary fact will be useful to prove the differentiability of the
volumes as functions of ξ .

Lemma 11. Assume that G, H : K →R are continuous functions on a compact set
K ⊂ Rk , and denote x+ =max{x, 0}. Then the formula

V (ξ) :=
∫

K
(ξ −G(v))+H(v) dv, ξ ∈ R,

defines a C1 map on R, and

V ′(ξ)=
∫

G<ξ
H(v) dv.

Using Equation (7-20), we find that

Vol(SM,ξ )=
1
2

∫ π/4

0
dt
∫ π/2

0
dθ

(
2/
√

T 2− 4− |sin(2θ − θM)| /(ξ cos2 t)
)
+

UT + cos(2θ − θM)
,

(7-22)
and applying Lemma 11, we obtain:
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Corollary 12. The function ξ 7→ Vol(SM,ξ ) is C1.

For a smaller range for ξ we have the following explicit formula:

Lemma 13. Suppose that ξ 6 Z M . The volume of SM,ξ only depends on ξ and
T = ‖M‖2:

Vol(SM,ξ )

=

∫ π
4

0
tan−1

(√
1−

√
1−4ξ 2 cos4 t

2αξ cos2 t

)
+

1
2ξ cos2 t

ln
(

1−

√
1−

√
1−4ξ 2 cos4 t

2α

)
dt,

where 1= T 2
− 4 and α = 1

2(T +
√

T 2− 4).

Proof. The two polar curves defined by (7-21) intersect for

|sin(2θ − θM)| =
2ξ

√
T 2− 4

cos2 t,

that is, for θ± = θM/2±α with α = α(ξ, t) ∈ (0, π/4) such that

sin 2α =
2ξ

√
T 2− 4

cos2 t.

Since sin θM = 2Z/
√

T 2− 4, the assumption ξ 6 Z ensures that α < θM . Thus
θ± ∈ [0, π/2), and the change of variables θ = θM/2+ u yields

BM,ξ (t)=
1
2

∫ α

−α

(
2 cos2 t
√

T 2− 4
·

1
UT + cos(2u)

−
|sin(2u)|

ξ(UT + cos(2u))

)
du.

The integrand is even and both integrals can be computed exactly, yielding the
formula above. �

In particular, Lemma 13 yields Vol(SM,ξ )� ξ/T 2, providing an alternative proof
for (7-17).

7.2. Exterior arcs. Referring to the notation of Section 5.2, we first replace the
inequalities

p2
+ p′2+q2

+q ′2 6 Q2 and p2
` +q2

` + (K p`− p`−1)
2
+ (K q`−q`−1)

2 6 Q2

in (5-7) by simpler ones. Using p′q − pq ′ = 1, we can replace p by p′q/q ′ in the
former, while p`−1 can be replaced by p`q`−1/q` in the latter. As a result, these
two inequalities can be substituted in (5-7) by(

1+
p′2

q ′2

)
(q2
+ q ′2)6 Q2(1+ O(Q−1)

)
,(

1+
p2
`

q2
`

)(
q2
` + (K q`− q`−1)

2)6 Q2(1+ O(Q−1)
)
.

(7-23)
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Since p`/q`= p′/q ′+O(`/Q) and q2
`+(K q`−q`−1)

262Q2, the second inequality
in (7-23) can be also written as(

1+
p′2

q ′2

)(
q2
` + (K q`− q`−1)

2)6 Q2(1+ O(Q−1)
)
,

leading to
R∩∩Q (ξ)=

∑
`∈[0,ξ)
K∈[1,ξ)

∑
q ′<Q

N∩∩Q+O(Q1/2),q ′,K ,`(ξ),

where N∩∩Q,q ′,K ,`(ξ) denotes the number of integer lattice points (p′, q) such that

06 p′ 6 q ′, 06 q 6 Q, p′q ≡ 1 (mod q ′), 0< K q`− q`−1 6 Q,

ϒ`,K

(
q
Q
,

q ′

Q

)
6 ξ, p′2+ q ′2 6 Q2q ′2

max{q2+ q ′2, q2
` + (K q`− q`−1)2}

. (7-24)

