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For positive integers m ≥ n≥ p, we compute the GLm ×GLn-equivariant descrip-
tion of the local cohomology modules of the polynomial ring S = Sym(Cm

⊗Cn)

with support in the ideal of p × p minors of the generic m × n matrix. Our
techniques allow us to explicitly compute all the modules Ext•S(S/Ix, S), for x
a partition and Ix the ideal generated by the irreducible subrepresentation of S
indexed by x. In particular we determine the regularity of the ideals Ix, and we
deduce that the only ones admitting a linear free resolution are the powers of the
ideal of maximal minors of the generic matrix, as well as the products between
such powers and the maximal ideal of S.

1. Introduction

Given positive integers m ≥ n and a field K of characteristic zero, we consider the
space Km×n of m×n matrices and the ring S of polynomial functions on this space.
For each p = 1, . . . , n we define the ideal Ip ⊂ S generated by the polynomial
functions in S that compute the p× p minors of the matrices in Km×n . The goal of
this paper is to describe for each p the local cohomology modules H•Ip

(S) of S with
support in the ideal Ip. The case p = n was previously analyzed by the authors
in joint work with Emily Witt [Raicu et al. 2014]. There is a natural action of the
group GLm ×GLn on Km×n and hence on S, and this action preserves each of the
ideals Ip. This makes the H•Ip

(S) into GLm ×GLn-representations, and our results
describe the characters of these representations explicitly. Our methods also allow
us to determine explicitly the characters of all the modules Ext•S(S/I, S), where I
is an ideal of S generated by an irreducible GLm ×GLn-subrepresentation of S, and
in particular to determine the regularity of such ideals. It is an interesting problem
to determine the minimal free resolutions of such ideals I , which unfortunately has

MSC2010: primary 13D45; secondary 14M12.
Keywords: local cohomology, determinantal ideals, regularity.

1231

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2014.8-5
http://dx.doi.org/10.2140/ant.2014.8.1231


1232 Claudiu Raicu and Jerzy Weyman

only been answered in a small number of cases. We hope that our results will help
shed some light on this problem in the future.

We will adopt a basis-independent notation throughout the paper, writing F
(resp. G) for a K-vector space of dimension m (resp. n), and thinking of F∗⊗G∗ as
the space Km×n of m×n matrices and of S=Sym(F⊗G) as the ring of polynomial
functions on this space. S is graded by degree, with the space of linear forms F⊗G
sitting in degree 1. The Cauchy formula [Weyman 2003, Corollary 2.3.3]

S =
⊕

x=(x1≥···≥xn≥0)

Sx F ⊗ Sx G (1-1)

describes the decomposition of S into a sum of irreducible GL(F) × GL(G)-
representations, indexed by partitions x with at most n parts (Sx denotes the
Schur functor associated to x). This decomposition respects the grading, the
term corresponding to x being of degree |x | = x1 + · · · + xn . We denote by Ix

the ideal generated by Sx F ⊗ Sx G. If we write (1p) for the partition x with
x1 = · · · = x p = 1 and xi = 0 for i > p, then I(1p) is just another notation for the
ideal Ip of p× p minors. Our first result gives an explicit formula for the regularity
of the ideals Ix :

Theorem 5.1 (regularity of equivariant ideals). For a partition x with at most n
parts, letting xn+1 = −1, we have the following formula for the regularity of the
ideal Ix :

reg(Ix)= max
p=1,...,n
x p>x p+1

(n · x p + (p− 2) · (n− p)).

In particular, the only ideals Ix which have a linear resolution are those for which
x1 = · · · = xn (i.e., powers I x1

n of the ideal In of maximal minors) or x1 − 1 =
x2 = · · · = xn (i.e., I x1−1

n · I1).

The minimal free resolutions of the powers of In have been computed in [Akin
et al. 1981, Theorem 5.4]. Together with the fact that I ·m has a linear resolution
whenever I has a linear resolution and m is the maximal homogeneous ideal, this
implies that the ideals Ix have a linear resolution when x2=· · ·= xn= x1 (or x1−1).
The fact that no other Ix has a linear resolution is, to the best of our knowledge,
new.

The theorem on the regularity of equivariant ideals is a consequence of the
explicit description of the modules Ext•S(S/Ix , S) that we obtain in Theorem 4.3.
This description is somewhat involved, so we avoid stating it for the moment. A
key point is that the modules Ext•S(S/Ix , S) grow as we append new columns to
the end of the partition x . More precisely, we can identify a partition x with its
pictorial realization as a Young diagram consisting of left-justified rows of boxes,
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with xi boxes in the i-th row; for example, x = (5, 5, 5, 3) corresponds to

,

and adding two columns of size 2 and three columns of size 1 to the end of x yields
y = (10, 7, 5, 3).

Theorem 4.2 (the growth of Ext modules). Let d ≥ 0 and consider partitions x, y,
where x consists of the first d columns of y; i.e., xi =min(yi , d) for all i = 1, . . . , n.
The natural quotient map S/Iy � S/Ix induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S)

for all i = 0, 1, . . . ,m · n.

We warn the reader that the naive generalization of the statement above fails: if
y is a partition containing x (i.e., yi ≥ xi for all i), then it is not always the case that
the induced maps ExtiS(S/Ix , S)→ ExtiS(S/Iy, S) are injective. In fact, a general
partition x has the property that most modules ExtiS(S/Ix , S) are nonzero, but it is
always contained in some partition y with y1 = · · · = yn; for such a y, all but n of
the modules ExtiS(S/Iy, S) will vanish.

We next give the explicit description of Ext•S(S/Ix , S), which requires some
notation. We write R for the representation ring of the group GL(F)×GL(G).
Given a Z-graded S-module M =

⊕
i∈Z Mi admitting an action of GL(F)×GL(G)

compatible with the natural one on S, we define its character χM(z) to be the
element in the Laurent power series ring R((z)) given by

χM(z)=
∑
i∈Z

[Mi ] · zi ,

where [Mi ] denotes the class in R of the GL(F)×GL(G)-representation Mi . We
will often work with doubly graded modules M j

i , where the second grading (in j)
is a cohomological one and M j

• 6= 0 for only finitely many values of j ; for us they
will be either Ext modules or local cohomology modules. We define the character
of such an M to be the element χM(z, w) ∈R((z))[w±1

] given by

χM(z, w)=
∑

i, j∈Z

[M j
i ] · z

i
·w j .

We will refer to an r-tuple λ= (λ1, . . . , λr ) ∈ Zr (for r = m or n) as a weight.
We say that λ is dominant if λ1 ≥ λ2 ≥ · · · ≥ λr , and denote by Zr

dom the set of
dominant weights. Note that a partition is just a dominant weight with nonnegative
entries. We will usually use the notation x, y, z, etc. to refer to partitions indexing
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the subrepresentations of S, and λ,µ, etc. to denote the weights describing the
characters of other equivariant modules (Ext modules or local cohomology modules).

For λ ∈ Zn
dom and 0≤ s ≤ n, we define

λ(s)=
(
λ1,...,λs, s− n,...,s− n︸ ︷︷ ︸

m−n

, λs+1 + (m−n),...,λn + (m−n)
)
∈Zm . (1-2)

(Note that in [Raicu et al. 2014] this was called λ(n− s).)

