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We study the center of the pro-p Iwahori–Hecke ring zHZ of a connected split
p-adic reductive group G. For k an algebraically closed field of characteristic p,
we prove that the center of the k-algebra zHZ˝Z k contains an affine semigroup
algebra which is naturally isomorphic to the Hecke k-algebra H.G; �/ attached
to an irreducible smooth k-representation � of a given hyperspecial maximal
compact subgroup of G. This isomorphism is obtained using the inverse Satake
isomorphism defined in our previous work.

We apply this to classify the simple supersingular zHZ˝Z k-modules, study the
supersingular block in the category of finite-length zHZ˝Z k-modules, and relate
the latter to supersingular representations of G.
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1. Introduction

The Iwahori–Hecke ring of a split p-adic reductive group G is the convolution
ring of Z-valued functions with compact support in InG=I, where I denotes an
Iwahori subgroup of G. It is isomorphic to the quotient of the extended braid
group ring associated to G by quadratic relations in the standard generators. If
one replaces I by its pro-p Sylow subgroup QI, then one obtains the pro-p Iwahori–
Hecke ring zHZ. In this article we study the center of zHZ. We are motivated by
the smooth representation theory of G over an algebraically closed field k with
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characteristic p and subsequently will be interested in the k-algebra zHk WD zHZ˝Zk.
We construct an isomorphism of k-algebras between a subring of the center of zHk
and (generalizations of) spherical Hecke k-algebras by means of the inverse mod p
Satake isomorphism defined in [Ollivier 2012]. This result is the compatibility
between Bernstein and Satake isomorphisms referred to in the title of this article.
We then explore some consequences of this compatibility. In particular, we study
and relate the notions of supersingularity for Hecke modules and k-representations
of G.

1A. Framework and results. Let F be a nonarchimedean locally compact field
with residue characteristic p and k an algebraic closure of the residue field. We
choose a uniformizer $ . Let G WD G.F/ be the group of F-rational points of
a connected reductive group G over F, which we assume to be F-split. In the
semisimple building X of G, we choose and fix a chamber C , which amounts to
choosing an Iwahori subgroup I in G, and we denote by QI the pro-p Sylow subgroup
of I. The choice of C is unique up to conjugacy by an element of G. We consider
the associated pro-p Iwahori–Hecke ring zHZ WD ZŒQInG=QI� of Z-valued functions
with compact support in QInG=QI under convolution.

Since G is split, C has at least one hyperspecial vertex x0, and we denote by
K the associated maximal compact subgroup of G. Fix a maximal F-split torus T
in G such that the corresponding apartment A in X contains C . The set X�.T/ of
cocharacters of T is naturally equipped with an action of the finite Weyl group W.
The choice of x0 and C induces a natural choice of a positive Weyl chamber of A,
that is to say, of a semigroup XC� .T/ of dominant cocharacters of T.

1A1. The complex case. The structure of the spherical algebra CŒKnG=K� of com-
plex functions compactly supported on KnG=K is understood thanks to the classical
Satake isomorphism [1963] (see also [Gross 1998; Haines 2001])

s W CŒKnG=K� �!� .CŒX�.T/�/W:

On the other hand, the complex Iwahori–Hecke algebra HC WDCŒInG=I� of complex
functions compactly supported on InG=I contains a large commutative subalgebra
AC defined as the image of the Bernstein map � W CŒX�.T/� ,! HC, which depends
on the choice of the dominant Weyl chamber (see [Lusztig 1989, Section 3.2]). The
algebra HC is free of finite rank over AC and its center Z.HC/ is contained in AC.
Furthermore, the map � yields an isomorphism

b W .CŒX�.T/�/W �!� Z.HC/:

This was proved by Bernstein ([Lusztig 1989, Section 3.5]; see also [Haines 2001,
Theorem 2.3]). By [Dat 1999, Corollary 3.1] and [Haines 2001, Proposition 10.1],
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the Bernstein isomorphism b is compatible with s, in the sense that the composi-
tion .eK ? � /b is an inverse for s, where .eK ? � / denotes the convolution by the
characteristic function of K.

1A2. Bernstein and Satake isomorphisms in characteristic p. After defining an
integral version of the complex Bernstein map, Vignéras [2005] gave a basis for
the center of zHZ and proved that zHZ is noetherian and finitely generated over its
center. In the first section of this article, we define a subring Zı.zHZ/ of the center
of zHZ over which zHZ is still finitely generated. In Proposition 2.8 we prove that
Zı.zHZ/ is not affected by the choice of another apartment containing C and of
another hyperspecial vertex of C , as long as it is conjugate to x0. In particular, if
G is of adjoint type or GD GLn, then Zı.zHZ/ depends only on the choice of the
uniformizer $ .

The natural image of Zı.zHZ/ in zHk D zHZ˝Z k is denoted by Zı.zHk/, and we
prove that it has an affine semigroup algebra structure. More precisely, we have an
isomorphism of k-algebras (Proposition 2.10)

kŒXC� .T/� �!� Zı.zHk/� zHk : (1-1)

By the main theorem in [Herzig 2011b] (and in [Ollivier 2012]), this makes
Zı.zHk/ isomorphic to the algebra H.G; �/ of any irreducible smooth k-represen-
tation � of K. Note that when � is the k-valued trivial representation 1K of K, one
retrieves the convolution algebra kŒKnG=K�DH.G; 1K/.

In [Ollivier 2012], we constructed an isomorphism

T W kŒXC� .T/� �!� H.G; �/: (1-2)

Here we prove the following theorem:

Theorem 4.3. We have a commutative diagram of isomorphisms of k-algebras

kŒXC� .T/�
(1-1)
����! Zı.zHk/


 ??y

kŒXC� .T/�
T

����! H.G; �/

(1-3)

where the vertical arrow on the right-hand side is the natural morphism of k-
algebras (4-3) described in Section 4.

The isomorphism T was constructed in [Ollivier 2012] by means of generalized
integral Bernstein maps, as are the subring Zı.zHk/ and the map (1-1) in the current
article. By analogy with the complex case, we can see the map (1-1) as an iso-
morphism à la Bernstein in characteristic p. The above commutative diagram can
then be interpreted as a statement of compatibility between Satake and Bernstein
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isomorphisms in characteristic p. Note that under the hypothesis that the derived
subgroup of G is simply connected, it is proved in [Ollivier 2012] that T is the
inverse of the mod p Satake isomorphism defined in [Herzig 2011b]. (The extra
hypothesis on G is probably not necessary).

If we worked with the Iwahori–Hecke algebra kŒInG=I�, the analog of Zı.zHk/
would actually be the whole center of kŒInG=I�. We prove:

Theorem 2.14. The center of the Iwahori–Hecke k-algebra kŒInG=I� is isomorphic
to kŒXC� .T/�.

1A3. Generalized integral Bernstein maps. One ingredient of the construction of T
in [Ollivier 2012] and of the proof of Theorem 4.3 is the definition of Z-linear
injective maps

B�F W ZŒ
zX�.T/�! zHZ

defined on the group ring of the (extended) cocharacters zX�.T/, which are mul-
tiplicative when restricted to the semigroup ring of any chosen Weyl chamber of
zX�.T/ (see Section 1B5 for the definition of zX�.T/). The image of B�F happens
to be a commutative subring of zHZ, which we denote by A�F . The parameter � is
a sign and F is a standard facet (a facet of C containing x0 in its closure). The
choice of F corresponds to the choice of a Weyl chamber in A: for example, if
F D C (resp. x0), then the corresponding Weyl chamber is the dominant (resp.
antidominant) one.

The maps B�F are called integral Bernstein maps because they are generalizations
of the Bernstein map � mentioned in Section 1A1. In the complex case, it is
customary to consider either � which is constructed using the dominant chamber,
or �� which is constructed using the antidominant chamber (see the discussion in
the introduction of [Haines and Pettet 2002] for example). By a result by Bernstein
[Lusztig 1983], a basis for the center of HC is given by the central Bernstein
functions X

�02O

�.�0/;

where O ranges over the W-orbits in X�.T/. We refer to [Haines 2001] for the
geometric interpretation of these functions. It is natural to ask whether using ��

instead of � in the previous formula yields the same central element in HC. The
answer is yes (see [Haines and Pettet 2002, Section 2.2.2]). The proof is based
on [Lusztig 1983, Corollary 8.8] and relies on the combinatorics of the Kazhdan–
Lusztig polynomials. Note that there is no theory of Kazhdan–Lusztig polynomials
for the complex pro-p Iwahori–Hecke algebra.

Integral (and pro-p) versions of � and �� for the ring zHZ were defined in
[Vignéras 2005]. In our language they correspond respectively to BCC DB�x0 and
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BCx0 DB�C . It is also proved there that a Z-basis for the center of zHZ is given byX
�02O

BCC .�
0/; (1-4)

where O ranges over the W-orbits in zX�.T/. It is now natural to ask whether the
element (1-4) is the same if (a) we use � instead of C, and if, more generally, (b)
we use any standard facet F instead of C , and any sign � . We prove:

Lemma 3.4. The element X
�02O

B�F .�
0/

in zHZ does not depend on the choice of the standard facet F and of the sign � .

To prove the lemma, we first answer positively question (a) above; we then study
and exploit the behavior of the integral Bernstein maps upon a process of parabolic
induction. In passing we also consider question (a) in the k-algebra zHk in the
case when G is semisimple, and we suggest a link between such questions and the
duality for finite-length zHk-modules defined in [Ollivier and Schneider 2012] (see
Proposition 3.3).

1A4. In Section 5, we define and study a natural topology on zHk which depends
only on the conjugacy class of x0. It is the I-adic topology, where I is a natural
monomial ideal of the affine semigroup algebra Zı.zHk/.

We define the supersingular block of the category of finite length zHk-modules to
be the full subcategory of the modules that are continuous for the I-adic topology
on zHk (Proposition-Definition 5.10). A finite length zHk-module then turns out
to be in the supersingular block if and only if all its irreducible constituents are
supersingular in the sense of [Vignéras 2005].

In the case when the root system of G is irreducible, we establish the following
results. We classify the simple supersingular zHk-modules (Theorem 5.14 and
subsequent corollary). (For example, when G is semisimple simply connected, the
simple supersingular modules all have dimension 1.) We prove in passing that
even if the ideal I does depend on the choices made, the supersingular block is
independent of all the choices.

Theorem 5.14 extends Theorem 5 of [Vignéras 2005] and Theorem 7.3 of [Ollivier
2010], which dealt with the case of GLn and relied on explicit minimal expressions
for certain Bernstein functions associated to the minuscule coweights. The results
of those two papers together proved a “numerical Langlands correspondence for
Hecke modules” of GLn.F/: there is a bijection between the finite set of all simple
n-dimensional supersingular zHk-modules and the finite set of all irreducible n-
dimensional smooth k-representations of the absolute Galois group of F, where
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the action of the uniformizer $ on the Hecke modules and the determinant of
the Frobenius on the Galois representations are fixed. Recently, Große-Klönne
constructed a functor from the category of finite-length zHk-modules for GLn.Qp/
to the category of étale .'; �/-modules. This functor induces a bijection between
the two finite sets above, turning the “numerical” correspondence into a natural and
explicit correspondence in the case of GLn.Qp/. In fact, Große-Klönne [2013a]
has constructed such a functor (with values in a category of modified étale .'; �/-
modules) in the case of a general split group over Qp . In the case of SLn.F/, Koziol
[2013] has defined packets of simple supersingular zHk-modules and built a bijection
between the set of packets and a certain set of projective k-representations of the
absolute Galois group of F; if FD Qp, this bijection is proved to be compatible
with Große-Klönne’s functor and therefore with the explicit Langlands-type cor-
respondence for Hecke modules of GLn.Qp/. This result is a first step towards a
mod p principle of functoriality for Hecke modules.

The current article provides, in the case of a general split group, a classification of
the objects that one wants to apply Große-Klönne’s functor to, in order to investigate
the possibility of a Langlands-type correspondence for Hecke modules in general.

1A5. In Section 5F we consider an admissible irreducible smooth k-representation
  of G. In the case where the derived subgroup of G is simply connected, we use
the fact that (1-2) is the inverse of the mod p Satake isomorphism to prove that if
  is supersingular, then

  is a quotient of indG
QI 1=I indG

QI 1: (1-5)

The condition (1-5) is equivalent to saying that  QI contains an irreducible supersin-
gular zHk-module.

When GD GLn.F/ and F is a finite extension of Qp, we use the classification
of the nonsupersingular representations obtained in [Herzig 2011a], the work on
generalized special representations in [Große-Klönne 2013b], and our Lemma 3.4
to prove that the condition (1-5) is in fact a characterization of the supersingular
representations (Theorem 5.27).

