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We construct and classify all Poisson structures on quasimodular forms that extend
the one coming from the first Rankin–Cohen bracket on the modular forms. We
use them to build formal deformations on the algebra of quasimodular forms.

1. Introduction

Henri Cohen [1975, Theorem 7.1] defined a collection of bidifferential operators
on modular forms. Let n be a positive integer, f a modular form of weight k, and
g a modular form of weight `. The n-th Rankin–Cohen bracket of f and g is the
modular form of weight k+ `+ 2n defined by

RCn( f, g)=
n∑

r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
Dr f Dn−rg

(
D=

1
2π i

d
dz

)
.

The algebraic structure of these brackets has been studied in the seminal [Zagier
1994]. That Rankin–Cohen brackets define a formal deformation of the algebra of
modular forms has been widely studied. Important contributions are [Unterberger
and Unterberger 1996; Cohen et al. 1997; Yao 2007; Bieliavsky et al. 2007; Pevzner
2012; Kobayashi and Pevzner 2013].

In this paper, we construct formal deformations of the algebra M≤∞
∗

of quasi-
modular forms. This algebra is generated over C by the three Eisenstein series
E2, E4 and E6. The algebra M∗ of modular forms is the subalgebra generated by
E4 and E6. As a first step, we classify the admissible Poisson structures of M≤∞

∗
.

A Poisson bracket { , } on M≤∞
∗

is admissible if

(i) the restriction of { , } to the algebra M∗ of modular forms is the first Rankin–
Cohen bracket RC1 and
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(ii) it satisfies {M≤s
k ,M≤t

` } ⊂M≤s+t
k+`+2 for any even integers k, ` and any integers s

and t ,

where M≤s
k is the vector space of quasimodular forms of weight k and depth less

than s. The vector space of parabolic modular forms of weight 12 is one-dimensional.
We choose 1= E3

4−E2
6 a generator.

Proposition A (first family of Poisson brackets). For any λ ∈ C∗, there exists an
admissible Poisson bracket { , }λ on the algebra of quasimodular forms defined by
the following values on the generators:

{E4,E6}λ =−21,

{E2,E4}λ =−
1
3(2E6E2− λE2

4),

{E2,E6}λ =−
1
2(2E2

4E2− λE4E6).

Moreover:

(i) For any λ ∈ C∗, the Poisson bracket { , }λ is not unimodular.

(ii) The Poisson algebras (M≤∞
∗
, { , }λ) and (M≤∞

∗
, { , }λ′) are Poisson modular

isomorphic for all λ and λ′ in C∗.

(iii) For any λ ∈ C∗, the Poisson centre of (M≤∞
∗
, { , }λ) is C.

Remark. A Poisson isomorphism ϕ on M≤∞
∗

is modular if ϕ(M∗)⊂M∗.

Thanks to (ii) in Proposition A, we restrict to the bracket { , }1. Following [Zagier
1994, Equation (38)], we consider the derivation w on M≤∞

∗
defined by

w( f )=
{1, f }1

121
.

A derivation δ on M≤∞
∗

is complex-like if δ(M≤s
k )⊂M≤s+1

k+2 for any k and s. The
set of complex-like derivations δ such that k f δ(g)− `gδ( f )= 0 for any f ∈M≤s

k
and g ∈M≤t

` , for any k, `, s, t , is a one-dimensional vector space over C. Let π be
a generator. The following theorem provides a first family of formal deformations
of the algebra M≤∞

∗
.

Theorem B. For any a∈C, let da be the derivation on M≤∞
∗

defined by da=aπ+w.

(i) For all quasimodular forms f and g of respective weights k and `, we have

{ f, g}1 = k f da(g)− `gda( f ).

(ii) More generally, for any a ∈ C, the brackets defined for any integer n ≥ 0 by

[ f, g]da,n =

n∑
r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
dr

a( f )dn−r
a (g)

( f ∈M≤∞k , g ∈M≤∞` )
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satisfy
[M≤∞k ,M≤∞` ]da,n ⊂M≤∞k+`+2n

and define a formal deformation of M≤∞
∗

.

(iii) Moreover, [M≤s
k ,M≤t

` ]da,n ⊂M≤s+t
k+`+2n for all n, s, t, k, ` if and only if a = 0.

Remark. A generator π is defined by linear extension of π( f )= k f E2 for f any
quasimodular form of weight k. For this choice, the derivation da is defined on the
generators by

daE2 = 2aE2
2−

1
12 E4, daE4 = 4aE4E2−

1
3 E6, daE6 = 6aE6E2−

1
2 E2

4.

Proposition C (second family of Poisson brackets). For any α ∈ C, there exists an
admissible Poisson bracket ( , )α on the algebra of quasimodular forms defined by
the following values on the generators:

(E4,E6)α =−21, (E2,E4)α = αE6E2, (E2,E6)α =
3
2αE2

4E2.

Moreover:

(i) For any α ∈ C \ {4}, the Poisson bracket ( , )α is not unimodular. For α = 4,
the Poisson bracket ( , )4 is Jacobian (and hence unimodular) of potential
k0 =−21E2.

(ii) The Poisson algebras (M≤∞
∗
, ( , )α) and (M≤∞

∗
, ( , )α′) are Poisson modular

isomorphic if and only if α = α′.

(iii) For any α ∈ C,

(a) if α /∈Q, the Poisson centre of (M≤∞
∗
, ( , )α) is C;

(b) if α = 0, the Poisson centre of (M≤∞
∗
, ( , )α) is C[E2];

(c) if α = p/q with p ∈ Z∗ and q ∈ N∗, p and q coprimes, the Poisson centre
of (M≤∞

∗
, ( , )α) is

C if p < 0,

C[1pE4q
2 ] if p ≥ 1 is odd,

C[1uE2q
2 ] if p = 2u for odd u ≥ 1,

C[1vEq
2] if p = 4v with v ≥ 1.

Remark. The bracket ( , )0 is the trivial bracket.

