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Double Dirichlet series
and quantum unique ergodicity

of weight one-half Eisenstein series
Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

The problem of quantum unique ergodicity (QUE) of weight 1
2 Eisenstein series

for 00(4) leads to the study of certain double Dirichlet series involving GL2

automorphic forms and Dirichlet characters. We study the analytic properties of
this family of double Dirichlet series (analytic continuation, convexity estimate)
and prove that a subconvex estimate implies the QUE result.

1. Introduction

An important problem of quantum chaos is to describe the behavior of eigenfunctions
of Laplacians φλ with eigenvalue λ, as λ → ∞. This problem has a rich and
interesting history; see [Shnirelman 1974; Zelditch 1987; Colin de Verdière 1985;
Zelditch 1992; Lindenstrauss 2006; Soundararajan 2010a], for example. For the
weight 0 Eisenstein series E(z, s) on the surface SL2(Z)\H, Luo and Sarnak [1995]
determined the asymptotic behavior of the measures

dµt(z)= |E(z, 1
2 + i t)|2 dµ(z)

on compact sets. Here dµ(z)=dx dy/y2 denotes the volume element corresponding
to the hyperbolic metric on the upper half-plane H. The main input in doing so
was subconvex bounds on certain standard GL1 and GL2 L-functions, namely
the Riemann zeta function and the L-function of a Maaß cusp form. Their work
was later generalized to the corresponding micro-local lifts [Jakobson 1994] and
other arithmetic symmetric spaces [Koyama 2000; Truelsen 2011]. Also for these
generalizations, subconvex bounds were at the heart of the proofs. In [Petridis et al.
2013] we studied similar questions for scattering states.

In this paper we study the analogous problem for Eisenstein series of weight 1
2 .

To be precise: Let E(z, s, 1
2) be the weight 1

2 Eisenstein series at the cusp infinity for
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the group 0=00(4) (see Section 3). We study the limiting behavior as |t |→∞ of

dµt(z)= |E(z, 1
2 + i t, 1

2)|
2 dµ(z). (1-1)

Since the Fourier coefficients φn(s, 1
2) of E(z, 1

2 + i t, 1
2) are essentially values

of Dirichlet L-functions on the critical line — see (3-3) — and, therefore, are not
multiplicative, the problem is much harder. The Rankin–Selberg convolutions that
appear are not factored into standard L-functions. Instead, we find that certain
double Dirichlet series play a crucial role. The relevant double Dirichlet series are
the following.

Let χ , χ ′ be characters mod 8, and let tn be either the eigenvalue of the Hecke
operator Tn for a weight 0 Maaß form ψ on 00(4)\H or tn = τ(n) be the divisor
function. Let s0(1 − s0) be the corresponding Laplace eigenvalue of ψ , with
<(s0)≥

1
2 , and if tn = τ(n) let s0 =

1
2 .

We then define

Z(s, w, χ, χ ′)= ζ2(4s− 1)
∞∑

n=1
(n,2)=1

χ(n)tn L∗(2w− 1
2 , n, χ ′)

ns−w+ 1
2

, (1-2)

where L∗(w, n, χ)= q(w, n, χ)L2(w, χn0χ). Here n0 is the squarefree part of n,
χn0(c)=

( n0
c

)
and L2(w, χn0χ) is the standard L-function with the 2-factor removed.

The functions q(w, n, χ) are explicitly given so-called “correction polynomials”;
see (2-7) below. The function L∗(w, n, χ) may seem strange at first, but it occurs
naturally as the n-th Fourier coefficient of the Eisenstein series of weight 1

2 , and it
has many nice properties. See, for example, [Shimura 1973] or Section 3 below.

Friedberg and Hoffstein [1995] have studied a Rankin–Selberg integral (see
(3-13) below) which turns out to be a linear combination of Z(s, w, χ, χ ′) and
Z(s, w, χ, χ4χ

′), where χ4 is the primitive character mod 4. They observed that
this admits meromorphic continuation and that certain linear combinations have
a pole at (s, w) = (3

4 ,
3
4) (in our normalization). They did this in order to prove

nonvanishing of quadratic twists of GL2-L-functions at the central point.
Furthermore similar series with higher-order twists instead of the quadratic

characters χn0 were studied by Brubaker, Bucur, Chinta, Frechette and Hoffstein
[Brubaker et al. 2004] in order to prove nonvanishing of higher-order twists. To un-
derstand the new series Z(s, w, χ, χ ′) we follow essentially the program introduced
in [Bump et al. 1996] to prove the following.

The series defining Z(s, w, χ, χ ′) converges absolutely and uniformly in cer-
tain regions in C2, and hence defines an analytic function there. The functions
Z(s, w, χ, χ ′) admit meromorphic continuation to C2 and they satisfy a group of
functional equations generated by

α : (s, w) 7→ (s, 1−w), β : (s, w) 7→ (w, s).
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The functions Z(s, w, χ, χ ′) grow at most polynomially for (<(s),<(w)) in com-
pact sets. For the precise form of the functional equations we refer to Theorems
2.11 and 2.13. The group of functional equations is isomorphic to the dihedral
group of order 8. A similar result for higher-order twists may be found in [Brubaker
et al. 2004].

We want to investigate the growth of Z(s, w, χ, χ ′) in s and w. The notions of
analytic conductor and subconvexity are not completely well established for general
multiple Dirichlet series. Certain cases are dealt with in [Blomer 2011; Blomer
et al. 2014] but a general theory is missing.

To define these notions in the present case we note that when <(s),<(w) > 3
4

the function Z(s, w, χ, χ ′) has a representation

Z(s, w, χ, χ ′)=
∞∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w−1/2 , (1-3)

where L∗∗(s, ψ, c, χ)=Q∗(s, c, χ)L2(s, ψ⊗χ̃c0χ) (see (2-19) and Theorem 2.13).
Here c0 is the squarefree part of c, χ̃c0(n)=

( n
c0

)
and L2(s, ψ⊗χ̃c0χ) is the standard

L-function with the 2-factor removed. The functions Q∗(s, c, χ) are explicitly given
so-called “correction polynomials”; see (2-20) below.

When proving bounds on standard L-functions one usually normalizes the coef-
ficients to be essentially bounded, at least on average. In our case it is not so clear
how to do that since the true size of L∗∗(s, ψ, c, χ) is known only conjecturally.
If the generalized Lindelöf hypothesis is true the coefficients of the series (1-3)
are essentially bounded. We investigate what happens when this is true on average
(over c). To be precise: we want to know what bound on Z(s, w, χ, χ ′) can be
proved if we assume that the coefficients are essentially bounded, i.e., if∑

c≤X
(c,2)=1

|L∗∗(s, ψ, c, χ)| = O(X1+ε(1+ |s|)ε). (1-4)

Using the properties of Q∗(s, c, χ) we will see that this follows from assuming∑
1≤c0≤X
c0 odd,

squarefree

|L2(s, ψ ⊗ χ̃c0χ)|
2
= O(X1+ε(1+ |s|)ε) when <(s)= 1

2 . (1-5)

Also, it is easy to see that (1-4) implies (1-5) with the exponent 2 replaced by a 1.
In particular it implies the generalized Lindelöf hypothesis in the t parameter.

We now define the analytic conductor of Z( 1
2 + i t, 1

2 + iu, χ, χ ′) to be

q(t, u)= (1+ |t |)(1+ |t + u|)2(1+ |u|). (1-6)
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Using an approximate functional equation argument for Z(s, w, χ, χ ′) we can
prove the following bound on the critical line.

Theorem 1.1. Assume (1-4). Then

Z(1
2 + i t, 1

2 + iu, χ, χ ′)= Oψ(q(t, u)
1
4+ε). (1-7)

Unconditionally,

Z( 1
2 + i t, 1

2 + iu, χ, χ ′)= Oψ

((
q(t, u)(1+ |t − u|)2

) 1
4+ε
)
. (1-8)

Remark 1.2. We call the unconditional bound (1-8) the trivial bound. The condi-
tional bound (1-7) is called the convexity bound. Any bound O(q(t, u)

1
4−δ) with

δ > 0 is called a subconvex bound with saving δ. If δ = 1
4 − ε is permitted, we say

that Z(s, w, χ, χ ′) admits a Lindelöf-type bound. In the theory of L-functions, the
notion of convexity and subconvexity is standard and has numerous applications;
see, e.g., [Iwaniec and Kowalski 2004].

Remark 1.3. We note that even proving the trivial bound requires strong input. In
particular, in order to prove Theorem 1.1 (1-8), we need the Lindelöf hypothesis
on average in the conductor aspect for L(s, χn), and the convexity estimate in the
s aspect. This bound is available, as follows from Heath-Brown’s famous large
sieve inequality for quadratic characters (2-28); see (2-29) below.

Also, we note that we can prove unconditionally (see Lemma 3.2 below) that, if
{tn} comes from a cusp form,

Z(1
2 + i t, 1

2 − i t, χ, χ ′)+ bZ( 1
2 + i t, 1

2 − i t, χ, χ ′)= Oψ(q(t,−t)
1
4+ε).

Here b is the product of the sign of χ and the sign of the cusp form. We note that
this is of the same order as the convexity estimate above without assuming (1-4).

Remark 1.4. For special configurations of s, w (in our case s−w constant) the
trivial bound and the convexity bound coincide. This is because, in this case, (1-5)
follows from Heath-Brown’s estimate (2-30).

We emphasize that our notion of convexity is different from that of Blomer,
Goldmakher and Louvel [Blomer 2011; Blomer et al. 2014]. What we call the
trivial bound corresponds to what they call the convexity bound.

Remark 1.5. Even though we cannot prove it, it is not unreasonable to expect
subconvexity for Z(s, w, χ, χ ′)! Double Dirichlet series similar to Z(s, w, χ, χ ′)—
with degree-one L-functions as coefficients — are known to satisfy subconvex
bounds [Blomer 2011; Blomer et al. 2014]. (Blomer et al. [2014] consider a
configuration such that the bound they prove would be considered a subconvex bound
also by our definition. Likewise the bound proved in [Blomer 2011, Theorem 1] is
a subconvex bound by our definition if one restricts to s = 1

2 or w = 1
2 .)
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Furthermore, it is known that on average the double Dirichlet series considered
by Blomer admits Lindelöf-type bounds [Blomer 2011, Theorem 2] in the (s, w)
aspect. In the conductor aspect (which is here the conductor related to the form with
eigenvalues {tn}), Hoffstein and Kontorovich [2010, (1.23)] conjecture Lindelöf-type
bounds to hold.

Theorem 1.6. Assume that, for all χ ,χ ′, {tn} the function Z(s, w, χ, χ ′) admits a
subconvex bound. Then, for any compact Jordan measurable subsets A and B of
0\H, we have ∫

A|E(z,
1
2 + i t, 1

2)|
2 dµ(z)∫

B |E(z,
1
2 + i t, 1

2)|
2 dµ(z)

→
vol(A)
vol(B)

as |t | →∞. (1-9)

Remark 1.7. Theorem 1.6 is the analogue of the Luo–Sarnak theorem [1995] for
the weight 0 Eisenstein series. Their theorem, however, is unconditional, as in their
case subconvex bounds for standard GL1 and GL2-L-functions are readily available.
As in that paper, we really prove — conditionally on any subconvex bound — the
asymptotic result∫

A
|E(z, 1

2 + i t, 1
2)|

2 dµ(z)∼
4

vol(0\H)
vol(A) log|t | as |t | →∞. (1-10)

In contrast to the case of quantum unique ergodicity of Maaß cusp forms, the rate
of convergence in (1-10) is very slow. As in [Luo and Sarnak 1995] one can prove
O(log t/ log log t).

It is understood in many arithmetic cases that the equidistribution of masses is
implied by subconvexity bounds for appropriate L-functions of degree 8; see, e.g.,
[Sarnak 2011; Soundararajan 2010b; Nelson et al. 2014].

Remark 1.8. The structure of the paper is as follows. In Section 2 we study
the double Dirichlet series Z(s, w, χ, χ ′) which arise when we address QUE of
the weight 1

2 Eisenstein series E(z, s, 1
2). In Section 3 we review the theory for

E(z, s, 1
2) with explicit computations. In Section 4, which is the main section of the

paper, we analyze (1-10) by splitting it into a cuspidal contribution and incomplete
Eisenstein series contributions. For example, in the cuspidal space we find that, for
a cusp form ψ with eigenvalue s0(1− s0), the integral∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z) (1-11)

equals a linear combination of terms of the form

cχ,χ ′±(s, w)Z(s, w, χ, χ
′)

1

0(w± 1
4)

∫
∞

0
W0,s0−

1
2
(2y)W

±
1
4 ,w−

1
2
(2y)ys−1 dy

y
(1-12)
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evaluated at (s, w) = ( 1
2 + i t, 1

2 − i t). Here cχ,χ ′±(s, w) are functions which can
easily be understood when <(w) = <(s) = 1

2 , and Wµ,ν are Whittaker functions.
In the Appendix we analyze the Mellin transform of the product of Whittaker
functions.

We can then deal with (1-12) using bounds on Z(s, w, χ, χ ′). To deal with
the cuspidal space we need subconvexity for Z(1

2 + i t, 1
2 − i t, χ, χ ′), with tn

corresponding to Hecke eigenvalues for Maaß forms. For the incomplete Eisenstein
series a similar analysis shows that we need the same type of bound for tn = τ(n),
the divisor function, for all configurations of s and w. We also use Zagier’s theory
of Rankin–Selberg integrals for functions not of rapid decay.

Remark 1.9. Although the analytic continuation of

I (s, w)=
∫
0\H

ψ(z)E(z, w, 1
2)E(z, s̄, 1

2) dµ(z)

(of which (1-11) is a special case) follows from the well-known analytic properties
of E(z, w, 1

2), its growth/decay properties jointly in (s, w) are less clear. This is
why we have to unfold and eventually analyze Z(s, w, χ, χ ′) to see that the above
integral is O(|t |−δ) for s = 1−w = 1

2 + i t when |t | →∞, assuming subconvexity
with saving δ. The Maaß–Selberg relation gives an upper bound (see, e.g., (3-15)
below), but this is not good enough to prove Theorem 1.6.

Remark 1.10. One could speculate whether the implication in Theorem 1.6 could
be reversed, i.e., to what extent bounds on integrals like (1-11) would imply bounds
on Z(s, w, χ, χ ′) via the expression (1-12). Such speculation is problematic at
least for the following reason. We have good control over the asymptotics of the
Mellin transform (see, e.g., Lemma A.1) but since integrals like (1-11) are linear
combinations of terms of the form (1-12), we cannot conclude from bounds on
integrals like (1-11) the same bounds on the individual summands. We elaborate
on this in Lemma 3.2 and Remark 3.3 below.

2. A double Dirichlet series

In this section we define and prove various properties of the double Dirichlet series.
To derive its meromorphic continuation and functional equation we proceed as in
[Brubaker et al. 2004], but with some simplifications and refinements. We show, for
instance, that knowing optimal bounds towards the Ramanujan–Petersson conjecture
is not necessary to get optimal regions of convergence. To prove the convexity
bounds we use a combination of techniques from [Blomer 2011; Blomer et al. 2014].
Although the techniques we use are certainly known to the experts in the field, we
were not able to find precise enough statements in the existing literature for the
double Dirichlet series (1-2).
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We start by introducing some notation and deriving some basic results about
Gauss sums and Dirichlet series involving Gauss sums.

Let {tn}n∈N be the coefficients of the normalized L-function of a self-dual GL2

automorphic form ψ . For good primes — and we assume that only p = 2 could
potentially be a bad prime — the Satake parameters αp, βp satisfy αp + βp = tp,
αp ·βp = 1 and

tpλ =

λ∑
j=0

α j
pβ

λ− j
p =

αλ+1
p −βλ+1

p

αp −βp
. (2-1)

The Fourier coefficients satisfy the Ramanujan–Petersson conjecture on average,
since the Rankin–Selberg method gives∑

|n|≤X

|tn|2 ∼ C X (2-2)

as X→∞. Here C is an explicit constant; see, e.g., [Iwaniec 2002, (8.15)]. The
corresponding p-factor, i.e., the local L-function, is given by

L(p)(s, ψ)=
∞∑
λ=0

tpλ

pλs = (1− tp p−s
+ p−2s)−1

= (1−αp p−s)−1(1−βp p−s)−1.

Similar but easier identities and estimates are true for the divisor function tn = τ(n),
where αp = βp = 1.

For any L-function we will write L(p)(s) for its corresponding p-factor and
L2(s) for the L-function with the 2-factor removed.

2A. Gauss sums and some related series. We now recall a few basic relevant
results about Gauss sums for real characters. Let n, d be integers with d odd and
positive and let

( n
d

)
be the Jacobi–Legendre symbol(n

d

)
=

∏
pv‖d

( n
p

)v
,

where for an odd prime p we denote by
( n

p

)
the usual Legendre symbol. The

symbol
( n

d

)
is then extended to all odd d ∈ Z as in [Shimura 1973, p. 442]; see also

[Koblitz 1984, p. 147, 187–188].
For an integer n and a positive odd integer d we define Gauss sums

Gn(d) :=
∑

m mod d

(m
d

)
e
(nm

d

)
. (2-3)

Here e(x) = e2π i x . Gauss ingeniously proved that for odd squarefree d we have
G1(d) = εd

√
d, where εd = 1 if d ≡ 1 (mod 4) and εd = i if d ≡ −1 (mod 4).
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Quadratic reciprocity states that for relatively prime odd positive integers n, d ,(n
d

)(d
n

)
= (−1)

n−1
2

d−1
2 . (2-4)

It is elementary to verify that the right-hand side equals εnεd/εnd . For odd d it
turns out to be convenient to consider

Hn(d) := ε−1
d Gn(d).

Proposition 2.1. The function Hn(d) has the following properties:

(1) For fixed n, Hn(d) is multiplicative, i.e., if d1, d2 are coprime odd positive
integers, then

Hn(d1d2)= Hn(d1)Hn(d2).

(2) If (n1, d)= 1, then

Hn1n2(d)=
(

n1

d

)
Hn2(d).

(3) Let α, β be nonnegative integers and let p be an odd prime. Then

Hpα (pβ)=


φ(pβ) if α ≥ β, β ≡ 0 (mod 2),
pβ−

1
2 (δβ≡1 (mod 2)− p−

1
2 δβ≡0 (mod 2)) if α = β − 1,

0 otherwise.

Proof. (1) follows from the Chinese remainder theorem and quadratic reciprocity;
(2) from the fact that if (n1, d)= 1 then n1m runs through a set of representatives
mod d; and (3) from elementary considerations. �

We now compute
∞∑

c=1
(c,2)=1

χ(c)Hn(c)
c2s and

∞∑
n=1

(n,2)=1

tnχ(n)Hn(c)
ns , (2-5)

where χ is a character mod q with q|8. As we shall see later these sums occur
naturally in the Fourier coefficients of the weight 1

2 Eisenstein series of 00(4), and
in Rankin–Selberg-type integrals formed from these Eisenstein series.

For n odd and positive we denote

χ̃n(c)=
( c

n

)
,

which is a character mod n. When n is squarefree its conductor is n.
For c odd we denote

χn(c)=
(n

c

)
,
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which for n odd and squarefree has an extension to all c which is a character of
conductor |n| if n≡ 1 (mod 4) and 4|n| if n≡ 3 (mod 4). See [Koblitz 1984, p. 147,
187–188].

