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We give sufficient conditions for the affinity of Etingof’s sheaves of Cherednik
algebras on projective space. To do this, we introduce the notion of pullback of
modules under certain flat morphisms.
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1. Introduction

1.1. In a seminal paper, Etingof and Ginzburg [2002] introduced the family of
rational Cherednik algebras associated to a complex reflection group. Since their
introduction, rational Cherednik algebras have been intensively studied, and found
to be related to several other areas of mathematics. Their definition was vastly
generalized in [Etingof 2004]. Given any smooth variety X and finite group W
acting on X , Etingof defines a family of sheaves1 of algebras Hω,c(X,W ) on X
which are flat deformations of the skew group ring DX o W . Being sheaves of
algebras, one would like to be able to use standard geometric techniques such as
pullback and pushforward to study their representation theory. This paper is a small
first step in developing these techniques. As motivation, we consider the question
of affinity for these algebras when X = P(V ).

MSC2010: primary 20C08; secondary 16S80.
Keywords: rational Cherednik algebras, localization theory.

1Here, one must take the W -equivariant Zariski topology on X . See Section 2.1.
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1.2. If V is a finite-dimensional vector space and W acts linearly on V , then there
is an induced action of W on P(V ). Thus, Etingof’s construction gives us a sheaf
of algebras Hω,c(P(V ),W ) on P(V ). In trying to understand the representation
theory of these algebras, one would like to know when they are affine, i.e., for
which ω and c does the global sections functor give us an equivalence between the
category of modules for Hω,c(P(V ),W ) and the category of modules for its global
sections Hω,c(P(V ),W ). Our main result is an explicit combinatorial criterion on
ω and c which guarantees that the corresponding Cherednik algebra is affine. We
associate to ω, c and λ ∈ Irr W a pair of scalars aλ, bλ; see Section 5.5.

Theorem 1.2.1. The sheaf of algebras Hω,c(P(V ),W ) is affine provided aλ /∈ Z≥0

and bλ /∈ Z>0 for all λ ∈ Irr W .

In order to prove this result, we introduce two key pieces of machinery. The first
is the notion of pullback of Hω,c-modules under certain well-behaved maps (which
we call melys). The second is to establish an equivalence between the category
of (twisted) T -equivariant Hc-modules on a principal T -bundle Y → X and the
category of modules for a Cherednik algebra Hω,c on the base X of the bundle.
With this machinery in place, the proof of the main result is essentially the same
as for sheaves of twisted differential operators on P(V ); see [Hotta et al. 2008,
Theorem 1.6.5].

1.3. Being able to pull back D-modules is an extremely useful tool in studying the
representation theory of sheaves of differential operators. Therefore, one would
like to be able to do the same for Cherednik algebras. We show that this is possible,
at least for some morphisms. A W -equivariant map ϕ : Y → X between smooth
varieties is said to be melys if it is flat and, for all reflections (w, Z) in X , ϕ−1(Z)
is contained in the fixed point set Yw of w.

Theorem 1.3.1. If ϕ : Y → X is melys, then pullback is an exact functor

ϕ∗ :Hω,c(X,W )-Mod−→Hϕ∗ω,ϕ∗c(Y,W )-Mod.

The pullback functor is particularly well behaved when ϕ is étale. We define
the melys site over X , a certain modification of the usual étale site over X . Using
Theorem 1.3.1, we show that the Cherednik algebra forms a sheaf on this site.

One particularly rich source of melys morphisms is when π : Y → X is a
principal T -bundle, where T is a torus acting on Y with the action commuting
with the action of W . In this situation, one can perform quantum Hamiltonian
reduction of the Cherednik algebra Hc(Y,W ) on Y to get a sheaf Hβ(χ),c(X,W ) of
Cherednik algebras on X . As a consequence, one gets an equivalence between the
category of (χ -twisted) T -equivariant Hc(Y,W )-modules on Y and the category of
Hβ(χ),c(X,W )-modules on X .
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Theorem 1.3.2. Let χ ∈ t∗. We have an isomorphism of sheaves of algebras on X

Hβ(χ),c(X,W )' (π qHc(Y,W ))T /〈{t −χ(t) | t ∈ t}〉,

and the functor

(Hc(X,W ), T, χ)-Mod−→Hβ(χ),c(Y,W )-Mod

given by M 7→ (π qM)T is an equivalence of categories, with quasi-inverse N 7→π∗N.

1.4. We also study a natural generalization of the Knizhnik–Zamolodchikov con-
nection. The question of whether the Knizhnik–Zamolodchikov connection is flat is
closely related to the issue of presenting the Cherednik algebra. In the appendix, we
summarize for the reader unfamiliar with sheaves of twisted differential operators
(TDOs) those basic properties that we require.

2. Sheaves of Cherednik algebras

In this section we introduce sheaves of Cherednik algebras on a smooth variety.

2.1. Conventions. Throughout, all our spaces will be equipped with the action of
a finite group W . We do not assume that this action is effective. The morphisms
ϕ : Y → X that we will consider will always be assumed to be W -equivariant.
Since we wish to deal with objects such as OX o W , we work throughout with the
W -equivariant Zariski topology: a subset U ⊂ X is an open subset in this topology
if and only if it is open in the Zariski topology and W -stable. Then, OX o W
becomes a sheaf on X . If w ∈W , then Xw denotes the set of all points fixed under
the automorphism w. The sheaf of vector fields (resp. one-forms) on a smooth
variety X is denoted by 2X (resp. �1

X ).

2.2. Let X be a smooth, connected, quasiprojective variety over C. Let Z be
a smooth subvariety of X of codimension one. Locally, the ideal defining Z is
principal, generated by one section, fZ say. Then, the element

d log fZ :=
d fZ

fZ

is a section of �1
X (Z)=�

1
X ⊗OX (Z). Contraction defines a pairing

2X ⊗�
1
X (Z)→ OX (Z), (ν, ω) 7→ iν(ω).

Let �1,2
X be the two-term subcomplex �1

X
d
−→ (�2

X )
cl, concentrated in degrees 1

and 2, of the algebraic de Rham complex of X , where (�2
X )

cl denotes the subsheaf
of closed forms in �2

X . As noted in the appendix, sheaves of twisted differential op-
erators on X are parametrized, up to isomorphism, by the second hypercohomology
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group H2(X, �1,2
X ). Given ω ∈H2(X, �1,2

X ), the corresponding sheaf of differential
operators is denoted by Dω

X .

2.3. Dunkl–Opdam operators. Let W be a finite group acting on X . Let S(X) be
the set of pairs (w, Z) where w ∈ W and Z is a connected component of Xw of
codimension one. Any such Z is smooth. A pair (w, Z) in S(X) will be referred
to as a reflection of (X,W ). The group W acts on S(X), and we fix c : S(X)→ C

to be a W -equivariant function, where W acts trivially on C. A Picard algebroid P

on X is said to be W -equivariant if there are isomorphisms ψw : w∗(P)−→∼ P of
algebroids satisfying the usual cocycle condition such that the inclusion OX →P

and anchor map σ : P → 2X are W -equivariant. Since W acts rationally on
H2(X, �1,2

X ), each class [ω] ∈ H2(X, �1,2
X )W can be represented by an invariant

2-cocycle ω. The corresponding Picard algebroid Pω is W -equivariant. We fix
one such W -equivariant Picard algebroid Pω. Fix also an open affine, W -stable
covering {Ui } of X such that Pic(Ui )= 0 for all i . Then, we can choose functions
fZ ,i defining Ui ∩ Z . The union of all the Z is denoted by D. If j : X − D ↪→ X is
the inclusion, then write Pω(D) for the sheaf j q(Pω

|X−D).

Definition 2.3.1. For each ν ∈0(Ui ,Pω), the associated Dunkl–Opdam operator is

Dν = ν+
∑

(w,Z)∈S(X)

2c(w, Z)
1− λw,Z

iσ(ν)(d log fZ ,i )(w− 1), (2.3.2)

where λw,Z is the eigenvalue of w on each fiber of the conormal bundle of Z in X .