This second family provides a new set of formal deformations of the algebra
of quasimodular forms. Following [Zagier 1994, Equation (38)], we consider the
derivation v defined on M≤∞

∗
by

v( f )=
(1, f )α

121
.
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Let us define Kα : M≤∞
∗
→ C by setting Kα( f )= k− (3α+ 2)s if f has weight k

and depth s. The set of complex-like derivations δ such that

Kα( f ) f δ(g)−Kα(g)gδ( f )= 0

for any f ∈M≤s
k and g ∈M≤t

` , for any k, `, s, t , is a one-dimensional vector space
over C. Let πα be a generator. We define

Ms
k =Mk−2sEs

2.

Theorem D. Let α ∈ C. For any b ∈ C, let δα,b be the derivation on M≤∞
∗

defined
by δα,b = bπα + v.

(i) For all f ∈Ms
k and g ∈Mt

`, we have

( f, g)α = (k− (3α+ 2)s) f δα,b(g)− (`− (3α+ 2)t)gδα,b( f )

for any f ∈Ms
k and g ∈Mt

`.

(ii) Moreover, the brackets defined for any integer n ≥ 0 by

[ f, g]Kα

δα,b,n

=

n∑
r=0

(−1)r
(k−(3α+2)s+n−1

n−r

)(
`−(3α+2)t+n−1

r

)
δr
α,b( f )δn−r

α,b (g)

for any f ∈Ms
k and g ∈Mt

` define a formal deformation of M≤∞
∗

satisfying

[M≤s
k ,M≤t

` ]
Kα

δα,b,n ⊂M≤s+t
k+`+2n

for all k, ` in 2N and s, t in N if and only if b = 0.

Remark. A generator πα is defined by linear extension of

πα( f )= [k− (3α+ 2)s] f E2 ( f ∈Ms
k).

For this choice, the derivation δα,b is defined on the generators by

δα,bE2 =−3bαE2
2, δα,bE4 = 4bE4E2−

1
3 E6, δα,bE6 = 6bE6E2−

1
2 E2

4.

To complete the classification of Poisson structures, we introduce a third family
of Poisson brackets. We note, however, that when µ 6= 0 this third family does not
lead to a formal deformation of M≤∞

∗
with the shape of Rankin–Cohen brackets

(see Section 4.3).

Proposition E (third family of Poisson brackets). For any µ ∈ C, there exists an
admissible Poisson bracket 〈 , 〉µ on the algebra of quasimodular forms defined by
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the following values on the generators:

〈E4,E6〉µ =−21,

〈E2,E4〉µ = 4E6E2+µE2
4,

〈E2,E6〉µ = 6E2
4E2− 2µE4E6.

Moreover:

(i) This Poisson bracket is Jacobian with potential

kµ =−21E2+µE2
4E6.

(ii) The Poisson algebras (M≤∞
∗
, 〈 , 〉µ) and (M≤∞

∗
, 〈 , 〉µ′) are Poisson modular

isomorphic for all µ and µ′ in C∗.

(iii) For any µ ∈ C, the Poisson centre of (M≤∞
∗
, 〈 , 〉µ) is the polynomial algebra

C[kµ].

Remark. We note that 〈 , 〉0 = ( , )4.

Finally, the following result implies that our classification is complete.

Theorem F. Up to Poisson modular isomorphism, the only distinct admissible
Poisson brackets on the algebra of quasimodular forms are { , }1, 〈 , 〉1 and the
family ( , )α for any α ∈ C.

Remark. We could endow the algebra of modular forms with another Poisson
structure b. If we require b(Mk,M`) ⊂ Mk+`+2, then b is necessarily defined by
b(E4,E6)=αE3

4+βE2
6 for some complex numbers α and β. If αβ 6= 0, then (M∗, b)

is Poisson isomorphic to (M∗,RC1) and is indeed studied by this work. If αβ = 0,
the Poisson algebras are no longer Poisson isomorphic (they do not have the same
group of automorphisms). This degenerate case deserves another study.

Remark. From an algebraic point of view, classifications of Poisson structures
and associated (co)homology for polynomial algebras in two variables appear in
[Monnier 2002; Pichereau 2006a; Roger and Vanhaecke 2002] for a Poisson bracket
on C[x, y] defined by {x, y}=ϕ(x, y) with ϕ a homogeneous or square-free weight-
homogeneous polynomial in C[x, y]. The algebra of modular forms M∗=C[E4,E6]

with the Poisson bracket defined by RC1 is the case A2 in the classification theorem
3.8 in [Monnier 2002]. Applying Propositions 4.10 and 4.11 of [Pichereau 2006a],
or Theorems 4.6 and 4.11 of [Monnier 2002], we can deduce that the Poisson
cohomology spaces HP1(M∗) and HP2(M∗) are of respective dimensions 1 and 2.
In three variables, the Poisson structures on the algebra M≤∞

∗
= C[E2,E4,E6] of

quasimodular forms arising from Theorem F do not fall under the classification of
[Dufour and Haraki 1991] since they are not quadratic. The (co)homological study
of Pichereau [2006a; 2006b] does not apply to the brackets { , }1 and ( , )α, since
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they are not Jacobian, or to the Jacobian bracket 〈 , 〉1, because its potential k1 does
not admit an isolated singularity at the origin.

2. Number theoretic and algebraic background

2.1. Quasimodular forms. The aim of this section is to provide the necessary
background on quasimodular forms. For details, the reader is advised to refer
to [Zagier 2008] or [Martin and Royer 2005]. On SL(2,Z), a modular form of
weight k ∈ 2N, k 6= 2, is a holomorphic function on the Poincaré upper half-plane
H= {z ∈ C : =z > 0} satisfying

(cz+ d)−k f
(

az+ b
cz+ d

)
= f (z)

for any
(

a b
c d

)
∈ SL(2,Z) and having Fourier expansion

f (z)=
∑
n≥0

f̂ (n)e2π inz.

We denote by Mk the finite-dimensional space of modular forms of weight k. The
algebra of modular forms is defined as the graded algebra

M∗ =
⊕
k∈2N
k 6=2

Mk .

Let k ≥ 2 be even. We define the Eisenstein series of weight k by

Ek(z)= 1−
2k
Bk

+∞∑
n=1

σk−1(n)e2π inz.

