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The question of whether or not a Hopf algebra H is faithfully flat over a Hopf
subalgebra A has received positive answers in several particular cases: when
H (or more generally, just A) is commutative, cocommutative, or pointed, or
when K contains the coradical of H . We prove the statement in the title, adding
the class of cosemisimple Hopf algebras to those known to be faithfully flat
over all Hopf subalgebras. We also show that the third term of the resulting
“exact sequence” A→ H → C is always a cosemisimple coalgebra, and that the
expectation H → A is positive when H is a CQG algebra.

Introduction 1179
1. Preliminaries 1182
2. Main results 1187
3. Expectations on CQG subalgebras are positive 1192
Acknowledgements 1197
References 1197

Introduction

The issue of faithful flatness of a Hopf algebra (always over a field) over its Hopf
subalgebras arises quite naturally in several ways. One direction is via the so-called
Kaplansky conjecture [1975], which initially asked whether or not Hopf algebras
are free over Hopf subalgebras (as an analogue to the Lagrange theorem for finite
groups). The answer was known to be negative, with a counterexample appearing
in [Oberst and Schneider 1974], but it is true in certain particular cases: using the
notation in the abstract, H is free over A whenever H is finite-dimensional (the
Nichols–Zoeller theorem [Montgomery 1993, Theorem 3.1.5]), or pointed [Radford
1977b], or A contains the coradical of H [Radford 1977a, Corollary 2.3].

Montgomery then naturally asks whether one can get a positive result by requiring
only faithful flatness of a Hopf algebra over an arbitrary Hopf subalgebra [1993,
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Question 3.5.4]. Again, this turns out not to work in general (see [Schauenburg
2000] and also [Chirvasitu 2010], where the same problem is considered in the
context of whether or not epimorphisms of Hopf algebras are surjective), but one
has positive results in several important cases, such as when A is commutative
[Arkhipov and Gaitsgory 2003, Proposition 3.12] or H is cocommutative ([Takeuchi
1972, Theorem 3.2], which also takes care of the case when H is commutative).
The most recent version of the question, asked in [Schauenburg 2000], seems to be
whether or not a Hopf algebra with bijective antipode is faithfully flat over Hopf
subalgebras with bijective antipode.

Another way to get to the faithful flatness issue is via the problem of constructing
quotients of affine group schemes. We recall briefly how this goes.

Let A→ H be an inclusion of commutative Hopf algebras; in scheme language,
A and H are affine groups, and the inclusion means that spec(A) is a quotient group
scheme of spec(H). The Hopf-algebraic analogue of the kernel of this epimorphism
is the quotient Hopf algebra π : H→C = H/H A+, where A+ stands for the kernel
of the counit of A. The map π is then normal, in the sense of [Andruskiewitsch
and Devoto 1995, Definition 1.1.5]:

LKER(π)= {a ∈ A | (π ⊗ id) ◦1(a)= 1C ⊗ a}

equals its counterpart

RKER(π)= {a ∈ A | (id⊗π) ◦1(a)= a⊗ 1C}.

This means precisely that spec(C) is a normal affine subgroup scheme of spec(A)
[Takeuchi 1972, Lemma 5.1]. This gives a map A 7→ C from quotient affine group
schemes of H to normal subgroup schemes. One naturally suspects that this is
probably a bijective correspondence, and this is indeed true (see [Takeuchi 1972,
Theorem 4.3] and also [Demazure and Gabriel 1970, III §3, 7.2]). In Takeuchi’s
paper, faithful flatness is crucial in proving half of this result, namely, the injectivity
of the map A 7→ C : one recovers A as LKER(π).

Many of the technical arguments and constructions appearing in this context go
through in the noncommutative setting, so one might naturally be led to the faithful
flatness issue by trying to mimic the algebraic group theory in a more general
setting, where Hopf algebras are viewed as function algebras on a “quantum” group.
This is, for example, the point of view taken in the by now very rich and fruitful
theory of compact quantum groups, first introduced and studied by Woronowicz:
the main characters are certain C∗ algebras A with a comultiplication A→ A⊗ A
(the minimal C∗ tensor product), imitating the algebras of continuous functions on
compact groups (we refer the reader to [Klimyk and Schmüdgen 1997, Chapter 11]
or Woronowicz’s landmark papers [1987; 1988] for details).
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These objects are not quite Hopf algebras, but for any compact quantum group
A as above, one can introduce a genuine Hopf algebra A, imitating the algebra
of representative functions on a compact group (i.e., the linear span of matrix
coefficients of finite-dimensional unitary representations), and which contains all
the relevant information on the representation theory of the quantum group in
question. The abstract properties of such Hopf (∗)-algebras have been axiomatized,
and they are usually referred to as compact quantum group (CQG) algebras (see
[Klimyk and Schmüdgen 1997, Section 11.3] or the original paper [Dijkhuizen and
Koornwinder 1994], where the term was coined). They are always cosemisimple (as
an analogue of Peter–Weyl theory for representations of compact groups), which is
why we hope that despite the seemingly restrictive hypothesis of cosemisimplicity,
the results in the present paper might be useful apart from any intrinsic interest,
at least in dealing with Hopf-algebraic issues arising in the context of compact
quantum groups.

We now describe the contents of the paper.
In the first section we introduce the conventions and notation to be used through-

out the rest of the paper, and also develop the tools needed to prove the main results.
In Section 1A we set up a Galois correspondence between the set of right coideal
subalgebras of a Hopf algebra H and the set of quotient left module coalgebras of
H . We then recall basic results on categories of objects imitating Sweedler’s Hopf
modules: These have both a module and a comodule structure, one of them over a
Hopf algebra H , and the other one over a right coideal subalgebra or a quotient left
module coalgebra of H . These categories are used extensively in the subsequent
discussion.