Applying Lemma 7 to the set �=�∩∩q ′,K ,`,ξ of elements (u, v) for which

u ∈ [0, Q], v ∈ [0, q ′], L i

( u
Q
,

q ′

Q

)
> 0 for i = 0, 1, . . . , `,

0< K L`
( u

Q
,

q ′

Q

)
− L`−1

( u
Q
,

q ′

Q

)
6 1, ϒ`,K

( u
Q
,

q ′

Q

)
6 ξ,

v2
+ q ′2 6 Q2q ′2

max
{
u2+ q ′2, Q2L2

`

( u
Q ,

q ′
Q

)
+ Q2

(
K L`

( u
Q ,

q ′
Q

)
− L`−1

( u
Q ,

q ′
Q

))2} ,
with A(�)6 Qq ′, `(∂�)� Q, L = (q ′)5/6, we find

N∩∩Q,q ′,K ,`(ξ)=
ϕ(q ′)

q ′
·

A
(
�∩∩q ′,K ,`,ξ

)
q ′

+ Oε(Q(q ′)−1/6+ε).

This leads in turn to

R∩∩Q (ξ)=M∩∩Q (ξ)+ Oξ,ε(Q11/6+ε),

where

M∩∩Q (ξ)=
∑
`∈[0,ξ)
K∈[1,ξ)

∑
q ′6Q

ϕ(q ′)
q ′
·

A(�∩∩q ′,K ,`,ξ )

q ′
.

For fixed integers K ∈ [1, ξ), ` ∈ [0, ξ), consider the subset TK ,`,ξ of [0, 1]3

consisting of those (x, y, z) ∈ [0, 1]3 such that

0< L`+1(x, y)= K L`(x, y)− L`−1(x, y)6 1, ϒ`,K (x, y)6 ξ,

max
{

x2
+ y2, L2

`(x, y)+ L2
`+1(x, y)

}
6 1

1+ z2 ,
(7-25)

with L i and ϒ`,K as in (5-5) and (5-6).
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Möbius summation is now applied to h2(q ′)= (1/q ′)A
(
�∩∩q ′,K ,`,ξ

)
. The quantity

(1/Q)h2(q ′) represents the area of the cross-section of the body TK ,`,ξ by the plane
x = q ′/Q. This shows that h2 is continuous and piecewise C1 on [0, Q], and fur-
thermore the number of critical points of h2 is bounded uniformly in ξ (and indepen-
dently of Q). Hence the total variation of h2 on [0, Q] is�ξ ‖h2‖∞6Q. Employing
also the change of variables (q ′, u, v)= (Qx, Qy, Qxz), where (x, y, z) ∈ [0, 1]3,
we find

M∩∩Q (ξ)=
1
ζ(2)

∑
`∈[0,ξ)
K∈[1,ξ)

(∫ Q

0

dq ′

q ′
A
(
�∩∩q ′,K ,`,ξ

)
+ O(Q)

)

=
Q2

ζ(2)

∑
`∈[0,ξ)
K∈[1,ξ)

Vol(TK ,`,ξ )+ Oξ (Q),

and so

R∩∩Q (ξ)=
Q2

ζ(2)

∑
`∈[0,ξ)
K∈[1,ξ)

Vol(TK ,`,ξ )+ Oξ,ε(Q11/6+ε). (7-26)

To show that ξ 7→Vol(TK ,`,ξ ) is C1 on [1,∞), we make the change of variables
(x, y, z)= (cos θ, sin θ, tan t) to obtain

Vol(TK ,`,ξ )=

∫ π/4

0
AK ,`(ξ, t)

dt
cos2 t

, (7-27)

where AK ,`(ξ, t) is the area of the region defined by the conditions in (1-3). Now
notice that Ki (x, y)6 ξ when 16 i 6 `, as a result of (omitting the arguments of
the functions)

Ki =
L i + L i−2

L i−1
6 1

L i−2L i−1
+

1
L i−1L i

<ϒ`,K 6 ξ.

