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Étale contractible varieties
in positive characteristic

Armin Holschbach, Johannes Schmidt and Jakob Stix

Unlike in characteristic 0, there are no nontrivial smooth varieties over an alge-
braically closed field k of characteristic p > 0 that are contractible in the sense of
étale homotopy theory.

1. Introduction

Homotopy theory is founded on the idea of contracting the interval, either as a
space, or as an actual homotopy, that is, a path in a space of maps. In algebraic
geometry, the affine line A1

k serves as an algebraic equivalent of the interval, at least
in characteristic 0, where A1

k is contractible.
Matters differ in characteristic p > 0, where π1(A

1
k) is an infinite group: a group

G occurs as a finite quotient of π1(A
1
k) precisely if G is a quasi-p-group due to

Abhyankar’s conjecture for the affine line as proven by Raynaud. This raises the
question whether there is an étale contractible variety in positive characteristic.

Theorem 1. Let k be an algebraically closed field of characteristic p> 0. A smooth
variety U/k is étale contractible if and only if U = Spec(k) is the point.

It turns out that our discussion in positive characteristic depends only on H1

and H2. By the étale Hurewicz and Whitehead theorems (see [Artin and Mazur
1969, §4]), we might therefore replace “étale contractible” with “étale 2-connected”
in Theorem 1. Further, our proof covers more than just smooth varieties. Here is
the more precise result, which proves Theorem 1 because smooth varieties have big
Cartier divisors.

Theorem 2. Let k be an algebraically closed field of characteristic p > 0 and let
U/k be a normal variety such that

(i) the group H1
ét(U, Fp) vanishes,

(ii) there is a prime number ` 6= p such that H2
ét(U, µ`)= 0,
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(iii) U has a big Cartier divisor or dim U ≤ 2.

Then U has dimension 0.

In order to show the range of varieties to which Theorem 2 applies, we list in
Proposition 4 properties of varieties that imply the existence of big Cartier divisors,
including quasiprojective varieties and locally Q-factorial (in particular smooth)
varieties. The proof of Theorem 2 in the presence of a big Cartier divisor will be
given in Section 2.3. The case of normal surfaces will be treated in Section 3.

In the proof of Theorem 2, one would like to work with a compactification
U ⊆ X and the geometry of line bundles on U versus X . For that strategy to work,
we need a compactification that is locally factorial along Y = X \U . Since in
characteristic p > 0, resolution of singularities is presently absent in dimension
≥ 4, we resort to desingularisation by alterations due to de Jong. Unfortunately, the
alteration typically destroys the étale contractibility assumption. We first deduce
more coherent properties from étale 2-connectedness that transfer to the alteration.

The key difference with characteristic 0 comes from Artin–Schreier theory
relating H1

ét(U, Fp) to regular functions on U .

Remark 3. Let us illustrate the situation in characteristic 0 in contrast to Theorem 1.

(1) There are contractible complex smooth surfaces other than A2
C

. The first such
example is due to Ramanujam [1971, §3]; see also [tom Dieck and Petrie 1990]
for explicit equations. All of them are affine and have rational smooth projective
completions.

(2) Smooth varieties U/C different from affine space An
C

but with U (C) diffeo-
morphic to Cn are known as exotic algebraic structures on Cn . These varieties are
contractible and we recommend the Bourbaki talk on An by Kraft [1996], or the
survey by Zaı̆denberg [1999]. A remarkable nonaffine (but quasiaffine) example U
was obtained by Winkelmann [1990] as a quotient U =A5/Ga, and more concretely
as the complement in a smooth projective quadratic hypersurface in P5

C
of the union

of a hyperplane and a smooth surface.

(3) The notion of A1-contractibility is a priori stronger than contractibility in the
complex topology. Asok and Doran [2007] construct, for every d ≥ 6, continuous
families of pairwise nonisomorphic, nonaffine smooth varieties of dimension d that
are even A1-contractible.

Notation. Throughout the note, k will be an algebraically closed field. By definition,
a variety over k is a separated scheme of finite type over k. We will denote the étale
fundamental group by π1 and its maximal abelian quotient by π ab

1 . The sheaf µ`
for ` different from the characteristic denotes the (locally) constant sheaf of `-th
roots of unity.
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2. Big Cartier divisors

2.1. Existence of big divisors. Recall that a Cartier divisor D on a normal (but not
necessarily proper) variety U/k is big if the rational map associated to the linear
system |m D| is generically finite for m� 0.