Section 2 is devoted to the main results. We provide sufficient conditions for
faithful flatness over Hopf subalgebras in Theorem 2.1 and Corollary 2.4. We also
investigate the case of cosemisimple H further, proving in Theorem 2.5 that for any
Hopf subalgebra A, the quotient left H -module coalgebra C = H/H A+ is always
cosemisimple. This quotient is the third term of the “exact sequence” which com-
pletes the inclusion A→ H , and the question of whether or not C is cosemisimple
arises naturally in the course of the proof of Theorem 2.1, which shows immediately
that the answer is affirmative when H A+ happens to be an ideal (both left and right).

Finally, in Section 3 we show that when the ambient Hopf algebra H is CQG, the
“expectation” H → A that plays a crucial role in the preceding section is positive.
In the course of the proof we use a sort of “A-relative” Fourier transform from H to
C∗ (whereas ordinary Fourier transforms, as in, say, [Podleś and Woronowicz 1990],
are roughly speaking more like maps from H to the dual H∗). This construction has
some of the familiar properties from harmonic analysis, such as intertwining prod-
ucts and “convolution products” (Proposition 3.11(1)), playing well with ∗ structures
(Proposition 3.11(2)), and satisfying a Plancherel-type condition Remark 3.12.
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1. Preliminaries

In this section we make the preparations necessary to prove the main results.
Throughout, we work over a fixed field k, so all algebras and coalgebras are to be
taken over k. The reader should feel free to assume k to be algebraically closed
whenever convenient, as most results are invariant under scalar extension. In
Section 3 we specialize to characteristic zero.

We assume basic familiarity with coalgebra and Hopf algebra theory, for example
as presented in [Montgomery 1993]. We will make brief use of the notion of
coring over a (not necessarily commutative) k-algebra; we refer to [Brzezinski and
Wisbauer 2003] for basic properties and results.

The notation is standard: 1C and εC stand for comultiplication and the counit
of the coalgebra C respectively, and we will allow ourselves to drop the subscript
when it is clear which coalgebra is being discussed. Similarly, SH or S stands for
the antipode of the Hopf algebra H , 1A (or just 1) will be the unit of the algebra
A, etc. Sweedler notation for comultiplication is used throughout: 1(h)= h1⊗ h2,
as well as for left or right coactions: if ρ : N → N ⊗ C (ρ : N → C ⊗ N ) is a
right (left) C-comodule structure, we write n0 ⊗ n1 (n〈−1〉 ⊗ n〈0〉) for ρ(n). We
sometimes adorn the indices with parentheses, as in 1(c)= c(1)⊗ c(2).

We will also be working extensively with categories of (co)modules over (co)alge-
bras, as well as categories of objects admitting both a module and a comodule
structure, compatible in some sense that will be made precise below (see Section 1A).
These categories are always denoted by the letter M, with left (right) module
structures appearing as left (right) subscripts, and left (right) comodule structures
appearing as left (right) superscripts. All such categories are abelian (and in fact
Grothendieck), and the forgetful functor from each of them to vector spaces is
exact. The one exception from this notational convention is the category of k-vector
spaces, which we simply call VEC.

Recall that the category MH
f of finite-dimensional right comodules over a Hopf

algebra is monoidal left rigid: every object V has a left dual V ∗ (at the level
of vector spaces it is just the usual dual vector space), and one has adjunctions
(⊗V,⊗V ∗) and (V ∗⊗, V⊗) (the left-hand member of the pair is the left adjoint)
on MH

f .
We also use the correspondence between subcoalgebras of a Hopf algebra H

and finite-dimensional (right) comodules over H : for such a comodule V , there is a
smallest subcoalgebra D= COALG(V )≤ H such that the structure map V→V⊗H
factors through V → V ⊗ D. Conversely, if D ≤ H is a simple subcoalgebra, then
we denote by VD the simple right D-comodule, viewed as a right H -comodule.
Then, for simple subcoalgebras D, E ≤ H , the product E D will be precisely
COALG(VE ⊗ VD), while S(D) is COALG(V ∗).



Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras 1183

For a coalgebra C , the symbol Ĉ denotes the set of isomorphism classes of
simple (right, unless specified otherwise) C-comodules.

1A. Descent data and adjunctions. We will be dealing with the kind of situation
studied extensively in [Takeuchi 1979]: H will be a Hopf algebra, and for most of
this section (and in fact the paper), ι : A→ H will be a right coideal subalgebra,
while π : H → C will be a quotient left H -module coalgebra. Recall that this
means that A is a right coideal of H (1H (A) ≤ A⊗ H ) as well as a subalgebra,
and so the induced map A→ A⊗ H is an algebra map; similarly, C is the quotient
of H by a left ideal as well as a coalgebra, and the induced map H ⊗C→ C is
supposed to be a coalgebra map.

Given a coalgebra map π : H→C , we write h for π(h), h ∈ H . In this situation,
H will naturally be both a left and a right C-comodule (via the structure maps
(π⊗id)◦1H and (id⊗π)◦1H respectively), while C has a distinguished grouplike
element 1, where 1 ∈ H is the unit. Write

πH = CH{h ∈ H | h1⊗ h2 = 1⊗ h}, Hπ
= HC

= {h ∈ H | h1⊗ h2 = h⊗ 1}.

These are what were called LKER(π) and RKER(π) back in the introduction,
following the notation in [Andruskiewitsch and Devoto 1995]. They are the spaces
of 1-coinvariants under the left and right coaction of C on H respectively, in the
sense of [Brzezinski and Wisbauer 2003, Section 28.4].

Dually, let ι : A → H be an algebra map, and set A+ = ι−1(ker εH ). Write
Hι= HA for the left H -module H/H ι(A+), and similarly, ιH = A H = H/ι(A+)H .

