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Polarization estimates for abelian varieties
David Masser and Gisbert Wüstholz

In an earlier paper we showed that an abelian variety over a number field of fixed
degree has a polarization whose degree is bounded by a power of its logarithmic
Faltings height, provided there are only trivial endomorphisms. Here we greatly
relax the endomorphism hypothesis, and we even eliminate it completely when
the dimension is at most seven. Our methods ultimately go back to transcendence
theory, with the asymmetric geometry of numbers as a new ingredient, together
with what we call the Severi–Néron group, a variant of the Néron–Severi group.

1. Introduction

In this paper we address the following question: is the polarization of an abelian
variety determined by arithmetical data? More precisely, if A is an abelian variety of
fixed dimension defined over a fixed number field, is there necessarily a polarization
on A whose degree is bounded in terms of the Faltings height of A?

So formulated, the question has the easy answer, “yes”. For a fundamental
finiteness result states that, up to isomorphism, there are only finitely many such
abelian varieties with a bounded height, and then we can choose a polarization on
each of them. However, this argument fails to give any kind of explicit estimate for
the degrees of the polarizations.

Taking into account the applications of transcendence theory to abelian varieties
in recent years, in particular our papers [Masser and Wüstholz 1993a; 1993b; 1993c;
1994; 1995a; 1995b], one may conjecture that these degrees are bounded by an
expression of the form C max{1, h(A)}π , where h(A) is the absolute logarithmic
semistable Faltings height of A (see, for example, [Faltings 1983] or [Bost 1996a]),
π depends only on the dimension of A, and C depends only on this dimension
together with the degree of the field of definition of A.

The object of the present paper is to establish this conjecture in almost all the
cases of interest to algebraists or arithmetic geometers. It was already proved in
[Masser and Wüstholz 1995a, Corollary, p. 6] when the endomorphism ring of A is
trivial. In general suppose that A is defined over a number field k, and write End A
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for the ring of endomorphisms defined over the algebraic closure k of k; this is an
order in the algebra Q⊗End A over the rational field Q. If A is simple, this algebra
is a division algebra whose center is a number field. Our main result can be stated
as follows.

Theorem 1.1. For positive integers n and d there is a constant π depending only
on n and a constant C depending only on n and d with the following property. Let
A be an abelian variety of dimension n defined over a number field k of degree d.
Suppose that A is simple over k and that Q⊗End A is commutative or its center is
totally real. Then A has a polarization over k of degree at most C max{1, h(A)}π .

In fact the above hypotheses on the endomorphism algebra correspond precisely
to the types I, II and III in Albert’s famous classification, together with type IV
in the commutative case. This remark is already enough to establish the above
conjecture for simple abelian varieties in infinitely many dimensions and all abelian
varieties, not necessarily simple, in small dimensions. For example, we will deduce
the following consequences.

Corollary 1.2. For a positive squarefree integer n and a positive integer d there
is a constant π depending only on n and a constant C depending only on n and d
with the following property. Let A be an abelian variety of dimension n defined
over a number field k of degree d. Suppose that A is simple over k. Then A has a
polarization over k of degree at most C max{1, h(A)}π .

Corollary 1.3. For a positive integer d there is a constant C depending only on d
with the following property. Let A be an abelian variety of dimension at most 7
defined over a number field k of degree d. Then A has a polarization over k of
degree at most C max{1, h(A)}π , where π is an absolute constant.

In all of the above results the quantity C max{1, h(A)}π can readily be replaced
by C0 max{d, h(A)}π with C0 independent of d; see the remarks in [Masser and
Wüstholz 1995a, p. 23]. A more interesting problem is to prove that A has a
polarization over k itself of small degree in the above sense, but this seems not
to follow from our methods. At any rate we may note that all polarizations of
an abelian variety of dimension n defined over a field k of characteristic zero are
automatically defined over an extension of k of relative degree at most 316n4

; see
[Masser and Wüstholz 1993a, Lemma 2.3, p. 415].

Our original motivation for estimating polarizations was to extend the isogeny
estimates of [Masser and Wüstholz 1993b], for polarized abelian varieties, to unpo-
larized abelian varieties, simply by providing the latter with explicit polarizations.
In fact we solved this isogeny problem in a completely different way in our paper
[Masser and Wüstholz 1995a]. Nevertheless we feel that our conjecture has enough
independent interest to justify the present paper. And similar problems over finite
fields have been studied by Howe [1995].
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Actually the proof of our theorem relies heavily on the methods and results of
[Masser and Wüstholz 1995a]; in particular we need discriminant estimates and
factorization estimates. This paper is based ultimately on the work of [Masser and
Wüstholz 1993a], which involves techniques from the theory of transcendental
numbers. By contrast, the deduction of our present results from those of [Masser
and Wüstholz 1995a] is by purely algebraic methods, together with the geometry of
numbers. More precisely, the necessary positive definiteness properties of our polar-
izations are established using tools from the so-called asymmetric geometry of num-
bers. For endomorphism algebras of types I, III and IV it suffices to use a theorem
of Chalk, but for type II we have to develop what seems to be a new generalization
to number fields of a theorem of Blaney. All these results are recorded in Section 2.

In Section 3 we prove some elementary properties of discriminants in quaternion
algebras and CM-fields, and in Section 4 we give some analogous results for the
cross-discriminants introduced in [Masser and Wüstholz 1995a]. Only instead of
considering the full set Hom(A, Â) of homomorphisms from A into its dual Â,
we have to restrict to its subset the Néron–Severi group NS(A), as well as to a
certain complement, which for want of a better name we call the Severi–Néron
group SN(A). Also in this section we record the necessary facts about Albert’s
classification and the representations of the corresponding endomorphism algebras.
Some of this material is borrowed from an article of Shimura [1963].

Then in Sections 5 and 6 we obtain our purely algebraic estimates for polarizations
on complex abelian varieties; this enables us to postpone the appeal to [Masser and
Wüstholz 1995a] until Section 7, where we establish our theorem and its corollaries.

Of course our results are not quite complete; in fact to prove the full conjecture
it remains only to treat simple abelian varieties in the noncommutative case of type
IV. We hope to return to this problem in a later paper. For the moment it is perhaps
amusing to speculate on whether our conjecture holds with π = 0; for example,
does every abelian variety of dimension 2 defined over Q have a polarization whose
degree is bounded by an absolute constant, say 1010?

And finally we should say something about effectivity. As usual the exponents
π in our results are not only effective but also explicitly computable, as already in
[Masser and Wüstholz 1993a; 1993b; 1995a]. The effectivity of the coefficients C
is known for some time since the work of Bost [1996b]. At any rate the algebraic
estimates of our own Sections 2–6 are all completely explicit and it is not until
Section 7 that we appeal to [Masser and Wüstholz 1995a].

Some of this work was written up while the first author was visiting Göttingen
and Erlangen in 1991 (sic), and he would like to thank S. Patterson and H. Lange
for hospitality. Since then the work has been mentioned by Bost in his 1994–95
Séminaire Bourbaki talk [Bost 1996b, p. 126], as well as in [Masser 2006] and
[Baker and Wüstholz 2007, p. 164].
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Recently É. Gaudron and G. Rémond [2013] sent us a manuscript in which they
complete our results. They use the general strategy and methods laid down in our
papers [Masser and Wüstholz 1993a; 1993b; 1993c; 1994; 1995a; 1995b], but their
details appear to differ from ours. Thus our work is of independent value, not least
in our use of the asymmetric geometry of numbers. This topic is relevant to class
number problems for quadratic forms over number fields and in our context it brings
to the fore some interesting side questions.

