
Algebra &
Number
Theory

msp

Volume 8

2014
No. 6

Locally analytic representations and sheaves on the
Bruhat–Tits building

Deepam Patel, Tobias Schmidt and Matthias Strauch



msp
ALGEBRA AND NUMBER THEORY 8:6 (2014)

dx.doi.org/10.2140/ant.2014.8.1365

Locally analytic representations and
sheaves on the Bruhat–Tits building

Deepam Patel, Tobias Schmidt and Matthias Strauch

Let L be a finite field extension of Qp and let G be the group of L-rational points
of a split connected reductive group over L . We view G as a locally L-analytic
group with Lie algebra g. The purpose of this work is to propose a construction
which extends the localization of smooth G-representations of P. Schneider and
U. Stuhler to the case of locally analytic G-representations. We define a functor
from admissible locally analytic G-representations with prescribed infinitesimal
character to a category of equivariant sheaves on the Bruhat–Tits building of G.
For smooth representations, the corresponding sheaves are closely related to the
sheaves of Schneider and Stuhler. The functor is also compatible, in a certain
sense, with the localization of g-modules on the flag variety by A. Beilinson and
J. Bernstein.
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1. Introduction

Let L be a finite field extension of the field Qp of p-adic numbers. Let G be a
connected split reductive group over L and B ⊂ G a Borel subgroup defined over
L . Let T ⊂ G be a maximal torus contained in B. Let G := G(L), T := T (L)
denote the groups of rational points, viewed as locally L-analytic groups. Let g
and t be the corresponding Lie algebras.

The purpose of this work is to propose a construction which extends the lo-
calization theory for smooth G-representations of P. Schneider and U. Stuhler
[1997] to the case of locally analytic G-representations. In more concrete terms,
we define an exact functor from admissible locally analytic G-representations with
prescribed infinitesimal character to a category of equivariant sheaves on the Bruhat–
Tits building of G. The functor is also compatible, in a certain sense, with the
localization theory for g-modules on the flag variety of G by A. Beilinson and
J. Bernstein [1981], and J.-L. Brylinski and M. Kashiwara [1980; 1981].

To give more details, let B be the (semisimple) Bruhat–Tits building of G. The
torus T determines an apartment A in B. We fix a fundamental chamber C ⊂ A
and a special vertex x0 ∈ C , which will be used as an origin for the affine space A.
In [Schneider and Stuhler 1997] the authors consider, for any facet F ⊂ B, a
well-behaved filtration

PF ⊃U (0)
F ⊃U (1)

F ⊃ · · ·

of the pointwise stabilizer PF of F in G by open pro-p subgroups U (e)
F . For any

point z ∈B, one sets U (e)
z := U (e)

F , where F is the unique facet containing z. It
forms a fundamental system of neighborhoods of 1 ∈ Pz , where Pz is the stabilizer
of z. Let from now on e ≥ 0 be a fixed number (called a level [loc. cit.]).

Using the groups U (e)
z , Schneider and Stuhler [1997, Section IV] defined an

exact functor
V 7→ V

≈

from smooth complex G-representations to sheaves of complex vector spaces on
B. The stalk of the sheaf V

≈
at a point z is given by the coinvariants VU (e)

z
and the

restriction of V
≈

to a facet F ⊂B equals the constant sheaf with fiber VU (e)
F

. The
functor V 7→ V

≈
has particularly good properties when restricted to the subcategory

of representations generated by their U (e)
x0 -fixed vectors. It is a major tool in the

proof of the Zelevinsky conjecture [loc. cit.].
From now on we fix a complete discretely valued field extension K of L . The

functor V 7→V
≈

can be defined in exactly the same way for smooth G-representations
on K -vector spaces, and produces sheaves of K -vector spaces on B. The naive
extension of the functor V 7→ V

≈
to locally analytic representations, by taking

coinvariants as above, does not have good properties. For instance, applying this
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procedure to an irreducible finite-dimensional algebraic representation, which is
not the trivial representation, produces the zero sheaf. Moreover, if we aim at a
picture which is related to the localization theory of g-modules, then localizing an
irreducible algebraic representation should give a line bundle.

We consider the variety of Borel subgroups

X = G/B

of G. We let OX be its structure sheaf and DX be its sheaf of differential operators.
Deriving the left regular action of G on X yields an algebra homomorphism

α :U (g)→ DX

where the source refers to the constant sheaf on X with fiber equal to the universal
enveloping algebra U (g) of g. Let Z(g) be the center of the ring U (g).

The torus T determines a root system. Let ρ be half the sum over the positive
roots with respect to B. For any algebraic character χ − ρ of the torus T we have
the sheaf Dχ of differential endomorphisms of the line bundle on X associated with
χ − ρ. Any trivialization of the line bundle induces a local isomorphism between
Dχ and DX , and we have Dρ = DX . More generally, if χ − ρ is an arbitrary
character of t there is a sheaf of so-called twisted differential operators Dχ on X .
As in the former case, it comes equipped with a morphism OX ↪→ Dχ which is
locally isomorphic to the canonical morphism OX ↪→ DX . Moreover, there is an
algebra homomorphism U (g)→ Dχ locally isomorphic to α. The sheaf Dχ was
first introduced in [Beilinson and Bernstein 1981] as a certain quotient sheaf of
the skew tensor product algebra OX #U (g), where we use # to indicate that the
multiplication on the tensor product OX ⊗U (g) involves the action of U (g) on OX .

Let χ be a character of t. Let θ be the character of Z(g) associated with χ
via the classical Harish-Chandra homomorphism. The above map factors via a
homomorphism

U (g)θ → Dχ

where U (g)θ = U (g)⊗Z(g),θ L . If χ is dominant and regular, a version of the
localization theorem due to Beilinson and Bernstein asserts that the functor

1χ : M 7→ Dχ ⊗U (g)θ M

is an equivalence of categories between the (left) U (g)θ -modules and the (left)
Dχ -modules which are quasicoherent as OX -modules. The underlined objects refer
to the associated constant sheaves on X . We remark that a seminal application of
this theorem (or rather its complex version) leads to a proof of the Kazhdan–Lusztig
multiplicity conjecture [Beilinson and Bernstein 1981; Brylinski and Kashiwara
1980; 1981].
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The starting point of our work is a result of V. Berkovich [Berkovich 1990; Rémy
et al. 2010] according to which the building B may be viewed as a locally closed
subspace

B ↪→ X an

of the Berkovich analytification X an of X . This makes it possible to “compare”
sheaves on B and X an in various ways. Most of what has been said above about
the scheme X extends to the analytic space X an. In particular, there is an analytic
version Dan

χ of Dχ and an analytic version 1χ ( · )an of the functor 1χ (Section 6).
For technical reasons we have to assume at some point in this paper that L =Qp,

with p > 2 an odd prime. (However, we have no doubts that our results eventually
extend to general L and p). To describe our proposed locally analytic “localization
functor” under this assumption we let D(G) be the algebra of K -valued locally
analytic distributions on G. It naturally contains U (g). Recall that the category of
admissible locally analytic G-representations over K (in the sense of Schneider
and J. Teitelbaum [2003]) is antiequivalent to a full abelian subcategory of the (left)
D(G)-modules, the so-called coadmissible modules. A similar result holds over
any compact open subgroup U (e)

z .
From now on we fix a central character

θ : Z(gK )→ K

and a toral character χ ∈ t∗K associated to θ via the classical Harish-Chandra
homomorphism. For example, the character χ = ρ corresponds to the trivial
infinitesimal character θ0 with ker θ0 = Z(gK )∩U (gK )gK . The ring Z(gK ) lies in
the center of the ring D(G) [Schneider and Teitelbaum 2002, Proposition 3.7], so
that we may consider the central reduction

D(G)θ := D(G)⊗Z(gK ),θ K .

We propose to study the abelian category of (left) D(G)θ -modules which are
coadmissible over D(G). As remarked above it is antiequivalent to the category of
admissible locally analytic G-representations over K with infinitesimal character
θ . We emphasize that any topologically irreducible admissible locally analytic
G-representation admits, up to a finite extension of K , an infinitesimal character
[Dospinescu and Schraen 2013, Corollary 3.10].

To start with, consider a point z ∈B. The group U (e)
z carries a natural p-valuation

in the sense of M. Lazard [1965, III.2.1]. According to the general locally analytic
theory [Schneider and Teitelbaum 2003, Section 4], this induces a family of norms
‖ · ‖r on the distribution algebra D(U (e)

z ) for r ∈ [r0, 1), where r0 := p−1. We let
Dr (U

(e)
z ) be the corresponding completion of D(U (e)

z ) and Dr (U
(e)
z )θ its central

reduction. In Section 8.2 we introduce sheaves of distribution algebras Dr and Dr,θ
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on B with stalks

(Dr )z = Dr (U (e)
z ), (Dr,θ )z = Dr (U (e)

z )θ

for all points z ∈ B. The inclusions U (g) ⊂ Dr (U
(e)
z ) sheafify to a morphism

U (gK )θ → Dr,θ . Similarly, for any coadmissible D(G)θ -module M we consider a
Dr,θ -module Mr on B having stalks

(Mr )z = Dr (U (e)
z )θ ⊗D(U (e)

z )θ
M

for all points z ∈B. The formation of Mr is functorial in M . The sheaves Dr,θ ,
Mr are constructible and will formally replace the constant sheaves appearing in
the definition of the functors 1χ , 1an

χ .1

Consider the restriction of the structure sheaf of X an to B, i.e.,

OB =OXan |B.

We then define a sheaf of noncommutative rings Dr,χ on B which is also a module
over OB and which is vaguely reminiscent of a “sheaf of twisted differential
operators”. It has a natural G-equivariant structure. It depends on the level e, but,
following the usage of Schneider and Stuhler [1997, Section IV.1], we suppress this
in our notation. More importantly, it depends on the “radius” r , which is genuine
to the locally analytic situation and is related to a choice of completed distribution
algebra Dr (U

(e)
z ) at each point z ∈B. Completely analogous to constructing Dχ

out of the skew tensor product algebra OX #U (gK ) (cf. [Beilinson and Bernstein
1981]) we obtain the sheaf Dr,χ out of a skew tensor product algebra of the form
OB # Dr .

To describe the sheaf Dr,χ we observe first that, for any point z ∈B, the inclusion
U (e)

z ⊂ Pz implies that there is a locally analytic U (e)
z -action on the analytic stalk

OB,z . We therefore have the corresponding skew group ring OB,z #U (e)
z as well as

the skew enveloping algebra OB,z #U (g), familiar objects from noncommutative
ring theory [McConnell and Robson 1987]. In Section 3 and in Sections 6.3 and
6.4, we explain how the completed tensor product

OB,z ⊗̂L Dr (U (e)
z )

can be endowed with a unique structure of a topological K -algebra such that the
OB,z-linear maps

OB,z #U (e)
z →OB,z ⊗̂L Dr (U (e)

z ), OB,z #U (g)→OB,z ⊗̂L Dr (U (e)
z ), (1.1.2)

1We assume from now on that e is sufficiently large (later in the paper we require e> est, where est
is defined in Lemma 6.2.6) and that the radius r is equal to pm√

1/p for some m ≥ 0; see Lemma 7.4.7.
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induced by U (e)
z ⊂ D(U (e)

z )× and U (g)⊂ D(U (e)
z ) respectively, become ring homo-

morphisms. To emphasize this skew multiplication we denote the target of the
two maps in (1.1.2) by OB,z # Dr (U

(e)
z ), keeping in mind that there is a completed

tensor product involved. This process leads to a sheaf of K -algebras OB # Dr on
B with stalks

(OB # Dr )z =OB,z # Dr (U (e)
z )

at points z ∈B. It comes equipped with a morphism OB #U (g)→OB # Dr giving
back the second map in (1.1.2) at a point z ∈B.

To generalize the formalism of twisting to this new situation we proceed similarly
to [Beilinson and Bernstein 1981]. Let TXan be the tangent sheaf of X an and let
αan
: g→ TXan be the analytification of the map α|g. There is the sheaf of L-Lie

algebras

b◦,an
:= ker(OXan ⊗L g

αan
→TXan).

The inclusion T ⊂ B induces an isomorphism of Lie algebras

OXan ⊗L t−→∼ b◦,an/[b◦,an, b◦,an
].

We have thus an obvious OXan-linear extension of the character χ − ρ of tK to
b◦,an
⊗L K . Its kernel, restricted to the building B, generates a two-sided ideal

I an
χ in OB # Dr and we set

Dr,χ :=
(
OB # Dr

)
/I an

χ .

Let Dan
B,χ denote the restriction of Dan

χ to the building B. The sheaf Dr,χ

comes with an algebra homomorphism Dan
B,χ →Dr,χ induced from the inclusion

OB #U (gK )→OB # Dr . Most importantly, the canonical morphism Dr→OB # Dr

induces a canonical morphism Dr,θ →Dr,χ making the diagram

U (gK )θ

��

// Dan
B,χ

��
Dr,θ // Dr,χ

commutative. In this situation we prove that

M 7→Lr,χ (M) :=Dr,χ ⊗Dr,θ Mr

is an exact covariant functor from coadmissible D(G)θ modules into G-equivariant
(left) Dr,χ -modules. The stalk of the sheaf Lr,χ (M) at a point z ∈B with residue
field κ(z) equals the (χ − ρ)-coinvariants of the tK -module

(κ(z)⊗̂L Mr,z)/nπ(z)(κ(z)⊗̂L Mr,z)
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as it should [Beilinson and Bernstein 1981]. Here, nπ(z) equals the nilpotent
radical of the Borel subalgebra of κ(z)⊗L g defined by the point π(z) ∈ X , where
π : X an

→ X is the canonical map. We tentatively call Lr,χ a locally analytic
“localization functor”. We suppress the dependence of Lr,χ on the level e in our
notation.

We prove the following compatibilities with the Schneider–Stuhler and the
Beilinson–Bernstein localizations. Suppose first that the coadmissible module M
is associated to a smooth G-representation V . Since gM = 0 it has infinitesimal
character θ = θ0 and the natural choice of twisting is therefore χ = ρ. We establish
a canonical isomorphism (Theorem 9.2.5) of OB-modules

Lr0,ρ(M)−→∼ OB ⊗L V̌
≈

where V̌ is the smooth dual of V and V̌
≈

the sheaf associated to V̌ by Schneider–
Stuhler. The isomorphism is natural in M .

Secondly, suppose the coadmissible module M is associated to a finite dimen-
sional algebraic G-representation. The functor 1χ ( · )an may be applied to its
underlying g-module and gives a Dan

χ -module on X an and then, via restriction,
a Dan

B,χ -module 1χ (M)an
B on B. We prove (Theorem 10.1.1) that there is a

number r(M) ∈ [r0, 1) which is intrinsic to M and a canonical isomorphism of
Dan

B,χ -modules

Lr,χ (M)−→∼ 1χ (M)an
B

for r ≥ r(M). The isomorphism is natural in M .
As a class of examples we finally investigate the localizations of locally analytic

representations in the image of the functor FG
B introduced by S. Orlik and inves-

tigated in [Orlik and Strauch 2010a]. The image of FG
B comprises a wide class

of interesting representations and contains all principal series representations as
well as all locally algebraic representations (e.g., tensor products of smooth with
algebraic representations).

This paper is the first of a series of papers whose aim is to develop a localization
theory for locally analytic representations. Here we only make a first step in this
direction, focusing on the building and merging the theory of Schneider and Stuhler
with the theory of Beilinson and Bernstein, resp. Brylinski and Kashiwara. One
approach to get a more complete picture would be to extend the construction given
here to a compactification B of the building. The compactification which one
would take here is, of course, the closure of B in X an. Moreover, for intended
applications like functorial resolutions and the computation of Ext groups, one
has to develop a “homological theory”, in analogy to [Schneider and Stuhler 1997,
Section II]. However, the sheaves produced in this way (using a compactification)
would still have too many global sections. For instance, the space of global sections
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would be a module for the ring of meromorphic functions on X an with poles outside
B, and this is a very large ring. The aim would be to produce sheaves whose
global sections give back the D(G)-module one started with. In [Patel et al. 2013]
we explore an approach (in the case of GL(2)) which is based on the use of (a
family of) semistable formal models X of X an, and we replace OB by the pull-
back of OX ⊗ L via the specialization map X an

→ X, and the rôle of Dr,χ is
played by arithmetic logarithmic differential operators. In this regard we want to
mention related works by C. Noot-Huyghe [2009], and K. Ardakov and S. Wadsley
[2013]. While Noot-Huyghe studies localizations of arithmetic D-modules on
smooth formal models of X , Ardakov and Wadsley define and study localizations
of representations of Iwasawa algebras on smooth models. Our present paper is in
some sense complementary to these papers, as our focus is on noncompact groups.

Despite the many aspects (like compactifications, homological theory, relation
with formal models) that still have to be explored, given the many technical details
that one has to take care of we thought it worthwhile to give an account of the
constructions as developed up to this point.

Notation. Let p be an odd prime. Let L/Qp be a finite extension and K ⊆ Cp

a complete discretely valued extension of L . The absolute value | · | on Cp is
normalized by |p| = p−1. Let oL ⊂ L be the ring of integers and $L ∈ oL a
uniformizer. We denote by vL always the normalized p-adic valuation on L , i.e.,
vL($) = 1. Let n and e(L/Qp) be the degree and the ramification index of the
extension L/Qp respectively. Similarly, oK ⊂ K denotes the integers in K and
$K ∈ oK a uniformizer. Let k := oK /($K ) denote the residue field of K .

The letter G always denotes a connected reductive linear algebraic group over L
which is split over L and G = G(L) denotes its group of rational points.

2. Distribution algebras and locally analytic representations

For notions and notation from nonarchimedean functional analysis we refer to
[Schneider 2002]. If not indicated otherwise, topological tensor products of locally
convex vector spaces are always taken with respect to the projective tensor product
topology.

2.1. Distribution algebras. In this section we recall some definitions and results
about algebras of distributions attached to locally analytic groups [Schneider and
Teitelbaum 2002; 2003]. We consider a locally L-analytic group H and denote by
Can(H, K ) the locally convex K -vector space of locally L-analytic functions on H
as defined in [Schneider and Teitelbaum 2002]. The strong dual

D(H, K ) := Can(H, K )′b
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is the algebra of K -valued locally analytic distributions on H where the multipli-
cation is given by the usual convolution product. This multiplication is separately
continuous. However, if H is compact, then D(H, K ) is a K -Fréchet algebra. The
algebra D(H, K ) comes equipped with a continuous K -algebra homomorphism

1 : D(H, K )→ D(H, K ) ⊗̂K ,ι D(H, K )

which has all the usual properties of a comultiplication [Schneider and Teitelbaum
2005, Section 3 and Appendix]. Here ι refers to the (complete) inductive tensor
product.2 If H is compact, then D(H, K ) is a Fréchet space and the inductive and
projective tensor product topology on the right-hand side coincide [Schneider 2002,
17.6]. Of course, 1(δh)= δh ⊗ δh for h ∈ H .

The universal enveloping algebra U (h) of the Lie algebra h := Lie(H) of H acts
naturally on Can(H, K ). On elements x ∈ h this action is given by

(x f )(h)=
d
dt

(
t 7→ f (expH (−tx)h)

)
|t=0,

where expH : h−→• H denotes the exponential map of H , defined in a small neigh-
borhood of 0 in h. This gives rise to an embedding of U (h)K :=U (h)⊗L K into
D(H, K ) via

U (h)K ↪→ D(H, K ), x 7→ ( f 7→ (ẋ f )(1)).

Here x 7→ ẋ is the unique antiautomorphism of the K -algebra U (h)K that induces
multiplication by −1 on h. The comultiplication 1 restricted to U (g)K gives the
usual comultiplication of the Hopf algebra U (g)K , i.e., 1(x)= x⊗ 1+ 1⊗ x for all
x ∈ h.

2.2. Norms and completions of distribution algebras.

2.2.1. p-valuations. Let H be a compact locally Qp-analytic group. Recall (see
[Lazard 1965]) that a p-valuation ω on H is a real-valued function ω : H \ {1} →
(1/(p− 1),∞)⊂ R satisfying

(i) ω(gh−1)≥min (ω(g), ω(h)),

(ii) ω(g−1h−1gh)≥ ω(g)+ω(h),

(iii) ω(g p)= ω(g)+ 1,

for all g, h ∈ H . As usual one puts ω(1) :=∞ and interprets the above inequalities
in the obvious sense if a term ω(1) occurs.

Let ω be a p-valuation on H . It follows from [loc. cit., III.3.1.3/7/9] that the
topology on H is defined by ω [loc. cit., II.1.1.5] and H is a pro-p group. Moreover,

2This is the only exception to our general convention to only consider the projective tensor product
topology.
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there is a topological generating system h1, . . . , hd of H such that the map

Zd
p→ H, (a1, . . . , ad) 7→ ha1

1 · · · h
ad
d

is well-defined and a homeomorphism. Moreover,

ω(ha1
1 · · · h

ad
d )=min{ω(hi )+ vp(ai ) | i = 1, . . . , d},

where vp denotes the p-adic valuation on Zp. The sequence (h1, . . . , hd) is called
a p-basis (or an ordered basis; see [Schneider and Teitelbaum 2003, Section 4]) of
the p-valued group (H, ω).

Finally, a p-valued group (H, ω) is called p-saturated if any g ∈ H such that
ω(g) > p/(p− 1) is a p-th power in H .

2.2.2. The canonical p-valuation on uniform pro-p groups. We recall some defini-
tions and results about pro-p groups [Dixon et al. 1999, Chapters 3 and 4] in the
case p 6= 2. In this subsection H will be a pro-p group which is equipped with its
topology of a profinite group. Then H is called powerful if H/H p is abelian. Here,
H p is the closure of the subgroup generated by the p-th powers of its elements. If
H is topologically finitely generated one can show that the subgroup H p is open
and hence automatically closed. The lower p-series (Pi (H))i≥1 of an arbitrary
pro-p group H is defined inductively by

P1(H) := H, Pi+1(H) := Pi (H)p [Pi (H),H ].

If H is topologically finitely generated, then the groups Pi (H) are all open in H and
form a fundamental system of neighborhoods of 1 [loc. cit., Proposition 1.16]. A
pro-p group H is called uniform if it is topologically finitely generated, powerful and
its lower p-series satisfies (H : P2(H))= (Pi (H) : Pi+1(H)) for all i ≥ 1. If H is a
topologically finitely generated powerful pro-p group then Pi (H) is a uniform pro-p
group for all sufficiently large i [loc. cit., 4.2]. Moreover, any compact Qp-analytic
group contains an open normal uniform pro-p subgroup [loc. cit., 8.34]. According
to [loc. cit., Theorem 9.10], any uniform pro-p group H determines a powerful Zp-
Lie algebra L(H).3 Now let H be a uniform pro-p group. It carries a distinguished
p-valuation ωcan which is associated to the lower p-series and which we call the
canonical p-valuation. For h 6= 1, it is defined by ωcan(h)=max{i ≥ 1 : h ∈ Pi (H)}.

2.2.3. Norms arising from p-valuations. In this section we let H be a compact
Qp-analytic group endowed with a p-valuation ω that has rational values. For con-
venience of the reader we briefly recall [Schneider and Teitelbaum 2003, Section 4]
the construction of a suitable family of submultiplicative norms ‖ · ‖r , r ∈ [1/p, 1)
on the algebra D(H, K ).

3The adjective powerful refers here to the property [L(H),L(H)] ⊆ pL(H).
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Let h1, . . . , hd be an ordered basis for (H, ω). The homeomorphism ψ :Zd
p ' H

given by (a1, . . . , ad) 7→ha1
1 · · · h

ad
d is a global chart for the Qp-analytic manifold H .

By functoriality of Can( · , K ) it induces an isomorphism

ψ∗ : Can(H, K )−→∼ Can(Zd
p, K )

of topological K -vector spaces. Using Mahler expansions [Lazard 1965, III.1.2.4]
we may express elements of C(Zd

p, K ), the space of continuous K -valued functions
on Zd

p, as series f (x) =
∑

α∈Nd
0

cα
(x
α

)
, where cα ∈ K and

(x
α

)
=
(x1
α1

)
· · ·
(xd
αd

)
for

x = (x1, . . . , xd) ∈ Zd
p and multi-indices α = (α1, . . . , αd) ∈ Nd

0 . Further, we have
|cα| → 0 as |α| = α1 + · · · + αd →∞ . A continuous function f ∈ C(Zd

p, K ) is
locally analytic if and only if |cα|r |α|→ 0 for some real number r > 1 [loc. cit.,
III.1.3.9].