Theorem 4.3 (the characters of Ext Modules). With the above notation, the char-
acter of the doubly graded module Ext•S(S/Ix , S) is given by

χExt•S(S/Ix ,S)(z, w)

=

∑
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ),

where W ′(x, p; t, s) is the set of dominant weights λ ∈ Zn satisfying
λn ≥ p− x p −m,
λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− p,
λs ≥ s− n and λs+1 ≤ s−m.

Our proof of this theorem starts with the observation in [de Concini et al. 1980]
that even though the algebraic set defined by Ix is somewhat simple (it is the set of
matrices of rank smaller than the number of nonzero parts of x), its scheme-theoretic
structure is more complicated: it is generally nonreduced, and has embedded
components supported on Ip for each size p of some column of x . Our approach is
then to filter S/Ix with subquotients Jz,p (defined in Section 2B) whose scheme-
theoretic support is the (reduced) space of matrices of rank at most p, which
are therefore less singular and easier to resolve. In fact, each Jz,p is the push-
forward of a locally free sheaf on some product of flag varieties, which allows us to
compute Ext•S(Jz,p, S) via duality theory. Solving the extension problem to deduce
the formulas for Ext•S(S/Ix , S) turns out to be then trivial, due to the restrictions
imposed by the equivariant structure of the modules.

We end this introduction with our main theorem on local cohomology modules,
whose statement needs some more notation. For 0 ≤ s ≤ n, we define (with the
convention λ0 =∞, λn+1 =−∞)

hs(z)=
∑
λ∈Zn

dom
λs≥s−n
λs+1≤s−m

[Sλ(s)F ⊗ SλG] · z|λ|, (1-3)
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so that hn(z) is just the character of S. The other hs(z)’s are characters of local
cohomology modules with support in In (in the case when m > n). More precisely,
for p = 1, . . . , n we write Hp(z, w) for the character of the doubly graded module
H•Ip

(S). In [Raicu et al. 2014] we proved that for m > n

Hn(z, w)=
n−1∑
s=0

hs(z) ·w(n−s)·(m−n)+1,

and it is easy to see that the same formula holds for m = n (in this case, the
only nonzero local cohomology module is H 1

In
(S)= Sdet/S, where det denotes the

determinant of the generic n× n matrix, and Sdet is the localization of S at det).
We write p(a, b; c) for the number of partitions of c contained in an a × b

rectangle, and define the Gauss polynomial
(a+b

b

)
(w) to be the generating function

for the sequence p(a, b; c)c≥0:(a+b
a

)
(w)=

∑
c≥0

p(a, b; c) ·wc
=

∑
b≥t1≥t2≥···≥ta≥0

wt1+···+ta . (1-4)

Gauss polynomials have previously appeared in [Akin and Weyman 2007] in con-
nection to the closely related problem of understanding the minimal free resolutions
of the ideals I(pd ).

Theorem 6.1 (local cohomology with support in generic determinantal ideals).
With the above notation, we have, for each p = 1, . . . , n,

Hp(z, w)=
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).

The theorem implies that the maximal cohomological index for which H•Ip
(S) is

nonzero (the cohomological dimension of the ideal Ip) is obtained for s = 0 and is
equal to

(n− p+ 1)2+ n · (m− n)+ (p− 1) · (n− p)= m · n− p2
+ 1.

This was first observed in [Bruns and Schwänzl 1990]. Using the fact that once we
invert one of the entries of a generic m× n matrix, Ip becomes Ip−1 for a generic
(m− 1)× (n− 1) matrix, it follows easily from the above that

H j
Ip
(S) 6= 0 for j = (m− s) · (n− s)− (p− s)2+1, s = 0, 1, . . . , p−1. (1-5)

For maximal minors (p = n) this nonvanishing result is sharp, as explained in [Witt
2012]. Our next result, which is a direct consequence of Theorem 6.1, says that
many more of the local cohomology modules H j

Ip
(S) are nonzero when p < n,

namely:
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Theorem (nonvanishing of local cohomology with determinantal support). If p ≤
n ≤ m then H j

Ip
(S) 6= 0 precisely when

j= (n−p+1)2+(n−s)·(m−n)+2·k for 0≤s≤ p−1, 0≤k≤ (p−s−1)·(n−p).

The nonvanishing statement (1-5) is obtained for k = (p− s− 1) · (n− p).

This result contrasts with the positive characteristic situation, where the only
nonvanishing local cohomology module appears in degree j = (m − p + 1) ·
(n− p+1) (see [Hochster and Eagon 1971, Corollary 4] or [Bruns and Vetter 1988,
Corollary 5.18], where it is shown that Ip is perfect, and [Peskine and Szpiro 1973,
Proposition 4.1], where a local cohomology vanishing result for perfect ideals in
positive characteristic is proved). For determinantal ideals over arbitrary rings one
can’t expect such explicit results as Theorem 6.1; for the latest advances in this
general context, the reader should consult [Lyubeznik et al. 2013] and the references
therein.

Our paper is organized as follows: In Section 2 we give some representation-
theoretic preliminaries: in Section 2A we fix some notation for Schur functors,
weights and partitions; in Section 2B we recall from [de Concini et al. 1980] some
properties of the ideals Ix and introduce certain associated subquotients Jx,p that
will play an important role in the sequel; in Section 2C we recall the definition of
flag varieties and formulate some consequences of Bott’s theorem in a form that
will be useful to us; we also recall in Section 2D a method described in [Raicu
et al. 2014] for computing extension groups for certain modules that arise as push-
forwards of vector bundles with vanishing higher cohomology. In Section 3 we
compute explicitly the characters of the modules Ext•S(Jx,p, S), and in Section 4 we
use this calculation to deduce the main result about the characters of the modules
Ext•S(S/Ix , S) for all partitions x . In Section 5 we derive the formulas for the
regularity of the ideals Ix , while in Section 6 we describe the characters of the local
cohomology modules with support in determinantal varieties.

2. Preliminaries

2A. Representation theory [Fulton and Harris 1991; Weyman 2003, Chapter 2].
Throughout the paper, K will denote a field of characteristic 0. If W is a K-vector
space of dimension dim(W ) = N , a choice of basis determines an isomorphism
between GL(W ) and GLN (K). We will refer to N -tuples λ= (λ1, . . . , λN ) ∈ ZN

as weights of the corresponding maximal torus of diagonal matrices. We say that λ
is a dominant weight if λ1 ≥ λ2 ≥ · · · ≥ λN . Irreducible (rational) representations
of GL(W ) are in one-to-one correspondence with dominant weights λ. We denote
by SλW the irreducible representation associated to λ, often referred to as the
Schur functor. We write (aN ) for the weight with all parts equal to a, and define
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the determinant of W by det(W ) = S(1N )W =
∧N W . We have SλW ⊗ det(W ) =

Sλ+(1N )W and SλW ∗= S(−λN ,...,−λ1)W . We write |λ| for the total size λ1+· · ·+λN

of λ.
When x is a dominant weight with xN ≥ 0, we say that x is a partition of r = |x |.

Note that when we’re dealing with partitions we often omit the trailing zeros, so
x = (5, 2, 1) is the same as x = (5, 2, 1, 0, 0, 0). If y is another partition, we write
x ⊂ y to indicate that xi ≤ yi for all i .