Here the rational numbers Bk are defined by their exponential generating series

+∞∑
n=0

Bn
tn

n!
=

t
et − 1

and σk−1 is the divisor function defined by

σk−1(n)=
∑
d | n
d>0

dk−1 (n ∈ N∗).

If k ≥ 4, the Eisenstein series Ek is a modular form of weight k and M∗ is the
polynomial algebra in the two algebraically independent Eisenstein series E4 and E6.
In other words,

M∗ = C[E4,E6], Mk =
⊕

(i, j)∈N2

4i+6 j=k

CEi
4E j

6.
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However, the Eisenstein series E2 is not a modular form. It satisfies

(cz+ d)−2E2

(
az+ b
cz+ d

)
= E2(z)+

6
π i

c
cz+ d

(z ∈H)

for any
(

a b
c d

)
∈ SL(2,Z). Moreover, the algebra of modular forms is not stable by

the normalised complex derivation

D=
1

2π i
d
dz
.

For example, we have the Ramanujan differential equations

DE2 =
1
12(E

2
2−E4), DE4 =

1
3(E4E2−E6), DE6 =

1
2(E6E2−E2

4).

To account for these observations, and using the fact that E2, E4 and E6 are al-
gebraically independent, we introduce the algebra M≤∞

∗
of quasimodular forms

defined as the polynomial algebra

M≤∞
∗
= C[E2,E4,E6] =M∗[E2].

More intrinsically, if for γ =
(

a b
c d

)
∈ SL(2,Z) we define

X(γ )= z 7→
c

cz+ d
and

f |kγ = z 7→ (cz+ d)−k f
(

az+ b
cz+ d

)
,

then a quasimodular form of weight k ∈ 2N and depth s ∈ N is a holomorphic
function f on H such that there exist holomorphic functions f0, . . . , fs ( fs 6= 0)
satisfying

f |kγ =
s∑

j=0

f j X(γ ) j

for any γ ∈ SL(2,Z). Moreover, it is required that any f j have a Fourier expansion

f j (z)=
∑
n≥0

f̂ j (n)e2π inz (z ∈H).

The zero function is supposed to have arbitrary weight and depth 0. We write
M≤∞k for the space of quasimodular forms of weight k and M≤s

k for the space
of quasimodular forms of weight k and depth less than or equal to s. We have
M≤0

k =Mk and

M≤s
k =

s⊕
j=0

Mk−2 j E
j
2, M≤∞

∗
=

⊕
k∈2N

M
≤k/2
k .
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Moreover, DM≤s
k ⊂M≤s+1

k+2 . Since the depth of a quasimodular form is nothing but
its degree as a polynomial in E2 with modular coefficients, we note that

M≤s
k =

s⊕
t=0

Mt
k, M≤∞

∗
=

⊕
k∈2N

k/2⊕
t=0

Mt
k,

where
Mt

k =Mk−2t Et
2 =

⊕
(i, j)∈N2

4i+6 j=k−2t

CEi
4E j

6Et
2.

An important element in our study will be the discriminant function 1= E3
4−E2

6.
We note that D1=1E2.

Let n be a nonnegative integer, f a modular form of weight k, and g a modular
form of weight `. The n-th Rankin–Cohen bracket of f and g is

RCn( f, g)=
n∑

r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
Dr f Dn−rg.

This is a modular form of weight k+ `+ 2n. If f and g are quasimodular forms of
respective weights k and ` and respective depths s and t , their n-th Rankin–Cohen
bracket is defined in [Martin and Royer 2009] by

RCn( f, g)=
n∑

r=0

(−1)r
(k−s+n−1

n−r

)(
`−t+n−1

r

)
Dr f Dn−rg. (1)

This is a quasimodular form of weight k+ `+ 2n and minimal depth (that is s+ t).

2.2. Poisson algebra. The aim of this section is to give a brief account of what
is needed about Poisson algebra. For more details, the reader is advised to refer
to [Laurent-Gengoux et al. 2013]. A commutative C-algebra A is a Poisson algebra
if there exists a bilinear skew-symmetric map b : A× A→ A satisfying the two
conditions

• (Leibniz rule) b( f g, h)= f b(g, h)+ b( f, h)g and

• (Jacobi identity) b( f, b(g, h))+ b(g, b(h, f ))+ b(h, b( f, g))= 0

for all f , g and h in A. The bilinear map b is given the name of Poisson bracket.
If A is a finitely generated algebra with generators x1, . . . , xN , a Poisson bracket
b is entirely determined by its values b(xi , x j ) for i < j , where A is generated by
x1, . . . , xN . More precisely, we have

b( f, g)=
∑

0≤i< j≤N

(
∂ f
∂xi

∂g
∂x j
−
∂g
∂xi

∂ f
∂x j

)
b(xi , x j ) (2)

for f and g expressed as polynomials in x1, . . . , xN .
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If A = C[x, y], any p ∈ A determines a Poisson bracket satisfying b(x, y)= p.
However, if A = C[x, y, z], for any p, q and r in A, there exists a Poisson bracket
on A defined by

b(x, y)= r, b(y, z)= p and b(z, x)= q

if and only if
curl(p, q, r) · (p, q, r)= 0, (3)

where

curl(p, q, r)=
(
∂r
∂y
−
∂q
∂z
,
∂p
∂z
−
∂r
∂x
,
∂q
∂x
−
∂p
∂y

)
.

If condition (3) is satisfied, then (p, q, r) is called a Poissonian triple. A par-
ticular case is obtained if there exists k ∈ C[x, y, z] such that curl(p, q, r) =
(p, q, r)∧ grad k. The bracket b is said then to be unimodular. Among unimodular
brackets are the Jacobian brackets. A bracket b is Jacobian if (p, q, r)= grad k for
some polynomial k. The bracket b then satisfies

b( f, g)= jac( f, g, k) ( f, g ∈ A).

In this case, C[x, y, z] is said to have a Jacobian Poisson structure of potential (or
Casimir function) k. The Poissonian triple (p, q, r) is said then to be exact.

The Poisson centre (or zeroth Poisson cohomology group) of a Poisson algebra
A is the Poisson subalgebra

HP0(A)= {g ∈ A : b( f, g)= 0, ∀ f ∈ A}.

