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Tetrahedral elliptic curves and the
local-global principle for isogenies

Barinder S. Banwait and John E. Cremona

We study the failure of a local-global principle for the existence of l-isogenies
for elliptic curves over number fields K. Sutherland has shown that over Q there
is just one failure, which occurs for l D 7 and a unique j -invariant, and has
given a classification of such failures when K does not contain the quadratic
subfield of the l-th cyclotomic field. In this paper we provide a classification of
failures for number fields which do contain this quadratic field, and we find a new
“exceptional” source of such failures arising from the exceptional subgroups of
PGL2.Fl /. By constructing models of two modular curves, Xs.5/ and XS4

.13/,
we find two new families of elliptic curves for which the principle fails, and we
show that, for quadratic fields, there can be no other exceptional failures.

1. Introduction

Let E be an elliptic curve defined over a number field K, and l a prime. It is
easy to show that if E possesses a K-rational l-isogeny, then the reduction zEp=Fp,
for all primes p of K of good reduction and not dividing l , likewise possesses an
Fp-rational l-isogeny.

Andrew Sutherland [2012] asked a converse question: if zEp=Fp admits an
Fp-rational l-isogeny for a density-one set of primes p, then does E=K admit
a K-rational l-isogeny? Sutherland showed that while the answer to this question is
usually “yes”, there nevertheless exist pairs .E=K; l/ for which the answer is “no”.

Whether an elliptic curve over a field possesses a rational l-isogeny or not
depends only on its j -invariant, provided that the j -invariant is neither 0 nor 1728;
thus, if the answer is “no” for one elliptic curve E=K for the prime l , it is also
“no” for every elliptic curve over K with the same j -invariant j.E/ (with the same
exceptions). Following Sutherland, we thus define a pair .l; j0/, consisting of a
prime l and an element j0 6D 0; 1728 of a number field K, to be exceptional for K
if there exists an elliptic curve E over K, with j.E/D j0, such that the answer to
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the above question at l is “no”. We will refer to the prime in the exceptional pair as
an exceptional prime for K, and any elliptic curve E over K with j.E/D j0 as a
Hasse at l curve over K.

Sutherland gives a necessary condition for the existence of an exceptional pair,
under a certain assumption. To state Sutherland’s result, recall that the absolute
Galois group GK WD Gal.K=K/ acts on the l-torsion subgroup E.K/Œl�, yielding
the mod-l representation

N�E;l WGK ! GL2.Fl/;

whose image GE;l WD Im N�E;l is well-defined up to conjugacy; we refer to GE;l
as the mod-l image of E. We let HE;l WDGE;l modulo scalars, and observe that
HE;l depends only upon j.E/, provided that j.E/¤ 0 or 1728; we refer to HE;l
as the projective mod-l image of E.

It is easy to show that l D 2 is not an exceptional prime for any number field, so
henceforth we assume that l is odd. We now define l� WD ˙l , where the plus sign
is taken if l � 1 .mod 4/, and the minus sign otherwise.

Sutherland’s result may now be stated as follows; by D2n we mean the dihedral
group of order 2n:

Proposition 1.1 (Sutherland). Assume
p
l� … K. If .l; j0/ is exceptional for K,

then for all elliptic curves E=K with j.E/D j0:

(1) The projective mod-l image of E is isomorphic to D2n, where n > 1 is an odd
divisor of .l � 1/=2.

(2) l � 3 .mod 4/.

(3) The mod-l image ofE is contained in the normaliser of a split Cartan subgroup
of GL2.Fl/.

(4) E obtains a rational l-isogeny over K.
p
l�/.

(In fact, the converse is also true, as may be shown by applying the proof of the
converse part of Proposition 1.3 below; see Section 7.)

Sutherland used this result for K D Q to determine the exceptional pairs for
Q (where the assumption

p
l� … Q is trivially satisfied for all l). If .l; j.E// is

exceptional for Q, then (3) above says that E corresponds to a Q-point on the
modular curve Xs.l/. By the recent work of Bilu, Parent and Rebolledo [Bilu et al.
2013], it follows that l must be 2, 3, 5, 7 or 13. Of these, only 3 and 7 are 3 .mod 4/,
and 3 can easily be ruled out as a possible exceptional prime (for all number fields).
Thus, 7 is the only possible exceptional prime for Q, and (1) above tells us that
the projective mod-7 image of a Hasse at 7 curve over Q must be isomorphic to
D6, the dihedral group of order 6. The modular curve parametrising elliptic curves
with this specific level-7 structure turns out to be the rational elliptic curve with



Tetrahedral elliptic curves and the local-global principle for isogenies 1203

label 49a3 in [Cremona 1997], which has precisely two noncuspidal rational points.
Evaluating j at these points yields the same value, and hence gives Sutherland’s
second result.

Theorem 1.2 [Sutherland 2012, Theorem 2]. The only exceptional pair for Q is�
7; 2268945

128

�
:

In this paper we would like to investigate what happens in the case where
p
l� 2K. In Section 7 we will prove the following using Sutherland’s methods:

Proposition 1.3. Assume
p
l� 2K. Then .l; j0/ is exceptional for K if and only if

one of the following holds for elliptic curves E=K with j.E/D j0:

� HE;l Š A4 and l � 1 .mod 12/.

� HE;l Š S4 and l � 1 .mod 24/.

� HE;l Š A5 and l � 1 .mod 60/.

� HE;l Š D2n and l � 1 .mod 4/, where n > 1 is a divisor of .l � 1/=2, and
GE;l lies in the normaliser of a split Cartan subgroup.

Thus, in the case
p
l� 2K, there are two sorts of exceptional pairs: the dihedral

ones and the nondihedral ones.
Let us now consider each of these two cases overKDQ.

p
l�/, the smallest field

containing
p
l�. Regarding the dihedral pairs, we may ask the following question:

Question 1.4. For which l � 1 .mod 4/ is there an elliptic curve E over Q.
p
l/

such that HE;l ŠD2n, for n > 1 a divisor of .l � 1/=2?

A positive answer to the Serre uniformity problem for number fields would imply
that there should be only finitely many such l , but we are unable to prove this.
Instead, we show that the set of l asked for by the above question is not empty;
l D 5 gives a positive answer.

Theorem 1.5. An elliptic curve E over Q.
p
5/ has HE;5 ŠD4 if and only if its

j -invariant is given by the formula

j.E/D

�
.sC 5/.s2� 5/.s2C 5sC 10/

�3
.s2C 5sC 5/5

(1-1)

for some s 2 Q.
p
5/, together with the condition that s2 � 20 is not a square in

Q.
p
5/ for all s 2Q.

p
5/ satisfying (1-1).

Thus, the exceptional pairs at 5 over Q.
p
5/ are given by .5; j.E// for j.E/

as above, and, in particular, there are infinitely many exceptional pairs at 5 over
Q.
p
5/.
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The proof of this theorem considers the modular curve Xs.5/ corresponding to
the normaliser of a split Cartan subgroup, whose Q.

p
5/-points (as we will see)

correspond to elliptic curves E over Q.
p
5/ withHE;5�D4. This curve is defined

over Q and has genus 0; writing the j -map

Xs.5/
j
�!X.1/

as a rational function yields the parametrisation (1-1); the further condition stated in
the theorem is needed to force the corresponding elliptic curve to have HE;5 ŠD4
(and not merely a subgroup of D4); see Section 3 for the full proof.

Regarding the nondihedral pairs, we prove the following in Section 8:

Proposition 1.6. The only nondihedral exceptional prime l over any quadratic field
is 13 over Q.

p
13/, where the projective mod-13 image is isomorphic to A4.

This leads to the following question:

Question 1.7. Find all elliptic curves E over Q.
p
13/ such that HE;13 Š A4.