Put bi := hi − 1 ∈ Z[H ] and bα := bα1
1 · · · b

αd
d for α ∈Nd

0 . Identifying group ele-
ments with Dirac distributions induces a K -algebra embedding K [H ] ↪→ D(H, K ),
h 7→ δh . In the light of the dual isomorphism ψ

∗
: D(Zd

p, K )−→∼ D(H, K ) we see
that any δ ∈ D(H, K ) has a unique convergent expansion δ =

∑
α∈Nd

0
dαbα with

dα ∈ K such that the set {|dα|r |α|}α is bounded for all 0< r < 1. Conversely, any
such series is convergent in D(H, K ). By construction the value δ( f ) ∈ K of such
a series on a function f ∈ Can(H, K ) equals δ( f ) =

∑
α dαcα, where cα are the

Mahler coefficients of ψ∗( f ).
To take the original p-valuation ω into account we define τα :=

∑
i ω(hi )αi for

α ∈ Nd
0 . The family of norms ‖ · ‖r , 0< r < 1, on D(H, K ) defined on a series δ

as above via ‖δ‖r := supα |dα|r
τα defines the Fréchet topology on D(H, K ). Let

Dr (H, K ) denote the norm completion of D(H, K ) with respect to ‖ · ‖r . Thus we
obtain

Dr (H, K )=
{∑
α∈Nd

0

dαbα | dα ∈ K , lim
|α|→∞

|dα|r τα = 0
}
.

There is an obvious norm-decreasing linear map Dr ′(H, K )→ Dr (H, K ) whenever
r ≤ r ′.

The norms ‖ · ‖r belonging to the subfamily 1
p ≤ r < 1 are submultiplicative

[loc. cit., Proposition 4.2] and do not depend on the choice of ordered basis [loc. cit.,
before Theorem 4.11]. In particular, each Dr (H, K ) is a K -Banach algebra in
this case. If we equip the projective limit lim

←−r
Dr (H, K ) with the projective limit

topology the natural map

D(H, K )−→∼ lim
←−

r
Dr (H, K )

is an isomorphism of topological K -algebras. Finally, it is easy to see that the
comultiplication 1 completes to continuous “comultiplications”
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1r : Dr (H, K )→ Dr (H, K ) ⊗̂K Dr (H, K )

for any r in the above range. We make two final remarks in case H is a uniform
pro-p group and ω is its canonical p-valuation; see Section 2.2.2. In this case each
group Pm(H),m ≥ 0 is a uniform pro-p group.

(i) For r = 1
p there is a canonical isomorphism between D1/p(H,Qp) and the

p-adic completion (with p inverted) of the universal enveloping algebra
of the Zp-Lie algebra 1

pL(H) [Ardakov and Wadsley 2013, Theorem 10.4,
Remark 10.5(c)].

(ii) Let
rm :=

pm√
1/p

for m ≥ 0. In particular, r0 = 1/p. Since Pm+1(H) is uniform pro-p we may
consider the corresponding ‖·‖r0- norm on its distribution algebra D(Pm+1(H)).
In this situation the ring extension D(Pm+1(H)) ⊂ D(H) completes in the
‖ · ‖rm -norm topology on D(H) to a ring extension

Dr0(Pm+1(H))⊂ Drm (H)

and Drm (H) is a finite and free (left or right) module over Dr0(Pm+1(H)))
with basis given by any system of coset representatives for the finite group
H/Pm+1(H) [Schmidt 2013, Lemma 5.11].

2.3. Coadmissible modules. We keep all notations from the preceding section but
suppose that the p-valuation ω on H satisfies additionally

(HYP) (H, ω) is p-saturated and the ordered basis h1, . . . , hd of H
satisfies ω(hi )+ω(h j ) > p/(p− 1) for any 1≤ i 6= j ≤ d.

Remark. This implies that H is a uniform pro-p group. Conversely, the canonical
p-valuation on a uniform pro-p group (p arbitrary) satisfies (HYP). For both
statements we refer to [Schneider and Teitelbaum 2003, Remark before Lemma 4.4]
and [Schmidt 2008, Proposition 2.1].

Suppose in the following r ∈ (p−1, 1) and r ∈ pQ. In this case the norm ‖ ·‖r on
Dr (H, K ) is multiplicative and Dr (H, K ) is a (left and right) noetherian integral
domain [Schneider and Teitelbaum 2003, Theorem 4.5]. For two numbers r ≤ r ′ in
the given range the ring homomorphism

Dr ′(H, K )→ Dr (H, K )

makes the target a flat (left or right) module over the source [Schneider and Teitel-
baum 2003, Theorem 4.9]. The above isomorphism D(H, K )−→∼ lim

←−r
Dr (H, K )

realizes therefore a Fréchet–Stein structure on D(H, K ) in the sense of [loc. cit., Sec-
tion 3]. The latter allows one to define a well-behaved abelian full subcategory CH
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of the (left) D(H, K )-modules, the so-called coadmissible modules. By definition,
an abstract (left) D(H, K )-module M is coadmissible if for all r in the given range

(i) Mr := Dr (H, K )⊗D(H,K ) M is finitely generated over Dr (H, K ),

(ii) the natural map M −→∼ lim
←−r

Mr is an isomorphism.

The projective system {Mr }r is sometimes called the coherent sheaf associated
to M . To give an example, any finitely presented D(H, K )-module is coadmissible.

More generally, for any compact locally L-analytic group H the ring D(H, K )
has the structure of a Fréchet–Stein algebra [loc. cit., Theorem 5.1]. In particular,
we may define the notion of a coadmissible module over D(H, K ) for any compact
L-analytic group in a similar manner. For a general locally L-analytic group G, a
D(G, K )-module M is coadmissible if it is coadmissible as a D(H, K )-module for
every compact open subgroup H ⊂ G. It follows from [loc. cit.] that it is sufficient
to check this for a single compact open subgroup.

2.4. Locally analytic representations. A topological abelian group M which is a
(left) module over a topological ring R is a separately continuous (left) module, if
the map R×M→ M giving the action is separately continuous. Any separately
continuous bilinear map between Fréchet spaces is jointly continuous [Bourbaki
1987, III.30, Corollary 1].

After this preliminary remark, we recall some facts about locally analytic rep-
resentations. A K -vector space V which equals a locally convex inductive limit
V = lim
−→n∈N

Vn over a countable system of K -Banach spaces Vn , where the transition
maps Vn → Vn+1 are injective compact linear maps is called a vector space of
compact type. We recall that such a space is Hausdorff, complete, bornological and
reflexive [Schneider and Teitelbaum 2002, Theorem 1.1]. Its strong dual V ′b is a
nuclear Fréchet space satisfying V ′b = lim

←−n
(Vn)

′

b. We will make frequent use of the
following property of such spaces.

Proposition 2.4.1. Let W be a K -Banach space. The continuous linear map

π : lim
−→

Vn⊗̂K W → (lim
−→

Vn)⊗̂K W

is bijective and the source of π is Hausdorff. Here, the target of π equals the
Hausdorff completion of the projective tensor product (lim

−→
Vn)⊗K W .

Proof. The first assertion follows from [Schneider and Teitelbaum 2002, Proposi-
tion 1.5] together with [Schneider 2002, Corollary 18.8]. Since the target of π is
Hausdorff, the second assertion follows from [Schneider 2002, 4.6]. �

Now let H be a locally L-analytic group, V a Hausdorff locally convex K -vector
space and ρ : H→GL(V ) a homomorphism. Then V (or the pair (V, ρ)) is called a
locally analytic representation of H if the topological K -vector space V is barrelled,
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each h ∈ H acts K -linearly and continuously on V, and the orbit maps ρv : H→ V,
h 7→ ρ(h)(v) are locally analytic maps for all v ∈ V [Schneider and Teitelbaum
2002, Section 3]. If V is of compact type, then the contragredient H -action on
its strong dual V ′b extends to a separately continuous left D(H, K )-module on a
nuclear Fréchet space.

In this way the functor V 7→ V ′b induces an antiequivalence of categories between
locally analytic H -representations on K -vector spaces of compact type (with con-
tinuous linear H -maps as morphisms) and separately continuous D(H, K )-modules
on nuclear Fréchet spaces (with continuous D(H, K )-module maps as morphisms).

A locally analytic H -representation V is said to be admissible if V ′b is a coadmis-
sible D(H, K )-module. The above functor restricts to an antiequivalence between
the corresponding categories of admissible locally analytic representations and
coadmissible D(H, K )-modules.

3. Completed skew group rings

In this section we will describe a general method of completing certain skew
group rings. We recall our general convention that in this paper we only consider
the completed tensor product of locally convex vector spaces with respect to the
projective tensor product topology.4

3.1. Preliminaries. Let H be a compact locally L-analytic group and let A be a
locally convex L-algebra equipped with a locally analytic H -representation ρ :
H → GL(A) by automorphisms of L-algebras. The H -action on A extends to
D(H, L) and makes A a separately continuous D(H, L)-module [Schneider and
Teitelbaum 2002, Proposition 3.2]. On the other hand, D(H, L) is a topological
module over itself via left multiplication. The completion A ⊗̂L D(H, L) is thus a
separately continuous D(H, L) ⊗̂L D(H, L)-module. We view it as a separately
continuous D(H, L)-module by restricting scalars via the comultiplication 1. This
allows us to define the L-bilinear map

(A⊗L D(H, L))× (A ⊗̂L D(H, L))→ A ⊗̂L D(H, L)

given by
(∑

i fi ⊗ δi , b
)
7→

∑
i fi · δi (b). We consider the product topology on

the source. In view of the separate continuity of all operations involved together
with [Schneider 2002, Lemma 17.1] this map is separately continuous. Since the
target is complete it extends in a bilinear and separately continuous manner to the
completion of the source. In other words, A ⊗̂L D(H, L) becomes a separately
continuous L-algebra. Of course, A ⊗̂L D(H, K ) is then a separately continuous
K -algebra. To emphasize its skew multiplication we denote it in the following

4The only exception occurred in Section 2.1.
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by
A # L D(H, K )

or even by A# D(H, K ). This should not cause confusion. However, one has to keep
in mind that there is a completed tensor product involved. If A is a Fréchet algebra,
then the multiplication on A# D(H, K ) is jointly continuous, i.e., A# D(H, K ) is
a topological algebra in the usual sense.

3.2. Skew group rings, skew enveloping algebras and their completions.

3.2.1. Using the action ρ we may form the abstract skew group ring A# H [Mc-
Connell and Robson 1987, 1.5.4]. We remind the reader that it equals the free
left A-module with elements of H as a basis and with multiplication defined by
(ag) · (bh) := a(ρ(g)(b))gh for any a, b ∈ A and g, h ∈ H . Each element of A# H
has a unique expression as

∑
h∈H ahh with ah = 0 for all but finitely many h ∈ H .

Evidently, A# H contains H as a subgroup of its group of units and A as a subring.
Furthermore, the inclusion L[H ] ⊆ D(H, L) gives rise to an A-linear map

A# H = A⊗L L[H ] → A# D(H, L). (3.2.2)

On the other hand, let h := Lie(H). Differentiating the locally analytic action ρ
gives a homomorphism of L-Lie algebras α : h→ DerL(A) into the L-derivations
of the algebra A making the diagram

U (h)

⊆

��

α // EndL(A)

I d
��

D(H, L)
ρ // EndL(A)

commutative [Schneider and Teitelbaum 2002, 3.1]. We may therefore form the
skew enveloping algebra A#U (h) [McConnell and Robson 1987, 1.7.10]. We recall
that this is an L-algebra whose underlying L-vector space equals the tensor product
A⊗L U (h). The multiplication is defined by

( f1⊗ x1) · ( f2⊗ x2)= ( f1α(x1)( f2))⊗ x2 + ( f1 f2)⊗ (x1x2),

for fi ⊗ xi ∈ A⊗L h. Also, the inclusion U (h)⊆ D(H, L) induces an A-linear map

A#U (h)→ A# D(H, L). (3.2.3)

Proposition 3.2.4. The A-linear maps (3.2.2) and (3.2.3) are L-algebra homomor-
phisms. The first of these maps has dense image.

Proof. The first statement follows from the identities

(i) (1 ⊗̂ δg) · ( f ⊗̂ 1)= (ρ(g)( f )) ⊗̂ δg for any g ∈ H, f ∈ A,

(ii) (1 ⊗̂ x) · ( f ⊗̂ 1)= (α(x)( f )) ⊗̂ 1+ f ⊗̂ x for any x ∈ h, f ∈ A



1380 Deepam Patel, Tobias Schmidt and Matthias Strauch

in A ⊗̂L D(H, L). In turn these identities follow from 1(δg) = δg ⊗̂ δg and
1(x)= x ⊗̂ 1+ 1 ⊗̂ x. The final statement follows from [Schneider and Teitelbaum
2002, Lemma 3.1]. �

3.2.5. In this paragraph we assume that L =Qp and that the compact locally Qp-
analytic group H is endowed with a p-valuation ω. Recall from Section 2.2.3 that
r0 := p−1. Consider the norm completion Dr (H, L) for some arbitrary but fixed
r ∈ [r0, 1). Let us assume for a moment that the natural map D(H, L)→ Dr (H, L)
satisfies the following hypothesis:

(?) The separately continuous D(H, L)-module structure of A
extends to a separately continuous Dr (H, L)-module structure.

If we replace in the above discussion the comultiplication 1 by its completion
1r we obtain in an entirely analogous manner a completion A ⊗̂L Dr (H, K ) of
the skew group ring A# H , base changed to K . It satisfies mutatis mutandis the
statement of the preceding proposition. As before we will often abbreviate it by
A# Dr (H, K ).

4. Sheaves on the Bruhat–Tits building and smooth representations

4.1. Filtrations of stabilizer subgroups.

4.1.1. Let T be a maximal L-split torus in G. Let X∗(T ) resp. X∗(T ) be the group
of algebraic characters resp. cocharacters of T . Let 8=8(G, T )⊂ X∗(T ) denote
the root system determined by the adjoint action of T on the Lie algebra of G. Let
W denote the corresponding Weyl group. For each α ∈8 we have the unipotent
root subgroup Uα ⊆ G. Since G is split the choice of a Chevalley basis determines
a system of L-group isomorphisms

xα : Ga −→
∼ Uα

for each α ∈8 (an épinglage) satisfying Chevalley’s commutation relations [1955,
p. 27]. Let X∗(C) denote the group of L-algebraic cocharacters of the connected
center C of G.

We denote by G, T,Uα the groups of L-rational points of G, T ,Uα(α ∈ 8)
respectively. Recall the normalized p-adic valuation vL on L , i.e., vL($)= 1. For
α ∈8 we denote by (Uα,r )r∈R the filtration of Uα arising from the valuation vL on
L via the isomorphism xα. It is an exhaustive and separated discrete filtration by
subgroups. Put Uα,∞ := {1}.

4.1.2. Let B =B(G) be the semisimple Bruhat–Tits building of G. The torus T
determines an apartment A in B. Recall that a point z in the Coxeter complex A
is called special if for any direction of wall there is a wall of A actually passing
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through z [Bruhat and Tits 1972, 1.3.7]. As in [Cartier 1979, 3.5] we choose once
and for all a special vertex x0 in A and a chamber C ⊂ A containing it. We use the
point x0 to identify the affine space A with the real vector space

A = (X∗(T )/X∗(C))⊗Z R.

Each root α ∈8 induces therefore a linear form α : A→ R in an obvious way. For
any nonempty subset �⊆ A we let f� :8→ R∪ {∞}, α 7→ − infx∈� α(x). It is
a concave function in the sense of [Bruhat and Tits 1972, 6.4.1–5]. We emphasize
that the concept of a concave function is developed in [loc. cit.] more generally for
functions taking values in the set

R̃ := R∪ {r+ : r ∈ R} ∪ {∞}.

The latter naturally has the structure of a totally ordered commutative monoid
extending the total order and the addition on R. For any α ∈8 and r ∈R we define

Uα,r+ :=
⋃

s∈R, s>r

Uα,s .

For any concave function f :8→ R̃ we then have the group

U f := subgroup of G generated by all Uα, f (α) for α ∈8. (4.1.3)

4.1.4. For each nonempty subset �⊆B we let

P� := {g ∈ G : gz = z for any z ∈�}

be its pointwise stabilizer in G. For any facet F ⊆B we will recall from [Schneider
and Stuhler 1997, I.2] a certain decreasing filtration of PF by open normal pro-p
subgroups which will be most important for all that follows in this article. To do this
we first consider a facet F in the apartment A. For α ∈8 we put f ∗F (α) := fF (α)+

if α|F is constant and f ∗F (α) := fF (α) otherwise. This yields a concave function
f ∗F :8→ R̃. With f ∗F also the functions f ∗F + e, for any integer e ≥ 0, are concave.
Hence there is the descending sequence of subgroups

U f ∗F ⊇U f ∗F+1 ⊇U f ∗F+2 ⊇ · · ·

4.1.5. On the other hand we let T := Spec(oL [X∗(T )]) and

T (e)
:= ker(T(oL)→ T(oL/$

e+1
L oL))

for any e ≥ 0 (see [Schneider and Stuhler 1997, proof of Proposition I.2.6]) and
finally define

U (e)
F :=U f ∗F+e · T (e)
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for each e ≥ 0 [loc. cit., p. 21]. This definition is extended to any facet F in B

by putting U (e)
F := gU (e)

F ′ g−1 if F = gF ′ with g ∈ G and F ′ a facet in A. We thus
obtain a filtration

PF ⊇U (0)
F ⊇U (1)

F ⊇ · · ·

of the pointwise stabilizer PF by normal subgroups. As in [loc. cit.] we define, for
any point z ∈B,

U (e)
z :=U (e)

F

where F is the unique facet of B that contains z. The group U (e)
z fixes the point z.

By construction we have

U (e)
gz = gU (e)

z g−1 (4.1.6)

for any z ∈B and any g ∈ G.

Remark. We emphasize that the definition of the groups {U (e)
F }F⊂B,e≥0 depends

on the choice of the special vertex x0 as an origin for A. We also remark that the
very same groups appear in the work of Moy and Prasad on unrefined minimal
types [Moy and Prasad 1994; Vignéras 1997].

We will make use of the following basic properties of the groups U (e)
F . To

formulate them let

8=8+ ∪8−

be any fixed decomposition of 8 into positive and negative roots.

Proposition 4.1.7 [Schneider and Stuhler 1997, Propositions I.2.7 and I.2.11 and
Corollary I.2.9]. (i) Let F ⊂ A be a facet. For any e ≥ 0 the product map
induces a bijection( ∏

α∈8−
U f ∗F+e ∩Uα

)
× T (e)

×

( ∏
α∈8+

U f ∗F+e ∩Uα

)
−→∼ U (e)

F

whatever ordering of the factors of the left hand side we choose. Moreover, we
have

U f ∗F+e ∩Uα =Uα, f ∗F (α)+e

for any α ∈8.

(ii) For any facet F ⊂B the U (e)
F for e ≥ 0 form a fundamental system of compact

open neighborhoods of 1 in G,

(iii) U (e)
F ′ ⊆U (e)

F for any two facets F, F ′ in B such that F ′ ⊆ F.
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4.1.8. As an example and in view of later applications we give a more concrete
description of the groups {U (e)

x0 }e≥0. The stabilizer P{x0} in G of the vertex x0 is a
special, good, maximal compact open subgroup of G [Cartier 1979, 3.5]. We let G
be the connected reductive oL -group scheme with generic fiber G associated with
the special vertex x0 [Tits 1979, 3.4; Bruhat and Tits 1984, 4.6.22]. Its group of
oL -valued points G(oL) can be identified with P{x0}. For e ≥ 0 we therefore have
in P{x0} the normal subgroup G($ e) := ker(G(oL)→G(oL/$

eoL)).
Now the concave function f{x0} vanishes identically whence f ∗

{x0}
has constant

value 0+. Thus,

Uα, f ∗
{x0}

(α)+e =
⋃
s>0

{a ∈ L : vL(a)≥ e+ s} =$ e+1oL

for any e ≥ 0. By Proposition 4.1.7(i) and the definition of T (e) we therefore have
a canonical isomorphism U (e)

x0 −→
∼ G($ e+1) for any e ≥ 0.

4.2. The Schneider–Stuhler construction. We now review the construction of a
certain “localization” functor constructed by P. Schneider and U. Stuhler [1997,
IV.1]. In fact, there will be a functor for each “level” e ≥ 0. Following [loc. cit.],
we will suppress this dependence in our notation. In [Schneider and Stuhler 1997]
only complex representations are considered. However, all results remain true over
our characteristic zero field K [Vignéras 1997].

4.2.1. Recall that a smooth representation V of G is a K -vector space V together
with a linear action of G such that the stabilizer of each vector is open in G. A
morphism between two such representations is simply a K -linear G-equivariant
map.

Now let us fix an integer e ≥ 0 and let V be a smooth representation. For any
subgroup U ⊆ G we have the K -vector space

VU :=maximal quotient of V on which the U -action is trivial

of U -coinvariants of V . For any open subset �⊆B we let

V
≈
(�) := K -vector space of all maps s :�→

⋃̇
z∈�

VU (e)
z

such that

- s(z) ∈ VU (e)
z

for all z ∈�,

- there is an open covering �=
⋃

i∈I �i and vectors vi ∈ V with

s(z)= class of vi ∈ VU (e)
z

for any z ∈�i and i ∈ I .

We summarize some properties of this construction in the following proposition.
Recall that a sheaf on a polysimplicial space is called constructible if its restriction
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to a given geometric polysimplex is a constant sheaf [Kashiwara and Schapira 1990,
8.1].

Proposition 4.2.2. (i) The correspondence � 7→ V
≈
(�) is a sheaf of K -vector

spaces.

(ii) For any z ∈B the stalk of the sheaf V
≈

at z equals (V
≈
)z = VU (e)

z
.

(iii) V
≈

is a constructible sheaf whose restriction to any facet F of B is constant
with value VU (e)

F
.

(iv) The correspondence V 7→V
≈

is an exact functor from smooth G-representations
to sheaves of K -vector spaces on B.

Proof. Part (i) follows from the local nature of the preceding definition. Part (ii)
and (iii) are [Schneider and Stuhler 1997, Lemma IV.1.1]. Part (iv) follows from
(ii) because of char(K )= 0. �

We recall that the smooth representation V is called admissible if the H -invariants
V H form a finite dimensional K -vector space for any compact open subgroup H of
G. In this situation the natural projection map V→VH induces a linear isomorphism
V H
−→∼ VH . For an admissible representation V we may therefore deduce from

Proposition 4.2.2(ii) that the stalks of V
≈

are finite dimensional K -vector spaces.
We emphasize again that the functor V 7→ V

≈
depends on the level e ≥ 0.

4.3. p-valuations on certain stabilizer subgroups. We keep the notations from the
preceding paragraph and define certain p-valuations on the groups U (e)

F . However,
for the rest of this section we assume L =Qp.

Lemma 4.3.1. Let F be a facet in B and e, e′ ≥ 0. The commutator group
(U (e)

F ,U (e′)
F ) satisfies

(U (e)
F ,U (e′)

F )⊆U (e+e′)
F .

Proof. Choosing a facet F ′ in A and an element g ∈ G such that F ′ = gF we
may assume that F lies in A. Define a function hF :8∪ {0} → R̃ via hF |8 := f ∗F
and hF (0) := 0+. Then g := hF + e and f := hF + e′ are concave functions
in the sense of [Bruhat and Tits 1972, Definition 6.4.3]. Consider the function
h :8∪ {0} → R̃∪ {−∞} defined as

h(a) := inf
{∑

i
f (ai )+

∑
j

g(b j )
}

where the infimum is taken over the set of pairs of finite nonempty sets (ai ) and
(b j ) of elements in 8∪ {0} such that a =

∑
i ai +

∑
j b j . Using that the functions

f and g are concave one finds

hF (a)+ e+ e′ ≤ h(a)
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for any a ∈8∪ {0}. By [loc. cit., Proposition 6.4.44], the function h is therefore
concave and has the property (U f ,Ug)⊆Uh ⊆UhF+e+e′ . Here, the groups involved
are defined completely analogous to (4.1.3) (see [loc. cit., Definition 6.4.42]). It
remains to observe that UhF+a =U (a)

F for any integer a ≥ 0 [Schneider and Stuhler
1997, p. 21]. �

Let l be the rank of the torus T . By construction of T any trivialization T ' (Gm)
l

yields an identification T' (Gm/oL )
l which makes the structure of the topological

groups T (e), e ≥ 0 explicit. Moreover, we assume in the following e ≥ 2. For each
g ∈U (e)

F \ {1} let
ω
(e)
F (g) := sup{n ≥ 0 : g ∈U (n)

F }.

The following corollary is essentially due to H. Frommer [2003, 1.3, proof of
Proposition 6]. For sake of completeness we include a proof.

Corollary 4.3.2. The function

ω
(e)
F :U

(e)
F \ {1} → (1/(p− 1),∞)⊂ R

is a p-valuation on U (e)
F for e ≥ 2.