By quadratic reciprocity (2-4) we have, for odd positive m, n,

χn(m)= χ̃n(m)
{

1 if n ≡ 1 (mod 4),
χ4(m) if n ≡ 3 (mod 4),

(2-6)

where χ4 is the primitive character mod 4. We can write any nonzero integer n
uniquely as n = n0n2

1, where n0 is squarefree and n1 > 0. We define correction
polynomials as

q(s, n, χ)=
∏

26=p|n1

vp(n1)∑
β=0

1− δβ<vp(n1)χn0(p)χ(p)p
−s

p2β(s− 1
2 )

, (2-7)

where vp is the p-adic valuation. For χ=1, we sometimes write q(s, n)=q(s, n, χ).
We define

L∗(s, n, χ)= q(s, n, χ)L2(s, χn0χ). (2-8)

Lemma 2.2. We have

∞∑
c=1

(c,2)=1

χ(c)Hn(c)
c2s =

L∗(2s− 1
2 , n, χ)

ζ2(4s− 1)
.

Proof. Using multiplicativity of Hn(d) (Proposition 2.1) we see that the sum factors
into local factors. For a prime p 6= 2 we compute the corresponding factor

Rp(s)=
∞∑
β=0

χ(pβ)Hn(pβ)
pβ2s .

Write n = n′ pα, where (n′, p)= 1. Then using Proposition 2.1 (2), (3) we have

Rp(s)=
∞∑
β=0

( n′
pβ
)
χ(pβ)Hpα (pβ)

pβ2s =

∑
β=0
β even

αφ(p
β)

pβ2s +

( n′
pα+1

)
χ(pα+1)Hpα (pα+1)

p(α+1)2s

(2-9)
Consider first α even, in which case α = 2vp(n1). Then we find

Rp(s)= 1+
α∑
β=1
β even

pβ−1(p− 1)
pβ2s +

χn0(p)χ(p)p
α+ 1

2

p(α+1)2s ,
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noting that χn0(p)=
( n′

p

)
. By induction we find

Rp(s)=
L(p)(2s− 1

2 , χn0χ)

ζ (p)(4s− 1)

( α∑
β=0
β even

pβ(1−2s)
−

α−2∑
β=0
β even

χn0(p)χ(p)p
−(2s− 1

2 ) pβ(1−2s)
)
.

Here we have used χ2
n0
(p)= 1.

Returning to (2-9), we assume instead that α is odd, in which case α−1=2vp(n1).
We find that in this case

Rp(s)= 1+
α∑
β=1
β even

pβ−1(p− 1)
pβ2s +

−pα

p(α+1)2s

= (1− p−(4s−1))

α−1∑
β=0
β even

pβ(1−2s) ,

where again we have used induction. Using that, for α odd, χn0(p)= 0, we may
write this as

Rp(s)=
L(p)(2s− 1

2 , χn0χ)

ζ (p)(4s− 1)

α−1∑
β=0
β even

pβ(1−2s).

Since χn0(p)= 0, we arrive at the desired result. �

Proposition 2.3. The function q(s, n, χ) has the following properties:

(1) If n is squarefree, then q(s, n, χ)= 1.

(2) If n = n0n2
1 with n0 squarefree and n0, n1 odd, then

q(s, n, χ)= (n2
1)

1
2−sq(1− s, n, χ).

(3) If <(s)≥ 1
2 , then q(s, n, χ)= O(nε) uniformly in <(s).

Proof. These statements are all straightforward to verify from the definition. (1) is
clear and (2) is easily verified by considering factors. Trivial estimates for <(s)≥ 1

2
lead to |q(s, n, χ)| ≤ 2#{p|n}τ(n), which gives (3). �

Write c= c0c2
1 with c0 squarefree and set v= vp(c1). We then define, for odd c,

Qψ(s, c, χ)=
∏
p|c1

tp2v − tp2v−1 χ̃c0(p)χ(p)(p
1−s
+ ps)/p+ tp2v−2 χ̃c0(p)

2/p

p2v(s− 1
2 )

.

(2-10)
Sinceψ is fixed, we shall often omit it from the notation and simply write Q(s, c, χ).
We define

L∗(s, c, ψ, χ) := Qψ(s, c, χ)L2(s, ψ ⊗ χ̃c0χ). (2-11)



Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1549

Lemma 2.4. Let c be an odd natural number. Then
∞∑

n=1
(n,2)=1

tnχ(n)Hn(c)
ns =

√
cL∗(s, c, ψ, χ).

Proof. A similar computation can be found in [Brubaker et al. 2004, Section 3].
We first show that the Dirichlet series factors into local factors. For p an odd
prime, write c = c′ pl with (c′, p) = 1, and m = pvp(m)m/pvp(m). Then using
Proposition 2.1 (1) and (2) we find

Hm(c)=
(

m/pvp(m)

pl

)(
pvp(m)

c′

)
Hpvp (m)(pl)Hm/pvp (m)(c′).

Writing m = npλ, we can write the Dirichlet series as

∞∑
n=1

(n,2p)=1

∞∑
λ=0

tnpλχ(npλ)
(npλ)s

Hnpλ(c
′ pl)

=

∞∑
n=1

(n,2p)=1

tnχ(n)Hn(c′)
( n

pl

)
ns

( ∞∑
λ=0

tpλχ(pλ)
pλs Hpλ(p

l)

(
pλ

c′

))
.

Repeating this argument for every prime p, it follows that the series factors as

∏
p 6=2

( ∞∑
λ=0

tpλ

pλs Hpλ
(

pvp(c)
)( pλ

c/pvp(c)

)
χ(pλ)

)
. (2-12)

We now compute the local factors of (2-12), i.e., we compute, for p 6= 2,

∞∑
λ=0

tpλχ(pλ)
pλs Hpλ(p

l)

(
pλ

c′

)
, (2-13)

where l = vp(c) and c′ = c/pvp(c). If l = 0 the sum reduces to

∞∑
λ=0

tpλχ(pλ)
pλs

(
pλ

c

)
= L(p)(s, ψ ⊗ χ̃c0χ),

where we have used that χ̃c(p)= χ̃c0(p) if (p, c)=1. Here c0 denotes the squarefree
part of c.

If l > 0 is even we use Proposition 2.1 (3) to see that in this case (2-13) is equal
to (

−
tpl−1 pl−1χ(pl−1)

p(l−1)s

(
pl−1

c′

)
+

∞∑
λ=l

tpλ pl−1(p− 1)χ(pλ)
pλs

(
pλ

c′

))
. (2-14)
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For tn being a Hecke eigenvalue we can use the Satake parameters and evaluate the
resulting geometric sums to see that

∞∑
λ=l

tpλχ(pλ)
pλs

(
pλ

c′

)

=
1

αp −βp

∞∑
λ=l

αλ+1
p −βλ+1

p

pλs χ(pλ)
(

pλ

c′

)

=
1

αp −βp

(
αl+1

p

pls (1−αp

(
p
c′

)
χ(p)p−s)−1

−
βl+1

p

pls (1−βp

(
p
c′

)
χ(p)p−s)−1

)
(where we have used

(( p
c′
)
χ(p)

)l
= 1),

=
L(p)(s, ψ ⊗ χ̃c0χ)

pls

·
1

αp −βp

(
αl+1

p

(
1−βp

(
p
c′

)
χ(p)p−s

)
−βl+1

p

(
1−αp

(
p
c′

)
χ(p)p−s

))
=

L(p)(s, ψ ⊗ χ̃c0χ)

pls (tpl − tpl−1

(
p
c′

)
χ(p)p−s). (2-15)

This is also true when tn = τ(n) by a similar computation, which we omit.
It follows that (2-14) can be written as

pl−1
[
−tpl−1

p(l−1)s χ̃c0(p
l−1)χ(pl−1)

+
L(p)(s, ψ⊗χ̃c0χ)

pls (p−1)
(

tpl−tpl−1

(
p
c′

)
χ(p)p−s

)]
= pl−1 L(p)(s, ψ⊗χ̃c0χ)

pls

[
−tpl−1

p−s χ̃c0(p
l−1)χ(pl−1)

(
1−tpχ̃c0(p)χ(p)p

−s
+p−2s)

+(p−1)
(

tpl−tpl−1

(
p
c′

)
χ(p)p−s

)]
= pl/2 L(p)(s, ψ⊗χ̃c0χ)

pl(s− 1
2 )+1

[ptpl−tpl−1 χ̃c0(p)χ(p)(p
1−s
+ps)+tpl−2],

using that the Hecke-eigenvalues satisfy tpl−1 tp = tpl + tpl−2 .
If instead l > 0 is odd we can again use Proposition 2.3 (3) and we find that in

this case (2-13) is equal to

tpl−1

p(l−1)s pl− 1
2

(
pl−1

c′

)
χ(pl−1)=

tpl−1

p(l−1)(s−1)− 1
2

.



Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1551

We note also that χ̃c0(p) =
( p

c0

)
= 0 since by l being odd we may conclude that

c0 is divisible by p. It follows that, in this case, L(p)(s, ψ ⊗ χ̃c0χ) = 1, and we
conclude that (2-13) can be written as

pl/2tpl−1

p(l−1)(s− 1
2 )

L(p)(s, ψ ⊗ χ̃c0χ),

which gives the desired result in this case. �

Proposition 2.5. The function Q(s, c, χ) has the following properties:

(1) If c is squarefree, then Q(s, c, χ)= 1.

(2) If c = c0c2
1 with c0 squarefree and c0, c1 odd, then

(c2
1)

1−2s Q(1− s, c, χ)= Q(s, c, χ).

Proof. Statement (1) is clear and (2) is easily verified by considering factors. �

We would like to have bounds analogous to Proposition 2.3 (3). Any bound of the
form |tpl | ≤ τ(pl)pθl implies that, when <(s)≥ 1

2 ,

|Q(s, c, χ)| ≤ τ(c)4#{p|c}cθ = O(cθ+ε). (2-16)

The Ramanujan–Petersson conjecture will give the strongest bound with θ = 0.
Since the Ramanujan–Petersson conjecture is true on average by (2-2), we can
prove that Q(s, c, χ) is bounded on average:

Lemma 2.6. For <(s)≥ 1
2 we have∑
c≤X,
c odd

|Q(s, c, χ)|2 = O(X1+ε)

uniformly in s.

Proof. Write c = c0c2
1 with c0 squarefree and c odd. It is easy to see that

|Q(s, c, χ)| ≤
∏
p|c1

(∣∣tp2vp (c1)

∣∣+ 2
∣∣tp2vp (c1)−1

∣∣+ ∣∣tp2vp (c1)−2

∣∣)
≤

∏
p|c1

4 max
i=0,1,2

∣∣tp2vp (c1)−i

∣∣
= 4#{p|c1}|td0 |, where d0 is some divisor of c2

1.

It follows that

|Q(s, c, χ)|2 ≤ 16#{p|c1}|td0 |
2
≤ 16#{p|c}

∑
d|c

|td |2.
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Using the Ramanujan–Petersson conjecture on average, (2-2), and 16#{p|c}
= O(cε),

we find ∑
c≤X

|Q(s, c, χ)|2 = O
(

X ε
∑
c≤X

∑
d|c

|td |2
)

= O
(

X ε
∑
d≤X

|td |2#{c ≤ X | d divides c}
)

= O
(

X1+ε
∑
d≤X

|td |2

d

)
= O(X1+ε). �

We are now ready to define the double Dirichlet series. Let χ4 be the primitive
character mod 4, χ4(n) =

(
−1
n

)
= (−1)(n−1)/2 for (n, 2) = 1, and let χ8 be the

primitive character mod 8 given by χ8(n)=
( 2

n

)
= (−1)

1
8 (n−1)(n+1) for (n, 2)= 1.

Let χ , χ ′ be characters mod 8, i.e., χ , χ ′ are induced from 1, χ4, χ8, or χ4χ8. We
then define

Z(s, w, χ, χ ′)= ζ2(4s− 1)
∞∑

n=1
(n,2)=1

χ(n)tn L∗(2w− 1
2 , n, χ ′)

ns−w+ 1
2

. (2-17)

It is easy to see — using Proposition 2.3 (3) and (2-8) — that for <(2w − 1
2),

<(s−w+ 1
2) large enough the series is absolutely and locally uniformly convergent.

By Lemma 2.2 we see that

Z(s, w, χ, χ ′)= ζ2(4s− 1)ζ2(4w− 1)
∞∑

n=1
(n,2)=1

tnχ(n)

ns−w+ 1
2

∞∑
c=1

(c,2)=1

χ ′(c)Hn(c)
c2w .

Interchanging summations and using Lemma 2.4 we see that this equals

Z(s, w, χ, χ ′)= ζ2(4s− 1)ζ2(4w− 1)
∞∑

c=1
(c,2)=1

χ ′(c)L∗(s−w+ 1
2 , c, ψ, χ)

c2w− 1
2

.

(2-18)
Note that, since

ζ2(4s− 1)ζ2(4w− 1)=
∞∑

n=1
(n,2)=1

σ2−4(s−w+ 1
2 )
(n)

n2(2w− 1
2 )

,

we also have the series representation

Z(s, w, χ, χ ′)=
∞∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w− 1
2

, (2-19)



Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1553

where
L∗∗(s, ψ, c, χ)= Q∗(s, c, χ)L2(s, ψ ⊗ χ̃c0χ)

with
Q∗(s, c, χ)=

∑
l2|c

σ2−4s(l)Q(s, c/ l2, χ). (2-20)

Remark 2.7. The two representations (2-17), (2-18) will be instrumental in proving
meromorphic continuation of Z(s, w, χ, χ ′) to C2. The proof follows the strategy
outlined in [Bump et al. 1996; Diaconu et al. 2003]. The choice of arguments in
the definition of (2-17), 2w− 1

2 and s−w+ 1
2 , might seem a bit strange, but for

the purpose we have in mind it is the most natural one. We shall see that with this
choice the functional equations are especially simple.

2B. Functional equations of the standard L-functions. We now recall the func-
tional equations for the two L-functions L(s, χn0χ) and L(s, ψ ⊗ χ̃c0χ).

2B1. GL1. We will use the functional equation for L2(s, χn0χ) for n0 a squarefree
odd natural number, and χ mod 8: Let χ8

0 be the trivial character mod 8. We
have that χn0χ is odd precisely if χ = χ4χ

8
0 or χ = χ4χ8. Also it is known (see

[Davenport 2000, Chapter 5], for example) that χn0χ is induced from the primitive
character

(χn0χ)
∗
=



χn0 if n0 ≡ 1 (mod 4), χ = χ8
0 ,

χ4χ−n0 if n0 6≡ 1 (mod 4), χ = χ8
0 ,

χ4χn0 if n0 ≡ 1 (mod 4), χ = χ4χ
8
0 ,

χ−n0 if n0 6≡ 1 (mod 4), χ = χ4χ
8
0 ,

χ8χn0 if n0 ≡ 1 (mod 4), χ = χ8χ
8
0 ,

χ4χ8χ−n0 if n0 6≡ 1 (mod 4), χ = χ8χ
8
0 ,

χ4χ8χn0 if n0 ≡ 1 (mod 4), χ = χ4χ8χ
8
0 ,

χ8χ−n0 if n0 6≡ 1 (mod 4), χ = χ4χ8χ
8
0 .

It follows that

L(s, (χn0χ)
∗)=

(
δn0,χ

π

)1
2−s 0

( 1
2(1− s+ κχ )

)
0
( 1

2(s+ κχ )
) L(1− s, (χn0χ)

∗), (2-21)

where

κχ =

{
0 if χ = χ8

0 , χ8,

1 if χ = χ4χ
8
0 , χ4χ8,

δn0,χ =


n0 if χ = χ8

0 , n0 ≡ 1 (mod 4) or χ = χ4χ
8
0 , n0 6≡ 1 (mod 4),

4n0 if χ = χ8
0 , n0 6≡ 1 (mod 4) or χ = χ4χ

8
0 , n0 ≡ 1 (mod 4),

8n0 if χ = χ8, χ4χ8.

(2-22)

Note that all the functional equations are even, i.e., G1((χn0χ)
∗)

iκχ
√
δn0,χ

= 1.
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We have

L(s, χn0χ)=
∏

p
∣∣8n0/δn0,χ

(1− (χn0χ)
∗(p)p−s)L(s, (χn0χ)

∗)

and also

L2(s, χn0χ)= L2(s, (χn0χ)
∗)= L(s, (χn0χ)

∗)h2(s, n0, χ), (2-23)

where h2(s, n0, χ) is either 1, 1− 2−s , or 1+ 2−s . Since (χn0χ)
∗(2) depends only

on χ and n0 mod 8, h2 has the same dependence.

2B2. GL2. We now turn to L2(s, ψ⊗χ̃c0χ) for c0 a squarefree odd natural number,
and χ mod 8. The character χ̃c0 is primitive of conductor c0, and is even precisely
when χ̃c0(−1) = χ4(c0) = 1, i.e., when c0 ≡ 1 (mod 4). A reference on twisting
of automorphic forms (at least for modular forms) is [Iwaniec and Kowalski 2004,
Section 14.8].

We need to take special care of 2-factors. For any primitive automorphic form f
for GL2 we define a polynomial p2, f (z) of degree 1 or 2, depending on whether 2
is ramified or not, by

1
p2, f (z)

=

∞∑
j=0

t2 j ( f )z j , (2-24)

where tn( f ) are the coefficients of L(s, f ). In particular the 2-factor of L(s, f )
equals p−1

2, f (2
−s). If p2, f is of degree 2, p2, f (z)= (1−α2z)(1−β2z), the estimate

|α2|, |β2|<21/5 [Shahidi 1988, p. 549] shows that p2, f (±2−s) is uniformly bounded
away from 0 at <(s)≥ 1

2 . If p2, f (z) is of degree 1, the explicit value of t2 (= 0 or
±1/
√

2) shows that p2, f (±2−s) does not vanish on <(s)≥ 1
2 and, as a result,

1
p2, f (±2−s)

= O(1) (2-25)

uniformly in f when <(s)≥ 1
2 .

We assume now that ψ is primitive Maaß Hecke form for 00(4) with real
Fourier coefficients. The twisted function ψ ⊗χ is still a Hecke form with trivial
character χ2 but not necessarily primitive. Let g = (ψ ⊗χ)∗ be the primitive form
whose Fourier coefficients agree with those of ψ⊗χ except possibly at the 2-factor.
This is a cusp form of level N = Nψ,χ = 2 j , a divisor of 64. For fixed ψ there are 4
such forms g, as there are 4 characters mod 8. We have that L2(s, ψ⊗χ)= L2(s, g)
since the Fourier coefficients of g and ψ ⊗χ agree on odd numbers.