By Proposition 1.6, such elliptic curves are the only nondihedral Hasse curves
over quadratic fields.

We take a similar approach to this question as we did for Theorem 1.5, by studying
the relevant modular curveXS4

.13/; this is the modular curve over Q corresponding
to the pullback to GL2.F13/ of S4� PGL2.F13/; the earliest reference to this curve
we are aware of is in [Mazur 1977b]. This modular curve is geometrically connected,
and over the complex numbers has the description �A4

.13/nH�, where �A4
.13/ is

the pullback to PSL2.Z/ of A4 � PSL2.F13/. A Q-point on XS4
.13/ corresponds

to an elliptic curve E=Q such that HE;13 � S4. A Q.
p
13/-point corresponds to

an elliptic curve E=Q.
p
13/ such that HE;13 � A4. Thus, the elliptic curves we

seek in Question 1.7 correspond to certain Q.
p
13/-points on the modular curve

XS4
.13/.

Theorem 1.8. The modular curve XS4
.13/ is a genus-3 curve, whose canonical

embedding in P2
Q

has the model

C W 4X3Y � 3X2Y 2C 3XY 3�X3ZC 16X2YZ � 11XY 2Z

C5Y 3ZC 3X2Z2C 9XYZ2CY 2Z2CXZ3C 2YZ3 D 0:

On this model, the j -map XS4
.13/

j
�!X.1/ is given by

j.X; Y;Z/D
n.X; Y;Z/

d.X; Y;Z/13
;

where

d.X; Y;Z/D 5X3� 19X2Y � 6XY 2C 9Y 3CX2Z

�23XYZ � 16Y 2ZC 8XZ2� 22YZ2C 3Z3
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and n.X; Y;Z/ is an explicit degree-39 polynomial.

The proof of this theorem will occupy Sections 4 and 5 of the paper.
We have not been able to provably determine the Q.

p
13/-points on the curve.

The method of Chabauty does not apply in this case, and this is likely to be a
difficult problem; see Section 9 for more about the Jacobian of C and the difficulty
of determining the Q and Q.

p
13/-rational points.

We have, however, the following six points1 in C.Q.
p
13//, four of which are

in C.Q/:˚
.1 W 3 W �2/; .0 W 0 W 1/; .0 W 1 W 0/; .1 W 0 W 0/; .3˙

p
13 W 0 W 2/

	
:

By evaluating the j -map at these points, we obtain the j -invariants of elliptic
curves over Q.

p
13/ whose projective mod-13 image is contained in A4; in fact,

apart from .0 W 0 W 1/, whose corresponding j -invariant is 0, these points have
projective mod-13 image isomorphic to A4.

Corollary 1.9. Elliptic curves over Q with j -invariants

11225615440

1594323
D
24 � 5 � 134 � 173

313
;

�
160855552000

1594323
D�

212 � 53 � 11 � 134

313
;

90616364985637924505590372621162077487104

197650497353702094308570556640625

D
218 � 33 � 134 � 1273 � 1393 � 1573 � 2833 � 929

513 � 6113

have projective mod-13 images isomorphic to S4. Elliptic curves over Q.
p
13/ with

these j -invariants have projective mod-13 images isomorphic to A4, as do elliptic
curves over Q.

p
13/ with j -invariant

j D
4096000

1594323
.15996230˙ 4436419

p
13/:

Thus, elliptic curves over Q.
p
13/ with these j -invariants are Hasse at 13 curves

over Q.
p
13/.

Remark 1.10. It is known that, for l > 13, there are no elliptic curves E over
Q with HE;l Š S4; in fact, Serre proved that XS4

.l/.Q/ is empty for l > 13.
Mazur [1977a, p. 36] reports that Serre has constructed a Q-point on XS4

.13/

corresponding to elliptic curves with complex multiplication by
p
�3; this point

that Serre found corresponds to the point .0 W 0 W 1/ on the curve C above.

1These are all the points in C.Q.
p
13// of logarithmic height less than 5:24, according to [Turner

2013].
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Remark 1.11. The rational points on XS4
.l/ for l � 11 have already been deter-

mined. The most interesting case is l D 11, where Ligozat [1977] proved that the
curve XS4

.11/ is the elliptic curve with Cremona label 121c1.

We conclude this introduction by considering the following problem, which we
would like to solve at least for every quadratic field. This may be viewed as a
generalisation of Sutherland’s theorem 2 (see 1.2).

Problem 1.12. Fix a number field K. Find all exceptional pairs over K.

Samuele Anni [2014] has proved that there can be only finitely many exceptional
primes for a given number field K. In the quadratic case, his result gives the
following:

Proposition 1.13 (Anni). A quadratic field K admits at most 3 exceptional primes.
IfKDQ.

p
l/ for l a prime � 1 .mod 4/, then the only possible exceptional primes

are 7, 11, and l . If K ¤Q.
p
l/, then only 7 and 11 are possible exceptional primes.

It is straightforward to determine, for a given quadratic field K, the exceptional
pairs of the form .7; j0/; in principle all one needs to do is determine the j -invariants
of the K-points on the elliptic curve 49a3.

In the case where K D Q.
p
l/ and the prime is l , Problem 1.12 reduces to

Question 1.4 above, which essentially asks for quadratic points on the modular
curves Xs.l/; this is known to be a difficult problem.

Regarding 11 as a possible exceptional prime, we make the following conjecture:

Conjecture 1.14. 11 is not an exceptional prime for any quadratic field.

In Section 10, we will explain our evidence for this conjecture.

2. Preliminaries

Let l be an odd prime. We define PSL2.Fl/ to be the kernel of the map det W
PGL2.Fl/! F�

l
=.F�

l
/2 Š f˙1g. It is isomorphic to SL2.Fl/=f˙I g. By GLC2 .Fl/

we mean the subgroup of matrices with square determinant.

Lemma 2.1. Let E=K be an elliptic curve. The following are equivalent:

(1) HE;l � PSL2.Fl/.

(2)
p
l� 2K.

(3) GE;l � GLC2 .Fl/.

Proof. The equivalence of (1) and (3) is clear. The equivalent of (2) and (3) follows
from standard Galois theory upon observing that the determinant of N�E;l is equal
to the mod-l cyclotomic character over K. �
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In particular, if E=Q is an elliptic curve with HE;13 Š S4, then after base-
changing to Q.

p
13/ the projective image is intersected with PSL2.F13/, and

becomes isomorphic to A4. This argument uses the fact that 13� 5 .mod 8/.
We would like to briefly mention the Cartan subgroups of GL2.Fl/; for a complete

treatment see [Lang 2002, Chapter XVIII, §12]. There are two sorts of Cartan
subgroup, split and nonsplit. A split Cartan subgroup is conjugate to the group
of diagonal matrices, and hence is isomorphic to F�

l
� F�

l
. Its normaliser is then

conjugate to the group CCs of diagonal and antidiagonal matrices. A nonsplit Cartan
subgroup is isomorphic to F�

l2
, and is conjugate to the group Cns defined as follows:

Cns D

n�
x ıy
y x

�
W x; y 2 Fl ; .x; y/¤ .0; 0/

o
;

where ı is any fixed quadratic nonresidue in F�
l

. It also has index two in its
normaliser CCns .

Associated to the groups CCs and CCns are modular curves Xs.l/ and Xns.l/

respectively; these serve as coarse moduli spaces for elliptic curves E whose mod-l
Galois image GE;l is contained in (a conjugate of) CCs and CCns respectively. Both
curves are geometrically connected and defined over Q. Over the complex numbers
each curve has the description of being the quotient of the extended upper half-plane
H� by an appropriate congruence subgroup. The curve Xs.l/ is Q-isomorphic to
the quotient XC0 .l

2/ of the modular curve X0.l2/ by the Fricke involution. Over C,
this isomorphism is established by mapping � on XC0 .l

2/ to l� on Xs.l/.
One of Sutherland’s insights was that the notion of Hasse at l curve E over

K depends only on the projective mod-l image HE;l . Given a subgroup H of
PGL2.Fl/, we say that H is Hasse if its natural action on P1.Fl/ satisfies the
following two properties:

� Every element h 2H fixes a point in P1.Fl/.