The Poisson centre is contained in the Poisson centraliser of any element in the
algebra: let f ∈ A; its Poisson centraliser is {g ∈ A : b( f, g)= 0}. The following
lemma computes the Poisson centre of polynomial algebras in three variables
equipped with a Jacobian Poisson structure. It allows one to recover, for example,
Proposition 4.2 of [Pichereau 2006b] in the particular case where the potential
is a weight-homogeneous polynomial with an isolated singularity. A polynomial
h ∈C[x, y, z] is indecomposable if there is no polynomial p ∈C[x] with deg p≥ 2
such that h = p ◦ ` for some ` ∈ C[x, y, z].

Lemma 1. Let C[x, y, z] be endowed with a Jacobian Poisson structure of noncon-
stant potential k. Its Poisson centre is C[k] if and only if k is indecomposable.

Proof. Assume that k is not indecomposable: k = p ◦ ` with p ∈ C[x], deg p = 2.
Then jac(`, g, k) = (p′ ◦ `) jac(`, g, `), and hence ` is in the Poisson centre, but
not in C[k]. Assume conversely that k is indecomposable. Let f be in the Poisson
centre; then the rank of the Jacobian matrix of ( f, g, k) is at most 2 for any g. If
it is 1 for any g then grad f and grad k are zero, which contradicts the fact that
k is not constant. Hence, for some g, the rank is 2. It follows (see, for example,
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[Gutierrez and Sevilla 2006, Theorem 6]) that there exist q ∈ C[x, y, z], F ∈ C[x]
and K ∈ C[x] such that f = F ◦ q and k = K ◦ q. Since k is indecomposable and
nonconstant, we have deg K = 1, and hence q and f are polynomials in k. �

If A and B are two Poisson algebras with respective Poisson brackets bA and bB ,
a map ϕ : A→ B is a morphism of Poisson algebras when it is a morphism of
algebras that satisfies

ϕ(bA( f, g))= bB(ϕ( f ), ϕ(g))

for any f and g in A. Two Poisson-isomorphic Poisson algebras have isomorphic
Poisson centres.

We detail now a canonical way to extend a Poisson structure from an algebra A
to a polynomial algebra A[x]. This construction is due to Sei-Qwon Oh [2006]. A
Poisson derivation of A is a derivation σ of A satisfying

σ(b( f, g))= b(σ ( f ), g)+ b( f, σ (g))

for all f and g in A. If σ is a Poisson derivation of A, a Poisson σ -derivation is a
derivation δ of A such that

δ(b( f, g))= b(δ( f ), g)+ b( f, δ(g))+ σ( f )δ(g)− δ( f )σ (g)

for all f and g in A.

Theorem 2 [Oh 2006]. Let (A, bA) be a Poisson algebra. Let σ and δ be linear
maps on A. The polynomial ring A[x] becomes a Poisson algebra with Poisson
brackets b defined by

b( f, g)= bA( f, g), b(x, f )= σ( f )x + δ( f )

for all f and g in A if and only if σ is a Poisson derivation and δ is a Poisson
σ -derivation. In this case, the Poisson algebra A[x] is said to be a Poisson–Ore
extension of A. It is denoted by A[x]σ,δ.

We describe also a general process to obtain Poisson brackets from a pair of
derivations. A pair (δ, d) of two derivations of A is solvable if there exists some
scalar α such that δ ◦ d− d ◦ δ = αd. In particular, a solvable pair (δ, d) is abelian
when α = 0.

Proposition 3. Let A be a commutative algebra, and d and δ two derivations of A.
Let b : A× A→ A be defined by

b( f, g)= δ( f )d(g)− d( f )δ(g) ( f, g ∈ A).

Then:

(i) The map b is bilinear skew-symmetric and satisfies the Leibniz rule.



Poisson structures and star products on quasimodular forms 1137

(ii) If (δ, d) is solvable, then b satisfies the Jacobi identity and so becomes a
Poisson bracket.

(iii) If (δ, d) is solvable, then d is a Poisson derivation for b.

Proof. Point (i) is immediate. Point (ii) is a consequence of the following computa-
tion. If (δ, d) is solvable with δd− dδ = αd and if B : A⊗ A⊗ A→ A is defined
by B( f, g, h)= b( f, b(g, h)), then

B= α(d⊗ d⊗ δ− d⊗ δ⊗ d)+
(
δ⊗ (d ◦ δ)⊗ d− d⊗ δ⊗ (d ◦ δ)

)
+
(
d⊗(d◦δ)⊗δ−δ⊗d⊗(d◦δ)

)
+(δ⊗δ⊗d2

−δ⊗d2
⊗δ)+(d⊗d⊗δ2

−d⊗δ2
⊗d).

Point (iii) is obtained by direct computation. �

A direct consequence of this proposition is the following corollary. If A =⊕
n≥0 An is a commutative graded algebra, a map κ : A→ C is graded-additive if

for any f ∈ Ak and g ∈ A` (for any k and `) we have κ( f g)= κ( f )+ κ(g).

Corollary 4. Let A =
⊕

n≥0 An be a commutative graded algebra. Let κ : A→ C

be a graded-additive map. Let d be a homogeneous derivation of A (there exists
e ≥ 0 such that dAn ⊂ An+e for any e ≥ 0). Then the bracket defined on A by the
bilinear extension of

b( f, g)= κ( f ) f d(g)− κ(g)gd( f ) ( f ∈ Ak, g ∈ A`)

is a Poisson bracket for which d is a Poisson derivation.