Proposition 4. Let k be an algebraically closed field and let U/k be a normal
variety such that one of the following holds:

(a) U is quasiprojective.

(b) U is a product of varieties with big divisors.

(c) U is locally Q-factorial everywhere.

Then U has a big Cartier divisor.

Proof. Since any ample divisor is big, the conclusion holds if we assume (a). In
case (b), the sum of the pullbacks of big Cartier divisors on the factors is again big.

If (c) holds, then we first choose a dense affine open V ⊆ U and an effective
big Cartier divisor D on V by (a). Let B =U \ V be the boundary, in fact a Weil
divisor since V is affine, and let D′ be the Zariski closure of D as a Weil divisor
on U . By assumption, m D′ and m B are both effective Cartier divisors for m� 0,
and there are sections s0, . . . , sd ∈H0(V,m D) such that the induced map V → Pd

k
is generically finite. For r � 0, the sections si extend to sections of

H0(U,m D+mr B),

so that m D+mr B is the desired big Cartier divisor on U . �

2.2. Geometry of varieties with vanishing H1 and H2. Let ` be a prime number
different from the characteristic of k and let U/k be a variety with H2

ét(U, µ`)= 0.
It follows from the Kummer sequence in étale cohomology that Pic(U ) is an `-
divisible abelian group.

The following crucially depends on k being a field of positive characteristic.

Proposition 5. Let k be of characteristic p > 0. If U/k is a connected reduced
variety such that π ab

1 (U )⊗ Fp is finite, then H0(U,OU )= k.

Proof. We argue by contradiction. If f : U → A1
k is a dominant map, then the

induced map
f∗ : π ab

1 (U )⊗ Fp→ π ab
1 (A

1
k)⊗ Fp

has image of finite index in the infinite group π ab
1 (A

1
k)⊗ Fp, a contradiction. �

By the duality H1
ét(U, Fp) = Hom(π ab

1 (U ), Fp), the vanishing of H1
ét(U, Fp)

implies the assumption of Proposition 5.
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2.3. Using alterations. Section 2.2 reduces the proof of Theorem 2 in the presence
of a big Cartier divisor to the following proposition.

Proposition 6. Let k be an algebraically closed field and let U/k be a connected
normal variety with a big Cartier divisor and such that

(i) H0(U,OU )= k and

(ii) there is a prime number ` such that Pic(U ) is `-divisible.

Then U has dimension 0.

Proof. By [de Jong 1996, Theorem 7.3], there exists an alteration, that is, a
generically finite projective map h : Ũ →U such that Ũ can be embedded into a
connected smooth projective variety X̃ .

Step 1. The maximal open V ⊂U , such that the restriction Ṽ = h−1(V )→ V is a
finite map, has boundary U \ V of codimension at least 2, since U is normal.

The k-algebra H0(Ṽ ,OṼ ) is an integral domain inside the function field of Ṽ .
The minimal polynomial for s ∈ H0(Ṽ ,OṼ ) with respect to the function field of
V has coefficients that are regular functions on V by normality and uniqueness of
the minimal polynomial. Hence these coefficients are elements of H0(V,OV ) =

H0(U,OU )= k, and so
H0(Ṽ ,OṼ )= k.

Step 2. By the theorem of the base [Kleiman 1971, Theorem 5.1], the Néron–Severi
group

NS(X̃)= Pic(X̃)/Pic0(X̃)

is a finitely generated abelian group. Since the restriction map Pic(X̃)� Pic(Ũ ) is
surjective, the induced composite map

h∗ : Pic(U )→ coker
(
Pic0(X̃)→ Pic(Ũ )

)
(2-1)

maps an `-divisible group to a finitely generated abelian group, and hence has finite
image.