It is now an easy exercise to check that if ι : A→ H is a right coideal subalgebra,
then HA is a quotient left module coalgebra, and, vice versa, if π : H → C is the
projection on a quotient left module coalgebra, then CH is a right coideal subalgebra
of H .

set of right coideal
subalgebras of H

set of quotient left module
coalgebras of H

A 7→ HA

CH ←[ C

In the above diagram, the maps are order-reversing with respect to the obvious
poset structures on the two sets (whose partial orders we write as �)

Remark 1.1. Note that the two order-reversing maps form a Galois connection
in the sense of [Mac Lane 1998, Section IV.5] between the poset of right coideal
subalgebras and the poset of left module quotient coalgebras.
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Definition 1.2. Let ι : A→ H be a right coideal subalgebra and π : H → C a
quotient left module coalgebra. We call π : H → HA (or HA itself) the right
reflection of ι : A→ H or of A, and ι : CH→ H (or CH itself) the left reflection of
π : H → C . We also write r(A) and r(C) for HA and CH .

Using this language, recall from [Andruskiewitsch and Devoto 1995, Proposi-
tion 1.2.3]:

Definition 1.3. Let H be a Hopf algebra. For a right coideal subalgebra A→ H
and a quotient left module coalgebra H → C , we say that k→ A→ H → C→ k
is exact if A and C are each other’s reflections.

We usually drop the k and talk just about exact sequences A→ H → C .
If H is a Hopf algebra and C is a left H -module coalgebra, then C

H M will be the
category of left H -modules endowed with a left C-comodule structure which is a left
H -module map from M to C⊗M (where the latter has the left H -module structure
induced by the comultiplication on H ). Similarly, if A is a right H -comodule
algebra, then MH

A is the category of right H -comodules with a right A-module
structure such that M ⊗ A→ M is a map of right H -comodules. The morphisms
in each of these categories are required to preserve both structures.

Let ι : A→ H be a right coideal subalgebra and π : H → C a quotient left
module coalgebra such that π ◦ ι factors through A 3 a 7→ ε(a)1 ∈ C (this is
equivalent to saying that A� r(C), or C � r(A), in the two posets discussed before
Definition 1.2). Then, there is an adjunction between the categories AM and C

H M,
and dually, an adjunction between MH

A and MC . We will recall briefly how these
are defined, omitting most of the proofs, which are routine.

Let M ∈ AM. The vector space H ⊗A M then has a left H -module structure,
as well as a left C-comodule structure inherited from the left C-coaction on H
(checking this is where the condition A � r(C) is needed). This defines a functor
L : AM→ C

H M. To go in the other direction, for N ∈ C
H M, let

R(N )= {n ∈ N | n〈−1〉⊗ n〈0〉 = 1⊗ n}. (1)

This defines a functor, and, as the notation suggests, L is a left adjoint to R.
For the other adjunction, given M ∈ MH

A , define L ′(M) = M/M A+. This is
a functor (with the obvious definition on morphisms), and it is left adjoint to
R′ :MC

→MH
A defined by R′(N ) = N �C H ; the latter has a right H -comodule

structure obtained by making H coact on itself, as well as a right A-module structure
obtained from the right A-action on H .

Let us now focus on the adjunction AM←→ C
H M. In [Takeuchi 1979], the same

discussion is carried out in a slightly less general situation: the adjunction described
above is considered in the case A = r(C). On the other hand, we remark that
when C = r(A), the category C

H M introduced above is nothing but the category of
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descent data for the ring extension A→ H . Recall from [Brzezinski and Wisbauer
2003, Proposition 25.4] that in our case this would be the category H⊗A H M of left
comodules over the canonical H -coring H⊗A H associated to the algebra extension
A→ H . This means left H -modules M with an appropriately coassociative and
counital left H -module map ρ : M 7→ (H ⊗A H)⊗H M ∼= H ⊗A M .

The usual bijection

H ⊗ H ∼= H ⊗ H, h⊗ k 7→ h1⊗ h2k

is easily seen to descend to a bijection H ⊗A H ∼= r(A)⊗ H . Hence, we see
that a map ρ as above is the same thing as a map ψ : M 7→ r(A) ⊗ M . The
other properties of ρ, namely, being a coassociative, counital, left H -module map,
precisely translate to ψ being coassociative, counital, and a left H -module map,
respectively. Taking into account this equivalence r(A)

H M' H⊗A H M, the adjunction
(L , R) : AM←→ r(A)

H M is an equivalence as soon as H is right faithfully flat over
A (this is the faithfully flat descent theorem; see [Nuss 1997, Theorem 3.8]).

Apart from faithful flatness, other criteria are known to ensure (L , R) is an
equivalence. To state one such, we recall some notation from [Mesablishvili 2006].

For a ring A, consider the contravariant endofunctor ACA on the category of
A-bimodules defined by

ACA(M)= Hom(M,Q/Z);

these are homomorphisms of abelian groups, with the usual A-bimodule structure
induced from that on M . Then, [ibid., Theorem 8.1] (very slightly rephrased) reads:

Theorem. If ι : A→ H is a map of rings such that ACA(ι) : ACA(H)→ ACA(A)
is a split epimorphism, then H⊗A is an equivalence between AM and H⊗A H M.

Since we have just observed that in our case the functor H⊗A from the statement
of the theorem can be identified with L : AM→ r(A)

H M, we get the following result
as a consequence:

Proposition 1.4. With the previous notation, (L , R) : AM←→ r(A)
H M is an equiva-

lence if the inclusion ι : A→ H splits as an A-bimodule map. �

Remark 1.5. The paper [Mesablishvili 2006] deals with rings rather than Hopf al-
gebras. To deduce Proposition 1.4 one uses the noted identification r(A)

H M' H⊗A H M

to turn the problem into the usual formulation of descent for arbitrary rings. Sections
7 and 8 of [ibid.] spell this out.