Proof. The first axiom (i) is obvious and (ii) follows from the lemma. Let g ∈U (e)
F

with n := ω(e)F (g). We claim ω
(e)
F (g

p) = n + 1. The root space decomposition
(Proposition 4.1.7),

m :
( ∏
α∈8−

Uα, f ∗F (α)+n

)
× T (n)

×

( ∏
α∈8+

Uα, f ∗F (α)+n

)
−→∼ U (n)

F ,

is in an obvious sense compatible with variation of the level n. If g ∈ T (n) the
claim is immediate. The same is true if g ∈ Uα, f ∗F (α)+n for some α ∈ 8: indeed
the filtration of Uα is induced by the p-adic valuation on Qp via xα :Qp 'Uα . In
general let m(h1, . . . , hd)= g. By what we have just said there is 1≤ i ≤d such that
ω(e)(h p

i )= n+1 and ω(e)(h p
j )≥ n+1 for all j 6= i . Furthermore, h p

1 · · · h
p
d g′ = g p,

where g′ ∈ (U (n)
F ,U (n)

F ) ⊆ U (2n)
F . Since n ≥ 2 we have 2n ≥ n + 2 and hence

g p
∈U (n+1)

F . If g p
∈U (n+2)

F then h p
1 · · · h

p
d = g pg′−1

∈U (n+2)
F , which contradicts

the existence of hi . Hence ω(e)(g p)= n+ 1, which verifies axiom (iii). �

4.3.3. For a given root α ∈ 8 let uα be a topological generator for the group
Uα, f ∗F (α)+e. Let t1, . . . , tl be topological generators for the group T (e). In the light
of the decomposition of Proposition 4.1.7(i) it is easy to see that the set

{uα}α∈8− ∪ {ti }i=1,...,l ∪ {uα}α∈8+

arranged in the order suggested in Frommer’s proof is an ordered basis for the
p-valued group (U (e)

F , ω
(e)
F ). Of course, ω(e)F (h) = e for any element h of this

ordered basis.
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For technical reasons we will work in the following with the slightly simpler
p-valuations

ω̊
(e)
F := ω

(e)
F − (e− 1)

satisfying ω̊(e)F (h)= 1 for any element h of the above ordered basis. If z ∈B lies
in the facet F ⊂B we write ω̊(e)z for ω̊(e)F .

Remark 4.3.4. The tangent map at 1 ∈ H :=U (2)
F corresponding to the p-power

map equals multiplication by p and thus, is an isomorphism. It follows from
Proposition 4.1.7(ii) that there is e(F)≥ 2 such that for any e ≥ e(F) any element
g ∈U (e+1)

F is a p-th power h p with h ∈ H . Since H is p-valued, axiom (iii) implies
h ∈U (e)

F . This means that (U (e)
F , ω̊

(e)
F ) is p-saturated. For e ≥ e(F) the group U (e)

F
is therefore a uniform pro-p group (apply remark before Lemma 4.4 in [Schneider
and Teitelbaum 2003] to ω̊(e)F and use p 6= 2). Since any facet in B is conjugate to
a facet in C we deduce from (4.1.6) that there is a number euni ≥ 2 such that all
the groups U (e)

F for F ⊂B are uniform pro-p groups whenever e ≥ euni. In this
situation, Proposition A1 of [Huber et al. 2011] asserts that the subgroups

U (e)
F ⊃U (e+1)

F ⊃U (e+2)
F ⊃ · · ·

form the lower p-series of the group U (e)
F .

For technical reasons that will become apparent in Section 7.4 we include the
following additional property into the definition of euni. Let C be the closure of the
fundamental chamber C ⊂ A and let x0 ∈ A be the chosen origin; see Section 4.1.2.
We choose once and for all euni ≥ 2 such that, for e ≥ euni, all groups U (e)

F are
uniform pro-p groups and such that U (e)

z ⊆U (0)
wx0 for all points z ∈C and all w ∈W .

We may apply the discussion of Section 2.1 to (U (e)
F , ω̊

(e)
F ) and the above ordered

basis to obtain a family of norms ‖·‖r , r ∈[1/p, 1) on D(U (e)
F , K )with completions

Dr (U
(e)
F , K ) being K -Banach algebras. For facets F, F ′ in B such that F ′ ⊆ F

we shall need a certain “gluing” lemma for these algebras.

Lemma 4.3.5. Let F, F ′ be two facets in B such that F ′ ⊆ F. The inclusion
U (e)

F ′ ⊆U (e)
F extends to a norm-decreasing algebra homomorphism

σ F ′F
r : Dr (U

(e)
F ′ , K )→ Dr (U

(e)
F , K ).

Moreover, (i) σ FF
r = id and (ii) σ F ′F

r ◦ σ F ′′F ′
r = σ F ′′F

r if F ′′ is a third facet in B
with F ′′ ⊆ F ′.

Finally, σ F ′F
r restricted to Lie(U (e)

F ′ ) equals the map Lie(U (e)
F ′ ) ' Lie(U (e)

F ) ⊂

Dr (U
(e)
F , K ) where the first arrow is the canonical Lie algebra isomorphism from

[Bourbaki 1972, III Section 3.8].
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Proof. By functoriality [Kohlhaase 2007, 1.1] of D( · , K ) we obtain an algebra
homomorphism

σ : D(U (e)
F ′ , K )→ D(U (e)

F , K ).

Let h′1, . . . , h′d and h1, . . . , hd be the ordered bases of U (e)
F ′ and U (e)

F respectively.
Let b′i = h′i − 1 ∈ Z[U (e)

F ′ ] and b′m := b′1
m1
· · · b′d

md for m ∈ Nd
0 . Given an element

λ=
∑

m∈Nd
0

dm b′m ∈ D(U (e)
F ′ , K )

we have ‖λ‖r = supm |dm | ‖b′i‖r . Because

‖σ(λ)‖r ≤ supm |dm |(‖σ(b′1)‖r )
m1 · · · (‖σ(b′d)‖r )

md )

it therefore suffices to prove ‖σ(b′i )‖r ≤ ‖b
′

i‖r for any i . If h′i belongs to the toral
part of the ordered basis of U (e)

F ′ then we may assume σ(b′i )= b′i and we are done.
Let therefore α ∈ 8 and consider the corresponding elements h′α and hα in the
ordered bases of U (e)

F ′ and U (e)
F respectively. By the root space decomposition we

have

Uα, f ∗F ′ (α)+e ⊆Uα, f ∗F (α)+e = (hα)Zp .

Let therefore a ∈ Zp such that h′α = (hα)
a . Since a change of ordered basis does

not affect the norms in question (see Section 2.2.3) we may assume a = ps for
some natural number s ≥ 0. Then

h′α − 1= (hα + 1− 1)ps
− 1=

∑
k=1,...,ps

( ps

k

)
(hα − 1)k

and therefore

‖σ(h′α− 1)‖r ≤ max
k=1,...,ps

∣∣∣( ps

k

)∣∣∣ ‖(hα− 1)‖kr = max
k=1,...,ps

∣∣∣( ps

k

)∣∣∣r k
≤ r = ‖h′α− 1‖r

which shows the claim and the existence of σ FF ′
r . Properties (i) and (ii) in the

second paragraph of the statement follow from functoriality of D( · , K ) by passing
to completions. Since U (e)

F ′ ⊆ U (e)
F is an open immersion of Lie groups the final

statement is clear. �

5. Sheaves on the flag variety and Lie algebra representations

5.1. Differential operators on the flag variety.

5.1.1. Let X denote the variety of Borel subgroups of G. It is a smooth and
projective L-variety. Let OX be its structure sheaf. Let g be the Lie algebra of G.
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Differentiating the natural (left) action of G on X yields a homomorphism of Lie
algebras

α : g→ 0(X, TX )

into the global sections of the tangent sheaf TX = Der L(OX ) of X [Demazure
and Gabriel 1970, II Section 4.4.4]. In the following we identify an abelian group
(algebra, module etc.) with the corresponding constant sheaf on X . This should not
cause any confusion. Letting

g◦ :=OX ⊗L g

the map α extends to a morphism of OX -modules α◦ : g◦→ TX . Defining [x, f ] :=
α(x)( f ) for x ∈ g and a local section f of OX makes g◦ a sheaf of L-Lie algebras.5

Then α◦ is a morphism of L-Lie algebras. We let b◦ := kerα◦, a subalgebra of g◦,
and n◦ := [b◦, b◦] its derived algebra. At a point x ∈ X with residue field κ(x) the
reduced stalks of the sheaves b◦ and n◦ equal the Borel subalgebra bx of κ(x)⊗L g

defined by x and its nilpotent radical nx ⊂ bx respectively. Let h denote the abstract
Cartan algebra of g [Miličić 1993a, Section 2]. We view the OX -module OX ⊗L h

as an abelian L-Lie algebra. By definition of h there is a canonical isomorphism of
OX -modules and L-Lie algebras

b◦/n◦ −→∼ OX ⊗L h. (5.1.2)

Let U (g) be the enveloping algebra of g. The enveloping algebra of the Lie
algebra g◦ has the underlying OX -module OX ⊗L U (g). Its L-algebra of local
sections over an open affine V ⊆ X is the skew enveloping algebra OX (V )#U (g)
relative to α : g → DerL(OX (V )) (in the sense of sec 3). To emphasize this
skew multiplication we follow [Bezrukavnikov et al. 2008, 3.1.3] and denote the
enveloping algebra of g◦ by

OX #U (g).

5.1.3. To bring in the torus T we choose a Borel subgroup B ⊂ G defined over L
containing T . Let N ⊂ B be the unipotent radical of B and let N− be the unipotent
radical of the Borel subgroup opposite to B. We denote by

q : G→ G/B = X

the canonical projection. Let b be the Lie algebra of B and n ⊂ b its nilpotent
radical. If t denotes the Lie algebra of T the map t ⊂ b→ b/n ' h induces an
isomorphism t' h of L-Lie algebras. We will once and for all identify these two

5Following [Beilinson and Bernstein 1981] we call such a sheaf simply a Lie algebra over X in
the sequel. This abuse of language should not cause confusion.
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Lie algebras via this isomorphism. Consequently, (5.1.2) yields a morphism of
OX -modules and L-Lie algebras

b◦→ b◦/n◦ −→∼ OX ⊗L t.

Given a linear form λ ∈ t∗ it extends OX -linearly to the target of this morphism and
may then be pulled-back to b◦. This gives a OX -linear morphism λ◦ : b◦→OX .

5.1.4. Let ρ := 1
2

∑
α∈8+ α. Given χ ∈ t∗ we put λ := χ − ρ. Denote by Iχ the

right ideal sheaf of OX #U (g) generated by ker λ◦, i.e., by the expressions

ξ − λ◦(ξ)

with ξ a local section of b◦ ⊂ g◦ ⊂OX #U (g). It is a two-sided ideal and we let

Dχ := (OX #U (g))/Iχ

be the quotient sheaf. This is a sheaf of noncommutative L-algebras on X endowed
with a natural algebra morphism U (g)→ 0(X,Dχ ) induced by x 7→ 1⊗ x for
x ∈U (g). On the other hand Dχ is an OX -module through the (injective) L-algebra
morphism OX → Dχ induced by f 7→ f ⊗ 1. This allows to define the full
subcategory Mqc(Dχ ) of the (left) Dχ -modules consisting of modules which are
quasicoherent as OX -modules. It is abelian.

5.1.5. For future reference we briefly discuss a refinement of the above construction
of the sheaf Dχ . The right ideal of OX #U (g) generated by n◦ is a two-sided ideal
and, following [Miličić 1993a, Section 3] we let

Dt := (OX #U (g))/n◦(OX #U (g))

be the quotient sheaf. We have the open subscheme U1 := q(N−) of X . Choose a
representative ẇ ∈ G for every w ∈W with 1̇= 1. The translates Uw := ẇU1 for
all w ∈W form a Zariski covering of X . Let n− be the Lie algebra of N− and put
n−,w := Ad(ẇ)(n−) for any w ∈W .

For any w ∈W there are obvious canonical maps from OX (Uw),U (n−,w) and
U (t) to OX (Uw)#U (g) and therefore to Dt(Uw). According to [Miličić 1993b,
Lemma C.1.3] they induce a K -algebra isomorphism

(OX (Uw)#U (n−,w))⊗L U (t)−→∼ Dt(Uw). (5.1.6)

Note that N− ∼=A
|8−|
L implies that the skew enveloping algebra OX (Uw)#U (n−,w)

is equal to the usual algebra of differential operators DX (Uw) on the translated
affine space Uw = ẇU1.

The above discussion implies that the canonical homomorphism

U (t)→OX #U (g), x 7→ 1⊗ x
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induces a central embedding U (t) ↪→ Dt. In particular, the sheaf (ker λ)Dt is a
two-sided ideal in Dt. According to the discussion before Theorem 3.2 in [Miličić
1993a, p. 138], the canonical map Dt→ Dχ coming from n◦ ⊂ ker λ◦ induces

Dt⊗U (t) Lλ = Dt/(ker λ)Dt −→
∼ Dχ ,

an isomorphism of sheaves of K -algebras.

Remark. According to the above we may view the formation of the sheaf Dχ as
a two-step process. In a first step on constructs the sheaf Dt whose sections over
the Weyl translates of the big cell U1 are explicitly computable. Secondly, one
performs a central reduction Dt⊗U (t) Lλ via the chosen character λ= χ − ρ. This
point of view will be useful in later investigations.

5.2. The Beilinson–Bernstein localization theorem.

5.2.1. We recall some notions related to the classical Harish-Chandra isomorphism.
To begin with let S(t) be the symmetric algebra of t and let S(t)W be the subalgebra
of Weyl invariants. Let Z(g) be the center of the universal enveloping algebra U (g)
of g. The classical Harish-Chandra map is an algebra isomorphism Z(g)−→∼ S(t)W

relating central characters and highest weights of irreducible highest weight g-
modules in a meaningful way [Dixmier 1996, 7.4]. Given a linear form χ ∈ t∗ we
let

σ(χ) : Z(g)→ L

denote the central character associated with χ via the Harish-Chandra map. Recall
that χ ∈ t∗ is called dominant if χ(α̌) /∈ {−1,−2, . . . } for any coroot α̌ with α ∈8+.
It is called regular if w(χ) 6= χ for any w ∈W with w 6= 1.

Let θ := σ(χ) and put U (g)θ := U (g)⊗Z(g),θ L for the corresponding central
reduction.

Theorem 5.2.2 [Beilinson and Bernstein 1981].

(i) The algebra morphism U (g)→ 0(X,Dχ ) induces an isomorphism U (g)θ '
0(X,Dχ ).

(ii) If χ is dominant and regular the functor M 7→Dχ ⊗U (g)θ M is an equivalence
of categories between the (left) U (g)θ -modules and Mqc(Dχ ).

(iii) Let M be a U (g)θ -module. The reduced stalk of the sheaf Dχ ⊗U (g)θ M at a
point x ∈ X equals the λ-coinvariants of the h-module (κ(x)⊗L M)/nx(κ(x)⊗L

M).

Remarks. (i) In [Beilinson and Bernstein 1981] the theorem is proved under the
assumption that the base field is algebraically closed. However, all proofs in
that paper go through over an arbitrary characteristic zero field in the case
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where the Lie algebra g is split over the base field. In the following, this is the
only case we shall require.

(ii) If λ := χ−ρ ∈ X∗(T )⊂ t∗ and if O(λ) denotes the associated invertible sheaf
on X then Dχ can be identified with the sheaf of differential endomorphisms
of O(λ) [Miličić 1993a, p. 138]. It is therefore a twisted sheaf of differential
operators on X in the sense of [Beilinson and Bernstein 1981, Section 1]. In
particular, if χ = ρ the map α◦ induces an isomorphism Dρ −→∼ DX with the
usual sheaf of differential operators on X [Grothendieck 1967, Section 16.8].
In this case, Mqc(Dχ ) equals therefore the usual category of algebraic D-
modules on X in the sense of [Borel et al. 1987].

6. Berkovich analytifications

6.1. Differential operators on the analytic flag variety.

6.1.1. For the theory of Berkovich analytic spaces we refer to [Berkovich 1990;
1993]. We keep the notations introduced in the preceding section. In particular, X
denotes the variety of Borel subgroups of G. Being a scheme of finite type over L we
have an associated Berkovich analytic space X an over L [loc. cit., Theorem 3.4.1].
In the preceding section we recalled a part of the algebraic Beilinson–Bernstein
localization theory over X . It admits the following “analytification” over X an.

By construction X an comes equipped with a canonical morphism

π : X an
→ X

of locally ringed spaces. Let π∗ be the associated inverse image functor from
OX -modules to OXan-modules. Here OXan denotes the structure sheaf of the locally
ringed space X an. As with any morphism of locally ringed spaces we have the sheaf

TXan :=Der L(OXan)

of L-derivations of OXan [Grothendieck 1967, 16.5.4]. By definition0(X an, TXan)=

DerL(OXan). Since X an is smooth over L the results of [Berkovich 1993, 3.3 and 3.5]
imply that the stalk of this sheaf at a point x ∈ X an equals TXan,x = DerL(OXan,x).

Let Gan denote the analytic space associated to the variety G and let πG :Gan
→G

be the canonical morphism. The space Gan is a group object in the category of
L-analytic spaces (a L-analytic group in the terminology of [Berkovich 1990, 5.1]).
The unit sections of G and Gan correspond via πG , which allows us to canonically
identify the Lie algebra of Gan with g [loc. cit., Theorem 3.4.1(ii)]. By functoriality
the group Gan acts on X an. The following result is proved as in the scheme case.

Lemma 6.1.2. The group action induces a Lie algebra homomorphism

g→ 0(X an, TXan).
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We define
g◦,an
:=OXan ⊗L g= π∗(g◦).

The preceding lemma allows on the one hand, to define a structure of L-Lie algebra
on g◦,an. The respective enveloping algebra will be denoted by OXan #U (g). On the
other hand, the map from the lemma extends to a OXan-linear morphism of L-Lie
algebras

α◦,an
: g◦,an

→ TXan . (6.1.3)

As in the algebraic case we put b◦,an
:= kerα◦,an and n◦,an

:= [b◦,an, b◦,an
]. Again,

we obtain a morphism b◦,an
→OXan⊗L t. Given χ ∈ t∗ and λ :=χ−ρ we denote by

Ian resp. Ian
χ the right ideal sheaf of OXan #U (g) generated by n◦,an resp. ker λ◦,an

where λ◦,an equals the OXan-linear form of b◦,an induced by λ. These are two-sided
ideals. We let

Dan
t := (OXan #U (g)) /Ian and Dan

χ := (OXan #U (g)) /Ian
χ

be the quotient sheaves. We view Dan
χ as a sheaf of twisted differential operators on

X an.
All these constructions are compatible with their algebraic counterparts via the

functor π∗. For example, using the fact that π∗(TX ) = TXan it follows from the
above proof that α◦,an

= π∗(α◦). Moreover, all that has been said in Section 5 on
the relation between the sheaves Dt and Dχ remains true for its analytifications. In
particular, Dan

χ is a central reduction of Dan
t via the character λ :U (t)→ L:

Dan
t /(ker λ)Dan

t −→
∼ Dan

χ . (6.1.4)

6.2. The Berkovich embedding and analytic stalks. Recall our chosen Borel sub-
group B ⊂ G containing T and the quotient morphism q : G→ G/B = X . We
will make heavy use of the following result of V. Berkovich which was taken up
and generalized in a conceptual way by B. Rémy, A. Thuillier and A. Werner. Let
η ∈ X be the generic point of X .

Theorem 6.2.1. There exists a G-equivariant injective map

ϑB :B→ X an

which is a homeomorphism onto its image. The latter is a locally closed subspace
of X an contained in the preimage π−1(η) of the generic point of X.

Proof. This is [Berkovich 1990, 5.5.1]. We sketch the construction in the language
of [Rémy et al. 2010]. The map is constructed in three steps. First one attaches to
any point z ∈B an L-affinoid subgroup Gz of Gan whose rational points coincide
with the stabilizer of z in G. In a second step one attaches to Gz the unique point
in its Shilov boundary (the sup-norm on Gz) which defines a map ϑ :B→ Gan.
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In a final step one composes this map with the analytification of the orbit map
G→ X, g 7→ g.B. The last assertion follows from the next lemma. �

Lemma 6.2.2. Let z ∈B. The local rings OXan,ϑB(z) and OX,π(ϑB(z)) are fields. In
particular, π(ϑB(z)))= η, the generic point of X.

Proof. This is a direct consequence of [Rémy et al. 2010, Corollary 2.18] and the
sentence immediately following that corollary. �

Since X an is a compact Hausdorff space by [Berkovich 1990, 3.4.8], the closure of
the image of ϑB in X an is a compactification of B [loc. cit., Remark 3.31]. It is
called the Berkovich compactification of B of type ∅ [loc. cit., Definition 3.30].
We will in the following often identify B with its image under ϑB and hence, view
B as a locally closed subspace of X an.

6.2.3. By [Berkovich 1993, 1.5] the space X an is a good analytic space (in the
sense of [loc. cit., Remark 1.2.16] which means that any point of X an lies in the
topological interior of an affinoid domain. In particular, given x ∈ X an the stalk
OXan,x may be written as

OXan,x = lim
−→
x∈V

AV

where the inductive limit ranges over the affinoid neighborhoods V of x and where
AV denotes the associated affinoid algebra. As usual a subset of neighborhoods
of x will be called cofinal if it is cofinal in the directed partially ordered set of
all neighborhoods of x . If V is an affinoid neighborhood of x , the corresponding
affinoid algebra AV carries its Banach topology. We endow OXan,x with the locally
convex final topology [Schneider 2002, Section 5.E] arising from the above inductive
limit. This topology makes OXan,x a topological L-algebra. We need another, rather
technical, property of this topology.

Lemma 6.2.4. Let x ∈ X an. There is a sequence V1 ⊃ V2 ⊃ V3 ⊃ . . . of irreducible
reduced strictly affinoid neighborhoods of x which is cofinal and has the property:
the homomorphism of affinoid algebras AVi →AVi+1 associated with the inclusion
Vi+1 ⊂ Vi is flat and an injective compact linear map between Banach spaces. In
particular, the stalk OXan,x is a vector space of compact type.

Proof. Being an analytification of a variety over L , the analytic space X an is closed
(in the sense of [Berkovich 1990, p. 49]); cf. [loc. cit., 3.4.1]. Since the valuation
on L is nontrivial, X an is strictly k-analytic [loc. cit., Proposition 3.1.2]. Let V
be a strictly affinoid neighborhood of x in X an so that x lies in the topological
interior of V . In the following we will use basic results on the relative interior
Int(Y/Z) of an analytic morphism Y → Z [loc. cit., 2.5, 3.1]. As usual we write
Int(Y ) in case of the structure morphism Y →M (L). Since X an is closed we
have by definition Int(X an) = X an. Moreover, Proposition 3.1.3(ii) of [loc. cit.]
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implies Int(V )= Int(V/X an). By part (i) of the same proposition the topological
interior of V is equal to Int(V/X an) and, thus, x ∈ Int(V ). Now the residue field
of L being finite, there is a countable basis {Wn}n∈N of neighborhoods of x (see
discussion after [loc. cit., 3.2.8]) which consists of strictly affinoid subdomains
(even Laurent domains) of V [loc. cit., Proposition 3.2.9]. By smoothness of X an

the local ring OXan,x is noetherian regular and hence an integral domain. We may
therefore assume that all Wn are reduced and irreducible [loc. cit., last sentence of
2.3]. Consider V1 :=Wn1 for some n1 ∈N. As we have just seen x ∈ Int(V1). Since
Int(V1) is an open neighborhood of x there is n2 > n1 such that Wn2 ⊆ Int(V1). We
put V2 :=Wn2 and repeat the above argument with V1 replaced by V2. In this way
we find a cofinal sequence V1 ⊃ V2 ⊃ V3 . . . of strictly irreducible reduced affinoid
neighborhoods of x with the property Int(Vi ) ⊇ Vi+1 for all i ≥ 1. According to
[loc. cit., Proposition 2.5.9], the bounded homomorphism of L-Banach algebras
AVi → AVi+1 associated with the inclusion Vi+1 ⊂ Vi is inner with respect to L
(in the sense of [loc. cit., Definition 2.5.1]. The arguments in [Emerton 2011,
Proposition 2.1.16] now show that AVi →AVi+1 is a compact linear map between
Banach spaces. Finally, this latter map is injective because Vi is irreducible and
Vi+1 contains a nonempty open subset of Vi . It is also flat since, by construction,
Vi+1 is an affinoid subdomain of Vi [Berkovich 1990, Proposition 2.2.4(ii)]. �

6.2.5. In this paragraph and the next lemma we assume L =Qp. Consider for a
given z ∈B the group U (e)

z ⊂ G; see Section 4.1.5. For e ≥ euni the group U (e)
z

is uniform pro-p; see 4.3.4. As such, it has a Zp-Lie algebra L(U (e)
z ), which is

powerful, and the exponential map expU (e)
z
: L(U (e)

z )→U (e)
z is well-defined and a

bijection [Dixon et al. 1999, Section 9.4]. Using the Baker–Campbell–Hausdorff
series one can then associate to the lattice L(U (e)

z ) a Qp-analytic affinoid subgroup
U
(e)
z ⊂ Gan, which has the property that U

(e)
z (Qp)=U (e)

z .6 (U (e)
z is a good analytic

open subgroup of G in the sense of [Emerton 2011, Section 5.2].) Let V ⊂ X an be
an affinoid domain. We say that U (e)

z acts analytically on V , if there is an action
of the affinoid group U

(e)
z on V compatible with the action of U

(e)
z on X an, i.e., if

there is a commutative diagram of group operations

U
(e)
z × V

��

// V

��
Gan
× X an // X an

6Only here do we use that L = Qp . For general L it would be necessary to show that U (e)
z is

actually an L-uniform pro-p group; see [Orlik and Strauch 2010b, 2.2.5]. This can be done, but we do
not work here in this generality.
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where the vertical maps are inclusions (and the products on the left are taken in the
category of L-analytic spaces).