The operator Dv is a section of Pω(D) o W over Ui . The 0(Ui ,OX o W )-
submodule of Pω(D)oW generated by 0(Ui ,OX oW ) and all the Dunkl–Opdam
operators {Dv | v ∈ 0(Ui ,Pω)} is denoted by 0(Ui ,F1

ω,c(X,W )). Though the
definition of the Dunkl–Opdam operator Dv depends on the choice of functions
fZ ,i , it is easy to see that the submodule 0(Ui ,F1

ω,c(X,W )) of 0(Ui ,Pω(D)oW )

is independent of any choices. The modules 0(Ui ,F1
ω,c(X,W )) glue to form a sheaf

F1
ω,c(X,W ) in the W -equivariant Zariski topology on X . As noted in the remark

after Theorem 2.11 of [Etingof 2004], a calculation in each formal neighborhood of
x ∈ X shows that [Dν1, Dν2] ∈F1

ω,c(X,W ) for all ν1, ν2 ∈Pω. However, there is no
natural bracket on F1

ω,c(X,W ). The anchor map σ : Pω(D)⊗W →2X (D)⊗W
restricts to a map F1

ω,c(X,W )→2X ⊗W which fits into a short exact sequence

0−→ OX o W −→ F1
ω,c(X,W )

σ
−→2X ⊗W −→ 0. (2.3.3)

Definition 2.3.4. We call the subsheaf of algebras of j q(Dω
X−D o W ) generated by

F1
ω,c(X,W ) the sheaf of Cherednik algebras associated to W, ω and c. It is denoted

Hω,c(X,W ).

The global sections of Hω,c(X,W ) are denoted Hω,c(X,W ).



Affinity of Cherednik algebras on projective space 1155

2.4. There is a natural order filtration F
q
ω,c(X,W ) on Hω,c(X,W ), defined in one

of two ways. Either one defines F
q
ω,c(X,W ) to be the restriction to Hω,c(X,W )

of the order filtration on j q(Dω
X−D o W ), or, equivalently, one gives elements

in F1
ω,c(X,W ) degree at most one, with D ∈ F1

ω,c(X,W ) having degree one
if and only if σ(D) 6= 0, and then defines the filtration inductively by setting
Fi
ω,c(X,W )= F1

ω,c(X,W )Fi−1
ω,c (X,W ). By definition, the filtration is exhaustive.

Let π : T ∗X→ X be the projection map. Etingof [2004, Theorem 2.11] has shown
that the algebras Hω,c(X,W ) are a flat deformation of DX o W . Equivalently, the
PBW property holds for Cherednik algebras:

Theorem 2.4.1. We have grF Hω,c(X,W )' π qOT ∗X o W .

We note for later use that Theorem 2.4.1 implies that for any affine W -stable
open set U ⊂ X , the algebra 0(U,Hω,c(X,W )) has finite global dimension; its
global dimension is bounded by 2 dim X .

2.5. Throughout, an Hω,c(X,W )-module will always mean an Hω,c(X,W )-module
that is quasicoherent over OX . The category of all Hω,c(X,W )-modules is de-
noted by Hω,c(X,W )-Mod and the full subcategory of all modules coherent over
Hω,c(X,W ) is denoted by Hω,c(X,W )-mod. A module M ∈Hω,c(X,W )-Mod is
called lisse if it is coherent over OX .

3. Pullback of sheaves

In this section we show that modules for sheaves of Cherednik algebras can be
pulled back under morphisms that are “melys” for the parameter c.

3.1. Let ϕ : Y → X be a W -equivariant morphism between smooth, connected,
quasiprojective varieties. As explained in the appendix, given a Picard algebroid
Pω

X on X , there is a ϕ-morphism P
ϕ∗ω
Y → ϕ∗Pω

X . This implies that the sheaf
ϕ∗Dω

X is a left D
ϕ∗ω
Y -module. We give conditions on the map ϕ so that there

exist a sheaf of Dunkl operators F1
ϕ∗ω,ϕ∗c(Y,W ) on Y and morphism of OY o W -

modules F1
ϕ∗ω,ϕ∗c(Y,W )→ ϕ∗F1

ω,c(X,W ). As a consequence ϕ∗Hω,c(X,W ) be-
comes a left Hϕ∗ω,ϕ∗c(Y,W )-module and we can pullback Hω,c(X,W )-modules to
Hϕ∗ω,ϕ∗c(Y,W )-modules.

3.2. If the morphism ϕ is flat of relative dimension r , then there is a good notion
of pullback of algebraic cycles, namely, ϕ∗ : Ck(X)→ Ck+r (Y ), where Ck(X)
is the abelian group of k-dimensional algebraic cycles on X . See [Fulton 1998,
Section 1.7]. The class in Ck(X) of a k-dimensional subscheme Z of X is denoted
by [Z ].

Lemma 3.2.1. Let ϕ :Y→ X be flat and (w, Z)∈S(X). Write ϕ∗[Z ]=
∑

i ni [Zi ],
where each Zi is an irreducible subvariety of Y . Then, w permutes the [Zi ].
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Moreover, if ϕ−1(Z) is set-theoretically contained in Yw, then each irreducible
component of ϕ−1(Z) is a connected component of Yw of codimension one.

Proof. The first claim follows from the fact that, set-theoretically, ϕ−1(Z) =⋃
ni 6=0 Zi . Since ϕ−1(Z) is a union of closed subvarieties of Y of codimension one

and Y is assumed to be irreducible, it suffices for the second claim to show that
Yw 6= Y . Assume otherwise. Then, since ϕ is flat, ϕ(Yw)= ϕ(Y ) is open in X , but
is also contained in the closed subvariety Xw. Hence Xw

= X . This contradicts the
fact that Z is an irreducible component of Xw. �

3.3. Let Sc(X) denote the set of all pairs (w, Z) ∈ S(X) such that c(w, Z) 6= 0.

Definition 3.3.1. The morphism ϕ : Y → X is melys with respect to c if:

(1) ϕ is flat.

(2) For all (w, Z) ∈ Sc(X), set-theoretically ϕ−1(Z)⊂ Yw.

If ϕ is melys with respect to c then we define ϕ∗c on S(Y ) by

(ϕ∗c)(w, Z ′)=
∑

(w,Z)∈S(X)

nZ ,Z ′ c(w, Z),

where ϕ∗[Z ] =
∑

Z ′ nZ ,Z ′[Z ′]. Let E =
⋃

c(w,Z) 6=0 Z and D = ϕ−1(E). Since
ϕ is flat, each irreducible component of D has codimension one in X . Let j :
U := X − D ↪→ X and k : V = Y − E ↪→ Y ; these are affine morphisms. For any
quasicoherent sheaf F on X (resp. on Y ), we denote by F(D) the sheaf j q(F|U )
(resp. by F(E) the sheaf k q(F|V )).
Lemma 3.3.2. The sheaf ϕ∗Dω

Y (E)oW on X is a D
ϕ∗ω
X (D)oW -module, and there

exists a morphism

γ : D
ϕ∗ω
X (D)o W −→ ϕ∗Dω

Y (E)o W

of D
ϕ∗ω
X (D)o W -modules.

Proof. The map ϕ restricts to a flat morphism 8 :U → V . By Lemma A.2.2, we
have

P8∗ω
U −→∼ 8∗Pω

V ×8∗2V
2U .

This induces a morphism γ : D8∗ω
U → 8∗Dω

V of D8∗ω
U -modules. Since ω was

chosen to be W -invariant, this extends to a morphism γ :D8∗ω
U oW→8∗Dω

V oW
of D8∗ω

U o W -modules. Since j qP8∗ω
U = P

ϕ∗ω
X (D), we have j q(D8∗ω

U o W ) =
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D
ϕ∗ω
X (D)o W . The diagram

U �
� j

//

8

��

X

ϕ

��
V �
� k

// Y

is Cartesian. Therefore, by flat base change, j q8∗Pω
V o W = ϕ∗Pω

Y (E)o W and
hence j q(8∗Dω

V o W )= ϕ∗Dω
Y (E)o W . �

3.4. By analogy with ϕ-morphisms (see Lemma A.2.2) we have:

Proposition 3.4.1. There is a morphism

γ :Hϕ∗ω,ϕ∗c(Y,W )−→ ϕ∗Hω,c(X,W )

of Hϕ∗ω,ϕ∗c(Y,W )-modules that induces an isomorphism of OY o W -modules

ψ : F1
ϕ∗ω,ϕ∗c(Y,W )−→∼ ϕ∗F1

ω,c(X,W ) ×ϕ∗2X⊗W 2Y ⊗W.

