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We strengthen the compatibility between local and global Langlands correspon-
dences for GLn when n is even and l D p. Let L be a CM field and … a
cuspidal automorphic representation of GLn.AL/ which is conjugate self-dual
and regular algebraic. In this case, there is an l-adic Galois representation
associated to …, which is known to be compatible with local Langlands in almost
all cases when l D p by recent work of Barnet-Lamb, Gee, Geraghty and Taylor.
The compatibility was proved only up to semisimplification unless … has Shin-
regular weight. We extend the compatibility to Frobenius semisimplification in
all cases by identifying the monodromy operator on the global side. To achieve
this, we derive a generalization of Mokrane’s weight spectral sequence for log
crystalline cohomology.
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1. Introduction

This paper is a continuation of [Caraiani 2012]. Here we extend our local-global
compatibility result to the case l D p.

Theorem 1.1. Let n 2 Z�2 be an integer and L be a CM field with complex
conjugation c. Let l be a prime of Q and �l WQl ! C be an isomorphism. Let … be
a cuspidal automorphic representation of GLn.AL/ satisfying

� …_ '… ı c,
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� … is cohomological for some irreducible algebraic representation „ of
GLn.L˝Q C/.

Let
Rl.…/ W Gal.L=L/! GLn.Ql/

be the Galois representation associated to … by [Shin 2011; Chenevier and Harris
2013]. Let y be a place of L above l . Then we have the isomorphism of Weil–
Deligne representations

WD.Rl.…/jGal.Ly=Ly//
F-ss
' ��1l Ln;Ly .…y/:

Here Ln;Ly .…y/ is the image of …y under the local Langlands correspondence,

using the geometric normalization; i.e., Ln;Ly .…y/ WD rec
�
…_y ˝jdet j

1�n
2

�
, where

rec is the local Langlands correspondence compatible with L- and �-factors (see
the introduction to [Harris and Taylor 2001] for more details). WD.r/ is the Weil–
Deligne representation attached to a de Rham l-adic representation r of the absolute
Galois group of an l-adic field; F-ss denotes Frobenius semisimplification. Note
that we are assuming throughout that n � 2. The local-global compatibility of
Langlands correspondences for GL1 follows from the compatibility between local
and global class field theory.

This theorem is proved in [Barnet-Lamb et al. 2012; Barnet-Lamb et al. 2011]
in the case when … has Shin-regular weight (either n is odd or if n is even then …
satisfies an additional regularity condition) and in general up to semisimplification.
The strategy for obtaining the local-global compatibility of monodromy operators
in these cases is to make use of the fact that the l-adic Galois representation
associated to … occurs in the cohomology of certain very special unitary Shimura
varieties. These are associated to unitary similitude groups with signature .1; n�1/
(respectively, .1; n/ if n is even) at exactly one infinite place and signature .0; n/
(respectively, .0; n C 1/) at all the other infinite places. The problem can be
reduced to the case when …y has an Iwahori-fixed vector, in which case one has
to compute the crystalline cohomology of a compact Shimura variety which is
strictly semistable. This computation makes use of the weight spectral sequence
for crystalline cohomology due to Mokrane [1993], which is shown to degenerate
at the first page. We remark that the l-adic Galois representation associated to …
is only known to occur in the cohomology of a proper, smooth variety in the case
when … has Shin-regular weight.

Our goal in this paper is to match up the monodromy operators in the case when
n is even and … does not necessarily have Shin-regular weight. Following the
conventions of [Taylor and Yoshida 2007], we call a Weil–Deligne representation
pure of weight k if it admits a weight filtration, with all the weights in kCZ, such
that the (iterated) monodromy operator induces an isomorphism of the .kC i/-th
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and .k� i/-th graded pieces for all positive integers i . By Lemma 1.4 (4) of [Taylor
and Yoshida 2007], given a semisimple representation of the Weil group of some
l-adic field, there is at most one way to choose the monodromy operator such that
the resulting Weil–Deligne representation is pure of some weight. By Theorem 1.2
of [Caraiani 2012], …y is tempered, so we know that ��1

l
Ln;Ly .…y/ is pure of

some weight.
By Theorem A of [Barnet-Lamb et al. 2011], we also know that we have an

isomorphism up to semisimplification:

WD.Rl.…/jGal.Ly=Ly//
ss
' ��1l Ln;Ly .…y/

ss:

We note that Theorem A of [Barnet-Lamb et al. 2011] is stated for an imaginary
CM field F . For our CM field L we proceed as on pages 230–231 of [Harris and
Taylor 2001] to find a quadratic extension F=L which is an imaginary CM field, in
which y D y0y00 splits, such that

ŒRl.…/jGal.L=F /�D ŒRl.BCF=L.…//�:

This together with Theorem A of [Barnet-Lamb et al. 2011] gives the compatibility
up to semisimplification for the place y of L. Therefore, in order to complete the
proof of Theorem 1.1, it suffices to show that W WDWD.Rl.…/Gal.Ly=Ly//

F-ss is
pure of some weight when n is even. From now on we will let n 2 Z�2 be an even
integer.

Our argument will follow the same general lines as that of [Taylor and Yoshida
2007], which is also the strategy followed by [Barnet-Lamb et al. 2012; Barnet-
Lamb et al. 2011]. We reduce the problem to the case when…y has an Iwahori-fixed
vector. In this case, we find not W itself, but rather the tensor square of W in
the log crystalline cohomology of a compact Shimura variety with Iwahori-level
structure, and finally compute a part of this cohomology explicitly. For the last
step, however, we can not make use of the Mokrane spectral sequence, since our
Iwahori-level Shimura variety is no longer semistable, but rather Zariski-locally
étale over a product of strictly semistable schemes. Therefore, we need to derive
a formula for the log crystalline cohomology of the special fiber of this Shimura
variety in terms of the crystalline cohomology of closed Newton polygon strata
in the special fiber. Deriving this formula constitutes the heart of this paper; we
obtain it in the form of a generalization of the Mokrane spectral sequence or as a
crystalline analogue of Corollary 4.28 of [Caraiani 2012].

We briefly outline the structure of our paper. In Section 2 we reduce to the
case where … has an Iwahori-fixed vector, we define an inverse system of compact
Shimura varieties associated to a unitary group and we show that the crystalline
cohomology of the Iwahori-level Shimura variety realizes the tensor square of W .
The Shimura varieties we work with are the same as those studied in [Caraiani 2012],
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so in Section 2 we also recall the main results from [Caraiani 2012] concerning
them. In Section 3 we recall and adapt to our situation some standard results from
the theory of log crystalline cohomology and the de Rham–Witt complex; we define
and study some slight generalizations of the logarithmic de Rham–Witt complex.
In Section 4 we generalize the Mokrane spectral sequence to our geometric setting.
The main technical result is Theorem 4.6. In Section 5 we prove Theorem 1.1.

2. Shimura varieties

Let L;…;Rl.…/ and y be as described in the introduction. Below, we show that we
can understand the Weil–Deligne representation W DWD.Rl.…/Gal.Ly=Ly//

F-ss

by computing a part of the crystalline cohomology of an inverse system of Shimura
varieties. In the first part we closely follow Sections 2 and 7 of [Caraiani 2012] and
afterwards we use some results from Section 5 of the same work.