Similarly,

K1 =
L−1+ L1

L0
6 L−1

L0
+

1
L0L1

<ϒ`,K 6 ξ.

Thus the projection of TK ,`,ξ on the first two coordinates is included into the
union of disjoint cylinders Tk := Tk1 ∩ T−1Tk2 ∩ · · · ∩ T−`+1Tk` with Tk =

{(x, y) : K1(x, y) = k} and k = (k1, . . . , k`) ∈ [1, ξ)`. On each set Tk all maps
L1, . . . , L`, L`+1 are linear, say L i (x, y) = Ai x + Bi y, with integers Ai , Bi de-
pending only on k1, . . . , ki for i 6 ` and A`+1, B`+1 depending only on k and K .
Therefore the function FK ,`(θ) is continuous on each region Tk, and applying
Lemma 11 we conclude that the function ξ 7→ Vol(TK ,`,ξ ) is C1 on [1,∞], being
a sum of [ξ ]` volumes, as functions→ each of which is C1 each of which is C1 as
a function of ξ .
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Remark 14. The region TK ,`,ξ can be simplified further. For each integer J ∈[1, ξ),
the map

9J : (u, v) 7→ (J L`(u, v)− L`−1(u, v), L`(u, v))

is an area preserving injection on T, since it is the composition of T ` in (5-5)
followed by the linear transformation (u, v) 7→ (Jv− u, v). Note that under this
map (omitting the arguments (u, v) of the functions below):

L1→

[
1+ J L`− L`−1

L`

]
− (J L`− L`−1)= L`−1

(using L`−1 + L` > 1), and by induction it follows similarly that L i → L`−i

for 0 6 i 6 `. Also we have that 9J (u, v) = (x, y) ∈ [0, 1]2 if and only if
x = J L`− L`−1 ∈ [0, 1] and J = [(1+ x)/y].

Let us decompose the region TK ,`,ξ into a disjoint union of regions TK ,J ;`,ξ ,
16 J < ξ , obtained by adding the condition [(1+ x)/y] = J . By the discussion of
the previous paragraph, the map (9J , Idz) is a volume preserving bijection taking
UK ,J ;`,ξ onto TK ,J ;`,ξ , where UK ,J ;`,ξ is the set of all (x, y, z) ∈ [0, 1]3 such that

x + y > 1, J L`− L`−1 > 0, K L0− L1 > 0, ϒ`,K ,J 6 ξ,

L2
0+ (K L0− L1)

2 6 1
1+ z2 , L2

` + (J L`− L`−1)
2 6 1

1+ z2 .

Here L i = L i (x, y) and

ϒ`,K ,J (x, y)=
J L`− L`−1

L`(L2
` + (J L`− L`−1)2)

+

∑̀
i=1

1
L i−1L i

+
K L0− L1

L0(L2
0+ (K L0− L1)2)

.

For α > 1, the transformation (9α, Idz) maps bijectively the part of UK ,J ;`,ξ for
which [(1+ L`−1)/L`] = α onto the part of UJ,K ;`,ξ for which [(1+ x)/y] = α.
Therefore Vol(UK ,J ;`,ξ ) = Vol(UJ,K ;`,ξ ) and the sum of volumes appearing in
(7-28) can be written more symmetrically:∑

K∈[1,ξ)

Vol(TK ,`,ξ )=
∑

K ,J∈[1,ξ)

Vol(UK ,J ;`,ξ ).

As an example of using this formula, if 1 < ξ 6 2 and ` = 1, we can only have
K = J = 1 and the inequalities J L1 − L0 > 0, K L0 − L1 > 0 cannot be both
satisfied, so U1,1;1,ξ is empty. Therefore the only contribution from the T bodies in
(7-28) comes from T1,0,ξ if ξ ∈ (1, 2].

We can now prove the main theorem on the pair correlation of the quantities
tan(θγ /2).
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Theorem 2. The pair correlation measure RT
2 exists on [0,∞). It is given by the

C1 function

RT
2
( 3

8ξ
)
=

8
3ζ(2)

( ∑
M∈S

Vol(SM,ξ )+
∑
`∈[0,ξ)

∑
K∈[1,ξ)

Vol(TK ,`,ξ )

)
, (7-28)

where the three-dimensional bodies SM,ξ are defined by the conditions in (7-14)
and the bodies TK ,`,ξ are defined by the conditions in (7-25).