2. Asymmetric geometry of numbers

For a positive integer ` let 4 be a lattice in the real Euclidean space R` with
determinant d(4). If d1, . . . , d` are positive real numbers with d1 · · · d` = d(4),
Minkowski’s theorem in the geometry of numbers (see, for example, [Gruber and
Lekkerkerker 1987, Theorem 3, p. 43]) provides nonzero (ξ1, . . . , ξ`) in 4 with

|ξ1| ≤ d1, . . . , |ξ`| ≤ d`. (2-1)

An asymmetric version of this was established by Chalk; it provides instead
(ξ1, . . . , ξ`) in 4 with

ξ1 > 0, . . . , ξ` > 0, |ξ1 · · · ξ`| ≤ d(4) (2-2)

(see, for example, [Gruber and Lekkerkerker 1987, corollary, p. 598] for a proof of
Chalk’s original theorem for grids). Note that it is not possible to localize further
as in (2-1).

Our first application of these results is as follows. Let K be a totally real number
field of degree m, and denote by φ1, . . . , φm the different embeddings of K into
the real field R. For ξ in K write N (ξ)= ξφ1 · · · ξφm and T (ξ)= ξφ1 + · · · + ξφm

for the norm and trace, respectively, from K to Q. If O is an order in K we define
in the usual way its discriminant d(O) as the determinant of the matrix with entries
det T (ξi , ξ j ), (1≤ i, j ≤ m), where ξ1, . . . , ξm are elements of any basis of O over
the rational integers Z. Since K is totally real, it is easy to see (for example, as in
the proof just below) that d(O) is positive.

Lemma 2.1. For any nonzero σ in K there exists ξ in O such that σξ is totally
positive and |N (ξ)| ≤ d(O)1/2.

Proof. Let u1, . . . , um be the signs of σ φ1, . . . , σ φm . As ξ runs over O, the vectors
(u1ξ

φ1, . . . , umξ
φm ) describe a lattice 4 in Rm , and it is straightforward to check

that its determinant d(4) satisfies (d(4))2 = d(O). The desired result now follows
at once from (2-2). �

Next let n be a positive integer (soon to disappear, so that there is no danger of
confusion with n = dim A in Section 1). Let F be a field (also soon to disappear),
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and let Q be a quadratic form on Fn over F . This has a discriminant d(Q) in
F defined as the determinant of the matrix with entries Q(ei , e j ) (1 ≤ i, j ≤ n),
where Q also denotes the associated bilinear form, and e1, . . . , en are elements of
the standard basis of Fn over F .

Suppose for the moment that K =Q and F = R. If Q is nondegenerate and not
negative definite a theorem of Blaney [Gruber and Lekkerkerker 1987, Theorem 4,
p. 471] shows how to find small positive values of Q on Zn . Namely, there exists
(ξ1, . . . , ξn) ∈ Zn such that

0< Q(ξ1, . . . , ξn)≤ 2n−1
|d(Q)|1/n.

Our purpose in the rest of this section is to obtain generalizations of this result
to arbitrary totally real fields K , with totally positive values of Q on On for some
order O of K . For applications it suffices to restrict ourselves to n ≤ 3 and forms Q
defined over K (the latter is not in fact a genuine restriction). In that case the real
conjugates Qφ1, . . . , Qφm each have a certain signature, and it seems necessary to
assume that these are all the same. If this common signature is u, we say that Q
has total signature u.

We start with totally positive definite binary forms.

Lemma 2.2. Let Q(x, y) be a binary quadratic form over K with total signature
(++). Then there are ξ, η in O such that q = Q(ξ, η) is totally positive and

N (q)≤ 2md(O) |N (d(Q))|1/2.

Proof. Completing the square on each of the positive definite conjugates of Q, we
find real numbers ai , bi , ci such that

Qφi (x, y)= ai
(
(x − bi y)2+ (ci y)2

)
(1≤ i ≤ m). (2-3)

In particular
d(Qφi )= a2

i c2
i > 0, ai > 0 (1≤ i ≤ m), (2-4)

and we can also suppose ci > 0 (1≤ i ≤ m). Now, as ξ, η run over O, the vectors(
ξφ1 − b1η

φ1, ηφ1, . . . , ξφm − bmη
φm , ηφm

)
describe a lattice 4 in R2m , and it is easy to see that

d(4)=
(
d(O)1/2

)2
= d(O).

Define C by
C2m
= c1 · · · cmd(O); (2-5)

then it follows from (2-1) that we can find ξ, η in O, not both zero, with

|ξφi − biη
φi | ≤ C, |ηφi | ≤ C/ci (1≤ i ≤ m).
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So (2-3) gives
0< Qφi

(
ξφi , ηφi

)
≤ 2C2ai (1≤ i ≤ m).

Hence q = Q(ξ, η) is totally positive and

N (q)≤ 2mC2ma1 · · · am = 2md(O) |N (d(Q))|1/2

by (2-4) and (2-5). This completes the proof. �

The analogue for totally indefinite forms seems to lie a little deeper.

Lemma 2.3. Let Q(x, y) be a binary quadratic form over K with total signature
(+−). Then there are ξ, η in O such that q = Q(ξ, η) is totally positive and

N (q)≤ 2md(O) |N (d(Q))|1/2.

Proof. This time we factorize each indefinite conjugate as

Qφi (x, y)= ai (x − bi y)(x − ci y) (1≤ i ≤ m)

for real ai , bi , ci ; in particular

d(Qφi )=− 1
4a2

i (bi − ci )
2 < 0 (1≤ i ≤ m).

Now, as ξ, η run over O, the vectors(
ξφ1 − b1η

φ1, a1(ξ
φ1 − c1η

φ1), . . . , ξφm − bmη
φm , am(ξ

φm − cmη
φm )
)

describe a lattice 4 in R2m with

d(4)= |a1 · · · am | |b1− c1| · · · |bm − cm | d(O).

So Chalk’s theorem (2-2) applied to 4 gives us in a similar way the desired estimate.
This completes the proof. �

To extend these results to ternary forms we need a couple of elementary obser-
vations. For an order O in K recall from [Masser and Wüstholz 1995a, p. 8] the
class index i(O) = i1(O), which is the smallest positive integer I such that every
O-module of rank 1 in O contains a principal O-module of index at most I .

Lemma 2.4. Given elements ξ, η in O there are µ, ν in O with

0< |N (ν)| ≤ i(O)3

such that

νM ⊆ Oµ⊆ M

for M = Oξ +Oη.



Polarization estimates for abelian varieties 1051

Proof. Of course µ plays the role of a highest common factor of ξ and η. If ξ and
η are both zero then the result is trivial with µ= 0, ν = 1. Otherwise M has rank 1
and so there is µ 6= 0 in M with

[M : Oµ] = I ≤ i(O). (2-6)

Let L be the O-module of all λ in O such that λM ⊆ Oµ. Again there is ν 6= 0 in L
with

[L : Oν] = I ′ ≤ i(O). (2-7)

Now L = Lξ ∩ Lη, where Lζ is the set of all λ in O such that λζ is in Oµ. So

[O : L] = [O : Lξ ][Lξ : Lξ ∩ Lη] ≤ [O : Lξ ][O : Lη]. (2-8)

Also for any ζ in M we have

[O : Lζ ] = [Oζ : Oζ ∩Oµ] ≤ [M : Oµ] = I,

so (2-8) gives [O : L] ≤ I 2. Finally this together with (2-6) and (2-7) leads to

[O : Oν] = [O : L][L : Oν] ≤ I 2 I ′ ≤ i(O)3,

and since the left-hand side is |N (ν)| (see, for example, [Reiner 1975, Example 3,
p. 231] the proof is complete. �

Next we say that a row vector v in O3 is O-primitive if every nonzero λ in K
with λv in O3 satisfies |N (λ)| ≥ 1.