We now twist g by χ̃c0 . Since the conductor of χ̃c0 is relatively prime to the level
of g, the result is a primitive cusp form of level N · c2

0. The twisted L-function
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L(s, ψ ⊗ χ̃c0χ) agrees with L(s, g⊗ χ̃c0) outside the prime 2, so that

L2(s, g⊗ χ̃c0)= L2(s, ψ ⊗ χ̃c0χ).

We have the functional equation of g⊗ χ̃c0 :

L(s, g⊗χ̃c0)

= ε(g, χ̃c0)

(
Nc2

0

π2

)1
2−s ∏
ε∈{±1}

0
( 1

2(1−s+κχ,ψ,c0+ε(s0−
1
2))
)

0
(1

2(s+κχ,ψ,c0+ε(s0−
1
2))
) L(1−s, g⊗χ̃c0). (2-26)

This functional equation involves the root number ε(g, χ̃c0) that depends on c0

mod 8, as it is given by

ε(g)χ2(c0)χ̃c0(2
j )G(χ̃c0)

2/c0,

where ε(g) is the root number of g. We have

L2(s, ψ ⊗ χ̃c0χ)= H2(s, g, c0)L(s, g⊗ χ̃c0),

where
H2(s, g, c0)= p2,g⊗χ̃c0

(2−s)= p2,g(χ̃c0(2)2
−s). (2-27)

The dependence of H2(s, g, c0) on c0 is only mod 8, as it involves χ̃c0(2). We note
also that κχ,ψ,c0 = κχ,ψ χ̃c0(−1) depends only on c0 mod 4 since χ̃c0(−1)= χ4(c0).

Remark 2.8. In the GL1×GL1 case, i.e., if ψ = ψτ and tn = τ(n), we have

L(s, ψτ ⊗ χ̃c0χ) :=

∞∑
n=1

τ(n)χ̃c0χ(n)
ns = L(s, χ̃c0χ)

2.

We see (after using quadratic reciprocity) that the analogues of the results of this
section follow from Section 2B1.

2C. Average bounds on twisted L-functions. Before we can give the proof of the
meromorphic continuation we recall a few facts concerning the involved L-series.
We first recall an average bound on L-functions twisted with quadratic characters.
The main ingredient in proving such a bound is Heath-Brown’s large sieve estimate
for quadratic characters. He proves [1995, Theorem 1] that for any positive ε > 0
there exists a constant C > 0 such that for any positive integers M , N and for
arbitrary complex numbers a1, . . . , aN we have∑

m≤M

∗

∣∣∣∣∑
n≤N

∗

an

( n
m

)∣∣∣∣2 ≤ C(M N )ε(M + N )
∑
n≤N

∗

|an|
2. (2-28)

Here a ∗ means summation over positive odd squarefree integers. From this one
can prove the following.
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Theorem 2.9. For <(s)≥ 1
2 ,∑

1<d0≤X
d0 odd,

squarefree

|L(s, χd0χ)|
4
= O((X |s|)1+ε), (2-29)

∑
1<d0≤X
d0 odd,

squarefree

|L(s, ψ ⊗ χ̃d0χ)|
2
= O((X |s|)1+ε). (2-30)

The bound (2-29) is already in [Heath-Brown 1995, Theorem 2] and (2-30)
is essentially proved in the same way. See also [Soundararajan and Young 2010,
Section 2.3; Chinta and Diaconu 2005, Lemma 3.2]. These bounds give the Lindelöf
hypothesis on average in the character aspect, while keeping the convexity bound
in the s aspect when <(s)= 1

2 .

Remark 2.10. By considering 2-factors it is straightforward to see that the above
bounds (2-29) and (2-30) are true also if we remove 2-factors, i.e., replace L by L2.

2D. Meromorphic continuation and functional equations of Z(s,w, χ, χ ′). We
first analyze Z(s, w, χ, χ ′) from the representation (2-17).

Theorem 2.11. The function (w− 3
4)Z(s, w, χ, χ

′) is analytic in

D1 = {(s, w) : <(s−w) > 1
2 ,<(s+w) >

3
2},

and satisfies a functional equation α : (s, w) 7→ (s, 1−w) given by

(1−2−(3−4w))Z(s, w, χ, χ ′)=
0
( 1

2(
3
2−2w+κχ ′)

)
0
( 1

2(2w−
1
2+κχ ′)

) ∑
χ ′′mod 8

pχ ′′(w)Z(s,1−w,χ ′′,χ ′).

Here the pχ ′′(w) are polynomials in 2−w. In particular they are bounded in vertical
strips. Furthermore, away from w = 3

4 ,

Z(s,w,χ,χ ′)=
{

O((|w|+1)
1
4+ε) if 1

2 ≤<w ≤ K ,<(s−w)≥ 1
2+δ,

O((|w|+1)
1
4+1−2<(w)+ε) if −K ≤<w ≤ 1

2 ,<(s+w)≥
3
2+δ,

for any fixed K > 1
2 and δ > 0.

Remark 2.12. We shall see in the proof that the factor (w− 3
4) is only necessary

when χ ′ is trivial. We note also that the implied constant may depend on ψ .
Moreover, the bounds given above are not necessarily optimal. All we need for
Theorem 2.15 and Lemma 2.18 below is polynomial control.

Proof. We remark that the factor ζ2(4s − 1) appearing in (2-17) does not have a
pole in the region D1. Thus we only have to study the series from (2-17) to prove
the analytic properties of (w− 3

4)Z(s, w, χ, χ
′).
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We consider the regions where the series representation (2-17) is absolutely
convergent. We consider first the sum over all nonperfect squares (n 6= m2).

If <(w)≥ 1
2 (which corresponds to <(2w− 1

2)≥
1
2 ) we use (2-2), Theorem 2.9,

Proposition 2.3 (3), and Cauchy–Schwarz to see that, away from w = 3
4 ,∑

n≤X
n 6=m2

∣∣tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)
∣∣= O(X1+ε

|w|
1
4+ε). (2-31)

It follows that the nonperfect square contribution is convergent for <(s−w)≥ 1
2+δ

and <(w) ≥ 1
2 and that, in the region <(s −w) ≥ 1

2 + δ, <(w) ≥
1
2 , it is analytic

and bounded by O(|w|
1
4+ε).

For <(w) ≤ 1
2 , we use Proposition 2.3 (2) and the functional equation for

L2(2w − 1
2 , χn0χ

′) to see that the product q(2w − 1
2 , n, χ ′)L2(2w − 1

2 , χn0χ
′)

equals

n1−2w
(
δn0,χ ′

n0π

)1−2w0
( 1

2(
3
2−2w+κχ ′)

)
0
( 1

2(2w−
1
2+κχ ′)

)q(2(1−w)−1
2 ,n,χ

′)L2(2(1−w)− 1
2 ,χn0χ

′)

times a factor h2(2w− 1
2 , n0, χ)

/
h2(2(1−w)− 1

2 , n0, χ), which is bounded when
<(w)≤ 1

2 (recall (2-23) for the definition of h2). We notice that δn0,χ ′/n0 is 1, 4,
or 8, and that in bounded w-strips the quotient of 0-factors is O(|w|1−2<(w)). It
follows that in bounded w-strips and for <(w)≤ 1

2 we have∑
n≤X
n 6=m2

∣∣n2w−1tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)
∣∣

= O(|w|1−2<(w))
∑
n≤X

∣∣tnχ(n)q(2(1−w)− 1
2 , n, χ ′)L2(2(1−w)− 1

2 , χn0χ
′)
∣∣

= O(|w|
1
4+1−2<(w)+εX1+ε),

where in the last line we have used the same argument as used to bound (2-31). It
follows that when <(s+w) ≥ 3

2 + δ, <(w) ≤
1
2 the nonsquare contribution from

the series in (2-17) converges absolutely and that in this region this contribution is
analytic and bounded by O(|w|

1
4+1−2<(w)+ε).

We next consider the sum over all perfect squares n = m2,

L2(2w− 1
2 , χ

′)

∞∑
m=1

(m,2)=1

tnχ(n)q(2w− 1
2 ,m2, χ ′)

m2(s−w+ 1
2 )

.

Using Proposition 2.3 and (2-2) we easily see that the sum is convergent in

{(s, w) : <(s−w) > 0,<(s+w) > 1},
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and that the factor in front has a simple pole at w = 3
4 if χ ′ is trivial. That this

contribution has the desired growth properties follows from the convexity estimate
on L2(2w− 1

2 , χ
′).

Having established that (w− 3
4)Z(s, w, χ, χ

′) is analytic in D1, we now show
that it satisfies a functional equation here. For (s, w) in this region we use the
functional equation (2-21) and Proposition 2.3 and the subsequent discussion to see
that Z(s, w, χ, χ ′)/ζ2(4s− 1) equals
∞∑

n=1
(n,2)=1

tnχ(n)q(2w− 1
2 , n, χ ′)L2(2w− 1

2 , χn0χ
′)

ns−w+ 1
2

=

∞∑
n=1

(n,2)=1

n1−2w
(
δn0,χ ′

n0π

)1−2w h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

0
( 1

2(
3
2 − 2w+ κχ ′)

)
0
( 1

2(2w−
1
2 + κχ ′)

)
·

tnχ(n)q(2(1−w)− 1
2 , n, χ ′)L2(2(1−w)− 1

2 , χn0χ
′)

ns−w+ 1
2

= π2w−10
( 1

2(
3
2 − 2w+ κχ ′)

)
0
( 1

2(2w−
1
2 + κχ ′)

) ∞∑
n=1

(n,2)=1

h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

(
δn0,χ ′

n0

)1−2w

·
tnχ(n)q(2(1−w)− 1

2 , n, χ ′)L2(2(1−w)− 1
2 , χn0χ

′)

ns−(1−w)+ 1
2

.

We split the sum according to n mod 8, and notice that for fixed χ ′ the function

h2(2w− 1
2 , n0, χ

′)

h2(2(1−w)− 1
2 , n0, χ ′)

(
δn0,χ ′

n0

)1−2w

is the same fraction of Dirichlet polynomials in 2−w throughout each of these
sums, so that we can put them outside the sums. Using again that the indicator
function of residue class mod 8 can be written as a linear combination of characters
mod 8 (at least on the odd numbers), we arrive at the functional equation for
Z(s, w, χ, χ ′). We note that the factor 1− 2−(3−4w) is the product of all possible
h2(2(1 − w) − 1

2 , n0, χ
′). This shows that the pχ ′′(w) are in fact polynomials

in 2−w. �

We now apply the same type of analysis to the second series representation of
Z(s, w, χ, χ ′) given in (2-18). Recall from Section 2B2 that g denotes (ψ ⊗χ)∗,
where χ is one of the 4 characters mod 8. Let

V (s, w)=
∏

g

p2,g(2−(w−s+ 1
2 ))p2,g(−2−(w−s+ 1

2 )),

where p2,g(z) is as in (2-24).
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Theorem 2.13. The function (s−w− 1
2)

2 Z(s, w, χ, χ ′) is analytic in

D2 = {(s, w) : <(s) > 3
4 ,<(w) >

3
4},

and satisfies a functional equation β : (s, w) 7→ (w, s) given by

V (s, w)Z(s, w, χ, χ ′)

=

∑
k=0,1
χ ′′ mod 8

∏
ε∈{±1}

0
( 1

2(1−(s−w+
1
2)+k+ε(s0−

1
2))
)

0
( 1

2((s−w+
1
2)+k+ε(s0−

1
2))
) Pψ,χ,χ ′′(s,w)Z(w,s,χ,χ ′′).

Here the Pψ,χ,χ ′′(s, w) are polynomials in 2−(s−w). In particular they are functions
bounded in vertical strips. Furthermore, away from s−w− 1

2 = 0,

Z(s, w, χ, χ ′)=
{

O((|s−w|+1)
1
2+ε) for 3

4+δ ≤<w ≤<(s)≤ K ,
O((|s−w|+1)

3
2−2<(s−w+ 1

2+ε)) for 3
4+δ ≤<s ≤<(w)≤ K ,

where K , δ are any constants with K > 3
4 and δ > 0.

Remark 2.14. We shall see in the proof that the factor (s−w− 1
2)

2 is only necessary
when ψ is GL1×GL1 and χ is trivial. We note also that the implied constant may
depend on ψ . Moreover, as before the bounds given above are not necessarily
optimal, as all we need for Theorem 2.15 and Lemma 2.18 below is polynomial
control.

Proof. We now want to find the region of absolute convergence of (2-18). Consider
first the region <(s−w+ 1

2)≥
1
2 . We can use Cauchy–Schwarz, Theorem 2.9, and

Lemma 2.6 to see that the sum over nonperfect squares satisfies∑
c≤X

c 6=r2,c odd

∣∣χ ′(c)Q(s−w+ 1
2 ,c,χ)L2(s−w+ 1

2 ,ψ⊗χ̃c0χ)
∣∣=O

(
X1+ε(1+|s−w|)

1
2+ε
)
.

Hence the sum over these terms is absolutely convergent when <(2w− 1
2)≥ 1+ δ.

The sum over the perfect squares potentially has a double pole at s−w+ 1
2 = 1:

For tn = τ(n) we have L2(s, ψ ⊗χ8
0 )= ζ

2
2 (s). The sum over perfect squares is

L2(s−w+ 1
2 , ψ ⊗χ)

∞∑
c=1
c=r2

χ ′(c)Q(s−w+ 1
2 , c, χ)

c2w− 1
2

,

where the sum is again absolutely convergent for <(2w− 1
2)≥ 1+δ, using Cauchy–

Schwarz and Lemma 2.6. It follows that, when <(s −w+ 1
2) ≥

1
2 , the sums are

convergent for <(w) ≥ 3
4 + δ, and hence Z(s, w, χ, χ ′) is analytic in this region

except for a potential double polar line at s−w+ 1
2 = 1. We also find that in this

region we have the bound Z(s, w, χ, χ ′)= O((1+ |s−w|)
1
2+ε).
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Turning now to <(s −w+ 1
2) ≤

1
2 , we use the functional equation (2-26) and

Proposition 2.5 (2) to move to a region where we can use the same bounds as for
<(s−w+ 1

2)≥
1
2 :

Z(s, w, χ, χ ′)
ζ2(4s−1)ζ2(4w−1)

=

∞∑
c=1

(c,2)=1

1

c2w− 1
2

χ ′(c)Q(s−w+1
2 , c, χ)L2(s−w+1

2 , ψ⊗χ̃c0χ)

=

∞∑
c=1

(c,2)=1

1

c2w− 1
2

χ ′(c)c−2(s−w)Q(1−(s−w+
1
2
), c, χ)ε(ψ, χ̃c0χ)

(
N1

π2

)−(s−w)

×
0
(1

2(1−(s−w+
1
2)+κχ,ψ,c0+(s0−

1
2))
)
0
( 1

2(1−(s−w+
1
2)+κχ,ψ,c0−(s0−

1
2))
)

0
( 1

2((s−w+
1
2)+κχ,ψ,c0+(s0−

1
2))
)
0
( 1

2((s−w+
1
2)+κχ,ψ,c0−(s0−

1
2))
)

×
H2(s−w+ 1

2 , g1, c0)

H2(1−(s−w+ 1
2), g1, c0)

L2(1−(s−w+1
2), ψ⊗χ̃c0χ), (2-32)

where g1 = (ψ⊗ χ̃c0χ)
∗ with level N1c2

0 for N1 a divisor of 64 depending on χ , ψ
(recall (2-27) for the definition of H2). Using the same trick as before of splitting
the sum into perfect squares and nonperfect squares, and using the bounds from
Lemma 2.6 and Theorem 2.9 as well as the Stirling bound on the Gamma factors
and a trivial bound on the 2-factors, we find that Z(s, w, χ, χ ′) is analytic in

{(s, w) : <(s−w+ 1
2)≤

1
2 ,<s ≥ 3

4 + δ}

and bounded, as Z(s, w, χ, χ ′)= O
(
1+ |s−w|

1
2+ε|s−w|1−2<(s−w+ 1

2 )
)

for <(s),
<(w) bounded in this region.

We have established that Z(s, w, χ, χ ′) is analytic in D2. We now show that it
also satisfies a functional equation in this region. Consider (2-32). We noticed that
ε(ψ, χ̃0χ), κχ,ψ,c0 , and H2(s, g1, c0) depend only on c0 modulo 8 (see Section 2B2).
We split the sum into residue classes modulo 8 and we can put these data outside
the sum. Since H2(1−(s−w+ 1

2), g1, c0) can have zeros in the region we multiply
the left-hand side with all possible expressions of it, which is V (s, w), and arrive
at the desired functional equation. �

Using the two previous theorems we can now show that Z(s, w, χ, χ ′) admits a
meromorphic continuation to all of C2.

Theorem 2.15. The function

Z∗(s, w, χ, χ ′)= (s−w− 1
2)

2(s+w− 3
2)

2(w− 3
4)(s−

3
4)Z(s, w, χ, χ

′) (2-33)
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1

1

<(w)

<(s)

Figure 1. D1 ∪ D2.

admits an analytic continuation to (s, w) ∈ C2 with at most polynomial growth for
<(s), <(w) in bounded regions.

Proof. We use repeatedly the functional equations in Theorems 2.11 and 2.13. We
notice that these two theorems show that Z∗(s, w, χ, χ ′) is analytic in the union of
the two overlapping sets

D1 = {(s, w) : <(s−w) > 1
2 ,<(s+w) >

3
2},

D2 = {(s, w) : <(s) > 3
4 ,<(w) >

3
4},

since (w− 3
4)Z(s, w, χ, χ

′) is analytic in D1 and (s −w− 1
2)

2 Z(s, w, χ, χ ′) is
analytic in D2. (See Figure 1.)

We now use the group of functional equations generated by the two functional
equations

α : (s, w) 7→ (s, 1−w), β : (s, w) 7→ (w, s).

They generate a group of order 8 isomorphic to the dihedral group D4 of order 8.
We note that α2

= β2
= Id. Using β, we see that (s − 3

4)Z(s, w, χ, χ
′) is a

holomorphic function of at most bounded polynomial growth (bounding the ratio
of Gamma functions using Stirling asymptotics) in D3 = βD1, which then extends
Z∗(s, w, χ, χ ′) to D1∪D2∪D3. We notice that the Gamma factor on the right-hand
side of the functional equation in Theorem 2.13 and V (s, w)−1 does not have poles
when <(w− s) > 0 (by (2-25) and properties of the Gamma function).

Using α, we extend Z∗(s, w, χ, χ ′) analytically to D1∪D2∪βD1∪αD2∪αβD1.
We notice that the 2 factor (1−2−(3−4w))−1 and the Gamma factor in Theorem 2.11
are analytic when <(w) < 3

4 . The reflection α of the double polar line s−w = 1
2

in D2 produces the double polar line s+w = 3
2 in αD2.
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1

1

<(w)

<(s)

1

1

<(w)

<(s)

The regions D4 = βαD2, D5 = βαβD1, and D6 = αβαD2 = αD4 can be dealt
with using Theorems 2.11 and 2.13 in the same way and no new polar lines are
introduced, neither due to the 2 factors, nor the Gamma factors.