Proof. The algebra Hϕ∗ω,ϕ∗c(Y,W ) is a subalgebra of D
ϕ∗ω
Y (E) o W , whereas

ϕ∗Hω,c(X,W ) is a subalgebra of ϕ∗Dω
X (D) o W . Let γ : Hϕ∗ω,ϕ∗c(Y,W ) →

ϕ∗Dω
X (D)oW be the restriction of the morphism γ :D

ϕ∗ω
Y (E)oW→ϕ∗Dω

X (D)oW
of Lemma 3.3.2. We claim that it suffices to show that the image of γ is contained in
ϕ∗Hω,c(X,W ). Assuming this, the action of Hϕ∗ω,ϕ∗c(Y,W ) on ϕ∗Hω,c(X,W )will
just be the restriction of the action of D

ϕ∗ω
Y (E)o W on ϕ∗Dω

X (D)o W . Therefore,
it is given by

a · (g⊗ p)= γ ([a, g]) · (1⊗ p)+ g(γ (a) · (1⊗ p)),

where a ∈Hϕ∗ω,ϕ∗c(Y,W ), g ∈ OY and p ∈ ϕ−1Hω,c(X,W ). Here [a, g] is thought
of as an element of Hϕ∗ω,ϕ∗c(Y,W ). If γ (a) is contained in ϕ∗Hω,c(X,W ) and
p ∈ϕ−1Hω,c(X,W ), then γ (a)·(1⊗ p) belongs to ϕ∗Hω,c(X,W ). Thus, it suffices
to show that the image of γ is contained in ϕ∗Hω,c(X,W ) as claimed.

Since Hϕ∗ω,ϕ∗c(Y,W ) is generated as an algebra by F1
ϕ∗ω,ϕ∗c(Y,W ), it will suffice

to show that the image of F1
ϕ∗ω,ϕ∗c(Y,W ) is contained in ϕ∗F1

ω,c(X,W ). This is
a local calculation. Therefore, we may assume that both X and Y are affine and
that the subvarieties Z of X with (w, Z) ∈ Sc(X) are defined by the vanishing
of functions fZ . Let p ∈ P

ϕ∗ω
Y , and denote by Dp the associated Dunkl–Opdam

operator given by (2.3.2). Let γ (p)=
∑

i gi
⊗ q i in ϕ∗Pω

X . Then,

γ (Dp)=
∑

i

gi
⊗ q i
+

∑
(w,Z ′)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

iσY (p)(d log fZ ′)⊗ (w− 1).
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If ϕ−1(Z)= Z ′1∪· · ·∪ Z ′l set-theoretically and ϕ∗[Z ] =
∑l

i=1 ni [Z ′i ], then ϕ∗ fZ =

u
∏

i f ni
Z ′i

, for some unit u, and scheme-theoretically ϕ−1(Z) is defined by the
vanishing of the function

∏
i f ni

Z ′i
. Therefore, by definition of the parameter ϕ∗c,

2c(w, Z)
1− λw,Z

ϕ∗d log fZ =
∑

Z ′⊂ϕ−1(Z)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

d log fZ ′ + h, (3.4.2)

where h ∈ OY o W . Hence, up to a term in ϕ∗OX o W ,∑
(w,Z ′)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

iσY (p)(d log fZ ′)⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

iσY (p)(d logϕ∗ fZ )⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

σY (p)(ϕ∗ fZ )

ϕ∗ fZ
⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

1
ϕ∗ fZ

(∑
i

giϕ∗(σX (q i )( fZ ))

)
⊗ (w− 1)

=

∑
i

gi
⊗

(∑
(w,Z)

2c(w, Z)
1− λw,Z

σX (q i )( fZ )

fZ
(w− 1)

)

=

∑
i

gi
⊗

(∑
(w,Z)

2c(w, Z)
1− λw,Z

iσX (q i )(d log fZ )(w− 1)
)
.

Thus, γ (Dp)=
∑

i gi
⊗ Dq i , which lies in ϕ∗F1

ω,c(X,W ).
Finally, we show that the morphism γ induces the isomorphism ψ , as stated.

Since ϕ is flat, pulling back the sequence (2.3.3) gives a short exact sequence

0−→ OY o W −→ ϕ∗F1
ω,c(X,W )−→ ϕ∗2X ⊗W −→ 0.

Using the fact that OYoW×ϕ∗2X⊗W 2Y⊗W =OYoW , where OYoW→ϕ∗2X⊗W
is the zero map, and the fact that ϕ∗2X ⊗W ×ϕ∗2X⊗W 2Y ⊗W =2Y ⊗W , we
have a commutative diagram

0 // OY o W // F1
ϕ∗ω,ϕ∗c(Y,W )

σ //

ψ

��

2Y ⊗W // 0

0 // OY o W // ϕ∗F1
ω,c(X,W ) ×ϕ∗2X⊗W 2Y ⊗W // 2Y ⊗W // 0

By the five lemma, ψ is an isomorphism. �



Affinity of Cherednik algebras on projective space 1159

3.5. The morphism γ allows us to define an action of Hϕ∗ω,ϕ∗c(Y,W ) on ϕ∗M for
any Hω,c(X,W )-module M.

Corollary 3.5.1. Assume that ϕ is melys with respect to c. Then pullback is an
exact functor

ϕ∗ :Hω,c(X,W )-Mod−→Hϕ∗ω,ϕ∗c(Y,W )-Mod

extending the usual pullback ϕ∗ : QCoh(X)−→ QCoh(Y ).

Proof. Proposition 3.4.1 implies that

ϕ∗M= ϕ∗Hω,c(X,W ) ⊗ϕ−1Hω,c(X,W ) ϕ
−1M

is naturally an Hϕ∗ω,ϕ∗c(Y,W )-module. Since ϕ is flat, pullback of quasicoherent
OX -modules is an exact functor. �

It is clear by definition that ϕ∗ maps Hω,c(X,W )-mod to Hϕ∗ω,ϕ∗c(Y,W )-mod

and lisse Hω,c(X,W )-modules to lisse Hϕ∗ω,ϕ∗c(Y,W )-modules.

3.6. Étale morphisms. In this section we consider étale morphisms. Fix X , ω, W
and c as above. Let (X, c)mel be the full subcategory of Sch /X (schemes over X )
consisting of all morphisms Y → X that are étale and melys with respect to c.
Then, one can easily check that (X, c)mel is a site over X ; see, e.g., [Milne 1980,
Section II.1] for details on sites. We call (X, c)mel the melys site over X . The
following result is closely related to [Wilcox 2011, Proposition 2.3].

Proposition 3.6.1. The sheaf Hω,c(X,W ) is a sheaf of algebras on the melys site
(X, c)mel.

Proof. Let ϕ :Y→ X be an étale map, melys with respect to c. We begin by showing
that ϕ∗Hω,c(X,W ) is a sheaf of algebras and the morphism γ of Proposition 3.4.1
is an isomorphism of algebras.

As in Section 3.3, let D=
⋃

Z , E = ϕ−1(D), U = X−D and V = Y−E . Since
8 :V→U is étale, it is flat, and hence8−1Dω

U oW is a subsheaf of8∗Dω
U oW . As

noted in Remark A.2.4, the natural map γ :D8∗ω
V oW →8∗Dω

U oW is an algebra
isomorphism such that the restriction of γ−1 to8−1Dω

U oW is an algebra morphism
8−1Dω

U o W → D8∗ω
V o W . Therefore, using flat base change as in the proof of

Lemma 3.3.2, we get an algebra morphism γ−1
: ϕ−1Dω

X (D)oW→D
ϕ∗ω
Y (E)oW .

This morphism induces an algebra isomorphism

γ−1
: ϕ∗Dω

X (D)o W −→∼ D
ϕ∗ω
Y (E)o W,

where the multiplication in ϕ∗Dω
X (D)o W is given by

(g1⊗ q1) · (g2⊗ q2)= (g1⊗ 1)u(q1, g2)(1⊗ q2),

with u(q, g) :=γ ([γ−1(q), g])∈8∗Dω
X (D)oW , for all q, q1, q2∈ϕ

−1Dω
X (D)oW



1160 Gwyn Bellamy and Maurizio Martino

and all g, g1, g2 ∈ OY . By Proposition 3.4.1, γ−1 restricts to an algebra morphism
ϕ−1Hω,c(X,W )→Hϕ∗ω,ϕ∗c(Y,W ), inducing an isomorphism ϕ∗Hω,c(X,W )−→∼

Hϕ∗ω,ϕ∗c(Y,W ). Let
Y1

ϑ //

ϕ1   

Y2

ϕ2~~
X

be a morphism in (X, c)mel. Then, Y1 and Y2 are smooth varieties and, by [Milne
1980, I, Corollary 3.6], ϑ is an étale morphism. Lemma 3.2.1 implies that it is also
melys. Thus, the above computations show that Hω,c(X,W ) forms a presheaf on
(X, c)mel.