Lemma 2.5. Suppose that v0 in O3 is O-primitive. Then there are v1, v2 in O3 such
that v0, v1, v2 form a matrix V with

0< |N (det V )| ≤ i(O)9.

Proof. Let v0 = (ξ0, η0, ζ0). By Lemma 2.4 there are µ, ν in O with

0< |N (ν)| ≤ i(O)3 (2-9)

such that
νM ⊆ Oµ⊆ M (2-10)

for M = Oξ0+Oη0. In particular there exist ξ1, η1 in O with µ= η1ξ0− ξ1η0, and
we define v1 = (ξ1, η1, 0) in O3. Again by Lemma 2.4 there are µ′, ν ′ in O with

0< |N (ν ′)| ≤ i(O)3 (2-11)

such that
ν ′M ′ ⊆ Oµ′ ⊆ M ′ (2-12)

for M ′=Oµ+Oζ0. In particular there exist σ, τ in O with µ′= σµ+τζ0. By (2-10)
the numbers ξ2 = −ντξ0/µ, η2 = −ντη0/µ are in O, and so v2 = (ξ2, η2, σν) is
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in O3. Now we can quickly check that the rows v0, v1, v2 form a matrix V with
det V = νµ′; and this is nonzero since µ′ = 0 would imply v0 = 0, contradicting
primitivity.

It remains to verify the upper bound for |N (det V )|. But (2-10) and (2-12) show
that λv0 is in O3 for λ= νν ′/µ′, so primitivity gives |N (µ′)| ≤ |N (νν ′)|. Therefore

|N (det V )| ≤
∣∣N(ν2ν ′

)∣∣≤ i(O)9

by (2-9) and (2-11); and this completes the proof. �

If O happens to be a maximal order, a more natural proof of Lemma 2.5 might
be obtained using the projectivity of torsion-free O-modules. But this does not
seem quite straightforward, since our definition of primitivity does not quite imply
that O3/Ov0 is torsion-free. Further the extension to nonmaximal orders appears to
involve exponents of i(O) depending on m = [K :Q].

In practice we shall estimate i(O) by d(O)1/2, as in the class index lemma of
[Masser and Wüstholz 1995a, p. 8] for e = 1.

At last we can extend the earlier results of this section to ternary forms.

Lemma 2.6. Let Q(x, y, z) be a ternary quadratic form over K with total signature
(+−−). Then there are ξ, η, ζ in O such that q = Q(ξ, η, ζ ) is totally positive and

N (q)≤ 22md(O)5|N (d(Q))|1/3.

Proof. We follow closely the method in [Gruber and Lekkerkerker 1987, p. 471].
Since K is dense in R⊗ K it is easy to see that Q takes totally positive values on
K 3 and so also on O3. The norms of these latter values are rational numbers with
bounded denominator and so form a discrete set. Thus we can find v0 = (ξ0, η0, ζ0)

in O3 at which the value q0 = Q(ξ0, η0, ζ0) is totally positive with minimal norm,
say N0= N (q0). Then v0 must be O-primitive, otherwise we could find a value with
strictly smaller norm. We express the variables x, y, z in terms of new variables
x ′, y′, z′ using the matrix V of Lemma 2.5. So if the new form Q′ is defined by
Q′(x ′, y′, z′)= Q(x, y, z) we now have q0 = Q′(1, 0, 0). Completing the square
on q−1

0 Q′ gives

q−1
0 Q′

(
x ′, y′, z′

)
=
(
x ′+αy′+βz′

)2
+ Q1

(
y′, z′

)
for α, β in K and a binary form Q1 over K . Since q0 is totally positive and Q′ has
total signature (+−−), it follows that Q1 has total signature (−−). Lemma 2.2
applied to −Q1 gives η′, ζ ′ in O with q1 = Q1(η

′, ζ ′) totally negative and

|N (q1)| ≤ 2md(O) |N (d(Q1))|
1/2.

Now
d(Q1)= q−3

0 d(Q′), d(Q′)= (det V )2d(Q)
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and so the estimate of Lemma 2.5 and the class index lemma lead to

|N (q1)| ≤ 2m N−3/2
0 d(O)11/2

|N (d(Q1))|
1/2. (2-13)

Next define a third form over K by

Q′′
(
x ′′, y′′

)
= q−1

0 Q′
(
x ′′, η′y′′, ζ ′y′′

)
=
(
x ′′+ γ y′′

)2
+ q1

(
y′′
)2

for some γ in K . This has total signature (+−). So Lemma 2.3 gives ξ ′′, η′′ in O

with q ′′ = Q′′(ξ ′′, η′′) totally positive and N (q ′′)≤ 2md(O) |N (d(Q′′))|1/2. Using
the estimate (2-13) for d(Q′′)= q1 we find that

N (q ′′)≤ 23m/2 N−3/4
0 d(O)15/4

|N (d(Q1))|
1/4. (2-14)

Finally q = Q′(ξ ′′, η′η′′, ζ ′η′′)= q0q ′′ is a totally positive value of Q′ on O3 and
so a totally positive value of Q on O3. Therefore minimality implies N0 ≤ N (q), or
N (q ′′)≥ 1. Now (2-14) leads at once to the required upper bound for N0, and this
completes the proof. �

Lemmas 2.2, 2.3, and 2.6 above are all partial generalizations of Blaney’s theorem
from the rationals to totally real number fields. There is no difficulty in extending
the induction argument, as in [Gruber and Lekkerkerker 1987, p. 471], to any
number of variables, provided one assumes that Q has a total signature which is
not negative definite. But it does not seem straightforward to prove the analogous
results under the weaker and more natural hypothesis that no conjugate of Q is
negative definite.

3. Quaternion algebras and CM-fields

As in the preceding section, let K be a totally real number field of degree m. Let
D be a quaternion algebra over K ; that is, a noncommutative algebra over K of
dimension 4 with center K . For a finitely generated additive subgroup 0 of D
of rank r we define the discriminant d1(0) as the determinant of the matrix with
entries T1(γiγ j ) (1≤ i, j ≤ r), where γ1, . . . , γr are elements of any Z-basis for 0,
and T1 denotes the trace from D to Q obtained for example through left (or right)
regular representations. We also have for all δ in D

T1(δ)= 2T (tr δ), (3-1)

where as before T is the trace from K to Q and now tr is the reduced trace from D
to K ; see, for example, [Reiner 1975, Example 5, p. 7 and Equation (9.7), p. 116] .

There is a canonical involution ρ0 on D defined by

ρ0(δ)= (tr δ)− δ (3-2)
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for all δ in D. Its fixed space, consisting of all δ with ρ0(δ)= δ, is just K ; while
its antifixed space, consisting of all δ with ρ0(δ)=−δ, is a K -vector space E of
dimension 3. So D = K ⊕ E .

The following result specifies the ternary quadratic form to which Lemma 2.6
will eventually be applied. Denote the reduced norm from D to K by

nm δ = δρ0(δ)= ρ0(δ)δ,

and let N as before be the norm from K to Q.

Lemma 3.1. If α, β, γ are elements of E linearly independent over K , the quadratic
form

Q(x, y, z)=−(xα+ yβ + zγ )2 = nm(xα+ yβ + zγ )

satisfies

N (d(Q))= (−1)md1(M)d1(O)
−3 (3-3)

for any order O in K , where M = Oα⊕Oβ⊕Oγ .