1

1

<(w)

<(s)

The function in (2-33) is now extended to a holomorphic function on the complement
of the domain with tube given by the shaded region. It is bounded polynomially for
<(w), <(s) bounded. We can therefore use Bochner’s tube theorem (see [Diaconu
et al. 2003, Propositions 4.6 and 4.7 and the argument on p. 341]) to extend the
holomorphic function to the convex hull of this region (which is C2) with at most
polynomial bounds for (<(s),<(w)) in compact sets. Therefore, Z(s, w, χ, χ ′)
has the same properties, apart from being meromorphic with the specified polar
lines in (2-33). �

Remark 2.16. Combining Theorems 2.11 and 2.13 we note that α◦β◦α◦β(s, w)=
(1− s, 1−w), and it follows that there exist functions αρ,ρ′,χ,χ ′(s, w) bounded in
vertical strips such that

F(s, w)Z(s, w, χ, χ ′)

=

∑
k̄∈{0,1}4

G(1− s, 1−w, k̄)
G(s, w, k̄)

∑
ρ,ρ′ mod 8

αk̄,ρ,ρ′,χ,χ ′(s, w)Z(1− s, 1−w, ρ, ρ ′), (2-34)
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where

G(s, w, k̄) := 0
( 1

2(2w−
1
2+k1)

) ∏
ε1∈{±1}

0
( 1

2(s+w−
1
2+k2+ε1(s0−

1
2))
)

·0
( 1

2(2s− 1
2+k3)

) ∏
ε2∈{±1}

0
(1

2(s−w+
1
2+k4+ε2(s0−

1
2))
)

(2-35)

and

F(s, w) := (1− 2−(3−4w))(1− 2−(3−4s))V (s, w)V (w, 1− s).

Using
0( 1

2(1− z+ 1))

0( 1
2(z+ 1))

=
0(1

2(1− z))

0(1
2 z)

cot(π z/2) we see that

G(1− s, 1−w, k̄)
G(s, w, k̄)

=
G(1− s, 1−w, 0)

G(s, w, 0)
cotk̄(s, w),

where

cotk̄(s, w)= cotk1

(
π(2w− 1

2)

2

) ∏
ε1∈{±1}

cotk2

(
π(s+w− 1

2 + ε1(s0−
1
2))

2

)

· cotk3

(
π(2s− 1

2)

2

) ∏
ε2∈{±1}

cotk4

(
π(s−w+ 1

2 + ε2(s0−
1
2))

2

)
.

Away from poles of cot we have uniform bounds cot( 1
2π z)= i sign(y)+ O(e−πy),

so we see that cotk̄(s, w) is bounded in vertical strips (for the arguments away from
the poles of cotk̄). It follows that the functional equation (2-34) can be written
simply as

F(s, w)Z(s, w, χ, χ ′)

=
G(1− s, 1−w, 0)

G(s, w, 0̄)

∑
ρ,ρ′mod 8
k̄∈{0,1}4

βk̄,ρ,ρ′,χ,χ ′(s, w)Z(1− s, 1−w, ρ, ρ ′), (2-36)

where the functions βk̄,ρ,ρ′,χ,χ ′(s, w) are bounded in vertical strips (away from any
poles).

2E. Bounds on Z(s,w, χ, χ ′). In this section we bound Z(s, w, χ, χ ′) when
<(s)=<(w)= 1

2 . Recall that in (1-6) we defined the analytic conductor to be

q(t, u) := (1+ |t |)(1+ |t + u|)2(1+ |u|). (2-37)

Theorem 2.17. Assume (1-4). Then

Z( 1
2 + i t, 1

2 + iu, χ, χ ′)= O(q(t, u)
1
4+ε).
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Unconditionally,

Z(1
2 + i t, 1

2 + iu, χ, χ ′)= O
(
(q(t, u)(1+ |t − u|)2)

1
4+ε
)
.

We call the bound obtained in Theorem 2.17 the convexity bound. Any bound of
the form O(q(t, u)

1
4−δ) is called a subconvex bound.

To prove Theorem 2.17 we first prove an approximate functional equation similar
to the one in [Blomer et al. 2014, Lemma 4.2].

Lemma 2.18. Let t , u ∈ R and χ , χ ′ mod 8. There exist smooth functions
W± : R+→ C depending on u, t , and the characters satisfying

y j d j

dy j W±(y)= O(1+ y)−A

for all j , A ∈ N0, uniformly in u, t , such that

Z(1
2 + i t, 1

2 + iu, χ, χ ′)

=

∑
ρ,ρ′ mod 8

∑
±

∞∑
c=1

ρ ′(c)L∗∗( 1
2 ± i(t − u), ψ, c, ρ)

c
1
2±2iu

W±

(
c

√
q(t, u)

)
.

Proof. Recall 1/ cos(z) is holomorphic in the strip |<(z)| < π/2 and satisfies
1/ cos(z) = Oε0(e

−|z|) for |<(z)| ≤ π/2− ε0. For η(log 2)/(π i) bounded away
from Z, the function Pη(z)= (1−2η−z)(1−2η+z)/(1−2η)2 is uniformly bounded
in vertical strips, holomorphic in C, even in z, with a simple zero at η, and satisfies
Pη(0)= 1. For a given multiset B let

HB(z)=
(

cos
(
π z
3A

))−12A ∏
η∈B

Pη(z),

which is O(e−4π |z|) for, say, |<(z)| ≤ (3
2 − δ)A with δ > 0 sufficiently small. For

an appropriate choice of multiset B = Bt,u we set Ht,u(z) = HBt,u (z) so that the
integrand of

1
2π i

∫
(1)

F(s+z, w+z)
F(s, w)

Z(s+z, w+z, χ, χ ′)
G(s+z, w+z, 0)

G(s, w, 0)
Ht,u(z)

dz
z

(2-38)

is holomorphic in the entire z-plane except for a simple pole at z = 0. (The function
Ht,u has been used to remove the poles of Z(s+ z, w+ z, χ, χ ′).) Also it has rapid
decay in z on vertical lines due to Theorem 2.15. Moving the line of integration to
<(s)=−1, we see that (2-38) equals

Z(s, w, χ, χ ′)

+
1

2π i

∫
(−1)

F(s+ z, w+ z)
F(s, w)

Z(s+ z, w+ z, χ, χ ′)
G(s+ z, w+ z, 0)

G(s, w, 0)
Ht,u(z)

dz
z
.
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Using the functional equation (2-36) and the change of variable z 7→ −z, the last
integral equals∑
ρ,ρ′mod 8
k̄∈{0,1}4

1
2π i

∫
(1)

βk̄,ρ,ρ′,χ,χ ′(s− z, w− z)

F(s, w)
Z(1− s+ z, 1−w+ z, ρ, ρ ′)

×
G(1− s+ z, 1−w+ z, 0)

G(s, w, 0)
Ht,u(z)

dz
z
.

Thus there exist functions γk̄,ρ,ρ′,χ,χ ′,±(x, x ′), bounded if <(x) = <(x ′) = −1
2

(note that using (2-25) we see that F(s, w)−1 is uniformly bounded), such that
Z(1

2 + i t, 1
2 + iu, χ, χ ′) equals∑

±

ρ,ρ′mod 8
k̄∈{0,1}4

1
2π i

∫
(1)
γk̄,ρ,ρ′,χ,χ ′,±(

1
2±i t−z, 1

2±iu−z)Z(1
2±i t+z, 1

2±iu+z, ρ, ρ ′)

×
G( 1

2 ± i t + z, 1
2 ± iu+ z, 0)

G(1
2 + i t, 1

2 + iu, 0)
Ht,u(z)

dz
z
.

Using the series representation (2-19) we arrive at the result with W±(y) equal to∑
k̄∈{0,1}4

1
2π i

∫
(1)
γk̄,ρ,ρ′,χ,χ ′,±(

1
2 ± i t − z, 1

2 ± iu− z)
(
y
√

C ′(t, u)
)−2z

×
G( 1

2 ± i t + z, 1
2 ± iu+ z, 0)

G(1
2 + i t, 1

2 + iu, 0)
Ht,u(z)

dz
z
.

From Stirling’s formula we find that 0(s+ z)/0(s)= O((1+ |s|)<(z)eπ |z|/2) uni-
formly for s, z in bounded strips away from poles. It follows that we have

G(1
2 ± i t + z, 1

2 ± iu+ z, 0)

G( 1
2 + i t, 1

2 + iu, 0)
= O(q(u, t)<(z)e2π |z|).

By shifting the contour to σ and differentiating under the integral sign we see that

y j ∂
j W±
∂ j y

= O
(

y−2σ
∫
(σ )

e(−4π+2π)|z| (1+ |z|)
j

|z|
dz+ δ j=0,σ<0

)
for −δ ≤ σ < (3

2 − δ)A. The last term comes from the pole at z = 0. For y ≤ 1
we can choose σ = −δ/2, and for y > 1 we choose σ = A and find the desired
bound. �

Proof of Theorem 2.17. Let ε > 0. For <(z)= 1
2 we have, assuming (1-4),∑

c≤Y
c odd

|L∗∗(z, ψ, c, ρ)| = O
(
Y 1+ε(1+ |z|)a+ε

)
(2-39)

with a = 0. Unconditionally, (2-39) holds with a = 1
2 , as is straightforward to verify

from Lemma 2.6, Theorem 2.9 (2-30), and Cauchy–Schwartz.
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It follows that for an appropriate choice of A in Lemma 2.18 we have∑
c>q(u,t)

1
2+ε

|L∗∗(1
2 ± i(t − u), ψ, c, ρ)|

c
1
2

∣∣∣∣W±( c
√
q(t, u)

)∣∣∣∣≤Cε((1+|t−u|)aq(u, t)ε).

It follows also that∑
c≤q(u,t)

1
2+ε

|L∗∗(1
2 ± i(t − u), ψ, c, ρ)|

c
1
2

= O
(
q(u, t)

1
4+ε(1+ |t − u|)a+ε

)
.

Theorem 2.17 now follows from the approximate functional equation. �

Remark 2.19. We notice that for the special configuration w= 1− s the conductor
drops to essentially

(1+ |t |)(1+ |u|).

This configuration will be the relevant one in Theorem 4.3 below.

Remark 2.20. One could speculate whether using another functional equation could
lead to a smaller conductor. During the proof of Theorem 2.17, or more precisely in
the proof of the approximate functional equation Lemma 2.18, we have made certain
choices: we have chosen a particular functional equation (s, w)→ (1− s, 1−w)
and a particular series representation (2-19). In principle, there is nothing that
prohibits running the same type of argument with the other series representation
(2-17) and/or another functional equation.

Let us consider what happens if we make other choices. If we use (2-17) and
if <(z)= 1 and <(s)= <(w)= 1

2 , then the function Z(s+ z, w, χ, χ ′) in (2-38)
is evaluated in D1, where the series representation (2-17) is convergent. Similarly,
if we consider (2-19) and if <(z) = 1 and <(s) = <(w) = 1

2 , then the function
Z(s + z, w+ z, χ, χ ′) is evaluated in D2, where the series representation (2-19)
is convergent. In order for the argument in Lemma 2.18 to work we need to use
a functional equation γ : C2

→ C2 with the property that, when <(z) = 1 and
<(s)=<(w)= 1

2 , the numbers γ (s− z, w− z)/γ (s− z, w) lie in D1 or D2. Only
in this case is the integrand evaluated where the double Dirichlet series has a
series representation (after moving the line of integration to <(z)=−1, using the
functional equation and making a change of variable z→−z).

When we are using (2-19) we assume (1-4). When we are using (2-17) we make
the similar assumption for this series, namely that∑

n≤X
(n,2)=1

|tn L∗(w, n, χ ′)| = O
(
X1+ε(1+ |w|)ε

)
for <(w)= 1

2 .

With these restrictions we list the possible “analytic conductors” in Table 1.
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Functional equation Series repn. Analytic conductor

βαβ : (s, w)→ (1− s, w) (2-17) (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2

αβα : (s, w)→ (1−w, 1− s) (2-19) (1+ |t |)(1+ |t + u|)2(1+ |u|)
αβαβ : (s, w)→ (1− s, 1−w) (2-17) (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2

αβαβ : (s, w)→ (1− s, 1−w) (2-19) (1+ |t |)(1+ |t + u|)2(1+ |u|)

Table 1. Different choices of analytic conductors.

Since, for all t, u ∈ R,

(1+ |t |)(1+ |t + u|)2(1+ |u|)≤ (1+ |t + u|)2(1+ |t − u|)2(1+ |t |)2,

the conductor defined in (2-37) is the smallest among these.

2F. Another double Dirichlet series. It turns out that there is another double
Dirichlet series which is relevant in the applications to QUE. We now define
it and then immediately show that it can be understood in terms of the series
Z(s, w, χ, χ ′) which was analyzed in the previous sections. Let

Ẑ(s, w, χ, χ ′)=
∑
c=1

(c,2)=1

χ ′(c)L∗(s−w+ 1
2 , c, χ)2

c2w− 1
2

. (2-40)

In order to understand Ẑ(s, w, χ, χ ′) we exhibit an interesting nontrivial relation
between the q-polynomials and the Q-polynomials in the case of the Eisenstein
series when tn = τ(n). Let Q̂ be defined as Q but with the one exception that we
use χc0 instead of χ̃c0 , i.e., with v = vp(c1),

Q̂(s, c0c2
1, χ)=

∏
p|c1

tp2v − tp2v−1χc0(p)χ(p)(p
1−s
+ ps)/p+ tp2v−2χc0(p)

2/p

p2v(s− 1
2 )

,

defined for c0, c1 odd. By (2-6) we see that

Q̂(s, c, χ)=
{

Q(s, c, χ) if c0 ≡ 1 (mod 4),
Q(s, c, χχ4) if c0 ≡ 3 (mod 4).

(2-41)

Lemma 2.21. Let d0 be an odd squarefree positive integer, d1 odd, and tn = τ(n).
Then ∑

d|d1

d1−2s
(

q
(

s, d0
d2

1

d2 , χ

))2

=

∑
d|d1

σ2−4s(d)Q̂
(

s, d0
d2

1

d2 , χ

)
.

Proof. Since the arithmetical functions involved are multiplicative, it is enough to
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verify the claim on prime powers d1 = pn , i.e., we need to verify

n∑
i=0

p2i( 1
2−s)q2(s, d0 p2(n−i))=

n∑
i=0

i∑
j=0

p4 j ( 1
2−s)Q(s, d0 p2(n−i), χ).

Using the definitions of q(s, d, χ) and Q(s, d, χ), it is a straightforward but tedious
algebraic computation with sums and products of geometric sums. The details are
omitted. �

Using the above lemma we can now show that many properties of Ẑ(s, w, χ, χ ′)
can be understood on the basis of the properties of Z(s, w, χ, χ ′). The following
lemma implies in particular that Ẑ(s, w, χ, χ ′) admits a meromorphic continua-
tion, and that any bound we have on Zψτ (s, w, χ, χ

′) translates into a bound for
Ẑ(s, w, χ, χ ′).

Lemma 2.22. Assume that ψ = ψτ , i.e., tn = τ(n). Then

Ẑ(s, w,χ,χ ′)=
1

2ζ2(2s+2w−1)

(
Zψτ (s,w,χ,χ

′)+Zψτ (s,w,χχ4,χ
′)

+Zψτ (s,w,χ,χ
′χ4)−Zψτ (s,w,χχ4,χ

′χ4)
)
.

Proof. We start by noticing that L2(s, χc0χ)
2
= L2(s, ψτ ⊗χc0χ). Now let d0 be

an odd squarefree natural number. Then

ζ2(2s+ 2w− 1)
∞∑

d1=1
d1 odd

q2(s, d0d2
1 , χ)

d2w
1

=

∞∑
d,d1=1

d1, d odd

d1−2sq2(s, d0d2
1 , χ)

(dd1)2w

=

∞∑
d1=1
d1 odd

1
d2w

1

∑
d|d1

d1−2sq2(s, d0d2
1/d

2, χ).

We then use Lemma 2.21 and arrive at
∞∑

d1=1
d1 odd

1
d2w

1

∑
d|d1

σ2−4s(d)Q̂(s, d0d2
1/d

2, χ)

=

∞∑
l=1
l odd

σ2−4s(l)
l2w

∞∑
d1=1
d1 odd

Q̂(s, d0d2
1 , χ)

d2w
1

= ζ2(4s+ 2w− 2)ζ2(2w)
∞∑

d1=1
d1 odd

Q̂(s, d0d2
1 , χ)

d2w
1

.

Multiply the first and last expression by χ ′(d0)L2(s, χd0χ)
2/dw0 , then summing
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over all odd squarefree natural numbers d0 we get

ζ2(2s+ 2w− 1)
∞∑

d=1
(d,2)=1

χ ′(d)q2(s, d, χ)L2(s, χd0χ)
2

dw

= ζ2(4s+ 2w− 2)ζ2(2w)
∞∑

d=1
(d,2)=1

χ ′(d)Q̂(s, d, χ)L2(s, ψτ ⊗χd0χ)

dw
.

By (2-6) we see that

Q̂(s, d, χ)L2(s, ψτ ⊗χd0χ)

=

{
Qψτ (s, d, χ)L2(s, ψτ ⊗χd0χ) if d ≡ 1 (mod 4),
Qψτ (s, d, χχ4)L2(s, ψτ ⊗χd0χχ4) if d ≡ 3 (mod 4).

Substituting (s−w+ 1
2 , 2w− 1

2) for (s, w) and comparing with (2-18), we obtain
the desired result. �

3. Eisenstein series

We briefly recall a few facts about Eisenstein series with weights. For γ ∈ SL2(R)

and z ∈ H we define j (γ, z) = cz + d and jγ (z) = (cz + d)/|cz + d|. We
let arg denote the principal argument and define jγ (z)k = eik arg(cz+d). Since
j (γ1γ2, z)= j (γ1, γ2z) j (γ2, z),

ω̃(γ1, γ2)=
1

2π
(arg j (γ1, γ2z)+ arg j (γ2, z)− arg j (γ1γ2, z))

is an integer independent of z. The factor system of weight k ∈ R is then defined as

ω(γ1, γ2)= e(kω̃(γ1, γ2)).

Then we have ω(γ1, γ2) jγ1γ2(z)
k
= jγ1(γ2z)k jγ2(z)

k . We refer to [Iwaniec 1997,
Chapters 2.6, 3] for the basic properties of multiplier systems as well as for further
explanations of the generalities of Fourier expansions.