2B. The ideals Ix and the subquotients Jx, p. Recall the Cauchy formula (1-1)
and the definition of the ideals Ix ⊂ S = Sym(F ⊗G) as the ideals generated by
subrepresentations Sx F ⊗ Sx G of S. It is shown in [de Concini et al. 1980] that

Ix =
⊕
x⊂y

Sy F ⊗ SyG, (2-1)

and in particular Iy ⊂ Ix if and only if x ⊂ y. More generally, for arbitrary partitions
x, y, we let z =max(x, y) be defined by zi =max(xi , yi ) for all i , and get

Ix ∩ Iy = Iz. (2-2)

Even more generally, for any set T of partitions we let

IT =
∑
y∈T

Iy (2-3)

and have

Ix ∩ IT =
∑
y∈T

Imax(x,y). (2-4)

For p ∈ {0, 1, . . . , n} and x a partition, we write

Succ(x, p)= {y : x ⊂ y, and yi > xi for some i > p}. (2-5)

By the discussion above, Iy ⊂ Ix for all y ∈ Succ(x, p). We define

Jx,p = Ix/ISucc(x,p) (2-6)

It follows from (2-1) that

Jx,p =
⊕
x⊂y

yi=xi for all i>p

Sy F ⊗ SyG. (2-7)

If p = n then Jx,p = Ix , while if p = 0 then Jx,0 = Sx F ⊗ Sx G, which as an
S-module is annihilated by the maximal ideal of S. We have:
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Lemma 2.1. Fix an index p ∈ {0, 1, . . . , n − 1}, and consider a partition x with
x1 = · · · = x p+1. Let

Z = {z : z1 = · · · = z p+1 = x1}. (2-8)

We have

ISucc(x,p) =

( ∑
z∈Z , x(z

Iz

)
+ Imax(x,(x1+1)p+1). (2-9)

Proof. “⊃”: Consider z ∈ Z , x ( z. We have zi > xi for some i , and since xi = zi for
i ≤ p+1, we conclude that zi > xi for some i > p+1; thus, z ∈Succ(x, p). Writing
y =max(x, (x1+ 1)p+1), we have that yp+1 > x p+1 and y ⊃ x , so y ∈ Succ(x, p),
proving that the right side of (2-9) is contained in the left.

“⊂”: Consider a partition y ∈ Succ(x, p). If yp+1 > x p+1 = x1 then y contains
max(x, (x1 + 1)p+1), so Iy is contained in the right side of (2-9). Otherwise
yp+1 = x p+1, so by possibly shrinking some of the first p rows of y (which would
enlarge Iy), we may assume that y ∈ Z . Clearly y ) x , since yi > xi for some
i > p+ 1, so it follows again that Iy is contained in the right side of (2-9). �

The following result will be used in Section 4:

Lemma 2.2. Fix an index p∈{0, 1, . . . , n−1}, and consider a partition x with x1=

· · · = x p+1. For a nonnegative integer d ≥ 0, let y be the partition defined by yi =

xi+d+1 for i =1, . . . , p+1 and yi = xi for i > p+1 (y=max(x, (x1+d+1)p+1)).
The quotient Ix/Iy admits a filtration with successive quotients Jz,p, where z runs
over all partitions with{

x1 ≤ z1 = · · · = z p+1 ≤ x1+ d,
zi ≥ xi for i > p+ 1.

Proof. By induction, it suffices to prove the result when d = 0. We consider Z as
in (2-8) and define

I(Z)= {IT : T ⊂ Z}.

For I ∈ I(Z), we write

Z(I )= {z ∈ Z : Iz ⊂ I }.

Note that if z0
∈ Z(I ) then

if z ∈ Z and z0
⊂ z then z ∈ Z(I ). (2-10)

We let I0 = I((x1+1)p+1) and prove by induction on |Z(I )| that for I ∈ I(Z), the
quotient (I + I0)/I0 has a filtration with successive quotients Jz,p, where z varies
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over the set of elements of Z(I ). Once we do this, we can take I = Ix and observe
that Ix ∩ I0 = Iy (by (2-2)), which yields

(I + I0)/I0 ' I/(I ∩ I0)= Ix/Iy,

concluding the proof of the lemma.
For the induction, assume first that |Z(I )| = 1, so that I = Iz with z1 = · · · =

zn = x1. We have (Iz + I0)/I0 = Jz,p so the base case for the induction follows.
Suppose now that |Z(I )|> 1 and consider a maximal element z0 in Z(I ), i.e., a

partition z0 with the property that Iz0 6⊂ Iz for any z ∈ Z(I ) \ {z0
}. Define

I ′ = IZ(I )\{z0},

and note that |Z(I ′)| = |Z(I )| − 1, I = I ′+ Iz0 , and

(I + I0)/(I ′+ I0)' Jz0,p, (2-11)

which is proved as follows. The equality I = I ′+ Iz0 implies that the natural map

Iz0 → (I + I0)/(I ′+ I0)

is surjective. Its kernel is

Iz0 ∩ (I ′+ I0)
(2-4)
=

( ∑
z∈Z(I )\{z0}

Imax(z0,z)

)
+ Imax(z0,(x1+1)p+1)

(2-10)
=

( ∑
z∈Z , z0(z

Iz

)
+ Imax(z0,(x1+1)p+1)

(2-9)
= ISucc(z0,p),

from which (2-11) follows. Since by induction (I ′ + I0)/I0 has a filtration with
successive quotients Jz,p for z ∈ Z(I ′), we get the corresponding statement for
(I + I0)/I0, finishing the induction step. �

2C. Partial flag varieties and Bott’s theorem [Weyman 2003, Chapter 4]. Consider
a K-vector space V with dim(V )= d and positive integers q ≤ n ≤ d. We denote
by Flag([q, n]; V ) the variety of partial flags

V• : V � Vn � Vn−1 � · · ·� Vq � 0,

where Vp is a p-dimensional quotient of V for each p = q, q + 1, . . . , n. For p in
[q, n]we write Qp(V ) for the tautological rank-p quotient bundle on Flag([q, n]; V )
whose fiber over a point V• ∈ Flag([q, n]; V ) is Vp. For each p there is a natural
surjection of vector bundles

V ⊗OFlag([q,n];V ) � Qp(V ). (2-12)
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Note that for q=n, Flag([q, n]; V )=G(n,V ) is the Grassmannian of n-dimensional
quotients of V .

We consider the natural projection maps

π (q) : Flag([q, n]; V )→ Flag([q + 1, n]; V ), (2-13)

defined by forgetting Vq from the flag V•. For q ≤ n − 1, this map identifies
Flag([q, n]; V ) with the projective bundle PFlag([q+1,n];V )(Qp+1(V )), which comes
with a tautological surjection

Qp+1(V )� Qp(V ).

For q = n we make the convention Flag([q + 1, n]; V ) = Spec(K), so π (n) is
just the structure map of G(n, V ). With the usual notation R•π (q)∗ for the derived
push-forward, we obtain using [Weyman 2003, Corollary 4.1.9] the following:

Theorem 2.3. (a) Suppose that q ≤ n− 1, and consider a dominant weight µ ∈ Zq .
For q < p ≤ n,

R jπ (q)
∗
(SµQp(V ))=

{
SµQp(V ) if j = 0,
0 otherwise.