We claim first that we can reduce the problem to the case when … has Iwahori-
fixed vectors at y, and we can also put ourselves in a situation where the base change
from unitary groups to GLn is well understood. This means that we can reduce the
problem to understanding the cohomology of certain Iwahori-level unitary Shimura
varieties. More precisely, we can find a CM field extension F 0 of L such that:

� F 0 D EF1, where E is an imaginary quadratic field in which l splits and
F1 D .F

0/cD1 has ŒF1 WQ�� 2;

� F 0 is soluble and Galois over L;

� …0F 0 WD BCF 0=L.…/ is a cuspidal automorphic representation of GLn.AF 0/;
and

� there is a place p above the place y of L such that …0F 0;p has a nonzero
Iwahori-fixed vector;

and a CM field F which is a quadratic extension of F 0, such that:

� pD p1p2 splits in F ;

� RamF=Q[RamQ.…/� SplF=F2;Q, where F2 WD .F /cD1; and

� …0F D BCF=F 0.…0F 0/ is a cuspidal automorphic representation of GLn.AF /.

We can find F and F 0 as in the proof of Corollary 5.9 of [Caraiani 2012]. Since
purity is preserved under finite extensions by Lemma 1.4 of [Taylor and Yoshida
2007], to show that W is pure it suffices to show that

WF 0 WDWD
�
Rl.…

0
F 0/jGal.F 0p=F 0p/

�F-ss

is pure. Note that in this new situation …0F 0;p has a nonzero Iwahori-fixed vector.
We can define an algebraic group G over Q and an inverse system of Shimura

varieties over F 0 corresponding to a PEL Shimura datum .F;�; V; h � ; � i; h/. Here
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F is the CM field defined above and � D c is the involution corresponding to
complex conjugation. We take V to be the F -vector space F n. The pairing

h � ; � i W V �V !Q

is a nondegenerate Hermitian pairing such that hf v1; v2i D hv1; f �v2i for all
f 2 F and v1; v2 2 V . The last element we need is an R-algebra homomorphism
h W C! EndF .V /˝Q R such that the bilinear pairing

.v1; v2/! hv1; h.i/v2i

is symmetric and positive definite. We define the algebraic group G over Q by

G.R/D
˚
.g; �/ 2 EndF˝QR.V ˝QR/

�
�R� j hgv1; gv2i D �hv1; v2i

	
for any Q-algebra R.

We choose embeddings �i W F ,!C such that �2D �1 ı� , where � is an element
of Gal.F=F 0/ which takes p1 to p2. For � 2 HomE;�E .F;C/ we let .p� ; q� / be
the signature at � of the pairing h � ; � i on V ˝Q R. In particular, �E WD �1jE D �2jE
is well-defined. We claim that it is possible to choose a PEL datum as above such
that .p� ; q� /D .1; n�1/ for � D �1 or �2 and .p� ; q� /D .0; n/ otherwise and such
that GQv is quasisplit at every finite place v of Q. This follows from Lemma 2.1 of
[Caraiani 2012] and the discussion following it, and it depends crucially on the fact
that n is even. We choose such a PEL datum and we let G be the corresponding
algebraic group over Q with the prescribed signature at infinity and quasisplit at all
the finite places.

Let „0F WD BCF=L.„/ and F2 D F cD1. Lemma 7.2 of [Shin 2011] says that
we can find a character  W A�E=E

�! C� and an algebraic representation �C of G
over C satisfying the following conditions:

�  …0F
D  c= .

� „0F is isomorphic to the restriction of „0 to ResF=Q.GLn/�Q C, where „0 is
obtained from �C by base change from G to Gn WD ResE=Q.G �QE/.

� �Cj
�1
E�1
D  c1.

� RamQ. /� SplF=F2;Q.

�  jO
E�u
D 1, where u is the place above l induced by ��1

l
�E .

Define � WD �l�C, and define …1 WD  ˝…0F , which is a cuspidal automorphic
representation of GL1.AE /�GLn.AF /.

Corresponding to the PEL datum .F;�; V; h � ; � i; h/, we have a PEL-type moduli
problem of abelian varieties. This moduli problem is defined in Section 2.1 of
[Caraiani 2012], and here we recall some facts about it. Since the reflex field of the
PEL datum is F 0, the moduli problem for an open compact subgroup U �G.A1/ is
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representable by a Shimura variety XU =F 0, which is a smooth and quasiprojective
scheme of dimension 2n� 2. The inverse system of Shimura varieties XU as U
varies has an action of G.A1/. As in Section III.2 of [Harris and Taylor 2001],
starting with �, which is an irreducible algebraic representation of G over Ql , we
can define a lisse Ql -sheaf L� over each XU , and the action of G.A1/ extends to
the inverse system of sheaves. The direct limit

H i .X;L�/ WD lim
!
H i .XU �F 0 F 0;L�/

is a semisimple admissible representation of G.A1/ with a continuous action of
Gal.F 0=F 0/. It can be decomposed as

H i .X;L�/D
M
�

� ˝Ri�;l.�/;

where the sum runs over irreducible admissible representations � of G.A1/ over
Ql . The Ri

�;l
.�/are finite-dimensional continuous representations of Gal.F 0=F 0/

over Ql . Let AU be the universal abelian variety over XU , to the inverse system of
which the action of G.A1/ extends. To the irreducible representation � of G we
can associate as in Section III.2 of [Harris and Taylor 2001] nonnegative integers
m� and t� as well as an idempotent a� of H�.Am�

U �F
0 F 0;Ql.t�//. (Here A

m�
U

denotes the m� -fold product of AU with itself over XU and Ql.t�/ is a Tate twist.)
We have an isomorphism

H i .XU �F 0 F 0;L�/' a�H
iCm� .A

m�
U �F

0 F 0;Ql.t�//;

which commutes with the G.A1/-action.
For every finite place v of Q we can define a base-change morphism taking

certain admissible G.Qv/-representations to admissible G.Qv/-representations, as
in Section 4.2 of [Shin 2011]. Recall that RamF=Q[RamQ…

1 � SplF=F2;Q. If
v … SplF=F2;Q then we can define the morphism

BC W Irrur
.l/.G.Qv//! Irrur;�-st

.l/
.G.Qv//;

taking unramified representations of G.Qv/ to unramified, � -stable representations
of G.Qv/. If v 2 SplF=F2;Q then the morphism

BC W Irr.l/.G.Qv//! Irr�-st
.l/ .G.Qv//

can be defined explicitly since G.Qv/ is split. Putting these maps together, we get,
for any finite set of primes Sfin such that

RamF=Q[RamQ.…/�Sfin � SplF=F2;Q;
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a base-change morphism

BC W Irrur
.l/

�
G.ASfin[f1g/

�
˝ Irr.l/

�
G.ASfin/

�
! Irrur;�-st

.l/

�
G.ASfin[f1g/

�
˝ Irr�-st

.l/

�
G.ASfin/

�
:

Let p be a prime of Q which splits in E and such that there is a place of F 0

above p which splits in F . Let Sfin be a finite set of primes such that

RamF=Q[RamQ.…/[fpg �Sfin � SplF=F2;Q;

and set S WD Sfin [ f1g. For any R 2 Groth.G.AS/�G.ASfin/�Gal.F 0=F 0//
(over Ql ) and �S 2 Irrur.G.AS// define the �S-isotypic part of R to be

Rf�S
g WD

X
�

n.�S
˝ �/Œ�S�Œ��;

where � runs over Irrl.G.AS/�Gal.F 0=F 0//. Also define

RŒ…1;S� WD
X
�S

RŒ�S�;

where each sum runs over �S 2 Irrur
l
.G.AS// such that BC.�l�S/'…1;S.