Let ν be a weight k multiplier system, and let 0 be a cofinite subgroup of SL2(R).
For an open cusp a, i.e., ν(a)= 1, we define the weight k Eisenstein series for 0 by

Ea(z, s, k) :=
∑

γ∈0a\0

ν(γ )ω(σ−1
a , γ ) jσ−1

a γ (z)
−k
=(σ−1

a γ z)s for <(s) > 1,

where σa is a scaling matrix of the cusp a, i.e., σ−1
a 0aσa = 0∞, with 0∞ being

generated by γ∞ =
( 1

0
1
1

)
and −γ∞ if −I ∈ 0. The function satisfies, for γ ∈ 0,

Ea(γ z, s, k)=ν(γ ) j k
γ (z)Ea(z, s, k), it is an eigenfunction of the weight k Laplacian

with eigenvalue s(1− s), and admits a meromorphic continuation to s ∈C. We now
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briefly recall how to find the Fourier coefficients of Ea(z, s, k) at an open cusp b.
We have

jσb(z)
−k Ea(σbz, s, k)=

∑
γ∈0∞\σ

−1
a 0σb

νab(γ ) jγ (z)−k
=(γ z)s,

where νab(γ ) = ν(σaγ σ
−1
b )ω(σ−1

a , σaγ σ
−1
b )ω(γ σ−1

b , σb). For the rest of the
paper we can assume that −I ∈ 0. Summing over a set of representatives of
0∞\σ

−1
a 0σb/0∞, which we can assume have cγ > 0 for γ 6∈ 0∞, we see that

jσb(z)
−k Ea(σbz, s, k)= δa=bys

+

∑
I 6=γ∈0∞\σ−1

a 0σb/0∞

νab(γ )
∑
l∈Z

jγ γ l
∞
(z)−k
=(γ γ l

∞
z)s .

Therefore, by a familiar computation, we have∫ 1

0

(
jσb(z)

−k Ea(σbz, s, k)− δa=bys)e(−nx) dx

=

∑
I 6=γ∈0∞\σ−1

a 0σb/0∞

νab(γ )

c2s e
(

n
d
c

)
ys
∫
∞

−∞

(
z
|z|

)−k 1
|z|2s e(−nx) dx .

Substituting t = x/y in the last integral we see that

ys
∫
∞

−∞

(
z
|z|

)−k e(−nx)
|z|2s dx = y1−s

∫
∞

−∞

(
t+i
|t+i |

)−k e(−nty)
|t+i |2s dt

= e−ikπ/2 y1−s
∫
∞

−∞

(
1−i t
|1−i t |

)−k e(−nty)
|1+i t |2s dt

=


π se−ikπ/2 |n|

s−1

0
(
s+ kn

2|n|

)W kn
2|n| ,s−

1
2
(4π |n|y) if n 6= 0,

π41−se−ikπ/2 0(2s−1)y1−s

0
(
s+ k

2

)
0
(
s− k

2

) if n = 0,

where Wµ,ν(y) is the Whittaker function and where we have used [Gradshteyn and
Ryzhik 2007, 3.384 (9), p. 349] for n 6= 0 and [Shimura 1975, p. 84–85] for n = 0.

3A. Eisenstein series of level 4. We now specialize to 0 = 00(4). In this case the
Fourier coefficients of half-integral weight Eisenstein series were originally studied
by Shimura [1975]. We consider the weight 1

2 multiplier system ν related to the
theta series

θ(z) := y
1
4
∑
m∈Z

e(m2z),
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i.e., θ(γ z)= ν(γ ) jγ (z)
1
2 θ(z) for γ ∈ 0. It is well known that

ν(γ )=
( c

d

)
ε−1

d for
(

a b
c d

)
= γ ∈ 00(4).

Here the Jacobi–Legendre symbol is extended as in [Shimura 1973, p. 442]. The
group 00(4) has 3 cusps, a1 =∞, a2 = 0, a3 =

1
2 , with corresponding stabilizers

0ai generated by ±γai where

γa1 =

(
1 1
0 1

)
, γa2 =

(
1 0
−4 1

)
, γa3 =

(
−1 1
−4 3

)
and we define scaling matrices

σa1 =

(
1 0
0 1

)
, σa2 =

(
0 − 1

2
2 0

)
, σa3 =

(
1 − 1

2
2 0

)
.

Only the cusps∞ and 0 are open with respect to ν, as

ν(γa1)= ν(γa2)= 1, ν(γa3)=
(
−4
3

)
ε−1

3 = i.

We now compute the Fourier expansion for the weight 1
2 Eisenstein series. We

focus on the cusp at infinity but the analysis for the other cusps is similar, although
slightly more technical. The main extra complication at the other cusps comes from
the factor system. This can be dealt with as follows: For k = 1

2 we can use z= γ−1
2 i

in the definition of the factor system to see that

ω(γ1, γ2)=

{
1 if −π < arg(cγ1 i + dγ1)+ arg(cγ2 i + aγ2)≤ π,

−1 otherwise.

Using the properties of a multiplier system one finds (see [Iwaniec 1997, (3.5)])
that

νab(γ )= ν(σaγ σ
−1
b )

ω(σaγ σ
−1
b , σb)

ω(σa, γ )
.

This is explicit enough that one can do the computations also for the other cusps.
We now focus on (a1, a1) = (∞,∞), and omit the corresponding subscripts.

Using that all the nonidentity elements of 0∞\0/0∞ are parametrized by
(
∗

4c
∗

d

)
with c > 0, d mod 4c, (d, 4c)= 1, we find that

E(z, s, 1
2)= ys

+φ(s, 1
2)y

1−s
+

∑
n 6=0

φn(s, 1
2)Wn/(4|n|),s− 1

2
(4π |n|y)e(nx)
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with

φn(s, 1
2)=

π se−iπ/4
|n|s−1

0
(
s+ n

4|n|

) ∞∑
c=1

1
(4c)2s

∑
d mod 4c
(d,4c)=1

ν

(
∗ ∗

4c d

)
e(nd/4c)

=
π se−iπ/4

|n|s−1

0
(
s+ n

4|n|

) ∞∑
c=1

1
(4c)2s

∑
d mod 4c

εd

(4c
d

)
e(nd/4c), (3-1)

and

φ(s, 1
2)=

π41−se−iπ/40(2s− 1)

0(s+ 1
4)0(s−

1
4)

∞∑
c=1

1
(4c)2s

∑
d mod 4c

εd

(4c
d

)
.

If we write 4c = 2kc′ with c′ odd then Sturm proved [1980, Lemma 1] — using
quadratic reciprocity and the Chinese remainder theorem — that∑

d mod 4c

εd

(4c
d

)
e(nd/4c)= Hn(c′)

∑
r mod 2k

(2k

r

)
εr e(nr/2k). (3-2)

It follows that, for n 6= 0,

φn
(
s, 1

2

)
=
π se−iπ/4

|n|s−1

0
(
s+ n

4|n|

) ∞∑
c′=1

(c′,2)=1

Hn(c′)
c′2s

∞∑
k=2

∑
r mod 2k

( 2k

r

)
εr e(nr/2k)

22ks ,

which by Lemma 2.2 equals

π se−iπ/4
|n|s−1

0
(
s+ n

4|n|

) L∗(2s− 1
2 , n, 1)

ζ2(4s− 1)
r2(s, n), (3-3)

where we have written

r2(s, n) :=
∞∑

k=2

∑
r mod 2k

(2k

r

)
εr e(nr/2k)

2k2s . (3-4)

The function r2(s, n) can also be computed. One uses that εd can be expressed as a
sum of characters mod 4 as

εd =
1
2(1+ i)χ0

4 (d)+
1
2(1− i)χ4(d).

Inserting this in (3-4) the numerator becomes

1
2(1+ i)Gn(χ

k
8χ

0
2k )+

1
2(1− i)Gn(χ

k
8χ4χ

0
2k ), (3-5)

where χ8 is the primitive character mod 8 given by χ8(n) = (−1)
1
8 (n−1)(n+1) for

(n, 2) = 1, and the Gn denote the usual Gauss sums. Using [Shimura 1975,
Lemma 3] as well as explicit computations of G1(χ1), G1(χ8), G1(χ4), G1(χ4χ8),
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these can all be computed and using the result one can compute r2(s, n). We omit
the details but state the result. Assume first n 6≡ 0 (mod 4). Then

r2(s, n)= 1
4(1+ i)


−

1
22(2s−1) n 6≡ 1 (mod 4),

1
22(2s−1) +

χ8(n)
√

2
23(2s−1) n ≡ 1 (mod 4).

(3-6)

More generally we find that, if n = 4r n0 with n0 6≡ 0 (mod 4), then

r2(s, n)= 1
4(1+ i)ur (2−(2s−1))+ 4−r(2s−1)r2(s, n0), (3-7)

where
ur (x)=

(x2)r+1
− x2

x2− 1
. (3-8)

We remark that r2(s, n) is entire.

3A1. Scattering term. We now compute the scattering term φ(s, 1
2), which by (3-2)

equals
π41−se−iπ/40(2s− 1)

0(s+ 1
4)0(s−

1
4)

∞∑
c′=1

(c′,2)=1

H0(c′)
c′2s

∞∑
k=2

∑
r mod 2k

(2k

r

) εr

22ks .

The sum
∞∑

c′=1
(c′,2)=1

H0(c′)
c′2s factors, and for an odd prime p we observe that

H0(pβ)=
{
ϕ(pβ) if β ≡ 0 (mod 2),
0 otherwise.

Here ϕ is Euler’s ϕ-function. Therefore
∞∑
β=0

H0(pβ)
pβ2s =

∞∑
β=0

ϕ(p2β)

p2β2s =
ζ (p)(4s− 2)
ζ (p)(4s− 1)

.

For the prime 2 we note that for k ≥ 2 we have

G0(χ4χ
0
2k )= G0(χ8χ

0
2k+1)= G0(χ4χ8χ

0
2k+1)= 0

Using this, we find
∞∑

k=2

∑
r mod 2k

(2k

r

) εr

2k2s

=

∞∑
k=2

k even

1+i
2 G0(χ

0
4χ

0
2k )+

1−i
2 G0(χ4χ

0
2k )

2k2s +

∞∑
k=2
k odd

1+i
2 G0(χ8χ

0
2k )+

1−i
2 G0(χ8χ4χ

0
2k )

2k2s

=

∞∑
k=2

k even

1+i
2 ϕ(2

k)

2k2s = (1+i)
2−4s

1−2−(4s−2) .
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It follows that

φ(s, 1
2)= π41−se−iπ/4 0(2s− 1)

0(s+ 1
4)0(s−

1
4)

(1+ i)
24s

ζ(4s− 2)
ζ2(4s− 1)

.

Using that 0(s+ 1
4)0(s−

1
4)=
√
π23/2−2s0(2s− 1

2), this simplifies to

1
24s−1− 1

ξ(4s− 2)
ξ(4s− 1)

, (3-9)

where ξ(s)= π−s/20(s/2)ζ(s) (compare [Iwaniec 1997, p. 247–248]). The other
entries in the scattering matrix 8(s, 1

2) can be computed in a similar way and we
find

8(s, 1
2)=

(
2−(4s−1)

1−2−(4s−2)
1−i
22s

1+i
22s

2−(4s−1)

1−2−(4s−2)

)
1− 2−(4s−2)

1− 2−(4s−1)

ξ(4s− 2)
ξ(4s− 1)

. (3-10)

As a consistency check we note that a direct computation and the functional equation
for ξ show that the scattering matrix verifies 8(s, 1

2)8(1− s, 1
2)= I , as predicted

by the general theory.

3B. Eisenstein series of level 2n. We now consider the group00(N ), where N=2n

with n ≥ 2. Let χ be a Dirichlet character modulo N , and consider the weight 1
2

multiplier system

ν(γ )= χ(d)
( c

d

)
ε−1

d for
(

a b
c d

)
= γ ∈ 00(N ).

We consider the corresponding Eisenstein series of weight 1
2 at the cusp at 0, denoted

by
E0,χ (z, s, 1

2).

Similarly one denotes E∞,χ (z, s, 1
2) the corresponding Eisenstein series at the

cusp∞. The Fourier coefficients at infinity of the Eisenstein series at zero has a
simpler 2-factor than the Eisenstein series at infinity. The stabilizer at 0 is generated
by ±γ0 and has corresponding scaling matrix σ0, where

γ0 =

(
1 0
−2n 1

)
, σ0 =

(
0 −1/

√
2n

√
2n 0

)
.

From the general considerations in the beginning of Section 3 we find that the
nonzero Fourier coefficients at infinity equal∑

I 6=γ∈0∞\σ−1
0 00(N )/0∞

ν0∞(γ )

c2s e
(

n
d
c

)
π se−iπ/4 |n|s−1

0
(
s+ n

4|n|

)W n
4|n| ,s−

1
2
(4π |n|y).
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After some computations one finds∑
I 6=γ∈0∞\σ−1

0 00(N )/0∞

ν0∞(γ )

c2s e
(

n
d
c

)
=

iχ(−1)
N s

∞∑
a=1

(a,2)=1

χ(a)Hn(a)
a2s

=
iχ(−1)

N s

L∗(2s− 1
2 , n, χ)

ζ2(4s− 1)
, (3-11)

where in the last equality we have used Lemma 2.2. Using this it is straightforward
to see how Z(s, w, χ, χ ′) relates directly to a Rankin–Selberg integral in the case
where {tn} comes from a cusp form. Let ψ be a cuspidal Hecke newform of
weight zero, and trivial multiplier for 00(2k) with eigenvalue s0(1− s0) and Fourier
expansion

ψ(z)=
∑
n 6=0

bnW0,s0−
1
2
(4π |n|y)e(nx). (3-12)

Let χ be a Dirichlet character mod 8. Consider the twisted Maaß form

ψ ⊗χ(z)=
∑
n 6=0

χ(n)bnW0,s0−
1
2
(4π |n|y)e(nx),

which is a weight zero cusp form for some 00(M) and character χM
0 for some

M | lcm(64, 2k) and 8|M . Let χ ′ be another Dirichlet character mod 8. Consider
now the Rankin–Selberg integral

I (ψ, χ, χ ′, s, w)=
∫
00(M)\H

ψ ⊗χ(z)E0,χM
0 χ
′(z, w, 1

2)E∞,χM
0 χ
′

(
z, s̄, 1

2

)
dµ(z).

This is the integral studied by Friedberg and Hoffstein [1995, (1.2) p. 388].
Unfolding, using bn = bn/|n||n|−

1
2 t|n|, (3-11), and L∗(s,−n, χ)= L∗(s, n, χ4χ)

we arrive at

I (ψ, χ, χ ′, s, w)

=
πwe−iπ/4iχ ′(−1)

(2π)s−1 Mwζ2(4w−1)

∑
n 6=0

(n,2)=1

χ(n)bn/|n| t|n|L∗(2w− 1
2 , n, χ ′)

|n|s−w+
1
2

G n
|n|
(w)

=

πwe−iπ/4iχ ′(−1)
[
Z(s, w, χ,χ ′)G+(w)

+χ(−1)b−1 Z(s, w, χ, χ4χ
′)G−(w)

]
(2π)s−1 Mwζ2(4w−1)ζ2(4s−1)

, (3-13)

where

G±(w)=
1

0(w± 1
4)

∫
∞

0
W
±

1
4 ,w−

1
2
(2y)W0,s0−

1
2
(2y)yw−1 dy

y
.

Lemma 3.1. I (ψ, χ, χ ′, 1
2 + i t, 1

2 + iu)= O
(
log((2+|t |)(2+|u|))

)
.



1576 Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

Proof. This follows from the Maaß–Selberg relation, and known properties of the
relevant scattering matrix. �

It is tempting to speculate whether the above bound on I (ψ, χ, χ ′, 1
2+i t, 1

2+iu)
can be used to bound Z(s, w, χ, χ ′) through (3-13). What we can prove is the
following:

Denote the expression in the square brackets of (3-13) by Ĩ (ψ, χ, χ ′, s, w). We
then find that

Ĩ (ψ, χ, χ ′, s, w)± Ĩ (ψ, χ, χ4χ
′, s, w)

= (Z(s, w, χ, χ ′)± Z(s, w, χ, χ4χ
′))(G+(w)±χ(−1)b−1G−(w)). (3-14)

Lemma 3.2. Assume that ψ is a cusp form. Then, for s = 1−w = 1
2 + i t ,

Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)= O((1+ |t |)

1
2+ε). (3-15)

Proof. From (3-14) we see that

Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)(G+(w)+G−(w))

= Ĩ (ψ, χ, χ ′, s, w)+χ(−1)b−1 Ĩ (ψ, χ, χ4χ
′, s, w).

The claim now follows from Lemmas 3.1 and A.1, combined with Remark A.2. �

Remark 3.3. We notice that with the restriction above on s, w the conductor
q(t,−t) is of order (1+|t |)2. So the right-hand side in (3-15) is of order q(t,−t)

1
4+ε ,

i.e., for the linear combination Z(s, w, χ, χ ′)+χ(−1)b−1 Z(s, w, χ, χ4χ
′)we have

proved the convexity estimate unconditionally. Surprisingly this “soft” method
of using the Maaß–Selberg relations gives much stronger bounds than the harder
method using Heath-Brown’s equation (2-29) and approximate functional equations.
Unfortunately we do not know how to prove this unconditionally for Z(s, w, χ, χ ′)
and Z(s, w, χ, χ4χ

′) separately. The main reason for this is that G+(w)−G−(w)
decays much faster than G+(w)+G−(w), so using a similar argument on

Z(s, w, χ, χ ′)−χ(−1)b−1 Z(s, w, χ, χ4χ
′)

gives very poor bounds.

If we use (2-19) (i.e., interchange sums) we find, like [Friedberg and Hoffstein
1995, (1.2) p. 389], that Ĩ (ψ, χ, χ ′, s, w) equals∑

c=1
(c,2)=1

χ ′(c)L∗∗(s−w+ 1
2 , ψ, c, χ)

c2w− 1
2

(G+(w)+χ(−1)b−1χ4(c)G−(w)).

By taking linear combinations over different χ ′ we can restrict to c in a specific
residue class, as in the work of [Friedberg and Hoffstein 1995].



Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1577

4. Limits of weight 1
2 Eisenstein series

We consider separately Maaß cusp forms and incomplete Eisenstein series, i.e., we
analyze ∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z),

where ψ is either a Maaß cusp form or an incomplete Eisenstein series. Then a
standard approximation argument — see [Luo and Sarnak 1995, p. 217] — implies
the result (1-10).

4A. The cuspidal contribution. Let ψ be a cuspidal element of a weight zero
Hecke basis for 00(4) with eigenvalue s0(1− s0) and Fourier expansion

ψ(z)=
∑
n 6=0

bnW0,s0−
1
2
(4π |n|y)e(nx).

We will freely use that we can assume that the Fourier coefficients are real.
We want to study ∫

0\H

ψ(z)|E(z, s, 1
2)|

2 dµ(z)

when <(s)= 1
2 . It turns out to be convenient to consider the slightly more general

integral

I (s, w)=
∫
0\H

ψ(z)E(z, w, 1
2)E(z, s̄, 1

2) dµ(z).