Step 3. Let D be a big Cartier divisor on U . Since h : Ũ → U is generically
finite, the divisor h∗D is also a big Cartier divisor. Moreover, as in the proof of
Proposition 4, there is a big divisor D̃ on X̃ that restricts to h∗D on Ũ . Upon
replacing D and D̃ by a positive multiple, we may assume, by the finiteness of the
image of the map (2-1), that D̃ is algebraically and thus numerically equivalent to
a divisor B on X̃ that is supported in X̃ \ Ũ .

Since bigness on projective varieties only depends on the numerical equivalence
class, see [Lazarsfeld 2004, Corollary 2.2.8], the divisor B is also big. Restriction
to Ṽ yields ⋃

n≥0

H0(X̃ ,OX̃ (nB))⊆ H0(Ṽ ,OṼ )= k,
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by Step 1 above. We conclude that dim U = dim X̃ = 0 by the bigness of B. �

2.4. Complementing example. We illustrate the importance of the presence of a
big divisor in Theorem 2 or Proposition 6 by an example from toric geometry.

We first recall two facts about complete toric varieties that are standard ana-
lytically over C and that have étale counterparts for toric varieties over arbitrary
algebraically closed base fields, in particular of characteristic p > 0.

Lemma 7. Let k be an algebraically closed field. Any complete toric variety X/k
is étale simply connected: π1(X)= 1.

Proof. By toric resolution, see [Fulton 1993, §2.6], there is a resolution of sin-
gularities X̃→ X with a smooth projective toric variety X̃ . Birational invariance
of the étale fundamental group shows π1(X̃) = π1(P

n
k ) = 1, and the surjection

π1(X̃)� π1(X) shows that X is étale 1-connected. �

Lemma 8. Let k be an algebraically closed field of characteristic p, and let X/k
be a complete toric variety. Then for all ` 6= p we have

H2
ét(X,Z`(1))' Pic(X)⊗Z`.

Proof. In the context of toric varieties over C and with respect to singular cohomol-
ogy, this is [Fulton 1993, Corollary in 3.4]. The `-adic case for toric varieties over
an algebraically closed field k of characteristic 6= ` follows with a parallel proof. �

Example 9. Let U = X be a complete normal nonprojective toric variety X of
dimension 3 with trivial Picard group. Such toric varieties have been constructed in
[Eikelberg 1992, Example 3.5; Fulton 1993, pp. 25–26, 65]. These sources construct
X over C but the constructions work mutatis mutandis over any algebraically closed
base field k. Then

(i) H1
ét(X, Fp)= 0 by Lemma 7, and

(ii) H2
ét(X,Z`(1)) = 0 for all ` 6= p by Lemma 8, and since there is nontrivial

torsion in `-adic cohomology only for finitely many primes [Gabber 1983],
we conclude that H2(X, µ`)= 0 for almost all ` 6= p.

Therefore the assumptions of Theorem 2 hold, with the exception of the presence
of a big Cartier divisor. Nevertheless, these toric varieties are not étale contractible
since H6

ét(X,Z`(3))= Z`.

3. Normal surfaces

In this section, Proposition 10 completes the proof of Theorem 2 for surfaces.
Not every normal surface admits a big Cartier divisor, so something needs to be
done. Examples of proper normal surfaces with trivial Picard group, in particular
without big divisors, can be found in [Nagata 1958; Schröer 1999]. However, on a
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hypothetical normal 2-contractible surface, a specialisation argument allows us to
conclude the existence of a big Cartier divisor in general.

Proposition 10. There is no normal connected surface U/k over an algebraically
closed field k of characteristic p > 0 such that

(i) H1
ét(U, Fp)= 0 and

(ii) H2
ét(U, µ`)= 0 for some prime number ` 6= p.

Proof. We argue by contradiction and assume that U is a surface as in the proposition.
By Nagata’s embedding theorem and resolution of singularities for surfaces, U is
a dense open in a normal proper surface X/k with boundary Y = X \U being a
normal crossing divisor. Hence, X is smooth in a neighbourhood of Y .

By limit arguments, we may spread out over an integral scheme S of finite type
over Fp, that is, there is a proper flat f : X→ S, a relative Cartier divisor Y in X/S
with normal crossing relative to S and complement U= X \Y such that

(a) all fibres are normal proper surfaces;

(b) there is a point η : Spec(k)→ S over the generic point of S such that the fibre
over η agrees with the original Xη = X together with Uη =U and Yη = Y ;

(c) the set of irreducible components of the fibres of Y forms a constant system,
and each component of Y is a Cartier divisor; and

(d) the higher direct image R2 f |U∗µ` is locally constant and commutes with
arbitrary base change by [Deligne 1977, Finitude, Theorem 1.9].