Proposition 2.1. Let SDSfin[f1g be as above. We have the equality

BC.H 2n�2.X;L�/Œ…
1;S�/' CG Œ�

�1
l …1;1�ŒRl.…

0
F 0/
˝2
˝ recl;�l . /�

of elements of Groth.G.A1/ � Gal.F 0=F //. Here CG is a positive integer and
recl;�l . / is the continuous l-adic character Gal.E=E/!Q�

l
associated to  by

global class field theory, normalized so that it matches uniformizers with geometric
Frobenius elements.

Remark. Unlike in the classical situation of modular forms or in the case of Harris–
Taylor-type Shimura varieties [Harris and Taylor 2001; Shin 2011], the cohomology
of our inverse system of Shimura varieties realizes a twist of the tensor square of the
l-adic Galois representation associated to …, because we have chosen our unitary
similitude groups to have signature .1; n� 1/ two infinite places. One could use
Matsushima’s formula and .g; K/-cohomology to check that the dimension of the
Galois representation seen by this cohomology is n2, as predicted by the statement.

Proof. Let p 2Sfin be a prime which splits in E such that there is a place w of F 0

above the place induced by �E over p which splits in F , w D w1w2. We start by
recalling some constructions and results from Sections 2 and 5 of [Caraiani 2012].
It is possible to define an integral model of each XU over the ring of integers OK
in K WD Fw1 ' Fw2 , which itself represents a moduli problem of abelian varieties
and to which the sheaf L� extends. The special fiber YU of this integral model
has a stratification by open Newton polygon strata Y ıU;S;T , according to the formal
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(or étale) height of the p-divisible group of the abelian variety at w1 and w2. Each
open Newton polygon stratum is covered by a tower of Igusa varieties Ig.h1;h2/

Up; Em
,

where 0 � h1; h2 � n� 1 represent the étale heights of the p-divisible groups at
w1 and w2, and Em is a tuple of positive integers describing the level structure at p.

Define

J .h1;h2/.Qp/ WDQ�p �D
�
K;n�h1

�GLh1.K/�D
�
K;n�h2

�GLh2.K/�
Y
w

GLn.Fw/;

where DK;n�h is the division algebra over K of invariant 1=.n� h/ and w runs
over places of F above �E other than w1 and w2. The group J .h1;h2/.Qp/ acts on
the directed system of H j

c .Ig
.h1;h2/

Up; Em
;L�/, as U p and Em vary. Let

Hc.Ig.h1;h2/;L�/ 2 Groth
�
G.A1;p/�J .h1;h2/

�
be the alternating sum of the direct limit of H j

c .Ig
.h1;h2/

Up; Em
;L�/ as in Section 5.1 of

[Caraiani 2012]. Let �p 2 Irrl.G.Qp// be a representation such that BC.�p/ '
��1
l
…1p (such a �p is unique up to isomorphism since p splits in E). Theorem 5.6 of

[Caraiani 2012] gives a formula for computing the cohomology of Igusa varieties,
as elements of Groth

�
G.AS/�G.ASfinnfpg/�J

.h1;h2/.Qp/
�
:

BCp
�
Hc.Ig.h1;h2/;L�/Œ…

1;S�
�

D e0.�1/
h1Ch2CG Œ�

�1
l …1;S�Œ��1l …1Sfinnfpg

�ŒRed.h1;h2/n .�p/� (2.1)

Here e0 D˙1 independently of h1; h2 and Red.h1;h2/n is a group morphism from
Groth.G.Qp// to Groth.J .h1;h2/.Qp//, defined explicitly above Theorem 5.6 of
[Caraiani 2012].

We can combine the above formula with Mantovan’s formula for the cohomology
of Shimura varieties. This is the equality

H.X;L�/D
X

0�h1;h2�n�1

.�1/h1Ch2 Mant.h1;h2/
�
Hc.Ig.h1;h2/;L�/

�
(2.2)

of elements of Groth.G.A1/�WK/. Here H.X;L�/ is the alternating sum of the
direct limit of the cohomology of the Shimura fibers (generic fibers) and

Mant.h1;h2/ W Groth.J .h1;h2/.Qp//! Groth.G.Qp/�WK/

is the functor defined in [Mantovan 2005]. The formula (2.2) is what Theorem 22 of
[Mantovan 2005] amounts to in our situation, where h1 and h2 are the parameters
for the Newton stratification. The extra term .�1/h1Ch2 occurs on the right-hand
side because we use the same convention for the alternating sum of cohomology as
in [Caraiani 2012], which differs by a sign from the conventions used in [Mantovan
2005] and [Shin 2011].
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By combining formulas (2.1) and (2.2) we get

BCp
�
H.X;L�/Œ…

1;S�
�

D e0CG Œ�
�1
l …1;1;p�

� X
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

�
in Groth.G.A1;p/�G.Qp/�WK/. We claim thatX
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

D Œ�p�
�
.�p;0 ıArt�1Qp

/jWK ˝ �
�1
l LK;n.…

0
F 0;w/

�
: (2.3)

By its definition above Theorem 5.6 of [Caraiani 2012], the morphism Red.h1;h2/n .�p/

breaks down as a product

.�1/h1Ch2�p;0˝Redn�h1;h1.�w1/˝Redn�h2;h2.�w2/˝
O

w 6Dw1;w2

�w ;

where w runs over places above the place of p induced by �E other than w1 and
w2. The morphism

Redn�h;h W Groth.GLn.K//! Groth.D�K;n�h �GLh.K//

is also defined above Theorem 5.6 of [Caraiani 2012]. On the other hand, the functor
Mant.h1;h2/ also decomposes as a product (see [Shin 2011, Formula 5.6]), into

Mant.h1;h2/.�/

DMant1;0.�0/˝Mantn�h1;h1.�w1/˝Mantn�h2;h2.�w2/˝
O

w 6Dw1;w2

Mant0;m.�w/;

where w again runs over places above the place of p induced by �E other than w1
and w2. SoX
0�h1;h2�n�1

ŒMant.h1;h2/.Red.h1;h2/n .�p//�

D ŒMant1;0.�p;0/�˝
n�1X
h1D0

.�1/h1 ŒMantn�h1;h1.Redn�h1;h1.�w1//�

˝

n�1X
h2D0

.�1/h2 ŒMantn�h2;h2.Redn�h2;h2.�w2//�˝
O

w 6Dw1;w2

Œ�w �:

Now by applying Propositions 2.2(i) and 2.3 of [Shin 2011] we get the desired
result (note that the normalization used in their statements is slightly different than
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ours, but the relation between the two different normalizations is explained above
the statement of Proposition 2.3).