Proof. If ξ1, . . . , ξm are elements of a Z-basis for O, then for any λ in K the matrix
with entries T1(ξiξ jλ) (1 ≤ i, j ≤ m) has determinant d1(O)N (λ). We can find a
K -basis of E consisting of elements α0, β0, γ0 satisfying the standard quaternion
relations

α2
0 = ξ, β2

0 = η, γ0 = α0β0 =−β0α0

for ξ, η in K , and now (3-3) follows after a short calculation with α0, β0, γ0 in
place of α, β, γ ; in fact both sides have the value N (ξη)2.

Next let α, β, γ in E be such that M = Oα ⊕ Oβ ⊕ Oγ is a submodule of
M0 = Oα0 ⊕ Oβ0 ⊕ Oγ0, so that α, β, γ are related to α0, β0, γ0 by means of a
nonsingular matrix V over O. If we can check that

|N (det V )| = [M0 : M], (3-4)

then both sides of (3-3) change by the square of this quantity on replacing M0 by
M , so (3-3) follows for α, β, γ .

Now (3-4) should be in the literature, but we could not find an exact reference. It
can be verified ad hoc by picking a Z-basis of O and for each λ in K writing Vλ for
the matrix in the corresponding right regular representation; then if V has entries λ,
the index [M0 :M] is the absolute value of the determinant of the matrix with blocks
Vλ. By [Reiner 1975, Example 3, p. 7] this determinant is just N (det V ). See also
[Reiner 1975, Example 3, p. 231] for another approach. Or one can compare the
maximal exterior powers of M and M0; these have the shape P(det V ),P for an
O-module P of rank 1.
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Hence (3-3) is established for any such α, β, γ . Finally the general case can be
reduced to this case simply by multiplying by a suitable positive integer; and the
proof of the present lemma is thereby complete. �

Notice in this lemma that d1(O) is not quite the same as the d(O) in Section 2;
in fact

d1(O)= 4md(O) (3-5)

due to the differing traces.
Next let K1 be a CM-field over K ; that is, a totally imaginary quadratic extension

of K . For a finitely generated additive subgroup 0 of K1 we define the discriminant
d1(0) as above using the trace T1 from K1 to Q. The analogue of (3-1) is

T1(δ)= T (tr δ), (3-6)

where T is the trace from K to Q and tr is the (reduced) trace from K1 to K . There
is a canonical involution ρ0 on K1, which we can identify with complex conjugation,
and (3-2) continues to hold. We define as before E as the antifixed space, so that
K1 = K ⊕ E .

Lemma 3.2. Let O1 be an order of either D or K1. Then:

(a) |d1(K ∩O1)| ≤ 24m
|d1(O1)|.

(b) |d1(E ∩O1)| ≤ 24m
|d1(O1)|.

Proof. Suppose first that O1 is a maximal order. If OK is the ring of integers of K
then OK O1 contains O1 and so must be O1. In particular O1 is an OK -order containing
OK . So [Reiner 1975, Theorem 10.1, p. 125] shows that tr δ is in OK for all δ in O1.
In particular tr δ is in O1, and now the identity 2δ = tr δ+ (2δ− tr δ) leads to

2O1 ⊆ (K ∩O1)⊕ (E ∩O1)⊆ O1.

Since the summands are perpendicular with respect to the reduced trace, and
therefore by (3-1), (3-6) also with respect to T1, taking discriminants gives

24m
|d1(O1)| ≥ |d1(K ∩O1)| |d1(E ∩O1)| ≥ |d1(O1)|.

Since all these discriminants are nonzero rational integers, (a) and (b) follow when
O1 is maximal.

In general there is a maximal order Om containing O1, and

d1(O1)= [Om : O1]
2d1(Om),

d1(K ∩O1)= [K ∩Om : K ∩O1]
2d1(K ∩Om).

But the second index above does not exceed the first index, so (a) follows in general;
and (b) is established similarly. This completes the proof. �
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4. Polarizations and representations

Let A be an abelian variety defined over the field C of complex numbers. Analyti-
cally A is isomorphic to the quotient of the tangent space Lie A at the origin by the
period group Per A defined as the kernel of the exponential map from Lie A to A.

We write Â for the dual abelian variety of A. Then Lie Â can be identified with
the space of all C-antilinear maps from Lie A to C, and Per Â with the subgroup of
all such maps whose imaginary parts are integer-valued on Per A (see [Lange and
Birkenhake 1992, pp. 35, 73] or [Mumford 1974, p. 86]). Now a homomorphism
f from A to Â takes an element z of Lie A to an element of Lie Â which itself
takes (antilinearly) an element w of Lie A into an element R(z, w) of C. In this
way the group H=Hom(A, Â) of all homomorphisms f from A to Â is identified
with the group of sesquilinear forms R = R(z, w) (linear in z and antilinear in
w) on Lie A×Lie A whose imaginary parts are integer-valued on Per A× Per A.
The dual map f̂ (corresponding to R(w, z)) is also in H, and we can identify the
Néron–Severi group N= NS(A) with the subgroup of all such f satisfying f̂ = f .
These correspond to Hermitian R. We shall also be interested in the complementary
group S = SN(A) of all f with f̂ = − f . For example, the sum of NS(A) and
SN(A) is direct, lying between 2H and H.

Interchanging A and Â, we obtain in a similar way the groups

H′ = Hom( Â, A), N′ = NS( Â), S′ = SN( Â).

For f in H and f ′ in H′ we denote by f ′ f the composition in the ring End A of
endomorphisms of A.

Next let 0,0′ be additive subgroups of H,H′, respectively, with the same rank,
say r . We define the cross-discriminant c(0′, 0), as in [Masser and Wüstholz
1995a, p. 15], as the square of the determinant of the matrix with entries T1(γ

′

i γ j )

(1 ≤ i, j ≤ r), where γ1, . . . , γr and γ ′1, . . . , γ
′
r are elements of Z-bases of 0,0′,

respectively, and T1 is the trace from Q⊗ End A to Q obtained through regular
representations.

From now on (except briefly in Section 7) we shall assume that A is absolutely
simple. The next lemma can be regarded as an analogue of Lemma 3.2.

Lemma 4.1. Suppose that End A has Z-rank `. Then:

(a) 1≤ c(N′,N)≤ 24`c(H′,H).

(b) 1≤ c(S′,S)≤ 24`c(H′,H).

Proof. Since H contains surjective homomorphisms (for example coming from
polarizations as in the discussion below), it is easy to see that both H and H′ have
Z-rank `. Further

2H⊆ N⊕S⊆H, 2H′ ⊆ N′⊕S′ ⊆H′,
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and taking cross-discriminants gives

24`c(H′,H)≥ c(N′⊕S′,N⊕S)= c(N′,N)c(S′,S)≥ c(H′,H) (4-1)

provided we check that N and S′ (as well as N′ and S) are perpendicular with
respect to T1. But this trace is proportional (see [Masser and Wüstholz 1995a,
Equation (4.1), p. 14]) to the rational representation trace coming from homology,
which is itself proportional to the real part of the analytic representation trace Tr
(see, for example, [Lange and Birkenhake 1992, Proposition 2.3, p. 10]). Now pick
basis elements of Lie A and then basis elements of Lie Â dual with respect to the
standard pairing. Then f in N corresponds to a Hermitian matrix F , and f ′ in S′

corresponds to an antihermitian matrix F ′. With the transposes F t , F ′t we have

Tr(F ′F)= Tr(F F ′)= Tr(F ′t F t)=−Tr(F ′F)

and so the real part of Tr(F ′F) is zero. Hence N,S′ are indeed perpendicular;
and similarly for N′,S. Now [Masser and Wüstholz 1995a, Lemma 5.1(b), p. 17]
and the nonvanishing of discriminants implies that c(H′,H) 6= 0. Since all the
cross-discriminants in (4-1) are rational integers, the inequalities of the present
lemma follow at once, and this completes the proof. �

The next result generalizes [Masser and Wüstholz 1995a, Lemma 4.2, p. 16], at
least when B = Â. Note that through composition H and H′ have natural structures
of right and left modules, respectively, over End A. We write deg δ for the degree
of δ in End A when it is an isogeny. As in Section 1 let n be the dimension of A.