To check that it is in fact a sheaf, it suffices to do so locally; see the proof of
[Borho and Brylinski 1989, Proposition 0]. Therefore, we assume that X is affine
and that we are given an étale, W -equivariant, affine covering (iα : Yα→ X) of X ;
i.e., each Yα is affine and the union of the images of the maps iα cover X . Then we
must prove that the sequence

0−→ Hω,c(X,W )−→
⊕
α

Hi∗αω,i∗αc(Yα,W )−→
⊕
α,β

Hi∗α,βω,i
∗

α,βc(Yα ×X Yβ,W )

is exact. Let U, Vα, . . . be the usual open subsets of X, Yα, . . . . Then, we have a
commutative diagram

0 // Hω,c(X,W )
j //

� _

��

⊕
α

Hi∗αω,i∗αc(Yα,W )
k //

� _

��

⊕
α,β

Hi∗α,βω,i
∗

α,βc(Yα ×X Yβ,W )

� _

��

0 // 0(U,Dω
U o W ) //

⊕
α

0
(
Vα,D

i∗αω
Vα o W

)
//
⊕
α,β

0
(
Vα ×U Vβ,Di∗α,βωo W

)
The bottom row is exact because Dω

U o W is a sheaf on the melys site. Since the
diagram commutes, j is injective and the image of j is contained in the kernel of k.
Therefore, we just need to show that the image of j is exactly the kernel of k. The
sequence on the bottom row is strictly filtered with respect to the order filtration
and, as noted in Section 2.4, the Cherednik algebra inherits its natural filtration by
restriction of the order filtration on Dω

U o W . Therefore, the top row will be exact
if and only if the corresponding sequence of associated graded objects is exact. But
this sequence is also the associated graded of the analogous sequence for DX o W ,
which we know is exact. �

3.7. The KZ-functor. Assume that W acts freely on the open sets V ⊂ Y and
U ⊂ X , and let ω= 0. The proof of Proposition 3.4.1 makes it clear that pullback of
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Hc(X,W )-modules is compatible with the KZ-functor. Denote by Hc(X,W )-Reg
the full subcategory of Hc(X,W )-mod consisting of all lisse Hc(X,W )-modules
whose restriction to U is an integrable connection with regular singularities. Let DR
be the de Rham functor that maps integrable connections with regular singularities
on U/W to representations of the fundamental group π1(U/W ). The KZ-functor
is defined by

KZX (M)= DR
(
[ρ q(M|U )]W ).

Then ϕ∗ maps Hc(X,W )-Reg into Hϕ∗c(Y,W )-Reg. Therefore, since the de Rham
functor behaves well with respect to pullback [Hotta et al. 2008, Theorem 7.1.1],
the following diagram commutes

Hc(X,W )-Reg
ϕ∗ //

KZX

��

Hϕ∗c(Y,W )-Reg

KZY

��
π1(U/W )-mod

8∗ // π1(V/W )-mod

The image of the KZ-functor is contained in the full subcategory of π1(U/W )-mod

consisting of all modules for a certain “Hecke” quotient of Cπ1(U/W ); see [Etingof
2004, Proposition 3.4].

3.8. Pushforward. It is also possible to define (derived) pushforward of modules
under melys maps. Let ϕ : Y → X be melys with respect to c, and denote by
Mod-Hω,c(Y,W ) the category of right Hω,c(Y,W )-modules. Then, the derived
pushforward functor

Rϕ∗ : Db(Mod-Hω,c(Y,W ))−→ Db(Mod-Hω,c(X,W ))

is given by
Rϕ∗(M)= Rϕ q(M⊗L

Hω,c(Y,W ) ϕ
∗Hω,c(X,W )

)
.

Let us justify the fact that the image of Rϕ∗ is contained in Db(Mod-Hω,c(X,W )).
First, as noted in Section 2.4, the PBW theorem implies that the sheaf Hω,c(Y,W )

has good homological properties. Since we have assumed that Y is quasiprojective,
this implies that each M ∈ Mod-Hω,c(Y,W ) has a finite resolution by locally
projective Hω,c(Y,W )-modules; see [Hotta et al. 2008, Section 1.4]. Hence, for
M ∈ Db(Mod-Hω,c(Y,W )), the complex M⊗L

Hω,c(Y,W ) ϕ
∗Hω,c(X,W ) belongs to

Db(Mod-ϕ−1Hω,c(Y,W )). That Rϕ∗(M) belongs to Db(Mod-Hω,c(X,W )) then
follows, for instance, from [Hotta et al. 2008, Proposition 1.5.4].

We will also require pushforwards of left Hω,c(Y,W )-modules under open em-
beddings j : Y ↪→ X . The following is standard; see, e.g., [Hotta et al. 2008,
Proposition 1.5.4].
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Lemma 3.8.1. For M ∈ Hω,c(Y,W )-Mod, the sheaves Ri j q(M), i ≥ 0, belong to
Hω,c(X,W )-Mod.

It would be interesting to develop a notion of duality for Cherednik algebras,
which would allow one to define pushforwards of left Hω,c(Y,W )-modules along
arbitrary melys morphisms.

4. Twisted equivariant modules

In this section we define (twisted) G-equivariant Hω,c(X,W )-modules.

4.1. Let X be a smooth W -variety, and Hω,c(X,W ) a sheaf of Cherednik algebras
on X . Assume that a connected algebraic group G also acts on X such that
this action commutes with the action of W . Write p, a : G × X −→ X for the
projection and action maps. Let M be an Hω,c(X,W )-module. Clearly, p∗M is an
Hω,c(G× X,W )= DG �Hω,c(X,W )-module.

Lemma 4.1.1. The action map a is melys for any c, and therefore a∗M is an
Hω,c(G× X,W )-module.

Proof. The action map a is smooth and hence flat. Let (w, Z) ∈ S(X). Since the
action of G commutes with the action of W , Xw is G-stable. Moreover, the fact that
G and Z are connected implies that Z itself is G-stable. Thus, a−1(Z)= G× Z is
contained in (G× X)w = G× Xw. �

4.2. The Lie algebra of G is denoted by g. Let m : G×G→ G the multiplication
map and s : X→ G× X be defined by s(x)= (e, x). Choose χ ∈ (g/[g, g])∗, and
let O

χ

G be the DG-module DG/DG{v− χ(v) | v ∈ g}, where we have identified g

with right-invariant vector fields on G. It is an irreducible integrable connection
on G.

Definition 4.2.1. The module M ∈Hω,c(X,W )-Mod is called (G, χ)-monodromic
if there exists an isomorphism θ : O

χ

G �M−→∼ a∗M of Hω,c(G× X,W )-modules
such that s∗θ = idM and the diagram

O
χ

G �O
χ

G �M
idG×θ //

=

��

O
χ

G � a∗M

=

��
(m× id)∗(OχG �M)

(m×idX )
∗θ

��

(idG × a)∗(OχG �M)

(idG×a)∗θ

zz
(m× idX )

∗a∗M = // (idG × a)∗a∗M

(4.2.2)
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is commutative: M satisfies the cocycle condition.

We will denote the category of (G, χ)-monodromic Hω,c(X,W )-modules by
(Hω,c(X,W ),G, χ)-Mod.

4.3. T-monodromic modules. Let T be a torus, i.e., a product of copies of the
multiplicative group C×. The Lie algebra of T is denoted by t. Let π : Y → X be a
principal T -bundle, with X smooth. We assume that the finite group W acts on Y , the
action commuting with the action of T . This implies that W also acts on X and that
the map π is T -equivariant. Let Hc(Y,W ) be a sheaf of Cherednik2 algebras on Y .

Lemma 4.3.1. There is a morphism of Lie algebras µc : t→ F1
c(Y,W ) such that

the composite σ ◦µc equals the usual moment map µ : t→2Y ⊗W .

Proof. Since the action of T commutes with the action of W , the open set V =Y−E
is T -stable. Differentiating the action of T on U , there is a map µ′ : t→DY (E)oW .
It is clear that σ ◦µ′ = µ. Therefore, we just need to show that the image of µ′ is
contained in the subsheaf F1

c(Y,W ). This is a local computation. Hence we may
assume that Y = X × T , in which case Hc(Y,W ) = Hc(X,W )� DT . Now the
claim is clear. �

The group T acts on Hc(Y,W ) and the map µc is T -equivariant. Moreover, a
local computation (using the fact that the bundle Y→ X is locally trivial) shows that
the image of t is central in (π qHc(Y,W ))T , and hence we may perform quantum
Hamiltonian reduction. Recall that we define the map β : t∗ → H2(X, �1,2

X )

in (A.3.2).

Proposition 4.3.2. Let χ ∈ t∗. We have an isomorphism of sheaves of algebras
on X

Hβ(χ),c(X,W )' (π qHc(Y,W ))T /〈{µc(t)−χ(t) | t ∈ t}〉.