Applying Equation (2.3), we first see that

BC
�
H.X;L�/Œ…

1;S�
�

D e0CG Œ�
�1
l …1;1�

�
.�p;0 ıArt�1Qp

/jWK ˝ �
�1
l LK;n.…

0
F 0;w/

�
(2.4)

in Groth.G.A1/�WK/, which means that

BC
�
H.X;L�/Œ…

1;S�
�
D e0Œ�

�1
l …1;1�ŒR0.…1/�;

for some ŒR0.…1/� 2 Groth.Gal.F 0=F //. We show now that

ŒR0.…1/�D CG ŒR.…
0
F 0/
˝2
˝ recl;�l . /�

in Groth.Gal.F =F 0//, using the Cebotarev density theorem. Note first that R0.…1/
is simply the sum of (the alternating sum of) Rk

�;l
.�1/, where �1 runs over

Irrl.G.A1// such that

� BC.�l�S/'…1;S,

� BC.�l�Sfin/'…Sfin ,

� Rk
�;l
.�1/ 6D 0 for some k.

The set of such � doesn’t depend on S if S is chosen as described above this
proposition, so the Galois representation R

0

.…1/ is also independent of S. There-
fore, for any prime w1 of F where …1 is unramified and which is above a prime w
of F 0 which splits in F and above a prime p 6D l of Q which splits in E, we can
choose a finite set of places S containing p such that we get from Equation (2.4)

ŒR0.…1/jWFw1
�D CG

�
.R.…0F 0/

˝2
˝ recl;�l . //WFw1

�
:

By the Cebotarev density theorem (which tells us the Frobenius elements of primes
w1 are dense in Gal.F 0=F /) we conclude that

ŒR0.…1/�D CG ŒR.…
0
F 0/
˝2
˝ recl;�l . /�

in Groth.Gal.F =F 0//.
It remains to see that e0 D 1 and that Hk.X;L�/Œ…

1;S�D 0 unless k D 2n� 2.
In fact, it suffices to show the latter, since then H.X;L�/Œ…1;S� will have to be an
actual representation, so that would force e0D 1. The fact thatHk.X;L�/Œ…

1;S�D

0 for k 6D 2n� 2 can be seen, as in the proof of Corollary 7.3 of [Caraiani 2012],
by choosing a prime p 6D l to work with and applying the spectral sequences in
Proposition 7.2 of [ibid.], and noting that the terms of those spectral sequence are 0
outside the diagonal corresponding to k D 2n� 2. �
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Corollary 2.2. By Lemmas 1.4 and 1.7 of [Taylor and Yoshida 2007] and by the
same argument as in the proof of Theorem 7.4 of [Caraiani 2012], in order to show
that

WD
�
Rl.…

0
F 0/jGal.F 0p=F 0p/

�F-ss

is pure, it suffices to show that

WD
�
BC.H 2n�2.X;L�/Œ…

S�/jGal.F 0p=F 0p/

�F-ss

is pure, where S is chosen such that it contains l .

At this point, we’ve reduced the question of proving the local-global compatibility
of monodromy operators when lDp to proving that the…S-part of the cohomology
of a system of proper, smooth Shimura varieties over F 0 gives rise to a pure Weil–
Deligne representation. In the rest of this section, we shall describe integral models
of these Shimura varieties which are no longer smooth but are log smooth and of
Cartier type. We shall relate their log crystalline cohomology to the Weil–Deligne
representation we are interested in. The upshot is that we reduce the question of
local-global compatibility to proving the purity of (the …S-part of) certain log
crystalline cohomology groups. This statement is made precise in Corollary 2.3
below.

Recall that p is a place of F 0 above l such that p D p1p2. From now on, set
K WD Fp1 ' Fp2 , where the isomorphism is via � . Let OK be the ring of integers in
K with uniformizer $ and residue field k. For i D 1; 2 let Iwn;pi be the subgroup
of matrices in GLn.OK/ which reduce modulo pi to the Borel subgroup Bn.k/.
Now we set

UIw D U
l
�U

p1;p2
l

.m/� Iwn;p1 � Iwn;p2 �G.A
1/;

for some U l �G.A1/ compact open and U p1;p2
l

a congruence subgroup at l away
from p1 and p2. In Section 2.2 of [Caraiani 2012], an integral model for XUIw=OK
is defined. This is a proper scheme of dimension 2n� 1 with smooth generic fiber.
The special fiber YUIw has a stratification by closed Newton polygon strata YUIw;S;T

with S; T � f1; : : : ; ng nonempty subsets. These strata are proper, smooth schemes
over k of dimension 2n� #S � #T . In fact,

YUIw;S;T D

�\
i2S

Y1;i

�
\

�\
j2T

Y2;j

�
;

where each Yi;j for i D 1; 2 and j D 1; : : : ; n is cut out by one local equation. We
can also define

Y
.l1;l2/
UIw

D

G
S;T�f1;:::;ng

#SDl1
#TDl2

YUIw;S;T :
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By Proposition 2.8 of [Caraiani 2012], the completed local rings of XUIw at closed
geometric points s of XUIw are isomorphic to

O^XUIw ;s
'W.K/ŒŒX1; : : : ; Xn; Y1; : : : ; Yn��=.Xi1 � � �Xir �$;Yj1 � � �Yjs �$/;

where fi1; : : : ; irg � f1; : : : ; ng, fj1; : : : ; jrg � f1; : : : ; ng and W.K/ is the ring of
integers in the completion of the maximal unramified extension of K. The closed
subscheme Y1;il is cut out in O^XUIw ;s

by Xil D 0 and Y2;jl is cut out by Yjl D 0.
The action of G.A1;p/ extends to the inverse system XUIw=OK . There is a

universal abelian variety AUIw=OK and the actions of G.A1/ and a� extend to it.
We can define a stratification of the special fiber of AUIw by

AUIw;S;T DAUIw �XUIw
XUIw;S;T :

Moreover, AUIw satisfies the same geometric properties as XUIw with respect to the
above stratification of its special fiber and the analogous statement holds for A

m�
UIw

.
In particular, we shall see in the next section (or it follows from Section 3 of
[Caraiani 2012]) that A

m�
UIw

can be endowed with a vertical logarithmic structure M
such that

.A
m�
UIw
;M/! .Spec OK ;N/

is log smooth, where .Spec OK ;N/ is the canonical log structure associated to
the closed point. Also, we will see that its special fiber is of Cartier type. This
means that we can define the log crystalline cohomology of .Am�

UIw
;M/. Indeed, if

W DW.k/ is the ring of Witt vectors of k, then we let

H�cris.A
m�
UIw
=W /

be the log crystalline cohomology of .Am�
UIw
�OK k;M/ (here we suppress M from

the notation). This also has an action of a� as an idempotent and of G.AS/.
From the isomorphism

H 2n�2.X;L�/' a�H
2n�2Cm� .Am� ;Ql.t�//

and Corollary 2.2, we see that it is enough to show that

a�WD
�
H 2n�2Cm� .Am� ;Ql.t�/jGal.K=K//Œ…

1;S�
�

is pure. Let �0 WW ,!Ql be an embedding over Zl . By the semistable comparison
theorem of [Nizioł 2008], we have