Proof. By (7-19) and (7-26), with c0 ∈
( 1

2 , 1
)

and G(ξ) denoting the sum of all
volumes in (7-28), we infer that

R8
Q(ξ)=

Q2

ζ(2)
G(ξ)+ Oξ,ε(Q(11+c0)/6+ε). (7-29)

It follows that the function G is C1 on [0,∞) as a result of ξ 7→Vol(SM,ξ ) being C1

on [0,∞), and of ξ 7→ Vol(TK ,`,ξ ) being C1 on [1,∞). Corollary 4 and (7-29)
now yield, for β ∈

( 2
3 , 1

)
,

R9
Q(ξ)

=
Q2

ζ(2)

(
G(ξ + O(Q2−3β))+G(O(Q2−3β))

)
+ Oξ,ε(Q1+β ln Q+ Q(11+c0)/6+ε).

Employing again the differentiability of G and G(0)=0, and taking β= 3
4 , c0=

1
2+ε,

this provides

R9
Q(ξ)=

Q2

ζ(2)
G(ξ)+ Oξ,ε(Q23/12+ε). (7-30)

Equation (7-28) now follows from (7-30) and Corollary 8. �

8. Pair correlation of {θγ }

8.1. Proof of Theorem 1. In this section we pass to the pair correlation of the
angles {θγ }, estimating

Rθ
Q(ξ) := #

{
(γ, γ ′) ∈ R̃2

Q : 06 Q2(θγ ′ − θγ )6 ξ
}
.

Define the pair correlation kernel F(ξ, t) as follows:

F(ξ, t)=
∑
M∈S

BM(ξ, t)+
∑
`∈[0,ξ)
K∈[1,ξ)

AK ,`(ξ, t), (8-1)

where BM(ξ, t) and AK ,`(ξ, t) are the areas from (7-20) and (7-27), respectively,
so that by (7-30) we have

R9
Q(ξ)=

Q2

ζ(2)

∫ π/4

0
F(ξ, t)

dt
cos2 t

+ Oξ,ε(Q(11+c0)/6+ε).
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Proposition 15. Rθ
Q(ξ)=

Q2

ζ(2)

∫ π/4

0
F
( ξ

2 cos2 t
, t
) dt

cos2 t
+ Oξ,ε(Q47/24+ε).

Before giving the proof, note that Theorem 1 follows from the proposition as
Q→∞, taking into account the different normalization in the definitions of Rθ

Q(ξ)

and RA
Q(ξ), and defining, in view of Proposition 15 and (8-1),

BM(ξ) :=

∫ π
4

0
BM

( ξ

2 cos2 t
, t
) dt

cos2 t
, AK ,`(ξ) :=

∫ π
4

0
AK ,`

( ξ

2 cos2 t
, t
) dt

cos2 t
.

From the definitions of BM(ξ, t), AK ,`(ξ, t) in the equations following (7-20),
(7-27), it is clear that

BM

( ξ

2 cos2 t
, t
)
= BM

(ξ
2
, 0
)

cos2 t, AK ,0

( ξ

2 cos2 t
, t
)
= AK ,0

(ξ
2
, 0
)

cos2 t,

hence one has

BM(ξ)=
π

4
BM

(
ξ

2
, 0
)
, AK ,0(ξ)=

π

4
AK ,0

(
ξ

2
, 0
)
, (8-2)

which together with (7-22) yields the formula for BM(ξ) given in Theorem 1. Note
that the range of summation in Theorem 1 restricts to K < ξ/2, ` < ξ/2, compared
with the range in (8-1). Indeed, from the description of AK ,`(ξ/2 cos2 t, t) following
(7-27), we see that ` < ϒ`,K 6 ξ/2, while for K we have

K <
1

L`−1L`
+

K L`− K`−1

L`
<ϒ`,K 6

ξ

2
,

and similarly for `= 0.