Finally, we comment in Section 5F on the generalization of this characterization
to the case of a split group (with simply connected derived subgroup), and on the
independence of the characterization of the choices made.

We raise the question of the possibility of a direct proof of this characterization
that does not use the classification of the nonsupersingular representations.

1B. Notation and preliminaries. We choose the valuation valF on F normalized
by valF.$/ D 1, where $ is the chosen uniformizer. The ring of integers of
F is denoted by O and its residue field by Fq , where q is a power of the prime
number p. Recall that k denotes an algebraic closure of Fq . Let Gx0 and GC
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denote the Bruhat–Tits group schemes over O whose O-valued points are K and I
respectively. Their reductions over the residue field Fq are denoted by Gx0 and
GC . Note that GDGx0.F/DGC .F/. By [Tits 1979, 3.4.2, 3.7 and 3.8], Gx0 is
connected reductive and Fq-split. Therefore we have GıC .O/D GC .O/D I and
Gıx0.O/DGx0.O/DK. Denote by K1 the prounipotent radical of K. The quotient
K=K1 is isomorphic to Gx0.Fq/. The Iwahori subgroup I is the preimage in K of
the Fq-rational points of a Borel subgroup B with Levi decomposition BDTN. The
pro-p Iwahori subgroup QI is the preimage in I of N.Fq/. The preimage of T.Fq/ is
the maximal compact subgroup T0 of T. Note that T0=T1 D I=QID T.Fq/, where
T1 WD T0\ QI.

1B1. Affine root datum. To the choice of T is attached the root datum

.ˆ;X�.T/; L̂ ;X�.T//:

This root system is reduced because the group G is F-split. We denote by W the
finite Weyl group NG.T/=T, the quotient by T of the normalizer of T. Recall that
A denotes the apartment of the semisimple building attached to T (see [Tits 1979;
Schneider and Stuhler 1997, Section I.1], and we follow the notation of [Ollivier
2012, Section 2.2]). We denote by h � ; � i the perfect pairing X�.T/�X�.T/! Z.
The elements in X�.T/ will be called coweights. We identify X�.T/ with the
subgroup T=T0 of the extended Weyl group WDNG.T/=T0 as in [Tits 1979, I.1]
and [Schneider and Stuhler 1997, Section I.1]: to an element g 2 T corresponds the
vector �.g/ 2 R˝Z X�.T/ defined by

h�.g/; �i D � valF.�.g// for any � 2 X�.T/; (1-6)

and � induces the required isomorphism T=T0 Š X�.T/. The group T=T0 acts by
translation on A via �. The actions of W and T=T0 combine into an action of W on
A as recalled in [Schneider and Stuhler 1997, p. 102]. Since x0 is a special vertex
of the building, W is isomorphic to the semidirect product WËX�.T/, where we
see W as the fixator in W of any lift of x0 in the extended apartment [Tits 1979,
1.9]. A coweight � will sometimes be denoted by e� to underline that we see it as
an element in W, meaning as a translation on A.

Denote by ˆaff the set of affine roots. The choice of the chamber C implies in
particular the choice of the positive affine roots ˆCaff taking nonnegative values on
C . The choice of x0 as an origin of A implies that we identify the affine roots
taking value zero at x0 with ˆ. We set ˆC WDˆCaff\ˆ and ˆ�D�ˆC. The affine
roots can be described the following way: ˆaff Dˆ�ZDˆCaff tˆ

�
aff, where

ˆCaff WD f.˛; r/ W ˛ 2ˆ; r > 0g[ f.˛; 0/ W ˛ 2ˆ
C
g:

Let … be the basis for ˆC consisting of the set of simple roots. The finite Weyl
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group W is a Coxeter system with generating set S WD fs˛ W ˛ 2 …g, where s˛
denotes the (simple) reflection at the hyperplane h � ; ˛i D 0. Denote by � the
partial ordering on XC� .T/ associated to …. Let …m be the set of roots in ˆ that are
minimal elements for �. Define the set of simple affine roots by …aff WD f.˛; 0/ W

˛ 2…g[ f.˛; 1/ W ˛ 2…mg. Identifying ˛ with .˛; 0/, we consider … a subset of
…aff. For A 2…aff, denote by sA the following associated reflection: sA D s˛ if
AD .˛; 0/ and sAD s˛e L̨ if AD .˛; 1/. The action of W on the coweights induces
an action on the set of affine roots: W acts onˆaff bywe� W .˛; r/ 7! .w˛; r�h�; ˛i/,
where we denote by .w; ˛/ 7! w˛ the natural action of W on ˆ. The length on
the Coxeter system .W; S/ extends to W in such a way that the length `.w/ of
w 2W is the number of affine roots A 2ˆCaff such that w.A/ 2ˆ�aff. It satisfies the
following formula, for A 2…aff and w 2W:

`.wsA/D

�
`.w/C 1 if w.A/ 2ˆCaff;

`.w/� 1 if w.A/ 2ˆ�aff:
(1-7)

The affine Weyl group is defined as the subgroup Waff of W generated by Saff WD

fsA W A 2…affg. The length function ` restricted to Waff coincides with the length
function of the Coxeter system .Waff; Saff/ [Bourbaki 1968, V.3.2, Théorème 1(i)].
Recall from [Lusztig 1989, Section 1.5] that Waff is a normal subgroup of W: the set
� of elements with length zero is an abelian subgroup of W and W is the semidirect
product WD�ËWaff. The length ` is constant on the double cosets of W mod�.
In particular, � normalizes Saff.

The extended Weyl group W is equipped with a partial order � that extends the
Bruhat order on Waff. By definition, given w D !waff, w D !0w0aff 2�ËWaff, we
have w �w0 if !D!0 and waff �w

0
aff in the Bruhat order on Waff (see for example

[Haines 2001, Section 2.1]).
We fix a lift Ow 2 NG.T/ for any w 2W. By Bruhat decomposition, G is the

disjoint union of all I OwI for w 2W.

1B2. Orientation character. The stabilizer of the chamber C in W is �. We
define as in [Ollivier and Schneider 2012, Section 3.1] the orientation character
�C W�!f˙1g ofC by setting �C .!/DC1 (resp.�1) if! preserves (resp. reverses)
a given orientation of C . Since W=Waff D�, we can see �C as a character of W
trivial on Waff. By definition of the Bruhat order on W, we have �C .w/D �C .w

0/

for w;w0 2W satisfying w � w0.
On the other hand, the extended Weyl group acts by affine isometries on the

Euclidean space A. We therefore have a determinant map det WW! f˙1g which
is trivial on X�.T/. An orientation of C is a choice of a cyclic ordering of its set of
vertices (in the geometric realization of A). Therefore, det.!/ is the signature of
the permutation of the vertices of C induced by ! 2�, and det.!/D �C .!/.
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Lemma 1.4. (i) For w 2Waff, we have det.w/D .�1/`.w/.

(ii) For � 2 X�.T/, we have �C .w/D .�1/
`.e�/ for any w 2W such that w � e�.

Proof. Part (i) comes from the fact that det sD�1 for s 2Saff. For (ii), by definition
of the Bruhat order it is enough to prove that �C .e

�/D .�1/`.e
�/ for � 2 X�.T/.

Decompose e� D !waff with w 2Waff and ! 2�. Recall that ! has length zero.
Since �C is trivial on Waff, we have �C .e

�/D �C .!/D det!. Since e� has unit
determinant, we get det! D detwaff D .�1/

`.waff/ D .�1/`.e
�/. �

1B3. Distinguished cosets representatives.

Proposition 1.5. (i) The set D of all elements d 2W satisfying d�1.ˆC/�ˆCaff
is a system of representatives of the right cosets WnW. It satisfies

`.wd/D `.w/C `.d/ for any w 2W and d 2D. (1-8)

In particular, d is the unique element with minimal length in Wd .

(ii) An element d 2D can be written uniquely as d D e�w, with � 2 XC� .T/ and
w 2W. We then have `.e�/D `.d/C `.w�1/D `.d/C `.w/.

(iii) For s 2 Saff and d 2D, we are in one of the following situations:
� `.ds/D `.d/� 1, in which case ds 2D.
� `.ds/D `.d/C 1, in which case either ds 2D or ds 2Wd .

Proof. This proposition is proved in [Ollivier 2010, Lemma 2.6, Proposition 2.7] in
the case of GD GLn.F/. It is checked in [Ollivier and Schneider 2012, Proposi-
tion 4.6] that it remains valid for a general split reductive group (see also [Ollivier
2012, Proposition 2.2] for (ii)), except for point (iii) when s2Saff�S . We check here
that the argument goes through. Let s 2 Saff and A be the corresponding affine root.
Let d 2D and suppose that ds 62D; then there is ˇ 2… such that .ds/�1ˇ 2ˆ�aff
while d�1ˇ 2ˆCaff. This implies that d�1ˇ D A, which in particular ensures that
dA 2ˆCaff and therefore `.ds/D `.d/C1. Furthermore, dsd�1 D sdA D sˇ 2W.

�

There is an action of the group G on the semisimple building X recalled in
[Schneider and Stuhler 1997, p. 104] that extends the action of NG.T/ on the
standard apartment. For F a standard facet, we denote by P

�
F the stabilizer of F

in G.

Proposition 1.6. (i) The Iwahori subgroup I acts transitively on the apartments
of X containing C .

(ii) The stabilizer P�x0 of x0 acts transitively on the chambers of X containing x0
in their closure.

(iii) A G-conjugate of x0 in the closure of C is a P
�
C -conjugate of x0.
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Proof. Part (i) is [Bruhat and Tits 1984, 4.6.28]. For (ii), we first consider C 0 a
chamber of A containing x0 in its closure. Since the group W acts transitively
on the chambers of A, there is d 2D and w0 2W such that C 0 D w0dC and C
contains d�1x0 in its closure. By [Ollivier and Schneider 2012, Proposition 4.13i.],
this implies that d�1C D C , and therefore C 0 D w0C or, when considering the
action of G on the building, C 0 D Ow0C , where Ow0 2 K\NG.T/ denotes a lift for
w0. Now, let C 00 be a chamber of X containing x0 in its closure. By [Bruhat and
Tits 1972, Corollaire 2.2.6], there is k 2 P�x0 such that kC 00 is in A. Applying the
previous observation, C 00 is a P

�
x0-conjugate of C . Lastly, let gx0 (with g 2 G) be

a conjugate of x0 in the closure of C . By (ii), the chamber g�1C is of the form
kC for k 2 P�x0 , which implies that gk 2 P�C and gx0 is a P

�
C -conjugate of x0. �

Remark 1.7. By [Ollivier and Schneider 2012, Lemma 4.9], P�C is the disjoint
union of all I O!ID O!I for ! 2�. Therefore, a G-conjugate of x0 in the closure of
C is a P

�
C \NG.T/-conjugate of x0.

1B4. Weyl chambers. The set of dominant coweights XC� .T/ is the set of all � 2
X�.T/ such that h�; ˛i � 0 for all ˛ 2ˆC. It is called the dominant chamber. Its
opposite is the antidominant chamber. A coweight � such that h�; ˛i > 0 for all
˛ 2ˆC is called strongly dominant. By [Bushnell and Kutzko 1998, Lemma 6.14],
strongly dominant elements do exist.

We call a facet F of A standard if it is a facet of C containing x0 in its closure.
Attached to a standard facet F is the subset ˆF of all roots in ˆ taking value zero
on F and the subgroup WF of W generated by the simple reflections stabilizing F .
Let ˆCF WDˆ

C\ˆF and ˆ�F WDˆ
�\ˆF . Define the following Weyl chambers

in X�.T/ as in [Ollivier 2012, Section 4.1.1]:

CC.F /D f� 2 X�.T/ such that h�; ˛i � 0 for all ˛ 2 .ˆC�ˆCF /[ˆ
�
F g

and its opposite C�.F / D �CC.F /. They are respectively the images of the
dominant and antidominant chambers under the longest element wF in WF .

By Gordan’s lemma [Kempf et al. 1973, p. 7], a Weyl chamber is finitely generated
as a semigroup.

1B5. We follow the notations of [Ollivier 2012, Sections 2.2.2, 2.2.3]. Recall that
T1 is the pro-p Sylow subgroup of T0. We denote by zW the quotient of NG.T/ by
T1, and obtain the exact sequence

0 �! T0=T1 �! zW �!W �! 0:

The group zW parametrizes the double cosets of G modulo QI. We fix a lift Ow 2NG.T/
for any w 2 zW and denote by �w the characteristic function of the double coset QI OwQI.
The set of all .�w/w2 zW is a Z-basis for zHZ, which was defined in the introduction
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to be the convolution ring of Z-valued functions with compact support in QInG=QI.
For g 2 G, we will also use the notation �g for the characteristic function of the
double coset QIgQI.