Lemma 6.2.6. There exists a number est ≥ euni with the following property. For
any point z ∈B, viewed as a point in X an, there is a fundamental system of strictly
affinoid neighborhoods {Vn}n≥0 of z with the properties as in Lemma 6.2.4, and
such that for all n ≥ 0 and e ≥ est the group U (e)

z acts analytically on Vn .

The proof, which is lengthy, is given in an appendix, in order not to interrupt the
discussion at this point.

6.3. A structure sheaf on the building.

6.3.1. To be able to compare the localization of Schneider–Stuhler and Beilinson–
Bernstein we equip the topological space B with a sheaf of commutative and
topological L-algebras. Recall that a subset V ⊂ X an is called a special domain if it
is a finite union of affinoid domains, and to any special domain V there is associated
an L-Banach algebra AV [Berkovich 1990, 2.2.6]. The sheaf OXan is naturally a
sheaf of locally convex algebras as follows: given an open subset U ⊂ X an we have

OXan(U )= lim
←−

V⊂U

AV ,

where the limit is taken over all special domains (or affinoid domains) of X an

contained in U . Here, AV is the L-Banach algebra corresponding to V and the
projective limit is equipped with the projective limit topology. Because the residue
field of L is finite, X an has a countable basis of open subsets [Berkovich 1990,
3.2.9]. Therefore, one can cover U with a countable set of special domains and
OXan(U ) is thus a countable projective limit of Banach algebras, hence a Fréchet
algebra over L .

We then consider the exact functor ϑ−1
B from abelian sheaves on X an to abelian

sheaves on B given by restriction along ϑB :B ↪→ X an. Let

OB := ϑ
−1
B (OXan).

For any subset C ⊂ X an we can consider OXan(C), the vector space of sections of
OXan over C , i.e., the global sections of the restriction of the sheaf OXan to C .

Proposition 6.3.2. For any subset C ⊂ X an we have

OXan(C)= lim
−→

C⊂U

OXan(U )

where U runs through all open neighborhoods of C in X an.

Proof. As was pointed out in 6.3.1, the compact Hausdorff topological space X an

has a countable basis of open subsets. By Urysohn’s metrization theorem, it is
therefore metrizable, and we may apply [Godement 1958, II.3.3, Corollary 1]. �
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In particular, given an open set �⊆B we have

OB(�)= lim
−→
�⊂U

OXan(U )

where U runs through the open neighborhoods of� in X an. Using the locally convex
inductive limit topology on the right-hand side, the sheaf OB becomes in this way
a sheaf of locally convex algebras. We point out that the stalk OB,z =OXan,z for
any point z ∈B is in fact a field; see Lemma 6.2.2. We summarize some properties
of ϑ−1

B :

(1) ϑ−1
B preserves (commutative) rings, L-algebras, L-Lie algebras and G-equi-

variance.

(2) ϑ−1
B maps OXan-modules into OB-modules.

(3) ϑ−1
B induces a Lie algebra homomorphism DerL(OXan)→ DerL(OB).

(4) OB is a sheaf of locally convex L-algebras. For every z ∈B the stalk OB,z is
of compact type with a defining system AVn of Banach algebras, where (Vn)n

is a fundamental system of affinoid neighborhoods as in Lemma 6.2.6.

Composing the map g → DerL(OXan) from Lemma 6.1.2 with (3) yields a
Lie algebra homomorphism g→ DerL(OB) and the associated skew enveloping
algebra OB #U (g). By (1),(2) we have the L-Lie algebras and OB-modules n◦,an

B :=

ϑ−1
B (n◦,an) and b◦,an

B := ϑ−1
B (b◦,an). Similarly,

λ
◦,an
B := ϑ−1

B (λ◦,an) : b◦,an
B →OB

is a morphism of L-Lie algebras and OB-modules. Let Ian
B,t resp. Ian

B,χ be the right
ideal sheaf of OB #U (g) generated by n◦,an

B resp. ker(λ◦,an
B ). One checks that these

are two-sided ideals. We let

Dan
B,t := (OB #U (g))/Ian

B,t and Dan
B,χ := (OB #U (g))/Ian

B,χ .

Note that by exactness of ϑ−1
B we have

Dan
B,t = ϑ

−1
B (Dan

t ) and Dan
B,χ = ϑ

−1
B (Dan

χ ).

6.3.3. The sheaf Dan
B,χ of twisted differential operators on B is formed with respect

to the Lie algebra action of g on the ambient space B ⊂ X an. In an attempt to keep
track of the whole analytic G-action on X an we will produce in the following a
natural injective morphism of sheaves of algebras

Dan
B,χ →Dr,χ

with target a sheaf of what we tentatively call twisted distribution operators on B.
Actually, there will be one such sheaf for each “radius” r ∈ [r0, 1) in pQ and each
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sufficiently large “level” e > 0. Again, following [Schneider and Stuhler 1997] we
suppress the dependence on the level in our notation.

6.4. Mahler series and completed skew group rings.

6.4.1. Suppose for a moment that A is an arbitrary L-Banach algebra. Since
Qp ⊂ A the completely valued Zp-module (A, | · |) is saturated in the sense of
[Lazard 1965, I.2.2.10]. Consequently, we have the theory of Mahler expansions
over A at our disposal [loc. cit., III.1.2.4 and III.1.3.9]. In this situation we prove
a version of the well-known relation between decay of Mahler coefficients and
overconvergence.

Proposition 6.4.2. Let f =
∑

α∈Nd
0

aαxα be a d-variable power series over A
converging on the disc |xi | ≤ R for some R > 1. Let c > 0 be a constant such that
|aα| ≤ cR−|α| for all α. Let

f ( · )=
∑
α∈Nd

0

cα
(
·

α

)
,

cα ∈ A, be the Mahler series expansion of f . Then |cα| ≤ cs|α| for all α, where
s = r̃ R−1 with r̃ = p−1/(p−1).

Proof. We prove the lemma in case d = 1. The general case follows along the same
lines but with more notation. We define the following series of polynomials over Z

(x)0 = 1, . . . , (x)k = x(x − 1) · · · (x − k+ 1)

for k ≥ 1. The Z-module Z[x] has the Z-bases {xk
}k≥0 and {(x)k}k≥0 and the

transition matrices are unipotent upper triangular. We may therefore write

xn
=

∑
k=0,...,n

s(n, k)(x)k (6.4.3)

with s(n, k) ∈ Z. Put bk := ck/k!. Then∑
k≥0

ck

( x
k

)
=

∑
k≥0

bκ(x)k

is a uniform limit of continuous functions (even polynomials) on Zp [Robert
2000, Theorem VI.4.7]. We now proceed as in (the proof of) [Washington 1997,
Proposition 5.8]. Fix i ≥ 1 and write∑

n≤i

anxn
=

∑
k≤i

bk,i (x)k

as polynomials over A with some elements bk,i ∈A. Inserting (6.4.3) and comparing
coefficients yields bk,i =

∑
k≤n≤i ans(n, k) and consequently,

|bk,i | ≤ max
k≤n≤i

|an| ≤ max
k≤n≤i

(cR−n)≤ cR−k
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since R−1 < 1. It follows that, for j ≥ i , we have

|bk, j − bk,i | =

∣∣∣∣ j∑
n=i+1

ans(n, k)
∣∣∣∣≤ R−(i+1).

We easily deduce from this that {bk,i }i≥0 is a Cauchy sequence in the Banach space
A. Let b̃k be its limit. Clearly, |b̃k | ≤ cR−k . Put c̃k := k! b̃k . Since |k!| ≤ r̃ k we
obtain |c̃k | ≤ c(r̃ R−1)k = csk for all k. By definition of b̃k the series of polynomials∑

k≥0

c̃k

( x
k

)
=

∑
k≥0

b̃κ(x)k

converges pointwise to the limit

lim
i→∞

∑
k≤i

bk,i (x)k = lim
i→∞

∑
n≤i

anxn
= f (x).

By [Robert 2000, IV.2.3, p. 173] this convergence is uniform and so uniqueness of
Mahler expansions implies c̃k = ck for all k. This proves the lemma. �

Corollary 6.4.4. Let L =Qp, z ∈B, and e > euni.

(i) Consider an affinoid domain V of X an on which U (e−1)
z acts analytically in the

sense of Section 6.2.5, and let AV be the corresponding Banach algebra.

(a) For any p-basis (h1, . . . , hd) of U (e−1)
z (see Section 2.2), and for any f ∈AV

the orbit map U (e−1)
→ AV , h = hx1

1 · · · h
xd
d 7→ h. f , can be expanded as

a strictly convergent power series
∑

ν∈Nd fνxν1
1 · · · x

νd
d with fν ∈ AV and

| fν |V → 0 as |ν| →∞ . (| · |V denotes the supremum norm on AV .)

(b) The representation ρ : U (e)
z → GL(AV ), (ρ(h). f )(w) = f (h−1.w), satisfies

the assumption (?) of Section 3.2.5 for any r ∈ [r0, 1). In particular, the ring

AV # Dr (U (e)
z , K )

exists for all r ∈ [r0, 1).

(ii) More generally, let V = V1 ∪ . . .∪ Vm be a special domain of X an (see 6.3.1),
where Vi is affinoid for 1 ≤ i ≤ m, and suppose that U (e−1) acts analytically on
each Vi , 1≤ i ≤ m. Then the representation ρ :U (e)

z → GL(AV ), (ρ(h). f )(w)=
f (h−1.w), satisfies the assumption (?) of Section 3.2.5 for any r ∈ [r0, 1). In
particular, the ring

AV # Dr (U (e)
z , K )

exists for all r ∈ [r0, 1).

Proof. (i)(a) To simplify notation put U =U (e−1)
z and U=U

(e−1)
z ; see Section 6.2.5.

Let AU be the affinoid algebra of U. The p-basis gives rise to an isomorphism
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AU ' Qp〈x1, . . . , xd〉, where the latter denotes strictly convergent power series.
The action of U on V corresponds to a morphism of affinoid algebras

AV →AU ⊗̂L AV 'AV 〈x1, . . . , xd〉.

On the right we have the algebra of strictly convergent power series over AV . This
proves the first assertion.

(i)(b) By 4.3.4 we have that U (e)
z is the second member of the lower p-series of

U (e−1)
z . Therefore, if (h1, . . . , hd) is the p-basis for U (e−1)

z used in (i), it follows
that (h p

1 , . . . , h p
d ) is a p-basis for U (e)

z . Denote by (y1, . . . , yd) the coordinates on
U (e)

z corresponding to this p-basis. Then, applying (i) to the group U (e)
z , we find

ρ(h). f =
∑
ν∈Nd

fν yν1
1 · · · y

νd
d (6.4.5)

when h = (h p
1 )

y1 · · · (h p
d )

yd ∈U (e)
z and f ∈AV . Therefore, the right-hand side of

(6.4.5) converges on the disc |yi | ≤ p. Next consider the Mahler expansion

ρ
(
(h p

1 )
y1 · · · (h p

d )
yd
)
. f =

∑
α∈Nd

c f,α

( y
α

)
.

By Proposition 6.4.2 we have |c f,α|V ≤ cs|α| with some c > 0 and s = r1 p−1 <

p−1
= r0.

Write δ ∈ Dr (U
(e)
z , L) as a series δ =

∑
α∈Nd dαbα with bα = (h p

1 − 1)α1 · · ·

· (h p
d −1)αd and dα ∈ L such that |dα|r |α|→ 0. Since s < r0 ≤ r and |c f,α|V ≤ cs|α|

the sum

δ. f = δ
(
h 7→ ρ(h). f

)
=

∑
α∈Nd

dαc f,α (6.4.6)

converges in the Banach space AV . The map (δ, f ) 7→ δ. f makes AV a topological
module over Dr (U

(e)
z , L) in a way compatible with the map D(U (e)

z )→ Dr (U
(e)
z ).

The last assertion is contained in Section 3.2.5.

(ii) As X is separated, X an is Hausdorff and therefore separated [Berkovich 1990,
3.4.8 and 3.1.5]. This implies that the intersection of any two affinoid domains in
X an is again an affinoid domain [loc. cit., 3.1.6]. In this case,

AV = ker
( m∏

i=1

AVi ⇒
∏
i, j

AVi∩V j

)
;

see [loc. cit., 2.2.6 and 3.3]. We can now apply the assertions in (i)(b) to each factor
AVi and AVi∩V j , and to the corresponding products, and deduce statement (ii). �
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6.4.7. Later on we will sometimes need to consider the action of U (e)
z on rings of

the form AV , where V is a special domain in X an as in Corollary 6.4.4(ii). In order
to conveniently refer to this situation, we will say that U (e)

z acts analytically on a
special domain V , if one can write V = V1 ∪ . . .∪ Vm as finite union of affinoid
domains Vi ⊂ X an, 1 ≤ i ≤ m, with the property that U (e)

z acts analytically on
each Vi , 1≤ i ≤ m.

Until the end of this section we will assume L =Qp, e > est and r ∈ [r0, 1).

Proposition 6.4.8. Let z ∈ B, and let (Vn)n be a descending sequence of affi-
noid neighborhoods of z as in Lemma 6.2.6. Then the stalk OB,z is equal to
the inductive limit of the Banach algebras AVn , the completed skew group rings
AVn # Dr (U

(e)
z , K ) and OB,z # Dr (U

(e)
z , K ) exist, and the natural map

lim
−→

n

(
AVn # Dr (U (e)

z , K )
)
→OB,z # Dr (U (e)

z , K )

is an isomorphism of K -algebras.

Proof. By Lemmas 6.2.4 and 6.2.6, the stalk OB,z is the inductive limit of the
Banach algebras AVn , and the transition maps AVn → AVn+1 are compact and
injective. By Proposition 2.4.1, the natural map

lim
−→

(
AVn ⊗̂L Dr (U (e)

z ,K )
)
→(

lim
−→

AVn

)
⊗̂L Dr (U (e)

z ,K )=OB,z ⊗̂L Dr (U (e)
z ,K ) (6.4.9)

is an isomorphism of vector spaces. By Corollary 6.4.4(i)(b) the ring AVn is
a Dr (U

(e)
z , L)-module for every n and r ∈ [r0, 1), and the transition maps are

homomorphisms of Dr (U
(e)
z , L)-modules. This shows that OB,z is naturally a

Dr (U
(e)
z , L)-module, hence OB,z # Dr (U

(e)
z , L) and OB,z # Dr (U

(e)
z , K ) exist. The

natural map AVn # Dr (U
(e)
z , K )→ OB,z # Dr (U

(e)
z , K ) is a ring homomorphism,

and the map (6.4.9) is an isomorphism of K -algebras. �

The following corollary is immediate and recorded only for future reference.

Corollary 6.4.10. Let V be a neighborhood of z which is a special subset of X an.
Suppose U (e−1) acts analytically on V in the sense of Section 6.4.7. Let ιz be the
natural map AV →OB,z sending a function to its germ at z. The map ιz ⊗̂ id is an
algebra homomorphism

AV # Dr (U (e)
z , K )→OB,z # Dr (U (e)

z , K ).

Corollary 6.4.11. Let V be a neighborhood of z which is a special subset of X an.
Suppose U (e−1) acts analytically on V in the sense of Section 6.4.7. Then the
inclusions

L[U (e)
z ] ⊆ Dr (U (e)

z , K )
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and U (g)K ⊆ Dr (U
(e)
z , K ) induce algebra homomorphisms

(i) AV #U (e)
z =AV ⊗L L[U (e)

z ] →AV # Dr (U
(e)
z , K ),

(ii) AV #U (g)K →AV # Dr (U
(e)
z , K ).

If V runs through a sequence of affinoid neighborhoods of z as in Lemma 6.2.6
these maps assemble to algebra homomorphisms

(i) OB,z #U (e)
z =OB,z ⊗L L[U (e)

z ] →OB,z # Dr (U
(e)
z , K ),

(ii) OB,z #U (g)K →OB,z # Dr (U
(e)
z , K ).

Proof. Consider the case of AV . The existence of the map (i) follows from
Proposition 3.2.4. The same is true for the map (ii) once we convince ourselves
that there is a commutative diagram of algebra homomorphisms

U (g)

⊆

��

α◦,an
// EndL(AV )

I d
��

Dr (U
(e)
z , L) // EndL(AV )

where the upper horizontal arrow is derived from (6.1.3) and the lower horizontal
arrow describes the Dr (U

(e)
z , L)-module structure of AV as given by Corollary 6.4.4.

Restricting the lower horizontal arrow to g amounts to differentiating the analytic
U (e)

z -action on AV . This action comes from the algebraic action of G on X . The
diagram commutes by the remark following Lemma 6.1.2. Having settled the case
AV the case of OB,z now follows by passage to the inductive limit. �

As a result of this discussion we have associated to each point z ∈ B ⊂ X an

the (noncommutative) K -algebra OB,z # Dr (U
(e)
z , K ). As we have seen, it comes

together with an injective algebra homomorphism

OB,z #U (g)K ↪→OB,z # Dr (U (e)
z , K ). (6.4.12)

In the next section we will sheafify this situation and obtain a sheaf of noncom-
mutative K -algebras OB # Dr on B together with an injective morphism of sheaves
of algebras

OB #U (g)K ↪→OB # Dr

inducing the map (6.4.12) at all points z ∈B. To do this we shall need a simple
“gluing property” of the algebras OB,z # Dr (U

(e)
z , K ).

Lemma 6.4.13. Let F, F ′ be facets in B such that F ′ ⊆ F and let

σ F ′F
r : Dr (U

(e)
F ′ , K )→ Dr (U

(e)
F , K )
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be the corresponding algebra homomorphism. Suppose V and V ′ are two special
domains in X an on which U (e−1)

F and U (e−1)
F ′ , respectively, act analytically (see

Section 6.4.7). If V ⊂ V ′ the map resV ′
V ⊗̂σ

F ′F
r is a continuous algebra homomor-

phism,
resV ′

V ⊗̂σ
F ′F

r :AV ′ # Dr (U
(e)
F ′ , K )→AV # Dr (U

(e)
F , K ).

Proof. Since the map σ F ′F
r is induced from the inclusion U (e)

F ′ ⊆ U (e)
F there is a

commutative diagram

Dr (U
(e)
F ′ , L)×AV ′

σ F ′F
r ×res
��

// AV ′

res

��
Dr (U

(e)
F , L)×AV // AV

where the horizontal arrows describe the module structures of AV ′ and AV over
Dr (U

(e)
F ′ , L) and Dr (U

(e)
F , L) respectively; see Corollary 6.4.4. The assertion fol-

lows now from the construction of the skew multiplication of the source and target
of resV ′

V ⊗̂σ
F ′F

r (see Section 3). �

6.4.14. For any subset C ⊂ X an we have by Proposition 6.3.2

OXan(C)= lim
−→
U

OXan(U ),

where U runs over all open neighborhoods of C in X an. Obviously, if C is contained
in B we have OB(C)=OXan(C). We recall that the star of a facet F ′ in B is the
subset of B defined by

St(F) := union of all facets F ′ ⊆B such that F ⊆ F ′.

These stars form a locally finite open covering of B.

Proposition 6.4.15. Let F ⊂B be a facet, and let C ⊂ St(F) be a compact set.

(i) There is a countable fundamental system of neighborhoods V1 ⊃ V2 ⊃ · · · of C
in X an with the following properties:

- For all i the neighborhood Vi is a special subdomain on which U (e)
F acts

analytically.

- For all i < j the induced map AVi →AV j is compact and injective.

(ii) Let (Vi )i be as in (i). Then the rings AVi # Dr (U
(e)
F ) exist for all i and the maps

AVi # Dr (U
(e)
F )→AVi+1 # Dr (U

(e)
F )

induced by the restriction maps AVi →AVi+1 are homomorphisms of K -algebras.
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(iii) Let (Vi )i be as in (i). Then the maps

AVi ⊗̂L Dr (U
(e)
F )→OB(C) ⊗̂L Dr (U

(e)
F )

induced by the canonical maps AVi → OB(C) induce an isomorphism of vector
spaces

lim
−→

i

(
AVi ⊗̂L Dr (U

(e)
F )
)
→OB(C) ⊗̂L Dr (U

(e)
F ). (6.4.16)

(iv) The left-hand side of (6.4.16) carries a unique structure of a K -algebra, such
that the canonical maps

AVi ⊗̂L Dr (U
(e)
F )→ lim

−→
i

(
AVi ⊗̂L Dr (U

(e)
F )
)

become K -algebra homomorphisms. Consequently, via transport of structure, we
give OB(C) ⊗̂L Dr (U

(e)
F ) the unique K -algebra structure, henceforth denoted by

OB(C)# Dr (U
(e)
F ), such that (6.4.16) becomes an isomorphism of K -algebras.

Proof. (i) By [Berkovich 1990, 3.2.9] there is a countable fundamental system of
open neighborhoods W1 ⊃W2 ⊃ · · · of C in X an. We are going to find inductively
the special domain Vi ⊂ Wi . To begin, use Lemma 6.2.6 to find for each x ∈ C
an affinoid neighborhood W1,x ⊂W1 on which U (e)

F acts analytically. Clearly, we
may furthermore assume that every W1,x is connected. Denote by Int(W1,x) the
topological interior of W1,x . As C is compact it is contained in a finite union
Int(W1,x1)∪ . . .∪ Int(W1,xm1

). Put

V1 =W1,x1 ∪ . . .∪W1,xm1
.

Now suppose we have found a special domain Vi =Wi,z1∪ . . .∪Wi,zmi
contained

in Wi with the property that for all 1≤ j ≤ mi

- Wi,z j is a connected affinoid neighborhood of zi on which U (e)
F acts analytically,

for all 1≤ j ≤ mi ,

- C is contained in the union of the Int(Wi,z j ), for 1≤ j ≤ mi .

For a given z′ ∈ C choose j (z′) ∈ {1, . . . ,mi } such that z′ is contained in
Int(Wi,z j (z′)

). Use again Lemma 6.2.6 to find a connected affinoid neighborhood
Wi+1,z′ of z′ contained in Wi+1 ∩ Int(Wi,z j (z′)

) on which U (e)
F acts analytically. Put

z = z j (z′). As Wi,z is connected, it is irreducible [loc. cit., 3.1.8], and so is
Spec(AWi,z ). The ring AWi,z is hence an integral domain, and the restriction map

AWi,z →AWi+1,z′
(6.4.17)

is thus injective. Moreover, since Wi+1,z′ is contained in Int(Wi,z), the map (6.4.17)
is inner, by [loc. cit., 2.5.9]. The arguments in [Emerton 2011, 2.1.16] then show
that (6.4.17) is a compact map of Banach spaces. Now choose z′1, . . . , z′mi+1

such
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that C is contained in the union of the Int(Wi+1,z′j ), for 1≤ j ≤ mi+1, and let Vi+1

be the union of the Wi+1,z′j , for 1≤ j ≤ mi+1. Recall that

AVi = ker
( mi∏

j=1

AWi,z j
⇒
∏
j, j ′

AWi,z j∩Wi,z j ′

)
;

see [Berkovich 1990, 2.2.6 and 3.3]. Consider the commutative diagram

AVi

��

//
∏mi

j=1 AWi,z j

��

AVi+1
//
∏mi+1

j=1 AWi+1,z′j

The horizontal arrows are the obvious inclusions. The vertical arrow on the right
is the one induced by the maps (6.4.17), and is thus injective and compact. The
canonical vertical arrow on the left is thus injective and compact too [Schneider
2002, 16.7 (ii)]. This proves the first assertion.

(ii) This follows immediately from the second part of Corollary 6.4.4, together with
Lemma 6.4.13.

(iii) Because (Vi )i is a fundamental system of neighborhoods of C we have, by
Proposition 6.3.2, OB(C) = lim

−→i
AVi . The assertion now follows from (i) and

Proposition 2.4.1.

(iv) Using (ii) we see that the right-hand side of (6.4.16) has a canonical K -algebra
structure. The remaining assertions are now clear. �

7. A sheaf of “distribution operators” on the building

In this section we assume throughout L = Qp, e > est (compare Lemma 6.2.6),
and r ∈ [r0, 1). Because e− 1 ≥ est ≥ euni (see again Lemma 6.2.6), all groups
U (e−1)

z are uniform pro-p groups; see Remark 4.3.4. We will work from now on
exclusively over the coefficient field K . To ease notation we will therefore drop
this coefficient field from the notation when working with distribution algebras. We
thus write D(G)= D(G, K ), Dr (U

(e)
F )= Dr (U

(e)
F , K ) etc.