If µq−t + t =−1 for some t = 0, . . . , q − 1, then

R jπ (q)
∗
(SµQq(V ))= 0 for all j.

Otherwise (with the convention µ0 =∞, µq+1 =−∞), consider the unique index
0≤ t ≤ q such that

µq−t+1+ t + 1≤ 0≤ µq−t + t.

Letting
µ̃= (µ1, . . . , µq−t ,−t, µq−t+1+ 1, . . . , µq + 1),

we have

R jπ (q)
∗
(SµQq(V ))=

{
Sµ̃Qq+1(V ) if j = t,
0 otherwise.

(b) Consider a dominant weight µ ∈ Zn . If n − d ≤ µn−s + s ≤ −1 for some
s = 0, . . . , n− 1, then

R jπ (n)
∗
(SµQn(V ))= 0 for all j.

Otherwise (with the convention µ0 =∞, µn+1 =−∞), consider the unique index
0≤ s ≤ n such that

µn−s ≥−s and µn−s+1 ≤−s− d + n.
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Letting

µ̃=
(
µ1, . . . , µn−s,−s, . . . ,−s︸ ︷︷ ︸

d−n

, µn−s+1+ (d − n), . . . , µn + (d − n)
)
∈ Zd ,

(compare to (1-2)), we have

R jπ (n)
∗
(SµQn(V ))=

{
Sµ̃V if j = s · (d − n),
0 otherwise.

2D. Computing Ext modules via duality. In this section we recall [Raicu et al.
2014, Theorem 3.1] as a tool to compute Ext•S(M, S) when M comes as the push-
forward of certain vector bundles with vanishing higher cohomology. More precisely,
we have:

Theorem 2.4. Let X be a projective variety, and let W be a finite-dimensional
K-vector space. Suppose

W ⊗OX � η

is a surjective map, where η is locally free, and let k = dim(W )−rank(η). Consider
a locally free sheaf V on X , and define

M(V)= V⊗Sym(η), M∗(V)= V⊗ det(W )⊗ det(η∗)⊗Sym(η∗).

Giving V internal degree v, and η and W degree 1, we think of M(V) and M∗(V)

as graded sheaves, with

M(V)i+v = V⊗Symi (η), M∗(V)i+v = V⊗ det(W )⊗ det(η∗)⊗Sym−i+k(η∗).

Suppose that H j (X,M(V))= 0 for j > 0, and let

M(V)= H 0(X,M(V)).

We have for each j ≥ 0 a graded isomorphism

Ext j
S(M(V), S)= H k− j (X,M∗(V))∗, (2-14)

where (−)∗ stands for the graded dual.

3. Ext modules for the subquotients Jx, p

The goal of this section is to compute explicitly the character of Ext•S(Jx,p, S) for
all p and all partitions x with x1 = · · · = x p, where Jx,p is defined as in (2-6). We
will achieve this by realizing Jx,p as the global sections of a vector bundle with
vanishing higher cohomology on a certain product of flag varieties, and then using
duality (Theorem 2.4) and Bott’s theorem (Theorem 2.3).
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Consider as before vector spaces F,G, with dim(F)= m, dim(G)= n, m ≥ n.
For q = 1, . . . , n, we consider the projective varieties

X (q)
= Flag([q, n]; F)×Flag([q, n];G), X = X (∞)

= Spec K,

and the locally free sheaves (see Section 2C)

η(p) = Qp(F)⊗Qp(G), p = 1, . . . , n, η = η(∞) = F ⊗G.

Note that η(p) can be thought of as a sheaf on X (q) whenever p≥ q . We consider for
q≤n−1 (resp. q=n) the natural maps π (q) : X (q)

→ X (q+1) (resp. π (n) : X (n)
→ X )

induced from (2-13). We define

S(q) = Sym η(q)

as relative versions of the polynomial ring S = S(∞) = Sym(F ⊗ G). We will
always work implicitly with quasicoherent sheaves on the affine bundles

Y (q) = AX (q)(η
(q))= Spec

X (q)
(S(q)),

which we identify with S(q)-modules on X (q) as in [Hartshorne 1977, Exercise
II.5.17]. The Cauchy formula (1-1) becomes in the relative setting

S(q) =
⊕

x=(x1≥···≥xq≥0)

Sx Qq(F)⊗ Sx Qq(G), (3-1)

and we can define the ideals I (q)x ⊂ S(q) and subquotients J (q)x,p for 0 ≤ p ≤ q
analogously to (2-1) and (2-6). For 1≤ p ≤ q, we write I (q)p for I (q)(1p), the ideal of
p× p minors in S(q). We define the line bundle

det(q) = det(Qq(F))⊗ det(Qq(G)), (3-2)

and note that the ideal I (q)q is generated by det(q). It follows easily from (3-1) and
Theorem 2.3 that

R jπ (q)
∗
(S(q))=

{
S(q+1)/I (q+1)

q+1 if j = 0,
0 otherwise,

(3-3a)

and, for p > q ,

R jπ (q)
∗
(S(p))=

{
S(p) if j = 0,
0 otherwise.

(3-3b)

Lemma 3.1. (a) For a partition x = (x1 ≥ · · · ≥ xq), there exist natural identifica-
tions

det(q)⊗I (q)x = I (q)x+(1q ), (3-4)

and
det(q)⊗J (q)x,p = J (q)x+(1q ),p for 0≤ p ≤ q. (3-5)
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(b) For a partition x = (x1 ≥ · · · ≥ xq), we have

R jπ (q)
∗

I (q)x =

{
(I (q+1)

x + I (q+1)
q+1 )/I (q+1)

q+1 if j = 0,
0 otherwise.

(3-6)

(c) For a partition x = (x1 ≥ · · · ≥ xq) and 0≤ p ≤ q , we have

R jπ (q)
∗

J (q)x,p =

{
J (q+1)

x,p if j = 0,
0 otherwise.

(3-7)

Proof. (a) The multiplication map det(q)⊗S(q)→ S(q) is injective: if we think of
S(q) as locally the ring of polynomial functions on q×q matrices, then det(q) is the
determinant of the generic q × q matrix. It follows that det(q)⊗I (q)x = det(q) ·I (q)x

is in fact an ideal in S(q). Equation (3-4) then follows from the fact that multiplying
by the determinant corresponds to adding a column of maximal size to the Young
diagram (a special case of Pieri’s rule). In fact, the same argument shows that for
any set of partitions Z

det(q)⊗
(∑

z∈Z

I (q)z

)
=

∑
z∈Z

I (q)z+(1q ).

Given the definition of J (q)x,p as the analogue of (2-6), (3-5) follows by taking
Z = Succ(q)(x, p) (the analogue of (2-5)) in the formula above, and using (3-4)
and the exactness of tensoring with det(q).