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�

' lim
!
UIw

a�WD
�
H 2n�2Cm� .Am� �OK K;Ql.t�/jGal.K=K//Œ…

1;S�
�
;
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where the crystalline cohomology on the left-hand side as constructed in [Hyodo
and Kato 1994] has a priori the structure of a .';N /-module over W , but which
gives rise to a Weil–Deligne representation .r; N / ofWK by setting r.�/ WD'nŒkWFp�

whenever � 2WK is a lift of Frobnk . Therefore, it suffices to understand the (direct
limit of the) log crystalline cohomology of the special fiber of A

m�
UIw

. Note that
the semistable comparison theorem was first proved by Kato [1994a] and Tsuji
[1999] for proper, vertical log schemes with semistable reduction; the reason for
citing Niziol’s work is that her main theorem applies to a general fine and saturated,
log-smooth, proper, vertical .Spec OK ;N/-scheme with special fiber of Cartier type.
The fact that .Am�

UIw
;M/ satisfies all these properties follows immediately from the

explicit description of the log structure M in Section 3.
We summarize the above discussion in the following corollary:

Corollary 2.3. The Weil–Deligne representation

WD.Rl.…
0
F 0/jGal.F 0p=F 0p/

/F-ss

is pure if

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�

is pure, where S is chosen such that it contains l .

3. Log crystalline cohomology

3A. Log structures. Let OK be the ring of integers in a finite extension K of Qp

with uniformizer $ and residue field k. (Here, p is some prime number, which
will be taken to equal l for our applications to local-global compatibility.) Let
W DW.k/ be the ring of Witt vectors of k, with WnDWn.k/ referring to the Witt
vectors of length n over k. Let W.K/ be the ring of integers in the completion of
the maximal unramified extension of K.

Let X=OK be a scheme locally of finite type such that the completions of the
strict henselizations O^X;s at closed geometric points s of X are isomorphic to

W.K/ŒŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm��=.Xi1 � � �Xir �$;Yj1 � � �Yjs �$/

for some indices i1; : : : ; ir ; j1; : : : ; js 2 f1; : : : ; ng and some 1 � r; s � n. Also
assume that the special fiber Y is a union of closed subschemes Y 1;j with j 2
f1; : : : ; ng which are cut out by one local equation in OX , such that if s is a closed
geometric point of Y 1;j , then j 2 fi1; : : : ; irg and Y 1;j is cut out in O^X;s by the
equation Xj D 0. Similarly, assume that Y is a union of closed subschemes Y 2;j
with j 2 f1; : : : ; ng, which are cut out by one local equation in OX such that if s is a
closed geometric point of Y2;j then j 2 fj1; : : : ; jrg and Y 2;j is cut out in O^X 0;s by
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the equation Yj D 0. Then, by Lemma 2.9 of [Caraiani 2012], X is Zariski-locally
étale over

Xr;s;mD Spec OK ŒX1; : : : ;Xn; Y1; : : : ; Yn;Z1; : : : ;Zm�=.X1 � � �$;Y1 � � �Ys�$/:

The closed subschemes Yi;j for i D 1; 2 and j D 1; : : : ; n are Cartier divisors,
which in the local model Xr;s;m correspond to the divisors Xj D 0 or Yj D 0.

Let Y=k be the special fiber of X . For 1 � i; j � n we define Y .i;j / to be the
disjoint union of the closed subschemes of Y

.Y1;l1 \ � � � \Y1;li /
\
.Y2;m1 \ � � � \Y2;mj /;

as fl1; : : : ; lig (resp. fm1; : : : ; mj g) range over subsets of f1; : : : ; ng of cardinality i
(resp. j ). Each Y .i;j / is a proper smooth scheme over k of dimension 2n� i � j .

Remark 3.1. Even though this section is general, we will only apply the results
of this section in the case when X is AUIw for some compact open subgroup
UIw �G.A

1/ with Iwahori-level structure at p1 and p2. XUIw (and therefore AUIw

as well) satisfies the above conditions by Proposition 2.8 of [Caraiani 2012]. The
prime p is meant to be identified with l .

Let .Spec OK ;N/ be the log scheme corresponding to Spec OK endowed with
the canonical log structure associated to the special fiber. This is given by the map
1 2 N 7!$ 2 OK . We endow X with the log structure M associated to the special
fiber Y . Let j W XK ! X be the open immersion and i W Y ! X be the closed
immersion. This log structure is defined by

M D j�.O
�
XK
/\OX ! OX :

We have a map of log schemes .X;M/! .Spec OK ;N/, given by sending 1 2 N

to $ 2M . Locally, we have a chart for this map, given by

N! Nr ˚Ns=.1; : : : ; 1; 0; : : : ; 0/D .0; : : : ; 0; 1; : : : ; 1/;

1 7! .1; : : : ; 1; 0; : : : ; 0/D .0; : : : ; 0; 1; : : : ; 1/:

It is easy to see from this that .X;M/=.Spec OK ;N/ is log smooth and that the
log structure M on X is fine, saturated and vertical. We can pull back M to a log
structure on Y , which we still denote M and then we get a log-smooth map of log
schemes

.Y;M/! .Spec k;N/:

(Here we have the canonical log structure on k associated to 1 2N 7! 0 2 k, which
is the same as the pullback of the canonical log structure on Spec OK .) Note that,
since .X;M/ is saturated over .Spec OK ;N/, its special fiber is of Cartier type
(see [Tsuji 1997]).
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We can also endow X with log structures zM1, zM2 and zM . Let Ui;j be the
complement of Yi;;j in X for i D 1; 2 and j D 1; : : : ; n. Let

ji;j W Ui;j !X

denote the open immersion. We define zM1, zM2 and zM as follows

zM1 D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
��ı
�;

zM2 D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
��ı
�;

zM D

� nM
jD1

�
j1;j�.O

�
U1;j

/\OX
�
˚

nM
jD1

�
j2;j�.O

�
U2;j

/\OX
��ı
�;

where � signifies that we have identified the image of O�X in all the terms of the
direct sums (in other words, we are taking an amalgamated sum of the log structures
associated to each of the Yi;j ). We have a map zM !M given by inclusion on each
O�Ui;j .

Lemma 3.2. Locally on X , we have a chart for zM given by

X ! Spec OkŒX1; : : : ;Xn; Y1; : : : ; Yn;Z1; : : : ;Zm�=.X1 � � �Xr�$;Y1 � � �Yr�$/

! Spec ZŒNr˚Ns�;

where .0; : : : ; 0; 1; 0; : : : ; 0/ 7!Xi if the 1 is in the i -th position and 1� i � r and
.0; : : : ; 0; 1; 0; : : : ; 0/ 7! Yi�r if the 1 is in the i -th position and r C 1� i � r C s:

Proof. We shall make use of Kato and Niziol’s results on log smoothness and log
regularity, namely:

� If f W T ! S is a log smooth morphism of fs log schemes with S log regular
then T is log regular (see 8.2 of [Kato 1994b]).

� If T is log regular, then MT D j�O�U \OX , where j W U ,! T is the inclusion
of the open subset of triviality of T (see 8.6 of [Nizioł 2006]).