Recall that the sheaf of (twisted) differential operators Dχ on X may be con-
structed from the skew tensor product OX #U (g); see Section 5. In a similar way
we are going to construct a sheaf of “distribution operators” on B starting from
a twisted tensor product OB # Dr . Here, Dr replaces the constant sheaf U (g) and
equals a sheaf of distribution algebras on B. It will be a constructible sheaf with
respect to the usual polysimplicial structure of B. Recall from Section 4.2 that a
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sheaf on a polysimplicial space is called constructible if its restriction to a given
geometric polysimplex is a constant sheaf.

7.1. A constructible sheaf of distribution algebras. Given an open set �⊂B we
have for any z ∈� the natural map

ιz :OB(�)→OB,z, f 7→ germ of f at z.

Definition 7.1.1. For an open subset �⊆B let

Dr (�) := K -vector space of all maps s :�→
⋃̇

z∈�
Dr (U (e)

z ) such that

(1) s(z) ∈ Dr (U
(e)
z ) for all z ∈�, and

(2) for each facet F ⊆B there exists a finite open covering �∩St(F)=
⋃

i∈I �i

with the property: for each i with�i∩F 6=∅ there is an element si ∈ Dr (U
(e)
F )

satisfying the following conditions:
(a) s(z)= si for any z ∈�i ∩ F .
(b) s(z′)= σ FF ′

r (si ) for any z′ ∈�i . Here, F ′ is the unique facet in St(F) that
contains z′.

From (a) it is easy to see that the restriction of Dr to a facet F is the constant
sheaf with value Dr (U

(e)
F ). Hence Dr is constructible. Furthermore, if �′ ⊆� is

an open subset there is the obvious restriction map Dr (�)→ Dr (�
′). The proof

of the following result is implicitly contained in the proofs of Lemmas 7.2.2 and
7.2.3 below.

Lemma 7.1.2. With pointwise multiplication Dr is a sheaf of K -algebras. For
z ∈B one has (Dr )z = Dr (U

(e)
z ).

7.2. Sheaves of completed skew group rings.

Definition 7.2.1. For an open subset �⊆B let

(OB # Dr )(�) :=K -vector space of all maps s :�→
⋃̇

z∈�
OB,z # Dr (U (e)

z ) such that

(1) s(z) ∈OB,z # Dr (U
(e)
z ) for all z ∈�, and

(2) for each facet F ⊆B there exists a finite open covering �∩ St(F) =
⋃
i∈I
�i

with the property that, for each i with �i ∩ F 6=∅, there exists

si ∈OB(�i ) ⊗̂L Dr (U
(e)
F )

satisfying the following conditions:
(a) s(z)= (ιz ⊗̂ id)(si ) for any z ∈�i ∩ F .
(b) s(z′) = (ιz′ ⊗̂ σ FF ′

r )(si ) for any z′ ∈ �i . Here, F ′ is the unique facet in
St(F) that contains z′.
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Consider a map s :�→
⋃̇

z∈�OB,z # Dr (U
(e)
z ) satisfying (1). It will be convenient

to call an open covering �∩St(F)=
⋃

i∈I �i together with the elements si such
that (a) and (b) hold a datum for s with respect to the facet F . Any open covering
of �∩St(F) which is a refinement of the covering {�i }i∈I , together with the same
set of elements si is again a datum for s with respect to F .

Suppose �′ ⊆� is an open subset and let s ∈ (OB # Dr )(�). Let F ⊆B be a
facet. Given a corresponding datum {�i }i∈I for s put �′i :=�

′
∩�i . Together with

the elements si , in case �′i ∩ F 6= ∅, we obtain a datum for the function s|�′ . It
follows that (OB # Dr ) is a presheaf of K -vector spaces on B.

In the following it will be convenient to define F(�) as the K -vector space of
all maps

s :�→
⋃̇

z∈�
OB,z # L Dr (U (e)

z )

satisfying condition (1) in Definition 7.2.1. It is clear that pointwise multiplication
makes F a sheaf of K -algebras on B such that (OB # Dr ) is a subpresheaf of
K -vector spaces.

Lemma 7.2.2. The induced multiplication makes (OB # Dr ) ⊆ F an inclusion of
sheaves of K -algebras.

Proof. Take an open subset � ⊆B. We first show that for s, s ′ ∈ (OB # Dr )(�)

we have ss ′ ∈ (OB # Dr )(�), i.e., that (OB # Dr )(�) is a subalgebra of F(�).
To do this let F ⊆B be a facet. Let {�i }i∈I and {�′j } j∈J be corresponding data

for s and s ′ respectively. Passing to {�i j }i j with �i j = �i ∩�
′

j and refining the
coverings if necessary, we may assume: there exists one datum {�i }i∈I for both
s, s ′ and each �i is contained in a compact subset of St(F). We will produce a
datum for ss ′ by passing to a suitable open covering of �i whenever �i and F
intersect. To this end, let us fix such an i ∈ I . We choose connected compact
subsets C ⊂ St(F) whose open interiors C◦ form a covering of �i . We have the
K -algebra OB(C)# Dr (U

(e)
F ) from Proposition 6.4.15. We apply the base change

( · )⊗̂L Dr (U
(e)
F ) to the restriction map OB(�)→OB(C) and consider the image of

si and s ′i in OB(C)# Dr (U
(e)
F ). Let si s ′i ∈OB(C)# Dr (U

(e)
F ) be their product. We

apply the base change ( · )⊗̂L Dr (U
(e)
F ) to the restriction map OB(C)→OB(C◦)

and consider the image of si s ′i in OB(C◦)⊗̂L Dr (U
(e)
F ). We denote this image

again by si s ′i . According to the definition of the product on OB(C)# Dr (U
(e)
F ) in

Proposition 6.4.15 we find, for any z ∈ C◦ ∩ F , that

(ss ′)(z)= s(z)s ′(z)= (ιz ⊗̂ id)(si ) · (ιz ⊗̂ id)(s ′i )= (ιz ⊗̂ id)(si s ′i )

using Corollary 6.4.10 and we find, for any z′ ∈ C◦, that

(ss ′)(z′)= s(z′)s ′(z′)= (ιz ⊗̂ σ F ′F
r )(si ) · (ιz ⊗̂ σ

F ′F
r )(s ′i )= (ιz ⊗̂ σ

F ′F
r )(si s ′i )
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using Lemma 6.4.13 (F ′ is the unique facet in St(F) that contains z′). This shows
that, if we replace each such �i by the open covering given by the corresponding
C◦ and invoke the corresponding sections si s ′i ∈ OB(C◦)⊗̂L Dr (U

(e)
F ), we will

have a datum for ss ′ relative to F . Consequently, ss ′ ∈ (OB # Dr )(�) and hence,
(OB # Dr )(�) is a subalgebra of F(�). If �′ ⊆� is an open subset the restriction
map (OB # Dr )(�)→ (OB # Dr )(�

′) is obviously multiplicative. Thus, (OB # Dr )

is a presheaf of K -algebras.
Let us show that (OB # Dr ) is in fact a sheaf. Since (OB # Dr ) ⊆ F is a sub-

presheaf and F is a sheaf it suffices to prove the following: if

�=
⋃
j∈J

U j

is an open covering of an open subset �⊆B and if s j ∈ (OB # Dr )(U j ) are local
sections with s j |U j∩Ui = si |Ui∩U j for all i, j ∈ J then the unique section s ∈ F(�)
with s|U j = s j for all j ∈ J lies in (OB # Dr )(�). To do this let F ⊆B be a facet.
Consider for each j ∈ J a datum {U j i }i∈I for s j . In particular, U j∩St(F)=

⋃
i∈I U j i

and there are distinguished elements

s j i ∈OB(U j i ) ⊗̂L Dr (U
(e)
F )

whenever U j i ∩ F 6= ∅ intersect. Then �∩ St(F) =
⋃

j i U j i (together with the
elements s j i whenever U j i ∩ F 6=∅) is a datum for s. Indeed, given z ∈U j i ∩ F
one has s(z)= s j (z)= (ιz ⊗̂ id)(s j i ) which shows condition (a) in Definition 7.2.1.
Moreover, if z′ ∈ U j i one has s(z′) = s j (z′) = (ιz ⊗̂ σ F ′F

r )(s j i ), which shows (b).
Together this means s ∈ (OB # Dr )(�). �

The next lemma shows that the stalks of the sheaf (OB # Dr ) are as expected.

Lemma 7.2.3. The canonical map (OB # Dr )z −→
∼ OB,z # Dr (U

(e)
z ) is an isomor-

phism of K -algebras for any z ∈B.

Proof. There is the K -algebra homomorphism

(OB # Dr )z→OB,z # Dr (U (e)
z ), germ of s at z 7→ s(z).

Let us show that this map is injective. Let [s] be the germ of a local section
s ∈ (OB # Dr )(�) over some open subset �⊆B with the property s(z)= 0. Let F
be the unique facet of B that contains z and let {�i }i∈I be a corresponding datum
for s. According to Lemma 6.2.4 we may write the stalk

OB,z = lim
−→

V

AV

as a compact inductive limit of integral affinoid algebras with injective transition
maps.
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Let us abbreviate E := Dr (U
(e)
F ). If W ⊆ V is an inclusion of affinoids occurring

in the above inductive limit, then [Emerton 2011, Corollary 1.1.27] implies that the
base changed map

AV ⊗̂L E→AW ⊗̂L E

remains injective. Let i0 ∈ I such that z ∈�i0 ∩ F and consider the map

ιz ⊗̂ id :OB(�i0) ⊗̂L E→OB,z ⊗̂L E ' lim
−→

V

(AV ⊗̂L E).

The last isomorphism here is due to Proposition 2.4.1. Let V be an affinoid in the
inductive limit on the right-hand side such that AV ⊗̂L E contains the image of si0

under ιz ⊗̂ id. Choose an open subset U ⊆ X an in V containing z and replace �i0

by the intersection B ∩U . Then replace si0 by its restriction to this intersection, in
other words, si0 lies now in the image of the map

AV ⊗̂L E→OB(�i0) ⊗̂L E .

By our discussion above, the natural map from AV ⊗̂L E into OB,z ⊗̂L E is
injective and lifts the map ιz ⊗̂ id. We may therefore deduce from

0= s(z)= (ιz ⊗̂ id)(si0)

that si0 = 0. Given z′ ∈�i0 let F ′ be the unique facet of St(F) containing z′. Then
s(z′)= (ιz ⊗̂ σ F ′F

r )(si0)= 0 according to condition (b) and, consequently, s|�i0
= 0.

Since �i0 is an open neighborhood of z this shows [s] = 0 and proves injectivity.
Let us now show that our map is surjective. Let t ∈OB,z # Dr (U

(e)
z ) be an element

in the target. Since the stalk OB,z is an inductive limit with compact and injective
transition maps and since Dr (U

(e)
z ) is a Banach space, Proposition 2.4.1 implies

that there is an open neighborhood �′ of z and an element s̃ ∈OB(�
′)⊗̂L Dr (U

(e)
z )

such that (ιz ⊗̂ id)(s̃)= t . Let F ⊆B be a facet containing z and define

� :=�′ ∩St(F), s := (resW
� ⊗̂id)(s̃) ∈OB(�)⊗̂L Dr (U (e)

z ).

Since St(F) is an open neighborhood of z and contains only finitely many facets
of B we may pass to a smaller �′ (and hence �) and therefore assume: any
F ′ ∈ (B \St(F)) satisfies F ′ ∩�=∅. For any z′ ∈� let s(z′) := (ιz′ ⊗̂ σ FF ′

r )(s)
where F ′ denotes the facet in St(F) containing z′. This defines a function

s :�→
⋃̇

z′∈�
OB,z # Dr (U

(e)
z′ )

satisfying condition (1) of Definition 7.2.1. According to Lemma 4.3.5 one has
σ FF

r = id whence

s(z)= (ιz ⊗̂ id)(s)= (ιz ⊗̂ id)(s̃)= t.
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Thus, the germ of s at z will be a preimage of t once we have shown that
s ∈ (OB # Dr )(�). To do this consider an arbitrary facet F ′ ⊂B together with the
covering of �∩St(F ′) consisting of the single element

�0 :=�∩St(F ′).

Suppose �0 ∩ F ′ 6= ∅. We have to exhibit an element s0 ∈ OB(�0)⊗̂L Dr (U
(e)
F ′ )

satisfying conditions (a) and (b) in Definition 7.2.1. Since F ′ ∈ St(F) we may
define s0 := (id ⊗̂ σ FF ′

r )(s). For any z′ ∈�∩ F ′ we compute

s(z′)= (ιz′ ⊗̂ σ FF ′
r )(s)= (ιz′ ⊗̂ id)(id ⊗̂ σ FF ′

r )(s)= (ιz′ ⊗̂ id)(s0)

which shows (a). Moreover, for any z′ ∈�0 we compute

s(z′)= (ιz′ ⊗̂ σ FF ′′
r )(s)= (ιz′ ⊗̂ σ F ′F ′′

r )(ιz′ ⊗̂ σ
FF ′

r )(s)= (ιz′ ⊗̂ σ F ′F ′′
r )(s0)

by Lemma 4.3.5. Here F ′′ denote the facet of St(F ′) that contains z′. This shows (b)
and completes the proof. �

Corollary 7.2.4. The OB,z-module structure on (OB # Dr )z for any z∈B sheafifies
to a OB-module structure on (OB # Dr ) (compatible with scalar multiplication by
L).

Proof. As with any sheaf [Godement 1958, II.1.2] we may regard (OB # Dr ) as the
sheaf of continuous sections of its étale space⋃̇

z∈B(OB # Dr )z

��
B

and the same applies to the sheaf OB. By the preceding proposition we have
(OB # Dr )z = OB,z # Dr (U

(e)
z ) for any z ∈ B. Let � ⊆ B be an open subset,

s ∈ (OB # Dr ), f ∈ OB(�). For z ∈ � put ( f · s)(z) := f (z) · s(z). This visibly
defines an element f ·s ∈F(�). The “OB-linearity” in conditions (a) and (b) proves
f · s ∈ (OB # Dr ). It follows that (OB # Dr ) is an OB-module in the prescribed

way. �

Proposition 7.2.5. The natural map

Dr (U (e)
z )→ (OB # Dr )z, δ 7→ 1 ⊗̂ δ ,

sheafifies to a morphism of sheaves of K -algebras Dr →OB # Dr .

Proof. This is easy to see. �



1410 Deepam Patel, Tobias Schmidt and Matthias Strauch

Recall from (6.4.12) that we have for any z ∈B a canonical K -algebra homo-
morphism

OB,z #U (g)K →OB,z # Dr (U (e)
z ).

Proposition 7.2.6. The homomorphisms (6.4.12) sheafify into a morphism

OB #U (g)K →OB # Dr

of sheaves of K -algebras. This morphism is OB-linear.

Proof. We view OB #U (g)K as the sheaf of continuous sections of its étale space⋃̇
z∈BOB,z # L U (g)K

��
B

Composing such a section with (6.4.12) defines a morphism i :OB #U (g)K → F
of sheaves of K -algebras and we will prove that its image lies in the subsheaf
(OB # Dr ). To do this let �⊆B be an open subset and s ∈OB #U (g)K (�) a local
section.

Let F ⊆ B be a facet. Consider the covering of � ∩ St(F) consisting of the
single element �0 :=�∩St(F). In case �0∩ F 6=∅ let s0 be the image of s̃ under
the map

OB(�)⊗L U (g)K →OB(�) ⊗̂L Dr (U
(e)
F )

induced by U (g)K ⊆ Dr (U
(e)
F ). For any z ∈�0 ∩ F we obviously have i(s)(z)=

(ιz ⊗̂ id)(s0), which shows condition (a). For any z ∈ �0 we find i(s)(z) = (ιz ⊗̂
id)(s0)= (ιz ⊗̂ σ

FF ′
r )(s0) by the last statement of Lemma 4.3.5. Here F ′ denotes

the facet containing z. This shows (b). In the light of the definitions it is clear that
the resulting morphism OB #U (g)K →OB # Dr is OB-linear. �

7.3. Infinitesimal characters. We will write gK := g⊗Qp K , tK := t⊗Qp K etc.

7.3.1. According to [Schneider and Teitelbaum 2002, Proposition 3.7] the ring
Z(gK ) lies in the center of the ring D(G). In the following we fix a central character

θ : Z(gK )→ K

and we let
D(G)θ := D(G)⊗Z(gK ),θ K

be the corresponding central reduction of D(G). A (left) D(G)θ -module M is
called coadmissible if it is coadmissible as D(G)-module via the natural map
D(G)→ D(G)θ , δ 7→ δ ⊗̂ 1. In the following we will study the abelian category
of coadmissible D(G)θ -modules. As explained in the beginning, this category is
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antiequivalent to the category of admissible locally analytic G-representations over
K which have infinitesimal character θ .

Example. Let λ0 : D(T ) → K denote the character of D(T ) induced by the
augmentation map K [T ]→ K . The restriction of λ0 to the Lie algebra tK ⊂ D(T )
vanishes identically whence χ = ρ. Let θ0 : Z(gK ) → K be the infinitesimal
character associated to ρ via the Harish-Chandra homomorphism. Then ker θ0 =

Z(gK )∩U (gK )gK .

Remark. K. Ardakov and S. Wadsley [2013, Section 8] have established a version
of Quillen’s lemma for p-adically completed universal enveloping algebras. It im-
plies that any topologically irreducible admissible locally analytic G-representation
admits, up to a finite extension of K , a central character and an infinitesimal
character [Dospinescu and Schraen 2013].

7.3.2. To investigate the local situation let F be a facet in B. We have

Z(gK )⊆ D(U (e)
F )∩ Z(D(G))⊆ Z(D(U (e)

F )),

again according to [Schneider and Teitelbaum 2002, Proposition 3.7]. We let

Dr (U
(e)
F )θ := Dr (U

(e)
F )⊗Z(g)K ,θ K

be the corresponding central reduction of Dr (U
(e)
F ).

Let F, F ′ be two facets in B such that F ′ ⊆ F and consider the homomorphism
σ F ′F

r . According to the last statement of Lemma 4.3.5 it factors by continuity into
a homomorphism

σ F ′F
r : Dr (U

(e)
F ′ )θ → Dr (U

(e)
F )θ .

We may therefore define a sheaf of K -algebras Dr,θ in complete analogy with the
sheaf Dr by replacing each Dr (U

(e)
z ) and each Dr (U

(e)
F ) by their central reductions.

In particular, (Dr,θ )z = Dr (U
(e)
z )θ for any z ∈B and there is an obvious quotient

morphism
Dr → Dr,θ .

7.4. Twisting. We now bring in a toral character

χ : tK → K

such that σ(χ)= θ . We consider the two-sided ideals Ian
B,t and Ian

B,χ of OB #U (gK ).
Denote the right ideal in OB # Dr generated by the image of the first resp. second
under the morphism

OB #U (gK )→OB # Dr

by I an
t resp. I an

χ .
Recall that we assume e> est throughout this section and that this implies e> euni.
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Proposition 7.4.1. Let z ∈B a point and let V be a strictly affinoid neighborhood
of z on which U (e−1)

z acts analytically. Then the ring AV # Dr0(U
(e)
z ) is noetherian.

Proof. As e > euni the group U (e−1)
z is a uniform pro-p group. Let

hZp = L(U (e−1)
z )⊂ g

be the Zp-Lie algebra of U (e−1)
z [Dixon et al. 1999, Section 9.4]. We consider the

bijective exponential map exp : hZp →U (e−1)
z which is used to define the affinoid

analytic subgroup U
(e−1)
z ⊂ Gan; see Section 6.2.5. This exponential map gives then

rise to an exponential map of affinoid analytic spaces exp : B⊗Zp hZp → U
(e−1)
z ,

where B is the closed unit disc over Qp and B⊗Zp hZp is the strictly Qp-analytic
space whose affinoid algebra is

SymZp
(h∨Zp

)∧⊗Zp Qp.

Here, h∨Zp
= HomZp(hZp ,Zp) and ( · )∧ means the p-adic completion.

The affinoid algebra AV is a g-module. As a first step we want to show that
the subring A ⊂AV of power-bounded elements is stable under the action of hZp .
Because U (e−1)

z acts analytically on V we have for any x ∈ hZp and f ∈ A

exp(tx). f =
∑
n≥0

(
xn

n!
. f
)

tn ,

where the right-hand side is a convergent power series in t ∈ B. If we evaluate this
identity at a point z′ ∈ V we get

f
(
exp(−tx).z′

)
=

∑
n

(
xn

n!
. f
)
(z′)tn , (7.4.2)

which holds for all t ∈ B. The left-hand side of (7.4.2) is bounded by 1 in absolute
value for all t ∈ B, and so is the right-hand side. But this means that all coefficients
( 1

n!x
n. f )(z′) ∈ AV on the right-hand side of (7.4.2) must be bounded by one in

absolute value, and, in particular, the coefficient (x. f )(z′). This shows that the
supremum norm of x. f on V is bounded by 1, i.e., that we have x. f ∈ A.

We let U (hZp) be the universal enveloping algebra over Zp of hZp . As we
have seen above, the ring A is a U (hZp)-module, and we can consider the skew
enveloping algebra A#U (hZp) := A⊗Zp U (hZp). We denote its p-adic completion
by

RA := A#Û (hZp).

In a manner completely analogous to Section 3, this becomes a p-adically complete
topological Zp-algebra. Its mod p-reduction is equal to

gr0(RA) := Ā#U (hFp)
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where Ā= A/p A and hFp :=hZp⊗Fp. The vector space underlying gr0(RA) equals
Ā⊗Fp U (hFp). The second factor in this tensor product has its PBW-filtration. It
induces a positive Z-filtration on gr0(RA) with Ā concentrated in degree zero. Let
deg be the degree function of this filtration. If f ∈ Ā, x ∈ hFp we have [ f, x] = x( f )
from which it follows that gr0(RA) is a Z-filtered ring. Moreover,

deg [ f, x]< deg x

which means that the associated graded ring

Gr(RA) := gr gr0(RA)= Ā⊗Fp S(hFp)

is commutative and therefore a polynomial ring over Ā. Since Ā is noetherian, so
is Gr(RA). By [Schneider and Teitelbaum 2003, Proposition 1.1] the ring gr0(RA)

is noetherian. Now RA is complete with respect to the p-adic topology and the
graded ring associated with the p-adic filtration equals

gr(RA)= (gr0 RA)[Z , Z−1
],

the Laurent polynomials over gr0(RA) in one variable Z (e.g., [Ardakov and Wad-
sley 2013, Lemma 3.1]). It is noetherian, since gr0(RA) is noetherian. Another
application of [Schneider and Teitelbaum 2003, Proposition 1.2] now yields that
RA is noetherian. The embedding hZp ⊂ g⊂ D(U (e)

z ) induces a ring isomorphism

Qp⊗Zp Û (hZp)−→
∼ Dr0(U

(e)
z ,Qp);

see [Schmidt 2013, Proposition 6.3]. We have Qp ⊗Zp A = AV and thus a ring
isomorphism

Qp⊗Zp RA 'AV # Dr0(U
(e)
z ,Qp).

Therefore, the right-hand side is noetherian. Base change from Qp to K finally
yields the assertion of the lemma. �

Lemma 7.4.3. For all m ≥ 0 the inclusion U (e+m)
z ⊆U (e)

z induces a finite free ring
homomorphism

Dr0(U
(e+m)
z )→ Drm (U

(e)
z ),

which is an isometry between Banach algebras. A basis for this free extension
is given by any choice of system of coset representatives for the finite group
U (e)

z /U (e+m)
z .

Proof. Since e ≥ euni each group U (e)
z is a uniform pro-p group with lower p-series

given by the subgroups U (e+m)
z for m ≥ 0. The claim follows therefore from the

discussion at the end of Section 2.2. �
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Keep the assumptions of the preceding proposition and lemma. Put

E :=AV # Dr0(U
(e+m)
z ) and E ′ :=AV # Drm (U

(e)
z ).

Consider the subsheaves n◦,an and ker λ◦,an of the sheaf OXan #U (g) on X an. Let K
be the vector space of sections7 over the affinoid V ⊂ X an of one of these subsheaves.
Put

F := E/KE and F ′ := E ′/KE ′.

The ring homomorphism of the preceding lemma induces a ring homomorphism
φ :E→E ′ and a linear homomorphism F→F ′. The latter fits into a homomorphism

F ⊗Dr0 (U
(e+m)
z )

Drm (U
(e)
z )→ F ′ (7.4.4)

of (F, Drm (U
(e)
z ))-bimodules.

Lemma 7.4.5. The rings E and E ′ are noetherian. The homomorphism (7.4.4) is
an isomorphism.

Proof. Since AV is a noetherian ring, so is the ring AV #U (g) [McConnell and
Robson 1987, 1.7.14]. Choose generators x1, . . . , xs for the right AV #U (g)-ideal
generated by the vector space K. These generators determine a free presentation⊕

i=1,...,s

E→ E→ F→ 0

of the right E-module F . The bijectivity of the natural map

E ⊗Dr0 (U
(e+m)
z )

Drm (U
(e)
z )→ E ′, f ⊗ h 7→ φ( f ) · h

of (E, Drm (U
(e)
z )-bimodules can be checked on the level of vector spaces. It follows

there from functoriality of AV ⊗̂L ( · ) applied to the obvious bijective linear map

Dr0(U
(e+m)
z )⊗Dr0 (U

(e+m)
z )

Drm (U
(e)
z )−→∼ Drm (U

(e)
z ).