Part (b) follows from (3-3), while (c) follows from the fact that if x= (x1, . . . , xq)

and 0≤ p ≤ q , then

Succ(q+1)(x, p)= Succ(q)(x, p)∪ {z : z ⊃ x, z p+1 ≥ 1}. �

For each partition x = (x1 = · · · = x p ≥ x p+1 ≥ · · · ≥ xn ≥ xn+1 = 0), we define
the locally free sheaf Mx,p on X (p) by

Mx,p =

( n⊗
q=p

(det(q))⊗(xq−xq+1)

)
⊗ S(p). (3-8)

Lemma 3.2. With the notation above, we have

H j (X (p),Mx,p)=

{
Jx,p if j = 0,
0 otherwise.

Proof. Note that S(p) = J (p)0,p , so using (3-4) we get

Mx,p =

( n⊗
q=p+1

(det(q))⊗(xq−xq+1)

)
⊗ J (p)((x p−x p+1)p),p.
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It follows that

Rπ (p)
∗

Mx,p = π
(p)
∗

Mx,p
(3-7)
=

( n⊗
q=p+1

(det(q))⊗(xq−xq+1)

)
⊗ J (p+1)

((x p−x p+1)p),p

(3-4)
=

( n⊗
q=p+2

(det(q))⊗(xq−xq+1)

)
⊗ J (p+1)

((x p−x p+2)p,x p+1−x p+2),p.

Applying Rπ (p+1)
∗ , Rπ (p+2)

∗ , . . . , Rπ (n)∗ iteratively, and using (3-7) and (3-4) as
above, we obtain

Rπ∗Mx,p = π∗Mx,p = J(x p
p ,x p+1,...,xn),p

(x1=···=x p)
= Jx,p,

where π = π (n) ◦ · · · ◦ π (p) is the structure map X (p)
→ Spec K, concluding the

proof of the lemma. �

We are now ready to prove the main result of this section:

Theorem 3.3. The character of the doubly graded module Ext•S(Jx,p, S) is given by

χExt•S(Jx,p,S)(z, w)

=

∑
0≤s≤t1≤···≤tn−p≤p
λ∈W (x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ), (3-9)

where W (x, p; t, s) is the set of dominant weights λ ∈ Zn with the properties
λn ≥ p− x p −m, (3-10a)

λt j+ j = t j − xn+1− j −m for j = 1, . . . , n− p, (3-10b)

λs ≥ s− n and λs+1 ≤ s−m. (3-10c)

Remark 3.4. If we take p = n and x1 = · · · = xn = d in the above theorem, we
recover [Raicu et al. 2014, Theorem 4.3]. The character of Jx,n = Ix = I d

n is

χExt•S(Jx,n,S)(z, w)=
∑

0≤s≤n
λn≥n−d−m
λs≥s−n
λs+1≤s−m

[Sλ(s)F ⊗ SλG] · z|λ| ·w(n−s)·(m−n).

When p = 0, since Jx,0 = Sx F ⊗ Sx G is just a vector space the only nonvanishing
Ext module is

Extmn
S (Jx,0, S)=

(
Sx F ⊗ Sx G⊗ det(F ⊗G)

)∗
.
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Proof of Theorem 3.3. We apply Theorem 2.4 with

X = X (p), η = η(p), W = F ⊗G, V=

n⊗
q=p

(det(q))⊗(xq−xq+1),

so that M(V) =Mx,p (see (3-8)). Lemma 3.2 ensures that the hypotheses of the
duality theorem hold, and M(V)= Jx,p. We have rank(η(p))= p2, dim(W )=m ·n,
so k = m · n− p2. We give V internal degree v = |x |, and get

Ext j
S(Jx,p, S)r−|x |

= H m·n−p2
− j
(

X (p),

n⊗
q=p

(det(q))⊗(xq−xq+1)⊗ det(F ⊗G)

⊗ det(η∗)⊗Symr+m·n−p2
(η∗)

)∗
. (3-11)

Formula (3-9) now follows from a direct application of Theorem 2.3, which we
sketch below.

Using Cauchy’s formula and that det(η∗)= det(Qp(F))−p
⊗ det(Qp(G))−p, we

get
det(η∗)⊗Symr+m·n−p2

(η∗)=
⊕
µ∈Z

p
dom

|µ|=r+m·n
µ1≤−p

SµQp(F)⊗ SµQp(G).

For each µ in the formula above, we have to first compute

Rπ∗

( n⊗
q=p

(det(q))⊗(xq−xq+1)⊗ SµQp(F)⊗ SµQp(G)
)
, (3-12)

where π = π (n) ◦ · · · ◦ π (p) : X (p)
→ Spec K is the structure map, then tensor

with det(F ⊗ G) and dualize, in order to get the corresponding contribution to
(3-11). If (3-12) is nonzero, then there exist uniquely determined dominant weights
µ(q), δ(q) ∈ Zq for q = p, . . . , n, and nonnegative integers tn−q , q = p, . . . , n− 1,
and s, such that µ(p) = µ, and if for q = p, . . . , n we write

M(q)
= Sµ(q)Qq(F)⊗ Sµ(q)Qq(G), N(q)

= Sδ(q)Qq(F)⊗ Sδ(q)Qq(G),

then
N(q)
=M(q)

⊗ (det(q))⊗(xq−xq+1) for q = p, . . . , n, (3-13)

2 · tn−q is the unique integer j for which R jπ
(q)
∗ (N(q)) 6= 0, and

R2·tn−qπ (q)
∗
(N(q))=M(q+1) for q = p, . . . , n− 1, (3-14)

and finally, s · (m− n) is the unique integer j for which R jπ
(n)
∗ (N(n)) 6= 0.
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The dominant weight δ(q) is easy to determine; namely, we get from (3-13) that

δ(q) = µ(q)+ ((xq − xq+1)
q). (3-15)

Assuming we know δ(q), (3-14) determines tn−q and µ(q) according to (a) of
Theorem 2.3: tn−q is the unique integer t with the property

δ
(q)
q−t+1+ t + 1≤ 0≤ δ(q)q−t + t, (3-16)

and

µ(q+1)
=
(
δ
(q)
1 , . . . , δ

(q)
q−tn−q

,−tn−q , δ
(q)
q−tn−q+1+ 1, . . . , δ(q)q + 1

)
. (3-17)

It follows from (3-17) and (3-15) that

δ
(q+1)
q+1−tn−q

=−tn−q + xq+1− xq+2 ≥−tn−q ,

so t = tn−q satisfies the right-hand inequality in (3-16) with q replaced by (q + 1),
which forces tn−(q+1) ≤ tn−q . It follows easily that

δ
(i)
q+1−tn−q

=−tn−q + xq+1− xi+1 for i = q + 1, . . . , n. (3-18)

We have seen so far how to calculate µ(q), δ(q) for q = p, . . . , n, and tn−q for
q = p, . . . , n − 1, so we’re left with determining s. By Theorem 2.3(b), s is
uniquely determined by the inequalities

δ
(n)
n−s ≥−s and δ

(n)
n−s+1 ≤−s−m+ n, (3-19)

and moreover
Rs·(m−n)π (n)

∗
(N(n))= Sδ̃F ⊗ SδG, (3-20)

where δ = δ(n) and

δ̃ =
(
δ1, . . . , δn−s, (−s)m−n, δn−s+1+ (m− n), . . . , δn + (m− n)

)
.