� There is no point in P1.Fl/ fixed by the whole of H .

Proposition 2.2 (Sutherland). An elliptic curve E=K is Hasse at l if and only if
HE;l is Hasse.

This allows us to reduce the study of exceptional pairs largely to group theory.

3. Proof of Theorem 1.5

Throughout this proof, K DQ.
p
5/.

LetE=K haveHE;5ŠD4. It follows from Dickson’s classification of subgroups
of GL2.Fl/ [1901] that GE;5 is contained in the normaliser of a Cartan subgroup. If
this Cartan subgroup were nonsplit, thenGE;5 would be contained inCCns\GLC2 .F5/
(we take the intersection by Lemma 2.1), and so HE;5 would be contained in
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.CCns \GLC2 .F5//=scalars, which is a group of size 6, and hence cannot contain
a subgroup isomorphic to D4; thus GE;5 � CCs , and so E=K corresponds to a
K-point on Xs.5/. The converse is not quite true; a K-point on Xs.5/ corresponds
to an elliptic curve E 0 over K with HE 0;5 �D4, but not necessarily equal to D4.

We now give an expression for the j -map Xs.5/
j
�!X.1/. Since XC0 .25/ is

isomorphic to Xs.5/ under the map � 7! 5� , it suffices to write down the function
j.5�/ in terms of a Hauptmodul s for XC0 .25/.

Let tN be a Hauptmodul for X0.N /. Klein found the following formula in 1879:

j.5�/D
.t25 C 250t5C 3125/

3

t55
:

We can look up an expression for t5 in terms of t25 from [Maier 2009]:

t5 D t25.t
4
25C 5t

3
25C 15t

2
25C 25t25C 25/:

We also know that the Fricke involutionw25 maps t25 to 5=t25. Hence a Hauptmodul
for XC0 .25/ is s WD t25C 5=t25. It follows that

j.5�/D
..sC 5/.s2� 5/.s2C 5sC 10//3

.s2C 5sC 5/5
:

Inserting a K-value for s in this expression yields the j -invariant of an elliptic
curve E over K with HE;5 � D4. The condition on s2 � 20 in the statement
of the theorem ensures that we have equality here, by ensuring that the image
is not contained in any one of the three subgroups of order 2 in D4, as we now
demonstrate.

Let E be a curve in Xs.5/.K/ corresponding to a choice of s in K, so that
HE;5 �D4. The following statements are readily seen to be equivalent to HE;5 6D
D4:

� HE;5 is cyclic.

� GE;5 is contained in (a conjugate of) Cs.F5/.

� E has a pair of independent K-rational 5-isogenies.

� E pulls back to a K-point on X0.25/.

� t25 2K.

Since t25 is a root of the polynomial x2� sxC 5 of discriminant s2� 20, we have
t25 2K if and only if s2� 20 is a square in K. Thus the statement that s2� 20 is
not a square in K is equivalent to HE;5 not being cyclic, and hence HE;5 ŠD4.

We have, however, overlooked an issue above. For a given j D j.E/ 2 K

satisfying (1-1), there are two other values of s 2K also satisfying (1-1). This is
because the field extension K.s/=K.j /, which has degree 15 and is not Galois, has
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automorphism group of order 3, generated by s 7! ..
p
5�5/s�20/=.2sC5C

p
5/.

We must ensure that for none of the Galois conjugate values is s2�20 square in K,
so that HE;5 is not contained in any of the three cyclic subgroups of D4. This
explains the final condition in the statement of the theorem.

Example 3.1. To illustrate this theorem, we input s D 3
p
5C 1 to obtain

j D
337876318862280

p
5C 741305345279328

41615795893
I

we check that s2 � 20 is not a square for the other two values of s 2 K, namely
.
p
5�15/=7 and .�22

p
5�30/=19, and hence any elliptic curve over Q.

p
5/ with

this j has HE;5 ŠD4. Equivalently, the pair .5; j / is exceptional for Q.
p
5/.

However, if we input s D .3
p
5� 80/=41, we get

j D
277374956280053760

p
5C 622630488102469632

18658757027251
;

and whilst .3
p
5� 80/=41 does satisfy s2� 20 not being a square, this is not the

case for s D 3
p
5C 2, which yields the same j -value. One therefore has to be

careful of these “pretenders”, hence the last paragraph of the above proof.
We can even insert rational values of s, such as s D 1, to obtain elliptic curves

over Q whose base-change to Q.
p
5/ are Hasse at 5, e.g.,

j D
�56623104

161051
:

4. Proof of Theorem 1.8: the model

Let G be a subgroup of GL2.Z=NZ/ for some N , and consider the modular curve
XG.N / over Q; let us assume detGD .Z=NZ/�, so that this curve is geometrically
connected. As a curve over C, the curve depends only on the intersection of G
with SL2.Z=NZ/. Therefore, if N D 13, and G is the pullback to GL2.F13/ of
S4 � PGL2.F13/, then the modular curve XS4

.13/ WD XG.13/, when considered
over C, depends only on G \ SL2.F13/, which modulo scalar matrices becomes
A4 � PSL2.F13/, and has the description �A4

.13/nH�, where �A4
.13/ is the

pullback of A4 � PSL2.F13/ to PSL2.Z/, and H� is the extended upper half-plane.
Steven Galbraith [1996, Chapter 3] has described a method to compute the

canonical model of any modular curve X.�/, provided one can compute explicitly
and to some precision the q-expansions of a basis of S2.�/, the weight-2 cuspforms
of level � (a congruence subgroup). Hence, to compute the desired equation, we
are reduced to computing explicitly a basis of the finite-dimensional C-vector space
S2.�A4

.13//. A standard application of the Riemann–Hurwitz genus formula gives
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that the genus of the desired curve is 3; this is also the dimension of S2.�A4
.13//.

We will proceed with the exposition in a series of steps.

Step 1. Identifying our desired space as the set of invariant vectors of a representa-
tion. Since �.13/� �A4

.13/, we obtain

S2.�A4
.13//� S2.�.13//;

a 3-dimensional subspace of a 50-dimensional space. On this latter 50-dimensional
space there is a right action — the “weight 2 slash operator” — of PSL2.Z/ (since
�.13/ is normal in PSL2.Z/) which, by definition of S2.�.13//, factors through
the quotient PSL2.F13/, which we recall contains a unique (up to conjugacy)
subgroup isomorphic to A4. Our desired 3-dimensional space is then the subspace
of S2.�.13// fixed by A4:

S2.�A4
.13//D S2.�.13//

A4 ;

that is, the A4-invariant subspace of the PSL2.F13/-representation S2.�.13//.
When we carry out the computation, we will work with an explicit subgroup

of PSL2.F13/ isomorphic to A4, namely that generated by the two matrices

AD

�
�5 0

0 5

�
and B D

�
�2 �2

�3 3

�
:

A different choice of A4 will yield an isomorphic space of cuspforms, which
for our application (in computing an equation for XS4

.13/) makes no difference.
However, the present choice of A4 is favourable for computational reasons, since it
is normalised by the matrix

�
�1
0
0
1

�
; the congruence subgroup is then said to be of

real type (see [Cremona 1997, Section 2.1.3]).