We turn to formal deformations of a commutative C-algebra A. Assume we have
a family µ= (µi )i∈N of bilinear maps µi : A× A→ A such that µ0 is the product.
Let A[[}]] be the commutative algebra of formal power series in one variable } with
coefficients in A. The family µ is a formal deformation of A if the noncommutative
product on A[[}]] defined by extension of

f ∗ g =
∑
j≥0

µ j ( f, g)} j ( f, g ∈ A)

is associative. This condition is equivalent to

n∑
r=0

µn−r (µr ( f, g), h)=
n∑

r=0

µn−r ( f, µr (g, h)) (for all f, g, h ∈ A) (4)

for all n ≥ 0. In this case, the product ∗ is called a star product. If µ is a formal
deformation and if moreover µ1 is skew-symmetric and µ2 is symmetric, then
(A, µ1) is a Poisson algebra.
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2.3. Problems at issue. The first Rankin–Cohen bracket

RC1( f, g)= k f D(g)−D( f )`g ( f ∈Mk, g ∈M`)

gives M∗ a structure of Poisson algebra. This is a consequence of Corollary 4.
Cohen, Manin and Zagier [Cohen et al. 1997] and Yao [2007] (see also Rochberg,
Tang and Yao [Rochberg et al. 2011]) proved that the family of Rankin–Cohen
brackets is a formal deformation of M∗. In this case, the star product is called the
Eholzer product. This subject has been widely studied. See for example [Olver and
Sanders 2000; Pevzner 2008].

Can we construct formal deformations of M≤∞
∗

? In other words, can we construct
suitable families (µn)n∈N of bilinear maps on M≤∞

∗
that increase the weight by 2n,

preserve the depth and define an analogue of the Eholzer product? The brackets
defined in (1) do not lead to a solution since RC1 does not even provide M≤∞

∗
with

a Poisson structure. Our first step is to obtain admissible Poisson brackets on M≤∞
∗

with the following definition.

Definition 5. A Poisson bracket b on M≤∞
∗

is admissible if

(1) b( f, g)= RC1( f, g) if f and g are in M∗;

(2) it satisfies b(M≤s
k ,M≤t

` )⊂M≤s+t
k+`+2 for all k, `, s, t .

Remark. We could have replaced condition (2) by the following one: there exists
e ≥ 0 such that b(M≤s

k ,M≤t
` ) ⊂ M≤s+t

k+`+e for all k, `, s, t . However, condition (1)
implies that necessarily e = 2.

Equivalently, a Poisson bracket b on M≤∞
∗

is admissible if and only if

b(E4,E6)=−21,

b(E2,E4) ∈M≤∞8 , b(E2,E6) ∈M≤∞10 ,

b(E2,M∗)⊂M∗E2+M∗.

In order to classify the admissible Poisson brackets, we introduce the notion of
Poisson modular isomorphism.

Definition 6. A Poisson isomorphism ϕ : (M≤∞
∗
, b1) → (M≤∞

∗
, b2) is called a

Poisson modular isomorphism if ϕ(M∗)⊂M∗.

Indeed, if ϕ is a Poisson modular isomorphism, then its restriction to the subal-
gebra M∗ is the identity. This is a consequence of the following proposition.

Proposition 7. The group of Poisson automorphisms of Poisson algebra (M∗,RC1)

is trivial.
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Proof. Let ϕ be a Poisson automorphism of M∗. There exist two polynomials s and
t in C[x, y] such that ϕ(E4)= s(E4,E6) and ϕ(E6)= t (E4,E6). By (2), we have

RC1(ϕ(E4), ϕ(E6))= jac(s, t)(E4,E6) ·RC1(E4,E6).

Since ϕ is an automorphism, jac(s, t) is a nonzero scalar, say λ. We get

ϕ(RC1(E4,E6))= λRC1(E4,E6) and hence s3
− t2
= λ(x3

− y2) in C[x, y].
(5)

We develop s and t into homogeneous components with respect to the weight:

s =
m∑

i=0
i 6=1

s2i and t =
n∑

i=0
i 6=1

t2i ,

where

s2i =
∑

(a,b)∈N2

2a+3b=i

σa,bxa yb and t2i =
∑

(a,b)∈N2

2a+3b=i

τa,bxa yb (σa,b, τa,b ∈ C)

for all i (where m = 0 or m ≥ 2 and n = 0 or n ≥ 2). Equation (5) implies that
t (E4,E6)

2
− s(E4,E6)

3 has weight 12. Then only three cases are possible.

(1) If 3m > 2n then m = 2 and so n ∈ {0, 2}. This implies that s = σ00+σ10x and
t = τ00+ τ10x . This contradicts jac(s, t) 6= 0.

(2) If 3m < 2n then n = 3 and m = 0. This contradicts jac(s, t) 6= 0.

(3) If 3m = 2n, we differentiate (5) with respect to x and y and get

3s2 ∂s
∂x
− 2t

∂t
∂x
= 3λx2, 3s2 ∂s

∂y
− 2t

∂t
∂y
=−2λy.

This implies

2t = 3x2 ∂s
∂y
+ 2y

∂s
∂x
, 3s2

= 3x2 ∂t
∂y
+ 2y

∂t
∂x
. (6)

From the first differential equation of (6) we have

2t (E4,E6)= 3E2
4
∂s
∂y
(E4,E6)+ 2E6

∂s
∂x
(E4,E6).

The highest weight of the right-hand side is less than or equal to 2m + 2. This
implies n ≤ m+ 1. From the second differential equation of (6), we have

3s2(E4,E6)= 3E2
4
∂t
∂y
(E4,E6)+ 2E6

∂t
∂x
(E4,E6);

hence 2m≤n+1. We deduce (m, n)∈{(0, 0), (2, 3)}. Since n=m=0 would imply
jac(s, t)=0, we have n=3 and m=2. Then s=σ00+σ10x and t= τ00+τ10x+τ01 y.
The first differential equation in (6) implies that τ00= τ10= 0 and τ01=σ10, whereas
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the second one implies that σ00 = 0 and σ10 = 1. Finally, ϕ(E4)= s(E4,E6)= E4

and ϕ(E6)= s(E4,E6)= E6. �

Since RC1(1, f )= (12D( f )− k f E2)1 for any f ∈Mk , the first Rankin–Cohen
bracket defines a derivation on M∗ called Serre’s derivative by linear extension of

ϑ f =
RC1(1, f )

121
= D( f )−

k
12

f E2 ( f ∈Mk). (7)

This derivation is characterised by its values on the generators

ϑE4 =−
1
3 E6, ϑE6 =−

1
2 E2

4.

We shall need the following result.