Since δ(n)n−t1 =−t1+ xn ≥−t1, it follows as before that s ≤ t1. Tensoring (3-20) with
det(F⊗G)= det(F)⊗n

⊗det(G)⊗m and dualizing, we obtain by putting everything
together that there exist integers 0≤ s ≤ t1 ≤ · · · ≤ tn−p ≤ p such that

Rs·(m−n)+2·
∑n−p

j=1 t jπ∗

( n⊗
q=p

(det(q))⊗(xq−xq+1)⊗det(F⊗G)⊗SµQp(F)⊗SµQp(G)
)∗

= Sλ(s)F ⊗ SλG,

where λ(s) is defined as in (1-2) and

λi =−m− δn−i+1 for all i = 1, . . . , n. (3-21)
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We next check that λ ∈W (x, p; t, s). Since µ1 ≤−p, it follows from (3-15) and
(3-17) that δ1≤−p+x p, so λn =−δ1−m≥ p−x p−m; i.e., (3-10a) holds. Letting
i = n in (3-18) we get δq+1−tn−q =−tn−q + xq+1, so λn−q+tn−q = tn−q − xq+1−m;
i.e., (3-10b) holds. Finally, (3-10c) follows from (3-19).

We conclude from the discussion above that (3-9) holds, after possibly replacing
W (x, p; t, s) by a smaller set. To see that all weights λ ∈ W (x, p; t, s) in fact
appear, one has to reverse the steps above in order to show that each λ can be reached
from a certain weight µ. We give the formula for µ, and leave the details to the
interested reader. We first define δ ∈ Zn

dom by reversing (3-21): δi =−m− λn+1−i .
Letting tn−p+1 = p and t0 = 0, for each i = 0, . . . , n− p and j = 1, . . . , ti+1− ti
we let

µp−ti+1+ j = δn−i−ti+1+ j + xn−i + (n− p− i). �

Corollary 3.5. Fix an index p ∈ {0, 1, . . . , n}. Suppose that M is an S-module with
a compatible GL(F)×GL(G) action, admitting a finite filtration with successive
quotients isomorphic to Jx j ,p for j=1, . . . , r , where each x j is a partition satisfying
x j

1 = x j
2 = · · · = x j

p. We have a decomposition as GL(F)×GL(G)-representations

ExtiS(M, S)=
r⊕

j=1

ExtiS(Jx j ,p, S) (3-22)

for each i = 0, 1, . . . ,m · n. Equivalently, if

0−→ A −→ B −→ C −→ 0 (3-23)

is a GL(F)× GL(G)-equivariant short exact sequence of S-modules admitting
filtrations as above, then for each i = 0, 1, . . . ,m · n, the induced sequence

0−→ ExtiS(C, S)−→ ExtiS(B, S)−→ ExtiS(A, S)−→ 0 (3-24)

is exact.

Proof. Suppose that the conclusion of the corollary fails, and consider modules
A, B,C sitting in an exact sequence (3-23) such that (3-22) holds for A and C but
fails for B. In particular, not all sequences (3-24) are exact, so there exist an index i
and a nontrivial connecting homomorphism

ExtiS(A, S)
δ
−→ Exti+1

S (C, S).

It follows that some irreducible representation of GL(F)×GL(G) appears in both
ExtiS(A, S) and Exti+1

S (C, S). This is clearly impossible when m= n, because from
(3-22) and (3-9) it follows that the cohomological degrees j for which Ext j

S(A, S)
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and Ext j
S(C, S) are nonzero satisfy

j ≡ m · n− p2 (mod 2).

When m> n, a similar argument applies: if [Sλ(s)F⊗SλG] = [Sµ(t)F⊗SµG] (with
λ,µ, λ(s) and µ(t) dominant), then it follows from (1-2) that λ = µ and s = t ;
moreover, we get from (3-22) and (3-9) that the cohomological degrees j for which
Sλ(s)F ⊗ SλG appears in Ext j

S(A, S) and Ext j
S(C, S) satisfy

j ≡ m · n− p2
− s · (m− n) (mod 2). �

4. Ext modules for S/Ix

In this section we will use the explicit calculation of Ext•S(Jx,p, S) from the previous
section in order to deduce a formula for the characters of Ext•S(S/Ix , S) for all
ideals Ix . We begin with an important consequence of the results in the preceding
section:

Corollary 4.1. Fix an index p ∈ {0, 1, . . . , n− 1} and positive integers b > c > 0.
If we let x = (cp+1), y = (bp+1), then the natural quotient map S/Iy � S/Ix

induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S)

for all i = 0, 1, . . . ,m ·n. More generally, if z is any partition with z1 = · · · = z p+1

and x = z+ (cp+1), y = z+ (bp+1), then the quotient map Iz/Iy � Iz/Ix induces
injective maps

ExtiS(Iz/Ix , S) ↪−→ ExtiS(Iz/Iy, S)

for all i = 0, 1, . . . ,m · n.

Proof. Note that the former statement follows from the latter by taking z = 0
and noting that S = I0. By Lemma 2.2, the modules A = Ix/Iy , B = Iz/Iy ,
and C = Iz/Ix have finite filtrations with quotients isomorphic to Jt,p for various
partitions t satisfying t1 = · · · = tp. Apply Corollary 3.5 to yield the desired
conclusion. �

Theorem 4.2. Let d ≥ 0 and consider partitions x, y, where x consists of the first d
columns of y; i.e., xi = min(yi , d) for all i = 1, . . . , n. The natural quotient map
S/Iy � S/Ix induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S) (4-1)

for all i = 0, 1, . . . ,m · n.
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Proof. Arguing inductively, it suffices to prove the result when all the columns of y
outside x have the same size (say p+1, for p∈{0, 1, . . . , n−1}); i.e., y= x+(a p+1)

for some positive integer a. Note that this forces x1= x2=· · ·= x p+1=d . We prove
by descending induction on p that the induced map (4-1) is injective. When p=n−1,
we have x = (dn) and y = ((d+a)n), so the conclusion follows from Corollary 4.1
(or from the results in [Raicu et al. 2014]).

Suppose now that p < n− 1 and y = x + (a p+1), x1 = · · · = x p+1 = d . Let z be
the partition consisting of the columns of x of size strictly larger than p+1; i.e., zi =

min(xi , x p+2) for all i = 1, . . . , n. Consider the partitions x̃ (resp. ỹ), defined by
letting x̃i = xi (resp. ỹi = yi ) for i 6= p+ 2, and x̃ p+2 = x p+1 (resp. ỹp+2 = yp+1).
Alternatively, x̃ = z+ ((d− x p+2)

p+2), ỹ = z+ ((d+a− x p+2)
p+2). By induction,

for all i = 0, 1, . . . ,m · n, we obtain inclusions

ExtiS(S/Iz, S) ↪−→ExtiS(S/Ix̃ , S) and ExtiS(S/Iz, S) ↪−→ExtiS(S/I ỹ, S). (4-2)

The natural commutative diagrams

S/Ix̃ //

��

S/Iz

S/Ix // S/Iz

and

S/I ỹ //

��

S/Iz

S/Iy // S/Iz

induce commutative diagrams

ExtiS(S/Iz, S) // ExtiS(S/Ix̃ , S)

ExtiS(S/Iz, S) // ExtiS(S/Ix , S)