Step 2. The conjugate representation. Given a congruence subgroup � of level 13,
denote by z� the conjugate subgroup of level 132:

z� WD

�
13 0

0 1

��1
�

�
13 0

0 1

�
� �0.13

2/\�1.13/:

In general, z� has level 132; in particular we have

e�.13/D �0.132/\�1.13/:
Then we have the important isomorphism

S2.�/! S2.z�/;

f .z/ 7! f .13z/;
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which on q-expansions takes q WD e2�iz to q13. The point is that we may work
with S2.z�/ instead of S2.�/ if we like, as we can easily pass between the two; the
two spaces are only superficially different.

This is exactly our plan for �.13/��A4
.13/. We have S2.B�A4

.13//�S2. e�.13//.
This latter space is also a representation of PSL2.F13/; for g 2 PSL2.F13/, we let

 be a pullback to PSL2.Z/ of g, and define, for F 2 S2. e�.13//,

g �F WD F j2 Q
 WD F j2

�
13 0

0 1

��1



�
13 0

0 1

�
:

We then obtain
S2.B�A4

.13//D S2. e�.13//A4 :

Working inside the conjugated space S2. e�.13// is better, since its alternative
description as S2.�0.169/\�1.13// is more amenable to the explicit computations
we wish to carry out using the computer algebra systems Sage and Magma.

Step 3. The three relevant subrepresentations. Inside S2.�0.169/\�1.13//, we
have S2.�C0 .169//, the subspace of w169-invariants of S2.�0.169//. We can com-
pute this space explicitly in Sage. Let q WD e2�iz , �7 WD e2�i=7, �C7 WD �7C �

�1
7 ,

and � a nontrivial Galois automorphism of the field Q.�C7 /D Q.�7/
C. Then an

explicit Sage computation yields

S2.�
C
0 .169//D hg; g

� ; g�
2

i;

where

g.z/D q� .�C7 C 1/q
2
C .1� �C7

2/q3C .�C7
2
C 2�C7 � 1/q

4
C � � � :

These three forms are Galois-conjugate newforms. We will denote by an the Fourier
coefficients of g.

For each r 2 F�13, define the isotypical component gr of g as

gr WD
X

j�r mod13

aj q
j ;

and consider the C-span V0 of these components. Similarly define V1 and V2 by
replacing g with g� and g�

2

respectively. We will show in the coming sections that
each Vi is a 12-dimensional subrepresentation of S2. e�.13// which is irreducible as
QŒPSL2.F13/�-module. We may focus on these three subrepresentations, because, as
we compute later, each one contains a unique (up to scaling) A4-invariant cuspform.

Since we already know that we are looking for three forms, we need not concern
ourselves with the other irreducible components of S2. e�.13//. In fact, the sum
V0˚V1˚V2, of dimension 36, is the subspace of S2.�0.169/\�1.13// spanned
by the Galois conjugates of the newform g together with their twists by characters
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of conductor 13. The complementary subspace of dimension 14 is spanned by
oldforms from level 13 and their twists. Each of these two subspaces is the base-
change of a vector space over Q which is irreducible as a QŒPSL2.F13/�-module,
while the 36-dimensional piece splits as a Q.�C7 /ŒPSL2.F13/�-module into three
irreducible 12-dimensional subspaces.

Although we discovered these facts computationally, there is an alternative
representation-theoretic explanation of these spaces in [Baran 2013], whose Propo-
sitions 3.6 and 5.2 show that the spaces Vi are irreducible cuspidal representations
of PSL2.F13/.

Step 4. Computing the action of PSL2.F13/ on each subrepresentation. PSL2.F13/
is generated by the two matrices

S D

�
0 �1

1 0

�
and T D

�
1 1

0 1

�
:

However, since we have conjugated the congruence subgroup, the action we need
to consider must also be conjugated by the matrix

�
13
0
0
1

�
. Hence, PSL2.F13/ acts

on S2. e�.13// via the matrices zS and zT :

zS D
1

13

�
0 �1

169 0

�
and zT D

�
1 1=13

0 1

�
:

Observe that the action of zS is, up to a scaling that we may ignore, the same as the
Fricke involution w169.

Thus, to describe the action of PSL2.F13/ on each Vi , we will express the action
of zS and zT on each Vi , explicitly as 12� 12 matrices.

Step 5. Computing the action of zS and zT . We fix i D 0; the other two cases are
completely analogous and can be obtained by Galois conjugation (see Lemma 4.4
below).

To compute the action of zT on V0, we use the definition directly:�
gj2

�
1 1=13

0 1

��
.z/D g

�
zC 1

13

�
:

Recall that ai is the i -th coefficient of g. We then get

g
�
zC 1

13

�
D �13q� .�

C
7 C 1/�

2
13q

2
C � � � ;

which we can rearrange as

�13.a1qC a14q
14
C a27q

27
C � � � /C �213.a2q

2
C a15q

15
C � � � /C � � � :
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Thus, in the isotypical basis for V0, the action of zT is given simply by the 12�12
diagonal matrix 0BBB@

�

�2

: : :

�12

1CCCA ;
where we write � for �13. In particular, this shows that V0 is indeed invariant under
the action of zT .

Computing zS directly on the isotypical basis is not so easy, so what we do is
change to a basis upon which we can compute it. Instead of the isotypical basis,
we take the twist basis

hg˝�j W 0� j � 11i;

where � W 2 7! �12 is a fixed generator of the group of Dirichlet characters of
conductor 13, and g˝ � denotes the usual twist of g by �. Note that this twist
basis consists entirely of newforms (see [Atkin and Li 1978]). Since twisting
by � preserves V0 and the change of basis matrix is .�j .i// (for 0 � j � 11 and
1� i � 12), which has nonzero determinant, we have shown the following:

Lemma 4.1. Both the isotypical and twist bases are C-bases for the 12-dimensional
subspace V0 of S2. e�.13//:

hg˝�j W 0� j � 11i D hgj W 1� j � 12i:

Recall that the action of zS is the same as the Fricke involution w169. It is known
(see [loc. cit.]) that wN acts on newforms F of level N as

F j2wN D �N .F / �F ;

where F is the newform obtained from the Fourier expansion of F by complex con-
jugation, and �N .F / is the Atkin–Lehner pseudoeigenvalue, an algebraic number
of absolute value 1 [loc. cit., Theorem 1.1]. In our twist basis, we have

g˝�j D g˝�12�j ;

so we only need to compute the pseudoeigenvalues associated to g˝�j for 0�j �6;
the others may be obtained from these by complex conjugation. Also, the pseu-
doeigenvalues for j D 0 and j D 6 are actually eigenvalues, and may be computed
directly (for example in Sage); we find that the eigenvalue for j D 0 is C1, and for
j D 6 is �1.
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Step 6. Computing the Atkin–Lehner pseudoeigenvalues. In order to stay consistent
with the notation of [Atkin and Li 1978], we relabel g to F , and we let q D 13. By
a.q/ we mean the q-th Fourier coefficient of F , which we may check is 0. We may
also check that F is not a twist of an oldform of S2. e�.13//; thus, in the language
of [loc. cit.], F is 13-primitive. We let �0 be the trivial character modulo 13, so
�0 D �

0, and we write �.�/ for the Atkin–Lehner pseudoeigenvalue of F ˝ �,
for � any character. We let g.�/ be the Gauss sum of the character �, with the
convention that g.�0/D�1.

The main tool to compute �.�j /, for 0� j � 11, is this:

Theorem 4.2 (special case of Theorem 4.5 of [Atkin and Li 1978]). With the above
notation and assumptions, we have, for 0� j � 11,

.�1/j 12g.�12�j /�.�j /D

11X
kD0

g.�k/g.�jCk/�.�k/:

This theorem gives us, for each 0� j � 11, a linear relation among the �.�k/.
Although there are twelve �.�k/, we have in the previous paragraph computed two
of them, leaving us with ten. But actually, we have �.�j /D�.�12�j / for 0� j � 5,
so we really only have five independent unknowns. However, our strategy is, at
first, to consider that we indeed have ten unknowns (namely, �.�j / for 1� j � 5
and 7 � j � 11) and use the theorem to derive as many linear relations between
these ten unknowns as we can.