Using 7.4.3 we conclude that E ′ is a finite free left E-module. By 7.4.1, the ring
E is noetherian and so E ′ is left noetherian. A similar argument shows that E ′
is right noetherian. Finally, E is a right Dr0(U

(e+m)
z )-module in the obvious way.

Applying the functor ( · )⊗Dr0 (U
(e+m)
z )

Drm (U
(e)
z ) to the above presentation yields

the isomorphism

F ⊗Dr0 (U
(e+m)
z )

Drm (U
(e)
z )' E ′/KE ′ = F ′. �

7Of course, V is not an open subset of the topological space Xan. However, all sheaves in fact
extend to sheaves with respect to the Grothendieck topology on the analytic space Xan. This technical
point is of minor importance.
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We keep our assumptions: z ∈B is a point and V is a strictly affinoid neighbor-
hood of z on which U (e−1)

z acts analytically. Let Yi ⊆ V be finitely many affinoid
domains such that the completed skew group ring AYi # Dr0(U

(e)
z ) exist. If Y =∩i Yi

and Y ′ =
⋃

i Yi , then one may verify that the skew group rings AY # Dr0(U
(e)
z )

and AY ′ # Dr0(U
(e)
z ) exist as well. Indeed, since V is separated, the case of Y is

straightforward and the case of Y ′ follows from considering a short exact sequence
as in the proof of Corollary 6.4.4(ii). For any affinoid domain Y ⊆ V such that
the skew group ring AY # Dr0(U

(e)
z ) exists, we have inside this ring the right ideal

generated by n◦,an(Y ). Such affinoid domains Y together with finite coverings form
a G-topology on V and we may consider the sheaf Ian,z

t associated to the presheaf

Y 7→ n◦,an(Y ).AY # Dr0(U
(e)
z )

on V . It follows from Lemma 6.2.6 that we have for its stalk at z, that

(Ian,z
t )z = n◦,an

z .OB,z # Dr0(U
(e)
z )=I an

t,z

with the ideal sheaf I an
t ⊆ OB # Dr0 . There is an analogous sheaf Ian,z

χ on V
defined by replacing n◦ with ker λ◦.

Finally, fix once and for all a neighborhood basis of z consisting of strict affinoids
V ′⊂ V on which U (e−1)

z acts analytically (Lemma 6.2.6). We give OB,z # Dr (U
(e)
z )

the inductive limit topology from the isomorphism (6.4.9) via transport of structure.

Corollary 7.4.6. Let r = rm for some m ≥ 0 and keep the previous assumptions
and notations.

(1) The isomorphism (5.1.6) induces an isometric isomorphism of Banach spaces

(AV # Dr0(U
(e,−)
z ))⊗̂L Dr0(U

(e,t)
z )−→∼ (AV # Dr0(U

(e)
z ))/Ian,z

t (V ).

Here U (e,−)
z and U (e,t)

z are respectively the negative and toral parts in the root
space decomposition of the group U (e)

z appearing in Proposition 4.1.7.

(2) The isomorphism (1) induces an isometric isomorphism of Banach spaces

AV # Dr0(U
(e,−)
z )−→∼ (AV # Dr0(U

(e)
z ))/Ian,z

χ (V ).

(3) The ideals I an
t,z and I an

χ,z are closed in OB,z # Dr (U
(e)
z ) (in the inductive limit

topology).

Proof. Let us first assume K =Qp. Ad (1): We begin by introducing certain integral
structures in the situation of 5.1.5: let B ⊂ G be a Borel subgroup scheme over
Zp with generic fiber B and containing the Néron model T := Spec(Zp[X∗(T )])
of T . Denote the unipotent radical of B by N. Let X :=G/B. The group scheme
G acts on X by left translations and we have a derived action of its Lie algebra gZp

on X. Let N− be the unipotent radical of the Borel subgroup scheme opposite to
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B. We denote by U1 = q(N−) the image of N− under the natural projection map
q :G→ X. For each w ∈ W , we fix a representative ẇ in G(Zp) with 1̇= 1 and
put Uw := ẇU1. The Uw, w ∈ W form a Zariski covering of X and each Uw has
generic fiber Uw.

If U an
w denotes the rigid analytification of Uw and U an,0

w denotes the Raynaud
generic fiber of Uw, then there is a natural morphism

U an,0
w ↪→U an

w

identifying the source with an affinoid subdomain in the target. Let Bw be the
affinoid algebra of U an,0

w . Put

Vw := V ∩U an,0
w .

The Vw, w∈W form a finite admissible affinoid covering of V . Let Vww′ :=Vw∩Vw′
for w,w′ ∈W and denote by Aw and Aww′ the affinoid algebras corresponding to
Vw and Vww′ respectively. We have a commutative diagram of restriction maps

Bw

��

// Bww′

��
Aw

// Aww′

.

After these preliminary remarks we establish the isomorphism in (1) in several
steps. Note that G-equivariance reduces us to proving the statement in the case
where z is contained in the closure C of the fundamental chamber C . So let z ∈ C
in the following. We follow the notation of the proof of Proposition 7.4.1 and
denote by L( · ) the Zp-Lie algebra of a uniform pro-p group. In particular,

hZp := L(U (e−1)
z ), h−Zp

:= L(U (e−1,−)
z ).

Let Û (hZp) and Û (h−Zp
) denote the p-adic completions of the universal enveloping

algebras of these Lie algebras. Note that

Û (hZp)⊗Zp Qp = Dr0(U
(e)
z ), Û (h−Zp

)⊗Zp Qp = Dr0(U
(e,−)
z ).

Since e > euni we have
U (e−1)

z ⊆U (0)
wx0

for all w ∈W ; see Remark 4.3.4. We fix in the following two elements w,w′ ∈W .
Note that U (0)

wx0 acts analytically on the affinoid domain U an,0
w and therefore so

does U (e−1)
z . Hence, U (e−1)

z acts analytically on Vw and Vww′ . From the proof of
Proposition 7.4.1 we know that the induced action of the Lie algebra hZp stabilizes
the subrings A◦V , A◦w and A◦ww′ of power-bounded elements in AV , Aw and Aww′

respectively. To simplify notation, we denote in the following by A◦ one of the
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rings A◦V , A◦w or A◦ww′ and let A :=A◦⊗Zp Qp. The affinoid space M (A) equals
therefore one of the affinoid domains V, Vw or Vww′ of V . As we have just seen,
the space of sections Ian,z

t (M (A)) is defined.
The root space decomposition of U (e−1)

z (Proposition 4.1.7) induces a decompo-
sition

hZp = h−Zp
⊕ ht

Zp
⊕ h+Zp

which upon tensoring with Qp gives the triangular decomposition g= n−⊕ t⊕ n+

of the reductive Lie algebra g. Let

ι :U (h−Zp
)⊗Zp U (ht

Zp
) ↪→U (hZp)

be the linear PBW-map induced from this decomposition and form the linear map

f : (A◦#U (h−Zp
))⊗Zp U (ht

Zp
)→ (A◦#U (hZp)), ( f ⊗ x)⊗ y 7→ f ⊗ ι(x⊗ y).

Let f̂ be the p-adic completion of the map f . Composing f̂ ⊗Zp Qp with the
natural projection map

A# Dr0(U
(e)
z )→ (A# Dr0(U

(e)
z ))/Ian,z

t (M (A))

yields a linear map

ψA : (A# Dr0(U
(e,−)
z ))⊗̂Qp Dr0(U

(e,t)
z )→ (A# Dr0(U

(e)
z ))/Ian,z

t (M (A)).

According to Proposition 7.4.1, the Banach algebra A# Dr0(U
(e)
z ) is noetherian,

and hence, its right ideal Ian,z
t (M (A)) is closed. If we endow the target of ψA

with the quotient norm, then ψA becomes a norm-decreasing linear map between
Banach spaces. In the case where A=AV , i.e., M (A)= V , we denote this map by
ψV . We claim that ψV is our searched for isomorphism appearing in (1). To prove
this we will show, as a first step, that the map ψA is an isometric isomorphism
of Banach spaces for A equal to one of the rings Aw or Aww′ . We will do this
with the help of auxiliary isomorphisms coming from [Ardakov and Wadsley 2013]
and involving the “congruence group” U (0)

wx0 . So suppose that A is either Aw or
Aww′ , so that M (A) ⊆ U an,0

w . We may apply essentially the same construction
above to the algebra A and the group U (0)

wx0 and obtain from [loc. cit.] an isometric
isomorphism of Banach spaces

ψ0
A : (A# Dr0(U

(0,−)
wx0

))⊗̂L Dr0(U
(0,t)
wx0

)→ (A# Dr0(U
(0)
wx0
))/JA,

JA being the right ideal induced by n◦,an(M (A)). Let us explain this isomorphism
in more detail. Since U (0)

x0 =G(p), we have L(U (0)
wx0)= pgwZp

as Zp-Lie algebras
where gwZp

:= Ad(ẇ)(gZp). In particular, Dr0(U
(0)
wx0) equals the p-adic completion

(with p inverted) of the universal enveloping algebra U (gwZp
)1 := U (pgwZp

). Our
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sheaf Dt on X , as introduced in 5.1.5, equals the pull-back along the inclusion map
X ⊂ X of the relative enveloping algebra

D̃ := ξ∗(DX̃)
H

of the locally trivial H-torsor
ξ : X̃→ X

appearing in [loc. cit., 4.7]. Here, X̃ denotes the homogeneous space G/N with
ring of crystalline level zero differential operators DX̃, the symbol H denotes the
abstract Cartan group B/N and ξ equals the map gN 7→ gB. In this situation,
the map ψ0

A and its properties follow from [loc. cit., Lemma 6.4(a)] and its proof
like this: in the notation of [loc. cit.] choose n = 1 and put U := Uw or Uw ∩Uw′
depending on A=Aw or Aww′ respectively. Since U trivializes the torsor ξ , we
have the isomorphism

(D1)|U ⊗Zp U (tZp)1 ' (D̃1)|U

of sheaves of Zp-algebras. Here, D denotes the sheaf of “crystalline level zero”
differential operators on X, the subscript ( · )1 refers to the first deformation functor
of [loc. cit.] and we have identified the Lie algebra of the Zp-group scheme H with
tZp := Lie(T) via the morphism T⊂B→ H. Let nZp := Lie(N−). Then

U (tZp)1 =U (ptZp)=U (L(U (0,t)
x0

))

and
U (nwZp

)1 =U (pnwZp
)=U (L(U (0,−)

wx0
))

as Zp-subalgebras inside the Qp-algebra U (g). The above isomorphism of sheaves
extends to an isomorphism

((̂D1))|U ⊗̂ZpÛ (tZp)1 ' ((̂D̃1))|U

involving the p-adic completions of the former sheaves. We may view these sheaves
as sheaves on the formal scheme Sp f A◦. Taking global sections and subsequent
inversion of p yields an isometric isomorphism of Banach spaces

(A# Dr0(U
(0,−)
wx0

))⊗̂Qp Dr0(U
(0,t)
wx0

)→ (A# Dr0(U
(0)
wx0
))/JA

with, as already indicated, JA equal to the right ideal induced by n◦,an(M (A)).
This is our promised isomorphism ψ0

A. Note that there is a canonical map

Ian,z
t (M (A))→ JA

induced from the inclusion Dr0(U
(e)
z )→ Dr0(U

(0)
wx0).
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The maps ψA and ψ0
A fit into the diagram

(A#U (n−))⊗Qp U (t)

��

' // (A#U (g))/Ian
t (M (A))

��

(A# Dr0(U
(e,−)
z ))⊗̂Qp Dr0(U

(e,t)
z )

��

ψA

// (A# Dr0(U
(e)
z ))/Ian,z

t (M (A))

��

(A# Dr0(U
(0,−)
wx0 ))⊗̂Qp Dr0(U

(0,t)
wx0 )

ψ0
A

' // (A# Dr0(U
(0)
wx0))/JA

(†)

where the top horizontal arrow is the pull-back along the canonical morphism

M (A)⊂U an
w →Uw

of the isomorphism (5.1.6) and therefore an algebra isomorphism itself. The bottom
vertical arrows are induced by the inclusion U (e)

z ⊆U (0)
wx0 .

The group U (e,−)
z is an open subgroup of the p-adic group N−(Qp). Applying

Dr0( · ) yields therefore a completion of U (n−). Similarly, applying Dr0( · ) to the
groups U (e,t)

z and U (e)
z yields a completion of U (t) and U (g) respectively. These

completions define the top vertical arrows. Unwinding the definitions of all the
maps involved shows that the diagram commutes. The bottom left vertical arrow
obviously is injective. Since ψ0

A is bijective, the commutativity of the lower square
implies ψA to be injective. For its surjectivity, consider the inverse map of the
upper horizontal isomorphism. It is induced from the PBW-projection g→ n−⊕ t.
The corresponding projection map arising from the triangular decomposition of hZp

completes to a linear map

(A# Dr0(U
(e)
z ))→ (A# Dr0(U

(e,−)
z ))⊗̂Qp Dr0(U

(e,t)
z ),

which factors through the target of ψA and gives a section to ψA. All in all, we
have shown that ψA is an isometric isomorphism between Banach spaces. This
completes our first step.

In a second step, we show that the map ψV is an isometric isomorphism of
Banach spaces. We put ψVw := ψA in case A = Aw and ψVww′

:= ψA in case
A=Aww′ . Abbreviate

D := Dr0(U
(e)
z ), Dt

:= Dr0(U
(e,t)
z ), D− := Dr0(U

(e,−)
z ).

The covering V =
⋃
w∈W

Vw gives rise to the exact restriction sequence

0→AV →
⊕
w

Aw→
⊕
w<w′

Aww′
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where we have ordered the elements of W in some arbitrary way. It induces two
complexes, namely

0→ (AV # D−)⊗̂Dt
→
⊕
w

(Aw # D−)⊗̂Dt
→

⊕
w<w′

(Aww′ # D−)⊗̂Dt (I)

and
0→ (AV # D)/Ian,z

t (V )→
⊕
w

(Aw # D)/Ian,z
t (Vw)

→
⊕
w<w′

(Aww′ # D)/Ian,z
t (Vww′). (II)

The maps ψV , ψVw and ψVww′
induce a morphism between (I) and (II). We claim that

(I) is exact. Indeed, exactness may be shown on the level of vector spaces. So let d
be the rank of the finitely generated free Zp-module h−Zp

⊕ ht
Zp

. By construction,
the Banach space D−⊗̂Dt is isomorphic to the Banach space underlying the Tate
algebra of the d-dimensional closed unit disc B. Our assertion follows now from the
sheaf property of OV×K B applied to the admissible covering V×K B=

⋃
w Vw×K B.

Since the maps ψVw are all isomorphisms by our first step, it follows that ψV is
injective. To establish its surjectivity, observe that the second arrow in (II),

(AV # D)/Ian,z
t (V )→

⊕
w

(Aw # D)/Ian,z
t (Vw),

is injective. This follows from an easy diagram chase in

0 // Ian,z
t (V )

��

//
⊕
w

Ian,z
t (Vw)

��

//
⊕
w<w′

Ian,z
t (Vww′)

��
0 // (AV # D) //

⊕
w

(AVw # D) //
⊕
w<w′

(AVww′ # D)

,

where we have exact rows and injective vertical maps. Since all the maps ψVw and
ψVww′

are isomorphisms by our first step and since (II) is a complex, this implies the
surjectivity of ψV . Then ψV must be an isometric isomorphism of Banach spaces.
This completes the proof of (1). Treating the ideal Ian,z

χ in the same way gives (2).

Ad (3): By G-equivariance we may assume that z is contained in the closure of the
fundamental chamber C . Recall our fixed choice of neighborhood basis consisting
of strict affinoids V ⊂ X an on which U (e−1)

z acts analytically. Since the isomorphism
in (1) is compatible with the restriction maps AV →AV ′ associated to an inclusion
V ′ ⊂ V we see that Proposition 2.4.1 applies to the locally convex inductive limit

lim
−→

V

AV # Dr0(U
(e)
z )/Ian,z

t (V ).

The limit is therefore Hausdorff. Moreover, the isomorphism (7.4.4) appearing in
Lemma 7.4.5 is also compatible with the map AV → AV ′ . Since a finite direct
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sum of Hausdorff spaces is again Hausdorff, Lemma 7.4.3 implies that the locally
convex inductive limit

lim
−→

V

AV # Drm (U
(e)
z )/Ian,z

t,m (V )

is Hausdorff. Here, the sheaf Ian,z
t,m is defined by replacing in the definition of Ian,z

t

the ring Dr0(U
(e)
z ) by its subring Drm (U

(e)
z ). We may now finish the proof of (3).

Proposition 2.4.1 gives a (topological) linear isomorphism

OB,z # Drm (U
(e)
z )' lim

−→
V

AV # Drm (U
(e)
z ).

By Lemma 6.2.6 we have
I an

t,z = lim
−→

V

Ian,z
t,m (V )

for the ideal sheaf I an
t ⊆OB # Drm . Consider the diagram of continuous K -linear

maps

0−→ lim
−→

V

Ian,z
t,m (V )

ι
−→ lim
−→

V

AV # Drm (U
(e)
z )−→ lim

−→
V

AV # Drm (U
(e)
z )/Ian,z

t,m (V )−→0,

which is short exact as a diagram of abstract K -vector spaces. The right-hand term
is Hausdorff, as we have just seen. The injection ι has therefore closed image which
is what we want. The case of the ideal I an

χ,z follows similarly by using the sheaf
Ian,z
χ and the isomorphism (2). This finishes the proof of the corollary in the case

K =Qp. A base change along the finite field extension Qp ⊆ K yields the general
case. �

We emphasize that the top vertical arrows in the commutative diagram (†) appear-
ing in the preceding proof are injective and have dense image. Moreover, the top
horizontal arrow is multiplicative. In particular, if the target of ψA were a ring, i.e.,
if the right ideal Ian,z

t (M (A)) were two-sided, ψA would be a ring homomorphism.

Lemma 7.4.7. Let r = rm for some m ≥ 0 and keep the previous assumptions and
notations. The right ideals I an

t and I an
χ are two-sided ideals. Let z ∈ B. The

isomorphism (1) of the preceding corollary induces an isomorphism of K -algebras

(OB,z # Dr0(U
(e,−)
z ))⊗̂L Dr0(U

(e,t)
z )−→∼ (OB,z # Dr0(U

(e)
z ))/I an

t,z .

Similarly, the isomorphism (2) of the preceding corollary induces an isomorphism
of K -algebras

OB,z # Dr0(U
(e,−)
z )−→∼ (OB,z # Dr0(U

(e)
z ))/I an

χ,z.

Proof. According to Section 8.3 the sheaves OB #U (gK ) and OB # Dr have a
natural G-equivariant structure such that the morphism OB #U (gK )→OB # Dr is
equivariant. Moreover, the ideals Ian

B,t and Ian
B,χ are G-stable. Hence, so are the
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right ideals I an
t and I an

χ . That these ideals are two-sided can be checked stalkwise
[Godement 1958, II.1.8]. We give the argument in the case I an

t . The other case
follows in the same way. Recall that we have fixed a neighborhood basis of z
consisting of strict affinoids V on which U (e−1)

z acts analytically. The corresponding
inductive limit topology makes OB,z # Dr (U

(e)
z ) a separately continuous K -algebra

and, hence, the multiplication map Dr (U
(e)
z ) → OB,z # Dr (U

(e)
z ), λ 7→ λ · ∂ is

continuous for every ∂ ∈ OB,z # Dr (U
(e)
z ). Fix ∂ ∈ I an

t,z . By [Schneider and
Teitelbaum 2002, Lemma 3.1] and part (3) of the preceding corollary, we see
that it suffices to prove that δg · ∂ ∈ OB,z # Dr (U

(e)
z ) lies in the subspace I an

t,z for
g ∈ U (e)

z . Considering ∂ as an element of OB,z # Dr (U
(e)
z ) we may choose, by

Proposition 2.4.1, an affinoid neighborhood V in our fixed neighborhood basis of
z, such that ∂ ∈ AV # Dr (U

(e)
z ). Using power series expansions for elements of

completed distribution algebras (Section 2.2.3) we may write ∂ as an infinite sum
∂ =

∑
α∈Nd

0
fα ⊗̂bα , with fα ∈AV converging in the Banach algebra AV # Dr (U

(e)
z ).

By definition of the skew multiplication (3.2.2) we have

δg · ∂ =
∑
α∈Nd

0

(g. fα) ⊗̂ δg bα =
∑
α∈Nd

0

(g. fα) ⊗̂ (δg bαδ−1
g )δg

=

∑
α∈Nd

0

g∗( fα ⊗̂ bα)δg = g∗(∂)δg,

which is an element of I an
t (V ). Here, g∗ : I an

t (V ) −→∼ I an
t (V ) is induced by

the equivariant structure on the sheaf I an
t (note that U (e)

z acts analytically on V ).
Passing to the stalk we obtain δg · ∂ ∈I an

t,z . Thus, the right ideals I an
t and I an

χ are
indeed two-sided ideals. Let z ∈B. Passing the isomorphisms (1) and (2) of the
preceding corollary to the inductive limit over a neighborhood basis of z consisting
of affinoids V on which U (e−1)

z acts analytically gives linear isomorphisms between
K -algebras which are actually multiplicative; see the remark directly after the proof
of the corollary. Hence, the lemma is proved. �

In the following we tacitly restrict to numbers r of the form r = rm for some
m ≥ 0. By the preceding lemma we may form the quotient sheaves

Dr,t := (OB # Dr )/I
an
t , Dr,χ := (OB # Dr )/I an

χ .

These are sheaves of (noncommutative) K -algebras on B and, at the same time,
OB-modules. We have a commutative diagram of morphisms

Dan
B,t

��

// Dan
B,χ

��
Dr,t // Dr,χ

(7.4.8)
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with surjective horizontal arrows. Moreover, it follows from (6.1.4) and the preced-
ing lemma that the lower horizontal arrow induces an isomorphism

Dr,t/(ker λ)Dr,t −→
∼ Dr,χ . (7.4.9)

We have the following extension of the property 2 in [Beilinson and Bernstein
1981, Section 2, Lemme].

Proposition 7.4.10. The morphism Dr →OB # Dr →Dr,χ factors through Dr →

Dr,θ .

Proof. Letting K be the kernel of the morphism Dr → Dr,θ the claim amounts to

K ⊆ ker(Dr →Dr,χ ).

This can be checked stalkwise; i.e., we are reduced to showing that, for each z ∈B

the natural map Dr (U
(e)
z )→ OB,z # Dr (U

(e)
z )/(Iχ )z factors through Dr (U

(e)
z )θ .

The kernel of the map Dr (U
(e)
z )→ Dr (U

(e)
z )θ is generated by

Iθ := ker(U (gK )→U (gK )θ )

and the ideal (Iχ )z is generated by the image of Ian
B,χ,z . It therefore suffices to show

that the natural map U (gK )→ OB,z #U (gK ) maps Iθ into Ian
B,χ,z . This follows

from [loc. cit.]. �

7.4.11. Let us finally make the structure of the stalks of the sheaves Dr,t and Dr,χ

at a point z ∈B more explicit. According to Lemma 6.2.2 the local ring OB,z is a
field. For simplicity we put κ(z) := OB,z and view this as a topological field of
compact type. Note that the Berkovich point z ∈B ⊂ X an canonically induces a
norm topology on κ(z) which is weaker than our topology. We shall not make use
of this norm topology in the following.

By [loc. cit.] together with Section 5.1.1 we furthermore have (n◦)π(z) = nπ(z)
and (b◦)π(z) = bπ(z) for the stalks of the sheaves n◦ and b◦ at π(z)= η (the generic
point of X ). Since passage to the stalk is exact, this proves the following lemma. It
gives back the isomorphisms of Lemma 7.4.7 in case r = r0.

Lemma 7.4.12. Assume r = rm for some m ≥ 0. Let z ∈B. There is a canonical
isomorphism

Dr,t,z −→
∼ (κ(z)⊗̂L Dr (U (e)

z ))/nπ(z)(κ(z)⊗̂L Dr (U (e)
z )).

This isomorphism induces a canonical isomorphism between Dr,χ,z and the λ-
coinvariants of the tK -module (κ(z)⊗̂L Dr (U

(e)
z ))/nπ(z)(κ(z)⊗̂L Dr (U

(e)
z )). In par-

ticular,
Dr,ρ,z −→

∼ (κ(z)⊗̂L Dr (U (e)
z ))/bπ(z)(κ(z)⊗̂L Dr (U (e)

z )).
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8. From representations to sheaves

In this section, as well as in Sections 10 and 11, we assume that

L =Qp and e > est and r = rm =
pm√

1/p for some m ≥ 0. (8.0.1)

Our proposed “localization functor” from representations to sheaves associated
to the pair σ(χ)= θ will be a functor

Lr,χ : M 7→Dr,χ ⊗Dr,θ Mr

from (coadmissible) left D(G)θ -modules M to left Dr,χ -modules satisfying addi-
tional properties. Here Mr is a constructible sheaf replacing the constant sheaf
M appearing in the Beilinson–Bernstein construction; see Theorem 5.2.2. It is a
modest generalization of the sheaf Dr as follows.