Proof. As in the proof of Proposition 3.4.1, let D =
⋃

c(w,Z) 6=0 Z , U = X − D,
E =π−1(D) and V = Y −E . Then the restriction of π to V is a principal T -bundle
5 : V →U and we have a Cartesian diagram

V �
� j //

5

��

Y

π

��
U �
� k // X

Proposition A.3.3 implies that there is an isomorphism

(5 qDV o W )T/〈{µ′(t)−χ(t) | t ∈ t}〉 −→∼ D
β(χ)

U o W. (4.3.3)

2We assume, for simplicity, that the twist ω is zero. Presumably one can also deal with nontrivial
twists.
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Recall that D
β(χ)

X (D)o W = k q(Dβ(χ)

U o W ). Since

k q(5 qDV o W )T = (k q(5 qDV o W ))T = (π q( j qDV o W ))T

and (π qHc(Y,W ))T is a subalgebra of (π q j qDV o W )T , we have a morphism of
sheaves τ : (π qHc(Y,W ))T → D

β(χ)

X (D)o W . The isomorphism (4.3.3) implies
that 〈{µc(t)−χ(t) | t ∈ t}〉 is contained in the kernel of τ . Therefore it suffices to
show that 〈{µc(t)− χ(t) | t ∈ t}〉 is precisely the kernel of τ and that the image
of τ is Hβ(χ),c(X,W ). Both of these statements are local. Thus, we may assume
without loss of generality that Y = X × T . In this case, both statements reduce to
the statement D(T )T /〈{t −χ(t) | t ∈ t}〉 ' C, which is clear. �

4.4. As for differential operators on principal T -bundles — see Section 2.5 of
[Beilinson and Bernstein 1993]) — Proposition 4.3.2 implies an equivalence of
categories:

Theorem 4.4.1. The functor

(Hc(X,W ), T, χ)-Mod→Hβ(χ),c(Y,W )-Mod, M 7→ (π qM)T
is an equivalence of categories with quasi-inverse N 7→ π∗N.

The above theorem can be extended in the obvious way to the category of weakly
T -equivariant Hc(X,W )-modules with generalized central character χ ∈ t∗/X(T ),
as in [Beilinson and Bernstein 1993]. We leave the details to the interested reader.

5. Affinity of Cherednik algebras on projective space

In this section we prove the main result, which is a criterion for the affinity of
Cherednik algebras on P(V ).

5.1. Let V be a vector space and W ⊂GL(V ) a finite group. For each (s, H)∈S(V )
and (s, H∗) ∈ S(V ∗), we fix αH ∈ V ∗ and α∨H ∈ V such that H = KerαH and
H∗=Kerα∨H , normalized so that αH (α

∨

H )=2. Let V o
=V−{0} and π :V o

→P(V )
be the quotient map. The map π is a principal T -bundle, where T = C× acts on
V by dilations; i.e., t · v = t−1v for t ∈ T and v ∈ V . Since W acts on V it also
acts on P(V ). For each s ∈W , codim P(V )s = 1 if and only if s is a reflection, in
which case P(V )s = P(H)∪C ·α∨H .

Lemma 5.1.1. We have H2(P(V ),�1,2
P )' C, and the morphism β of (A.3.2) is an

isomorphism.

Proof. For each n ∈ Z, let λn be the character of C× given by t 7→ tn . Then,
(π qOV o)λn ' O(n). This implies that β is injective. Therefore, it suffices to show
that dim H2(P(V ),�1,2

P )= 1. Since P(V ) can be covered by open sets isomorphic
to An−1, and H i

DR(A
n−1)= 0 for i 6= 0, the algebraic de Rham complex is acyclic.
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This implies that the map dOP[−1] →�
1,2
P is a quasi-isomorphism. Therefore, the

map H 1(P(V ), dOP)=H2(P(V ), dOP[−1])→H2(P(V ),�1,2
P ) is an isomorphism.

The long exact sequence associated to the short exact sequence

0−→ CP −→ OP −→ dOP −→ 0

shows that H 1(P(V ), dOP)' H 2(P(V ),CP) is one-dimensional. �

Lemma 5.1.1 implies the well-known fact that twisted differential operators
on projective space are locally isomorphic, in the Zariski topology, to the usual
differential operators. We identify H2(P(V ),�1,2

P ) with C so that if ω = n ∈ Z,
then Dω

P(V ) acts on O(n). The action of W on H2(P(V ),�1,2
P ) is trivial; therefore

the sheaf Dω
P(V ) is W -equivariant for all ω.

5.2. When X = V , the rational Cherednik algebra Hc(V,W ), as introduced by
Etingof and Ginzburg, can be described as an algebra given by generators and
relations. Namely, it is the quotient of the skew group algebra T (V ⊕ V ∗)o W by
the ideal generated by the relations

[x, x ′] = 0, [y, y′] = 0, [y, x] = x(y)−
∑
s∈S

c(s)αH (y)x(α
∨

H )s (5.2.1)

for all x, x ′ ∈ V ∗ and y, y′ ∈ V . Let x1, . . . , xn be a basis of V ∗ and y1, . . . , yn ∈ V
the dual basis. The Euler element is

h=
n∑

i=1

xi yi −
∑
s∈S

2c(s)
1− λs

s =
n∑

i=1

yi xi − n+
∑
s∈S

2c(s)
(

1−
1

1− λs

)
s.

One can easily check that [h, x] = x , [h, y] = −y and [h, w] = 0 for all x ∈ V ∗,
y ∈ V and w ∈W . The element h defines an internal grading on Hc(V,W ), where
deg(x)= 1, deg(y)=−1 and deg(w)= 0. The m-th graded piece of Hc(V,W ) is
denoted by Hc(V,W )m .

5.3. Dunkl embedding. The open subset U =V−D of V is the complement to the
zero locus of

∏
s∈S αH . For y ∈ V , thought of as a constant coefficient differential

operator, the corresponding Dunkl operator Dy equals

∂y +
∑
s∈S

2c(s)
1− λs

αH (y)
αH

(s− 1) ∈ 0(U,DU o W ).

The presentation of Hc(V,W ) given above is identified with the Cherednik algebra,
defined in terms of Dunkl operators, via the injective algebra homomorphism

Hc(V,W ) ↪→ 0(U,DU o W ), w 7→ w, x 7→ x, y 7→ Dy
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for all w ∈W , x ∈ V ∗ and y ∈ V . The image of h under the Dunkl embedding is

h=
n∑

i=1

xi
∂

∂xi
−

∑
s∈S

2c(s)
1− λs

. (5.3.1)

5.4. The sheaf of Cherednik algebras on P(V ). Set ρc =
∑

s∈S 2c(s)/(1− λs).
As noted in Example 2.20 of [Etingof 2004], the global sections of Hω,c(P(V ),W )

are related to Hc(V,W ) as follows:

Lemma 5.4.1. The space Hω,c(P(V ),W ) of global sections equals

Hc(V,W )0/(h+ ρc−ω).

Proof. By Proposition 4.3.2, we have a morphism

Hc(V,W )0 = Hc(V,W )T → Hc(V o,W )T → Hω,c(P(V ),W ).

Equation (5.3.1) implies that the operator h+ ρc−ω is in the kernel of this map
because it is in the kernel of the composite

Hc(V,W )0→ Hω,c(P(V ),W )→Hω,c(P(V ),W ) ↪→ Dω
P(V )(D)o W.

To prove that Hc(V,W )0/(h+ ρc−ω)→ Hω,c(P(V ),W ) is an isomorphism, we
consider the associated graded morphism. We have

grF Hc(V,W )0 = C[xi y j | i, j = 1, . . . , n]o W.

We claim that

grF Hω,c(P(V ),W )= 0(P(V ), π qOT ∗P(V )o W )

=

(
C[xi y j | i, j = 1, . . . , n]

/ ( n∑
i=1

xi yi

))
o W.

The second equality just follows from the usual description of T ∗P(V ) as the
Hamiltonian reduction of T ∗V o

= V o
×V ∗ with respect to the induced action of T .