For Y a subset of W, we denote by zY its preimage in zW. In particular, we have
the preimage zX�.T/ of X�.T/. Similarly to those of X�.T/, its elements will be
denoted by � or e� and called coweights. For ˛ 2ˆ, we inflate the function h � ; ˛i
defined on X�.T/ to zX�.T/. We still call the elements in the preimage zXC� .T/ of
XC� .T/ dominant coweights. For � a sign and F a standard facet, we consider the
preimage of C� .F / in zX�.T/, and we still denote it by C� .F /.

The length function ` on W pulls back to a length function ` on zW [Vignéras
2005, Proposition 1]. For u; v 2 zW we write u� v (resp. u < v) if their projections
Nu and Nv in W satisfy Nu� Nv (resp. Nu < Nv).

1B6. We emphasize the following remark which will be important for the definition
of the subring Zı.zHZ/ of the center of zHZ in Section 2B.

For � 2 XC� .T/, the element �.$�1/ 2NG.T/ is a lift for e�, viewed in W by
our convention (1-6). The map

� 2 X�.T/! Œ�.$�1/ mod T1� 2 zX�.T/ (1-9)

is a W-equivariant splitting for the exact sequence of abelian groups

0 �! T0=T1 �! zX�.T/ �! X�.T/ �! 0: (1-10)

We will identify X�.T/with its image in zX�.T/ via (1-9). Note that this identification
depends on the choice of the uniformizer $ .

Remark 1.8. We have the decomposition of zW as the semidirect product zW D
zWËX�.T/, where zW denotes the preimage of W in zW.

1B7. Pro-p Hecke rings. The product in the generic pro-p Iwahori–Hecke ring zHZ

is described in [Vignéras 2005, Theorem 1]. It is given by quadratic relations and
braid relations. Stating the quadratic relations in zHZ requires some more notation.
We are only going to use them in zHk where they have a simpler form, and we
postpone their description to Section 1B8. We recall here the braid relations

�ww 0 D �w�w 0 for w;w0 2 zW satisfying `.ww0/D `.w/C `.w0/: (1-11)

The functions in zHZ with support in the subgroup of G generated by all parahoric
subgroups form a subring zHaff

Z called the affine subring. It has Z-basis the set of
all �w for w in the preimage zWaff of Waff in zW (see for example [Ollivier and
Schneider 2012, Section 4.5]). It is generated by all �s for s in the preimage zSaff of
Saff and all �t for t 2 T0=T1.
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There is an involutive automorphism defined on zHZ˝Z ZŒq˙1=2� by

š W �w 7! .�q/`.w/��1
w�1

(1-12)

[Vignéras 2005, Corollary 2], and it actually yields an involution on zHZ. Inflating
the character �C WW!f˙1g defined in Section 1B2 to a character of zW, we define
a Z-linear involution �C of zHZ by

�C .�w/D �C .w/�w for any w 2 zW:

It is the identity on the affine subring zHaff
Z . We will consider the following Z-linear

involution on zHZ:
šC D š ı �C : (1-13)

Remark 1.9. The involution š fixes all �w for w 2 zW with length zero. The
involution šC fixes all �e� for � 2 zX�.T/ with length zero.

1B8. Let R be a ring with unit 1R, containing an inverse for .q1R�1/ and a primitive
.q � 1/-th root of 1R. The group of characters of T0=T1 D T.Fq/ with values in
R� is isomorphic to the group of characters of T.Fq/ with values in F�q , which we
denote by yT.Fq/. To � 2 yT.Fq/ we attach the idempotent element �

�
2 zHR as in

[Vignéras 2005] (definition recalled in [Ollivier 2012, Section 2.4.3]). For t 2 T0

we have �
�
�t D �t�� D �.t/�� . The idempotent elements �

�
, � 2 yT.Fq/ are pairwise

orthogonal and their sum is the identity in zHZ˝Z R.
For A 2…aff, choose the lift nA 2 G for sA defined after fixing an épinglage for

G as in [Vignéras 2005, Section 1.2]. We refer to [Ollivier 2012, Section 2.2.5]
for the definition of the associated subgroup TA of T0, which is identified with a
subgroup of T0=T1.

For � 2 yT.Fq/, we have in zHZ˝Z R

���
2
nA
D

�
�
�
..q1R� 1/�nA C q1R/ if � is trivial on TA,

an element of qR��
�

otherwise:
(1-14)

The field k is an example of ring R as above. In zHk we have

���
2
nA
D

�
��
�
�nA if � is trivial on TA;
0 otherwise:

(1-15)

Remark 1.10. In zHk we have �nAš.�nA/ D 0 for all A 2 Saff. Furthermore,
š.�nA/ C �nA lies in the subalgebra of zHk generated by all �t , t 2 T0=T1, or
equivalently by all �

�
, � 2 yT.Fq/. This can be seen using for example [Ollivier

2012, Remark 2.10], which also implies the following:

� If � is trivial on TA, then š.�
�
�nA/D ��š.�nA/D���.�nA C 1/.
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� If � is not trivial on TA, then š.�
�
�nA/D����nA .

1B9. Parametrization of the weights. The functions in zHZ with support in K form a
subring zHZ. It has Z-basis the set of all �w for w 2 zW. Denote by zHk the k-algebra
zHZ˝Z k. The simple modules of zHk are one-dimensional [Sawada 1977, (2.11)].

An irreducible smooth k-representation � of K will be called a weight. By [Carter
and Lusztig 1976, Corollary 7.5], the weights are in one-to-one correspondence
with the characters of zHk via � 7! �

QI. To a character � W zHk ! k is attached the
morphism N� W T0=T1! k� such that N�.t/ D �.�t / for all t 2 T0=T1 and the set
… N� of all simple roots ˛ 2… such that N� is trivial on T˛ . We then have �.�Qs˛ /D 0
for all ˛ 2…�… N�, where Qs˛ 2 zW is any lift for s˛ 2W. We denote by …� the
subset of all ˛ 2… N� such that �.�Qs˛ /D 0. The character � is determined by the
data of N� and …� (see also [Ollivier 2012, Section 3.4]).

Remark 1.11. Choosing a standard facet F is equivalent to choosing the subset…F
of … of the simple roots taking value zero on F . The standard facet corresponding
to …� in the previous discussion will be denoted by F�.

2. On the center of the pro-p Iwahori–Hecke algebra in characteristic p

2A. Commutative subrings of the pro-p Iwahori–Hecke ring. Let � be a sign
and F a standard facet.

2A1. As in [Ollivier 2012, Section 4.1.1], we introduce the multiplicative injective
map

‚�F W
zX�.T/ �! zHZ˝Z ZŒq˙1=2�

and the elements B�F .�/ WD q
`.e�/=2‚�F .�/ for all �2 zX�.T/. Recall that B�F .�/D

�e� if � 2 C� .F /.
The map B�F does not respect the product in general, but it is multiplicative

when restricted to any Weyl chamber (see [ibid., Remark 4.3]). For any coweight
� 2 zX�.T/, the element B�F .�/ lies in zHZ (see Lemma 2.3 below). Furthermore,
combining Lemmas 1.4(ii), 2.3 and [ibid., Lemma 4.4],

šC .B
C

F .�//DB�F .�/: (2-1)

Extend ‚�F linearly to an injective morphism of ZŒq˙1=2�-algebras

ZŒq˙1=2�ŒzX�.T/� �! zHZ˝Z ZŒq˙1=2�:

We consider the commutative subring A�F WD zHZ \ Im.‚�F /. By [ibid., Proposi-
tion 4.5], it is a free Z-module with basis the set of all B�F .�/ for � 2 zX�.T/. Since
the Weyl chambers (in zX�.T/) are finitely generated semigroups, A�F is finitely
generated as a ring.
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Remark 2.1. Note that BCC DB�x0 (resp. B�C DBCx0) coincides with the integral
Bernstein map EC (resp. E) introduced in [Vignéras 2005] and ACC (resp. A�C )
with the commutative ring denoted by AC;.1/ (resp. A.1/) in Theorem 2 of the
same paper.

Identify X�.T/ with its image in zX�.T/ via (1-9). We denote by .A�F /
ı the

intersection
.A�F /

ı
WD zHZ\‚

�
F .ZŒX�.T/�/�A�F :

A Z-basis for .A�F /
ı is given by all B�F .�/ for � 2 X�.T/. It is finitely generated

as a ring.

Proposition 2.2. The commutative Z-algebra A�F is isomorphic to the tensor prod-
uct of the Z-algebras ZŒT0=T1� and .A�F /

ı. In particular, .A�F /
ı is a direct

summand of A�F as a Z-module.

Proof. Since the exact sequence (1-10) splits, A�F is a free .A�F /
ı-module with

basis the set of all �t for t 2 T0=T1. Indeed, recall that

B�F .�C t /DB�F .�/�t D �tB
�
F .�/

for all � 2 zX�.T/ and t 2 T0=T1. �

2A2. The following is a direct consequence of the lemma proved in [Haines 2001,
§5] and adapted to the pro-p Iwahori–Hecke algebra in [Vignéras 2005, Lemma 13]
(see also [Vignéras 2006, Sections 1.2 and 1.5]).

Lemma 2.3. Let F be a standard facet and � a sign. For any � 2 zX�.T/, we have

B�F .�/D �e� C
X
w<e�

aw�w ;

where .aw/w is a family of elements in Z (depending on � , F and �) indexed by the
set of w 2 zW such that w < e�. For those w, we have in particular `.w/ < `.e�/.

2A3. In this subsection, we suppose that the root system of G is irreducible. This
implies in particular that there is a unique element in …m. It can be written �˛0,
where ˛0 2ˆC is the highest root; we have ˇ � ˛0 for all ˇ 2ˆ [Bourbaki 1968,
VI.1.8]. For any standard facet F ¤ x0, we have ˛0 62ˆF . Denote by s0 2 Saff the
simple reflection associated to .�˛0; 1/ 2…aff and n0 WD n.�˛0;1/ 2 G the lift for
s0 as chosen in Section 1B8.

Lemma 2.4. Suppose that F ¤ x0 and let � 2 zXC� .T/ be such that `.e�/¤ 0. We
have

BCF .�/ 2 �n0
zHZ:
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Proof. It suffices to check the claim for � 2 XC� .T/. Let �; � 2 X�.T/, such that
�D��� and wF�;wF � 2XC� .T/, where wF denotes the longest element in WF .
Note that wF ˛0 2ˆ

C because F ¤ x0. Furthermore, h�; ˛0i � 1 because there is
ˇ 2… such that h�; ˇi � 1 and ˇ � ˛0.

We have e�.�˛0; 1/ D .�˛0; 1C h�; ˛0i/ D .�˛0; 1C hwF �;wF ˛0i/ 2 ˆ
C
aff.

Therefore `.e�n0/ D `.e�/C 1 and �e��n0 D �e�n0 in zHZ. On the other hand,
e��.�˛0; 1/D .�˛0; 1� h�; ˛0i/ 2ˆ

�
aff, and therefore `.n0e�/D `.e�/� 1.

We perform the computations in zHZ˝Z ZŒq˙1=2�, where, by definition, BCF .�/D

q
1
2
.`.e�/C`.e�/�`.e�//��1e� �e� . By the previous remarks,

BCF .�/D �n0q
1
2
.`.n0e

�/C`.e�n0/�`.e
�//��1e�n0�e� ;

which, by the lemma evoked in Section 2A2, lies in �n0 zHZ. �

2B. On the center of the pro-p Iwahori–Hecke ring.

2B1. The ring zHZ is finitely generated as a module over its center Z.zHZ/D .ACC /
W,

and the latter has Z-basis the set of allX
�02O

BCC .�
0/; (2-2)

where O ranges over the W-orbits in zX�.T/. Moreover, Z.zHZ/ is a finitely generated
Z-algebra. Those results are proved in [Vignéras 2005, Theorem 4] (the hypothesis
of irreducibility of the root system of G made there is not necessary for the statements
about the center). One can also find a proof in [Schmidt 2009].

2B2. We denote by Zı.zHZ/ the intersection of .ACC /
ı with Z.zHZ/. We have

Zı.zHZ/D ..ACC /
ı/W. It has Z-basis the set of all

z� WD
X

�02O.�/

BCC .�
0/ for � 2 XC� .T/; (2-3)

where we denote by O.�/ the W-orbit of �.

Proposition 2.5. (i) The left and right .ACC /
ı-modules zHZ are finitely generated.

(ii) As a Zı.zHZ/-module, zHZ is finitely generated.

(iii) Zı.zHZ/ is a finitely generated Z-algebra.

(iv) As Z-modules, Z.zHZ/, ACC , Zı.zHZ/ and .ACC /
ı are direct summands of zHZ.