Proof of Proposition 15. Consider I = [α, β) with N = [Qd
], |I | = N−1

∼ Q−d ,
I+ = [α− Q−d ′, β + Q−d ′

], and I− = [α+ Q−d ′, β − Q−d ′
], where

0< d = 1
24 < d ′ = 1

12 < 1.

Partition the interval [0, 1) into the union of N intervals I j = [α j , α j+1), with
|I j | = N−1 as above. Associate the intervals I±j to I j as described above. Set

R
]
Q := {(γ, γ

′) ∈ R̃2
Q : γ 6= γ

′
},

Rθ
I,Q(ξ) := #

{
(γ, γ ′) ∈R

]
Q : 06 Q2(θγ ′ − θγ )6 ξ, 9(γ ),9(γ ′) ∈ I

}
,

R
θ,\
I,Q(ξ) := #

{
(γ, γ ′) ∈R

]
Q : 06 Q2(θγ ′ − θγ )6 ξ, 9(γ ) ∈ I

} (
>Rθ

I,Q(ξ)
)
,

R9
I,Q(ξ) := #

{
(γ, γ ′) ∈R

]
Q : 06 Q2(9(γ ′)−9(γ ))6 ξ, 9(γ ),9(γ ′) ∈ I

}
,

R
9,[
I,Q(ξ) := #

{
(γ, γ ′) ∈R

]
Q : 06 Q2(9(γ ′)−9(γ ))6 ξ, γ−, γ+ ∈ I

}
,

R
8,[
I,Q(ξ) := #

{
(γ, γ ′) ∈R

]
Q : 06 Q2(8(γ ′)−8(γ ))6 ξ, γ−, γ+ ∈ I

}
.
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Expressing θγ ′ − θγ and 9(γ ′)−9(γ ) via the mean value theorem, we find

R9
I,Q
( 1

2(1+α
2)ξ
)
6Rθ

I,Q(ξ)6R9
I,Q
( 1

2(1+β
2)ξ
)
. (8-3)

Lemma 16. The following estimates hold:

(i)
N∑

j=1

Rθ
I j ,Q(ξ)6Rθ

Q(ξ)=

N∑
j=1

R
θ,\
I j ,Q(ξ)6

N∑
j=1

Rθ

I+j ,Q
(ξ)+ O(Q15/8 ln2 Q).

(ii) R9
I,Q(ξ)=R

9,[
I,Q(ξ)+ O(Q1+d ′ ln2 Q).

Proof. The first inequality in (i) is trivial. For the second one, note first that the
total number of pairs (γ, γ ′) with 0 6 θγ ′ − θγ 6 ξQ−2 and qq ′ 6 Qd ′ , with
γ− = p/q and γ+ = p′/q ′, is�ξ Qd(Qd ′ ln Q)(Q ln Q). For γ with qq ′ > Q−d ′ ,
use 9(γ ′)−β 69(γ ′)−9(γ )6 1/qq ′ 6 Q−d ′ , so 9(γ ′) ∈ I+j . The proof of (ii)
is analogous. �

Lemma 16 and (8-3) yield

N∑
j=1

R9
I j ,Q

( 1
2(1+α

2
j )ξ
)
6Rθ

Q(ξ)6
N∑

j=1

R9

I+j ,Q

( 1
2(1+α

2
j+1)ξ

)
+ Oε(Q15/8+ε).

To estimate R8
I,Q(ξ) we repeat the previous arguments for a short interval I

as above. Adding everywhere the condition γ−, γ+ ∈ I , we modify ReQ by ReI,Q
and ReQ by ReI,Q in Lemma 5, R∩∩Q by R∩∩I,Q and R∩∩Q by R∩∩I,Q in Lemma 6. The
additional condition p/q, p′/q ′ ∈ I is inserted in (7-2). The condition 06 p′ 6 q ′

is replaced by q ′α 6 p′ < q ′β in (7-4) and (7-24), and 0 6 p 6 q is replaced by
qα 6 p < qβ in (7-4). The condition v ∈ [0, q ′] is replaced by v ∈ [q ′α, q ′β) in
the definition of �M,q ′,ξ , and �∩∩q ′,`,K ,ξ . The bodies SM,ξ and TK ,`,ξ are substituted,
respectively, by SI,M,ξ and TI,K ,`,ξ after replacing the condition z ∈ [0, 1] in their
definitions by z ∈ [α, β). The analogs of (7-20) and (7-27) hold:

Vol(SI,M,ξ )=

∫
I

BM(ξ, t)
dt

cos2 t
, Vol(TI,K ,l,ξ )=

∫
I

AK ,`(ξ, t)
dt

cos2 t
. (8-4)

The approach from Section 7 under the changes specified in the previous para-
graph leads to

R8,[I,Q(ξ)= ReI,Q(ξ)+ R∩∩I,Q(ξ)=
Q2

ζ(2)

∫
tan−1 I

F(ξ, t)
dt

cos2 t
+ Oξ,ε(Q23/12+ε),

(8-5)
with the pair correlation kernel F(ξ, t) defined by (8-1). We also have

R8,[I+,Q(ξ)= R8,[I,Q(ξ)+ Oξ,ε(Q23/12+ε
+ Q2−d ′). (8-6)
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The analogs of Lemmas 5 and 6 yield, upon (8-5) and (8-6),

R
8,[
I,Q(ξ)=

Q2

ζ(2)

∫
tan−1 I

F
(
ξ +O(Q−1/3), t

) dt
cos2 t

+Oξ,ε(Q23/12+ε)=R
8,[

I+,Q(ξ).

(8-7)
The analog of Corollary 4 and (8-7) yield

R
9,[
I,Q(ξ)=R

8,[
I,Q(ξ + O(Q−1/4))+R

8,[
I,Q(O(Q

−1/4))+ Oε(Q7/4+ε)

=
Q2

ζ(2)

∫
tan−1 I

(
F(ξ + O(Q−1/4), t)+ F(Q−1/4, t))

) dt
cos2 t

+ Oξ,ε(Q23/12+ε)

=R
9,[

I+,Q(ξ). (8-8)

As shown in Section 7, the function F is C1 in ξ , thus (8-8) gives actually2

R
9,[
I,Q(ξ)=

Q2

ζ(2)

∫
tan−1 I

F(ξ, t)
dt

cos2 t
+ Oξ,ε(Q23/12+ε)=R

9,[

I+,Q(ξ). (8-9)

Lemma 16(i), (8-9), and the fact that F ∈ C1
[0,∞) yield

R9
I,Q(ξ)=

Q2

ζ(2)

∫
tan−1 I

F(ξ, t)
dt

cos2 t
+ Oξ,ε(Q23/12+ε

+ Q2−d ′)=R9
I+,Q(ξ).

(8-10)
Let also ω j = tan−1 α j . From (8-10) and (8-3) we further infer

Q2

ζ(2)

∫ ω j+1

ω j

F
(

1
2(1+α

2
j )ξ, t

) dt
cos2 t

+ Oξ,ε(Q23/12+ε
+ Q2−d ′)

6Rθ
I j ,Q(ξ)6Rθ

I+j ,Q
(ξ)

6 Q2

ζ(2)

∫ ω j+1

ω j

F
(1

2(1+α
2
j+1)ξ, t

) dt
cos2 t

+ Oξ,ε(Q23/12+ε
+ Q2−d ′).

Employing also∫ ω j+1

ω j

F
( 1

2(1+α
2
j )ξ, t

) dt
cos2 t

=

∫ ω j+1

ω j

(
F
( 1

2(1+tan2 t)ξ, t
)
+O(ω j+1−ω j )

) dt
cos2 t

and (ω j+1−ω j )
2 6 Q−2d , we find that

Rθ
I j ,Q(ξ)=

Q2

ζ(2)

∫ ω j+1

ω j

F
( 1

2(1+ tan2 t)ξ, t
) dt

cos2 t
+ Oξ,ε(Q23/12+ε)=Rθ

I+j ,Q
(ξ).