Doing this yields six independent equations, whose coefficients lie in Q.�156/

(the field over which the Gauss sums are defined). One is, however, able to obtain
two more independent equations, by applying Theorem 4.5 of Atkin and Li starting
not with F D g (as we did previously), but rather with F D g˝�6. Thus we get:

Theorem 4.3 (another special case of Theorem 4.5 of [Atkin and Li 1978]). For
0� j � 11, we have

.�1/jC112g.�12�j /�.�6Cj /D

11X
kD0

g.�k/g.�jCk/�.�6Ck/:

As previously stated, this yields two more independent equations, giving us a
linear system of eight independent equations in ten unknowns.

Let x D �.�/ and y D �.�2/. We obtain the following two linear equations in
the unknowns x; Nx; y; Ny:

c1 NyC c2yC c3xC c4 Nx D c5; (4-1)

c6yC c7xC c8 Nx D c9I (4-2)

here the ci are explicit elements of Q.�156/. We now use the relations x NxDy NyD 1.
We use (4-2) to eliminate y and Ny from (4-1) to obtain a linear relation between
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x and Nx; now, using x Nx D 1, we obtain a quadratic in x. This quadratic has no
root in Q.�156/; we need to adjoin

p
�7, so in fact we work in the field Q.�1092/;

this might seem excessive, but the coefficients of g are anyway in Q.�7/
C. This

quadratic in x tells us that x is one of two values, and x determines all other �.�j /.
In order to determine which of the two values x really is, we computed two

competing zS matrices, and took the one which satisfied the correct relations with
zT to be the generators of PSL2.F13/, namely,

zS2 D zT 13 D . zS zT /3 D 1:

Step 7. The cuspforms. We now have matrices giving the action of zS on the twist
basis, and the action of zT on the isotypical basis; a change of basis matrix applied
to either of these gives the action of both matrices in terms of the same basis. Write
�.S/ and �.T / for the 12� 12 matrices giving the action of zS and zT respectively
with respect to the twist basis.

We now compute the A4-invariant subspace of V0. Recall that our generators of
A4 � PSL2.F13/ are

AD

�
�5 0

0 5

�
and B D

�
�2 �2

�3 3

�
:

Writing each generator as a word in S and T ,

AD T 5ST �2ST 2ST 3ST �5;

B D T 4ST 3ST �3S;

the action of A4 on S2. e�.13// is given by the same words in the matrices zS; zT :

zAD zT 5 zS zT �2 zS zT 2 zS zT 3 zS zT �5;

zB D zT 4 zS zT 3 zS zT �3 zS:

The action of zA and zB on our vector space V0 is given by taking the same words
as above, but in �.S/ and �.T /; we call the resulting matrices �.A/ and �.B/.

The intersection of the kernels of �.A/� I and �.B/� I is one-dimensional,
spanned by a vector of the coefficients, in the twist basis, of an A4-invariant
cuspform in V0. These coefficients lie in the degree-9 field Q.�C7 ; �

CC
13 /, where by

Q.�CC13 / we denote the unique cubic subfield of Q.�13/. We call this A4-invariant
form f .

We do not have to repeat the calculation for V1 and V2, because of the following
fact. Here we regard Vi as QŒPSL2.F13/�-modules.
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Lemma 4.4. Let 
 be an element of PSL2.F13/. The following diagram commutes:

V0
�

������! V1




??y ??y

V0

�
������! V1

Proof. Each Vi admits a twist basis, corresponding to g�
i

and its twists under
powers of �. Fixing this twist basis for each Vi , we find that the actions of zS and zT
are exactly the same; this is because the coefficients in zS and zT we found for V0
are invariant under the action of � . �

The lemma allows us to conclude that for i D 0; 1; 2, the conjugate f �
i

spans the
A4-invariant subspace of Vi , and hence that ff; f � ; f �

2

g is a basis of S2.B�A4
.13//.

Next we replace this basis with one defined over a smaller field, namely Q.�CC13 /.
Write f as

f D F C �C7 GC �
C2
7 H;

where F;G;H have coefficients in Q.�CC13 /. The forms F;G;H form a basis for
the same space, with coefficients in the smaller field:

Lemma 4.5. The following two C-spans are the same:

hf; f � ; f �
2

i D hF;G;H i:

Proof. We have 0@ f

f �

f �
2

1AD
0@1 �C7 �C27
1 �.�C7 / �.�C27 /

1 �2.�C7 / �
2.�C27 /

1A0@FG
H

1A ;
where the matrix has nonzero determinant. �

As a final flourish, we apply the nonsingular transformation0@ 1 4 3

�4 �3 1

6 �2 5

1A
to obtain the following cuspforms (where again � D �13), which are a basis for
S2.B�A4

.13//:

f D �q

C .��11��10��3��2/q2

C .�11C�10��9��7��6��4C�3C�2�2/q3C� � � ;



Tetrahedral elliptic curves and the local-global principle for isogenies 1217

g D .��11��10��9��7��6��4��3��2�1/q

C .��11��10��9��7��6��4��3��2�2/q2

C .��11��10��3��2�1/q3 C � � � ;

hD .�11C�10C�3C�2C3/q

C .��11��10��9��7��6��4��3��2�3/q2

C q3 C � � � :

The final transformation was chosen retrospectively, solely for cosmetic reasons; it
moves three of the rational points on the curve to Œ1 W 0 W 0�, Œ0 W 1 W 0�, Œ0 W 0 W 1�.

Having obtained the q-expansions, we may proceed with the canonical embedding
algorithm of Galbraith, to obtain the smooth quartic equation for the model C given
in the introduction. In practice this simply amounts to finding a linear relation
between the q-expansions of the fifteen monomials of degree 4 in f; g; h. Although
these q-expansions have coefficients defined over a cubic field (and there is no basis
with rational q-expansions), the relation we find has rational coefficients.

Remark 4.6. Burcu Baran [2013] uses a different method to compute the equation
of the modular curve Xns.13/; her method would also work for the present curve
XS4

.13/; one would need an analogue of her Proposition 6.1 for the subgroup at
hand, which can be proved using her formulae in §3.

Remark 4.7. We also implemented a variation of the approach detailed here, using
a modular symbol space of level 169, dual to the spaces Vi above. This second
approach saved us from having to find the pseudoeigenvalues, since the matrices of
both S and T on modular symbols are easily computed. This variation is also easy
to adapt to find models for the curves Xs.13/ and Xns.13/. Full details (including
the cases Xs.13/ and Xns.13/) may be found in the annotated Sage code [Banwait
and Cremona 2013] and Sage worksheet [Cremona 2014].

5. Proof of Theorem 1.8: the j -map

In this section we explicitly determine the j -map

XS4
.13/

j
�!X.1/Š P1Q

as a rational function on XS4
.13/. This is a function of degree 91, which we seek

to express in the form

j.X; Y;Z/D
n.X; Y;Z/

d0.X; Y;Z/
;

where n and d0 are polynomials of the same degree over Q. We first find a suitable
denominator d0.X; Y;Z/. The poles of j are all of order 13 and are at the seven
cusps of XS4

.13/, so we will find these, as Q-rational points on XS4
.13/. Then
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we find a cubic d in QŒX; Y;Z� which passes through these seven points (there is
no quadratic which does), and set d0 D d13. Having found d0 we determine the
numerator n using linear algebra on q-expansions.

Remark 5.1. It would also be possible, in principal, to follow [Baran 2013] by
computing the zeros of j numerically to sufficient precision to be able to recognise
them as algebraic points, as then we would have the full divisor of the function j
from which j itself could be recovered using an explicit Riemann–Roch space
computation. Our method has the advantage of not requiring any numerical approx-
imations.