For sufficiently large <(s), we can unfold to get

I (s, w)=
∫
0∞\H

ψ(z)E(z, w, 1
2)y

s dµ(z). (4-1)

Using the Fourier expansions of ψ and E∞(z, w, 1
2), and computing the x-integral,

we find

I (s, w)=
∫
∞

0

∑
n 6=0

bnφ−n(w,
1
2)W0,s0−

1
2
(4π |n|y)W

−
1
4 n/|n|,w− 1

2
(4π |n|y)ys−1 dy

y

=

∑
n 6=0

bnφ−n(w,
1
2)

(2π |n|)s−1

∫
∞

0
W0,s0−

1
2
(2y)W

−
1
4 n/|n|,w− 1

2
(2y)ys−1 dy

y
. (4-2)

We consider the series

Z±(s, w) :=
0(w∓ 1

4)

πwe−iπ/4 ζ2(4s− 1)ζ2(4w− 1)
∞∑
±n=1

bnφ−n(w,
1
2)

|n|s−1 .
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By (3-3) we see that

Z±(s, w)= ζ2(4s− 1)
∞∑
±n=1

bnr2(w,−n)L∗(2w− 1
2 ,−n, 1)

|n|s−w
. (4-3)

The next proposition reduces many questions about Z±(s, w) to questions about
Z(s, w, χ, χ ′). Consider the Dirichlet polynomial

T (s, w) :=
∏
ε∈{±1}

p2(ε2−(s+w−
1
2 ))p2(ε2−(s−w+

1
2 )),

where p2(z) is defined in (2-24).

Proposition 4.1. There exist functions f±(s, w, χ, χ ′) bounded in vertical strips
such that

T (s, w)Z±(s, w)=
∑
χ,χ ′

f±(s, w, χ, χ ′)Z(s, w, χ, χ ′),

where the sum is over all pairs of characters mod 8.

Proof. We first assume that ψ is a newform. Then we have

bn = bn/|n||n|−
1
2 t|n|,

where {tn}n∈N are the coefficients of L(s, ψ). We note that if m ≥ 1 is odd then
χ(±2l m)0 = χm0χ where m0 denotes the squarefree part of m for some character χ
whose conductor divides 8, namely

χ(d)=


(
±2
d

)
if l odd,(

±1
d

)
if l even.

(4-4)

Notice that χ depends only on l mod 2 and the sign ±. For the same χ we have
q(w,m, χ)= q(w,±2lm). It follows that L∗(s,m, χ)= L∗(s,±2lm, 1). We write
the summation index n in (4-3) as n = 2lm, where m is odd, and split the sum as

∞∑
l=0

l odd

∞∑
±m=1
(m,2)=1

· · · +

∞∑
l=0

l even

∞∑
±m=1
(m,2)=1

· · · .

We split the m sum further according to m ≡ 1, 3, 5, 7 (mod 8), which can be done
by using a linear combination of characters. We then use the explicit formulae for
r2(w,−n) in (3-6), (3-7) and that the Fourier coefficients satisfy the Hecke relations
to see that Z±(s, w) can be written as a linear combination of Z(s, w, χ, χ ′) with
coefficients being functions bounded on vertical strips multiplied by one of the
following series:
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∞∑
j=0

t22 j

22 j (s+w− 1
2 )
,

∞∑
j=0

t22 j+1

2(2 j+1)(s+w− 1
2 )
,

∞∑
j=0

t22 j u j (2−(2w−1))

22 j (s−w+ 1
2 )

,

∞∑
j=0

t22 j+1u j (2−(2w−1))

2(2 j+1)(s−w+ 1
2 )

.

(4-5)

We easily see that

2
∞∑
j=0

t22 j

22 js =
1

p2(2−s)
+

1
p2(−2−s)

, 2
∞∑
j=0

t22 j+1

2(2 j+1)s =
1

p2(2−s)
−

1
p2(−2−s)

.

We see also that, using (3-8),

∞∑
j=0

t22 j u j (x)
22 js =

x2

2(1− x2)

(
1

p2(2−s)
+

1
p2(−2−s)

−
1

p2(x2−s)
−

1
p2(−x2−s)

)
,

which has no poles coming out of x2
− 1 in the denominator. Similarly, we see that

∞∑
j=0

t22 j+1u j (x)
2(2 j+1)s =

x2

2(1−x2)

(
1

p2(2−s)
−

1
p2(−2−s)

−
1
x

(
1

p2(x2−s)
−

1
p2(−x2−s)

))
.

We substitute in the last four equations s+w− 1
2 or s−w+ 1

2 for s as required and
x = 2−(2w−1) to identify the possible polynomials that appear in the denominators.
These have product T (s, w). We now notice that multiplying any of the 4 functions
in (4-5) by T (s, w) we get holomorphic functions bounded on vertical strips, which
proves the claim.

If ψ is an oldform with, say, ψ =ψ1(2 j z) with ψ1 a primitive form, and j = 1, 2,
then the series in (4-2) becomes∑

n 6=0

bn(ψ1)φ−2 j n(w,
1
2)

(2π |2 j n|)s−1 ,

which by the explicit expression for φn(w,
1
2) can be analyzed similarly to the

newform case. �

Remark 4.2. In Theorem 4.3 below, we need to study Z±(1
2 + i t, 1

2 − i t). For
<(s)=<(w)= 1

2 we notice that by (2-25) we have 1/T (s, w)= O(1).

Theorem 4.3. Assume that for any χ , χ ′ mod 8 the function Z(s, 1− s, χ, χ ′)
satisfies a subconvex bound. Then∫

0\H

ψ(z)|E(z, 1
2 + i t, 1

2)|
2 dµ(z)→ 0 as |t | →∞.
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Proof. By Proposition 4.1, a subconvex bound with saving δ translates into a
bound Z±(s, 1 − s) = O(|t |2(

1
4−δ)) when <(s) = 1

2 . Combining this with the
bound in Lemma A.1, the estimate 1/ζ(1+ i t) = O(log |t |) [Titchmarsh 1986,
Equation 3.11.8], and the identity (4-2) we see that I (s, 1− s)= O(|t |2(

1
4−δ)−

1
2+ε)

for any ε > 0 when <(s)= 1
2 . Since

I (1
2 + i t, 1

2 − i t)=
∫
0\H

ψ(z)|E(z, 1
2 − i t, 1

2)|
2 dµ(z),

we find that, when δ > 0, I (1
2 + i t, 1

2 − i t)→ 0 as |t | →∞. �

Remark 4.4. In the proof above we see that the trivial bound from Theorem 2.17
only gives O(|t |

1
2+ε).

4B. The incomplete Eisenstein series contribution. In the following we choose a
fundamental domain of 0 such that

D= D0 ∪

3⋃
j=1

σa j D
Y ,

where DY
:= {x + iy : 0 < x < 1, y > Y }, Y sufficiently large, D0 is a suitable

compact set and, as before, σa j denotes the scaling matrix of the cusp a j .
In order to introduce the incomplete Eisenstein series, let h(y) ∈ C∞(R+) be a

function which decreases rapidly at 0 and∞, and whose derivatives are also of
rapid decay. Its Mellin transform evaluated at −s is

H(s)=
∫
∞

0
h(y)y−s dy

y
(4-6)

and thus by the Mellin inversion formula we have

h(y)=
1

2π i

∫
<s=a

H(s)ys ds (4-7)

for any a ∈ R. The function H(s) is entire and H(a+ i t) is in the Schwartz space
in the t variable for any a ∈ R. The incomplete Eisenstein series corresponding to
the cusp a is then given by

Fh(z, a)=
∑

γ∈0a\0

h(=σ−1
a γ z)= 1

2π i

∫
<s=a>1

H(s)Ea(z, s, 0) ds. (4-8)

For i = 1, 2, 3 we are interested in the behavior of

J (t, ai )=

∫
0\H

Fh(z, ai )|E(z, 1
2 + i t, 1

2)|
2 dµ(z) as |t | →∞.

In the following we only treat the contribution from the cusp at infinity, but the
other contributions can be dealt with similarly. Unfolding the incomplete Eisenstein
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series we find

J (t,∞)=
∫
0\H

Fh(z,∞) dµt(z)= J1(t,∞)+ J2(t,∞)

with

J1(t,∞) :=
∫
∞

0
h(y)

∣∣y 1
2+i t
+φ( 1

2 + i t, 1
2)y

1
2−i t

∣∣2 dy
y2 , (4-9)

J2(t,∞) :=
∫
∞

0
h(y)

∑
n 6=0

∣∣φn(
1
2 + i t, 1

2)
∣∣2∣∣Wn/(4|n|),i t(4π |n|y)

∣∣2 dy
y2 . (4-10)

The integral J1(t,∞) is easily dealt with. Namely, we obtain

J1(t,∞)

=
(
1+ |φ( 1

2 + i t, 1
2)|

2) ∫ ∞
0

h(y)
dy
y
+φ( 1

2 + i t, 1
2)

∫
∞

0
h(y)y−2i t dy

y

+φ( 1
2 + i t, 1

2)

∫
∞

0
h(y)y2i t dy

y

=
(
1+ |φ( 1

2 + i t, 1
2)|

2)H(0)+φ( 1
2 + i t, 1

2)H(2i t)+φ(1
2 + i t, 1

2)H(−2i t)

= O(1). (4-11)

For the integral J2(t,∞) we find, using the rapid decay of the Whittaker function
and the Mellin inversion formula,

J2(t,∞)=
1

2π i

∫
<s=a>1

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds, (4-12)

where

R1
(
|E(z, w, 1

2)|
2, s
)
=

∑
n 6=0

|φn(w,
1
2)|

2
∫
∞

0

∣∣Wn/(4|n|),w− 1
2
(4π |n|y)

∣∣2 ys−1 dy
y

=

∑
n 6=0

|φn(w,
1
2)|

2

(2π |n|)s−1

∫
∞

0

∣∣Wn/(4|n|),w− 1
2
(2y)

∣∣2 ys−1 dy
y
. (4-13)

In order to analyze the asymptotic behavior of J2(t,∞) we need to understand
the function R1

(
|E(z, w, 1

2)|
2, s
)
. There are (at least) two ways to do this: to use

properties of the double Dirichlet series we defined in Section 2, or to use Zagier’s
theory of the Rankin–Selberg method for functions that are not of rapid decay but
satisfy a certain mild growth condition. We will actually use a combination of
these two techniques. We want to shift the line of integration in (4-12) to <(s)= 1

2 .
For this we need to identify the poles, estimate them, see what the contribution
of
∫
<(s)= 1

2
H(s)R1

(
|E(z, w, 1

2)|
2, s
)

is to the asymptotics. For the first and third
aspect we use the Rankin–Selberg approach and for the second aspect the multiple
Dirichlet approach works best.
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We first describe why double Dirichlet series techniques apply. The growth of
the Mellin transform of the absolute value of the Whittaker function is analyzed in
Lemma A.5. By combining (3-3), (3-6), and (3-7) we see that φn(w̄,

1
2)= φn(w,

1
2).

This shows that when <(w)= 1
2 we have

|φn(w,
1
2)|

2
= φn(w,

1
2)φn(1−w, 1

2).

The right-hand side has the advantage of being meromorphic in w. We define

Ẑ±(s, w)=
0(w± 1

4)0(1−w±
1
4)

π i

∞∑
±n=1

φn(w,
1
2)φn(1−w, 1

2)

|n|s−1 ,

which by (3-3) equals

1
ζ2(4w− 1)ζ2(4(1−w)− 1)

×

∞∑
±n=1

L∗(2w− 1
2 , n, 1)L∗(2(1−w)− 1

2 , n, 1)
|n|s

r2(w, n)r2(1−w, n).

We now show that Ẑ±(s, w) is directly related to the function Ẑ(s, w, χ, χ ′) defined
in (2-40). Let

U (s, w)= (1− 2−(4w−1))(1− 2−2s)(1− 2−(4w−2+2s))(1− 2−(−4w+2+2s)).

Proposition 4.5. There exist functions f̂±,κ(s, w, χ, χ ′) bounded in vertical strips
such that

U (s, w)Ẑ±(s, w)=
1

ζ2(4w−1)ζ2(4(1−w)−1)

∑
κ∈{0,1}

0( 1
2(2w−

1
2+κ))

0
( 1

2(2(1−w)−
1
2+κ)

)
×

∑
χ,χ ′

f̂±,κ(s, w, χ, χ ′)Ẑ
(

s+2w− 1
2

2
,

s−2w+ 3
2

2
, χ, χ ′

)
.

Proof. As in the proof of Proposition 4.1 we write n = 2lm and split into sums over
l even, odd respectively. We then split the m sum according to the residue class
mod 8 which is a linear combination over characters mod 8. Inserting the explicit
formulae for r2(w, n), (3-6), (3-7) we are led to consider the series

∞∑
j=0

u j (x)u j (y)z j ,

∞∑
j=0

u j (x)z j ,

∞∑
j=0

z j

with x , y, z being appropriate powers of 2. Since these are all sums of geomet-
ric series — see (3-8) — they are explicitly computable and after multiplying by
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(1−2−2s)(1−2−(4w−2+2s))(1−2−(−4w+2+2s)) they become Dirichlet polynomials
in powers of 2, hence holomorphic and bounded in vertical strips. Therefore

(1− 2−2s)(1− 2−(4w−2+2s))(1− 2−(−4w+2+2s))Ẑ±(s, w)

=

∑
χ,χ ′

f̃±(s, w, χ, χ ′)Z̃(s, w, χ, χ ′),

where

Z̃(s, w, χ, χ ′)

=
1

ζ2(4w−1)ζ2(4(1−w)−1)

∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)L∗(2(1−w)− 1

2 , n, χ)
ns

and f̃±(s, w, χ, χ ′) are bounded in vertical strips. Using the functional equation
on L∗(2(1−w)− 1

2 , n, χ) we see — as in the proof of Theorem 2.11 — that

(1− 2−(4w−1))

∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)L∗(2(1−w)− 1

2 , n, χ)
ns

=

∑
κ∈{0,1}

0(1
2(2w−

1
2 + κ))

0(1
2(2(1−w)−

1
2 + κ))

∑
χ,χ ′

˜̃f κ(x, y, χ, χ ′)˜̃Z(s, w, χ, χ ′),
where ˜̃f κ(x, y, χ, χ ′) is another set of functions bounded in vertical strips and

˜̃Z(s, w, χ, χ ′)= ∞∑
n=1

χ ′(n)L∗(2w− 1
2 , n, χ)2

ns−2w+1 .

Combining the above equations and comparing with (2-40) finishes the proof. �

The above lemma implies that many questions about R1
(
|E(z, w, 1

2)|
2, s
)

can
be dealt with using Z(s, w, χ, χ ′). We now describe a different method for
understanding R1

(
|E(z, w, 1

2)|
2, s
)
, namely Zagier’s Rankin–Selberg method for

functions not of rapid decay. This method was introduced by Zagier [1981] for
the group SL2(Z) and generalized by Kudla (unpublished), Dutta Gupta [1997],
and Mizuno [2005]. Its usefulness for determining the contribution of the in-
complete Eisenstein series to the asymptotics can already be seen in [Zelditch
1991]. We introduce the generalized Rankin–Selberg transform, following [Zagier
1981] and [Mizuno 2005]. We write ei j (y, s, k) = δi j ys

+ φi j (s, k)y1−s for the
zero Fourier coefficient of Eai (z, s, k) at a j and we denote the scattering matrix
by 8(s, k) = (φi j (s, k)). We note that for 00(4) the matrix 8(s, 0) is 3 × 3
whereas 8(s, 1

2) is 2× 2. For the weight 0 Eisenstein series we use the notation
Ei (z, s, 0)= Eai (z, s, 0).
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Theorem 4.6 [Mizuno 2005, Theorem 2]. Let F be a continuous functions on H

that is 0-invariant and satisfies, for i = 1, 2, 3,

F(σai z)= ψi (y)+ O(y−N ) for all N as y→∞,
where

ψi (y)=
l∑

j=1

ci j

ni j !
yαi j logni j y, ni j ∈ N∪ {0}, i = 1, 2, 3.

For such a function F the Rankin–Selberg transform Ri (F, s) corresponding to the
cusp ai , i = 1, 2, 3, is defined by

Ri (F, s) :=
∫
∞

0

∫ 1

0
(F(σai z)−ψi (y))ys dµ(z),

for <s sufficiently large. Then we have

Ri (F, s)=
∫

D0

F(z)Ei (z, s, 0) dµ(z)

+

3∑
j=1

∫
DY

(
F(σa j z)Ei (σa j z, s, 0)−ψ j (y)ei j (y, s, 0)

)
dµ(z)

+

3∑
j=1

φi j (s, 0)
∫
∞

Y
ψ j (y)y−s−1 dy−

∫ Y

0
ψi (y)ys−2 dy

=

∫
D0

F(z)Ei (z, s, 0) dµ(z)

+

3∑
j=1

∫
DY

(
F(σa j z)Ei (σa j z, s, 0)−ψ j (y)ei j (y, s, 0)

)
dµ(z)

−

3∑
j=1

φi j (s, 0)ψ̂ j (1− s, Y )− ψ̂i (s, Y ),
(4-14)

where

ψ̂i (s, Y )=
l∑

j=1

ci j

ni j∑
m=0

(−1)ni j−m

m!
Y s+αi j−1 logm Y

(s+αi j − 1)ni j−m+1 .

Furthermore, for each i = 1, 2, 3, the function Ri (F, s) can be meromorphically
continued to C and we have the functional equation

R(F, s) := t(R1(F, s), R2(F, s), R3(F, s))=8(s, 0)R(F, 1− s).

We want to move the line of integration in (4-12) to <(s)= 1
2 and Theorem 4.6

plays a major role, as it allows to identify the relevant poles and to calculate the
corresponding residues. By the above theorem, in particular by (4-14), we infer
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R1
(
|E(z, 1

2+i t, 1
2)|

2, s
)

=

∫
D0

|E(z, 1
2+i t, 1

2)|
2 E1(z, s, 0) dµ(z)−ψ̂(s, Y )

+

3∑
j=1

∫
DY

(
|E(σa j z,

1
2+i t, 1

2)|
2 E1(σa j z, s, 0)−ψ j (y)e1 j (y, s, 0)

)
dµ(z), (4-15)

where

ψ̂(s, Y )= ψ̂1(s, Y )+φ11(s, 0)ψ̂1(1−s, Y )+Y 1−s

1−s
φ12(s, 0)|φ12(

1
2+i t, 1

2)|
2,

ψ̂1(s,Y )=
Y s

s
(
1+|φ11(

1
2+i t, 1

2)|
2)
+

Y s−2i t

s−2i t
φ11(

1
2+i t, 1

2)+
Y s+2i t

s+2i t
φ11(

1
2+i t, 1

2),

ψ j (y)=
∣∣δ1 j y

1
2+i t
+φ1 j (

1
2+i t, 1

2)y
1
2−i t

∣∣2, j = 1, 2,

ψ3(y)= 0.