Lemma 4.2. Let O in End A be an order of a division subalgebra of Q⊗ End A.
Suppose that 0 in H is a right O-module of rank 1 and that 0′ in H′ is a left O-module
of rank 1. Suppose further that c(0′, 0) 6= 0 and f ′ f is in O for every f in 0 and
f ′ in 0′. Then there are f in 0 and f ′ in 0′ such that f ′ f is an isogeny with

deg f ′ f ≤ c(0′, 0)n.

Proof. There exists f in 0 with

[0 : f O] = I ′ ≤ i ′(O)

the right class index of O (see [ibid., p. 13]). And there exists f ′ in 0′ with

[0′ : O f ′] = I ≤ i(O)

the left class index. The class index lemma of [ibid., p. 8], together with [ibid.,
Equation (3.11), p. 14], provides estimates for these class indices in terms of the
discriminant of O, which divides the discriminant d1(O) defined using the present
trace T1 (compare (3-5) above). We get

c(O f ′, f O)= I 2 I ′2c(0′, 0)≤ d1(O)
2c(0′, 0). (4-2)
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On the other hand the left side is the square of the determinant of the matrix with
entries T1(ξiδξ j ) (1 ≤ i, j ≤ r) for δ = f ′ f and elements ξ1, . . . , ξr of a Z-basis
of O. Using the left (or right) regular representation of δ in O, we find (much as in
the proof of Lemma 3.1) that this determinant is Nd1(O), where N is the norm of δ
from Q⊗ O to Q. In particular N 6= 0 so δ is an isogeny. Finally comparison of
norms (see [Masser and Wüstholz 1995a, Equation (4.2), p. 14]) yields

N 2n
= (deg δ)r ≥ deg δ,

and the present lemma follows from (4-2) after cancellation. This completes the
proof. �

The ultimate goal of this paper is to obtain information about the polarizations
on A. These may be identified with the subset Pol A of NS(A) corresponding to
positive definite Hermitian forms. Recall that every such polarization f gives rise
to its Rosati involution ρ on Q⊗End A by the equation

ρ(δ)= f −1δ̂ f. (4-3)

It is well known (see, for example, [Lange and Birkenhake 1992, Theorem 1.8,
p. 120] or [Mumford 1974, Theorem 1, p. 192]) that ρ is a positive involution in
the sense that T1(δρ(δ)) > 0 for all nonzero δ in Q⊗End A.

The existence of ρ provides a quick method for calculating NS(A). For multipli-
cation on the left by f −1 gives a (noncanonical) identification of Q⊗Hom(A, Â)
with Q⊗End A, and Q⊗NS(A) corresponds to the fixed space of ρ (see [Lange
and Birkenhake 1992, Proposition 2.1(a), p. 122] or [Mumford 1974, p. 190]).
Similarly SN(A) corresponds to the antifixed space. Further, multiplication on the
right by f gives an identification of Q⊗Hom( Â, A) with Q⊗End A; and now it
is Q⊗NS( Â) and Q⊗ SN( Â) that correspond to the fixed and antifixed spaces,
respectively, of ρ.

Recall that A is absolutely simple. Then D=Q⊗End A is a division algebra, and
we have the following fundamental classification due to Albert (see, for example,
the summaries in [Lange and Birkenhake 1992], [Mumford 1974], [Shimura 1963]
or the original papers [Albert 1934a; 1935a; 1934b; 1935b]).

Type I: D is a totally real number field.

Type II: D is a totally indefinite quaternion algebra over a totally real number
field.

Type III: D is a totally definite quaternion algebra over a totally real number
field.

Type IV: D is a division algebra, of dimension e2 say, over its center, which is a
CM-field.
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For each type the underlying totally real number field will be denoted by K ,
and its degree by m. Let φ1, . . . , φm be the different real embeddings of K as in
Section 2. For a field F we denote by Me(F) the ring of square matrices of order
e over F , and we write U for the subring of M2(C) consisting of all

( x
−y

y
x

)
. The

operation of complex conjugate transposition defines an involution * on Me(R),
Me(C) and U , which we extend to m-fold products in the obvious way. We need
the following isomorphisms.

Lemma 4.3. Fix f in Pol A with Rosati involution ρ. Then the above real embed-
dings induce an isomorphism φ = (φ1, . . . , φm) from R⊗ D to one of the following
rings (corresponding to the above types):

(I) Rm
=M1(R)

m ,

(II) M2(R)
m ,

(III) Um ,

(IV) Me(C)
m .

Further we have
φ(ρ(δ))= φ(δ)∗ (4-4)

for every δ in R⊗D; and for every σ in K , the matrix φi (σ ) is the identity multiplied
by σ φi (1≤ i ≤ m).

Proof. All except the last clause is contained in the discussions in [Lange and
Birkenhake 1992, pp. 133–141], [Mumford 1974, pp. 201, 202] or [Shimura 1963,
pp. 150–153, 155]. As for φ1(σ ), . . . , φm(σ ), they must be in the centers of the
appropriate rings and therefore multiples of the identity matrix by some scalars.
Further these scalars must have the form σ φ

′

1, . . . , σ φ
′
m for φ′1, . . . , φ

′
m chosen from

φ1, . . . , φm . But since φ is surjective, φ′1, . . . , φ
′
m must be all different, and after a

permutation we can assume them to be φ1, . . . , φm . This completes the proof. �

We next extend φ to an analytic representation of R⊗ D on the tangent space
Lie A. Let φ1, . . . , φm be the complex conjugates of the coordinates of φ. For
matrices X in Me(C) with entries xi j (1 ≤ i, j ≤ e), and Y in Mh(C), define the
Kronecker product X ⊗ Y in Meh(C) as in [Shimura 1963, p. 156] or [Lange
and Birkenhake 1992, p. 249] to consist of blocks xi j Y (1 ≤ i, j ≤ e). Also for
matrices X1, . . . , Xk define diag(X1, . . . , Xk) as in this last reference, with blocks
X1, . . . , Xk “down the main diagonal”. Finally write I (e) for the identity in Me(C).

Lemma 4.4. Fix f in Pol A. There is a basis of Lie A such that the corresponding
analytic representation 8 sends δ in R⊗ D to 8(δ) = diag(81(δ), . . . , 8m(δ)),
with

(I) 8i (δ)= φi (δ)⊗ I (n/m) (1≤ i ≤ m),
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(II) 8i (δ)= φi (δ)⊗ I (n/2m) (1≤ i ≤ m),

(III) 8i (δ)= φi (δ)⊗ I (n/2m) (1≤ i ≤ m),

(IV) 8i (δ)= diag
(
φi (δ)⊗ I (ri ), φi (δ)⊗ I (si )

)
(1≤ i ≤ m)

for nonnegative integers ri , si with ri + si = n/em (1≤ i ≤ m).