This, together with Lemma 16(i), yields the equality from Proposition 15. �

2The argument from Section 7 applies before integrating with respect to t on [0, π/4], showing
that F is C1.
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8.2. Explicit formula for gA
2 . Next we compute the derivatives B ′M(ξ), thus prov-

ing Corollary 1. We also obtain the explicit formula (8-11) for gA
2 on a larger range

than in Corollary 1, after computing the derivative A′K ,0(ξ).

Lemma 17. For M ∈S, let T = TM , Z = Z M as in (3-1). The derivative B ′M(ξ) is
given by

π

4ξ 2 ln
(

T +
√

T 2− 4

T +
√

T 2− 4− ξ 2

)
if ξ 6 2Z ,

π

8ξ 2 ln
(
(T +

√
T 2− 4)2(T −

√
T 2− 4− ξ 2)

(4+ 4Z2)(T +
√

T 2− 4− ξ 2)

)
if 2Z 6 ξ 6

√
T 2− 4,

π

8ξ 2 ln
(
(T +

√
T 2− 4)2

4+ 4Z2

)
if ξ >

√
T 2− 4.

Proof. Using (8-2), we proceed as in the proof of Lemma 13:

BM(ξ)=
π

4ξ

∫ π/2

0

(
ξ

√
T 2− 4

·
1

UT + cos(2θ − θM)
−
|sin(2θ − θM)|

UT + cos(2θ − θM)

)
+

dθ,

where UT = T/
√

T 2− 4, and θM ∈ (0, π/2) has sin θM = 2Z/
√

T 2− 4. Applying
Lemma 11, we obtain

B ′M(ξ)=
π

4ξ 2

∫
I

|sin(2θ − θM)|

UT + cos(2θ − θM)
dθ,

with I = {θ ∈ (0, π/2) : |sin(2θ − θM)| < ξ/
√

T 2− 4}. Clearly I = (0, π/2)
when ξ >

√
T 2− 4, and if ξ 6

√
T 2− 4, let α = α(ξ) ∈ (0, π/4) be such that

sin 2α = ξ/
√

T 2− 4. Then

ξ 6 2Z ⇐⇒ α 6 θM/2⇐⇒ I = [θM/2−α, θM/2+α],

2Z 6 ξ 6
√

T 2− 4⇐⇒ α ∈ [θM/2, π/4]

⇐⇒ I = [0, θM/2+α] ∪ [π/2+ θM/2−α, π/2],

and the integral is easy to compute. For M =
( 1

0
1
1

)
and ξ = 3, the region with area

BM(ξ/2, 0) is the one hatched vertically in Figure 6. �
A similar computation using (8-2) shows that A′K ,0(ξ) is given by

π

4ξ 2 ·


0 if ξ 6 2K ,

ln(1+ K 2)+ ln
(
(1+ x2

1)(1+ (x2− K )2)

(1+ x2
2)(1+ (x1− K )2)

)
if ξ ∈ [2K , K

√
K 2+ 4],

ln(1+ K 2) if ξ > K
√

K 2+ 4,

where x2 > x1 are the roots of

x2(ξ + 2K )− 2x K (ξ + K )+ ξ(K 2
+ 1)− 2K = 0.
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By the last paragraph in Remark 14, the body T1,1,ξ is empty, so A1,1(ξ)= 0, and
we have an explicit formula on a larger range than in the introduction:

gA
2

( 3
4π
ξ
)
=

32π
9ζ(2)

(∑
M∈S

B ′M(ξ)+ A′1,0(ξ)
)
, 0< ξ 6 4. (8-11)

We can now explain the presence of the spikes in the graph of gA
2 in Figure 1.

The function B ′M(ξ) is not differentiable at ξ = 2F and
√

T 2− 4, while the function
A′K ,0(ξ) is not differentiable at ξ = 2K and

√
(K 2+ 2)2− 4. At the point ξ =

√
5,

two of the functions B ′M(ξ), as well as A′1,0(ξ), have infinite slopes on the left,
which gives the spike on the graph of gA

2 (x) at x = (3/4π)
√

5.
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