Proof. Using Proposition 2.2 and [Vignéras 2005, Theorems 3 and 4], which
state that zHZ is finitely generated over ACC (see Remark 2.1), we see that zHZ is
finitely generated over .ACC /

ı. Statements (ii) and (iii) follow from [Bourbaki 1964,
V.1.9, Théorème 2] because Zı.zHZ/ is the ring of W-invariants of .ACC /

ı and Z is
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noetherian. For (iv), we first remark that the Z-module Z.zHZ/ (resp. Zı.zHZ/) is
a direct summand of ACC (resp. .ACC /

ı) since Z.zHZ/D .ACC /
W (resp. Zı.zHZ/D

..ACC /
ı/W). The Z-module .ACC /

ı is a direct summand of ACC by Proposition 2.2.
It remains to show that ACC is a direct summand of zHZ, which can be done by
considering the integral Bernstein basis for the whole Hecke ring zHZ introduced
in [Vignéras 2005]. We recall it later in Section 5A and finish the proof of (iv) in
Remark 5.1. �

2B3. Given a ring R with unit 1R, we denote by zHR the R-algebra zHZ˝Z R; we
identify q with its image in R. By Proposition 2.5(iv), the R-algebras Z.zHZ/˝Z R,
ACC ˝Z R, .ACC /

ı˝Z R and Zı.zHZ/˝Z R are identified with subalgebras of zHR,
which we denote by Z.zHR/ .ACC /R, .ACC /

ı
R and Zı.zHR/, respectively. By [Schmidt

2009], Z.zHR/ is not only contained in but is equal to the center of zHR.

Remark 2.6. Proposition 2.5 remains valid with x0 instead of C (use the involution
šC and (2-1)). We introduce the subalgebras .ACx0/R and .ACx0/

ı
R of zHR with the

obvious definitions.

For � 2 zX�.T/ (resp. w 2 zW), we still denote by B�F .�/ (resp. �w ) its natural
image B�F .�/˝ 1 (resp. �w ˝ 1) in zHR. An R-basis for Zı.zHR/ is given by the set
of all z� for � 2 XC� .T/, where again we identify the element z� with its image in
zHR.

From Proposition 2.5 we deduce:

Proposition 2.7. Let R be a field. A morphism of R-algebras Zı.zHR/! R can be
extended to a morphism of R-algebras Z.zHR/! R.

2B4. In the process of constructing Zı.zHZ/, we first fixed a hyperspecial vertex
x0 of C and then an apartment A containing C .

Proposition 2.8. The ring Zı.zHZ/ is not affected by

� the choice of another apartment A0 containing C ,

� the choice of another vertex x00 of C , provided it is G-conjugate to x0.

Proof. Let g be in the stabilizer P�C of C in G. Let T0 WD gTg�1 and x00D gx0g
�1.

The apartment A0 corresponding to T0 contains C and x00 is a hyperspecial vertex
of C . Starting from T0 and x00 we proceed to the construction of the corresponding
commutative subring Zı.zHZ/

0 of the center of zHZ. Since g 2 P�C , we have QIgQID
QI O!QI D QI O! for some ! 2 z�. Since this element ! has length zero, for � 2 X�.T/
the characteristic function of QIg�.$/g�1QI is equal to the product �g��.$/��1g .
Therefore, the restriction to X�.T/ of the new map .BCC /

0 corresponding to the
choice of x00 and T0 is defined by

X�.T0/ �! zHZ; � 7! �gB
C

C .g
�1�g/��1g :
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The element z0
�
2Zı.zHZ/

0 corresponding to the choice of �2XC� .T
0/DgXC� .T/g

�1

is therefore �gzg�1�g�
�1
g D z�. We have proved that Zı.zHZ/

0 D Zı.zHZ/.
By Proposition 1.6(i) and Remark 1.7

� changing A into another apartment A0 containing C , and

� changing x0 into another vertex x00 of C which is G-conjugate to x0

can be done independently of each other by conjugating by an element of I and
of P�C \NG.T/ respectively. We have checked that these changes do not affect
Zı.zHZ/. �

If G is of adjoint type or GD GLn, then all hyperspecial vertices are conjugate:

Corollary 2.9 [Tits 1979, Section 2.5]. If G is of adjoint type or GD GLn, then
Zı.zHZ/ depends only on the choice of the uniformizer $ .

2C. An affine semigroup algebra in the center of the pro-p Iwahori–Hecke
algebra in characteristic p. We will use the following observation several times
in this subsection: Let F be a standard facet and � a sign. For �1; �2 2X�.T/, we
have in zHk

B�F .�1/B
�
F .�2/

D

�
B�F .�1C�2/ if �1 and �2 lie in a common Weyl chamber,
0 otherwise.

(2-4)

In zHZ˝Z ZŒq˙1=2� we have indeed

B�F .�1/B
�
F .�2/D q

.`.e�1 /C`.e�2 /�`.e�1C�2 //=2B�F .�1C�2/:

If �1 and �2 lie in a common Weyl chamber, then `.e�1/C `.e�2/� `.e�1C�2/
is zero; otherwise, there is ˛ 2… satisfying h�1; ˛ih�2; ˛i< 0, which implies that
this quantity is � 2. This gives the required equality in zHk .

2C1. The structure of Zı.zHk/.

Proposition 2.10. The map

kŒXC� .T/� �! Zı.zHk/; � 7�! z�; (2-5)

is an isomorphism of k-algebras.

Proof. We already know that (2-5) maps a k-basis for kŒXC� .T/� onto a k-basis for
Zı.zHk/. We have to check that it respects the product. Let �1; �2 2 XC� .T/, with
respective W-orbits O.�1/ and O.�2/. We consider the product

z�1z�2 D
X

�12O.�1/;
�22O.�2/

B�F .�1/B
�
F .�2/ 2

zHk :
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A Weyl chamber in X�.T/ is a W-conjugate of XC� .T/. Given a Weyl chamber
and a coweight (in X�.T/), there is a unique W-conjugate of the coweight in the
chosen Weyl chamber. The map .�1; �2/ 7! �1C�2 yields a bijection between
the set of all .�1; �2/ 2 O.�1/�O.�2/ such that �1 and �2 lie in the same Weyl
chamber and the W-orbit O.�1C�2/ of �1C�2: it is indeed surjective, and one
checks that the two sets in question have the same size because, �1 and �2 being
both dominant, the stabilizer in W of �1C�2 is the intersection of the stabilizers
of �1 and of �2. Together with (2-4), this proves that z�1C�2 D z�1z�2 . �

For a different proof of this proposition, see the remark after Theorem 4.3.

2C2. Since X�.T/ is a free abelian group (of rank dim.T/), the k-algebra kŒX�.T/�
is isomorphic to an algebra of Laurent polynomials and has a trivial nilradical. By
Gordan’s lemma, XC� .T/ is finitely generated as a semigroup. So, kŒXC� .T/� is a
finitely generated k-algebra and its Jacobson radical coincides with its nilradical.

The Jacobson radical of Zı.zHk/ is therefore trivial.

Proposition 2.11. The Jacobson radical of Z.zHk/ is trivial.

Proof. Since Z.zHk/ is a finitely generated k-algebra contained in .ACC /k , it is
enough to prove that the nilradical of .ACC /k is trivial. Using the notation of
Section 1B8, it is enough to prove that, for any � 2 yT.Fq/, the nilradical of the
k-algebra �

�
.ACC /k with unit �

�
is trivial. By Proposition 2.2, the latter algebra is

isomorphic to .ACC /
ı
k

. It is therefore enough to prove that the nilradical of .ACC /
ı
k

is trivial.
By definition (see the convention in Section 2B3), the image of the k-linear

injective map
BCC W kŒX�.T/� �! zHk

coincides with .ACC /
ı
k

.

Fact i. Let �0 2 XC� .T/ be a strongly dominant coweight. The ideal of .ACC /
ı
k

generated by BCC .�0/ does not contain any nontrivial nilpotent element.

An element a 2 .ACC /
ı
k

is a k-linear combination of elements BCC .�/ for � 2
X�.T/, and we say that � 2X�.T/ is in the support of a if the coefficient of BCC .�/
is nonzero. Suppose that a is nilpotent and nontrivial. After conjugating by an
element of W, we can suppose that there is an element of XC� .T/ in the support of a.
Then, let �0 2 XC� .T/ be strongly dominant. The element aBCC .�0/ is nilpotent
and by (2-4) it is nontrivial. By Fact i, we have a contradiction. �

Proof of the fact. The restriction of BCC to kŒXC� .T/� induces an isomorphism of
k-algebras kŒXC� .T/�ŠBCC .kŒX

C
� .T/�/. By (2-4), the ideal A of .ACC /

ı generated
by BCC .�0/ coincides with the ideal of BCC .kŒX

C
� .T/�/ generated by BCC .�0/. Since
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the k-algebra kŒXC� .T/� does not contain any nontrivial nilpotent element, neither
does A. �

Since k is algebraically closed, we have:

Corollary 2.12. Let z 2 Z.zHk/. If �.z/D 0 for all characters � W Z.zHk/! k, then
z D 0.

2C3. The center of the Iwahori–Hecke algebra in characteristic p. Let R be a ring
containing an inverse for .q1R� 1/ and a primitive .q� 1/-th root of 1R. We can
apply the observations of Section 1B8 and consider the algebra

zHR.�/ WD ��
zHR�� :

It can be seen as the algebra H.G; I; ��1/ of G-endomorphisms of the representation
�
�

indG
QI 1R, which is isomorphic to the compact induction indG

I �
�1 of ��1 seen as

an R-character of I trivial on QI: denote by 1I;��1 2 indG
I �
�1 the unique function

with support in I and value 1R at 1G, and then the map

zHR.�/!H.G; I; ��1/; h 7! Œ1I;��1 7! 1I;��1h� (2-6)

gives the identification. In particular, when � D 1 is the trivial character, then the
algebra zHR.1/ identifies with the usual Iwahori–Hecke algebra HRDRŒInG=I� with
coefficients in R.

Remark 2.13. Let � 2 yT.Fq/. We have inclusions

��Zı.zHR/� ��Z.zHR/� Z.zHR.�//;

where the latter space is the center of zHR.�/. The inclusion �
�
Zı.zHR/�Z.zHR.��//

is strict in general. For example if G D GL2.F/, R D k, and � is not fixed by
the nontrivial element of W, then zHk.�/ is commutative with a k-basis indexed
by the elements in X�.T/ and contains zero divisors [Barthel and Livné 1994,
Proposition 13] while the k-algebra ��Zı.zHk/ is isomorphic to kŒXC� .T/�.

If � D 1 however, these inclusions are equalities: one easily checks by direct
comparison of the basis elements (2-2) and (2-3) that the first inclusion is an
equality. The second one comes from the fact that �1 is a central idempotent in zHR.
In particular we have:

Theorem 2.14. The center of the Iwahori–Hecke k-algebra kŒInG=I� is isomorphic
to kŒXC� .T/�.

Proof. The map
kŒXC� .T/� �! �1Z.zHk/; � 7�! �1z�

is surjective by the previous discussion. It is easily checked to be injective using
Lemma 2.3 (compare with [Vignéras 2006, (1.6.5)]). �
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3. The central Bernstein functions in the pro-p Iwahori–Hecke ring

Let O be a W-orbit in zX�.T/. We call the central element of zHZ

zO WD

X
�02O

BCC .�
0/ (2-2)

the associated central Bernstein function.

3A. The support of the central Bernstein functions. For h 2 zHZ, the set of all
w 2 zW such that h. Ow/¤ 0 is called the support of h. For O a W-orbit in zX�.T/,
we denote by `O the common length of all the coweights in O.

Lemma 3.1. Let O be a W-orbit in zX�.T/. The support of zO contains the set of all
e� for � 2 O: more precisely, the coefficient of �e� in the decomposition of zO is
equal to 1. Any other element in the support of zO has length < `O. The same is true
with šC .zO/ instead of zO.

Proof. This is a consequence of Lemma 2.3 (and of (2-1)). �

Proposition 3.2. The involution šC fixes the elements in the center Z.zHZ/ of zHZ.
In particular, for O a W-orbit in zX�.T/, the element

P
�02O

B�C .�
0/ 2 zHZ does not

depend on the sign � .