Proposition 8. The kernel of Serre’s derivative is the Poisson centraliser of 1 for
the first Rankin–Cohen bracket. This is C[1].

Proof. If f ∈ Mk is in kerϑ then k f D(1) = 121D( f ). Solving the differential
equation, we find that 12 divides k and that f ∈ C1k/12. �

We note that for any g ∈M` we have

RC1(1
m, g)= m1m(12D(g)− `gE2)

and deduce that for any f ∈ C[1] and g ∈M∗ we have

RC1( f, g)= 12ξ( f )ϑ(g), (8)

where ξ is the Eulerian derivative on C[1] defined by ξ =1
∂

∂1
.

3. Poisson structures on quasimodular forms

3.1. First family. This section is devoted to the proof of Proposition A.
We fix λ ∈ C∗ and introduce in C[x, y, z] the three polynomials

r(x, y, z)= 1
3(λy2

− 2xz),

p(x, y, z)=−2(y3
− z2),

q(x, y, z)=− 1
2(λyz− 2xy2).

Since (p, q, r) · curl(p, q, r)= 0, we define a Poisson bracket on M≤∞
∗

if we set

{E4,E6}λ = p(E2,E4,E6),

{E2,E4}λ = r(E2,E4,E6),

{E6,E2}λ = q(E2,E4,E6).
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Let us prove that { , }λ is not unimodular. If it were, we would have k ∈ C[x, y, z]
such that curl(p, q, r)= (p, q, r)∧ grad k. Identifying the first components would
lead to

7
6
λy =

1
2
(−λyz+ 2y2x)

∂k
∂z
−

1
3
(λy2
− 2zx)

∂k
∂y
,

which has no solution in C[x, y, z].
A Poisson modular isomorphism ϕλ between (M≤∞

∗
, { , }λ) and (M≤∞

∗
, { , }1) is

determined by

ϕλ(E2)= λE2, ϕλ(E4)= E4, ϕλ(E6)= E6.

Finally, we determine the Poisson centre of the Poisson algebra (M≤∞
∗
, { , }1).

Let us define a derivation on M∗ by σ = 2ϑ (see (7)) and a derivation on M∗ by
linear extension of

δ( f )=
k
12

f E4 ( f ∈Mk).

We note that (M≤∞
∗
, { , }1) is the Poisson–Ore extension C[E4,E6][E2]σ,δ. Now

consider any f ∈M≤∞
∗

written as

f =
s∑

i=0

fi Ei
2 ( fi ∈M∗).

We compute

{E2, f }1 = δ( f0)+

s∑
i=1

(σ ( fi−1)+ δ( fi ))Ei
2+ σ( fs)Es+1

2 .

If {E2, f }1 = 0 then δ( f0) = 0, and hence f0 ∈ C and σ( f0) = 0. We obtain
inductively that fi ∈ C for all 0≤ i ≤ s, so the Poisson centraliser of E2 is C[E2].
Suppose that the Poisson centre contains a nonscalar element. Then it is in the
Poisson centraliser of E2 and can be written

f =
p∑

j=0

α j E
j
2 (p ≥ 1, α j ∈ C, αp 6= 0).

We compute

{E4, f }1 =
p∑

j=0

jα j E
j−1
2 · {E4,E2}1

and find that the coefficient of Ep
2 is nonzero. It follows that f is not in the Poisson

centre.
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3.2. Second family. This section is devoted to the proof of Proposition C. We fix
α ∈ C and introduce in C[x, y, z] the three polynomials

r(x, y, z)= αxz,

p(x, y, z)=−2(y3
− z2),

q(x, y, z)=− 3
2αxy2.

Since (p, q, r) · curl(p, q, r)= 0, we define a Poisson bracket on M≤∞
∗

if we set

(E4,E6)α = p(E2,E4,E6),

(E2,E4)α = r(E2,E4,E6),

(E6,E2)α = q(E2,E4,E6).

Assume α 6= 4. Let us prove that ( , )α is not unimodular. If it were, we would
have k ∈ C[x, y, z] such that curl(p, q, r) = (p, q, r) ∧ grad k. Identifying the
second components would lead to

(4−α)z = αxz
∂k
∂x
+ 2(y3

− z2)
∂k
∂z
,

which has no solution in C[x, y, z].
If α = 4, then (p, q, r)= grad k0, where k0 =−2(y3

− z2)x . As a consequence,
the bracket ( , )4 provides M≤∞

∗
with a Jacobian Poisson structure of potential

k0 =−21E2 =−2D(1).
If ϕ : (M≤∞

∗
, ( , )α)→ (M≤∞

∗
, ( , )α′) is a Poisson modular isomorphism, let us

prove that α = α′. By Proposition 7, we have ϕ(E4) = E4 and ϕ(E6) = E6. By
surjectivity, it follows that ϕ(E2) = ηE2 + F for some η ∈ C∗ and F ∈ M∗. We
compute

ϕ((E2,E4)α)= αηE6E2+αE6 F

and
(ϕ(E2), ϕ(E4))α′ = α

′ηE6E2+ (F,E4)α′ .

Since (F,E4)α′ ∈M∗ we get α′ = α.
Finally, we determine the Poisson centre of the Poisson algebra (M≤∞

∗
, ( , )α).

We note that (M≤∞
∗
, ( , )α) is the Poisson–Ore extension C[E4,E6][E2]σ,δ, where

σ =−3αϑ (see (7)) and δ = 0. Let

f =
s∑

j=0

f j E
j
2 ( f j ∈M∗).

We have

(E2, f )α =
s∑

j=0

σ( f j )E
j+1
2 ,
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and hence f is in the Poisson centraliser of E2 if and only if each f j is in the
Poisson centraliser of 1 for RC1. By Proposition 8, we deduce that the centraliser
of E2 is C[1,E2]. Let

f =
s∑

j=0

f j (1)E
j
2 ∈ C[1,E2].

We use (8) to compute

( f,E4)α =

s∑
j=0

(−4ξ( f j )+ jα f j )E6E j
2,

( f,E6)α =
3
2

s∑
j=0

(−4ξ( f j )+ jα f j )E2
4E j

2.