As a kind of converse to the faithfully flat descent theorem, (L , R) being an
equivalence implies that H is right A-faithfully flat. Indeed, H⊗A is then exact
on AM. Note that we are using the fact that r(A)

H M is abelian, with the same exact
sequences as VEC. All in all, this proves:



1186 Alexandru Chirvasitu

Proposition 1.6. Let ι : A→ H be a right coideal subalgebra. The adjunction

(L , R) : AM←→ r(A)
H M

is an equivalence if and only if H is right A-faithfully flat. �

Remark 1.7. This result is very similar in spirit to the equivalence (5)⇐⇒ (3) in
[Schneider 1990, Theorem I], or to (1) ⇐⇒ (2) in [Schauenburg and Schneider
2005, Lemma 1.7]. These can all be deduced from much more general, coring-
flavored descent theorems that are now available, such as, say, [Caenepeel et al.
2007, Theorem 2.7].

1B. CQG algebras. For background, we rely mainly on [Klimyk and Schmüdgen
1997, 11.3–11.4] or the paper [Dijkhuizen and Koornwinder 1994], where these
objects were originally introduced. Recall briefly that these Hopf algebras are
meant to have just enough structure to imitate algebras of representative functions
on compact groups. This means they are complex ∗-algebras (they possess conjugate-
linear involutive multiplication-reversing automorphisms ∗) as well as Hopf algebras,
and the two structures are compatible in the sense that the comultiplication and the
counit are both ∗-algebra homomorphisms.

In addition, CQG algebras are required to have unitarizable comodules. This
is a condition we will not spell out in any detail, but it says essentially that every
finite-dimensional comodule has an inner product compatible with the coaction in
some sense (once more imitating the familiar situation for compact groups, where
invariant inner products on representations can be constructed by averaging against
the Haar measure). In particular, CQG algebras are automatically cosemisimple,
and hence fit comfortably into the setting of Section 2.

Not all ∗-algebras have enveloping C∗-algebras, but CQG algebras do. See, e.g.,
[Klimyk and Schmüdgen 1997, Section 11.3.3]. Such a completion is a so-called full,
or universal, C∗-algebraic compact quantum group, in the sense that it is a (unital)
C∗-algebra A endowed with coassociative C∗-algebra homomorphism A→ A⊗ A
(minimal C∗ tensor product) with additional conditions ([Klimyk and Schmüdgen
1997, Section 11.3.3, Proposition 32] or [Dijkhuizen and Koornwinder 1994, §4–5]).

On the very few occasions when tensor product C∗-algebras come up, ⊗ always
denotes the smallest C∗ tensor product (as treated in [Wegge-Olsen 1993, T.5], for
instance). The term completely positive map between C∗-algebras will also make
brief appearances. Recall that a linear map T : A→ B between C∗-algebras is
said to be positive if for each x ∈ A we have T (x∗x)= y∗y for some y ∈ B, and
completely positive [Takesaki 2002, Section IV.3] if the maps

id⊗T : Mn ⊗ A→ Mn ⊗ B

between matrix algebras are all positive.
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2. Main results

We now prove the statement from the title of the paper:

Theorem 2.1. A cosemisimple Hopf algebra is faithfully flat over all its Hopf
subalgebras.

Proof. Let H be cosemisimple, and ι : A→ H an inclusion of a Hopf subalgebra.
Combining Propositions 1.6 and 1.4, it suffices to show that ι splits as an A-
bimodule map. In fact, one can even find a subcoalgebra B ≤ H with H = A⊕ B
as A-bimodules.

Let I be the set of simple subcoalgebras of H , and J the subset of I consisting
of subcoalgebras contained in A. One then has H =

⊕
I D and A=

⊕
J D. Define

B =
⊕

I\J D; in other words, B is the direct sum of those simple subcoalgebras
of H which are not in A. Clearly, B is a subcoalgebra and H = A⊕ B, and we
now only need to check that B is invariant under (either left or right) multiplication
by A.

Let D ∈ J and E ∈ I \ J be simple subcoalgebras of A and B respectively.
The product E D inside H is then COALG(VE ⊗ VD) (see last paragraph above
Section 1A). Now assume F ∈ J is a summand of E D. This means VF ≤ VE⊗VD ,
so V ∗E ≤ VD ⊗ V ∗F . This is absurd: V ∗E is a B-comodule, while VD ⊗ V ∗F is an
A-comodule. �

Remark 2.2. This proves the first part of [Wang 2009, Conjecture 1]; the second
part, stating the faithful coflatness of a CQG algebra over quotient CQG algebras,
follows immediately from the cosemisimplicity of CQG algebras.

Remark 2.3. Examples of cosemisimple Hopf algebras which are not faithfully
coflat over quotient Hopf algebras abound, at least in characteristic zero.

Indeed, let G be a reductive complex algebraic group and B a Borel subgroup.
Denoting by O( • ) “regular functions on the variety •”, the Hopf algebra H = O(G)
is cosemisimple (e.g., [Fogarty 1969, p. 178]), and it surjects onto C = O(B).

If the surjection H → C were to be faithfully coflat, then, by [Takeuchi 1979,
Theorem 2], we could reconstruct C as H/H A+ for A = r(C). But A is simply
the algebra of global regular functions on the projective variety G/B, and hence
consists only of constants; this provides the contradiction.

In fact, the result can be strengthened slightly. Recall that the coradical C0 of a
coalgebra C is the sum of all its simple subcoalgebras.

Corollary 2.4. A Hopf algebra H whose coradical H0 is a Hopf subalgebra is
faithfully flat over its cosemisimple Hopf subalgebras.