The first equality follows from Theorem 2.4.1, once one takes into account that the
short exact sequences

0−→ Fm−1
ω,c (P(V ),W )−→ Fm

ω,c(P(V ),W )−→ (Symm 2P(V ))⊗W −→ 0

imply by induction that Ri0(Fm
ω,c(P(V ),W )) = 0 for i > 0. Therefore, the fil-

tered morphism Hc(V,W )0→ Hω,c(P(V ),W ) is surjective, and hence so too is
Hc(V,W )0/(h+ ρc − ω)→ Hω,c(P(V ),W ). On the other hand, the associated
graded algebra of Hc(V,W )0/(h+ ρc−ω) is a quotient of the algebra(

C[xi y j | i, j = 1, . . . , n]/
( n∑

i=1
xi yi

))
o W. �
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5.5. Let Irr W be the set of all isomorphism classes of irreducible W -modules. The
element

z :=
∑
s∈S

2c(s)
(

1−
1

1− λs

)
s =−z0+

∑
s∈S

2c(s)s

belongs to the center of CW . For each λ ∈ Irr W , let cλ be the scalar by which z
acts on λ and dλ the scalar by which z0 acts on λ. Set

aλ := ρc+ cλ− n−ω, bλ := ρc− dλ−ω.

The sheaf of algebras Hω,c(P(V ),W ) is said to be affine if the global sections
functor 0 induces an equivalence of categories

0 :Hω,c(P(V ),W )-Mod−→∼ Hω,c(P(V ),W )-Mod.

Theorem 5.5.1. Let aλ and bλ be as above.

(1) The functor 0 is exact, provided aλ /∈ Z≥0 for all λ ∈ Irr W .

(2) The functor 0 is conservative, provided bλ /∈ Z>0 for all λ ∈ Irr W .

Hence, the sheaf of algebras Hω,c(P(V ),W ) is affine, provided aλ /∈ Z≥0 and
bλ /∈ Z>0 for all λ ∈ Irr W .

Our proof of Theorem 5.5.1 follows that of Theorem 1.6.5 in [Hotta et al. 2008].

Proof. The category of finitely generated Hc(V,W )-modules supported on {0} ⊂ V
is denoted by O−. It is the category O for the rational Cherednik algebra as studied
in [Ginzburg et al. 2003]. We use basic results from this article without reference.
The element h acts locally finitely on modules in O−. The generalized eigenvalues
of h on M ∈ O− are the weights of M . Let 1(λ), for λ ∈ Irr W , denote the Verma
modules in O−. It is isomorphic to (Sym V )⊗λ as a Sym V o(CW⊗C[h])-module.
The weights of 1(λ) are cλ − n − Z≥0. If M ∈ O−, then there exist a projective
module P ∈ O− and a surjection P � M . The fact that the module P has a
Verma flag implies that the weights of M are contained in

⋃
λ∈Irr W cλ− n−Z≥0.

Therefore, zero is not a generalized eigenvalue of h + ρc − ω on M , provided
cλ+ ρc− r −ω− n 6= 0 for all r ∈ Z≥0, i.e., provided aλ /∈ Z≥0.

Let 0→M1→M2→M3→ 0 be a short exact sequence in Hω,c(P(V ),W )-mod.
By Theorem 4.4.1, the terms of the sequence 0→ π∗M1→ π∗M2→ π∗M3→ 0
belong to (Hc(V o,W ), T, ω)-mod. Moreover, the sequence is exact because π is
smooth. Let j : V o ↪→ V . As noted in Lemma 3.8.1, the sheaves Ri j q(π∗Mk)

for i ≥ 0 and k = 1, 2, 3 are Hω,c(V,W )-modules. The modules Ri j q(π∗Mk) are
supported on {0} for all i > 0. Therefore, they belong to the ind-category Ind O−.
The global sections 0(P(V ),Mk) are the element of the 0(V, j qπ∗Mk)

T . Therefore
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the long exact sequence

0−→ 0(V, j qπ∗M1)−→ 0(V, j qπ∗M2)

−→ 0(V, j qπ∗M3)−→ 0(V,R1 j q(π∗M1))−→ · · ·

gives rise to

0−→ 0(P(V ),M1)−→ 0(P(V ),M2)

−→ 0(P(V ),M3)−→ 0(V,R1 j q(π∗M1))
T
−→ · · · .

The space 0(V,R1 j q(π∗M1))
T can be identified with the space of generalized

h-eigenvectors in 0(V,R1 j q(π∗M1)) with eigenvalue ω− ρc. But if aλ /∈ Z≥0 for
all λ, then this space is necessarily zero. Hence the sequence 0→ 0(P(V ),M1)→

0(P(V ),M2)→ 0(P(V ),M3)→ 0 is exact.
Next we need to show if bλ /∈ Z>0 for all λ ∈ Irr W , then 0 is conservative;

i.e., 0(P(V ),M)=0 implies that M=0. Assume that M 6=0. Since π is smooth and
surjective, it is faithfully flat and π∗M=0 implies that M=0. Hence π∗M 6=0. Since
π∗M is (T, ω)-monodromic, the Euler element h acts semisimply on 0(V, j qπ∗M),
hence it decomposes as

0(V, j qπ∗M)=⊕
α∈Z

0(V, j qπ∗M)α+ω−ρc .

There is some α ∈Z for which 0(V, j qπ∗M)α+ω−ρc 6= 0. We first assume that α > 0.
Choose 0 6= m ∈ 0(V, j qπ∗M)α+ω−ρc . Since the space 0(V, j qπ∗M)α+ω−ρc is a
W -module, we may assume that m lies in some irreducible W -isotypic component
(of type λ say) of 0(V, j qπ∗M)α+ω−ρc . We claim that there is some y such that
y · m 6= 0. Assume not; then h · m = −dλm. Hence −dλ = α + ω − ρc; i.e.,
bλ = ρc− dλ−ω = α ∈ Z>0, contradicting our assumption on bλ. Thus y ·m 6=
0. But y ·m ∈ 0(V, j qπ∗M)α−1+ω−ρc , so eventually we get a nonzero vector in
0(V, j qπ∗M)ω−ρc as required. Now, assume that α < 0. If m ∈0(V o, π∗M)α+ω−ρc

is a nonzero section, then the support of m is not contained in {0}. On the other
hand, if x ·m = 0 for all x ∈ V ∗, then Supp(m) ⊂ {0} and hence m = 0. Hence
m 6= 0 implies that there exists some x ∈ V ∗ such that x ·m 6= 0. Repeating this
argument, we eventually conclude that 0(V o, π∗M)ω−ρc 6= 0. �

When W is trivial, Theorem 5.5.1 says that P(V ) is Dω-affine provided ω /∈

{−n,−n− 1, . . . }, which equals the set of all ω ∈A∪E of [Van den Bergh 1991,
Theorem 6.1.3].

Remark 5.5.2. The action of W on V induces an action of W on all the partial
flag manifolds GL(V )/P , where P is a parabolic of GL(V ). However, one can
check that there are reflections in (GL(V )/P,W ) if and only if GL(V )/P = P(V )
or GL(V )/P is the Grassmannian of codimension-one subspaces in V .
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5.6. Abelianization of W. In this section we assume that (V,W ) is a complex
reflection group. Pullback of melys morphisms can be used to relate the represen-
tation theory of Hc(V,W ) with that of Hc(0), where 0 is a cyclic quotient of W .
Let A denote the set of reflecting hyperplanes in V and, for each H ∈A, fix sH a
generator of the cyclic group WH = {w ∈W | w(H)= H}. Let Wab =W/[W,W ],
and let χ0, . . . , χk−1 denote the linear characters of W , where k = |Wab|. For each i
and H ∈A we let ai,H be the least positive integer such that χi (sH )= (det sH )

ai,H .
We write N(Wab) for the free semigroup generated by χ0, . . . , χk−1. Then there
is an evaluation map N(Wab)→ {χ0, . . . , χk−1} which sends χ =

∑k−1
i=0 niχi to

ev(χ)=
∏k−1

i=0 χ
ni
i . For each χ =

∑k−1
i=0 niχi , define

m H =

k−1∑
i=0

ni ai,H and fχ =
∏
H∈A

α
m H
H ∈ C[V ].

Then it follows from Stanley’s results [1977] on W -semi-invariants that

w · fχ = ev(χ)(w) fχ for all w ∈W.

Fix χ ∈ N(Wab). The one-dimensional space spanned by fχ in C[V ] is denoted
by t∗. Inclusion t∗ ↪→ C[V ] defines a W -equivariant morphism ϕ : V → t. It
is melys for any parameter c associated to (t,W ). Define c′ : S(V ) → C by
c′(s, H) = m H c(s, {0}) for all (s, H) such that (s, {0}) ∈ S(t), and c′(s, H) = 0
otherwise. Corollary 3.5.1 implies:

Proposition 5.6.1. Pullback by ϕ defines an exact functor

Hc(t,W )-Mod→ Hc′(V,W )-Mod.