OO

and

ExtiS(S/Iz, S) // ExtiS(S/I ỹ, S)

ExtiS(S/Iz, S) // ExtiS(S/Iy, S)

OO

Since the top maps are injective by (4-2), the bottom ones must be injective as well.
For all i = 0, 1, . . . ,m · n, we get commutative diagrams

0 // ExtiS(S/Iz, S) // ExtiS(S/Ix , S) //

αi

��

ExtiS(Ix/Iz, S)

βi

��

0 // ExtiS(S/Iz, S) // ExtiS(S/Iy, S) // ExtiS(Iy/Iz, S)

where the rows are exact. The maps βi are injective by Corollary 4.1, forcing the
maps αi to be injective as well. We conclude that the inclusion (4-1) holds, finishing
the proof of the theorem. �
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Theorem 4.3. The character of the doubly graded module Ext•S(S/Ix , S) is given by

χExt•S(S/Ix ,S)(z, w)

=

∑
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ), (4-3)

where W ′(x, p; t, s) is the set of dominant weights λ ∈ Zn satisfying
λn ≥ p− x p −m, (4-4a)

λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− p, (4-4b)

λs ≥ s− n and λs+1 ≤ s−m. (4-4c)

Remark 4.4. The condition tn−p ≤ p− 1 in (4-3), combined with the inequalities

tn−p − x p+1−m ≥ λtn−p+n−p ≥ λn ≥ p− x p −m

obtained from (4-4b) by letting j = n− p, shows that the only values of p for which
there may be a nontrivial contribution to (4-3) are the ones for which x p > x p+1 or
p = n. It follows that for x1 = · · · = xn , the only interesting value of p is p = n,
in which case Ix = Jx,n and (4-3) follows from (3-9) and the standard long exact
sequence relating Ext•S(S/Ix , S) to Ext•S(Ix , S).

Proof of Theorem 4.3. We induct on the number of columns of x . When x = 0,
S/Ix = 0, so Ext•S(S/Ix , S)= 0. It follows that (4-3) is verified in this case, since
W ′(0, p; t, s) is empty whenever 0≤ s ≤ p− 1: to see this, note that

s−m
(4-4c)
≥ λs+1 ≥ λn

(4-4a)
≥ p−m

implies s ≥ p, which is incompatible with the condition s ≤ p− 1.
Suppose now that y is obtained from x by appending a column of size (q + 1)

for some q = 0, . . . , n− 1. This implies that x1 = · · · = xq+1 and yi = xi + 1 for
1≤ i ≤ q + 1. It follows from Theorem 4.2 that

χExt•S(S/Iy ,S)(z, w)= χExt•S(S/Ix ,S)(z, w)+χExt•S(Ix/Iy ,S)(z, w), (4-5)

and from Lemma 2.2 and Corollary 3.5 that

χExt•S(Ix/Iy ,S)(z, w)=
∑

z=(z1≥···≥zn≥0)
z1=···=zq+1=x1
zi≥xi , i>q+1

χExt•S(Jz,q ,S)(z, w). (4-6)
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By Remark 4.4, since x1 = · · · = xq+1 and y1 = · · · = yq+1, the only relevant
terms in (4-3) (for both x and y) are those for which p ≥ q + 1. For such p,
xn+1− j = yn+1− j whenever 1≤ j ≤ n− p, so condition (4-4b) is the same for x as
it is for y. Equation (4-4c) is clearly the same for both x and y, and the same is
true for (4-4a) when p ≥ q + 2. We conclude that W ′(x, p; t, s)= W ′(y, p; t, s)
for p 6= q + 1, from which it follows using (4-5) and the induction hypothesis that
in order to prove (4-3) for y, it suffices to show that

χExt•S(Ix/Iy ,S)(z, w)

=

∑
p=q+1

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(y,p;t,s)\W ′(x,p;t,s)

[Sλ(s)F⊗SλG]·z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j )

=

∑
0≤s≤t1≤···≤tn−q−1≤q

λ∈W ′(y,q+1;t,s)\W ′(x,q+1;t,s)

[Sλ(s)F⊗SλG]·z|λ|

·w
m·n−q2

−2·q−s·(m−n)−2·(
∑n−q−1

j=1 t j ). (4-7)

Note that since (4-4b) and (4-4c) are the same for x and y when p = q + 1, it
follows that

λ ∈W ′(y, q + 1; t, s) \W ′(x, q + 1; t, s)

⇐⇒


λn = q + 1− yq+1−m = q − x1−m,
λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− q − 1,
λs ≥ s− n and λs+1 ≤ s−m.

(4-8)

Consider now a partition z appearing in (4-6). We claim that W (z, q; t, s) is
empty unless tn−q = q . Furthermore, if λ ∈W (z, q; t, s), then λn = q− x1−m. To
see this, note that

λn ≤ λtn−q+n−q
(3-10b)
= tn−q − zq+1−m = tn−q − zq −m ≤ q − zq −m

(3-10a)
≤ λn,

which forces equalities throughout, and in particular

tn−q = q and λn = tn−q − zq+1−m = q − x1−m.

We get from (3-9) that

χExt•S(Jz,q ,S)(z, w)

=

∑
0≤s≤t1≤···≤tn−q−1≤tn−q=q

λ∈W (x,q;t,s)

[Sλ(s)F⊗SλG]·z|λ|·wm·n−q2
−2q−s·(m−n)−2·(

∑n−q−1
j=1 t j ). (4-9)
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Combining (4-6), (4-7) and (4-9), it remains to show that

W ′(y, q + 1; t, s) \W ′(x, q + 1; t, s)=
⋃

z=(z1≥···≥zn≥0)
z1=···=zq+1=x1
zi≥xi , i>q+1

W (x, q; t, s).

This follows immediately from (4-8) and the fact that the condition

λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− q − 1

in (4-8) is equivalent to the existence of a partition z satisfying z1= · · · = zq+1= x1

and zn+1− j ≥ xn+1− j for j = 1, . . . , n−q−1 (or equivalently zi ≥ xi for i > q+1),
such that

λt j+ j = t j − zn+1− j −m for j = 1, . . . , n− q − 1. �

5. Regularity of the ideals Ix

The explicit description of the character of Ext•S(Ix , S) obtained in Theorem 4.3
allows us to obtain the following result on the regularity of every ideal Ix , whose
proof will be the focus of the current section.

Theorem 5.1. For a partition x with at most n parts, letting xn+1 = −1 we have
the following formula for the regularity of the ideal Ix :

reg(Ix)= max
p=1,...,n
x p>x p+1

(n · x p + (p− 2) · (n− p)). (5-1)

In particular, the only ideals Ix which have a linear resolution are those for which
x1 = · · · = xn (i.e., powers I x1

n of the ideal In of maximal minors) or x1 − 1 =
x2 = · · · = xn (i.e., I x1−1

n · I1).