Proof. See [Shimura 1963, pp. 156, 157]; of course if ri = 0 or si = 0 then the
corresponding block in case (IV) should be omitted. �

The above result leads to the following for the Riemann form R(z, w) associated
with the polarization f , where now z= (z1, . . . , zn)

t , w= (w1, . . . , wn)
t are column

vectors of Cn identified with Lie A by means of the above basis.

Lemma 4.5. Fix f in Pol A; then with the basis of Lie A constructed above, the
Riemann form R(z, w) associated with f has the shape zt Fw for

F = diag(F1, . . . , Fm)

with

(I) Fi of order n/m (1≤ i ≤ m),

(II) Fi = I (2)⊗ F ′i for F ′i of order n/2m (1≤ i ≤ m),

(III) Fi = I (2)⊗ F ′i for F ′i of order n/2m (1≤ i ≤ m),

(IV) Fi = diag(I (e) ⊗ Gi , I (e) ⊗ Hi ) for Gi , Hi of orders ri , si , respectively
(1≤ i ≤ m).

Proof. The equation (4-3) of ρ leads to

R(z,8(δ)w)= R(8(ρ(δ))z, w)

for every δ in End A. With r(z, w) = zt Fw it follows from (4-4) that F8(δ) =
8(δ)F for every such δ, and so also for every δ in R⊗ D. Therefore F commutes
with every element of 8(R⊗ D)=8(R⊗ D). The required forms are now easy
to work out; see, for example, [Shimura 1963, Formulae (32), (33), pp. 161, 162].
This completes the proof. �

5. Preliminary estimates (i)

In this section we establish preliminary estimates for polarizations on simple abelian
varieties with endomorphism algebras of types I, III and the commutative case
e = 1 of type IV. These cases are especially easy to handle because there is only
one positive involution on D = Q ⊗ End A (see [Lange and Birkenhake 1992,
Theorem 5.3, p. 135 and Theorem 5.6, p. 139] or [Mumford 1974, Theorem 2,
p. 201]). For type I it is the identity; for type III it is the canonical involution of
Section 3; and for type IV it induces complex conjugation on the center, so in
the commutative case it is also the canonical involution considered in Section 3.
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Therefore the totally real number field K is always the fixed space. For the rest of
this section we assume that A is simple corresponding to one of the above cases.
We write

O1 = End A, O= K ∩O1. (5-1)

Lemma 5.1. Suppose that f is in Pol A and ζ is totally positive in O. Then f ζ is
in Pol A.

Proof. Shimura [1963, Proposition 21, p. 185] gives a short elegant proof of
this based on Siegel’s theorem that ζ is a sum of squares in K . The following
demonstration is more elementary.

By Lemma 4.5 the polarization f corresponds to the form zt Fw with

F = diag(F1, . . . , Fm)

(with respect to a suitable basis). So f ζ corresponds to the form zt Fζw with
Fζ =8(ζ)t F . Now it follows easily from Lemmas 4.3 and 4.4 that

8(ζ)t =8(ζ)= diag(ζ φ1 I, . . . , ζ φm I )

for I = I (n/m), and so

Fζ = diag(ζ φ1 F1, . . . , ζ
φm Fm).

Since f is a polarization, F is positive definite Hermitian. Therefore F1, . . . , Fm

are positive definite Hermitian. Since ζ is totally positive, it follows that ζ φ1 F1, . . . ,

ζ φm Fm are also positive definite Hermitian. Hence Fζ is positive definite Hermitian,
and so f ζ is indeed a polarization. This completes the proof, which works even for
the noncommutative case of type IV. �

Lemma 5.2. The group N = NS(A) is a right O-module of rank 1; the group
N′ = NS( Â) is a left O-module of rank 1; and f ′ f is in O for every f in N and f ′

in N′.

Proof. The claims for N can be checked by noncanonically identifying Q⊗H with
D=Q⊗O1 as described in Section 4; this identification respects the right D-module
structure. For type I every Rosati involution is the identity; so N=H, S= {0} and
everything is clear. For type III every Rosati involution ρ is canonical, so H, N,
S have Z-ranks 4m,m, 3m, respectively. So the asserted O-module structure of N

is obvious because ρ fixes O. For the commutative case of type IV, every Rosati
involution is again canonical, so H, N, S have Z-ranks 2m, m, m, respectively, and
again ρ fixes O.

The claims about N′ can be verified similarly by identifying Q⊗H′ with D.
Finally let f be in N and f ′ in N′. It is easy to see that Q⊗N is generated by
polarizations. So in proving that δ = f ′ f is in O we may assume that f is a
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polarization. Now using f̂ = f and a similar equation for f ′ we find at once that
f −1δ̂ f = δ, so δ is fixed by the Rosati involution. So it lies in K and therefore in
O as desired. This completes the proof. �

We can now give our first preliminary estimate for polarizations. We write deg f
for the degree of f in H=Hom(A, Â) when it is an isogeny (that is, when f 6= 0).

Proposition 5.3. Suppose that A is simple and its endomorphism algebra is either
commutative or a totally definite quaternion algebra over a totally real number field.
Then A has a polarization of degree at most 218mnc(H′,H)n|d1(O1)|

n .

Proof. From Lemma 4.1(a) we have c(N′,N) 6= 0. Now Lemma 5.2 above allows
us to apply Lemma 4.2 with 0 = N, 0′ = N′ to find an isogeny f̃ in N with
deg f̃ ≤ c(N′,N)n . Again using Lemma 4.1(a) and the fact that ` ≤ 4m in our
situation, we get

deg f̃ ≤ 216mnc(H′,H)n. (5-2)

Now there is certainly some polarization f ; so we deduce f̃ = f σ for some nonzero
σ in K . By Lemma 2.1 there is a ξ in O with ξσ totally positive and |N (ξ)|≤d(O)1/2.
Also Lemma 3.2(a) together with (3-5) gives d(O)≤ 22m

|d1(O1)|, and so we get

deg ξ = |N (ξ)|2n/m
≤ N (ξ)2n

≤ 22mn
|d1(O1)|

n. (5-3)

It is clear from this and (5-2) that our proposition is established as soon as we verify
that f̃ ξ is a polarization. But there is a positive integer s such that ζ = sσξ is in O;
and now it follows from Lemma 5.1 that s f̃ ξ = f ζ is a polarization. So f̃ ξ is too;
and this completes the proof. �

6. Preliminary estimates (ii)

We now deal with type II. This is harder because there are now many positive
involutions on D = Q⊗ End A; even worse, the canonical involution ρ0 is not
among them. It is here that we need the considerations of Section 2 on quadratic
forms.

But first we recall the isomorphism φ from R⊗ D to M2(R)
m constructed in

Lemma 4.3 from a given polarization on A. We already have Equation (4-4), where
* denotes complex conjugate transposition extended to the m-fold product. We also
need the following remarks.

Lemma 6.1. For any δ in R⊗ D we have

φ(ρ0(δ))= φ(δ)
a,

where (−)a denotes the adjoint involution extended to the m-fold product.
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Proof. The involution ρ0 on R⊗ D induces via φ an involution i on M=M2(R)
m .

Since δ+ ρ0(δ), δρ0(δ) are both fixed by ρ0, they are in the center for every δ in
R⊗ D. It follows that X + i(X), X i(X) are both in the center of M for every X in
M. From this we conclude with a simple calculation that i(X)= Xa for every X ,
which is the assertion of the present lemma. �

For the next remark we recall the decomposition D = K ⊕ E of Section 3.

Lemma 6.2. For any α, β, γ in E linearly independent over K , the quadratic form

Q(x, y, z)=−(xα+ yβ + zγ )2

has total signature (+−−).