Since the generic stalk (R2 f |U∗µ`)η = H2
ét(U, µ`)= 0 vanishes, we conclude

that for all geometric points s̄ ∈ S, we have H2
ét(Us̄, µ`)= 0, where Us̄ is the fibre

of U→ S in s̄. As in the proof of Proposition 6, this implies that for every Cartier
divisor D on Xs̄ , there are an m ≥ 1 and a Cartier divisor E on Xs̄ supported in Ys̄

such that m D ≡ E are numerically equivalent.

We apply this insight to a geometric fibre Xt̄ above a closed point t ∈ S. Since by
[Artin 1962, Corollary 2.11], all proper normal surfaces over the algebraic closure
of a finite field are projective, we conclude that there is a very ample Cartier divisor
Ht̄ on Xt̄ with support contained in Yt̄ .

Let H ↪→ X be the relative Cartier divisor with support in Y that specialises
to Ht̄ . By [Grothendieck 1961, Théorème 4.7.1], the divisor H is ample relative
to S in an open neighbourhood of t ∈ S. Consequently, the normal proper surface
X is projective, and in particular, U admits a big divisor. The part of Theorem 2
proven in Section 2.3 leads to a contradiction. �

Remark 11. It follows from the proof of Proposition 10 that any proper nonpro-
jective normal surface X with trivial Picard group, in particular the examples of
[Nagata 1958; Schröer 1999], must have H2

ét(X, µ`) 6= 0 and a fortiori must contain
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nontrivial `-torsion classes in the cohomological Brauer group Br(X) for all `
different from the characteristic. The existence of nontrivial torsion classes in
Br(X) under the above assumptions was proven by different methods in [Schröer
2001, proof of Theorem 4.1].

Acknowledgments

We would like to thank Alexander Schmidt and Malte Witte for comments on an
earlier version of the paper.

References

[Artin 1962] M. Artin, “Some numerical criteria for contractability of curves on algebraic surfaces”,
Amer. J. Math. 84 (1962), 485–496. MR 26 #3704 Zbl 0105.14404

[Artin and Mazur 1969] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics 100,
Springer, Berlin, 1969. MR 39 #6883 Zbl 0182.26001

[Asok and Doran 2007] A. Asok and B. Doran, “On unipotent quotients and some A1-contractible
smooth schemes”, Int. Math. Res. Pap. 2007:2 (2007), rpm005. MR 2008f:14061 Zbl 1157.14032

[Deligne 1977] P. Deligne, Cohomologie étale: Séminaire de Géométrie Algébrique du Bois-Marie
(SGA 4 1

5 ), Lecture Notes in Mathematics 569, Springer, Berlin, 1977. MR 57 #3132 Zbl 0349.14008

[tom Dieck and Petrie 1990] T. tom Dieck and T. Petrie, “Contractible affine surfaces of Kodaira
dimension one”, Japan. J. Math. (N.S.) 16:1 (1990), 147–169. MR 91j:14027 Zbl 0721.14018

[Eikelberg 1992] M. Eikelberg, “The Picard group of a compact toric variety”, Results Math. 22:1-2
(1992), 509–527. MR 93g:14060 Zbl 0786.14031

[Fulton 1993] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Prince-
ton University Press, 1993. MR 94g:14028 Zbl 0813.14039

[Gabber 1983] O. Gabber, “Sur la torsion dans la cohomologie l-adique d’une variété”, C. R. Acad.
Sci. Paris Sér. I Math. 297:3 (1983), 179–182. MR 85f:14018 Zbl 0574.14019

[Grothendieck 1961] A. Grothendieck, “Éléments de géométrie algébrique, III: Étude cohomologique
des faisceaux cohérents, I”, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 36 #177c
Zbl 0118.36206

[de Jong 1996] A. J. de Jong, “Smoothness, semi-stability and alterations”, Inst. Hautes Études Sci.
Publ. Math. 83 (1996), 51–93. MR 98e:14011 Zbl 0916.14005