Proof. Any cosemisimple Hopf subalgebra A ≤ H will automatically be contained
in the coradical H0. By the previous corollary, H0 is faithfully flat over A. On the
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other hand, Hopf algebras are faithfully flat (and indeed free) over sub-bialgebras
which contain the coradical [Radford 1977b, Corollary 1]; in particular, in this case,
H is faithfully flat over H0. The conclusion follows. �

Now let us place ourselves in the setting of Theorem 2.1, assuming in addition
that the Hopf subalgebra A→ H is conormal in the language of [Andruskiewitsch
and Devoto 1995]. This simply means that H A+ = A+H , and is equivalent to
C = r(A) being a quotient Hopf algebra of H rather than just a quotient coalgebra
[Andruskiewitsch and Devoto 1995, Definition 1.1.9]. Recalling the decomposition
H = A⊕ B as a direct sum of subcoalgebras, C breaks up as the direct sum of
the coalgebras k = k1 and B/B A+. In other words, the coalgebra spanned by the
unit of the Hopf algebra C has a coalgebra complement in C . It follows from
the equivalence of (c) and (f) in [Sweedler 1969, Theorem 14.0.3] that C is a
cosemisimple Hopf algebra. Our aim in the rest of this section is to extend this
result to the general case covered by Theorem 2.1:

Theorem 2.5. If ι : A→ H is a Hopf subalgebra of a cosemisimple Hopf algebra
H , then the coalgebra C = r(A) is cosemisimple.

Proof. We know from Theorem 2.1 that H is right A-faithfully flat, and hence also
left faithfully flat (just flip everything by means of the bijective antipode). This then
implies, for example by [Takeuchi 1979, Theorem 1], that the second adjunction
we introduced above, (L ′, R′) :MH

A ←→MC , is an equivalence. It is then enough to
show that all objects of the category MH

A are projective, and this is precisely what
the next two results do. �

Definition 2.6. An object of MH
A is said to be A-projective if it is projective as an

A-module.

Proposition 2.7. Under the hypotheses of Theorem 2.5, every object of MH
A is

A-projective.

Proof. Let M ∈MH
A be an arbitrary object. Endow M⊗H with a right H -comodule

structure by making H coact on itself, and also a right A-module structure by the
diagonal right action (i.e., M⊗H is the tensor product in the monoidal category MA).
It is easy to check that these are compatible in the sense that they make M⊗H into
an object of MH

A , and the map ρ :m 7→m〈0〉⊗m〈1〉 ∈ M⊗ H giving M its right H -
comodule structure is actually a morphism in MH

A . Similarly, id⊗εH :M⊗H→M
is a morphism in MA, and it splits the inclusion ρ. It follows that it is enough to
show that the object M ⊗ H ∈MH

A described above is A-projective.
Theorem 2.1 says that H is A-faithfully flat, and it follows from [Masuoka and

Wigner 1994, Corollary 2.9] that it is then (left and right) A-projective. This means
that M⊗H can be split embedded (in the category MA) into a direct sum of copies
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of M ⊗ A with the diagonal right action of A. But

M ⊗ A→ M ⊗ A, m⊗ a 7→ ma1⊗ a2

exhibits an isomorphism from M⊗ A with the right A-action on the right tensorand
to M ⊗ A with the diagonal A-action (its inverse is m⊗ a 7→ mS(a1)⊗ a2). This
means that in MA, M⊗ H is a direct summand of a direct sum of copies of A, thus
projective. �

Proposition 2.8. Under the hypotheses of Theorem 2.5, A-projective objects of MH
A

are projective.

Before going into the proof, we need some preparation, including additional
notation to keep track of the several A-module or H -comodule structures that might
exist on the same object.

As in the proof of Theorem 2.1, denote by I and J ⊆ J the sets of simple right
comodules over H and A, respectively. Recall that these are also in one-to-one
correspondence with the simple subcoalgebras of H and A, respectively. We will
henceforth denote by ϕ : H → A the map which is the identity on A and sends
every simple subcoalgebra D ∈ I \ J to 0.

Notice now that A acts on H (as well as on itself) not just by the usual right
regular action, but also by the right adjoint action: hG a= S(a1)ha2 (h ∈ H , a ∈ A).
This gives H and A a second structure as objects in MH

A . When working with this
structure rather than the obvious one, we denote these objects by Had and Aad.

Lemma 2.9. (a) For any object M ∈ MH
A , M ⊗ Had becomes an object of MH

A
when endowed with the diagonal A-action (where A acts on M ∈MH

A and on
H by the right adjoint action) and the diagonal H-coaction.

(b) Similarly, M ⊗ Aad ∈MH
A .

(c) id⊗ϕ : M ⊗ Had → M ⊗ Aad respects the structures from (a) and (b), and
hence is a morphism in MH

A .

Proof. We will only prove (a); (b) is entirely analogous, while (c) follows im-
mediately, since ϕ clearly preserves both the right H -coaction and the adjoint
A-action.

Proving (a) amounts to checking that the diagram

M ⊗ Had⊗ A M ⊗ Had

M ⊗ Had⊗ HM ⊗ Had⊗ H ⊗ A
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is commutative. The path passing through the upper horizontal line is

m⊗ h⊗ a 7−→ ma1⊗ S(a2)ha3 7−→ m0a1⊗ S(a4)h1a5⊗m1a2S(a3)h2a6,

while the other composition is

m⊗ h⊗ a 7−→ m0⊗ h1⊗m1h2⊗ a 7−→ m0a1⊗ S(a2)h1a3⊗m1h2a4.

Using the properties of the antipode and counit in a Hopf algebra, we have

m0a1⊗ S(a4)h1a5⊗m1a2S(a3)h2a6 = m0a1⊗ S(ε(a2)a3)h1a4⊗m1h2a5

= m0a1⊗ S(a2)h1a3⊗m1h2a4,

concluding the proof. �

Now denote by (M ⊗ H)r ∈MH
A the object from the proof of Proposition 2.7:

the A-action is diagonal, while H coacts on the right tensorand alone. The upper r
is meant to remind the reader of this.