Proof. We prove that šC fixes zO by induction on `O.
If `O D 0, we conclude using Remark 1.9. Let O be a W-orbit in zX�.T/ such

that `O > 0. The element šC .zO/ is central in zHZ. Recall that a Z-basis for Z.zHZ/

is given by the central Bernstein functions zO, where O ranges over the W-orbits in
zX�.T/. Lemma 3.1 implies that šC .zO/ decomposes as a sum

šC .zO/D zOC

X
O0

aO0zO0 ;

where O0 ranges over a finite set of W-orbits in zX�.T/ such that `O0 <`O and aO0 2Z.
By induction and applying the involution šC , we get

zO D šC .zO/C
X

O0

aO0zO0

and 2.š.zO/� zO/D 0. Since zHZ has no Z-torsion, š.zO/DzO. The second statement
follows from (2-1). �

If G is semisimple, the projection in zHk of the equality proved in Proposition 3.2
can be obtained independently, using the duality for finite-length zHk-modules
defined in [Ollivier and Schneider 2012]:

Proposition 3.3. Suppose that G is semisimple. The element
P
�02O B

�
C .�

0/ 2 zHk
is fixed by the involution šC and therefore does not depend on the sign � .
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Proof. Suppose that G is semisimple. Let O be a W-orbit in zX�.T/. We want to
prove, without using Proposition 3.2, that in zHk we have zO D šC .zO/.

Let � WZ.zHk/! k be a character and M D zHk˝Z.zHk/
� the induced zHk-module.

It is finite dimensional over k and therefore by [Ollivier and Schneider 2012,
Corollary 6.12] we have an isomorphism of right zHk-modules

Extd
zHk
.M; zHk/D Homk.š

�
CM;k/;

where d is the semisimple rank of G and š�CM denotes the left zHk-module M with
action twisted by the involution šC defined by (1-13). The category of left zHk-
modules is naturally a Z.zHk/-linear category, and therefore, forX and Y two left zHk-
modules, Extd

zHk
.X; Y / inherits the structure of a central Z.zHk/-bimodule. Hence,

the right zHk-module Extd
zHk
.M; zHk/ has a central character equal to �. On the other

hand, Homk.š�CM;k/ has �ıšC as a central character. Therefore, �.zO/D �ıšC .zO/.
By Corollary 2.12, we have the required equality zO D šC .zO/. �

3B. Independence lemma. The following lemma will be proved in Section 3C3.

Lemma 3.4. For O a W-orbit in zX�.T/, the elementX
�2O

B�F .�/

in zHZ does not depend on the choice of the standard facet F and of the sign � .

Corollary 3.5. The center of zHZ is contained in the intersection of all the commu-
tative rings A�F for F a standard facet and � a sign.

3C. Inducing the generalized integral Bernstein functions. We study the behav-
ior of the integral Bernstein maps upon parabolic induction and subsequently prove
Lemma 3.4.

3C1. Let F be a standard facet, …F the associated set of simple roots and PF
the corresponding standard parabolic subgroup, with Levi decomposition PF D
MFNF . The root datum attached to the choice of the split torus T in MF is
.ˆF ;X�.T/; L̂ F ;X�.T// (notation in Section 1B4). The extended Weyl group
of MF is WF D .NG.T/\MF /=T0. It is isomorphic to the semidirect product
WF ËX�.T/, where WF is the finite Weyl group .NG.T/\MF /=T (also defined
in Section 1B4). We denote by `F its length function and by �F the Bruhat order
on WF .

Set zWF D .NG.T/\MF /=T1. It is a subgroup of zW. The double cosets of
MF modulo its pro-p Iwahori subgroup QI\MF are indexed by the elements in
zWF . For w 2 WF , we denote by �Fw the characteristic function of the double
coset containing the lift Ow for w (which lies in NG.T/\MF ). The set of all �Fw
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for w 2 WF is a basis for the pro-p Iwahori–Hecke ring zHZ.MF / of Z-valued
functions with compact support in .QI\MF /nMF =.QI\MF /. The ring zHZ.MF /

does not inject in zHZ in general.
An element in w 2 WF is called F -positive if w�1.ˆC �ˆCF / � ˆ

C
aff. For

example, for � 2 X�.T/, the element e� is F -positive if and only if h�; ˛i � 0 for
all ˛ 2ˆC�ˆCF . In this case, we will say that the coweight � itself is F -positive.
If furthermore h�; ˛i> 0 for ˛ 2ˆC�ˆCF and h�; ˛i D 0 for ˛ 2ˆCF , then it is
called strongly F -positive. The F -positive coweights are the WF -conjugates of
the dominant coweights. The C -positive (resp. strongly C -positive) coweights are
the dominant (resp. strongly dominant) coweights. An element in WF is F -positive
if and only if it belongs to e�WF for some F -positive coweight � 2 X�.T/. If �
and � 2 X�.T/ are F -positive coweights such that �� � is also F -positive, then
we have the equality (see [Ollivier 2012, Section 1.2] for example)

`.e���/C `.e�/� `.e�/D `F .e
���/C `F .e

�/� `F .e
�/: (3-1)

An element in zWF will be called F -positive if its projection in WF is F -positive.
The subspace of zHZ.MF / generated over Z by all �Fw for F -positive w 2 zWF is

denoted by zHZ.MF /
C. It is in fact a ring, and there is an injection of rings

jCF W
zHZ.MF /

C
�! zHZ; �Fw 7�! �w

which extends to an injection of ZŒq˙1=2�-algebras

jF W zHZ.MF /˝Z ZŒq˙1=2�! zHZ˝Z ZŒq˙1=2�:

This is a classical result for complex Hecke algebras [Bushnell and Kutzko 1998,
(6.12)]. The argument is valid over ZŒq˙1=2�.

Remark 3.6. An element w 2 zWF is called F -negative (resp. strongly F -negative)
ifw�1 is F -positive (resp. strongly F -positive), and, as before, zHZ.MF / contains as
a subring the space zHZ.MF /

� generated over Z by all �Fw for F -negative w 2 zWF .
There is an injection of rings j�F W zHZ.MF /

� �! zHZ; �
F
w 7�! �w .

Fact ii. Let v 2WF , such that v �F e� for � 2 X�.T/ an F -positive coweight.
Then v is F -positive.

Proof. Suppose first that � is dominant. Then the claim is Lemma 2.9(ii) of
[Ollivier 2012]. In general, � is a WF -conjugate of a dominant coweight �0: there
is u 2WF such that e� D ue�0u�1. We argue by induction on `F .u/. Let s be a
simple reflection in WF such that `F .su/D `F .u/� 1. By the properties of the
Bruhat order (see [Haines 2001, Lemma 4.3] for example), one of v, vs, sv, svs
is �F se�s, and by induction this element is F -positive, which implies that v is
F -positive. �
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3C2. Let F 0 � C be another facet containing x0 in its closure, such that F � F 0.
This implies that ˆF 0 �ˆF and ˆCF 0 �ˆ

C

F . Let F‚CF 0 be the map constructed as
in Section 2A with respect to the root data attached to MF :

F‚
C

F 0 W ZŒq
˙1=2�ŒzX�.T/� �! zHZ.MF /˝Z ZŒq˙1=2�:

The corresponding Z-linear integral map is denoted by FB
C

F 0 W ZŒzX�.T/� �!
zHZ.MF / and defined by FB

C

F 0.�/ D q`F .e
�/=2

F‚
C

F 0.�/ for all � 2 zX�.T/. It
satisfies FBCF 0.�/D �

F
e�

if h�; ˛i � 0 for all ˛ 2 .ˆCF �ˆ
C

F 0/[ˆ
�
F 0 .

Remark 3.7. If F D x0 then x0B
C

F 0 DBCF 0 .

Lemma 3.8. Let � 2 zX�.T/ be an F -positive coweight. Then FB
C

F 0.�/ lies in
zHZ.MF /

C and
jCF .FB

C

F 0.�//DBCF 0.�/: (3-2)

Proof. Decompose �D��� with�; �2CC.F 0/. Then in zHZ.MF /˝ZZŒq˙1=2�we
have FBCF 0.�/ D q

.`F .e
�/C`F .e

�/�`F .e
�//=2�Fe�.�

F
e� /
�1. By Lemma 2.3 applied

to the pro-p Iwahori–Hecke algebra zHZ.MF /, this element decomposes in zHZ.MF /

into a linear combination of �F
Qw

for Qw 2 zWF , where the projection w of Qw in WF

satisfies w �F e�. Fact ii ensures that these w (and Qw) are F -positive. Now, jF
respects the product and

jCF .FB
C

F 0.�//D jF .FB
C

F 0.�//D q
.`F .e

�/C`F .e
�/�`F .e

�//=2�e�.�e� /
�1

because � and � are in particular F -positive. Apply (3-1) to finish the proof. �

3C3. We prove Lemma 3.4. Let O be a W-orbit in zX�.T/. Since BCx0 DB�C , and
using (2-1), it is enough to proveX

�2O

BCF .�/D
X
�2O

BCC .�/ (3-3)

for any standard facet F . If F D x0 then the result is given by Proposition 3.2. Let
F be a standard facet, such that F ¤ x0.

(1) Let � 2 zX�.T/ be an F -positive coweight with WF -orbit OF . We have the
following identity:X
�02OF

BCF .�
0/D

X
�02OF

jCF .FB
C

F .�
0//D

X
�02OF

jCF .FB
C

C .�
0//D

X
�02OF

BCC .�
0/;

where the first and third equalities come from (3-2) and the second one from
Proposition 3.2 applied to MF .

(2) Choose � a strongly F -positive coweight such that �C � is F -positive for
all � 2 O. Decompose the W-orbit O into the disjoint union of WF -orbits O iF
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for i 2 f1; : : : ; rg. Since � lies in both zXC� .T/ and CC.F /, we have BCF .��/ D

BCC .��/D šC .�e�� /.
Let i 2 f1; : : : ; rg and � 2 O iF . We have in zHZ˝Z ZŒq˙1=2� that

BCF .�/D q
1
2
.`.e�/�`.e�C�/�`.e�//BCF .�C �/B

C

F .��/:

Note that `.e�/�`.e�C�/�`.e�/ does not depend on � 2 O iF : since h�; ˛i D 0 for
all ˛ 2ˆCF , this quantity is equal to

P
˛2ˆC�ˆ

C

F

jh�; ˛ij � jh�C �; ˛ij � jh�; ˛ij,

which does not depend on the choice of � 2 O iF because ˆC �ˆCF is invariant
under the action of WF . Therefore, if we pick a representative �i 2 O iF , we haveX
�2O iF

BCF .�/D q
1
2
.`.e�i /�`.e�iC�/�`.e�//

X
�2O iF

BCF .�C �/B
C

C .��/:

D q
1
2
.`.e�i /�`.e�iC�/�`.e�//

X
�2O iF

BCC .�C �/B
C

C .��/D
X
�2O iF

BCC .�/

(where the second equality follows from (1) applied to the WF -orbit of �C �),
which proves that

P
�2O B

C

F .�/D
P
�2O B

C

C .�/.

4. Compatibility between Satake and Bernstein isomorphisms
in characteristic p

In this section all the algebras have coefficients in k.
Let .�;V/ be a weight and v a chosen nonzero QI-fixed vector. Let � W zHk! k be

the associated character and F� the corresponding standard facet (Remark 1.11).
We consider the compact induction indG

K � and its k-algebra of G-endomorphisms
H.G; �/. The QI-invariant subspace .indG

K �/
QI is naturally a right zHk-module. Let

1K;v 2 indG
K � be the (QI-invariant) function with support K and value v at 1.

The map

Z.zHk/ �! HomzHk ..indG
K �/
QI; .indG

K �/
QI/; z 7�! Œf 7! f z�; (4-1)

defines a morphism of k-algebras. On the other hand, by [Ollivier 2012, Corol-
lary 3.14], passing to QI-invariants yields an isomorphism of k-algebras

H.G; �/D HomG.indG
K �; indG

K �/ �!
� HomzHk ..indG

K �/
QI; .indG

K �/
QI/: (4-2)

Composing (4-1) with the inverse of (4-2) therefore gives a morphism of k-algebras
Z.zHk/!H.G; �/, and we consider its restriction to Zı.zHk/:

Zı.zHk/ �!H.G; �/; z 7�! Œ1K;v 7! 1K;vz�: (4-3)
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For � 2 XC� .T/, we denote by T0
�
2H.G; �/ the image under (4-3) of the central

Bernstein function z� defined by (2-3).
On the other hand, recall that we have the isomorphism of k-algebras [Ollivier

2012, Theorem 4.11]
T W kŒXC� .T/� �!� H.G; �/; (4-4)

where T� for � 2 XC� .T/ is defined by

T� W 1K;v 7! 1K;vB
C

F�
.�/: (4-5)

Proposition 4.1. We have T0
�
D T� for all � 2 XC� .T/.

Proof. It is enough to check that these operators coincide on 1K;v. If � has length
zero, then BCF�.�/D z� D �e� and the claim is true. Otherwise � has length > 0;
recall that O.�/ denotes the W-orbit of �.

(a) Let �0 2 O.�/ and suppose that �0 ¤ �. By (2-4), we have BCF�.�
0/BCF�.�/D

BCF�.�/B
C

F�
.�0/D 0 in zHk . This implies that T�.1K;vB

C

F�
.�0//D 0 and therefore

that 1K;vB
C

F�
.�0/D 0 by [Herzig 2011a, Corollary 6.5], which claims that indG

K �

is a torsion-free H.G; �/-module.