One can check that (3.4.2) implies that ϕ∗ maps a module M ∈ Oc(t,W ) to
ϕ∗M ∈Oc′(V,W ), since the term h of (3.4.2) will be zero in this case. Moreover, for
any such M , we have GK-dim(ϕ∗M)=GK-dim(M)+dim V−1. Let0 be the cyclic
group W/Ker ev(χ). Representations of the rational Cherednik algebra Hc(t,W )

can be viewed as W -equivariant representations of Hc(t, 0); see [Chmutova 2005].

Remark 5.6.2. More generally, if t∗ ⊂ C[V ] is an irreducible W -module, then we
get a morphism ϕ : V → t. It seems likely that one can use the theory developed
in [Bessis et al. 2002] to classify all t such that ϕ is melys. However, there do not
seem to be many examples where dim t> 1.

6. A local presentation of the Cherednik algebra

In this section we give a local presentation of the sheaf of Cherednik algebras.
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6.1. In this section only, we make the following assumptions:

• For each (w, Z) ∈ S(X), there exists a globally defined function fZ such that
Z = V ( fZ ).

• All Picard algebroids considered can be trivialized in the Zariski topology.

We fix a choice of functions fZ .

6.2. The KZ-connection. Recall that U = X −
⋃
(w,Z) Z , where the union is over

all (w, Z) in S(X). Since we have fixed a choice of defining equations of the
hypersurfaces Z , it is possible to write down a KZ-connection on U .

Definition 6.2.1. The Knizhnik–Zamolodchikov connection on U , with values in
OU ⊗CW , is defined to be

ωX,c =
∑

(w,Z)∈S(X)

2c(w, Z)
1− λw,Z

(d log fZ )⊗ s.

The KZ-connection behaves well under melys morphisms:

Lemma 6.2.2. Let ϕ : Y → X be a surjective morphism, melys for c. Then,
ϕ∗ωY,c = ωX,ϕ∗c.

Proof. The fact that ϕ is surjective implies that ϕ∗ fZ is not a unit for all (w, Z) ∈
Sc(X). Then, the lemma follows from (3.4.2), since the term h there can be chosen
to be zero. �

6.3. Fix ω∈H2(X, �1,2
X )W , trivializable in the Zariski topology. For (w, Z)∈S(X)

and ν1, ν2 ∈ Pω, define

4wZ (ν1, ν2) := iσ(ν1)(d log fZ )(w(ν2)− ν2)− iσ(ν2)(d log fZ )(w(ν1)− ν1)

in Pω(D).

Lemma 6.3.1. Let (w, Z) ∈ S(X), g ∈ OX and ν1, ν2 ∈ Pω. Then,

iσ(ν)(d log fZ )(w(g)− g) ∈ OX and 4wZ (ν1, ν2) ∈ Pω.

Proof. If g∈OX and ν∈Pω, then iσ(ν)(d log fZ )(w(g)−g)∈OX becausew(g)−g∈
I (Z). The second claim is that

σ(ν1)( fZ )

fZ
(w(ν2)− ν2)−

σ(ν2)( fZ )

fZ
(w(ν1)− ν1) ∈ Pω.

The statement is local and is clearly true in a neighborhood of any point of X − Z .
Therefore, we may assume that we have fixed a point x ∈ Z . Choose a small,
affine w-stable open subset U of X with coordinate system x1, . . . , xn such that
w(x1) = ζ x1 and w(xi ) = xi for i 6= 1. Moreover, since we have assumed that
the Picard algebroid Pω trivializes in the Zariski topology, we may assume that
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Pω
|U = OU ⊕2U . There exists some unit u ∈ 0(U,OX ) such that fZ = ux1. The

statement is clear if either ν1 or ν2 is in 0(U,OX ). Thus, without loss of generality,
ν1, ν2 ∈ 0(U,2X ). Expanding,

4wZ (ν1, ν2)=
ν1(x1)

x1
(w(ν2)− ν2)−

ν2(x1)

x1
(w(ν1)− ν1)+ h

for some h ∈0(U,2X ). There are fi , gi ∈0(U,OX ) such that ν1=
∑n

i=1 fi (∂/∂xi )

and ν2 =
∑n

i=1 gi (∂/∂xi ). We have

ν1(x1)

x1
(w(ν2)− ν2)=

n∑
i, j=1

fi x−1
1
∂x1

∂xi

(
w(g j )

∂

∂w(x j )
− g j

∂

∂x j

)

=

n∑
j=1

f1x−1
1

(
w(g j )

∂

∂w(x j )
− g j

∂

∂x j

)

=

n∑
j=1

f1x−1
1

(
(w(g j )− g j )

∂

∂w(x j )
+ g j

(
∂

∂w(x j )
−

∂

∂x j

))

= f1g1x−1
1 (ζ − 1)

∂

∂x1
+

n∑
j=1

f1x−1
1

(
(w(g j )− g j )

∂

∂w(x j )

)
.

Thus, if we define

h1=

n∑
j=1

f1x−1
1

(
(w(g j )−g j )

∂

∂w(x j )

)
, h2=

n∑
j=1

g1x−1
1

(
(w( f j )− f j )

∂

∂w(x j )

)
,

which belong to 0(U,Pω), we have

ν1(x1)

x1
(w(ν2)− ν2)−

ν2(x1)

x1
(w(ν1)− ν1)

= f1g1x−1
1 (ζ − 1)

∂

∂x1
+ h1− f1g1x−1

1 (ζ − 1)
∂

∂x1
− h2 = h1− h2,

which belongs to 0(U,2X ). �

6.4. We define the sheaf of algebras Uω,c(X,W ) to be the quotient of T Pωo W
by the relations

ν⊗ g− g⊗ ν = σ(ν)(g)+
∑
(w,Z)

2c(w, Z)
1− λw,Z

iσ(ν)(d log fZ )(w(g)− g)w, (6.4.1)

ν1⊗ ν2− ν2⊗ ν1 = [ν1, ν2] +
∑
(w,Z)

2c(w, Z)
1− λw,Z

4wZ (ν1, ν2)w (6.4.2)
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for all ν, ν1, ν2 ∈ Pω
X and g ∈ OX , and the relation3 1P = 1.

Remark 6.4.3. When X=V is a vector space and ν1, ν2∈V are constant coefficient
vector fields, the right-hand side of (6.4.2) is zero and we get the usual relations of
the rational Cherednik algebra.

Proposition 6.4.4. The map ν 7→ Dν , w 7→ w for ν ∈ Pω and w ∈ W defines an
isomorphism Uω,c(X,W )−→∼ Hω,c(X,W ) if and only if the KZ-connection is flat.

Proof. The proof is a direct calculation. It is straightforward to see that relation
(6.4.1) always holds in Hω,c(X,W ). Therefore, we just need to check that relation
(6.4.2) holds for Dunkl operators in Hω,c(X,W ) if and only if the KZ-connection
is flat. Let ν1, ν2 ∈ Pω

X , and Dν1, Dν2 the corresponding Dunkl operators. We need
to calculate the right-hand side of

[Dν1, Dν2]

=

[
ν1+

∑
(w,Z)

2c(w, Z)
1− λw,Z

σ(ν1)( fZ )

fZ
(w−1), ν2+

∑
(w,Z)

2c(w, Z)
1− λw,Z

σ(ν2)( fZ )

fZ
(w−1)

]
.

We have[
σ(ν1)( fZ )

fZ
(w− 1), ν2

]
=
σ(ν2) ◦ σ(ν1)( fZ )

fZ
(w− 1)−

σ(ν1)( fZ )σ (ν2)( fZ )

f 2
Z

(w− 1)

+
σ(ν1)( fZ )

fZ
(w(ν2)− ν2)w,

and hence∑
(w,Z)

2c(w, Z)
1− λw,Z

([
ν1( fZ )

fZ
(w− 1), ν2

]
+

[
ν1,

ν2( fZ )

fZ
(w− 1)

])
equals∑
(w,Z)

2c(w, Z)
1− λw,Z

(
[ν1, ν2]( fZ )

fZ
(w− 1)+

ν1( fZ )

fZ
(w(ν2)− ν2)w

−
ν2( fZ )

fZ
(w(ν1)− ν1)w

)
.

Also,[
−
ν1( fZ )

fZ
w1,

ν2( fZ ′)

fZ ′

]
+

[
ν1( fZ )

fZ
,−
ν2( fZ ′)

fZ ′
w2

]
+

[
ν1( fZ )

fZ
w1,

ν2( fZ ′)

fZ ′
w2

]
3Recall from Definition A.1.1 that 1P is defined to be the image of 1 ∈ OX under the map

i : OX → P.
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equals

−
ν1( fZ )

fZ
w1

(
ν2( fZ ′)

fZ ′

)
(w1− 1)+

ν2( fZ ′)

fZ ′
w2

(
ν1( fZ )

fZ

)
(w2− 1)

+
ν1( fZ )

fZ
w1

(
ν2( fZ ′)

fZ ′

)
w1w2−

ν2( fZ ′)

fZ ′
w2

(
ν1( fZ )

fZ

)
w2w1.