Lemma 2.10. For M ∈MH
A , the map ψM : M ⊗ H → M ⊗ H defined by

m⊗ h 7−→ m0⊗ S(m1)h

is a morphism in MH
A from (M ⊗ H)r to M ⊗ Had.

Proof. We only check compatibility with the A-actions, leaving H -coactions to the
reader. The composition (M ⊗ H)r ⊗ A −→ (M ⊗ H)r −→ M ⊗ Had is

m⊗ h⊗ a 7−→ ma1⊗ ha2
ψM

m0a1⊗ S(m1a2)ha3,

while the other relevant composition is

m⊗ h⊗ a
ψM⊗id

m0⊗ S(m1)h⊗ a 7−→ m0a1⊗ S(a2)S(m1)ha3.

Since S is an algebra antimorphism, they are equal. �

Finally, we have:

Lemma 2.11. Let M ∈MH
A . The map M⊗A→M giving M its A-module structure

is a morphism M ⊗ Aad→ M in MH
A .

Proof. Compatibility with the H -coactions is built into the definition of the category
MH

A , so one only needs to check that the map is a morphism of A-modules. In other
words, we must show that the diagram

M ⊗ Aad⊗ A M ⊗ Aad

MM ⊗ A
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is commutative. The right-down composition is

m⊗ a⊗ b 7−→ mb1⊗ S(b2)ab3 7−→ mb1S(b2)ab3,

while the other composition is

m⊗ a⊗ b 7−→ ma⊗ b 7−→ mab;

they are thus equal. �

Lemma 2.12. For M ∈MH
A , the composition

tM : (M ⊗ H)r M ⊗ Had M ⊗ Aad M,
ψM id⊗ϕ

where the last arrow gives M its A-module structure, is a natural transformation
from the MH

A -endofunctor ( • ⊗ H)r to the identity functor, and it exhibits the latter
as a direct summand of the former.

Proof. The fact that tM is a map in MH
A follows from Lemmas 2.9, 2.10 and 2.11.

Naturality is immediate (one simply checks that it holds for each of the three maps),
as is the fact that tM is a left inverse of the map M → (M ⊗ H)r giving M its
H -comodule structure. �

We are now ready to prove the result we were after:

Proof of Proposition 2.8. Let P ∈MH
A be an A-projective object. We must show that

MH
A (P, • ) is an exact functor. Embedding the identity functor as a direct summand

into ( • ⊗ H)r (Lemma 2.12), it suffices to show that MH
A (P, ( • ⊗ H)r ) is exact.

The functor ( • ⊗ H)r : MA → MH
A is right adjoint to forget : MH

A → MA (as
MH

A is the category of coalgebras for the comonad •⊗ H on MA; see [Mac Lane
1998, Theorem VI.2.1]), so MH

A (P, ( • ⊗H)r ) is naturally isomorphic to MA(P, • ),
which is exact by our assumption that P is A-projective. �

Remark 2.13. In the above proof, the forgetful functor forget : MH
A → MA has

been suppressed in several places, in order to streamline the notation; we trust that
this has not caused any confusion.

Remark 2.14. The proof of Proposition 2.7 is essentially a rephrasing of the
usual proof that Hopf algebras H with a (right, say) integral sending 1H to 1 are
cosemisimple [Sweedler 1969, §14.0]; we will call such integrals unital. The map
ϕ : H → A introduced in Lemma 2.9 might be referred to as an A-valued right
integral (by which we mean a map preserving both the right H -comodule structure
and the right adjoint action of A), and specializes to a unital integral when A = k.
In conclusion, one way of stating Proposition 2.8 would be:

If the inclusion ι : A→ H of a right coideal subalgebra is split by an A-valued
right integral, then the forgetful functor MH

A →MA reflects projectives.
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Remark 2.15. Propositions 2.7 and 2.8 can both be traced back to work by Y. Di,
but we have included proofs for completeness. Proposition 2.7, for instance, is a
consequence of [Doi 1983, Theorem 4]. Similarly, Proposition 2.8 follows from
[Doi 1990, Theorem 1]. I thank the referee for pointing this out.

3. Expectations on CQG subalgebras are positive

We now move the entire A→ H → C setting over to the case when H is a CQG
algebra. We take for granted the preceding sections, and in particular the fact
that C is cosemisimple (Theorem 2.5). The inclusion ι : A→ H is now one of
∗-algebras, and we follow the operator-algebraists’ convention of referring to its
left inverse p : H → A from the proof of Theorem 2.1 as the expectation of H on
A (in accordance with a view of A and H as consisting of random variables on
noncommutative measure spaces). Positivity here means the following:

Think of H as embedded in its universal C∗ completion Hu (Section 1B), and
complete A to Au with the subspace norm. Then, p extends to a completely positive
map Hu → Au . Equivalently, the self-map ι ◦ p : H → H lifts to a completely
positive self-map of Hu .

Note that a functional ψ ∈ H∗ with ψ(1) = 1 extends to a state on the C∗

completion Hu if and only if it is positive in the usual sense; i.e., ψ(x∗x)≥ 0 for
every x ∈ H .

The main result of the section is this:

Theorem 3.1. Let ι : A→ H be an inclusion of CQG algebras. Then, the expecta-
tion p : H → A is positive in the above sense.

Remark 3.2. So-called expected C∗-subalgebras of (locally) compact quantum
groups have featured prominently in the literature (see [Tomatsu 2007; Salmi
and Skalski 2012] and references therein). The techniques used in the proof of
Theorem 3.1 will be applied elsewhere to characterize all right coideal ∗-subalgebras
A of a CQG algebra H which are expected in the sense of admitting a positive
splitting of the inclusion as an A-bimodule, right H -comodule map, where positivity
is understood as in Theorem 3.1.