8.1. A constructible sheaf of modules. Suppose we are given any (left) D(G)-
module M . Let F ⊆B be a facet. We may regard M as a D(U (e)

F )-module via the
natural map D(U (e)

F )→ D(G). We put

Mr (U
(e)
F ) := Dr (U

(e)
F )⊗D(U (e)

F )
M ,

a (left) Dr (U
(e)
F )-module. If F ′ ⊆B is another facet such that F ′ ⊂ F the map

σ F ′F
r ⊗ id : Mr (U

(e)
F ′ )→ Mr (U

(e)
F ), δ⊗m 7→ σ F ′F

r (δ)⊗m

is a module homomorphism relative to σ F ′F
r and inherits the homomorphic properties

from σ F ′F
r (Lemma 4.3.5). Again, we may define a sheaf of K -vector spaces Mr on

B in a completely analogous way as the sheaf Dr by replacing each Dr (U
(e)
F ) and

each Dr (U
(e)
z ) by Mr (U

(e)
F ) and Mr (U

(e)
z ) respectively. In particular, Mr restricted

to a facet F is the constant sheaf with value Mr (U
(e)
F ) and therefore Mr is a

constructible sheaf. If s ∈ Dr (U
(e)
z ),m ∈ Mr (U

(e)
z ) the “pointwise multiplication”

(s ·m)(z) := s(z)m(z) makes Mr a Dr -module.

Lemma 8.1.1. If M is a D(G)θ -module then Mr is a Dr,θ -module via the morphism
Dr → Dr,θ .

Proof. This is easy to see. �

8.2. A localization functor.

8.2.1. As usual, Dr,χ ⊗Dr,θ Mr denotes the sheaf associated to the presheaf V 7→
Dr,χ (V )⊗Dr,θ (V ) Mr (V ) on B. The construction M 7→ Mr is functorial in M and
commutes with arbitrary direct sums. Thus the correspondence

Lr,χ : M 7→Dr,χ ⊗Dr,θ Mr
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is a covariant functor from (left) D(G)θ -modules to (left) Dr,χ -modules. It com-
mutes with arbitrary direct sums. We call it tentatively a localization functor
associated to χ .

We emphasize that the functor Lr,χ depends on the choice of the level e. As we
did before we suppress this dependence in the notation. As a second remark, let M
be an arbitrary Dr,χ -module and f :Lr,χ (M)→M a morphism. The composite

M→ 0(B,Mr )→ 0(B,Lr,χ (M))
f
→ 0(B,M)

is a K -linear map. We therefore have a natural transformation of functors

HomDr,χ (Lr,χ ( · ), .)→ HomK ( · , 0(B, ·)).

Generally, it is far from being an equivalence.
We compute the stalks of the localization Lr,χ (M) for a coadmissible module

M . In this case (Mr )z is finitely generated over the Banach algebra Dr (U
(e)
z )θ

and therefore has a unique structure as a Banach module over Dr (U
(e)
z )θ . Let

z ∈B⊂ X an with residue field κ(z). Recall that π(z) equals the generic point of X .

Proposition 8.2.2. Let M be a coadmissible left D(G)θ -module and let z ∈B. The
morphism Mr →Lr,χ (M) induces an isomorphism between the λ-coinvariants of
the tK -module

(κ(z)⊗̂L(Mr )z)/nπ(z)(κ(z)⊗̂L(Mr )z)

and the stalk Lr,χ (M)z . In particular, if θ = θ0 we have

(κ(z)⊗̂L(Mr )z)/bπ(z)(κ(z)⊗̂L(Mr )z)−→
∼ Lr,ρ(M)z.

Proof. Let N be an arbitrary finitely generated Dr (U
(e)
z )-module. According to

Lemma 7.4.12 the space Dr,t,z ⊗Dr (U
(e)
z )

N may be written as[(
(κ(z)⊗̂L Dr (U (e)

z ))/nπ(z)(κ(z))⊗̂L Dr (U (e)
z )

)
⊗
κ(z)⊗̂L Dr (U

(e)
z )
κ(z)⊗̂L Dr (U (e)

z )
]

⊗Dr (U
(e)
z )

N .

Since N is a complete Banach module this may be identified with

(κ(z)⊗̂L N )/nπ(z)(κ(z)⊗̂L N )

by associativity of the completed tensor product. The resulting isomorphism

(κ(z)⊗̂L N )/nπ(z)(κ(z)⊗̂L N )−→∼ Dr,t,z ⊗Dr (U
(e)
z )

N

is functorial in N . According to the second part of loc.cit. we obtain a functorial
homomorphism

(λ-coinvariants of (κ(z)⊗̂L N )/nπ(z)(κ(z)⊗̂L N ))→Dr,χ,z ⊗Dr (U
(e)
z )

N ,
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which is an isomorphism in the case N = Dr (U
(e)
z ). Note that the target is a right

exact functor in N . Similarly, the source is also a right exact functor in N . To see
this, it suffices to note that the functor which sends N to κ(z)⊗̂L N is exact. Indeed,
any short exact sequence of finitely generated Dr (U

(e)
z )-modules is a strict exact

sequence relative to the unique Banach topology on such modules (cf. [Schneider
and Teitelbaum 2003, Proposition 2.1.iii]) and so the claim follows from a well-
known result of L. Gruson [1966, 3.2, Corollaire 1]. Since the source and the target
are both right exact functors in N commuting with finite direct sums, we may use
a finite free presentation of N to obtain that it is an isomorphism in general. The
assertion of the proposition follows by taking N = (Mr )z . �

Corollary 8.2.3. Let χ be dominant and regular. The functor Lr,χ , restricted to
coadmissible modules, is exact.

Proof. Exactness can be checked at a point z ∈B, where the functor in question
equals the composite of three functors. The first functor equals

N 7→ Dr (U (e)
z )θ ⊗D(U (e)

z )θ
N

on the category of coadmissible D(U (e)
z )θ -modules. It is exact by [Schneider and

Teitelbaum 2003, Remark 3.2]. The second functor equals N 7→ κ(z)⊗̂L N on the
category of finitely generated Dr (U

(e)
z )θ -modules. It is exact as we have explained in

the proof of the preceding proposition. The natural inclusion U (g)θ → Dr (U
(e)
z )θ

allows one to consider κ(z)⊗̂L N as a U (κ(z) ⊗L g)θ -module. The Beilinson–
Bernstein stalk functor at π(z) of the corresponding localization on the flag variety
Xκ(z) (note that the natural embedding k(π(z))→ κ(z) gives a canonical lift of π(z)
to a κ(z)-rational point of Xκ(z)) is given by the λ-coinvariants of the κ(z)⊗L h-
module

(κ(z)⊗̂L N )/nπ(z)(κ(z)⊗̂L N )

according to Theorem 5.2.2(iii). By part (ii) of the same theorem, this functor is
exact if χ is dominant and regular. �

Lemma 8.2.4. Let z ∈B. If N is a finitely generated Dr (U
(e)
z )θ -module which is

finite dimensional over K , then the natural map

Dan
B,χ,z ⊗U (gK )θ N −→∼ Dr,χ,z ⊗Dr (U

(e)
z )θ

N

is an isomorphism which is functorial in modules of this kind.

Proof. We adopt the notation of Proposition 6.4.8 and write

lim
−→

V

(AV # Dr (U (e)
z ))−→∼ OB,z # Dr (U (e)

z ),

an isomorphism of K -algebras according to Proposition 2.4.1. By Proposition 2.1
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of [Schneider and Teitelbaum 2003] the finitely generated module

(AV # Dr (U (e)
z ))⊗Dr (U

(e)
z )

N

has a unique Banach topology. We thus have canonical AV -linear isomorphisms

(AV ⊗̂L Dr (U (e)
z ))⊗Dr (U

(e)
z )

N 'AV ⊗̂L N =AV ⊗L N .

Passage to the inductive limit yields, by Proposition 2.4.1, the OB,z-linear map

(OB,z⊗̂Dr (U (e)
z ))⊗Dr (U

(e)
z )

N 'OB,z ⊗L N = (OB,z #U (gK ))⊗U (gK ) N .

The target maps canonically to Dan
B,χ,z⊗U (gK )θ N and the composed map annihilates

all elements of the form ξ⊗̂n with n ∈ N and ξ ∈ Ian
B,χ,z . Since such ξ generate

I an
χ,z the composed map factors therefore into a map

Dr,χ,z ⊗Dr (U
(e)
z )θ

N → Dan
B,χ,z ⊗U (gK )θ N .

This gives the required inverse map. �

Corollary 8.2.5. Let M be a left D(G)θ -module such that dimK Mr (U
(e)
z ) <∞ for

all z ∈B. The natural morphism of sheaves

Dan
B,χ ⊗U (gK )θ Mr −→

∼ Dr,χ ⊗Dr,θ Mr =Lr,χ (M)

induced from (7.4.8) is an isomorphism.

Proof. Let z ∈B. Applying the preceding lemma to N := Mr (U
(e)
z ) we see that

the morphism is an isomorphism at the point z. This proves the claim. �

8.3. Equivariance.

8.3.1. Consider for a moment an arbitrary ringed space (Y,A), where A is a sheaf
of (not necessarily commutative) K -algebras on Y . Let 0 be an abstract group
acting (from the right) on (Y,A). In other words, for every g, h ∈ 0 and every
open subset U ⊆ Y there is an isomorphism of K -algebras g∗ :A(U )−→∼ A(g−1U )
compatible in an obvious sense with restriction maps and satisfying (gh)∗ = h∗g∗.

A 0-equivariant A-module (see [Jantzen 2003, II.F.5]) is a (left) A-module M
equipped, for any open subset U ⊆ Y and for g ∈ G, with K -linear isomorphisms
g∗ :M(U )−→∼ M(g−1U ) compatible with restriction maps and such that g∗(am)=
g∗(a)g∗(m) for a ∈A(U ),m ∈M(U ). If g, h ∈ G we require (gh)∗ = h∗g∗.

An obvious example is M = A. If M is equivariant we have a K -linear iso-
morphism Mz −→

∼ Mg−1z between the stalks of the sheaf M at z and g−1z for any
g ∈ G. Finally, a morphism of equivariant modules is an A-linear map compatible
with the 0-actions. The equivariant modules form an abelian category.
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8.3.2. After these preliminaries we go back to the situation discussed in the previous
section. We keep all the assumptions from this section. The group G naturally acts
on the ringed space (X an,OXan). Moreover, G acts on g and U (g) via the adjoint
action as usual. It follows from the classical argument [Miličić 1993a, Section 3]
that the sheaves

OXan #U (g), Ian
χ and Dan

χ := (OXan #U (g))/Ian
χ

(as defined in Section 6) are equivariant OXan-modules. Of course, here

g∗ : Dan
χ (U )−→∼ Dan

χ (g
−1U )

is even a K -algebra isomorphism for all g ∈ G and open subsets U ⊆ X an.
On the other hand, the group G acts on the ringed space (B,OB) and the natural

map ϑB :B→ X an is G-equivariant, see Theorem 6.2.1. Since our functor ϑ−1
B

preserves G-equivariance the OB-modules

OB #U (gK ), Ian
B,χ and Dan

B,χ = (OB #U (gK ))/Ian
B,χ

are G-equivariant. Again, here g∗ : Dan
B,χ (U ) −→

∼ Dan
B,χ (g

−1U ) is a K -algebra
isomorphism for all g ∈ G and open subsets U ⊆B. Recall from Definition 7.2.1
the sheaf of K -algebras OB # Dr .

Proposition 8.3.3. The OB-module OB # Dr is G-equivariant. For g ∈ G the map
g∗ is a K -algebra isomorphism.

Proof. Given g ∈ G and z ∈B we have the group isomorphism

g−1( · )g :U (e)
z −→
∼ U (e)

g−1z

by (4.1.6). Since it is compatible with variation of the level e it is compatible with
the p-valuations ω̊z and ω̊g−1z . It induces therefore an isometric isomorphism of
Banach algebras

g−1( · )g : Dr (U (e)
z )−→∼ Dr (U

(e)
g−1z). (8.3.4)

The induced map

OB,z⊗̂L Dr (U (e)
z )−→∼ OB,z⊗̂L Dr (U

(e)
g−1z)

is multiplicative with respect to the skew multiplication and we obtain an isomor-
phism of K -algebras

g∗ : (OB # Dr )z −→
∼ (OB # Dr )g−1z (8.3.5)

according to Lemma 7.2.3. Since we have the identity gxg−1
= Ad(g)(x) in D(G)
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this isomorphism fits into the commutative diagram

(OB #U (g))z

��

' // (OB #U (g))g−1z

��
(OB # Dr )z

' // (OB # Dr )g−1z

where the vertical arrows are the inclusions from (6.4.12). Recall the sheaf F
appearing in Lemma 7.2.2. Let � ⊆ B be an open subset. The isomorphisms
(8.3.5) for z ∈� assemble to a K -algebra isomorphism

g∗ : F(�)−→∼ F(g−1�), s 7→ [z 7→ (g∗)−1(s(gz))]

compatible with restriction maps and satisfying (gh)∗ = h∗g∗ for g, h ∈ G. It now
suffices to see that g∗ maps the subspace (OB # Dr )(�) into (OB # Dr )(g−1�). Let
s ∈ (OB # Dr )(�). If F is a facet in B we let �=

⋃
i∈I �i be a datum for s with

respect to F . If F ∩�i 6=∅ we consider g−1Vi and (g∗)−1(si ) and obtain a datum
g−1�=

⋃
i∈I g−1�i for the section (g∗)−1sg ∈ F(g−1�) with respect to the facet

g−1 F . Indeed, the axiom (a) of Definition 7.2.1 for the section (g∗)−1sg follows
from the commutativity of the diagram

OB(U )

(g∗)−1

��

ιz // OB,z

(g∗)−1

��
OB(gU )

ιgz // OB,gz

valid for any open subset U ⊆B containing z. Moreover, we have a commutative
diagram

Dr (U
(e)
F ′ )

(g∗)−1

��

σ F ′F
r // Dr (U

(e)
F )

(g∗)−1

��

Dr (U
(e)
gF ′)

σ
gF ′gF
r // Dr (U

(e)
gF )

whenever F ′, F are two facets in B with F ′ ⊆ F . From this the axiom (b) for the
section (g∗)−1sg follows easily. �

It follows from the preceding proof that the morphism OB #U (g)→ OB # Dr

from Proposition 7.2.6 is equivariant. The equivariant structure of Ian
B,χ therefore

implies that the ideal sheaf I an
χ of OB # Dr is naturally equivariant. This yields

the following corollary.

Corollary 8.3.6. The OB-module Dr,χ is equivariant. The map g∗ is a K -algebra
isomorphism for any g∈G. The morphism Dan

B,χ→Dr,χ from (7.4.8) is equivariant.
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The above discussion shows that there is a natural right action of G on the ringed
space (B,Dr,χ ). We let ModG(Dr,χ ) be the abelian category of G-equivariant (left)
Dr,χ -modules.

8.3.7. Using very similar arguments we may use the isomorphisms (8.3.4) appearing
in the above proof to define an equivariant structure on the sheaves Dr and Dr,θ .
As before we suppose σ(χ)= θ . If M is a D(G)-module (resp. D(G)θ -module)
with m ∈ M and g ∈ G we put g.m := δg−1m. This defines a K -linear isomorphism

g∗ : Mr (U (e)
z )−→∼ Mr (U

(e)
g−1z)

via g∗(δ⊗m) := g∗(δ)⊗gm for any δ∈Dr (U
(e)
z ). As in the case of Dr these isomor-

phisms lift to an equivariant structure on the sheaf Mr . Since these isomorphisms
are compatible with the isomorphisms (8.3.4) we obtain that Mr is an equivariant
Dr -module (resp. Dr,θ -module). We now define g∗(∂ ⊗ m) := g∗(∂)⊗ g∗(m)
for local sections ∂ and m of Dr,χ and Mr respectively. Since the morphism
Dr,θ →Dr,χ induced by Proposition 7.2.5 is equivariant this yields an equivariant
structure on Lr,χ (M). If M→ N is a D(G)θ -linear map the resulting morphism
Lr,χ (M)→Lr,χ (N ) is easily seen to be equivariant. This shows

Corollary 8.3.8. The functor Lr,χ takes values in ModG(Dr,χ ).

9. Comparison with the Schneider–Stuhler construction

In this section we assume L =Qp, e> est, ecl and r ∈ [r0, 1). We will work in this
section with the trivial infinitesimal character, i.e., λ := λ0 and θ := θ0.

9.1. Preliminaries on smooth distributions.

9.1.1. Let M be a co-admissible D(G)-module such that the associated locally
analytic representation V = M ′b is smooth. In the previous section, we have
associated to M a sheaf Mr on the Bruhat–Tits building B. On the other hand,
we also have the sheaf V

≈
on B constructed in [Schneider and Stuhler 1997, 4.6].

We now show that for r < p−1/(p−1), the two sheaves V̌
≈

and Mr are canonically
isomorphic. Here, V̌ denotes the smooth dual. We remark straightaway that V is
admissible-smooth [Schneider and Teitelbaum 2003, Theorem 6.6] and hence, so
is V̌ [Cartier 1979, 1.5(c)].

Suppose H is a uniform locally Qp-analytic group with Qp-Lie algebra h. Let
D∞(H) denote the quotient of D(H) by the ideal generated by h. Let C∞H denote
the category of coadmissible D∞(H)-modules. If Ur (h) denotes the closure of
U (h) inside Dr (H) we put

H(r) := H ∩Ur (h).
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Lemma 9.1.2. The set H(r) is an open normal subgroup of H constituting, for r ↑ 1,
a neighborhood basis of 1 ∈ H.

Proof. As the norm ‖ · ‖r on Dr (H) does not depend on the choice of ordered basis
the inversion map h 7→ h−1 induces an automorphism of Dr (H). It induces an
automorphism of Ur (h), which implies that H(r) is a subgroup of H . A similar
argument with the conjugation automorphism h 7→ ghg−1 for a g ∈ H implies that
this subgroup is normal in H . For the remaining assertions we choose m≥0 such that
rm = pm√r0 ≥ r and consider D(Pm+1(H)). The inclusion D(Pm+1(H))⊆ D(H)
gives rise to an isometric embedding

Dr0(Pm+1(H)) ↪→ Drm (H)

(final remark in Section 2.2.3). Since U (h) is norm-dense inside Dr0(Pm+1(H))
it follows that Pm+1(H) ⊂ Urm (h) ⊆ Ur (h), which implies Pm+1(H) ⊆ H(r) and
therefore H(r) is open. Finally, if r ↑ 1 then rm ↑ 1 whence m ↑∞ . Since the lower
p-series {Pm(H)}m constitutes a neighborhood basis of 1 ∈ H the last assertion of
the lemma follows. �

By the proof of Theorem 6.6 in [Schneider and Teitelbaum 2003], the lemma
implies a canonical K -algebra isomorphism D∞(H) ' lim

←−r
K [H/H(r)] coming

from restricting distributions to the subspace of K -valued locally constant functions
on H .

Proposition 9.1.3. (i) We have Dr (H) ⊗D(H) D∞(H) ' K [H/H(r)] as right
D∞(H)-modules.

(ii) If M ∈ C∞H and V = M ′b denotes the corresponding smooth representation
then Dr (H)⊗D(H) M ' (V̌ )H(r) as K -vector spaces. Here, ( · )H(r) denotes H(r)-
coinvariants and ˇ( · ) denotes the smooth dual.

Proof. The first statement follows from Dr (H)=
⊕

h∈H/H(r) δhUr (h) as right Ur (h)-
modules by passing to quotients modulo the ideals generated by h. The second
statement follows from (i) by observing the general identities K [H/N ]⊗D∞(H)M=
HomK (V N , K )= (V̌ )N valid for any normal open subgroup N of H . �

Corollary 9.1.4. If M ∈ C∞H and r0 ≤ r < p−1/p−1 then Dr (H)⊗D(H) M ' (V̌ )H .

Proof. We have Ur (h)= Dr (H) for such an r and therefore H(r) = H . �

9.2. The comparison isomorphism.

9.2.1. Let us return to our sheaf M 7→ Mr . We assume in the following that

r0 ≤ r < p−1/p−1.
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Let F be a facet in X . If we apply the above corollary to the uniform group U (e)
F

we obtain a canonical linear isomorphism

f F
r : M(U

(e)
F )= Dr (U

(e)
F )⊗D(U (e)

F )
M −→∼ (V̌ )U (e)

F
.

If F ⊆ F ′ for two facets F, F ′ in X it follows that

f F ′
r ◦ σ

FF ′
r = prFF ′

◦ f F
r (9.2.2)

where prFF ′
: (V̌ )U (e)

F
→ (V̌ )U (e)

F ′
denotes the natural projection.

Proposition 9.2.3. Given an open subset � ⊆ X , the collection of maps f z
r for

z ∈� induces a K -linear isomorphism Mr (�)' V̌
≈
(�) compatible with restriction

maps whence a canonical isomorphism of sheaves

Mr −→
∼ V̌
≈

which is natural in admissible V .

Proof. Given z ∈B we have the isomorphism

f z
r : Mr (U (e)

z )−→∼ (V̌ )U (e)
z
,

as explained above. These maps assemble to a K -linear isomorphism, say f �r ,
between the space of maps

s :�→
⋃̇

z∈�
Mr (U (e)

z )

such that s(z) ∈ Mr (U
(e)
z ) for all z ∈B and the space of maps

s :�→
⋃̇

z∈�
(V̌ )U (e)

z

such that s(z) ∈ (V̌ )U (e)
z

for all z ∈B. It is clearly compatible with restriction. It
therefore suffices to show that it descends to an isomorphism between the subspaces
Mr (�) and V̌

≈
(�) respectively. Since Mr and V̌

≈
are sheaves it suffices to verify

this over the open sets �∩St(F) for facets F ⊂B. We may therefore fix a facet
F ⊂B and assume that �⊆ St(F). Restricting to members �i with �i ∩ F 6=∅
of a datum for s with respect to F and using the sheaf property a second time we
may assume that the covering {�} of �=�∩St(F) is a datum for s with respect
to F satisfying � ∩ F 6= ∅. Let s ∈ Mr (U

(e)
F ) be the corresponding element of

the datum. We let v̌ be any preimage in V̌ of f F
r (s) ∈ (V̌ )U (e)

F
. The value of the

function f �r (s) at z ∈� is then given by

f z
r (s(z))= f F ′

r (σ FF ′
r (s))

(9.2.2)
= prFF ′( f F

r (s))= class of v̌ ∈ (V̌ )U (e)
F ′
,

where F ′ ∈ St(F) is the unique open facet containing z. This means f �r (s) ∈ V̌
≈
(�).
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Conversely, let š ∈ V̌
≈
(�) and consider s := ( f �r )

−1(š). Let F ⊂B be a facet.
Any defining open covering � =

⋃
i∈I �i with vectors v̌i ∈ V̌ for the section š

induces an open covering �∩ St(F) =
⋃

i∈I �i,F , where �i,F := �i ∩ St(F). If
F ∩�i,F 6= ∅ we let si ∈ Mr (U

(e)
F ) be the inverse image of the class of v̌i under

( f F
r )
−1. We claim that this gives a datum for s with respect to F . Indeed, for any

z ∈�i,F ∩ F we compute

s(z)= ( f z
r )
−1(š(z))= ( f z

r )
−1(class of v̌i )= si ,

which settles the axiom (a) for s. Similarly, for any z′ ∈ �i,F the value of s(z′)
equals

( f z′
r )
−1(š(z′))= ( f F ′

r )−1(class of v̌i )

= ( f F ′
r )−1(prFF ′(v̌i ))

(9.2.2)
= σ FF ′

r (( f F
r )
−1(v̌i ))= σ

FF ′
r (si )

where F ′ denotes the unique open facet of St(F) containing z′. This proves (b) for
s. All in all s ∈ Mr (�). This proves the proposition. �

Lemma 9.2.4. Let M be a coadmissible D∞(G)-module. Then M is a D(G)θ0-
module.

Proof. We have to show that the canonical map D(G)→ D∞(G) factors through
D(G)θ0 . The kernel of D(G)→ D∞(G) is the two sided ideal generated by g. The
intersection of this latter ideal with Z(gK ) equals ker θ0 (see the example on page
1411). It follows that the map Z(gK )→ D∞(G) factors through θ0. �

Theorem 9.2.5. Let r = r0. Suppose M is a coadmissible D∞(G)-module. Then
there is a canonical isomorphism of OB-modules

C SS
:OB ⊗L V̌

≈
−→∼ Lr0,ρ(M)

which is natural in such M. Here, as above, V = M ′b.

Proof. Since gM = 0 there is a canonical isomorphism

OB ⊗L Mr0 −→
∼ Dan

Bχ ⊗U (gK )θ Mr0 .