We first need to find which points on our model C for XS4
.13/ are the seven

cusps. It turns out that there are three which are defined and conjugate over the
degree-3 subfield Q.˛/ of Q.�/, where � D �13 and ˛ D �C �5C �8C �12, and
the other four are defined and conjugate over the degree-4 subfield Q.ˇ/ of Q.�/,
where ˇ D �C �3C �9.

Proposition 5.2. On the model C for XS4
.13/, the seven cusps are given by the

three Galois conjugates of

Œ�3˛2� 7˛C 1 W 4˛2C 11˛� 3 W 5�

and the four conjugates of

Œ3ˇ3C 6ˇ2C 6ˇ� 15 W ˇ3Cˇ2� 4ˇ� 4 W 9�;

where ˛ and ˇ have minimal polynomials x3Cx2�4xC1 and x4Cx3C2x2�4xC3
respectively.

The degree-3 cusps are easy to obtain; the cusp corresponding to the point i1 on
the extended upper half-plane H� has coordinates given by the leading coefficients
of the three basis cuspforms f; g; h; denoting by ' the map

' W �A4
.13/nH�

�
�!XS4

.13/;

�A4
.13/ � z 7�! Œf .z/ W g.z/ W h.z/�;

we see that '.i1/D Œa1.f / W a1.g/ W a1.h/�. Expressing these coordinates in terms
of ˛ gives the degree-3 cusp given in the proposition.

It is possible to determine in advance the Galois action on the cusps, as in the
following lemma. However, note that in practice our method to compute the cusps
algebraically, given below, does not require this knowledge.

Lemma 5.3. The absolute Galois group of Q acts on the seven cusps with two
orbits, of sizes 3 and 4.
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Proof. We know a priori that the cusps are all defined over Q.�13/. Theorem 1.3.1 in
[Stevens 1982] explains how to compute the action of Gal.Q.�N /=Q/Š .Z=NZ/�

on the cusps of a modular curve X of level N , provided that the field of rational
functions on X is generated by rational functions whose q-expansions have rational
coefficients. This does not apply here, since the field of modular functions for
�A4

.13/ is not generated by functions with rational q-expansions, but rather by
functions with q-expansions in the cubic field Q.˛/. But following Stevens’ method
we can compute the action of the absolute Galois group of Q.˛/, which acts through
the cyclic subgroup of order 4 of .Z=13Z/� fixing ˛. We find that it fixes three cusps
(which we already know from above, as they are defined over Q.˛/), and permutes
the remaining four cyclically. It follows that the other four cusps are also permuted
cyclically by the full Galois group, and hence have degree 4 as claimed. �

It remains to find the coordinates of one cusp of degree 4.
Let c 2 �A4

.13/nP1.Q/ be any cusp. Then there exists 
 2 PSL2.Z/n�A4
.13/

such that 
.c/D1, and hence,

˛.c/D Œa1.f j
/ W a1.gj
/ W a1.hj
/�:

Since we already computed in the previous section the action of PSL2.Z/ on the
cuspforms f; g; h, we can compute the right-hand side of this equation for any 
 .
With some work one can show that the cubic cusps are obtained using c D1; 1
and 7=6, while the quartic cusps are obtained from c D 2; 3; 6 and 9; or we can
simply choose random 
 2 PSL2.Z/ until we find a point which is not one of the
three conjugates we already have. This proves Proposition 5.2.

Next we find a cubic curve passing through these seven points.

Proposition 5.4. The following cubic passes through the seven cusps:

5X3�19X2Y �6XY 2C9Y 3CX2Z�23XYZ�16Y 2ZC8XZ2�22YZ2C3Z3:

Proof. The full linear system of degree 3 associated to OP2.1/ has dimension 10,
and the subsystem passing though the seven cusps has dimension 3 with a basis in
QŒX; Y;Z�. Using LLL-reduction we found a short element which does not pass
through any rational points on C (to simplify the evaluation of the j -map at these
points later). �

Since all cusps have ramification degree 13 under the j -map, a possible choice for
the denominator of the j -map is to take the thirteenth power d0D d13 of this cubic.

Next we turn to the numerator n.X; Y;Z/, which is a polynomial of degree 39.
The idea is to consider an arbitrary degree-39 polynomial in the q-expansions of the
cusp forms f; g; h, and compare it with the known q-expansion of j � d.f; g; h/13.
This gives a system of linear equations which can be solved.
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The full linear system of degree 39 has dimension 820, but modulo the defining
quartic polynomial for C we can reduce the number of monomials needing to be
considered to only 154. We chose those monomials in which either X does not
occur, or else Y does not occur and X has exponent 1 or 2, but this is arbitrary.

Now we consider the equation

n.X; Y;Z/� j.X; Y;Z/ � d.X; Y;Z/13 D 0

as a q-expansion identity after substituting f; g; h for X; Y;Z. Using 250 terms
in the q-expansions (giving a margin to safeguard against error) and comparing
coefficients gives 250 equations for the unknown coefficients of n.X; Y;Z/. There
is a unique solution, which has rational coefficients. Although we have apparently
only shown that the equation holds modulo q250, it must hold identically, since we
know that there is exactly one solution.

The expression for n.X; Y;Z/ we obtain this way is too large to display here (it
has 151 nonzero integral coefficients of between 46 and 75 digits), but can easily
be used to evaluate the j -map at any given point on the curve C. For the sake of
completeness, however, we give here explicitly the zeros of the j -map from which
(together with the poles) it may be recovered; the complete expression may be seen
in [Cremona 2014].

The 91 zeros of j consist of 29 points with multiplicity 3 and four with mul-
tiplicity 1, all defined over the number field M D Q.ı/, where ı has minimal
polynomial

x8� 9x6C 32x4� 9x2C 1;

which is Galois with groupD8. This field is the splitting field of the polynomialP.t/
defined in the next section, so is also the field of definition of the points in the
fibre over j D 0 of the covering map X0.13/! X.1/. Some of the 33 zeros are
defined over the quartic subfields Q.˛/ and Q.ˇ/, where ˛ and ˇ have minimal
polynomials x4C 13x2� 39 and x4� 13x2C 52 respectively. Their coordinates
are as follows (together with all Galois conjugates): with multiplicity 1 we have

Œ3ˇ3C 2ˇ2� 15ˇ� 14 W �3ˇ3C 4ˇ2C 29ˇ� 22 W �3ˇ3� 4ˇ2C 25ˇC 46�;

and with multiplicity 3 we have the rational point Œ1 W 0 W 0�, the degree-4 points

Œ2.�˛2C 5˛� 4/ W �˛3�˛2C˛C 6 W ˛3C 14˛� 35�;

Œˇ3� 2ˇ2� 9ˇC 14 W 2.ˇ2�ˇ� 2/ W 2.�ˇ3� 2ˇ2C 7ˇC 16/�;

Œ4.ˇ� 1/ W ˇ3� 7ˇ� 10 W 2.ˇ3C 2ˇ2� 7ˇ� 12/�;
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and the degree-8 points

Œı7C 2ı6� 8ı5� 8ı4C 36ı3C 12ı2� 5ı� 2 W 8.ı3C ı2/ W

�ı7� 2ı6C 4ı5� 28ı3� 8ı2C 5ıC 2�

and

Œ2.�ı6C4ı5�10ı3C4ı�1/ W �3ı7C2ı6C28ı5�32ı4�52ı3C16ı2C7ı�2 W

ı7� 2ı6� 4ı5C 4ı4C 4ı3C 8ı2� 9ıC 2�:

6. Proof of Corollary 1.9

Evaluating the j -map at the six points in C.Q.
p
13// exhibited in the introduction

yields the five j -invariants listed in the statement of Corollary 1.9, together with
j D 0, which is the image of Œ1 W 0 W 0�. We know that any elliptic curve E over
Q.
p
13/ with one of these six j -invariants has HE;13 � A4. Any elliptic curve

with j D 0 has complex multiplication, with mod-13 image contained in a split
Cartan subgroup (split since 13� 1 .mod 3/). Hence what remains to prove in this
section is that HE;13 Š A4 for the five nonzero j -invariants listed.