Let us first reformulate the theorem slightly. Denote the unique unital (left and
right) integral of C by hC , and the composition hC ◦ π by ϕ (where π : H → C
is the surjection we start out with). The expectation decomposes as (ϕ⊗ id) ◦1 :
H → A. This follows easily from the decomposition H = A⊕ B as a direct sum
of subcoalgebras used in the proof of Theorem 2.1, and the fact that ϕ|A equals εA

and ϕ|B is the zero map.

Remark 3.3. Let us note in passing that ϕ is self-adjoint as a functional, in the
sense that ϕ(x∗) is the complex conjugate of ϕ(x) for any x ∈ H . This follows
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immediately from ϕ|A = εA and ϕ|B = 0, the fact that A and B are closed under ∗,
and the fact that ε is a ∗-homomorphism.

This observation is needed in the proof of item (2) in Proposition 3.11, for
instance.

Lemma 3.4. The conclusion of Theorem 3.1 holds if and only if the functional
ϕ ∈ H∗ is positive.

Proof. Note that ϕ equals ε ◦ p (more pedantically, in this expression ε is the
restriction of εH to A). If p is positive then so is ϕ, given that ε is a ∗-algebra map
A→ C which lifts to Au .

Conversely, if ϕ is positive (and hence lifts to a state on Hu), then both maps
in the composition (ϕ⊗ id) ◦1 : H → H lift to completely positive maps on the
appropriate C∗ completions (1 lifts to a C∗-algebra map Hu → Hu ⊗ Hu , while
ϕ⊗ id : Hu ⊗ Hu→ Hu will also be completely positive). But that composition is
precisely ι ◦ p, as noted above. �

Remark 3.5. The identity ϕ = ε ◦ p, in particular, shows that ϕ ◦ S = ϕ. This is
needed below.

We are going to take what looks like a detour to make the necessary preparations.
For a cosemisimple coalgebra D over an algebraically closed field, denote by

D• its restricted dual: the direct sum of the matrix algebras dual to the matrix
subcoalgebras of D. In general, D• is a nonunital algebra. In our case, the full dual
H∗ is in addition a (unital) ∗-algebra, with ∗ operation defined by

f ∗(x)= f ((Sx)∗)∗ for all x ∈ H, (2)

where the outer ∗ means complex conjugation of a number (see, e.g., [Van Daele
1998, Proposition 4.3]). Furthermore, C• ≤ H∗ is a ∗-subalgebra.

Finally, again for a cosemisimple coalgebra D, we will talk about its completion
D; this is by definition the direct product of the matrix subcoalgebras comprising D.
Equivalently, D is the (ordinary, vector space) dual of D•. The module structure
H ⊗C→ C extends to an action of H on C .

Remark 3.6. This extension of the H -module structure to C is a simple enough
observation, but there is some content to it. The claim is that for x ∈ H and some
simple subcoalgebra Cα ≤ C (for α ∈ Ĉ), there are only finitely many simple
comodules β ∈ Ĉ such that xCβ intersects Cα nontrivially.

Although MC is not monoidal, V ⊗W can be made sense of as a C-comodule for
any H -comodule V and C-comodule W . This makes MC into a module category
over the monoidal category MH . Upon rephrasing the claim using the correspon-
dence W 7→ COALG(W ) between comodules and subcoalgebras, it reads: for each
finite-dimensional H -comodule V and each α∈ Ĉ , there are only finitely many β∈ Ĉ
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such that (identifying α, β with the corresponding comodules) HomMC (α, V ⊗β) is
nonzero. But just as in a rigid monoidal category, V⊗ :MC

→MC is right adjoint
to V ∗⊗, and hence we’re saying only finitely many β satisfy Hom(V ∗⊗α, β) 6= 0.
This is clear simply because V ∗⊗α is some finite direct sum of irreducibles.

First, a preliminary result:

Lemma 3.7. The squared antipode S2 of H descends to an automorphism of every
simple subcoalgebra Cα of C. Moreover, the resulting automorphism on the C∗-
algebra C∗α is conjugation by an invertible positive operator.

Proof. That S2 descends to C = H/H A+ is clear from the fact that it acts on A.
We move the action over to duals by precomposition: S2 f = f (S2

· ) for f ∈ H∗.
Now let D ≤ H be a simple subcoalgebra, and

⊕
α∈I Cα, I ⊂ Ĉ the image of

D through H → C . The squared antipode acts on D∗ as conjugation by a positive
operator F [Klimyk and Schmüdgen 1997, Chapter 11, Lemma 30 and Proposition
34], and, by the previous paragraph, preserves the subalgebra B =

⊕
α∈I C∗α. In

particular, conjugation by F permutes the |I | minimal nonzero projections pα,
α ∈ I in the center of B. I claim that this permutation action is in fact trivial, which
would finish the proof.

To check the claim, consider the unique (up to isomorphism) simple ∗-represen-
tation of D∗ on a Hilbert space H. If FpαF−1 were equal to some pβ with β 6=α∈ I ,
then F would map the range of pα onto the range of pβ . Denoting by 〈 , 〉 the
inner product on H, this implies that 〈Fx, x〉 vanishes for any x in the range of pα .
This cannot happen for nonzero x , as F is both positive and invertible. �

We now establish the existence of a kind of “relative Haar measure” on C•.

Proposition 3.8. There is an element θ ∈ C satisfying the following conditions:

(a) Writing θ as a formal sum of elements in the simple subcoalgebras of C , its
component in C1≤ C is 1.

(b) It is H-invariant, in the sense that xθ = ε(x)θ for x ∈ H.

(c) It is positive as a functional on the ∗-algebra C•.