[Kleiman 1971] S. Kleiman, “Les théorèmes de finitude pour le foncteur de Picard: Exposé XIII”,
pp. 616–666 in Théorie des intersections et théorème de Riemann–Roch: Séminaire de Géométrie
Algébrique du Bois–Marie 1966–1967 (SGA 6), edited by P. Berthelot et al., Lecture Notes in
Mathematics 225, Springer, Berlin, 1971. MR 50 #7133 Zbl 0227.14007

[Kraft 1996] H. Kraft, “Challenging problems on affine n-space”, pp. 295–317 in Séminaire Bour-
baki 1994/95 (Exposé 802 No. 5), Astérisque 237, Société Mathématique de France, Paris, 1996.
MR 97m:14042 Zbl 0892.14003

[Lazarsfeld 2004] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: Line bundles
and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 48, Springer, Berlin, 2004.
MR 2005k:14001a Zbl 1093.14501

[Nagata 1958] M. Nagata, “Existence theorems for nonprojective complete algebraic varieties”,
Illinois J. Math. 2 (1958), 490–498. MR 20 #3875 Zbl 0081.37503

http://dx.doi.org/10.2307/2372985
http://msp.org/idx/mr/26:3704
http://msp.org/idx/zbl/0105.14404
http://dx.doi.org/10.1007/BFb0080957
http://msp.org/idx/mr/39:6883
http://msp.org/idx/zbl/0182.26001
http://dx.doi.org/10.1093/imrp/rpm005
http://dx.doi.org/10.1093/imrp/rpm005
http://msp.org/idx/mr/2008f:14061
http://msp.org/idx/zbl/1157.14032
http://dx.doi.org/10.1007/BFb0091516
http://dx.doi.org/10.1007/BFb0091516
http://msp.org/idx/mr/57:3132
http://msp.org/idx/zbl/0349.14008
http://msp.org/idx/mr/91j:14027
http://msp.org/idx/zbl/0721.14018
http://dx.doi.org/10.1007/BF03323103
http://msp.org/idx/mr/93g:14060
http://msp.org/idx/zbl/0786.14031
http://msp.org/idx/mr/94g:14028
http://msp.org/idx/zbl/0813.14039
http://msp.org/idx/mr/85f:14018
http://msp.org/idx/zbl/0574.14019
http://www.numdam.org/item?id=PMIHES_1961__11__5_0
http://www.numdam.org/item?id=PMIHES_1961__11__5_0
http://msp.org/idx/mr/36:177c
http://msp.org/idx/zbl/0118.36206
http://www.numdam.org/item?id=PMIHES_1996__83__51_0
http://msp.org/idx/mr/98e:14011
http://msp.org/idx/zbl/0916.14005
http://dx.doi.org/10.1007/BFb0066296
http://msp.org/idx/mr/50:7133
http://msp.org/idx/zbl/0227.14007
http://www.numdam.org/item?id=SB_1994-1995__37__295_0
http://msp.org/idx/mr/97m:14042
http://msp.org/idx/zbl/0892.14003
http://dx.doi.org/10.1007/978-3-642-18808-4
http://dx.doi.org/10.1007/978-3-642-18808-4
http://msp.org/idx/mr/2005k:14001a
http://msp.org/idx/zbl/1093.14501
http://projecteuclid.org/euclid.ijm/1255454111
http://msp.org/idx/mr/20:3875
http://msp.org/idx/zbl/0081.37503


1044 Armin Holschbach, Johannes Schmidt and Jakob Stix

[Ramanujam 1971] C. P. Ramanujam, “A topological characterisation of the affine plane as an
algebraic variety”, Ann. of Math. (2) 94 (1971), 69–88. MR 44 #4010 Zbl 0218.14021

[Schröer 1999] S. Schröer, “On non-projective normal surfaces”, Manuscripta Math. 100:3 (1999),
317–321. MR 2001c:14067 Zbl 0987.14031

[Schröer 2001] S. Schröer, “There are enough Azumaya algebras on surfaces”, Math. Ann. 321:2
(2001), 439–454. MR 2002i:14023 Zbl 1053.14017