Thus we easily see that we pick up residues at s=1 and s=1±2i t when we shift the
line of integration. The pole at s = 1 is responsible for the contribution of the log |t |
term in (1-10), as we will see. We therefore examine H(s)R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)

at s = 1. In order to determine the order of the pole at s = 1 and its residue we use
the Laurent expansion of H(s) and R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)
. The first two terms

of (4-15) are easily understood because of the Eisenstein series, which has simple
poles at s = 1 and no other poles in <(s) ≥ 1

2 . In order to treat the last term of
(4-15) we write Y 1−s

1− s
=−

1
s− 1

+ log Y + O(|s− 1|),

φ1 j (s, 0)=
1

vol(0\H)
1

s− 1
+ b1 j

0 + O(|s− 1|).

These expansions and the fact that the scattering matrix8(s, 1
2)= (φi j (s, 1

2))1≤i, j≤2

is unitary for <(s)= 1
2 (see [Roelcke 1966, Lemma 10.5]) yield

ψ̂(s, Y )

=−
1

vol(0\H)

(
1+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2
)

1
(s− 1)2

+

((
1+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2
)

log Y
vol(0\H)

−
(
1+ |φ11(

1
2 + i t, 1

2)|
2)b11

0 − |φ12(
1
2 + i t, 1

2)|
2b12

0

+
1

vol(0\H)
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)
1

s− 1
+O(1)
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=−
2

vol(0\H)
1

(s− 1)2

+

(
2 log Y

vol(0\H)
−
(
1+ |φ11(

1
2 + i t, 1

2)|
2)b11

0 − |φ12(
1
2 + i t, 1

2)|
2b12

0

+
1

vol(0\H)
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)
1

s− 1
+ O(1).

Consequently we see that R1(|E(z, 1
2 + ir, 1

2)|
2, s) has a pole of order 2 in s = 1.

Furthermore,

res
s=1

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

=

(
1

vol(0\H)

(
−2 log Y +

∫
D0

|E(z, 1
2 + i t, 1

2)|
2 dµ(z)

+

3∑
j=1

∫
DY

(
|E(σa j z,

1
2 + i t, 1

2)|
2
−ψ j (y)

)
dµ(z)

−
φ11(

1
2 + i t, 1

2)Y
2i t
−φ11(

1
2 + i t, 1

2)Y
−2i t

2i t

)

+ b11
0 +

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

2H ′(1)
vol(0\H)

=

(
−

1
vol(0\H)

2∑
j=1

φ1 j
′( 1

2 + i t, 1
2)φ1 j (

1
2 + i t, 1

2)

+ b11
0 +

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

2H ′(1)
vol(0\H)

, (4-16)

where we used the Maaß–Selberg relations (see [Roelcke 1966, Lemma 11.2], for
example). For the remaining poles at s = 1± 2i t we obtain

res
s=1+2i t

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)
= H(1+ 2i t)φ11(1+ 2i t, 0)φ11(

1
2 + i t, 1

2),

and this expression is of rapid decay as |t | →∞. This follows from the following
general facts: the entries of the scattering matrix of weight zero are uniformly
bounded for <(s) ≥ 1

2 , |=(s)| ≥ 1 (see [Selberg 1989, p. 655], for example),
φ11(

1
2± i t, 1

2) is bounded since 8( 1
2+ i t, k) is unitary, and we have the rapid decay

of H(1±2i t). The same bound holds for the residue of H(s)R1
(
|E(z, 1

2+i t, 1
2)|

2, s
)

at s = 1− 2i t . We now want to shift the line of integration in (4-12). To do this we
need to control the growth of the R1

(
|E(z, 1

2 + i t, 1
2)|

2, s
)

as well as knowing the
residues.
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Lemma 4.7. Let F(z)= |E1(z, 1
2 + i t, 1

2)|
2. The function R1(F(z), σ + iv) is of at

most polynomial growth as |v| →∞ for σ ≥ 1
2 .

Proof. In order to avoid the poles of the Eisenstein series coming from the zeros
of the zeta function in the critical strip we work with R∗i (F, s) := ζ(2s)Ri (F, s),
i = 1, 2, 3. Then the function R∗i (F, s) has only finitely many poles in the strip
0≤<(s)≤ 1. The estimates for the Eisenstein series and the scattering matrix
imply that

R∗i (F, s)= O(1)

as |=(s)| →∞ for <(s) > 1, i = 1, 2, 3. Using the functional equation as well as
explicit expressions for φ1 j (s, 0) we then get

R∗1(F, s)=
ζ(2s)

ζ(2(1− s))

3∑
j=1

φ1 j (s, 0)R∗j (F, 1− s)= O(|=(s)|1−2σ )

as |=(s)| → ∞ for σ = <(s) < 0, i = 1, 2, 3. Thus by the Phragmén–Lindelöf
principle we finally obtain that

R1(F, σ + iv)= O(|v|k) as |v| →∞, σ ≥ 1
2 , for some k ∈ N. �

Now that polynomial growth has been established it follows from (4-16) that

J2(t,∞)=
(
−

1
vol(0\H)

2∑
j=1

φ1 j
′

φ1 j
( 1

2 + i t, 1
2)|φ1 j (

1
2 + i t, 1

2)|
2
+ b11

0

+

2∑
j=1

|φ1 j (
1
2 + i t, 1

2)|
2b1 j

0

)
H(1)+

H ′(1)
π

+
1

2π i

∫
<s= 1

2

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds+ O(1). (4-17)

In Section 3 we saw that, up to constants and fractions of polynomials in powers of
2, the entries of the scattering matrix are equal to ξ(3− 4s)/ξ(4s− 1); see (3-10).
Hence, in order to determine the asymptotic behavior of the first term in (4-17)
with respect to the t-variable, we need to understand the logarithmic derivative of
ξ(3− 4s)/ξ(4s − 1) at s = 1

2 + i t . The contribution from the remaining terms is
O(1). We have(

log
ξ(3− 4s)
ξ(4s− 1)

)′ ∣∣∣∣
s= 1

2+i t
= 4 logπ − 2

0′

0

( 1
2 − 2i t

)
− 2

0′

0

( 1
2 + 2i t

)
− 4

(
ζ ′

ζ
(1− 4i t)−

1
4i t
+
ζ ′

ζ
(1+ 4i t)+

1
4i t

)
=−4 log |t | + o(log |t |)
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by Stirling’s formula and [Titchmarsh 1986, Theorem 5.17]. Since 8(s, 1
2) is

unitary for <s = 1
2 , we finally arrive at

J2(t,∞)=
4H(1)

vol(0\H)
log|t |+ 1

2π i

∫
<s= 1

2

H(s)R1
(
|E(z, 1

2+i t, 1
2)|

2,s
)

ds+o(log |t |)

(4-18)
as |t |→∞. To treat the last integral we use again the connection to double Dirichlet
series.

Lemma 4.8. Assume that for any χ, χ ′ mod 8 the function Zψτ (s, 1− s, χ, χ ′)
satisfies a subconvex bound with saving δ > 0. Then, as |t | →∞,

1
2π i

∫
<s=1

2

H(s)R1
(
|E(z, 1

2 + i t, 1
2)|

2, s
)

ds = o(1).

Proof. We find, by (4-13), Proposition 4.5 combined with U (s, w)−1
= O(1)

when <(s)=<(w)= 1
2 , Lemma 2.22, Stirling’s formula, Lemma A.5 and, finally,

1/ζ(1+ i t)= O(log |t |), that

R1
(
|E(z, 1

2 + i t, 1
2)|

2, 1
2 + iu

)
= O

(
|t |−

1
2+ε max

χ,χ ′

∣∣Zψτ (1
2 + i(u+ 2t), 1

2 + i(u− 2t), χ, χ ′)
∣∣).

Subconvexity implies that the max is

O
((
(1+ |u+ 2t |)(1+ |u− 2t |)(1+ 2|u|)2

) 1
4−δ
)
.

Using the rapid decay of H(s) we finally obtain that

J3(t,∞)= O
(
|t |−

1
2+ε|t |2(

1
4−δ)

)
= o(1). �

Remark 4.9. In the above proof we see that, as in the cuspidal case, the trivial
bound from Theorem 2.17 only gives O(|t |

1
2+ε). However, for a compact set A the

Maaß-Selberg relations easily yield∫
A
|E(z, 1

2 + i t, 1
2)|

2 dµ(z)= O(log t).

To summarize, we have proved:

Theorem 4.10. Assume that for any χ, χ ′ mod 8 the function Z(s, 1− s, χ, χ ′)
satisfies a subconvex bound. Then, as |t | →∞,∫

0\H

Fh(z)|E∞(z, 1
2 + i t, 1

2)|
2 dµ(z)=

4
vol(0\H)

H(1) log|t | + o(log|t |).

The asymptotics (1-10) and hence Theorem 1.6 now follow from Theorems 4.3
and 4.10 by an approximation argument as in [Luo and Sarnak 1995, p. 217].
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Appendix: Mellin transforms of products of Whittaker functions

In this appendix we prove various bounds on Mellin transforms of products of
Whittaker functions that we have not been able to find in the literature in the
generality needed.

Lemma A.1. Let p ∈ {±1}. For s = 1
2 + i t , w = 1− s, and s0 fixed, we have the

bound

1
0(w+ p/4)

∫
∞

0
W0,s0−

1
2
(y)Wp/4,w− 1

2
(y)ys−1 dy

y
= O

(
(1+ |t |)−

1
2
)

as |t | →∞.

Remark A.2. The estimate in Lemma A.1 cannot be improved, as the proof below
shows that the estimate can be turned into an asymptotic rate of decay of the same
order.

Proof. Using [Gradshteyn and Ryzhik 2007, 7.611 7., p. 821] we obtain∫
∞

0
W0,s0−

1
2
(y)Wp/4,w− 1

2
(y)ys−1 dy

y

=
0(s+w− s0)0(s+w+ s0− 1)0(1− 2w)

0(1− p/4−w)0(s+w)

× 3 F2

(
s+w− s0, s+w+ s0− 1, w−

p
4
; 2w, s+w; 1

)
+
0(s−w+ s0)0(s−w− s0+ 1)0(2w− 1)

0(w− p/4)0(s−w+ 1)

× 3 F2

(
s−w+ s0, s−w− s0+ 1, 1−

p
4
−w; 2− 2w, s−w+ 1; 1

)
, (A-1)

if |<(s0−
1
2)|+|<(w−

1
2)|<<s. The generalized hypergeometric series that appear

in (A-1) converge for <s < 1+ p/4. We now set s = 1
2 + i t and w= 1

2 − i t and get∫
∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y

=
0(1− s0)0(s0)0(2i t)

0(1
2 −

p
4 + i t)0(1)

3 F2

(
1− s0, s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
+
0(s0+ 2i t)0(1− s0+ 2i t)0(−2i t)

0( 1
2 −

p
4 − i t)0(1+ 2i t)

× 3 F2

(
s0+ 2i t, 1− s0+ 2i t, 1

2
−

p
4
+ i t; 1+ 2i t, 1+ 2i t; 1

)
.
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Using [Bailey 1964, p. 18], we infer that (see also [Jakobson 1994, (2.9), p. 1491])

3 F2

(
s0+ 2i t, 1− s0+ 2i t, 1

2
−

p
4
+ i t; 1+ 2i t, 1+ 2i t; 1

)
=
0(1

2 +
p
4 − i t)0(1+ 2i t)

0( 1
2 +

p
4 + i t)0(1)

3 F2

(1
2
−

p
4
+ i t, 1− s0, s0; 1+ 2i t, 1; 1

)
,

and thus∫
∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y

=
0(1− s0)0(s0)0(2i t)

0( 1
2 −

p
4 + i t)

3 F2

(
1− s0, s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
+
0(s0+ 2i t)0(1− s0+ 2i t)0(−2i t)0( 1

2 +
p
4 − i t)

0( 1
2 −

p
4 − i t)0(1

2 +
p
4 + i t)

× 3 F2

(
1− s0, s0,

1
2
−

p
4
+ i t; 1+ 2i t, 1; 1

)
. (A-2)

We want to understand the asymptotic behavior of the hypergeometric series ap-
pearing in (A-2). Since <(s)= 1

2 < 1+ p
4 , these converge absolutely. Moreover,

the only difference between the two series is the sign of i t , so that it suffices to
treat the first series. The treatment of the second hypergeometric series appearing
in (A-2) is similar. Using the series representation for 3 F2 we see that

3 F2

(
s0, 1− s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
=

∞∑
n=0

(s0)n(1− s0)n(
1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

1
n!
.

(A-3)
In order to determine its asymptotic behavior as |t | →∞ we want to interchange
the summation with the limit, i.e., we want to take the limit |t | →∞ in each term
of the series separately. For this, let ε ∈ (0; 1

4) be sufficiently small and rewrite the
terms appearing in (A-3) as∣∣∣∣(s0)n(1− s0)n(

1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣= ∣∣∣∣(s0)n(1− s0)n

(1+ ε)n

∣∣∣∣ ∣∣∣∣(1+ ε)n(1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣ .
For 0≤ l ≤ n we have∣∣∣∣(l+1+ε)(l+ 1

2−
p
4 −i t)

(l+1)(l+1−2i t)

∣∣∣∣2=
(
l2
+(3

2−
p
4 +ε)l+(1+ε)(

1
2−

p
4 )
)2
+t2(l+1+ε)2

(l+1)4+4t2(l+1)2
.

Since 2(l + 1) > l + 1+ ε and

0≤ l2
+

(3
2
−

p
4
+ ε

)
l + (1+ ε)

(1
2
−

p
4

)
≤ (l + 1)2, (A-4)
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this implies that ∣∣∣∣(s0)n(1− s0)n(
1
2 −

p
4 − i t)n

(1)n(1− 2i t)n

∣∣∣∣≤ ∣∣∣∣(s0)n(1− s0)n

(1+ ε)n

∣∣∣∣
for all n ≥ 0. Furthermore, the hypergeometric series

2 F1(s0, 1− s0; 1+ ε; 1)=
∞∑

n=0

(s0)n(1− s0)n

(1+ ε)n

1
n!

converges absolutely and therefore, by the theorem of majorized convergence, we
finally obtain

lim
|t |→∞

3 F2

(
s0, 1− s0,

1
2
−

p
4
− i t; 1− 2i t, 1; 1

)
= 2 F1

(
s0, 1− s0; 1;

1
2

)
.

Thus only the Gamma factors appearing in (A-2) determine the asymptotic behavior,
and using Stirling’s formula we see that∫

∞

0
W0,s0−

1
2
(y)Wp/4,−i t(y)ys−1 dy

y
= O

(
|t |−(

1
2−

p
4 )e−

π
2 |t |
)

as |t | →∞. This implies the desired bound. �

Lemma A.3. Let p ∈ {±1}. We have

3 F2

(1
2
+

p
4
− i t, 1

2
+ iu, 1

2
− iu; 1, 1− 2i t; 1

)
� eπ |u||u|−2ε

as |u| →∞, where the implied constant does not depend on t. Furthermore, there
exists a constant C independent of t such that

3 F2

(1
2
+

p
4
− i t, 1

2
,

1
2
; 1, 1− 2i t; 1

)
≤ C.

Proof. Since <(2 − 2i t − (1 + 1
2 +

p
4 − i t)) > 0, the hypergeometric series

3 F2(
1
2 +

p
4 − i t, 1

2 + iu, 1
2 − iu; 1, 1 − 2i t; 1) converges. By the definition of

the hypergeometric series we have

3 F2

(1
2
+

p
4
− i t, s, 1− s; 1, 1− 2i t; 1

)
= 1+

∞∑
m=1

(s)m(1− s)m
(1)mm!

( 1
2 +

p
4 − i t)m

(1− 2i t)m

with s = 1
2 + iu. We now determine the behavior of the series as |u| →∞. We use

the same argumentation that was already useful in the proof of Lemma A.1. We
write

(s)m(1− s)m
(1)mm!

(1
2 +

p
4 − i t)m

(1− 2i t)m
=
(s)m(1− s)m
(1+ ε)mm!

( 1
2 +

p
4 − i t)m(1+ ε)m

(1)m(1− 2i t)m
(A-5)
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with ε > 0 sufficiently small. As before the second factor on the right-hand side
can be bounded in norm by 1, and it is straightforward to see that the first factor is
real and positive, so∣∣∣3 F2

(1
2
+

p
4
− i t, s, 1− s; 1, 1− 2i t; 1

)∣∣∣≤ 2 F1(s, 1− s; 1+ ε; 1).

The last hypergeometric function equals (see [Bailey 1964, (1), p. 2])

0(1+ ε)0(ε)

0( 1
2 + ε+ iu)0( 1

2 + ε− iu)
,

and the first statement now follows from Stirling’s formula. The second statement
follows from plugging u = 0 in the above argument. �

Remark A.4. A similar bound is given in [Jakobson 1994], Claim 3.4, p. 1499.

Lemma A.5. Let p ∈ {±1}. For u, t ∈ R we have

1

|0( 1
2 +

p
4 + i t)|2

∫
∞

0
y−

1
2+iu

∣∣Wp/4,i t(y)
∣∣2 dy

y
= O((1+ |t |)−

1
2 )

as |t | →∞. The implied constant is uniform in u.

Proof. Set

Ip,t(u) :=
∫
∞

0
y−

1
2+iu

∣∣Wp/4,i t(y)
∣∣2 dy

y
.

Since |In,t(u)| ≤ In,t(0), we assume that u = 0. By [Gradshteyn and Ryzhik 2007,
Formula 7.611 7., p. 821] we get

In,t(0)

=
0( 1

2−2i t)0( 1
2)0(2i t)

0( 1
2−

p
4+i t)0(1− p

4−i t)
× 3 F2

(1
2
−2i t, 1

2
,

1
2
−

p
4
−i t; 1−2i t, 1− p

4
−i t; 1

)
+
0( 1

2+2i t)0( 1
2)0(−2i t)

0( 1
2−

p
4−i t)0(1− p

4+i t)
× 3 F2

(1
2
+2i t, 1

2
,

1
2
−

p
4
+i t; 1+2i t, 1− p

4
+i t; 1

)
.

It suffices to consider the first term since the second term differs from the first one
only by the sign of t . Using the transformation formulae of [Bailey 1964, p. 18], as
in the proof of Lemma A.1 we see that

3 F2

(1
2
− 2i t, 1

2
,

1
2
−

p
4
− i t; 1− 2i t, 1− p

4
− i t; 1

)
=
0(1− p

4 − i t)0( 1
2)

0( 1
2 −

p
4 − i t)

3 F2

(1
2
+

p
4
− i t, 1

2
,

1
2
; 1, 1− 2i t; 1

)
.
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By the second part of Lemma A.3 the hypergeometric series is bounded and we
find — by bounding all the Gamma functions using Stirling — that

|Ip,t(0)| = O
(
0(1− p

4 − i t)

0( 1
2 −

p
4 − i t)

0(1
2 − 2i t)0(2i t)

0( 1
2 −

p
4 + i t)0(1− p

4 − i t)

)
= O

(
e−π |t ||t |−

1
2+

p
2
)

as |t | →∞, which gives the result. �

Acknowledgements

We thank Gautam Chinta, Adrian Diaconu and Valentin Blomer for useful discus-
sions about multiple Dirichlet series. Also we thank the referees for several helpful
comments.