Let us define the following log schemes over .Spec OK ; triv/:

zU WD Spec OK ŒX1; : : : ; Xn; ��=.X1 � � �Xr � �/;

zV WD Spec OK ŒY1; : : : ; Yn; � �=.Y1 � � �Ys � �/;

W WD Spec OK ŒZ1; : : : ; Zm�;

Z WD zU �.Spec OK ;triv/
zV �.Spec OK ;triv/W:
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Then Z, equipped with the product log structure L, is smooth over OK and
log smooth over .Spec OK Œ�; ��; triv/. Therefore, Z is regular. The log structure L
is given by the simple normal crossings divisor

D WD

� r[
jD1

.Xj D 0/

�
[

� s[
jD1

.Yj D 0/

�
:

Since Z is regular, the log structure L is the same as the amalgamation of the log
structures defined by the smooth divisors .Xj D 0/, .Yj D 0/. Locally on X , we
have a commutative diagram of schemes with a cartesian square

X // Xr;s;m

��

// Z

��
Spec OK // Spec OK Œ�; ��

(3A.1)

where the inverse image of .Xj D 0/ in X is Y 1j and the inverse image of .Yj D 0/
in X is Y 2j . Therefore, the log structure on X induced by that of Z coincides with
the log structure zM defined as the amalgamated sum of the log structures induced
by the Y 1j and Y 2j . �

If we endow Spec OK with the log structure N2 associated to .a; b/ 2 N2 7!

�aCb 2 OK , then we claim that we have a log-smooth map of log schemes

.X; zM/! .Spec OK ;N
2/ (3A.2)

whose chart is given locally by

.a; b/ 2 N2 7! .a; : : : ; a; b; : : : b/ 2 Nr ˚Ns:

By definition, zM is the amalgamated sum of zM1 and zM2 as log structures on
X (or, in other words, zM is the log structure associated to the prelog structure
zM1˚ zM2! OX ). Therefore, it suffices to prove the following lemma:

Lemma 3.3. We can define a global map of log schemes .X; zM1/! .Spec OK ;N/

which locally admits the chart given by the diagonal embedding N! Nr .

Proof. It suffices to show that$ is a global section of zM1, since then we can simply
map 1 2 N to $ 2 zM1. For this, note that we have a natural map of log structures
on X

zM1!M;

since the open subset of triviality of zM1 is the generic fiber of X and M is the
log structure defined by the inclusion of the generic fiber. Moreover, we can
check locally that this map is injective, since it can be described by the chart
Nr !Nr ˚Ns! .Nr ˚Ns/=N for r; s � 1, where the first map is the identity on
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the first factor. Now, locally on X we have the equation X1 � � �Xr D$ , where Xi
are local equations defining the closed subschemes Y 1i of X . By definition, the Xi
are local sections of zM1, so $ is a local section of zM1. But $ is also a global
section of M and zM1 ,!M , so $ is a global section of zM1. �

Lemma 3.4. We have a cartesian diagram of maps of log schemes

.X;M/ //

��

.X; zM/

��
.Spec OK ;N/ // .Spec OK ;N

2/

where the bottom horizontal arrow is the identity on the underlying schemes and
maps .a; b/ 2 N2 to aC b 2 N.

Proof. We go back to the notation used in the proof of Lemma 3.2. Locally on X ,
we have the following commutative diagram of log schemes

.X;M/

��

// zU �Spec OK Œu�
zV �W //

��

Z

��
.Spec OK ;N/ // .Spec OK Œu�;N/ // .Spec OK Œ�; ��;N

2/

where in the bottom row both � and � are mapped to u, which is in turn mapped
to 0. The second square is cartesian and the horizontal maps in it are closed, but
not exact, immersions. The first bottom map is an exact closed immersion, while
the first top map is the composition of an étale morphism with an exact closed
immersion. The lemma follows from the commutative diagram (3A.1) and the
above diagram. �

3B. Variations on the logarithmic de Rham–Witt complex. Define the prelog
structure N2!WnŒ�; �� given by .a; b/ 7! �a�b . By abuse of notation, we write
.SpecWnŒ�; ��;N2/ for the log scheme endowed with the associated log structure.
We have the composite map of log schemes

.Y; zM/! .Spec k;N2/! .SpecWnŒ�; ��;N2/;

where N2 ! N2 is the obvious isomorphism. We shall call .Z; zN/ a lifting
for this morphism if .Z; zN/ is a fine log scheme such that the composite map
.Y; zM/! .SpecWnŒ�; ��;N2/ factors through f W .Y; zM/! .Z; zN/ which is a
closed immersion, and a map .Z; zN/! .SpecWnŒ�; ��;N2/ which is log smooth.
Such liftings always exists locally on Y and give rise to embedding systems as de-
fined in Paragraph 2.18 of [Hyodo and Kato 1994]. If .U; zMU /! .Y; zM/ is a cover-
ing and .Z; zN/ is a lifting for .U; zMU /! .SpecWnŒ�; ��/;N2/, then we may define
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an embedding system ..U i ; zM i
U /; .Z

i ; zN i // for .Y; zM/! .SpecWnŒ�; ��;N2/ by
taking the fiber product of i C 1 copies of U over Y and of i C 1 copies of .Z; zN/
over .SpecWnŒ�; ��;N2/. Since .Y; zM/ is an fs log scheme, we may assume the
same for the local lifting .Z; zN/.

Let C �
.Y; zM/=.Wn;triv/

be the crystalline complex associated to the embedding
system obtained from local liftings .Z�; zN �/, and define

zzC
�

Y WD C.Y; zM/�=.Wn;triv/
˝Wnh�;�iWn:

Let SpecWnŒu� be endowed with the log structure associated to 1 2 N 7! u 2

WnŒu�. Consider the map of log schemesG W .SpecWnŒu�;N/! .SpecWnŒ�;��;N2/
given by �; � 7!u and .a; b/2N2 7! aCb 2N. The pullback of .Y; zM/ along G is
just .Y;M/. Let .Z0; N 0/ be the pullback of .Z; zN/ along G, equipped with a map
f 0 W .Y 0;M 0/! .Z0; N 0/ which is the pullback of f . Then .Z0; N 0/ is a (local)
lifting for .Y;M/! .SpecWnŒu�;N/, and gives rise to an embedding system for
this morphism. Indeed, what we need to check is that .Z0; N 0/! .SpecWnŒu�;N/
is log smooth and that f 0 is a closed immersion of log schemes. For the first we
note that log-smoothness is preserved under base change in the category of log
schemes, and that

.Z0; N 0/D
�
..Z; zN/�G .SpecWnŒu�;N//int�sat

! .Z; zN/�G .SpecWnŒu�;N/

is log smooth. We also note that g W Y ! .Z �SpecWnŒ�;�� SpecWnŒu�/ is a closed
immersion, since Y ! Z is a closed immersion. The morphism of schemes
Z0! .Z �SpecWnŒ�;�� SpecWnŒu�/ is a composition of a finite morphism with a
closed immersion, so Y !Z0 is a closed immersion as well. Also, g�. zN˚N2N/!

M is surjective and factors through .f 0/�.N 0/ ! M , so .f 0/�.N 0/ ! M is
surjective as well.