[Winkelmann 1990] J. Winkelmann, “On free holomorphic C-actions on Cn and homogeneous Stein
manifolds”, Math. Ann. 286:1-3 (1990), 593–612. MR 90k:32094 Zbl 0708.32004

[Zaı̆denberg 1999] M. Zaı̆denberg, “Exotic algebraic structures on affine spaces”, Algebra i Analiz
11:5 (1999), 3–73. In Russian; translated in St. Petersburg Math. J. 11:5 (2000), 703–760. MR
2001d:14069 Zbl 1002.14020

Communicated by Barry Mazur
Received 2013-10-31 Revised 2013-12-03 Accepted 2014-01-22

holschbach@mathi.uni-heidelberg Mathematisches Institut, Universität Heidelberg,
Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

jschmidt@mathi.uni-heidelberg.de Mathematisches Institut, Universität Heidelberg,
Im Neuenheimer Feld 288, 69120 Heidelberg, Germany

stix@math.uni-frankfurt.de Institut für Mathematik, Johann Wolfgang
Goethe-Universität, Robert-Mayer-Strasse 6-8,
60325 Frankfurt am Main, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.2307/1970735
http://dx.doi.org/10.2307/1970735
http://msp.org/idx/mr/44:4010
http://msp.org/idx/zbl/0218.14021
http://dx.doi.org/10.1007/s002290050203
http://msp.org/idx/mr/2001c:14067
http://msp.org/idx/zbl/0987.14031
http://dx.doi.org/10.1007/s002080100236
http://msp.org/idx/mr/2002i:14023
http://msp.org/idx/zbl/1053.14017
http://dx.doi.org/10.1007/BF01453590
http://dx.doi.org/10.1007/BF01453590
http://msp.org/idx/mr/90k:32094
http://msp.org/idx/zbl/0708.32004
http://msp.org/idx/mr/2001d:14069
http://msp.org/idx/mr/2001d:14069
http://msp.org/idx/zbl/1002.14020
mailto:holschbach@mathi.uni-heidelberg
mailto:jschmidt@mathi.uni-heidelberg.de
mailto:stix@math.uni-frankfurt.de
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 4 2014

781The derived moduli space of stable sheaves
KAI BEHREND, IONUT CIOCAN-FONTANINE, JUNHO HWANG and MICHAEL ROSE

813Averages of the number of points on elliptic curves
GREG MARTIN, PAUL POLLACK and ETHAN SMITH

837Noncrossed product bounds over Henselian fields
TIMO HANKE, DANNY NEFTIN and JACK SONN

857Yangians and quantizations of slices in the affine Grassmannian
JOEL KAMNITZER, BEN WEBSTER, ALEX WEEKES and ODED YACOBI

895Equidistribution of values of linear forms on quadratic surfaces
OLIVER SARGENT

933Posets, tensor products and Schur positivity
VYJAYANTHI CHARI, GHISLAIN FOURIER and DAISUKE SAGAKI

963Parameterizing tropical curves I: Curves of genus zero and one
DAVID E. SPEYER

999Pair correlation of angles between reciprocal geodesics on the modular surface
FLORIN P. BOCA, VICENT, IU PAS, OL, ALEXANDRU A. POPA and ALEXANDRU
ZAHARESCU

1037Étale contractible varieties in positive characteristic
ARMIN HOLSCHBACH, JOHANNES SCHMIDT and JAKOB STIX

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.4

http://dx.doi.org/10.2140/ant.2014.8.781
http://dx.doi.org/10.2140/ant.2014.8.813
http://dx.doi.org/10.2140/ant.2014.8.837
http://dx.doi.org/10.2140/ant.2014.8.857
http://dx.doi.org/10.2140/ant.2014.8.895
http://dx.doi.org/10.2140/ant.2014.8.933
http://dx.doi.org/10.2140/ant.2014.8.963
http://dx.doi.org/10.2140/ant.2014.8.999

	1. Introduction
	2. Big Cartier divisors
	2.1. Existence of big divisors
	2.2. Geometry of varieties with vanishing `39`42`"613A``45`47`"603AH1 and `39`42`"613A``45`47`"603AH2
	2.3. Using alterations
	2.4. Complementing example

	3. Normal surfaces
	Acknowledgments
	References
	
	