We deduce that f is in the Poisson centre of ( , )α if and only if

ξ( f j )=
jα
4

f j

for all j , that is, if and only if any f j is of the form f j = λ j1
m j for some λ j ∈ C

and m j ∈ N such that jα = 4m j . If α /∈Q or if α < 0 then j = 0 and m j = 0, and
hence f = f0 ∈ C. If α = p/q with p ≥ 1, q ≥ 1 and (p, q) = 1, then λ1m j E j

2
is in the Poisson centre if and only if pj = 4qm j . The result follows by obvious
arithmetical consideration. Finally, if α = 0, then ( , )0 is the trivial bracket and its
Poisson centre is C[E2].

3.3. Third family. In this section, we study the third family, that is, we prove
Proposition E.

For any µ ∈ C, let us introduce

kµ =−21E2+µE2
4E6.

Then

jac(E4,E6, kµ)=
∂kµ
∂E2
=−2E3

4+ 2E2
6,

jac(E2,E4, kµ)=
∂kµ
∂E6
= 4E6E2+µE2

4,

jac(E2,E6, kµ)=−
∂kµ
∂E4
= 6E2

4E2− 2µE4E6.

The third family of Poisson brackets is then defined by 〈 f, g〉µ = jac( f, g, kµ).
With the notation of Proposition C, we have in particular 〈 f, g〉0 = ( f, g)4.

For anyµ∈C∗, define a Poisson modular isomorphism ϕµ between (M≤∞
∗
, 〈 , 〉µ)

and (M≤∞
∗
, 〈 , 〉1) by setting ϕµ(E2)= µE2, ϕµ(E4)= E4 and ϕµ(E6)= E6.
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Since the degree in E2 of kµ as a polynomial in E2,E4,E6 is 1, Lemma 1 implies
that the Poisson centre of (M≤∞

∗
, 〈 , 〉µ) is C[kµ].

3.4. Classification. This section is devoted to the proof of Theorem F.
Let { , } be an admissible bracket on M≤∞

∗
. By Definition 5 and Theorem 2, there

exist a Poisson derivation σ of M∗ and a Poisson σ -derivation δ of M∗ such that

{E2, f } = σ( f )E2+ δ( f ) ( f ∈M∗).

By definition, σ(Mk)⊂Mk+2 and δ(Mk)⊂Mk+4 for any k. The admissible bracket
{ , } is then defined by the four scalars α, β, γ and ε such that

σ(E4)= αE6, δ(E4)= βE2
4, σ (E6)= γE2

4 and δ(E6)= εE4E6.

The condition that σ is a Poisson derivation imposes the condition

{σ(E4),E6}+ {E4, σ (E6)} = −2σ(E3
4−E2

6),

or equivalently, 3α = 2γ . The condition that δ is a Poisson σ -derivation imposes

δ({E4,E6})= (2β + ε)E4{E4,E6}+αεE4E2
6−βγE4

4,

or equivalently, {
4β + (α− 2)ε = 0,
(3α− 4)β + 4ε = 0.

Either β = ε = 0 is the only solution, or α ∈
{
−

2
3 , 4

}
and ε = 4

2−α
β.

• The case β = ε = 0 leads to the second family: { , } = ( , )α.

• The case α =− 2
3 and ε = 3β/2 6= 0 leads to the first family: { , } = { , }3β .

• The case α = 4 and ε =−2β 6= 0 leads to the third family: { , } = 〈 , 〉β .

Using Propositions C and E, we conclude that the only admissible Poisson brackets,
up to Poisson modular isomorphisms, are { , }1, 〈 , 〉1 and ( , )α for any α ∈ C.
Looking at the centres, it is clear that the Poisson algebras (M≤∞

∗
, 〈 , 〉1) and

(M≤∞
∗
, { , }1) are not Poisson modular isomorphic. Suppose that there exists a

Poisson modular isomorphism ϕ from (M≤∞
∗
, ( , )α) to (M≤∞

∗
, { , }1). We know

(see Section 3.2) that

ϕ(E4)= E4, ϕ(E6)= E6 and ϕ(E2)= ηE2+ F

for some η ∈ C∗ and F ∈M∗. From ϕ((E2,E4)α)= {ϕ(E2), ϕ(E4)}1 we obtain

αηE6E2+αFE6 =−
2
3
ηE6E2+

1
3
ηE2

4+{F,E4}1,

and hence

α =−
2
3
,

1
3
ηE2

4 =−
2
3

FE6−{F,E4}1 =−
2
3

FE6+ 2(E3
4−E2

6)
∂F
∂E6
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by (2). We get a contradiction. Replacing { , }1 by 〈 , 〉1, we get

α = 4, ηE2
4 = 4FE6− 2(E3

4−E2
6)
∂F
∂E6

,

and again we get a contradiction.

4. Star products on quasimodular forms

4.1. Extension of the first family. This section is devoted to proving Theorem B.
We will use the following result of Zagier [1994, Example 1]. Let A =

⊕
Ak be a

commutative graded algebra with a derivation d homogeneous of degree 2 (that is,
d(Ak)⊂ Ak+2). Let us define, for any f ∈ Ak , g ∈ A`, r ≥ 0:

[ f, g]d,r =
r∑

i=0

(−1)i
(k+r−1

r−i

)(
`+r−1

i

)
di ( f )dr−i (g) ∈ Ak+`+2r . (9)

Then A equipped with these brackets is a Rankin–Cohen algebra, which means that
all algebraic identities satisfied by the usual Rankin–Cohen brackets on modular
forms are also satisfied, in particular those expressing the associativity of the
corresponding star product. We obtain the following result.

Theorem 9. The star product defined by

f #g =
∑
n≥0

[ f, g]d,n}n

defines a formal deformation on A.

In particular, we recover the fact, given by Corollary 4, that [ , ]d,1 is a Poisson
bracket. Note also that this theorem can be obtained from Connes and Moscovici’s
result cited below (see Section 4.2).

Let a ∈C and da be the homogeneous derivation of degree 2 on M≤∞
∗

defined by

da(E2)= 2aE2
2−

1
12 E4, da(E4)= 4aE4E2−

1
3 E6, da(E6)= 6eE6E2−

1
2 E2

4.