Lemma 6.1. Let l be a prime for whichX0.l/ has genus 0 (that is, lD2; 3; 5; 7; 13).
There is an explicit polynomial Fl.X; Y / 2 ZŒX; Y � such that, if E=K is an elliptic
curve over a number field, then

HE;l Š Gal
�
Fl.X; j.E//

�
:

Proof. The function field of X0.l/ is generated by a single modular function t (the
so-called “Hauptmodul”), and classically there is a canonical choice of such, for
each l . The j -function is a rational function of t of degree lC1 of the form P.t/=t ,
where P is an explicit integral polynomial of degree l C 1.

Define Fl.X; Y /D P.X/�YX 2 ZŒX; Y �. Let E=K be an elliptic curve over
a number field, and consider the set of roots of Fl.X; j.E// 2KŒX� over Q. As
a set, this is in bijection with the set of preimages t of j.E/ under the j -map
X0.l/!X.1/ (which is unramified away from j D 0 and j D 1728), and hence is
in Galois-equivariant bijection with the l-isogenies on E. Hence the Galois action
on the set of l C 1 isogenies is isomorphic to the Galois action on the roots of
Fl.X; j.E//. �

For l D 13, we have

P.t/D .t2C 5t C 13/ � .t4C 7t3C 20t2C 19t C 1/3;

and hence

F13.X; Y /D .X
2
C 5X C 13/ � .X4C 7X3C 20X2C 19X C 1/3�XY:
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For each j -invariant listed in Corollary 1.9 we may verify that F13.X; j / has Ga-
lois group isomorphic toA4 over Q.

p
13/, and for the rational j -values, isomorphic

to S4 over Q.

7. Proof of Proposition 1.3

By Proposition 2.2 and Lemma 2.1, Proposition 1.3 is equivalent to the following
purely group-theoretic statement.

Proposition 7.1. Let H � PSL2.Fl/. Then H is Hasse if and only if one of the
following holds:

(1) H Š A4 and l � 1 .mod 12/.

(2) H Š S4 and l � 1 .mod 24/.

(3) H Š A5 and l � 1 .mod 60/.

(4) H ŠD2n and l � 1 .mod 4/, where n > 1 is a divisor of .l � 1/=2, and the
pullback of H to GL2.Fl/ is contained in the normaliser of a split Cartan
subgroup.

We begin the forward implication of this Proposition by quoting the following
lemma of Sutherland, which is a small piece of his Lemma 1.

Lemma 7.2 (Sutherland). If H � PSL2.Fl/ is Hasse, then l − jH j.

We may now invoke the following classical result (see [Lang 1976, Theorem
XI.2.3]).

Fact 7.3. Let H be a subgroup of PGL2.Fl/ with l − jH j, and let G denote its
pullback to GL2.Fl/. Then one of the following occurs:

� H is cyclic, and G is contained in a Cartan subgroup.

� H is dihedral, and G is contained in the normaliser of a Cartan subgroup.

� H is isomorphic to A4, S4 or A5.

Clearly H being cyclic is incompatible with H being Hasse, so either H ŠD2n
for n > 1, or H is one of A4, S4 or A5.

Lemma 7.4. LetH � PSL2.Fl/ be Hasse, and let h 2H . Then the order of h must
divide .l � 1/=2.

Proof. Write H 0 WD hhi, a cyclic group of order r say, prime to l . By Fact 7.3, the
pullback G0 of H 0 to GL2.Fl/ is contained in a Cartan subgroup. If this Cartan
subgroup were nonsplit, then the elements of G0 would not be diagonalisable, and
hence h would not fix an element of P1.Fl/, contradicting the Hasse assumption.
Thus the Cartan subgroup must be split, so the elements of G0 are diagonalisable,
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and thus h has two fixed points; the same is true for every nonidentity element of
H 0. We now apply the orbit counting lemma to H 0:

s WD jP1.Fl/=H j D 2C
l � 1

r
: (7-1)

Note that this formula says that there are .l � 1/=r nontrivial orbits of P1.Fl/

under h (a trivial orbit being a fixed point). The sizes of these .l � 1/=r nontrivial
orbits all divide r and sum to l � 1, and hence they are all equal to r .

We claim that s must be even. This is clear if r is odd, by (7-1). If r is even, then

sign.h/D .�1/s�2 D .�1/s;

where sign means the sign as a permutation. The key observation, which proves the
claim, is that sign.h/ must be 1, because it coincides with deth.

As s must be even, we look finally at (7-1) to conclude that r must divide l � 1
with even quotient, and the lemma is proved. �

A part of the previous proof is worth framing, for it explains why the pullback of
the dihedral group D2n is contained in the normaliser of a split Cartan subgroup.

Lemma 7.5. Let H � PSL2.Fl/ be Hasse, and let h 2 H . Let H 0 WD hhi, and
let G0 be the pullback of H 0 to GL2.Fl/. Then G0 is contained in a split Cartan
subgroup.

Lemma 7.4 implies that the n in D2n divides .l �1/=2, and also the congruence
restrictions for A4, S4 and A5; indeed, since A4 contains elements of order 1, 2
and 3, we must have that 2 and 3 divide .l �1/=2, or equivalently, l � 1 .mod 12/;
the same argument works for S4 and A5. This proves the forward implication of
the group-theoretic proposition above.

We now prove the converse; that is, if H is isomorphic to one of the four
subgroups listed above, then it satisfies the Hasse condition.

The easier thing to prove is that every element h in H fixes a point of P1.Fl/,
so we address this first. Suppose, for a contradiction, that we have h 2H which
fixes no point of P1.Fl/, let r be the order of this h, and let s WD jP1.Fl/=hj be the
number of orbits. Proposition 2 of [Sutherland 2012] says that sign(h) = .�1/s; in
particular, s must be even. Applying the orbit counting lemma to the action of hhi
on P1.Fl/ yields the formula s D .l C 1/=r , and hence r must divide .l C 1/=2.
We now do a case-by-case elimination. Suppose first that H ŠD2n with all the
other conditions expressed above. The order of any element of this group must
divide .l � 1/=2. Since .l � 1/=2 and .l C 1/=2 are coprime, we obtain the desired
contradiction. The argument in the other cases is similar.
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We are left with proving that, in the four cases, no point of P1.Fl/ is fixed by the
whole of H . This follows from the following well-known fact from group theory;
see for example Theorem 80.27 in [Curtis and Reiner 1987].

Lemma 7.6. Let G be a group, S a transitive left G-set, and H a subgroup of G.
Denote by HnS the set of orbits of S under H . Let B denote the G-stabiliser of
any point of S . Then we have an isomorphism of H -sets

S Š
G
g

H=.H \Bg/;

where g runs over a set of double coset representatives forHnG=B; here we regard
the S on the left as an H -set.

This allows us to prove that, in the four cases, there is no point of P1.Fl/ fixed by
all ofH . We apply the lemma withGDPSL2.Fl/, S DP1.Fl/, and B the stabiliser
of1, that is, the Borel subgroup. By the lemma, an orbit of size 1 corresponds to a
double coset representative g for which H � Bg . But this inclusion is impossible,
since each H contains D4 and B does not. This finishes the proof.

8. Proof of Proposition 1.6

Let E=Q.
p
l/ be a nondihedral Hasse at l curve. Then l � 1 .mod 12/, .mod 24/

or .mod 60/, according as the projective image of N�E;l is A4, S4 or A5, by
Proposition 7.1. However, there is the following general result of David regarding
the projective mod-p image, which we are grateful to Nicolas Billerey for bringing
to our attention. For F a number field, and p a prime, let

ep WDmax
p
fepg;

where ep denotes the ramification index of the prime p j p.