Sketch of proof. Let ei , ei , i ∈ I be dual bases in C and C• respectively, compatible
with the decomposition of C into simple subcoalgebras. We distinguish an element
0 ∈ I such that e0 = 1. Since the automorphism S2 of H descends to C = H/H A+,
the definition

θ =
∑
i∈I

ei (S2ei(2))ei(1)

makes sense as an element of C , and clearly satisfies (a). Moreover, the definition
does not depend on the choice of bases.
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The calculation proving H -invariance can simply be lifted, e.g., from [Van Daele
1997, Proposition 1.1]. Even though that result is about finite-dimensional Hopf
algebras, it works verbatim in the present setting.

Finally, let us prove positivity, this time imitating [Van Daele 1996]. Let α ∈ Ĉ ,
and u ∈ C∗α ≤ C• an element. We can assume harmlessly that the bases ei , ei are
organized as matrix (co)units; i.e., those ei in the matrix coalgebra Cα form a matrix
counit epq , and ei will then be the dual matrix unit epq

∈ C∗α.
Now note that epq , regarded as a functional on C∗α, can be written as trα( · eqp),

where trα is the trace on the matrix algebra C∗α ∼= Mn , so that trα(1) = n. In
conclusion, the component of θ in Cα, regarded as a functional on C∗α, is

θα =
∑
p,q

trα( · S2(epq)eqp). (3)

If Q ∈ C∗α is a positive operator such that conjugation by Q equals S2 on C∗α
(Lemma 3.7), then, suppressing summation over p, q = 1, . . . , n,

S2(epq)eqp
= Qepq Q−1eqp

= trα(Q−1)Q.

This is a positive operator, and the conclusion follows. �

Remark 3.9. The expression (3), the invariance of θ with respect to bases, and the
fact that S2(epq) are again matrix units make it clear that θ ◦ S2

= θ . In fact θ is
unique, but we do not need this stronger fact.

Definition 3.10. Keeping the previous notation, the ϕ-relative Fourier transform
F : H → C• is defined as

H 3 x 7→ ϕ(Sx · ).

There is a slight abuse of notation in the definition: although a priori ϕ is a
functional on H , it descends to one on C = H/H A+. The map F is a relative
analogue to the usual Fourier transform [Podleś and Woronowicz 1990, §2], and
enjoys similar properties. Let us record some of them:

Proposition 3.11. The map F : H → C• introduced above satisfies the following
relations:

(1) F(x G Fy)= FxFy for all x, y ∈ H , where the right action G of H∗ on H is
defined by x G f = f (x1)x2.

(2) F(x)∗ = S2F((Sx)∗), where the ∗ structure on C• is defined in (2), and S2

acts on H∗ by precomposition, as in the proof of Lemma 3.7.

(3) ε(x G Fy)= ϕ(Sy x).

(4) θF= ε, where θ is the functional on C• from Proposition 3.8.

(5) FS2
= S−2F.
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Proof. Most of this consists of simple computations, so let us only prove the first
and fourth items.

Applying both sides of (1) to z ∈ H , we have to prove

ϕ(Sy x1)ϕ(Sx2 z)= ϕ(Sx z1)ϕ(Sy z2).

Substituting y for Sy, z for Sz, and using ϕ ◦ S = ϕ (Remark 3.5), this turns into

ϕ(yx1)ϕ(zx2)= ϕ(z2x)ϕ(ySz1).

Now make the substitution yx1⊗x2=a⊗b, which in turn means y⊗x=aSb1⊗b2.
The target identity turns into

ϕ(a)ϕ(zb)= ϕ(aSb1Sz1)ϕ(z2b2).

Writing zb = c, it transforms further into

ϕ(a)ϕ(c)= ϕ(aSc1)ϕ(c2).

Finally, the substitution of c for S−1c and again ϕ ◦ S = ϕ turn this into

ϕ(a)ϕ(c)= ϕ(ac2)ϕ(c1).

To prove this last equality, it suffices to split into two cases, according to whether c
is in A or the complementary A-bimodule, right H -comodule ker(p).

In the latter case, both ϕ(c) and ϕ(c1) vanish. In the former, the left-hand side
is ϕ(a)ε(c), while the right-hand side is ϕ(ac) (since ϕ(c1) = ε(c1)). These two
expressions are equal because ϕ = εp and p is an A-bimodule map.

We now check (4). Applying its left-hand side to x ∈ H , we get θ(ϕ(Sx · ))=
ϕ(Sx θ), where this time θ is thought of as an element of C , Sx θ is the action
of Sx on it (Remark 3.6), and ϕ is regarded naturally as a functional on C . By
the H -invariance of θ (Proposition 3.8(b)), the expression is ε(x)ϕ(θ)= ε(x) by
Proposition 3.8(a). �

All of the ingredients are now in place.

Proof of Theorem 3.1. According to Lemma 3.4, it suffices to show that ϕ(x∗x)≥ 0
for all x ∈ H . We do this through a string of equalities based on the preliminary
results of this section.

Let x, y ∈ H . Then, we have

θ((Fy)∗Fx)
(2)
= θ(S2F((Sy)∗)Fx)= θ(S2F((Sy)∗)F(S2x))
(1)
= θF((Sy)∗ G F(S2x))

(4)
= ε((Sy)∗ G F(S2x))

(3)
= ϕ(S3x(Sy)∗)= ϕ(S3x S(S2 y)∗)= ϕ((S2 y)∗S2x),
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where the numbers above the equal signs refer to the items in Proposition 3.11,
the second equality follows from (5) and the fact that θ S2

= θ (Remark 3.9), the
next-to-last one is a simple manipulation valid in any Hopf ∗-algebra, and the last
equality is based on ϕS = ϕ (Remark 3.5). Since the left-hand side is nonnegative
when x = y, so is the right-hand side. This concludes the proof of the theorem. �

Remark 3.12. The equality obtained in the course of the proof should be thought
of as a Plancherel theorem [Rudin 1991, 7.9, p. 188], to the effect that the relative
Fourier transform is an isometry with respect to the “inner products” induced by ϕ
and θ .
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