Proof. Fix rational numbers x, y, z; then

q = Q(x, y, z)= πρ0(π)

for π = xα+ yβ + zγ , so calculating φi (q) from both Lemma 4.3 and 6.1 using
M Ma

= (det M)I (2) on M2(R) shows that

Qφi (x, y, z)= detφi (π)= det(xφi (α)+ yφi (β)+ zφi (γ )) (1≤ i ≤ m).

Since α, β, γ are linearly independent over K , their images in R⊗ D are linearly
independent over R⊗ K and so their images by each φi in M2(R) are linearly
independent over R. Further their traces are zero, again by Lemma 6.1. But it is
easy to check that the determinant function evaluated on the zero trace subspace of
M2(R) has signature (+−−). The assertion of the present lemma is now evident,
and this completes the proof. �

Although ρ0 itself is not positive, it is known that every positive involution ρ on
D is defined by

ρ(δ)= ω−1ρ0(δ)ω, (6-1)

where ω is a nonzero element of D with ω2 in K and totally negative (see, for
example, [Lange and Birkenhake 1992, Theorem 5.3, p. 135], [Mumford 1974,
Theorem 2, p. 201] or [Shimura 1963, Proposition 2, p. 153]). A simple calculation
shows that ω lies in E (not K ). Let �⊆ E be the set of such elements ω. Our first
task is to find a small element of � in the order O1. We keep the notation (5-1).

Lemma 6.3. There exists ω̃ in �∩O1 with

|N (ω̃)| ≤ 26m
|d1(O1)|

3.

Proof. Write M1 = E ∩O1. By Lemma 3.2(b) we have

|d1(M1)| ≤ 24m
|d1(O1)|. (6-2)



1064 David Masser and Gisbert Wüstholz

Now M1 is an O-module of rank 3, so by the definition of the generalized class index
in [Masser and Wüstholz 1995a, p. 8] it contains a free O-module M=Oα⊕Oβ⊕Oγ

with index [M1 : M] ≤ i3(O). By the class index lemma we have i3(O)≤ d(O)3/2,
and it follows using (3-5) and (6-2) that

|d1(M)| = [M1 : M]2|d1(M1)| ≤ 2−2md1(O)
3
|d1(O1)|.

So by Lemma 3.1 the quadratic form

Q(x, y, z)=−(xα+ yβ + zγ )2

satisfies
|N (d(Q))| ≤ 2−2m

|d1(O1)|. (6-3)

And by Lemma 6.2 it has total signature (+−−). So Lemma 2.6 provides ξ, η, ζ
in O such that q =−ω̃2 is totally positive for ω̃= ξα+ηβ+ ζγ in O1; and by (6-3)

N (q)≤ 24m/3d(O)5|d1(O1)|
1/3.

Finally the desired estimate for |N (ω̃)| = N (q)1/2, even with exponent 8
3 , follows

from this together with (3-5) and Lemma 3.2(a); the proof is thereby complete. �

We next give an analogue of Lemma 5.1; recall from Section 3 that tr is the
reduced trace from D to K .

Lemma 6.4. Suppose that f in Pol A has Rosati involution ρ given by (6-1) for
some ω in �.

(a) Then f0 = f ω−1 is in Q⊗S, and we have

f −1
0 δ̂ f0 = ρ0(δ) (6-4)

for every δ in D.

(b) Suppose further that ω′ is in �. Then tr ε 6= 0 for ε = ω−1ω′.

(c) Suppose in addition that ε is in O1 with tr ε totally positive. Then f ε is in
Pol A.

Proof. By the definition (4-3) of ρ we have

f −1δ̂ f = ω−1ρ0(δ)ω (6-5)

for every δ in D. Put δ = ω; we get f −1ω̂ f =−ω, and using f̂ = f we see easily
that the dual of f0 satisfies f̂0 = − f0. So f0 is in Q⊗ S as desired. Also the
formula (6-4) is immediate from (6-5). This establishes (a).

As for (b), we fix φ = (φ1, . . . , φm) corresponding to f as in Lemma 4.3, and
we start by proving that the matrices

Ei = φi (ε) (1≤ i ≤ m)
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in M2(R) are symmetric. For (4-4) gives the relations

φi
(
ω−1ρ0(ε)ω

)
= φi (ε)

t (1≤ i ≤ m).

Also ρ0(ε)= ω
′ω−1, and we end up with the desired symmetry properties.

Next by Lemma 6.1 we have

(det Ei )I = φi (ε)φi (ρ0(ε))= φi
(
ω−1ω′ω′ω−1) (1≤ i ≤ m)

for I = I (2). But ω2
= σ and ω′2 = σ ′ are both totally negative in K ; thus

ω−1ω′ω′ω−1
= σ−1σ ′ is totally positive in K , and the above matrix is (σ−1σ ′)φi I .

We deduce that
det Ei > 0 (1≤ i ≤ m). (6-6)

If ti is the trace of Ei , then we also have

ti I = φi (ε)+φi (ρ0(ε))= 2φi (τ )= 2τφi I (1≤ i ≤ m) (6-7)

with τ = tr ε the reduced trace. Now τ = 0 would imply ti = 0 (1≤ i ≤m), but the
trace of a symmetric matrix in M2(R) cannot vanish if its determinant is positive as
in (6-6). So indeed τ 6= 0, and this establishes (b).

Lastly, suppose τ is totally positive. We prove that E1, . . . , Em are positive
definite. For (6-7) now implies that ti > 0 (1≤ i ≤m), and it is easy to check that a
symmetric matrix in M2(R) is positive definite if (and only if) its determinant and
trace are both positive. Thus E1, . . . , Em are indeed positive definite.

Finally from Lemma 4.5 we know that the polarization f corresponds to the
form zt Fw with

F = diag(F1, . . . , Fm),

where Fi = I⊗F ′i for F ′i of order n/2m (1≤ i ≤m). As in the proof of Lemma 5.1,
the map f ε corresponds to zt Fεw with Fε =8(ε)t F , and we have

8(ε)= diag(81(ε), . . . , 8m(ε))

with 8i (ε)= Ei ⊗ I ′ (1≤ i ≤ m) for I ′ = I (n/2m). By symmetry we get

8i (ε)
t Fi = (Ei ⊗ I ′)(I ⊗ F ′i )= Ei ⊗ F ′i (1≤ i ≤ m),

so that
Fε = diag(E1⊗ F ′1, . . . , Em ⊗ F ′m).

Since F is positive definite Hermitian, so are F1, . . . , Fm and also F ′1, . . . , F ′m . We
have just seen that E1, . . . , Em are positive definite Hermitian (and even symmetric).
Now it is well known (and almost trivial) that the Kronecker product of two positive
definite Hermitian matrices is also positive definite Hermitian. It follows that Fε is
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positive definite Hermitian, and so f ε is a polarization. This establishes (c), and so
completes the proof of the present lemma. �

The next result is the analogue of Lemma 5.2, but with the Néron–Severi group
replaced by the Severi–Néron group.

Lemma 6.5. The group S= SN(A) is a right O-module of rank 1; the group S′ =

SN( Â) is a left O-module of rank 1; and f ′ f is in O for every f in S and f ′ in S′.

Proof. The claims for S can be checked by noncanonical identification, as in the
proof of Lemma 5.2. In fact a Rosati involution of the form (6-1) has antifixed
space Kω, since the equation ρ(δω)=−δω turns out to be equivalent to ρ0(δ)= δ.
So H,N,S have Z-ranks 4m, 3m,m, respectively. The claims for S′ can be verified
similarly.