References

[Bailey 1964] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics
and Mathematical Physics 32, Stechert-Hafner, New York, 1964. MR 32 #2625 Zbl 0011.02303

[Blomer 2011] V. Blomer, “Subconvexity for a double Dirichlet series”, Compos. Math. 147:2 (2011),
355–374. MR 2012f:11170 Zbl 1228.11140

[Blomer et al. 2014] V. Blomer, L. Goldmakher, and B. Louvel, “L-functions with n-th-order twists”,
Int. Math. Res. Not. 2014:7 (2014), 1925–1955. MR 3190355

[Brubaker et al. 2004] B. Brubaker, A. Bucur, G. Chinta, S. Frechette, and J. Hoffstein, “Nonvan-
ishing twists of GL(2) automorphic L-functions”, Int. Math. Res. Not. 2004:78 (2004), 4211–4239.
MR 2005h:11099 Zbl 1083.11030

[Bump et al. 1996] D. Bump, S. Friedberg, and J. Hoffstein, “On some applications of automorphic
forms to number theory”, Bull. Amer. Math. Soc. (N.S.) 33:2 (1996), 157–175. MR 97a:11072
Zbl 0865.11043

[Chinta and Diaconu 2005] G. Chinta and A. Diaconu, “Determination of a GL3 cuspform by
twists of central L-values”, Int. Math. Res. Not. 2005:48 (2005), 2941–2967. MR 2006k:11094
Zbl 1085.11026

[Davenport 2000] H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathemat-
ics 74, Springer, New York, 2000. MR 2001f:11001 Zbl 1002.11001

[Diaconu et al. 2003] A. Diaconu, D. Goldfeld, and J. Hoffstein, “Multiple Dirichlet series and
moments of zeta and L-functions”, Compositio Math. 139:3 (2003), 297–360. MR 2005a:11124
Zbl 1053.11071

[Dutta Gupta 1997] S. Dutta Gupta, “On the Rankin–Selberg method for functions not of rapid decay
on congruence subgroups”, J. Number Theory 62:1 (1997), 115–126. MR 98f:11041 Zbl 0872.11024

[Friedberg and Hoffstein 1995] S. Friedberg and J. Hoffstein, “Nonvanishing theorems for au-
tomorphic L-functions on GL(2)”, Ann. of Math. (2) 142:2 (1995), 385–423. MR 96e:11072
Zbl 0847.11026

[Gradshteyn and Ryzhik 2007] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and
products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. MR 2008g:00005 Zbl 1208.65001

[Heath-Brown 1995] D. R. Heath-Brown, “A mean value estimate for real character sums”, Acta
Arith. 72:3 (1995), 235–275. MR 96h:11081 Zbl 0828.11040

http://msp.org/idx/mr/32:2625
http://msp.org/idx/zbl/0011.02303
http://dx.doi.org/10.1112/S0010437X10004926
http://msp.org/idx/mr/2012f:11170
http://msp.org/idx/zbl/1228.11140
http://dx.doi.org/10.1093/imrn/rns257
http://msp.org/idx/mr/3190355
http://dx.doi.org/10.1155/S1073792804133473
http://dx.doi.org/10.1155/S1073792804133473
http://msp.org/idx/mr/2005h:11099
http://msp.org/idx/zbl/1083.11030
http://dx.doi.org/10.1090/S0273-0979-96-00654-4
http://dx.doi.org/10.1090/S0273-0979-96-00654-4
http://msp.org/idx/mr/97a:11072
http://msp.org/idx/zbl/0865.11043
http://dx.doi.org/10.1155/IMRN.2005.2941
http://dx.doi.org/10.1155/IMRN.2005.2941
http://msp.org/idx/mr/2006k:11094
http://msp.org/idx/zbl/1085.11026
http://dx.doi.org/10.1007/978-1-4757-5927-3
http://msp.org/idx/mr/2001f:11001
http://msp.org/idx/zbl/1002.11001
http://dx.doi.org/10.1023/B:COMP.0000018137.38458.68
http://dx.doi.org/10.1023/B:COMP.0000018137.38458.68
http://msp.org/idx/mr/2005a:11124
http://msp.org/idx/zbl/1053.11071
http://dx.doi.org/10.1006/jnth.1997.2035
http://dx.doi.org/10.1006/jnth.1997.2035
http://msp.org/idx/mr/98f:11041
http://msp.org/idx/zbl/0872.11024
http://dx.doi.org/10.2307/2118638
http://dx.doi.org/10.2307/2118638
http://msp.org/idx/mr/96e:11072
http://msp.org/idx/zbl/0847.11026
http://msp.org/idx/mr/2008g:00005
http://msp.org/idx/zbl/1208.65001
http://matwbn.icm.edu.pl/ksiazki/aa/aa72/aa7234.pdf
http://msp.org/idx/mr/96h:11081
http://msp.org/idx/zbl/0828.11040


1594 Yiannis N. Petridis, Nicole Raulf and Morten S. Risager

[Hoffstein and Kontorovich 2010] J. Hoffstein and A. Kontorovich, “The first non-vanishing quadratic
twist of an automorphic L-series”, preprint, 2010. arXiv 1008.0839

[Iwaniec 1997] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics
17, Amer. Math. Soc., Providence, RI, 1997. MR 98e:11051 Zbl 0905.11023

[Iwaniec 2002] H. Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in
Mathematics 53, Amer. Math. Soc., Providence, RI, 2002. MR 2003k:11085 Zbl 1006.11024

[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, American
Mathematical Society Colloquium Publications 53, Amer. Math. Soc., Providence, RI, 2004.
MR 2005h:11005 Zbl 1059.11001

[Jakobson 1994] D. Jakobson, “Quantum unique ergodicity for Eisenstein series on PSL2(Z)\PSL2(R)”,
Ann. Inst. Fourier (Grenoble) 44:5 (1994), 1477–1504. MR 96b:11068 Zbl 0820.11040

[Koblitz 1984] N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in
Mathematics 97, Springer, New York, 1984. MR 86c:11040 Zbl 0553.10019

[Koyama 2000] S.-y. Koyama, “Quantum ergodicity of Eisenstein series for arithmetic 3-manifolds”,
Comm. Math. Phys. 215:2 (2000), 477–486. MR 2001m:11085 Zbl 0982.11030

[Lindenstrauss 2006] E. Lindenstrauss, “Invariant measures and arithmetic quantum unique ergodic-
ity”, Ann. of Math. (2) 163:1 (2006), 165–219. MR 2007b:11072 Zbl 1104.22015

[Luo and Sarnak 1995] W. Z. Luo and P. Sarnak, “Quantum ergodicity of eigenfunctions on
PSL2(Z)\H2”, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 207–237. MR 97f:11037 Zbl
0852.11024

[Mizuno 2005] Y. Mizuno, “The Rankin–Selberg convolution for Cohen’s Eisenstein series of half in-
tegral weight”, Abh. Math. Sem. Univ. Hamburg 75 (2005), 1–20. MR 2006k:11081 Zbl 1082.11025

[Nelson et al. 2014] P. D. Nelson, A. Pitale, and A. Saha, “Bounds for Rankin–Selberg integrals
and quantum unique ergodicity for powerful levels”, J. Amer. Math. Soc. 27:1 (2014), 147–191.
MR 3110797 Zbl 06228355

[Petridis et al. 2013] Y. N. Petridis, N. Raulf, and M. S. Risager, “Quantum limits of Eisenstein series
and scattering states”, Canad. Math. Bull. 56:4 (2013), 814–826. MR 3121690 Zbl 06231120

[Roelcke 1966] W. Roelcke, “Das Eigenwertproblem der automorphen Formen in der hyperbolischen
Ebene, I”, Math. Ann. 167:4 (1966), 292–337. MR 1513277 Zbl 0152.07705

[Sarnak 2011] P. Sarnak, “Recent progress on the quantum unique ergodicity conjecture”, Bull. Amer.
Math. Soc. (N.S.) 48:2 (2011), 211–228. MR 2012e:58062 Zbl 1234.58007

[Selberg 1989] A. Selberg, Collected papers, I, Springer, Berlin, 1989. MR 92h:01083 Zbl 0675.10001

[Shahidi 1988] F. Shahidi, “On the Ramanujan conjecture and finiteness of poles for certain L-
functions”, Ann. of Math. (2) 127:3 (1988), 547–584. MR 89h:11021 Zbl 0654.10029

[Shimura 1973] G. Shimura, “On modular forms of half integral weight”, Ann. of Math. (2) 97 (1973),
440–481. MR 48 #10989 Zbl 0266.10022

[Shimura 1975] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math.
Soc. (3) 31:1 (1975), 79–98. MR 52 #3064 Zbl 0311.10029

[Shnirelman 1974] A. I. Shnirelman, “Ergodic properties of eigenfunctions”, Uspehi Mat. Nauk
29:6(180) (1974), 181–182. In Russian. MR 53 #6648 Zbl 0324.58020

[Soundararajan 2010a] K. Soundararajan, “Quantum unique ergodicity for SL2(Z)\H”, Ann. of Math.
(2) 172:2 (2010), 1529–1538. MR 2011j:11098 Zbl 1209.58019

[Soundararajan 2010b] K. Soundararajan, “Weak subconvexity for central values of L-functions”,
Ann. of Math. (2) 172:2 (2010), 1469–1498. MR 2011i:11077 Zbl 1234.11066

http://msp.org/idx/arx/1008.0839
http://msp.org/idx/mr/98e:11051
http://msp.org/idx/zbl/0905.11023
http://msp.org/idx/mr/2003k:11085
http://msp.org/idx/zbl/1006.11024
http://msp.org/idx/mr/2005h:11005
http://msp.org/idx/zbl/1059.11001
http://dx.doi.org/10.5802/aif.1442
http://msp.org/idx/mr/96b:11068
http://msp.org/idx/zbl/0820.11040
http://dx.doi.org/10.1007/978-1-4684-0255-1
http://msp.org/idx/mr/86c:11040
http://msp.org/idx/zbl/0553.10019
http://dx.doi.org/10.1007/s002200000317
http://msp.org/idx/mr/2001m:11085
http://msp.org/idx/zbl/0982.11030
http://dx.doi.org/10.4007/annals.2006.163.165
http://dx.doi.org/10.4007/annals.2006.163.165
http://msp.org/idx/mr/2007b:11072
http://msp.org/idx/zbl/1104.22015
http://www.numdam.org/item?id=PMIHES_1995__81__207_0
http://www.numdam.org/item?id=PMIHES_1995__81__207_0
http://msp.org/idx/mr/97f:11037
http://msp.org/idx/zbl/0852.11024
http://msp.org/idx/zbl/0852.11024
http://dx.doi.org/10.1007/BF02942033
http://dx.doi.org/10.1007/BF02942033
http://msp.org/idx/mr/2006k:11081
http://msp.org/idx/zbl/1082.11025
http://dx.doi.org/10.1090/S0894-0347-2013-00779-1
http://dx.doi.org/10.1090/S0894-0347-2013-00779-1
http://msp.org/idx/mr/3110797
http://msp.org/idx/zbl/06228355
http://dx.doi.org/10.4153/CMB-2011-200-2
http://dx.doi.org/10.4153/CMB-2011-200-2
http://msp.org/idx/mr/3121690
http://msp.org/idx/zbl/06231120
http://dx.doi.org/10.1007/BF01364540
http://dx.doi.org/10.1007/BF01364540
http://msp.org/idx/mr/1513277
http://msp.org/idx/zbl/0152.07705
http://dx.doi.org/10.1090/S0273-0979-2011-01323-4
http://msp.org/idx/mr/2012e:58062
http://msp.org/idx/zbl/1234.58007
http://msp.org/idx/mr/92h:01083
http://msp.org/idx/zbl/0675.10001
http://dx.doi.org/10.2307/2007005
http://dx.doi.org/10.2307/2007005
http://msp.org/idx/mr/89h:11021
http://msp.org/idx/zbl/0654.10029
http://dx.doi.org/10.2307/1970831
http://msp.org/idx/mr/48:10989
http://msp.org/idx/zbl/0266.10022
http://dx.doi.org/10.1112/plms/s3-31.1.79
http://msp.org/idx/mr/52:3064
http://msp.org/idx/zbl/0311.10029
http://mi.mathnet.ru/eng/umn4463
http://msp.org/idx/mr/53:6648
http://msp.org/idx/zbl/0324.58020
http://dx.doi.org/10.4007/annals.2010.172.1529
http://msp.org/idx/mr/2011j:11098
http://msp.org/idx/zbl/1209.58019
http://dx.doi.org/10.4007/annals.2010.172.1469
http://msp.org/idx/mr/2011i:11077
http://msp.org/idx/zbl/1234.11066


Double Dirichlet series and quantum unique ergodicity of Eisenstein series 1595

[Soundararajan and Young 2010] K. Soundararajan and M. P. Young, “The second moment of
quadratic twists of modular L-functions”, J. Eur. Math. Soc. (JEMS) 12:5 (2010), 1097–1116.
MR 2011g:11097 Zbl 1213.11165

[Sturm 1980] J. Sturm, “Special values of zeta functions, and Eisenstein series of half integral weight”,
Amer. J. Math. 102:2 (1980), 219–240. MR 82b:10033a Zbl 0433.10015

[Titchmarsh 1986] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., Clarendon
Press, New York, 1986. MR 88c:11049 Zbl 0601.10026

[Truelsen 2011] J. L. Truelsen, “Quantum unique ergodicity of Eisenstein series on the Hilbert modu-
lar group over a totally real field”, Forum Math. 23:5 (2011), 891–931. MR 2836373 Zbl 1282.11047

[Colin de Verdière 1985] Y. Colin de Verdière, “Ergodicité et fonctions propres du laplacien”, Comm.
Math. Phys. 102:3 (1985), 497–502. MR 87d:58145 Zbl 0592.58050

[Zagier 1981] D. Zagier, “The Rankin–Selberg method for automorphic functions which are not
of rapid decay”, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28:3 (1981), 415–437. MR 83k:10056
Zbl 0505.10011

[Zelditch 1987] S. Zelditch, “Uniform distribution of eigenfunctions on compact hyperbolic surfaces”,
Duke Math. J. 55:4 (1987), 919–941. MR 89d:58129 Zbl 0643.58029

[Zelditch 1991] S. Zelditch, “Mean Lindelöf hypothesis and equidistribution of cusp forms and
Eisenstein series”, J. Funct. Anal. 97:1 (1991), 1–49. MR 92h:11046 Zbl 0743.58034

[Zelditch 1992] S. Zelditch, Selberg trace formulae and equidistribution theorems for closed geodesics
and Laplace eigenfunctions: Finite area surfaces, Mem. Amer. Math. Soc. 465, Amer. Math. Soc.,
Providence, RI, 1992. MR 93a:11047 Zbl 0753.11023

Communicated by Peter Sarnak
Received 2012-10-05 Revised 2014-08-03 Accepted 2014-09-08

i.petridis@ucl.ac.uk Department of Mathematics, University College London,
Gower street, London, WC1E 6BT, United Kingdom

raulf@math.univ-lille1.fr Laboratoire Paul Painlevé, U.F.R. de Mathématiques,
Université Lille 1, Sciences et Technologies,
59 655 Villeneuve d’Asqc Cédex, France

risager@math.ku.dk Department of Mathematical Sciences,
University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark

mathematical sciences publishers msp

http://dx.doi.org/10.4171/JEMS/224
http://dx.doi.org/10.4171/JEMS/224
http://msp.org/idx/mr/2011g:11097
http://msp.org/idx/zbl/1213.11165
http://dx.doi.org/10.2307/2374237
http://msp.org/idx/mr/82b:10033a
http://msp.org/idx/zbl/0433.10015
http://msp.org/idx/mr/88c:11049
http://msp.org/idx/zbl/0601.10026
http://dx.doi.org/10.1515/FORM.2011.031
http://dx.doi.org/10.1515/FORM.2011.031
http://msp.org/idx/mr/2836373
http://msp.org/idx/zbl/1282.11047
http://dx.doi.org/10.1007/BF01209296
http://msp.org/idx/mr/87d:58145
http://msp.org/idx/zbl/0592.58050
http://tinyurl.com/Zagier-1989
http://tinyurl.com/Zagier-1989
http://msp.org/idx/mr/83k:10056
http://msp.org/idx/zbl/0505.10011
http://dx.doi.org/10.1215/S0012-7094-87-05546-3
http://msp.org/idx/mr/89d:58129
http://msp.org/idx/zbl/0643.58029
http://dx.doi.org/10.1016/0022-1236(91)90014-V
http://dx.doi.org/10.1016/0022-1236(91)90014-V
http://msp.org/idx/mr/92h:11046
http://msp.org/idx/zbl/0743.58034
http://dx.doi.org/10.1090/memo/0465
http://dx.doi.org/10.1090/memo/0465
http://msp.org/idx/mr/93a:11047
http://msp.org/idx/zbl/0753.11023
mailto:i.petridis@ucl.ac.uk
mailto:raulf@math.univ-lille1.fr
mailto:risager@math.ku.dk
http://msp.org




Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 7 2014

1539Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein
series

YIANNIS N. PETRIDIS, NICOLE RAULF and MORTEN S. RISAGER

1597Monodromy and local-global compatibility for l = p
ANA CARAIANI

1647Finite generation of the cohomology of some skew group algebras
VAN C. NGUYEN and SARAH WITHERSPOON

1659On the supersingular locus of the GU(2,2) Shimura variety
BENJAMIN HOWARD and GEORGIOS PAPPAS

1701Poincaré–Birkhoff–Witt deformations of smash product algebras from Hopf actions on
Koszul algebras

CHELSEA WALTON and SARAH WITHERSPOON

1733Highly biased prime number races
DANIEL FIORILLI

1769Bounded gaps between primes with a given primitive root
PAUL POLLACK

1937-0652(2014)8:7;1-4

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.7


	1. Introduction
	2. A double Dirichlet series
	2A. Gauss sums and some related series
	2B. Functional equations of the standard L-functions
	2B1. GL1
	2B2. GL2

	2C. Average bounds on twisted L-functions
	2D. Meromorphic continuation and functional equations of Z(s,w,,')
	2E. Bounds on Z(s,w,,')
	2F. Another double Dirichlet series

	3. Eisenstein series
	3A. Eisenstein series of level 4
	3A1. Scattering term

	3B. Eisenstein series of level 2n.

	4. Limits of weight 12 Eisenstein series
	4A. The cuspidal contribution.
	4B. The incomplete Eisenstein series contribution

	Appendix: Mellin transforms of products of Whittaker functions
	Acknowledgements
	References
	
	