Combining the above equations, one sees that relation (6.4.2) holds for Dunkl
operators in Hω,c(X,W ) if and only if∑
(w1,Z)
(w2,Z ′)

4c(w1, Z)c(w2, Z ′)
(1− λw1,Z )(1− λw2,Z ′)

(
ν2( fZ )

fZ

ν1( fZ ′)

fZ ′
−
ν1( fZ )

fZ

ν2( fZ ′)

fZ ′

)
w1w2 = 0.

Since the left-hand side equals( ∑
(w1,Z)
(w2,Z ′)

4c(w1, Z)c(w2, Z ′)
(1− λw1,Z )(1− λw2,Z ′)

(d log fZ ∧ d log fZ ′)⊗w1w2

)
(ν2, ν1),

it will be zero for all ν1, ν2 if and only if the meromorphic two-form inside the
bracket is zero. But this two-form is the curvature ωX,c∧ωX,c of the KZ-connection.

�

Proposition 6.4.4 implies that when the KZ-connection is flat, the algebra
Uω,c(X,W ) is, up to isomorphism, independent of the choice of functions fZ .

Appendix: TDOs

In the appendix we summarize the facts we need about twisted differential operators,
following [Beilinson and Bernstein 1993] and [Kashiwara 1989].

A.1. Twisted differential operators. It is most natural to realize a sheaf of algebras
of twisted differential operators as a quotient of the enveloping algebra of a Picard
algebroid.

Definition A.1.1. An OX -module L is called a Lie algebroid if there exists a bracket
[− ,−] : L⊗CX L→ L and morphism of OX -modules σ : L→ 2X (the anchor
map) such that (L, [− ,−]) is a sheaf of Lie algebras with the anchor map being a
morphism of Lie algebras, and, for l1, l2 ∈ L and f ∈ OX ,

[l1, f l2] = f [l1, l2] + σ(l1)( f )l2.

If, moreover, there exists a map i : OX → L of OX -modules such that the sequence

0−→ OX −→ L−→2X −→ 0

is exact and i(1) := 1L is central in L, then L is called a Picard algebroid.
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As in [Beilinson and Bernstein 1993], we denote by �1,2
X the two-term subcom-

plex �1
X

d
−→ (�2

X )
cl, concentrated in degrees 1 and 2, of the algebraic de Rham

complex of X .

Proposition A.1.2. The Picard algebroids on X are parametrized up to isomor-
phism by H2(X, �1,2

X ).

Given ω ∈ H2(X, �1,2
X ), the corresponding Picard algebroid is denoted by Pω

X .
Associated to Pω

X is Dω
X , the sheaf of differential operators on X with twist ω. It

is the quotient of the enveloping algebra U(Pω
X ) of Pω

X by the ideal generated by
1Pω

X
− 1.

Definition A.1.3. A module for the Picard algebroid P is a quasicoherent OX -
module M together with a map −·− :P⊗CX M→M such that i( f ) ·m = f m and
[p, q] ·m = p · (q ·m)− q · (p ·m) for all p, q ∈ P,m ∈M and f ∈ OX .

There is a natural equivalence between the category of Pω-modules and the
category of Dω-modules.

A.2. Functoriality. We recall from Section 2.2 of [Beilinson and Bernstein 1993]
the functoriality properties of Picard algebroids and twisted differential operators.
Fix a morphism ϕ : Y → X . Let PX be a Picard algebroid on X and PY a Picard
algebroid on Y .

Definition A.2.1. A ϕ-morphism γ :PY→PX is an OY -linear map γ :PY→ϕ∗PX

such that for any section p∈PY and γ (p)=
∑

i gi
⊗q i with gi ∈OY and qi ∈ϕ

−1PX ,
we have

γ ([p1, p2])=
∑
i, j

gi
1g j

2 ⊗[q
i
1, q j

2 ] +
∑

j

σ(p1)(g
j
2 )⊗ q j

2 −
∑

i

σ(p2)(gi
1)⊗ q i

1

and σ(n)( f ∗g)=
∑

i giϕ∗(σ (q i )(g)) for all g ∈ ϕ−1OX .

The first fundamental theorem on differential forms [Matsumura 1989, The-
orem 25.1] implies that there is a morphism of sheaves ϕ−1�1

X → �1
Y . This

extends to a morphism of complexes ϕ−1�
q
X → �

q
Y and ϕ−1�

1,2
X → �

1,2
Y . By

functoriality of hypercohomology, we get a map ϕ∗ : H2(X, �1,2
X )→ H2(Y, �1,2

Y ).
For ω ∈ H2(X, �1,2

X ), let Pω
X be the corresponding Picard algebroid and PY the

fiber product ϕ∗Pω
X ×ϕ∗2X

2Y , where ϕ∗Pω
X → ϕ∗2X is the anchor map and

2Y → ϕ∗2X is dϕ.

Lemma A.2.2. The sheaf PY is a Picard algebroid, ψ : PY → ϕ∗PX is a ϕ-
morphism and we have an isomorphism of Picard algebroids PY ' P

ϕ∗ω
Y .
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Thus, by definition, the diagram

0 // OY //

��

P
ϕ∗ω
Y

ψ

��

σY // 2Y

��

// 0

OY = ϕ
∗OX // ϕ∗Pω

X
σX // ϕ∗2X

commutes. The projection P
ϕ∗ω
Y → ϕ∗Pω

X extends to a morphism D
ϕ∗ω
Y → ϕ∗Dω

X ,
making ϕ∗Dω

X a left D
ϕ∗ω
Y -module. Let M be a left Dω

X -module. Since ϕ∗M =
ϕ∗Dω

X ⊗ϕ−1Dω
X
ϕ−1M, we have:

Proposition A.2.3. For any M ∈ Dω
X -Mod, the sheaf ϕ∗M is a D

ϕ∗ω
Y -module.

Remark A.2.4. If ϕ is étale, then dϕ :2Y → ϕ∗2X is an isomorphism. Therefore,
the projection P

ϕ∗ω
Y → ϕ∗Pω

X is also an isomorphism and, in this case, the isomor-
phism γ : D

ϕ∗ω
Y → ϕ∗Dω

X of left D
ϕ∗ω
Y -modules is actually an algebra isomorphism

(in particular, ϕ∗Dω
X is a sheaf of algebras).

A.3. Monodromic D-modules. Let T be a torus, i.e., a product of copies of the
multiplicative group C×. The Lie algebra of T is denoted by t. Let π : Y → X
be a principal T -bundle, with X smooth. A common way of constructing sheaves
of twisted differential operators on X is by quantum Hamiltonian reduction. Let
µ : t→DY be the differential of the action of T on Y . Since DY is a T -equivariant
sheaf, there is a stalkwise action of T on π qDY . The map µ is T -equivariant and,
since T acts trivially on t, µ descends to a map t→ (π qDY )

T . The image of µ is
central. Given a character χ : t→ C, let

DX,χ := (π qDY )
T /〈{µ(t)−χ(t) | t ∈ t}〉. (A.3.1)

Let X(T ) be the lattice of characters of T . By differentiation, we may identify
X(T ) with a lattice in t∗ such that X(T )⊗Z C = t∗. Given λ ∈ X(T ), the sheaf
of λ-semi-invariant sections (π qOY )

λ is a line bundle on X . Thus, we have a map

X(T )→ H 1(X,O×X ). Composing this with the map O×X
d log
−−−→Ker(d :�1

X→�2
X )⊂

�
1,2
X gives a map

βZ : X(T )−→ H 1(X,O×X )
d log
−−−→ H2(X, �1,2

X )

of Z-modules. Extending scalars, we get a map

β : t∗→ H2(X, �1,2
X ). (A.3.2)

Proposition A.3.3. The sheaf of algebras DX,χ is a sheaf of twisted differential
operators, isomorphic to D

β(χ)

X .
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Sketch of proof. Let λ ∈ X(T ) and L := (π qOY )
λ be the corresponding line bundle

on X . If χ is the differential of λ, then (A.3.1) implies that DX,χ acts on L.
As explained in [Beilinson and Bernstein 1993, Section 2.1.12], this implies that
DX,χ ' D

βZ(χ)

X . The fact that this extends to an isomorphism DX,χ ' D
β(χ)

X for all
χ ∈ t∗ follows from the Baer sum construction, as explained in [ibid., Section 2.1.3].

�
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