Finally let f be in S and f ′ in S′. In showing that f ′ f is in O we can assume
f 6= 0. By Lemma 6.4(a) applied to some polarization (of course not the present f )
there is some f0 in Q⊗S with f −1

0 δ̂ f0 = ρ0(δ) for every δ in D. Since f0 = f σ
for some σ in K , we deduce also

f −1δ̂ f = ρ0(δ) (6-8)

for every δ in D. With δ = f ′ f using f̂ =− f and a similar equation for f ′ leads
immediately to f ′ f = ρ0( f ′ f ), so f ′ f is in K and therefore in O as desired. This
completes the proof. �

It is perhaps interesting to note that (6-8) above says that any nonzero f in S (for
type II) determines the canonical involution on D in the same way as a polarization
determines its Rosati involution (compare (4-3)).

We now establish our second preliminary estimate for polarizations.

Proposition 6.6. Suppose that A is simple and its endomorphism algebra is a
totally indefinite quaternion algebra over a totally real number field. Then A has a
polarization of degree at most

230mnc(H′,H)n|d1(O1)|
7n.

Proof. From Lemma 4.1(b) we have c(S′,S) 6= 0. Lemma 6.5 allows us to apply
Lemma 4.2 with 0 = S, 0′ = S′ to find an isogeny f̃ in S with deg f̃ ≤ c(S′,S)n .
Again using Lemma 4.1(b) and `= 4m, we get

deg f̃ ≤ 216mnc(H′,H)n. (6-9)

Next by Lemma 6.3 there is ω̃ in �∩O1 with |N (ω̃)| ≤ 26m
|d1(O1)|

3, and therefore

deg ω̃ = |N (ω̃)|2n/m
≤ |N (ω̃)|2n

≤ 212mn
|d1(O1)|

6n. (6-10)
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Now there is certainly some polarization f , and the Rosati involution for f has
the form (6-1) for some ω in �. By Lemma 6.4(a), f0 = f ω−1 lies in Q⊗S, and
therefore f̃ = f0σ for some nonzero σ in K . By Lemma 6.4(b), τ = tr(ω−1ω̃)

is nonzero and so we can use Lemma 2.1 to find ξ in O such that στξ is totally
positive and |N (ξ)| ≤ d(O)1/2. Exactly as in (5-3) above we find

deg ξ ≤ 22mn
|d1(O1)|

n.

Now it is clear from this and (6-9), (6-10) that the proposition is established as soon
as we verify that f̃ ω̃ξ is a polarization. But there is a positive integer s such that
ε = ω−1ω′ is in O1 for ω′ = s(ω̃σξ), and by construction tr ε = s(στξ) is totally
positive. So from Lemma 6.4(c) we see that f ε = s( f̃ ω̃ξ) is a polarization. So
f̃ ω̃ξ is too; and this completes the proof. �

7. Conclusion

We prove the theorem first. Thus let A be a simple abelian variety of dimension n
whose endomorphism algebra is commutative or has the property that its center is
totally real of degree m. Then we are in the situation of Section 5 or 6, and the
appropriate proposition shows that A has a polarization of degree at most

230mnc(H′,H)n|d1(O1)|
7n, (7-1)

where H= Hom(A, Â), H′ = Hom( Â, A) and O1 = End A.
Now suppose that A is defined over a number field of degree d . We use positive

constants C1,C2, . . . depending only on n and d, and we estimate the quantities
in (7-1) in terms of h =max{1, h(A)} using Lemma 6.1 of [Masser and Wüstholz
1995a, p. 19]; this says that

max{c(H′,H), |d1(O1)|} ≤ C1hλ,

where λ= λ(8n) for a certain monotonically increasing function. The inequality of
our theorem follows immediately, with exponent 8nλ(8n).

To prove the first corollary, we note that if A is simple of squarefree dimension n
then its endomorphism algebra D is necessarily of the form considered in the
theorem. For we only have to rule out the noncommutative case of type IV. In this
case D has dimension e2

≥ 4 over its center, which is a CM-field of degree 2m.
Now it is well known that the Q-dimension 2me2 of D must divide 2n (see [Lange
and Birkenhake 1992, Proposition 5.7, p. 141] or [Mumford 1974, p. 182]). This is
here impossible and so the first corollary is proved.

Similarly, as preparation for the proof of the second corollary, we note that if
A is simple of dimension n ≤ 7 then D is also as in the theorem. Here the only
possibility is e2

= 4 and then m = 1, n = 4.
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Now it is a fact that such a case is impossible for simple A, but we could not
find a completely satisfactory explicit reference in the literature. Without using this
fact, the second corollary would follow only for dimension n at most 3. So we feel
obliged to add some remarks about the impossible case.

Everything can be found in Albert’s papers [1934a; 1935a], but the reader may
well appreciate a more modern exposition. There are two subcases characterized by
r1s1 = 0 and r1s1 6= 0. The first of these is covered by [Albert 1934a, Theorem 3,
p. 13]. A modern treatment (which also implies that A is isogenous to the fourth
power of a CM elliptic curve) is given in Shimura [1963, Proposition 14, p. 176].
See [Lange and Birkenhake 1992, Exercise 3, p. 286].

Next if r1s1 6=0 then r1= s1=1 by virtue of r1+s1=2. So this subcase is covered
by [Albert 1935a, Theorem 20, p. 391] and also [Shimura 1963, Proposition 19,
p. 184]. However Shimura’s conclusion that A is isogenous to the square of an
abelian surface (of endomorphism type II with m = 1) is valid only for what he
calls “generic” A; his arguments are definitely moduli-space-theoretic in nature.
Our own A is defined over a number field and so unlikely to be generic; on the
other hand it is known that specialization only increases the endomorphism ring.
Now the generic ring already has rank 16 over Z, whereas the maximum rank for
simple A of dimension 4 is only 8 (see above). A general result independent of
such considerations is given in [Lange and Birkenhake 1992, Exercise 5, p. 286].

This last subcase r1 = s1 = 1 can also be treated using only a very elementary
specialization argument, paying due attention to the discrepancy between Shimura’s
analytic concept of generic and the more usual algebraic concept. We omit the
details.

We now prove the second corollary. Suppose first that A is an abelian variety
of dimension n, not necessarily simple, defined over a number field k of degree d.
By [Masser and Wüstholz 1995a, Theorem I, p. 5] there are abelian subvarieties
A1, . . . , Ar of A, simple over the algebraic closure k, together with an isogeny g
from A to A′ = A1× · · · × Ar of degree

deg g ≤ C2hκ (7-2)

for κ = κ(n) depending only on n. Also, as in [Masser and Wüstholz 1995a, p. 6],
A1, . . . , Ar are necessarily defined over an extension of k of relative degree at most
C3. Assume that the endomorphism algebras of A1, . . . , Ar are all of the type
considered in our theorem. As we have observed, this is automatically true if n ≤ 7.
Then Ai has a polarization fi of degree at most C4 max{1, h(Ai )}

8niλ, where λ is
as above and ni is the dimension of Ai (1≤ i ≤ r). As in [Masser and Wüstholz
1995a, p. 6] we have h(A)≤ C5h (1≤ i ≤ r), and so

deg fi ≤ C6h8niλ (1≤ i ≤ r).
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Therefore A′ =
∏

Ai has a polarization f with

deg f =
∏
(deg fi )≤ C7h8nλ. (7-3)

Finally the “pullback” ĝ f g is a polarization on A whose degree is (deg g)2(deg f ).
So by (7-2) and (7-3) this completes the proof of the second corollary, with exponent
8nλ(8n)+ 2κ(n).
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