(b) By Lemma 3.4, we have

T0�.1K;v/D 1K;vB
C

F�
.�/C

X
�02O.�/;
�0¤�

1K;vB
C

F�
.�0/D T�.1K;v/C

X
�02O.�/;
�0¤�

1K;vB
C

F�
.�0/

D T�.1K;v/;

where the last equality follows from (a). �

Remark 4.2. By [Ollivier 2012, Lemma 3.6], the map

�˝zHk
zHk Š .indG

K �/
QI; 1˝ 1 7! 1K;v; (4-6)

induces an zHk-equivariant isomorphism. Proposition 4.1, combined with (4-6),
proves that for � 2 XC� .T/, the right actions of z� and of BCF�.�/ on 1˝ 1 2
�˝zHk

zHk coincide. This remark will be important for the classification of the
simple supersingular zHk-modules in Section 5D.

Proposition 4.1 implies:

Theorem 4.3. The diagram

kŒXC� .T/�
(2-5)
����! Zı.zHk/


 ??y(4-3)

kŒXC� .T/�
T

����! H.G; �/

(4-7)
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is a commutative diagram of isomorphisms of k-algebras.

We remark that we have not used the fact that (2-5) is multiplicative. We proved
this fact beforehand in Proposition 2.10, but it can also be seen as a consequence of
the commutativity of the diagram.

5. Supersingularity

We turn to the study of the zHk-modules with finite length. We consider right
modules unless otherwise specified. Recall that k is algebraically closed with
characteristic p.

5A. A basis for the pro-p Iwahori–Hecke ring. We recall the Z-basis for zHZ

defined in [Vignéras 2005]. It is indexed byw2 zW and is denoted by .Ew/w2 zW there.
We will call it .BCx0.w//w2 zW because it coincides on zX�.T/ with the definition
introduced in Section 2A (see also Remark 2.1). Recall that we have a decomposition
of zW as the semidirect product

zWD X�.T/Ì zW:

For w0 2 zW, set BCx0.w0/ D �w0 and for w D e�w0 2 X�.T/ Ì zW, define in
zHZ˝Z ZŒq˙1=2�

BCx0.w/D q
.`.w/�`.w0/�`.e

�//=2BCx0.�/B
C
x0
.w0/D q

.`.w/�`.w0//=2‚Cx0.�/�w0 :

By [Vignéras 2005, Theorem 2 and Proposition 8], this element lies in zHZ and the
set of all .BCx0.w//w2 zW is a Z-basis for zHZ.

Remark 5.1. As a Z-module, zHZ is the direct sum of ACx0 and of the Z-module with
basis .BCx0.e

�w0//, where � ranges over X�.T/ and w0 over the set of elements in
zW the projection of which in W is nontrivial. Applying (2-1), we obtain that the

Z-module ACC is a direct summand of zHZ as well.

Remark 5.2. Let d 2D and Qd 2 zW be a lift for d . Write Qd D e�w0 with w0 2 zW,
� 2 XC� .T/ and `.e�/D `.d/C `.w0/ (Proposition 1.5).

Then in zHZ˝Z ZŒq˙1=2�, we have

BCx0.
Qd/D q.`.

Qd/�`.w0/C`.e
�//=2��1

e��
�w0 D q

`. Qd/��1
Qd�1
D .�1/`.d/š.� Qd /: (5-1)

5B. Topology on the pro-p Iwahori–Hecke algebra in characteristic p. We con-
sider the (finitely generated) ideal I of Zı.zHk/ generated by all z� for � 2 XC� .T/
such that `.e�/ > 0, and the associated ring filtration of Zı.zHk/. A Zı.zHk/-module
M can be endowed with the I-adic topology induced by the filtration

M �MI�MI2 � � � � :
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An example of such a module is zHk itself. We define on zHk another decreasing
filtration .FnzHk/n2N by k-vector spaces, where

FnzHk WD the k-vector space generated by BCx0.w/, w 2 zW with `.w/� n. (5-2)

Lemma 5.3. The filtration (5-2) is a filtration of zHk as a left ACx0-module. In par-
ticular, it is a filtration of zHk as a (left and right) Zı.zHk/-module. It is compatible
with the I-filtration: for all n 2 N, we have

.FnzHk/ID I .FnzHk/ � FnC1zHk :

Proof. Let � 2 zX�.T/ and w 2 zW. From the definition of BCx0 , we see that

BCx0.�/B
C
x0
.w/D q.`.e

�/C`.w/�`.e�w//=2BCx0.e
�w/

and therefore in zHk we have BCx0.�/B
C
x0
.w/ D 0 if `.e�/C `.w/ > `.e�w/ and

BCx0.�/B
C
x0
.w/DBCx0.e

�w/ if `.w/C`.e�/D `.e�w/. This proves the claims. �

Proposition 5.4. The I-adic topology on zHk is equivalent to the topology on zHk
induced by the filtration .FnzHk/n2N. In particular, it is independent of the choice
of the uniformizer $ .

Proof. We have to prove that given m 2 N, m � 1, there is n 2 N such that
FnzHk � ImzHk .

Fact iii. For � 2 X�.T/ such that `.e�/ > 0 and m� 1, we have BCx0..mC 1/�/ 2
ImzHk .

Proof. We check that for m 2N we have BCx0..mC1/�/D z
m
�
BCx0.�/. Notice that

BCx0.2�/DBCx0.�/B
C
x0
.�/D z�B

C
x0
.�/ by (2-4) and Lemma 3.4. Now let m� 2.

We have BCx0..mC 1/�/DBCx0.m�/B
C
x0
.�/D zm

�
BCx0.�/ by induction. �

Fact iv. Let m � 1. There is Am 2 N such that for any � 2 X�.T/, if `.e�/ > Am
then BCx0.�/ 2 I

mzHk .

Proof. Let fz�1 ; : : : ; z�r g be a system of generators of I with �1; : : : ; �r 2 XC� .T/.
LetAm WDm

Pr
iD1 `.e

�i /. Let �2X�.T/ such that `.e�/>0. This is W-conjugate
to an element �0 2 XC� .T/, and one can write � D w0:�0 with w0 2 W and
�0D

Pr
iD1 ai�i with ai 2N (not all equal to zero). If `.e�/D `.e�0/ > Am, then

there is i0 2 f1; : : : ; rg such that ai0 >m and BCx0.�/D
Qr
iD1B

C
x0
.ai .w0:�i // 2

BCx0..mC 1/.w0:�i0//
zHk � ImzHk by Fact iii. �

We now turn to the proof of the proposition. Let m � 1. To any w0 2 W

corresponds, by [Vignéras 2006, (1.6.3)], a finite set X.w0/ of elements in X�.T/
such that

for all � 2 X�.T/ there is � 2 X.w0/ such that `.e�w0/D `.e���/C `.e�w0/:
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Let Qw 2 zW with image w0 under the projection zW ! W. Its image w under
zW!W has the form w D e�w0 2 X�.T/ÌW, and there is � 2 X.w0/ such that
`.w/ D `.e���/C `.e�w0/. Choose lifts ze�w0 and ze��� in zW for e�w0 and
e���. The product ze���ze�w0 differs from Qw by an element in T0=T1 (which has
length zero). Therefore, BCx0. Qw/ 2 BCx0.���/

zHk (see the proof of Lemma 5.3,
for example). If `. Qw/ > Am.w0/ WD Am C maxf`.e�

0

w0/; �
0 2 X.w0/g then

`.e���/ > Am and BCx0. Qw/ 2 I
mzHk by Fact iv.

We have proved that n >maxfAm.w0/; w0 2Wg implies FnzHk � ImzHk . �

5C. The category of modules of finite length over the pro-p Iwahori–Hecke
algebra in characteristic p. We consider the abelian category Modfg.zHk/ of all
zHk-modules with finite length.

For an zHk-module, having finite length is equivalent to being finite-dimensional
as a k-vector space (see [Vignéras 2007, Section 5.3] or [Ollivier and Schneider
2012, Lemma 6.9]). Therefore, any irreducible zHk-module is finite dimensional
and has a central character, and any module in Modfg.zHk/ decomposes uniquely
into a direct sum of indecomposable modules.

5C1. The category of finite-dimensional Zı.zHk/-modules. Let Modfd .Zı.zHk//
denote the category of finite-dimensional Zı.zHk/-modules. For M a maximal ideal
of Zı.zHk/, we consider the full subcategory

M- Modfd .Z
ı.zHk//

of modules M of M-torsion, that is, such that there is e 2 N satisfying MMe D 0.
The category Modfd .Zı.zHk// decomposes into the direct sumL

M

M- Modfd .Zı.zHk//;

where M ranges over the maximal ideals of Zı.zHk/.

5C2. Blocks of zHk-modules with finite length. For M a maximal ideal of Zı.zHk/,
we say that an zHk-module with finite length is an M-torsion module if its restriction
to a Zı.zHk/-module lies in the subcategory M- Modfd .Zı.zHk//. We denote by

M- Modfg.zHk/ (5-3)

the full subcategory of Modfg.zHk/ whose objects are the M-torsion modules.

Lemma 5.5. Let M and N be two maximal ideals of Zı.zHk/. If there is a nonzero
M-torsion moduleM and a nonzero N-torsion moduleN such that Extr

zHk
.M;N /¤

0 for some r � 0, then MDN.

Proof. For any zHk-modules X and Y , the natural morphisms of algebras Zı.zHk/!
EndzHk .X/ and Zı.zHk/! EndzHk .Y / equip HomzHk .X; Y / with the structure of a



Satake and Bernstein isomorphisms in characteristic p 1099

central Zı.zHk/-bimodule. The space Extr
zHk
.M;N / is therefore naturally a central

Zı.zHk/-bimodule. It is an M-torsion module and an N-torsion module; it is zero
unless MDN. �

Since Zı.zHk/ is a central finitely generated subalgebra of zHk , an indecomposable
zHk-module with finite length is an M-torsion module for some maximal ideal M
of Zı.zHk/.

Remark 5.6. An zHk-module with finite length M lies in the block corresponding
to some maximal ideal M if and only if all the characters of Zı.zHk/ contained in
M have kernel M.

Remark 5.7. The blocks (5-3) are not indecomposable. They can for example be
further decomposed via the idempotents introduced in Section 1B8.

5C3. The supersingular block.

Definition 5.8. We call a maximal ideal M of Zı.zHk/ supersingular if it contains
the ideal I defined in Section 5B. A character of Zı.zHk/ is called supersingular if
its kernel is a supersingular maximal ideal of Zı.zHk/.

Given a character ! of the connected center Z of G, there is a unique supersingu-
lar character �! of Zı.zHk/ satisfying �!.z�/D !.�.$// for any � 2 XC� .T/ with
length zero. A character of the center of zHk is called “null” in [Vignéras 2005] if it
takes value zero at all central elements (2-2) for all W-orbits O in zX�.T/ containing
a coweight with nonzero length.

Lemma 5.9. A character Z.zHk/! k is null if and only if its restriction to Zı.zHk/
is a supersingular character in the sense of Definition 5.8.

Proof. Consider a character � W Z.zHk/! k whose restriction to Zı.zHk/ is super-
singular. We want to prove that � is null. Since the zHk-module zHk˝Z.zHk/

� is
finite dimensional, it contains a character O� for the commutative finitely generated
k-algebra .ACx0/k and the restriction of O� to Z.zHk/ coincides with �.

Let � 2XC� .T/ with `.e�/¤ 0; by (2-4), there is at most one W-conjugate �0 of
� such that O�.BCx0.�

0//¤ 0, and if there exists such a �0, then O�.z�/D �.z�/¤ 0,
which is a contradiction; we have proved that O�.BCx0.�

0//D0 for all �0 2X�.T/with
`.e�

0

/¤ 0, which implies that this is also the case for �0 2 zX�.T/ with `.e�
0

/¤ 0.
Therefore, � is null. �

A finite-dimensional zHk-moduleM with central character is called supersingular
in [Vignéras 2005] if this central character is null. We extend this definition:

Proposition-Definition 5.10. A finite-length zHk-module is in the supersingular
block and is called supersingular if and only if , equipped with the discrete topology,
it is a continuous module for the I-adic topology on zHk or, equivalently, for the
topology induced by the filtration (5-2).
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Proof. An indecomposable zHk-module M with finite length is in the supersingular
block if and only if there is m� 1 such that MImD f0g. Then use Proposition 5.4.

�

5D. Classification of the simple supersingular modules over the pro-p Iwahori–
Hecke algebra in characteristic p. We establish this classification in the case
where the root system of G is irreducible, which we will suppose in Section 5D4.
Until then the results are valid without further assumption on the root system.