Fact 8.1 [David 2011, Lemme 2.4]. For an elliptic curve defined over a number field
F , the projective mod-p image contains an element of order at least .p� 1/=.4ep/.

Applying this with F DQ.
p
l/ and p D l , we see that:

� A4 can occur only when l � 25 and l � 1 .mod 12/, so only for l D 13.

� S4 can occur only when l � 33 and l � 1 .mod 24/, so cannot occur.

� A5 can occur only when l � 41 and l � 1 .mod 60/, so cannot occur.

Thus only A4 is possible, for the prime l D 13.

9. The Jacobian of XS4
.13/

Over the complex numbers, there are precisely three modular curves of level 13
and genus 3; they are Xs.13/, Xns.13/, and XS4

.13/; see for example the table of
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[Cummins and Pauli 2003]. Observe that all of these curves are defined over Q and
are geometrically connected.

Baran [2013; 2012] proved in two different ways that the curves Xs.13/ and
Xns.13/ are in fact Q-isomorphic. Her first proof [2013] was computational; she
computed models of both curves and showed that they give isomorphic curves.
Her second proof was more conceptual, establishing that the Jacobians Js.13/ and
Jns.13/ are isomorphic, with an isomorphism preserving the canonical polarisation
of both Jacobians; the Torelli theorem then gives the result.

The Q-points on Xs.13/ have not yet been determined; in fact, as discussed
in the final section of [Bilu et al. 2013], p D 13 is the only prime p for which
the Q-points on Xs.p/ have not yet been determined, and Baran’s result, linking
Xs.13/ and Xns.13/, may give some reason for why this pD 13 case is so difficult:
the determination of Q-points on Xns.p/ is known to be a difficult problem.

Another reason for this difficulty is that Js.13/.Q/ is likely to have Mordell–
Weil rank 3, which equals the genus, so the method of Chabauty to determine the
rational points does not apply. By likely, we mean that the analytic rank of this
Jacobian is 3, so under the Birch–Swinnerton-Dyer conjecture, we would have that
the Mordell–Weil rank is also 3.

The curves Xs.13/ and XS4
.13/ are not isomorphic, even over C; this may be

verified using the explicit models of both curves, by computing certain invariants
of genus-3 curves and observing that they are different — we are grateful to Jeroen
Sijsling for carrying out this computation.

Nevertheless, their Jacobians are isogenous:

Proposition 9.1. The Jacobians Js.13/ and JS4
.13/ of the modular curves Xs.13/

and XS4
.13/ are Q-isogenous.

Proof. Let G D GL2.F13/, B the Borel subgroup of G, and for K any subgroup
of PGL2.F13/, denote by ��1.K/ the pullback of K to G. One first verifies (for
example in Magma) that there is a QŒG�-module isomorphism as follows:

2QŒG=CCs �˚QŒG=��1.C13 ËC3/�˚QŒG=��1.C13 ËC4/�
Š 2QŒG=��1.S4/�˚QŒG=��1.D26/�˚QŒG=B�: (9-1)

For R any Q-algebra, apply the contravariant functor HomQŒG�.�; J.13/.R// to
this formula; this yields, by a well-known method of Kani and Rosen ([1989], but
see also [de Smit and Edixhoven 2000]), the following Q-isogeny between Jacobians
of modular curves of level 13:

J 2S4
˚J��1.D26/

˚JB �! J 2s ˚J��1.C13ËC3/
˚J��1.C13ËC4/

I (9-2)

here we have, for simplicity, denoted the Jacobian of the modular curve XH .13/
simply as JH .
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However, as may be checked by computing genera of these curves, most of these
terms are zero, leaving us with a Q-isogeny J 2S4

! J 2s . Restricting this isogeny to
the first component yields an isogeny between JS4

and its image in J 2s . This image
must have dimension 3, and since Js is simple over Q (as shown in Section 2 of
[Baran 2012]), the image is isogenous to Js. �
Remark 9.2. One may still wonder whether Js is isomorphic to JS4

or not. They
are indeed not isomorphic; for if they were, then the arguments in Section 3 of
[Baran 2012] would apply, and we would conclude that the curves Xs and XS4

were isomorphic, which we know is not true.

Remark 9.3. With additional work one may show that there is a Q-isogeny between
Js and JS4

of degree a power of 13, and furthermore that 13 must divide the degree
of any isogeny.

10. The evidence for Conjecture 1.14

There can be no Hasse at 11 curve over Q.
p
�11/, because 11 is not congruent

to 1 .mod 4/ (see Proposition 1.3). Thus, we let K be any other quadratic field.
Sutherland’s result (Proposition 1.1) tells us that, if E=K is a Hasse at 11 curve
over K, then it corresponds to a K-point on the modular curve Xs.11/. A model
for this curve, as well as an expression for the j -map Xs.11/! X.1/, may be
computed along the lines of that for XS4

.13/; we obtain a singular projective model

Xs.11/ W y
2
D 4X6� 4X4� 2X3C 2X2C 3

2
X C 1

4
:

We used Magma to search for K-points on this curve, for every quadratic field with
absolute discriminant up to 107, and evaluated the j -map at these points, giving
many potential j -invariants of Hasse at 11 curves over quadratic fields.

Given such a j -invariant j0 2K, we considered the polynomial ˆ11.X; j0/ 2
KŒX�, that is, the classical modular polynomial at 11, evaluated at Y D j0.

Proposition 10.1. The pair .11; j0/ is exceptional for K if and only if the polyno-
mial ˆ11.X; j0/ 2KŒX�

� has no linear factor over K, and

� modulo every prime p in a density-one set, it has a linear factor.

Proof. This is a direct consequence of the fact, proved in [Igusa 1959], that, for an
elliptic curveE over any field F , and an integerN with char F −N , the existence of
a cyclic F -rational N -isogeny on E is equivalent to ˆN .X; j.E// 2 F ŒX� having
a linear factor. �

We found that, for all of our potential j -invariants, ˆ11.X; j0/ had many reduc-
tions with no linear factor — too many to be of density zero. This suggested to us
that Conjecture 1.14 should be true.
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The results of [Serre 1972] imply the following.

Proposition 10.2. Let K be a quadratic field. If E=K is Hasse at 11, then either
11 ramifies in K, or E has additive reduction at all places v of K dividing 11.

Proof. If 11 is unramified in K and E has a place v of good or multiplicative
reduction above 11, then the results of [Serre 1972] (see in particular Section 4)
give the image of the inertia subgroup at v of GK under N�E;11, which in all cases
is incompatible with the projective image being isomorphic with D10. �

We can also say, by part (a) of Proposition 1.1, thatE=K is Hasse at 11 if and only
if HE;11 ŠD10, and so corresponds to a K-point on the modular curve XD10

.11/

parametrising such elliptic curves. This modular curve is the Q.
p
�11/-twist of

the more usual modular curve X0.121/, which, by Theorem 4.9 of [Bars 2012], has
only finitely many quadratic points. Thus, we can say that there are only finitely
many quadratic fields over which a Hasse at 11 curve might exist. If we could
determine exactly which quadratic fieldsK arise for the twistXD10

.11/ ofX0.121/,
we could prove the conjecture by determining theK-points onXs.11/, find the finite
list of potential j -invariants, and show that none of them yield HE;5 ŠD10 (this
last step can be established by recent work of Sutherland, who has implemented
an algorithm to determine the mod-p Galois image of any elliptic curve over any
number field). The methods of Freitas, Le Hung and Siksek [Freitas et al. 2013]
for determining the quadratic points on X0.N / for certain N may be of use here.
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