A direct computation proves that the two Poisson brackets [ , ]da,1 and { , }1 coincide
on generators and hence are equal on M≤∞

∗
.

Remark. A derivation d on M≤∞
∗

is complex-like if dM≤s
k ⊂M≤s+1

k+2 for all k and s.
Let π be the derivation on M≤∞

∗
defined by linear extension of π( f )= k f E2 for all

f ∈M≤∞k . The set of complex-like derivations d such that [ , ]d,1 = 0 is the vector
space of dimension 1 over C generated by π . Let us define w on M≤∞

∗
by

w( f )=
{1, f }1

121
.

Then
da = w+ aδ.
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This implies in particular that if a complex-like derivation d satisfies [ , ]d,1 = { , }1,
then d= da for some a ∈ C.

Point (ii) of Theorem B is obtained by a direct application of Theorem 9. We
prove now (iii). The term of highest degree with respect to E2 in [E2,E4]da,2 is
8a2E4E3

2. This forces a = 0. Conversely, if a = 0, then d0M≤∞
∗
⊂ M∗. For any

f = fi Ei
2 with fi ∈M∗, we have

d0( f )= d0( fi )Ei
2−

1
12 i fi E4Ei−1

2 ,

and hence degE2
d0( f )≤ degE2

f and degE2
d j

0( f )≤ degE2
f for any f ∈M≤∞

∗
and

j ≥ 0. This implies that

[M≤s
k ,M≤t

` ]d0,n ⊂M≤s+t
k+`+2n.

4.2. Extension of the second family. The aim of this section is to prove Theorem D.
The proof of (i) is similar to the proof of (i) in Theorem B. Let K :M≤∞

∗
→ C be a

graded-additive map. For any integer n ≥ 0, we define a bilinear application [ , ]Kd,n
by bilinear extension of

[ f, g]Kd,n =
n∑

r=0

(−1)r
(K( f )+n−1

n−r

)(K(g)+n−1
r

)
dr f dn−rg.

By Corollary 4, we know that [ f, g]Kd,1 is a Poisson bracket.
Let us fix Kα to be the linear extension on M≤∞

∗
=
⊕

k
⊕

s Ms
k of

Kα( f )= (k− (3α+ 2)s) ( f ∈Ms
k). (10)

Let πα be the derivation on M≤∞
∗

defined by πα( f )=Kα( f ) f E2 for all f ∈M≤∞
∗

.
The set of complex-like derivations such that [ , ]Kα

d,1 = 0 is the vector space of
dimension 1 over C generated by πα. Define derivations v and δα,b on M≤∞

∗
by

v( f )=
(1, f )α

121
and

δα,b = v+ bπα.

Note that v does not depend on α. By comparing the values on the generators, it is
immediate that ( , )α = [ , ]

Kα

δα,b,1.

Remark. Direct computations show that if d is a homogeneous derivation of degree
2 and K is such that ( , )α = [ , ]Kd,1, then we necessarily have K= Kα and d= δα,b
for some b ∈ C.

The condition that [E4,E6]
K
δα,b,2 has to be a modular form implies b = 0 or

α = −1
3 . For α = −1

3 , condition (4) for µr = [ , ]
K
δα,b,r and n = 3 is not satisfied
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(this can be shown with computer assistance, for example with Sage [Stein et al.
2013]). We assume then that b = 0.

Connes and Moscovici [2004, Remark 14] (see also [Yao 2007, §II.2] for a nice
presentation of this result) proved that if E and H are two derivations of an algebra
R such that HE − EH = E , then the applications µn : R× R→ R defined by

µn( f, g)=
n∑

r=0

(−1)r

r !(n− r)!
[Er
◦(2H+r)〈n−r〉( f )]·[En−r

◦(2H+n−r)〈r〉(g)] (11)

define a formal deformation on R with the notation

F 〈m〉 = F ◦ (F + 1) ◦ (F + 2) ◦ · · · ◦ (F +m− 1).

Let $ be the derivation defined on M≤∞
∗

by $( f )= K( f ) f. Then we have

$ ◦ δα,0− δα,0 ◦$ = 2δα,0.

We use Connes and Moscovici’s result with E = δα,0 and H =$/2 to obtain

µn( f, g)

=

n∑
r=0

(−1)r
(k−(3α+2)s+n−1

n−r

)(
`−(3α+2)t+n−1

r

)
δr
α,0( f )δn−r

α,0 (g).

This implies Theorem D.

Remark. We could have applied Connes and Moscovici’s result to extend the first
family. Indeed Zagier’s result is a consequence of Connes and Moscovici’s. Let
d be a derivation homogeneous of degree 2 of the commutative graded algebra
A=

⊕
Ak . It is obvious that the linear map defined on each Ak by H( f )= (k/2) f

is a derivation of A. It is also clear that it satisfies H ◦ d− d ◦ H = d . In particular,
for any f ∈ Ak and g ∈ A` we calculate

(2H + r)〈n−r〉( f )=
(k+ n− 1)!
(k+ r − 1)!

f,

(2H + (n− r))〈r〉(g)=
(`+ n− 1)!

(`+ n− r − 1)!
g.

Hence a direct application of formula (11) gives formula (9).

4.3. Extension of the third family. We do not extend the third family, since for
µ 6= 0, the bracket 〈 , 〉µ does not have the shape of a Rankin–Cohen bracket. More
precisely, if there exist a function κ :M≤∞

∗
→ C and a complex-like derivation δ of

M≤∞
∗

such that
〈 f, g〉µ = κ( f ) f δ(g)− κ(g)gδ( f )
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for all f and g in M≤∞
∗

, then µ= 0. Indeed, assume κ and δ exist; then
δ(E2)= AE2

2+ BE4,

δ(E4)= CE4E2+ DE6,

δ(E6)= EE6E2+ FE2
4

for some complex numbers A, B, C , D, E and F . Since we know the values of
〈 , 〉µ on the generators, we get a system depending on A, B, C , D, E , F , κ(E2),
κ(E4) and κ(E6). It is not difficult to prove that this system has a solution if and
only if µ= 0.
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