By [Eisenbud 1995, Proposition 20.16], one can compute the regularity of a
finitely generated S-module M by the formula

reg(M)=max{−r − j : Ext j
S(M, S)r 6= 0}. (5-2)

Since reg(Ix)= reg(S/Ix)+ 1, we get by combining (5-2) and (4-3) that

reg(Ix)= max
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

(
−|λ|−mn+ p2

+ s · (m−n)+2 ·
(n−p∑

j=1

t j

))
. (5-3)

It is then important to decide when W ′(x, p; t, s) is nonempty, which we do in
the following lemma:
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Lemma 5.2. Fix p ∈ {1, . . . , n} and 0 ≤ s ≤ t1 ≤ · · · ≤ tn−p ≤ p − 1. The set
W ′(x, p; t, s) is nonempty if and only if{

x p − xn+1− j ≥ p− t j for j = 1, . . . , (n− p),
s ≥ p− x p.

(5-4)

Moreover, the weight λ ∈W ′(x, p; t, s) of minimal size (i.e., for which the quantity
−|λ| is maximal) is given by{

λ1 = · · · = λs = (s− n),
λs+1 = · · · = λn = (p− x p −m).

(5-5)

Proof. If W ′(x, p; t, s) is nonempty, then for any λ ∈W ′(x, p; t, s) we have

t j − xn+1− j −m
(4-4b)
≥ λt j+ j ≥ λn

(4-4a)
≥ p− x p −m

for j = 1, . . . , (n− p) and

s−m
(4-4c)
≥ λs+1 ≥ λn

(4-4a)
≥ p− x p −m,

so (5-4) holds.
Conversely, assume that (5-4) holds, and define λ via (5-5). It is immediate to

check that λ satisfies (4-4a)–(4-4c), so λ ∈W ′(x, p; t, s) and the set is nonempty.
The fact that this λ has minimal size follows from the fact that any other λ ∈
W ′(x, p; t, s) is dominant and thus satisfies λ1≥· · ·≥λs ≥ (s−n) and λs+1≥· · ·≥

λn ≥ (p− x p −m), so

|λ| ≥ s · (s− n)+ (n− s) · (p− x p −m)= (n− s) · (p− x p − s−m). �

Lemma 5.2 allows us to rewrite (5-3) in the form

reg(Ix)= max
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
x p−xn+1− j≥p−t j

s≥p−x p

(
−(n− s) · (p− x p − s−m)−mn

+ p2
+ s · (m− n)+ 2 ·

(n−p∑
j=1

t j

))
= max

1≤p≤n
0≤s≤t1≤···≤tn−p≤p−1

x p−xn+1− j≥p−t j
s≥p−x p

(
s · (p− x p − s)+ n · (x p − p)+ p2

+ 2 ·
(n−p∑

j=1
t j

))

= max
1≤p≤n

0≤s≤p−1
x p−x p+1≥1

s≥p−x p

(
s · (p− x p − s)+ n · x p + (p− 2) · (n− p)

)
. (5-6)
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Since s≥ p−x p, we have s ·(p−x p−s)≤ 0, with equality if s= 0 or s= p−x p.
For 1≤ p ≤ n− 1, the condition x p − x p+1 ≥ 1 forces x p ≥ 1, so p− x p ≤ p− 1.
It follows that we can take s =max(0, p− x p) in order to maximize the expression
above. Likewise, if p = n and xn ≥ 1, we take s = max(0, n − xn). It follows
that when xn ≥ 1, (5-6) reduces to (5-1). However, if xn = 0 then for p = n the
conditions s ≤ p− 1 and s ≥ p− x p are incompatible, so (5-6) reduces to

reg(Ix)= max
p=1,...,n−1

x p>x p+1

(n · x p + (p− 2) · (n− p)).

To see that this is the same as (5-1) it suffices to observe that reg(Ix) ≥ nxn = 0
(which is the term corresponding to p = n).

To finish the proof of the theorem, we need to verify the last assertion. Note that
Ix is generated in degree x1+ · · ·+ xn , so it has a linear resolution if and only if

reg(Ix)= x1+ · · ·+ xn. (5-7)

When x1 = · · · = xn , (5-1) reduces to the term with p = n, whose value is nxn =

x1 + · · · + xn . For x1 − 1 = x2 = · · · = xn , the only surviving terms in (5-1) are
those with p = 1 and p = n, so we get

reg(Ix)=max(n · (x1− 1)+ 1, nxn)= n · (x1− 1)+ 1= x1+ · · ·+ xn.

Conversely, assume that (5-7) holds, and that the xi aren’t all equal. Take p minimal
with the property that x p > x p+1, so that p < n, x1 = · · · = x p and xi ≤ x p − 1 for
i > p. We have

reg(Ix)≥ n · (x p − p)+ p2
+ 2 · (p− 1) · (n− p)

= px p + (n− p) · (x p − 1)+ (n− p) · (p− 1)≥ x1+ · · ·+ xn,

with equality when xi = x p − 1 for i > p and (n− p) · (p− 1) = 0. This forces
p = 1 and x1− 1= x2 = · · · = xn , concluding the proof of the theorem.

6. Local cohomology with support in determinantal ideals

In this section, we prove our main theorem on local cohomology with support in
determinantal ideals. Recall that S = Sym(Cm

⊗Cn) denotes the polynomial ring
of functions on the space of m× n matrices, Ip ⊂ S is the ideal of p× p minors
of the generic m × n matrix, and Hp(z, w) is the character of the doubly graded
module H•Ip

(S). Recall also the definition (1-3) of hs(z) and the notation (1-4) for
Gauss polynomials.
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Theorem 6.1. For each p = 1, . . . , n, we have

Hp(z, w)=
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).

To prove the theorem, note that since the system of ideals {I(d p) : d ≥ 0} is
cofinal with the one consisting of powers of the ideal of p × p minors, we ob-
tain from [Eisenbud 2005, Exercise A1D.1] that for each i = 0, 1, . . . ,m · n we
have

H i
Ip
(S)= lim

−→
d

ExtiS(S/I(d p), S),

where the successive maps in the directed system are induced from the natural
quotient maps

S/I((d+1)p) � S/I(d p).

By Theorem 4.2 all these maps are injective, so the description of the character
of H i

Ip
(S) can be deduced from Theorem 4.3. Note that the partitions x to which

we apply Theorem 4.3 have the property that x1 = · · · = x p = d and xi = 0 for
i > p. Since we are interested in the limit as d→∞, we might as well assume
that x1 = · · · = x p =∞, in which case (4-4a) becomes vacuous. In what follows,
λ will always be assumed to be a dominant weight.

If s ≤ t j then s+ 1≤ t j + j for every j = 1, . . . , n− p, so we get

λt j+ j
(λ∈Zn

dom)

≤ λs+1
(4-4c)
≤ s−m

(s≤t j )

≤ t j −m;

i.e., (4-4c) implies (4-4b) (note that xn+1− j = 0 for j ≤ n − p). We conclude
that

Hp(z, w) =
∑

0≤s≤t1≤···≤tn−p≤p−1
λs≥s−n
λs+1≤s−m

[Sλ(s)F⊗ SλG]· z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j )

(1-3)
=

∑
0≤s≤t1≤···≤tn−p≤p−1

hs(z) ·w
m·n+1−p2

−s·(m−n)−2·(
∑n−p

j=1 t j ),

which yields, upon setting t ′j := p− 1− t j ,

Hp(z, w) =
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

∑
p−1−s≥t ′1≥···≥t ′n−p≥0

w
2·(
∑n−p

j=1 t ′j )

(1-4)
=

p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).
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