5D1. Denote by zHaff
k

the natural image in zHk of the affine Hecke subring zHaff
Z of

zHZ defined in Section 1B7. We generalize [Ollivier 2010, Theorem 7.3]:

Proposition 5.11. A finite-length zHk-module in the supersingular block contains a
character for the affine Hecke subalgebra zHaff

k
.

Proof. Let M be an zHk-module with finite length in the supersingular block. By
Proposition-Definition 5.10, there is n 2 N such that for any w 2 zW, if `.w/ > n
then MBCx0.w/D 0. Let x 2M , and suppose that it supports a character for zHk
(see Section 1B9) and let d 2D with maximal length such that xBCx0.

Qd/¤ 0, where
Qd 2 zW denotes a lift for d (the property xBCx0.

Qd/¤ 0 does not depend on the choice
of the lift Qd ). As in the proof of [Ollivier 2010, Theorem 7.3], we prove that x0 WD
xBCx0.

Qd/ supports a character for zHaff
k

which is the k-algebra generated by all �t and
all �Qs for t 2 T0=T1 and s 2 Saff with chosen lift Qs 2 zW (see paragraph Section 1B7).
From the relations (1-11) we get that x0�t D x�dtd�1B

C
x0
. Qd/ is proportional to x0.

Now let s 2 Saff. If `.ds/D `.d/�1, then ds 2D by Proposition 1.5 and, by (5-1),
the element x0 is equal to xš.� Qd Qs/š.�Qs/ (up to an invertible element in k), so x0�QsD0
by Remark 1.10. If `.ds/D `.d/C1 and ds 2D, then xBCx0.

Qd Qs/ is equal to zero on
one side and, by (5-1), to x0š.�Qs/ (up to an invertible element in k) on the other side.
This proves that x0�Qs is proportional to x0 by Remark 1.10. If `.ds/D `.d/C1 and
ds 62D then there is s0 2 S such that ds D s0d by Proposition 1.5, and x0š.�Qs/ is
proportional to xš.�Qs0/BCx0.

Qd/ and therefore to x0 because š.�Qs0/2 zHk . We conclude
that x0�Qs is proportional to x0 by Remark 1.10. �

5D2. Characters of zHaff
k

. We call a morphism of k-algebras zHaff
k
! k a character

of zHaff
k

. A character X of zHaff
k

is completely determined by:

� The unique � 2 yT.Fq/ such that X .�
�
/D 1 (see notation in Section 1B8). This

� is defined by �.t/ D X .�t /, where t 2 T0=T1 D T.Fq/, and we call � the
restriction of X to kŒT0=T1�.

� The values X .�nA/ for all A 2 Saff, which, by the quadratic relations (1-15)
satisfy X .�nA/ 2 f0;�1g, if � is trivial on TA, and X .�nA/D 0 otherwise.
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Conversely, one checks that any such datum of � 2 yT.Fq/ and values X .�nA/ for
all A 2 Saff satisfying the above conditions defines a character X of zHaff

k
.

Example. The pro-p Iwahori–Hecke ring zHZ is endowed with two natural mor-
phisms of rings zHZ! Z defined by

�w 7! q`.w/ and �w 7! .�1/`.w/:

We denote by Xtriv and Xsign the characters of zHk that they respectively induce, as
well as their restrictions to characters of zHaff

k
. The former can be described by � D 1

and Xtriv.�nA/D 0 for all A 2 Saff, the latter by � D 1 and Xsign.�nA/D�1 for all
A 2 Saff.

Let X be a character of zHaff
k

and � the corresponding element in yT.Fq/.

� Let �0 2 yT.Fq/, and suppose that �0 is trivial on T˛ for all ˛ 2…. Then one
can consider the twist .�0/X of X by �0 in the obvious way. The restriction
of .�0/X to kŒT0=T1� is the product �0� , and .�0/X coincides with X on the
elements of type �nA for A2Saff. By a twist of the character X , we mean from
now on a twist of X by an element in yT.Fq/ that is trivial on T˛ for all ˛ 2….

� The involution šC extends to an involution of the k-algebra zHk . The compo-
sition X ı šC is then also a character for zHaff

k
. Note that X and X ı šC have

the same restriction to kŒT0=T1� (Remark 1.9). Furthermore, if X .�nA/D�1
for some A 2 Saff, then X ı šC .�nA/ D 0 (use Remark 1.10). For example,
Xtriv D Xsign ı šC .

� There is an action of z� by conjugacy on zWaff. Since the elements in z� have
length zero, this yields an action of z� on zHaff

k
and its characters. For ! 2 z�,

we denote by !:X the character X .�!�1 : �!/.

Lemma 5.12. A simple zHk-module containing a twist of the character Xtriv or of
the character Xsign of zHaff

k
is not supersingular.

Proof. Let M be a simple zHk-module. Suppose that it contains a twist of the
character Xsign supported by the nonzero vector m 2M . In particular, m supports
the character of zHk parametrized by (a twist of) the trivial character of yT.Fq/ and
by the facet C (see Section 1B9). By Remark 4.2, we have

mz� DmB
C

C .�/

for all � 2 XC� .T/. There are ! 2 z� and w 2 zWaff such that �.$�1/ mod T1

corresponds to w! 2 zW. Since BCC .�/D ��.$�1/, the element mBCC .�/ is equal
to .�1/`.w/m�! (up to multiplication by an element in k�), and we recall that �!
is invertible in zHk . We have proved that m:z� ¤ 0 and M is not supersingular.
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Now if M contains a twist of the character Xtriv, then š�CM contains a twist of
the character Xsign and is not supersingular (notation in the proof of Proposition 3.3).
By Proposition 3.2, this implies that M is not supersingular either. �

5D3. Consider the image of z� in zHk via ! 7! �! . For X a character of zHaff
k

,
denote by z�X its fixator under the action of z�; obviously z�X contains T0=T1

as a subgroup. We consider the set P of pairs .X ; �/ where X is a character of
zHaff
k

and .�;V� / an irreducible finite-dimensional k-representation of z�X (up to
isomorphism) whose restriction to T0=T1 coincides with the inverse of the restriction
of X ; for any t 2 T0=T1 and v 2 V� , we have �.t/v D X .�t�1/v.

The set P is naturally endowed with an action of z�: for .X ; �/ 2 P and ! 2 z�,
denote by !:� the representation of z�!:X D ! z�X!

�1 naturally obtained by
conjugating � ; then !:.X ; �/ WD .!:X ; !:�/ 2 P.

Let .X ; �/ 2 P. Consider the subalgebra zHk.X / of zHk generated by kŒ z�X � and
zHaff
k

. It is isomorphic to the twisted tensor product of algebras

zHk.X /' kŒ z�X �˝kŒT0=T1�
zHaff
k ;

where the product is given by .! ˝ h/.!0 ˝ h0/ D !!0 ˝ ��1!0 h�!0h
0. As a left

zHk.X /-module, zHk is free with basis the set of all �! , where ! ranges over a set of
representatives of the right cosets z�X n z�. The tensor product � ˝X is naturally a
right zHk.X /-module: the right action of !˝h on v 2V� is given by X .h/�.!�1/v.
The right zHk.X /-module �˝X is irreducible. As an zHaff

k
-module, it is isomorphic

to a direct sum of copies of X .

Lemma 5.13. The isomorphism classes of the simple zHk-modules containing a
character for zHaff

k
are represented by the induced modules

m.X ; �/ WD .� ˝X /˝zHk.X / zHk;

where .X ; �/ ranges over the set of orbits in P under the action of z�.

Proof. First note that for any ! 2 z�, the .zHaff
k
; !:X /-isotypic component of m.X ; �/

is isomorphic to !:� ˝!X as a right zHk.!:X /-module.

(1) We check that an zHk-module of the form m.X ; �/ is irreducible. Restricted to
zHaff
k

, it is semisimple and isomorphic to a direct sum of X and of its conjugates.
Therefore, a submodule m of m.X ; �/ contains a nonzero .zHaff

k
; !:X /-isotypic

vector for some ! 2 z�, and, after translating by �!�1 , we see that m contains a
nonzero .zHaff

k
;X /-isotypic vector. But the .zHaff

k
;X /-isotypic component in m.X ; �/

supports the irreducible representation � of kŒ z�X �. Therefore mDm.X ; �/.
(2) Let m be a simple zHk-module containing the character X of zHaff

k
. Its .zHaff

k
;X /-

isotypic component contains an irreducible (finite-dimensional) representation � of
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kŒ z�X � which coincides with the inverse of X on kŒT0=T1�. Therefore, using (1),
m' .� ˝X /˝zHk.X / zHk .

(3) Let ! 2 z� and .X ; �/ 2 P. The .zHaff
k
;X /-isotypic component of m.!:.X ; �//

contains the representation � of kŒ z�X �. The simple zHk-module m.!:.X ; �// is
therefore isomorphic to m.X ; �/ by (2).

(4) Let .X ; �/ and .X 0; � 0/ be in P and suppose that they induce isomorphic zHk-
modules. Looking at the restriction of the latter to zHaff

k
, we see that there is ! 2 z�

such that X 0 D !:X .
Therefore, by (3), m.X ; !�1� 0/ and m.X ; �/ are isomorphic, and looking at the

restriction to the .zHaff
k
;X /-isotypic component shows that � 0 ' !:� . Therefore,

.X 0; � 0/ and .X ; �/ are conjugate. �

5D4. Classification of the simple supersingular zHk-modules when the root system
of G is irreducible. We generalize [Vignéras 2005, Theorem 5(1)] and [Ollivier
2010, Theorem 7.3].

Theorem 5.14. Suppose that the root system of G is irreducible. A simple zHk-
module is supersingular if and only if it contains a character for zHaff

k
that is different

from a twist of Xtriv or Xsign.

Remark 5.15. This proves in particular (if the root system of G is irreducible) that
the notion of supersingularity for Hecke modules does not depend on any of the
choices made.

Proof of Theorem 5.14. We already proved in Proposition 5.11 (without restriction
on the root system of G) that a simple supersingular module contains a character
for zHaff

k
, and by Lemma 5.12 we know that this character is not a twist of Xtriv or

Xsign.
Conversely, let m be a simple zHk-module containing the character X for zHaff

k

and suppose that X is not a twist of Xtriv or Xsign. We want to prove that m is
supersingular. Since, by Proposition 3.2, this is equivalent to showing that š�Cm
is supersingular (notation in the proof of Proposition 3.3), we can suppose (see
the discussion before Lemma 5.12) that X .�n0/D 0, where n0 was introduced in
Section 2A3.

Let m2m be a nonzero vector supporting X . Let � be the restriction of X to zHk
and F� the associated standard facet. Suppose that F� D x0; then … N� D…� D…
(notation in Section 1B9) and X .�n˛ / D 0 for all ˛ 2 …. Since, by hypothesis,
we also have X .�n0/D 0, the character X is equal to Xtriv up to twist. Therefore,
F� ¤ x0. Let � 2 XC� .T/ with `.e�/ > 0. By Remark 4.2,

m:z� Dm:B
C

F�
.�/;
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and, since F�¤x0, we havem:z�D 0 by Lemma 2.4. We have proved that Zı.zHk/
acts on m and therefore on m by a supersingular character. �

Let P� denote the subsets of pairs .X ; �/ in P such that X is different from a twist
of Xtriv or Xsign. It is stable under the action of z�. Lemma 5.13 and Theorem 5.14
together give the following:

Corollary 5.16. Suppose that the root system of G is irreducible. The map

.X ; �/ 7!m.X ; �/

induces a bijection between the z�-orbits of pairs .X ; �/ 2 P� and a system of
representatives of the isomorphism classes of the simple supersingular zHk-modules.

5E. Pro-p Iwahori invariants of parabolic inductions and of special representa-
tions.

5E1. In this section, k is an arbitrary field. Let F be a standard facet, …F the
associated set of simple roots and PF the group of F-points of the corresponding
standard parabolic subgroup, with Levi decomposition PF DMFNF . We use the
same notation as in Section 3C1. The unipotent subgroup NF is generated by all
the root subgroups U˛ for ˛ 2 ˆC �ˆCF . Let N�F denote the opposite unipotent
subgroup of G. The pro-p Iwahori subgroup QI has the decomposition

QID QICF QI
0
F
QI�F ;

where
QICF WD QI\NF ; QI0F WD QI\MF ; QI�F WD QI\N�F :

By Remark 3.6, the subspace zHk.MF /
� of zHk.MF / generated over k by �Fw for

F -negative w 2 zWF is identified with a sub-k-algebra of zHk via the injection

j�F W
zHk.MF /

�
�! zHk; �Fw 7�! �w :

This endows zHk with the structure of left module over zHk.MF /
�.