Arguing stalkwise the assertion follows from Corollary 8.2.5 and Proposition 9.2.3.
�

10. Compatibility with the Beilinson–Bernstein localization

Throughout this section we suppose that the conditions (8.0.1) are fulfilled.
Let V denote a finite dimensional algebraic representation of G. Then V gives

rise to a U (g)-module. Let M = V ′ denote the dual of V . It is a coadmissible
D(G)-module. Suppose the U (gK )-module underlying M is a U (gK )θ -module.
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Recall that to any U (gK )θ -module M , Beilinson and Bernstein associate a Dχ -
module which will be denoted 1(M) (see Section 5). We can pull this back under
the natural map π : X an

→ X to get a Dan
χ -module 1(M)an. Finally, we may apply

the functor ϑ−1
B to this module. Denote the latter OB-module by 1(M)an

B . One has
the following description of 1(M)an and 1(M)an

B :

1(M)an
= Dan

χ ⊗U (gK )θ M,

1(M)an
B = Dan

B,χ ⊗U (gK )θ M.

The second identity follows from the compatibility between tensor products with
restriction functors [Kashiwara and Schapira 1990, Proposition 2.3.5]. On the other
hand, any finite dimensional algebraic representation V gives rise to a D(G)-module
M , where M = V ′. If V is a U (gK )θ -module, then M is a D(G)θ -module. In
particular, the results of Section 8 allow us to associate to M the Dr,χ -module
Lr,χ (M). Recall that this module is given by

Lr,χ (M)=Dr,χ ⊗Dr,θ Mr

Now the canonical morphism Dan
B,χ →Dr,χ induces a morphism

C B B
: Dan

B,χ ⊗U (gK )θ M→Dr,χ ⊗Dr,θ Mr .

Recall that r = rm for some m.

Theorem 10.1.1. There is r(M) ∈ [r0, 1) such that for r ≥ r(M) (i.e., m � 0
sufficiently large) the canonical morphism

C B B
:1(M)an

B −→
∼ Lr,χ (M)

is an isomorphism of Dan
B,χ -modules.

Proof. Let F be a facet in B such that F ⊆ C . By Proposition 4.2.10 of [Emerton
2011] the D(U (e)

F )-module M decomposes into a finite direct sum of irreducible
D(U (e)

F )-modules Mi . Since all Mi are coadmissible D(U (e)
F )-modules there exists

r(F) ∈ [r0, 1) such that

Mi,r := Dr (U
(e)
F )⊗D(U (e)

F )
Mi 6= 0

for all r ≥ r(F) and all i . By Theorem A in [Schneider and Teitelbaum 2002,
Section 3] the D(U (e)

F )-equivariant map Mi → Mi,r , m 7→ 1⊗m has dense image
and is therefore surjective. Since Mi is irreducible the map is therefore bijective
whenever r ≥ r(F). It follows M −→∼ Mr (U

(e)
F ) for r ≥ r(F). Given g ∈ G

we can use the G-equivariance of the sheaf Mr to express the canonical map
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M→ Mr (U
(e)
g−1 F ) as the composite

M
g·
−→ M −→∼ Mr (U

(e)
F )

g∗
−→ Mr (U

(e)
g−1 F ).

It is therefore bijective. Put r(M) :=maxF⊆C r(F). Then M −→∼ Mr (U
(e)
F ) for all

F ⊂B and all r ≥ r(M). Identifying M with its constant sheaf on B the natural
morphism M −→∼ Mr is therefore an isomorphism for all r ≥ r(M). On the other
hand, arguing stalkwise gives, by Lemma 8.2.4, a canonical isomorphism

Dan
B,χ ⊗U (gK )θ Mr −→

∼ Dr,χ ⊗Dr,θ Mr . �

11. A class of examples

Throughout this section we suppose that the conditions (8.0.1) are fulfilled.

11.1.1. Let O be the classical BGG-category for the reductive Lie algebra gK

relative to the choice of Borel subalgebra bK [Bernstein et al. 1976]. Since this
category was originally defined for complex semisimple Lie algebras only we briefly
repeat what we mean by it here. The category O equals the full subcategory of all
(left) U (gK )-modules consisting of modules M such that

(i) M is finitely generated as U (gK )-module;

(ii) the action of tK on M is semisimple and locally finite;

(iii) the action of nK on M is locally finite.

Recall here that tK acts locally finitely on some module M if U (tK ).m is finite
dimensional for all m ∈ M (similar for nK ).

Let Oalg be the full abelian subcategory of O consisting of those U (gK )-modules
whose tK -weights are integral, i.e., are contained in the lattice X∗(T )⊂ t∗K .

11.1.2. In [Orlik and Strauch 2010a] the authors study an exact functor

M 7→ FG
B (M)

from Oalg to admissible locally analytic G-representations. It maps irreducible
modules to (topologically) irreducible representations. The image of FG

B comprises
a wide class of interesting representations containing all principal series represen-
tations and many representations arising from homogeneous vector bundles on
p-adic symmetric spaces. In this final section we wish to study the localizations
of representations in this class. We restrict our attention to modules M ∈ Oalg,θ

having fixed central character θ . Let χ ∈ t∗K be such that σ(χ)= θ .

11.1.3. To start with let U (gK , B) be the smallest subring of D(G) containing
U (gK ) and D(B). The b-action on any M ∈ Oalg integrates to an algebraic, and
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hence, locally analytic B-action on M and one has a canonical D(G)-module
isomorphism

FG
B (M)

′

b −→
∼ D(G)⊗U (gK ,B) M =: N

[Orlik and Strauch 2010a, Proposition 3.6]. Of course, N is a D(G)θ -module.
We may therefore consider its localization Lr,χ (N ) on B. We recall that the
stalk Lr,χ (N )z at a point z is a quotient of κ(z)⊗̂(N r )z (see Proposition 8.2.2)
and therefore has its quotient topology. We finally say a morphism of sheaves to
Lr,χ (N ) has dense image if this holds stalkwise at all points.

On the other hand, we may form

G M := K [G]⊗K [B] M.

It may be viewed as a U (gK )-module via x .(g ⊗ m) := g ⊗ Ad(g−1)(x).m for
g ∈ G,m ∈ M, x ∈ gK . Since K [G] is a free right K [B]-module, G M equals
the direct sum of U (gK )-submodules gM := g⊗M indexed by a system of coset
representatives g for G/B. Since the group G is connected, the adjoint action
of G = G(L) fixes the center Z(gK ) ⊂ U (gK ) [Demazure and Gabriel 1970, II,
Section 6.1.5] and therefore G M still has central character θ . Let us consider its
Beilinson–Bernstein module 1(G M) over X . The linear map gM −→∼ M given by
g⊗m 7→ m is an isomorphism and equivariant with respect to the automorphism
Ad(g−1) of U (gK ). It follows that, given an open subset V ⊆ X , we have a linear
isomorphism 1(gM)(V )−→∼ 1(M)(g−1V ) given by δ⊗ (g⊗m) 7→ g∗(δ)⊗m for
a local section δ of Dχ and m ∈ M . Here g∗ refers to the G-equivariant structure on
Dχ 8.3.2. The same argument works for the analytifications 1an(gM) and 1an(M).
In particular, the stalks 1an(gM)z '1an(M)g−1z are isomorphic vector spaces for
any z ∈B and any g ∈ G.

Lemma 11.1.4. 1an(M)|B = 0 ⇐⇒ 1an(G M)|B = 0.

Proof. Suppose1an(M)|B= 0. Let g ∈G. For any z ∈B we compute1an(gM)z'
1an(M)g−1z = 0, whence 1an(gM)|B = 0. This yields 1an(G M)|B = 0, since
1an( · )B commutes with arbitrary direct sums. The converse is clear. �

Lemma 11.1.5. There is a canonical morphism of Dr,χ -modules

Dr,χ ⊗Dan
B,χ

1(G M)an
B→Lr,χ (FG

B (M)
′)

functorial in M and with dense image.

Proof. The morphism is induced from the functorial map

P : G M→ D(G)⊗U (gK ,B) M = N

via the inclusions K [B]⊂ D(B) and K [G]⊂ D(G). Let us show that the morphism
has dense image. We claim first that the map P has dense image with respect to
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the canonical topology on the coadmissible module N . Let G0 be the (hyper-)
special maximal compact open subgroup of G equal to the stabilizer of the origin
x0 ∈ A. Let B0 := B ∩ G0. The Iwasawa decomposition G = G0 · B implies
K [G] = K [G0] ⊗K [B0] K [B] and similarly for distributions D( · ). Let G0 M :=
K [G0] ⊗K [B0] M and N0 := D(G0)⊗U (gK ,B0) M . Then G0 M ' G M as K [G0]-
modules and N ' N0 as D(G0)-modules via the obvious maps. Write D(G0) =

lim
←−r

Dr (G0) with some Banach algebra completions Dr (G0). The map P induces
maps Pr : G0 M → Dr (G0)⊗U (gK ,B0) M . Since K [G0] ⊂ Dr (G0) is dense, the
definition of the Banach topology on the target implies that Pr has dense image.
Passing to the limit over r shows that P has dense image. Let z ∈B. Then the map
P composed with the map N → N r,z has dense image [Schneider and Teitelbaum
2003, Section 3, Theorem A]. Now we are done: the map

Dr,χ,z ⊗Dan
B,χ,z

1(G M)an
B,z→Lr,χ (N )z ,

pulled back to 1(G M)an
B,z , may be written as(

(κ(z)⊗̂L G M)/nπ(z)(κ(z)⊗̂L G M)
)
λ-coinv→(

(κ(z)⊗̂L N r,z)/nπ(z)(κ(z)⊗̂L N r,z)
)
λ-coinv

by Theorem 5.2.2 and Proposition 8.2.2. Consequently, it has dense image. �

11.1.6. We now look closer at the case θ = θ0 and χ = ρ. Let V := indG
B (1) be the

smooth induction of the trivial character of B. Its smooth dual V̌ equals the smooth
induction indG

B (δ
−1
B ), where δB : B→ Q× ⊆ K× is the modulus character of the

locally compact group B. We choose e large enough so that the Schneider–Stuhler
sheaf V̌

≈
of V̌ is nonzero [Schneider and Stuhler 1997, Theorem IV.4.1].

The finitely many irreducible modules in Oalg,θ0 are given by the irreducible
quotients Lw of the Verma modules Mw of highest weight −w(ρ)− ρ for w ∈W .
The cardinality of the latter set of weights is |W |. As usual, w0 denotes the longest
element in W . Letw∈W . Let Mw and Lw be the Beilinson–Bernstein localizations
over X of Mw and Lw respectively. Let ιw : Xw ↪→ X be the inclusion of the Bruhat
cell BwB/B into X and let OXw be its structure sheaf with its natural (left) DXw -
module structure. Let Nw = ιw∗Ow be its D-module push-forward to X . Since
OXw is a holonomic module and ιw is an affine morphism, Nw may be viewed as
an DX -module (rather than just a complex of such) [Hotta et al. 2008, 3.4].

Proposition 11.1.7. Letw∈W and Lan
w be the analytification of Lw. Then Lan

w0
|B=

OB and Lan
w |B = 0 for w 6= w0.

Proof. By [loc. cit., Lemma 12.3.1] the sheaf Nw has support contained in Xw. By
[loc. cit., Proposition 12.3.2(i)] the module Lw injects into Nw. Now let w 6= w0.
Let η ∈ X be the generic point of X and X an

η the fiber of π : X an
→ X over η. Since
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η /∈ Xw one has (Nw)η = 0 and therefore N an
w |Xan

η
= 0. Lemma 6.2.2 states that

B ⊂ X an
η whence Lan

w |B = 0. The converse is clear: the module Lw0 equals the
trivial one-dimensional U (g)-module having localization Lw0 =OX (e.g., by the
Borel–Weil theorem). Hence, Lan

w0
|B =OB . �

Corollary 11.1.8. Let w ∈W . Then Lr,ρ(FG
B (Lw)

′) 6= 0 if and only if w = w0.

Proof. Let w 6= w0. The preceding proposition together with the first lemma
above yields 1an(GLw)|B = 0. The second lemma then yields Lr,ρ(FG

B (Lw)
′)= 0.

Conversely, let w = w0. We have FG
B (Lw0)= indG

B (1)= V , the smooth induction
of the trivial B-representation [Orlik and Strauch 2010a]. By the choice of e
we have V̌

≈
6= 0. Let z ∈ B be a point such that V̌U (e)

z
6= 0. With N := V ′ and

(U (e)
z )(r) :=U (e)

z ∩Ur (U
(e)
z ), Proposition 9.1.3 yields a surjection

(N r )z = Dr (U (e)
z )⊗D(U (e)

z )
N = V̌

(U (e)
z )(r)
→ V̌U (e)

z

between the two spaces of coinvariants which implies (N r )z 6= 0. It follows that
Lr,ρ(N )z = κ(z)⊗L (N r )z 6= 0 (Proposition 8.2.2), which means Lr,ρ(N )|B 6= 0.

�

Recall that any U (gK )-module M ∈O is of finite length.

Proposition 11.1.9. Let M ∈Oalg,θ0 . Let n ≥ 0 be the Jordan–Hölder multiplicity
of the trivial representation in the module M and let V = indG

B (1). There is a
(noncanonical) isomorphism of OB-modules

Lρ,r (FG
B (M)

′)−→∼ Lρ,r (V ′⊕n)

with both sides equal to zero in case n = 0.

Proof. Let V̌
≈,r

be the constructible sheaf of K -vector spaces on B which is con-
structed in the same way as V̌

≈
but using the groups (U (e)

F )(r) instead of U (e)
F for all

facets F . The very same arguments as in the case r = r0 (Theorem 9.2.5) show that
the OB-module Lρ,r (V ′) is isomorphic to the module OB ⊗L V̌

≈,r
. In particular, it

is a free OB-module.
We now prove the claim of the proposition by induction on n. Let n = 0. By

exactness of the functors FG
B ( · )

′ and Lρ,r a Jordan–Hölder filtration of M induce a
filtration of Lρ,r (FG

B (M)
′) whose graded pieces vanish by the preceding corollary.

Thus Lρ,r (FG
B (M)

′) = 0. Let n = 1. Using a Jordan–Hölder filtration of M and
the case n = 0 we may assume that the trivial representation sits in the top graded
piece of M . Applying the case n = 0 a second time gives the claim. Assume now
n ≥ 2. Using again a Jordan–Hölder filtration of M we have an exact sequence

0→ M1→ M→ M2→ 0
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in Oalg,θ0 , where Mi has multiplicity ni ≥ 1. Applying the induction hypothesis to
M1 and M2 yields an exact sequence of OB-modules

0→Lρ,r (V ′⊕n1)→Lρ,r (FG
B (M)

′)→Lρ,r (V ′⊕n2)→ 0.

By our first remark this sequence is (noncanonically) split. Since Lρ,r commutes
with direct sums, this completes the induction. �

When r = r0 the statement of the preceding Proposition 11.1.9 can be made
more concrete, because in this case the sheaf Lρ,r0(V

′⊕n) equals the sum over n
copies of OB ⊗L V̌

≈
with V̌ = indG

B (δ
−1
B ); see Theorem 9.2.5.

Appendix: Analyticity of group actions near points on the building

In this appendix we give a proof of Lemma 6.2.6 about the analyticity of group
actions near points on the building. Before doing so we would like to remark that
we have not used anything special about these points, except that they correspond
to supremum norms on affinoid subdomains. It is certainly possible to prove more
general statements in similar settings.

Proof of Lemma 6.2.6. Step 1. Recall that G acts transitively on the set of apartments
in B, and that we denote by A = (X∗(T )/X∗(C)) ⊗Z R the apartment which
corresponds to the torus T ; see 4.1.2. The affine Weyl group determined by T
acts on A, and this action has a relatively compact fundamental domain, which
we denote by D. Because of the identity gU (e)

z g−1
=U (e)

gz in (4.1.6), it suffices to
prove the assertion of Lemma 6.2.6 for those z which lie in the closure D of D.
For any fixed e, the set of groups {U (e)

z | z ∈ D} is finite, as D is compact. Recall
that for fixed z the groups U (e)

z form a fundamental system of neighborhoods of 1
in G; see Proposition 4.1.7. Hence, given any affinoid subgroup U ⊂ Gan, there
is est ≥ euni such that U

(e)
z ⊂ U(L) for all z ∈ D and all e ≥ est. In Step 3 below

we exhibit a certain condition for an affinoid subgroup U⊂ Gan. This condition is
fulfilled by any sufficiently small affinoid subgroup U. We will then show that there
is a fundamental system {Vn}n≥0 as in Lemma 6.2.4 such that U acts analytically
on every Vn , in the sense of Section 6.2.5.

Step 2. According to [Rémy et al. 2010, 2.17], the map ϑB :B→ X an maps the
apartment A into the analytification of the open subscheme U1 = N−B/B ⊂ X ,
which is isomorphic to N− (notation as in 5.1.3, 5.1.5). Put 9 = −8+(G, T ).
The choice of a Chevalley basis for g gives coordinates (Xα)α∈9 on N−, hence
on U1. The points of the apartment A, considered as a subset of U an

1 , can then be
described as norms on the algebra L[(Xα)α∈9] = OX (U1) as follows. To z ∈ A
there corresponds the norm
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L[(Xα)α∈9] 3
∑
ν∈N9

aνXν
7→ sup

ν

|aν |
∏
α∈9

eν(α)〈z,α〉 ;

see [Rémy et al. 2010, 2.17]. Here 〈z, α〉 is the canonical pairing between cocharac-
ters and characters. The norm just described is the supremum norm on the polydisc
D(r) with polyradius r = (e〈z,α〉)α∈9 . D(r) is an affinoid domain in U an

1 , and it is
strictly affinoid if (and only if) all e〈z,α〉 are in the extended value group

√
|L∗|. As

D is a compact subset of A, there are numbers R0 > 1> r0 in |L∗| such that

r0 < inf
z∈D
α∈9

e〈z,α〉 and sup
z∈D
α∈9

e〈z,α〉 < R0.

In particular, D lies in the interior of the (strictly) affinoid polydisc D(R0) with
polyradius (R0, . . . , R0). By [Berkovich 1990, 3.4.6], U an

1 is an open subset of
X an. The polydisc D(R0) is thus a neighborhood of D. Because of this we will
henceforth work on D(R0).

Step 3. Let Cp be the completion of an algebraic closure of L . Let ‖ · ‖ be the
maximum norm on U an

1 (Cp) = C9p , i.e., ‖(xα)α∈9‖ = maxα |xα|. Fix r1 ∈ (0, r0).
We claim that there is a connected strictly affinoid subgroup U⊂ Gan which leaves
D(R0) stable, and such that

for all g ∈ U(Cp) and all x ∈ D(R0)(Cp) one has ‖g(x)− x‖ ≤ r1. (11.1.10)

To see this, let 3− ⊂ Lie(N−) and 3+ ⊂ b be oL -lattices, and put 3−m = pm3−

and3+m = pm3+. For m large enough3−m ,3+m , and3m :=3
−
m⊕3

+
m will be oL -Lie

subalgebras. After possibly increasing m, these lattices can be exponentiated to give
good analytic subgroups8 U−m = expG(3

−
m)

an
⊂ N−,an, U+m = expG(3

+
m)

an
⊂ Ban,

and Um = expG(3m)
an
⊂ Gan. Increasing m further (if necessary) ensures that Um

has an Iwahori decomposition, i.e., Um =U−m×U+m (this follows from the existence
of “coordinates of the second kind”). Next consider D(R0) as an affinoid subdomain
in the group N−,an, the analytification of N−. Then, for any given positive integer
m1 there will be m2� m1 such that x−1Um2 x ⊂ Um1 for all x ∈ D(R0), because
D(R0)⊂ N−,an is bounded. Furthermore, because D(R0) is defined in terms of the
Chevalley basis, we can find m1 such that D(R0) (as a subset in N−,an) is stable by
right multiplication by U−m1

. Enlarging m1 if necessary we even have ‖xh− x‖ ≤ r1

for all x ∈D(R0) and h ∈ U−m1
(each coordinate Xα of xh will be very close to that

of x if h is close to the identity). Now fix g ∈ Um2 and x ∈ D(R0), considered as
an element of N−,an. Write x−1gx = u−u+ with u− ∈ U−m1

and u+ ∈ U+m1
⊂ Ban.

Then, as elements of U an
1 ⊂ X an we have g(x)= gx Ban

= xu−u+Ban
= xu−Ban.

This shows that D(R0) is stable under the left action of Um2 and the inequality in

8In the sense of [Emerton 2011].
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(11.1.10) is satisfied. With this choice of m2 we let U= Um2 . We put

δ =
r1

infz∈D,α∈9 e〈z,α〉
,

which is less than 1.

Step 4. From now on we fix a point z∈D, which we think of as a supremum norm on
the polydisc D(r) with polyradius r = (e〈z,α〉)α∈9 . We remark that |Xα(z)| = e〈z,α〉.
It follows from the very definition of the topology on the affinoid space D(R0) that
a fundamental system of neighborhoods of z is given by finite intersections of sets
of the form

V f,c,C = {x ∈ D(R0) | c ≤ | f (x)| ≤ C},

where f ∈O(D(R0))= L〈R−1
0 X〉 and c< | f (z)|< C [Berkovich 1990, 2.2.3(iii)].

A particular example of such a neighborhood is the annulus

As,t = {x ∈ D(R0) | ∀α ∈9 : sα ≤ |Xα(x)| ≤ tα} =
⋂
α

VXα,sα,tα ,

where s = (sα)α∈9 and t = (tα)α∈9 are such that sα < e〈z,α〉 < tα for all α ∈9.
Let r0 = (r0, . . . , r0) be the tuple indexed by 9 which has all components equal

to r0. Given a neighborhood V f,c,C , we are now going to find real numbers c′ < C ′

in
√
|L∗|, and a tuple r ′ = (r ′α)α∈9 ∈

√
|L∗|9 such that

V ′ = V f,c′,C ′ ∩A r0,r ′

(i) is a neighborhood of z,

(ii) is contained in V f,c,C , and

(iii) is stable under the action of U.

Step 5. It is straightforward to see that one can find real numbers c′ < C ′ in
√
|L∗|

with the properties

c < c′ < | f (z)|< C ′ < C and C ′δ < c′ ,

where δ is as in Step 3. Furthermore, as f has supremum norm less than C ′ on the
disk D(r), we can find r ′ = (r ′α)α∈9 ∈

√
|L∗|9 such that

- for all α ∈9: r ′α > e〈z,α〉,

- f has supremum norm less or equal to C ′ on the disc D(r ′).

We remark that the affinoid group U acts on the strictly affinoid annulus A r0,r ′ ,
because r1 < r0. Moreover, the strictly affinoid domain V ′ = V f,c′,C ′ ∩A r0,r ′ is a
neighborhood of z. Our aim is to show that U also acts on V ′. To see this, it is
enough to work with Cp-valued points. Write f as a power series, f (X)=

∑
ν∈N9

aνXν .
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Then we have |aν |(r ′)ν ≤ C ′. Consider x ∈ V ′(Cp) and g ∈ U(Cp). Expand f
around x

f (x ′)= f (x)+
∑
ν 6=0

bν(x ′− x)ν .

Then we also have |bν |(r ′)ν ≤ C ′ for all ν. Put x ′ = g(x) and get f (g(x)) =
f (x)+

∑
ν 6=0 bν(g(x)− x)ν . Using the inequality ‖g(x)− x‖ ≤ r1 we find

|bν(g(x)− x)ν | = |bν |(r ′)ν
|g(x)− x |ν

(r ′)ν
≤ C ′ ·

r |ν|1

(r ′)ν
< C ′δ < c′.

We conclude that | f (g(x))− f (x)|< c′ and thus

| f (g(x))| = | f (x)+ f (g(x))− f (x)| = | f (x)|.

This shows that U acts on the (strictly) affinoid neighborhood V ′.

Step 6. In the general case, consider a neighborhood of z of the form V = V1∩· · ·∩

Vm with Vi = V fi ,ci ,Ci . Then we find for each Vi a neighborhood V ′i stable under
U, as in Step 5. The intersection V ′ = V ′1 ∩ · · · ∩ V ′m will then be a neighborhood
which is stable by the action of U.

Step 7. Now let W1 ⊃ W2 ⊃ · · · be a sequence of neighborhoods of z as in
Lemma 6.2.4. Use Step 6 to find an strictly affinoid neighborhood W ′1 ⊂W1 of z
on which U acts. W ′1 is not necessarily irreducible. But irreducible and connected
components coincide here [Berkovich 1990, 3.1.8] (use that X an is a normal space,
by [loc. cit., 3.4.3]), and U, being connected, will stabilize the connected component
of W ′1 containing z. Call this connected component V1. It is again a strictly affinoid
neighborhood of z. Then choose n such that Wn is contained in the topological
interior of V1, and let W ′n ⊂Wn be a neighborhood of z on which U acts (by Step
6). Let V2 be the connected component of W ′n containing z. Continuing this way
we construct from (Wn)n a descending sequence of irreducible strictly affinoid
neighborhoods (Vn)n with the same properties as that in Lemma 6.2.4, but with the
additional property that U acts on each Vn . This finishes the proof of Lemma 6.2.6.
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