We now follow the constructions in Section 3.6 of [Hyodo and Kato 1994] using
the embedding system obtained from the liftings .Z0; N 0/. Let C �

.Y;M/=.Wn;triv/
be

the crystalline complex associated to the composite .Z0; N 0/! .Wn; triv/. Define

zC �Y WD C
�
.Y;M/=.Wn;triv/

˝WnhuiWn:

On the other hand, let Z00 DZ0 �SpecWnŒu� SpecWnhui be endowed with N 00 the
inverse image of the log structure N 0. Let L be the log structure on SpecWnhui
obtained by taking the inverse image of (the log structure associated to) N on
SpecWnŒu�. Then .Z00; N 00/ gives rise to an embedding system for

.Y;M/! .SpecWnhui;L/;

with crystalline complex C �
.Y;M/=.SpecWnhui;L/

. Define

C �Y WD C
�
.Y;M/=.SpecWnhui;L/

˝WnhuiWn:
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Note that C �Y is the crystalline complex C �
.Y;M/=.Wn;N/

with respect to the embed-
ding system obtained from .Z0 �SpecWnŒu� SpecWn; N 000/. As in Section 3.6 of
[Hyodo and Kato 1994], we have an exact sequence of complexes

0! C �Y Œ�1�!
zC �Y ! C �Y ! 0; (3B.1)

where the second arrow is ^ .du=u/ and the third arrow is the canonical projection.
The monodromy operator on the crystalline cohomology of .Y;M/ is induced by
the connecting homomorphism of this exact sequence.

Lemma 3.5. Let C �Z be one of the complexes zzC
�

Y , zC �Y or C �Y obtained with respect
to a lifting .Z; zN/ of some coverU!Y . In the derived category, C �Z is independent
of the choice of lifting .Z; zN/.

Proof. We may work étale locally on Y , in which case we have to show that for
any two liftings .Z1; zN1/ and .Z2; zN2/ we have a canonical quasi-isomorphism
between the corresponding complexes and moreover, that these quasi-isomorphisms
satisfy the obvious cocycle condition for three different liftings.

First, we show that the complexes corresponding to .Z1; zN1/ and .Z2; zN2/ are
quasi-isomorphic. We may assume that ii W .Y; zM/! .Zi ; zNi / is an exact closed
immersion for i D 1; 2. Let i12 W .Y; zM/! .Z1 �Wn Z2;

zN1�2/ be the diagonal
immersion of .Y; zM/ into the fiber product of .Z1; zN1/ and .Z2; zN2/ as fs log
schemes over .Wn; triv/. Let .Z12; zN12/ be a log scheme such that étale locally on
Y we have a factorization of i12

.Y; zM/
f
�! .Z12; zN12/

g
�! .Z1 �Z2; zN1�2/;

with g log étale and f an exact closed immersion. This factorization is possible
by Lemma 4.10 of [Kato 1989]. Let Di be the PD-envelope of Y in Zi (again,
for i D 1; 2 or 12). (Since we have exact closed immersions, the logarithmic PD-
envelope coincides with the usual PD-envelope in these cases.) It suffices to show
that the canonical map

!�
.Z1; zN1/=Wn;triv

˝OZ1
OD1 ! !�

.Z12; zN12/=Wn;triv
˝OZ12

OD12 (3B.2)

is a quasi-isomorphism. This follows from Paragraph 2.21 of [Hyodo and Kato
1994]. For completeness, we sketch the proof here. Let p1 W .Z12; N12/! .Z1; N1/

be the log-smooth map induced by projection onto the first factor. For any geo-
metric point Ny of Y , the stalks at Ny of N12 and p�1N1 coincide, so by replac-
ing .Z12; N12/ with an étale neighborhood of Ny ! Z12, we may assume that
N12 D p

�
1N1. Then the map p1 W Z12! Z1 is smooth in the usual sense. Since
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the problem is étale local on Y , we may assume that Z12'Z1˝WnWnŒt1; : : : ; tr �
for some positive integer r such that Y is contained in the closed subscheme
of Z12 defined by t1 D � � � D tr D 0. As in Proposition 6.5 of [Kato 1989],
we also have OD12 ' OD1ht1; : : : ; tri, the PD-polynomial ring over OD1 in r
variables. The quasi-isomorphism (3B.2) is reduced then to the standard quasi-
isomorphism

Wn!�WnŒt1;:::;tr �˝WnŒt1;:::;tr �Wnht1; : : : ; tri:

The quasi-isomorphism (3B.2) commutes with ˝Wnh�;�iWn, so it induces a
quasi-isomorphism

zzC
�

Z1
�!� zzC

�

Z12
:

Now consider the morphism Z012 ! Z01 obtained by pulling back Z12 ! Z1
along G. We claim that the canonical morphisms zC �Z12 !

zC �Z1 and C �Z12 !
C �Z1 are quasi-isomorphisms as well. This is proved in the same way as in the
case of zzC

�
(for C �Z12 ! C �Z1 this amounts to proving that the logarithmic de

Rham–Witt complex is independent of the choice of embedding system). The
quasi-isomorphisms are also compatible with the canonical maps zzC

�

Z !
zC �Z !

C �Z .
Note that the above result also implies that in the derived category, C � commutes

with étale base change. Indeed, if Y2=Y1 is étale and .Z1; zN1/ is a lifting for
.Y1; zM/! .SpecWnŒ�; ��;N2/, then by [Grothendieck 1967, 18.1.1] we can find,
Zariski locally on Y2, an étale morphism Z2!Z1 such that the following diagram
is cartesian

Y2 //

��

Z2

��
Y1 // Z1

We take zN2 on Z2 to be the inverse image of zN1. Then .Z2; zN2/ is a lifting for
.Y2; zM/! .SpecWnŒ�; ��;N2/ and, since log differentials commute with étale
base change [Kato 1989, Proposition 3.12], C �

.Z2/
on Y2 is just the pullback of

C �
.Z2/

on Y1.
We are left with verifying the cocycle condition. The canonical quasi-isomor-

phism 
12 W C
�
Z1
�!� C�Z2

� factors through C �Z1�Z2 , since by construction Z12
is log étale over Z1 �Z2 and so we have a quasi-isomorphism C �Z1�Z2 �!

� C �Z12 .
Let .Z3; zN3/ be another lifting. Then we have the following commutative diagram
of complexes:
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C �Z1�Z2�Z3

C �Z1�Z2

88

C �Z1�Z3

OO

C �Z2�Z3

ff

C �Z1


12 //

OO 88

C �Z2


23 //

88ff

C �Z3

OOff

where all the maps are quasi-isomorphisms. This proves the cocycle condition.
�

Corollary 3.6. The following sheaves on Y are well-defined and commute with
étale base change:

Wn QQ!
q
Y WDHq

�
zzC
�

Y

�
; Wn Q!

q
Y WDHq

�
zC �Y
�

and Wn!
q
Y WDHq.C �Y /:

The sheaves Wn!
q
Y make up the q-th terms of the log de Rham–Witt complex

associated to .Y;M/. We have canonical morphisms of sheaves on Y :

Wn QQ!
q
Y !Wn Q!

q
Y !Wn!

q
Y :

In order to understand the monodromy N , we will study the short exact sequence
of complexes

0!Wn!
�
Y Œ�1�!Wn Q!

�
Y !Wn!

�
Y ! 0;

which we obtain below from the short exact sequence (3B.1). In Section 4 we will
construct a resolution of this short exact sequence in terms of some subquotients of
Wn QQ!