Proposition 5.17. Let .¢;V¢/ be a smooth k-representation of MF . Consider the
parabolic induction IndG

PF ¢ and its QI-invariant subspace .IndG
PF ¢/

QI. There is a
surjective morphism of right zHk-modules

¢
QI0F ˝zHk.MF /�

zHk �! .IndG
PF ¢/

QI (5-4)

sending v˝ 1 to the unique QI-invariant function with support in PF QI and value v
at 1G.

Remark 5.18. In the cases GD PGLn or GLn, Proposition 5.2 in [Ollivier 2010]
implies that (5-4) is an isomorphism. This result should be true for a general (split)
G, but we will only use the surjectivity here.
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The proposition follows from the discussion below. All the lemmas are proved
in the next section.

Lemma 5.19. Let DF D fd 2W W d�1ˆCF �ˆ
Cg.

(i) For d 2DF , we have PF QI Od QID PF Od QI.

(ii) The set of all Od 2 G for d 2DF is a system of representatives of the double
cosets PF nG=QI.

(iii) For d 2DF , let QI Od QID
F
y
QI Ody be a decomposition into right cosets. Then

PF Od QID
G
y

PF QI Ody:

(iv) Let d 2 DF . Under the projection PF � MF , the image of PF \ Od QI Od�1

is QI0F .

An element m 2MF contracts QICF and dilates QI�F if it satisfies the conditions

mQICFm
�1
� QICF ; m�1QI�Fm� QI

�
F (5-5)

(see [Bushnell and Kutzko 1998, (6.5)]).

Remark 5.20. This property of an element m 2MF only depends on the double
coset QI0FmQI

0
F . Furthermore, ifm2K\MF thenmQICFm

�1DQICF andm�1QI�FmDQI
�
F :

Lemma 5.21. Let w 2 zWF . The element Ow satisfies (5-5) if and only if w is
F -negative.

Let .¢;V¢/ be as in the proposition. Let v 2 V
QI0F
¢ and d 2DF . By (ii) and (iv)

of Lemma 5.19, the QI-invariant function

fd;v 2 .IndG
PF �/

QI

with support in PF Od QI and value v at Od is well defined, and the set of all fd;v form

a basis of .IndG
PF �/

QI, where d ranges over DF and v over a basis of V
QI0F
¢ .

Lemma 5.22. (i) If w is an F -negative element in zWF , then f1;v:�w D f1;v:�Fw .

(ii) We have f1;v:� Od D fd;v.

5E2. Proof of the lemmas. Recall that given ˛ 2 ˆ, the root subgroup U˛ is
endowed with a filtration U.˛;k/ for k 2 Z (see for example [Schneider and Stuhler
1997, Section I.1] or [Ollivier and Schneider 2012, Section 4.2]) and that the product
map Y

˛2ˆ�

U.˛;1/ �T1 �
Y
˛2ˆC

U.˛;0/ �!
� QI (5-6)

induces a bijection, where the products on the left side are ordered in some arbitrary
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chosen way [Schneider and Stuhler 1997, Proposition I.2.2]. The subgroup QICF of QI
is generated by the image of

Q
˛2ˆC�ˆ

C

F
U.˛;0/, while QI�F is generated by that ofQ

˛2ˆ��ˆ�F
U.˛;1/. The subgroup QI0F is generated by the image ofY

˛2ˆ�F

U.˛;1/ �T1 �
Y
˛2ˆ

C

F

U.˛;0/:

Proof of Lemma 5.19. (i) We have PF QI Od QID PF QI�F
Od QI. But for ˛ 2 ˆC, we have

Od�1U.�˛;1/ OdDU.�d�1˛;1/�QI, so QI�F
Od � Od QI and PF QI Od QIDPF Od QI. Point (ii) follows

by Bruhat decomposition for K and Iwasawa decomposition for G. For (iii), we
first recall that the image of PF \K under the reduction red K!Gx0.Fq/ modulo
K1 is a parabolic subgroup PF .Fq/ containing B.Fq/ (notation in Section 1B).

Recall that the Weyl group of Gx0.Fq/ is W; for w 2W we will still denote
by w a chosen lift in Gx0.Fq/. The set DF is a system of representatives of
PF .Fq/nGx0.Fq/=N.Fq/. For d 2DF we have, using [Carter 1985, 2.5.12],

PF .Fq/\ dN.Fq/d�1 � N.Fq/:

We deduce that the image of PF \ QI�F
Od QI Od�1 by red is contained in N.Fq/ and

therefore PF \ QI�F
Od QI Od�1 is contained in QI.

Now let d 2DF and y 2 QI. By the previous observations, Od 2PF QI OdyDPF QI�F
Ody

implies Od 2 QI Ody. This proves (iii). In passing we proved that PF \ Od QI Od�1 is
contained in PF \ QID QI0F QI

C

F . Since QI0F is contained in PF \ Od QI Od�1 by definition
of DF , this proves (iv). �

Proof of Lemma 5.21. By Remark 5.20, it is enough to prove the result for wD e� 2
X�.T/. A lift for e� is given by �.$�1/. The element �.$�1/ satisfies (5-5) if

for all ˛ 2ˆC�ˆCF we have �.$�1/U.˛;0/�.$/� QI
C

F

and �.$/U.�˛;1/�.$
�1/� QI�F :

(5-7)

By [Ollivier and Schneider 2012, Remark 4.1(1)] for example,

�.$�1/U.˛;0/�.$/DU.˛;�h˛;�i/ and �.$/U.�˛;1/�.$
�1/DU.�˛;1�h˛;�i/:

Condition (5-7) is satisfied if and only if � is F -negative (definition in Section 3C1).
�

Proof of Lemma 5.22. (i) Let w be an F -negative element in zWF . The function
f1;v:�w has support in PF QI�F OwQI. Since Ow satisfies (5-5), we have PF QI�F OwQI D
PF OwQI D PF QI. It remains to compute the value of f1;v:�w at 1G (we choose the
unit element 1G of G as a lift for 1 2DF ). The proof goes through exactly as in
[Ollivier 2010, Section 6A.3], where it is written up in the case of GD GLn.
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(ii) Let d 2DF . By Lemma 5.19(i), the QI-invariant function f1;v : �d has support
in PF Od QI, and it follows from Lemma 5.19(iii) that it takes value v at Od . �

5E3. Here we consider again representations with coefficients in an algebraically
closed field k with characteristic p. We draw corollaries from Proposition 5.17.

Corollary 5.23. Let F ¤ x0 be a standard facet. If ¢ is an admissible k-represen-
tation of MF with a central character, then .IndG

PF ¢/
QI is a finite-dimensional

zHk-module whose irreducible subquotients are not supersingular.

Proof. That .IndG
PF ¢/

QI is finite-dimensional is a consequence of the admissibility
of ¢ . Let � 2 X�.T/ be a strongly F -negative coweight (see Remark 3.6) and
�0 2 XC� .T/ the unique dominant coweight in its W-orbit O.�/. By Lemma 3.4,

z�0 D
X

�02O.�/

B�F .�
0/:

We compute the action of z�0 on an element of the form v˝12 ¢
QI0F ˝zHk.MF /�

zHk .
We have B�F .�/D �e� and therefore

.v˝ 1/B�F .�/D v˝ �e� D v˝ j
�
F .�

F
e�
/D .v�F

e�
/˝ 1:

Recall that �F
e�
D �F

�.$�1/
and that �.$�1/ is a central element in MF . Therefore,

v�F
e�
D !.�.$//v, where ! denotes the central character of ¢ . By (2-4), this

implies in particular that .v˝ 1/B�F .�
0/ D 0 for �0 2 O.�/ distinct from �. We

have proved that z�0 acts by multiplication by !.�.$//¤ 0 on ¢QI
0
F ˝zHk.MF /�

zHk ,
and therefore on .IndG

PF ¢/
QI by Proposition 5.17. This proves the claim. �

Corollary 5.24. Let F be a standard facet. Let SpF be the generalized special
k-representation of G

SpF D
IndG

PF 1P
F 0¤F�F

IndG
PF 0
1
;

where F 0 ranges over the set of standard facets ¤ F contained in the closure
of F . The QI-invariant subspace of SpF is a finite-dimensional zHk-module whose
irreducible subquotients are not supersingular.

Proof. Suppose first that F ¤ x0. By [Große-Klönne 2013b, (18)] (which is valid
with no restriction on the split group G), .SpF /

QI is a quotient of .IndG
PF 1/

QI. Apply
Corollary 5.23. If F D x0, then the special representation in question is the trivial
character of G, whose QI-invariant subspace is isomorphic to the trivial character of
zHk and is not supersingular (see the example in Section 5D2 and Lemma 5.12). �
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5F. On supersingular representations. Let � be a weight of K. By (4-7), there
is a correspondence between the k-characters of H.G; �/ and the k-characters of
Zı.zHk/, and we will use the letter � for each of the two characters paired up by
(4-7). With this notation, by the work in Section 4 we have a surjective morphism
of representations of G:

�˝Zı.zHk/
indG
QI 1 �! �˝H.G;�/ indG

K �: (5-8)

For ! a character of the connected center of G, let �! the supersingular character
of Zı.zHk/ as in Section 5C3. We remark that the representation �! ˝Zı.zHk/

indG
QI 1

of G has central character !.
From now on we suppose that the derived group of G is simply connected and

that F is a finite extension of Qp.

Lemma 5.25. A character H.G; �/ ! k is parametrized by the pair .G; !/ in
the sense of [Herzig 2011a, Proposition 4.1] if and only if it corresponds to the
supersingular character �! of Zı.zHk/ via (4-7).

Proof. In this proof we denote by  WH.G; �/! k and � W Zı.zHk/! k a pair of
characters corresponding to each other by (4-7). Recall that T denotes the inverse
Satake isomorphism (4-4). By [ibid., Corollary 4.2] (see also Corollary 2.19 there),
the character  W H.G; �/! k is parametrized by the pair .G; !/ if and only if
 ı T.�/D 0 for all � 2 XC� .T/ such that `.e�/¤ 0 and if  ˝H.G;�/ indG

K � has
central character equal to ! (see Lemma 4.4 and its proof there). Since for all
� 2 XC� .T/ we have �.z�/D  ıT.�/ and since  ˝H.G;�/ indG

K � is a quotient of
�˝Zı.zHk/

indG
QI 1, we have proved (using the remark before the statement of this

lemma) that  is parametrized by the pair .G; !/ if and only if � D �! . �

A smooth irreducible admissible k-representation of G has a central character. A
smooth irreducible admissible k-representation   with central character ! WZ!k�

is called supersingular with respect to .K;T;B/ [ibid., Definition 4.7] if for all
weights � of K, any map indG

K �!   factors through

�! ˝H.G;�/ indG
K � �!  :

Note that if the first map is zero, then the condition is trivial. By (5-8), a supersin-
gular representation with central character ! WZ! k� is therefore a quotient of
�! ˝Zı.zHk/

indG
QI 1 and, by Definition 5.8, of

indG
QI 1=I indG

QI 1:

Remark 5.26. (i) The representation indG
QI 1=I indG

QI 1 depends only on the con-
jugacy class of x0. It is independent of any choices if G is of adjoint type or
GD GLn.
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(ii) An irreducible admissible representation  of G is a quotient of indG
QI 1=I indG

QI 1

if and only if  QI contains a supersingular zHk-module. Recall that when the root
system of G is irreducible, we have proved that the notion of supersingularity
for zHk-modules is independent of all the choices made.

Theorem 5.27. If G D GLn.F/ or PGLn.F/, a smooth irreducible admissible
k-representation   is supersingular if and only if  QI contains a supersingular
zHk-module; that is to say, if and only if   is a quotient of

indG
QI 1=I indG

QI 1: (5-9)

Proof. Let   be a smooth irreducible admissible k-representation of G with
central character !. If it is a quotient of indG

QI 1=I indG
QI 1, then it is a quotient

of �! ˝Zı.zHk/
indG
QI 1, and  QI contains the supersingular character �! of Zı.zHk/.

Therefore it contains a supersingular zHk-module. By Corollaries 5.23 and 5.24, this
implies that   is neither a representation induced from a strict parabolic subgroup
of G nor (a twist by a character of G of) a generalized special representation. By
[Herzig 2011a, Theorem 1.1], which classifies all smooth irreducible admissible
k-representation of G, we conclude by elimination that the representation   is
supersingular. �

The results of [Herzig 2011a] have been generalized to the case of an F-split
connected reductive group G in [Abe 2013]: the classification of the smooth
irreducible admissible representations of G is quite similar to the case of GLn.F/
(expect for a certain subtlety when the root system of G is not irreducible). Based
on this classification and on Corollaries 5.23 and 5.24, N. Abe confirmed that the
space of QI-invariant vectors of a nonsupersingular representation does not contain
any supersingular zHk-module. Therefore, Theorem 5.27 is true for a general split
group with simply connected derived subgroup.
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