�

Y . For now, since these complexes are independent of the choice of lifting, we
will fix some specific kinds of liftings of .Y; zM/ over .W Œ�; ��;N2/, which we call
admissible liftings, following the terminology used in [Hyodo 1991] and [Mokrane
1993]. Since Y is locally étale over

Yr;s;m D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : Zm�=.X1 � � �Xr ; Y1 � � �Ys/;

we consider the lifting

Zr;s;m

D SpecW ŒX1; : : : ;Xn;Y1; : : : ;Yn;Z1; : : :Zm; �;��=.X1 � � �Xr��;Y1 � � �Ys��/

of .Yr;s;m;Nr ˚Ns/=.W Œ�; ��;N2/. The log structure on Zr;s;m is also induced
from Nr ˚Ns (with the obvious structure map sending Nr to products of the Xi
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and Ns to products of the Yj ). We let Z=Zr;s;m be étale and such that the diagram

.Y; zM/ //

��

.Z; zN/

��
.Yr;s;m;N

r ˚Ns/ // .Zr;s;m;N
r ˚Ns/

is cartesian, with the log structures on top obtained by pullback from the ones
on the bottom. Then, locally on Y , the complexes Wn QQ!

�

Y , Wn Q!�Y and Wn!�Y are
just pullbacks of the corresponding complexes on Yr;s;m with respect to the lifting
.Zr;s;m;N

r ˚Ns/. Note that admissible liftings exist locally on Y .
Now we will explain the relationships between zzC

�

Y , zC �Y and C �Y . First, note
that we have the functoriality map G�!

.Z; zN/=.Wn;triv/
! !.Z0;N 0/=.Wn;triv/, which

induces a canonical map

C �
.Y; zM/=.Wn;triv/

˝Wnh�;�iWnhui ! C �.Y;M/=.Wn;triv/
;

which in turn induces a canonical map zzC
�

Y !
zC �Y . By composition, we also get a

map zzC
�

Y !C �Y . We claim that we can identify zC �Y with zzC
�

Y =.d�=� �d�=�/^
zzC
�

Y

and C �Y with zzC
�

Y =..d�=�/^
zzC
�

Y C .d�=�/^
zzC
�

Y /. We explain this in the case of
zC �Y :

Lemma 3.7. We have an isomorphism

zzC
�

Y

ı�d�
�
�
d�

�

�
^ zzC
��1

Y �!� zC �Y :

Proof. Let .Z; zN/ be an admissible lifting of .Y; zM/ over .SpecWnŒ�; ��;N2/. Let
.D; zMD/ be the divided power envelope of .Y; zM/ in .Z; zN/. Note that the kernel
of the map OD! OY is generated by � Œn� and � Œn�. The divided power envelope
.D0;M 0D/ of .Y;M/ in .Z0; N 0/ satisfies the property

OD0 ' OD˝Wnh�;�iWnhui;

where the map Wnh�; �i !Wnhui is given by � Œn�; � Œn� 7! uŒn�. The complexes
zzC
�

Y and zC �Y are defined by

zzC
�

Y WD
�
!�
.Z; zN/=.Wn;triv/

˝OZ OD
�
˝Wnh�;�iWnhui˝WnhuiWn

D
�
!�
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�
�
˝OZ0 OD0 ˝WnhuiWn

and
zC �Y D .!

�
Z0;N 0=Wn;triv/˝OZ0 OD0 ˝WnhuiWn:

Note that since we have chosen an admissible lifting, .Z0; N 0/ hasZ�WnŒ�;��WnŒu�
as its underlying scheme because zN˚N2N is already fine and saturated. It is enough
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to show that the sequence

!��1
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�! !�
.Z; zN/=.Wn;triv/

˝WnŒ�;��WnŒu�

! !�.Z0;N 0/=.Wn;triv/! 0 (3B.3)

is exact, where the first map is ^.d�=� �d�=�/ and the second map is induced by
functoriality. We denote by G� the pullback along SpecWnŒu�! SpecWnŒ�; �� or
along Z0!Z. By Proposition 3.12 of [Kato 1989], we have the following diagram
of (vertical) exact sequences of sheaves on Z0:

0

��
G�!1

.SpecWnŒ�;��;N2/=.Wn;triv/
˝WnŒu�OZ0

��

// !1
.SpecWnŒu�;N/=.Wn;triv/

˝WnŒu�OZ0

��
G�!1

.Z; zN/=.Wn;triv/

��

// !1
.Z0;N 0/=.Wn;triv/

��
G�!1

.Z; zN/=.SpecWnŒ�;��;N2/

��

// !1
.Z0;N 0/=.SpecWnŒu�;N/

��
0 0

The bottom horizontal arrow is an isomorphism, since .Z0; N 0/ was obtained by
pullback from .Z; zN/. In order to show that the middle horizontal arrow is a
surjection, it is enough to check that du=u is in its image, but both d�=� and d�=�
map to du=u. We also see similarly that the kernel of the middle horizontal arrow
is generated by d�=� � d�=� . The exactness of (3B.3) follows. �

Corollary 3.8. We have an isomorphism

zzC
�

Y

ı�d�
�
^ zzC
��1

Y C
d�

�
^ zzC
��1

Y

�
�!� C �Y :

Proof. This follows from the exact sequence (3B.1) and Lemma 3.7. �

Lemma 3.9. The sections d�=� , d�=� 2Wn QQ!
1
Y are global sections, independent

of the choice of admissible lifting. The same holds for du=u 2Wn Q!1Y .

Proof. We will explain the proof only for d�=� since the same proof also works for
d�=� and du=u. We use basically the same argument as for part 3 of Lemma 3.4
of [Mokrane 1993]. We consider two admissible liftings of .Y; zM/, .Z1; zN1/ and
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.Z2; zN2/, and we let .Z12; zN12/ be defined as in Lemma 3.5. It is enough to show
that locally on Y

d�

�
2 !1

.Z1; zN1/=.Wn;triv/
˝OZ1

OD1

and
d� 0

� 0
2 !1

.Z2; zN2/=.Wn;triv/
˝OZ2

OD2

have the same image in H1.!�
.Z12; zN12/=.Wn;triv/

˝OZ12
OD12/.

Note that d�=� 2 zN1 and d� 0=d� 0 2 zN2 have the same image in zM . This is
because locally on Y we have commutative diagrams

.Y; zM/

��

// .Zi ; zNi /

��
.k;N2/ // .WnŒ�; ��;N

2/

for i D 1; 2, so both d�=� and d� 0=� 0 map to the image of .1; 0/2N2 in zM . By the
construction of .Z12; zN12/ (see the proof of Proposition 4.10 of [Kato 1989]), we
know that d�=� � d� 0=� 0 Dm 2 zN12. Moreover, if ˛12 WN12! OZ12 is the map
defining the log structure of Z12 then m maps to 0 2 zM , so v D ˛12.m/ 2 O�Z12
maps to 1 2 OY . Therefore,

d�

�
�
d� 0

� 0
D
dv

v

for some v 2 OD12 for which Wnhv � 1i � OD12 . But then we see that dv=v 2
d.Wnhv � 1i/, using the fact that the power series expansion of log.v/ around 1
belongs toWnhv�1i. Therefore, d�=��d� 0=� 0 is exact and the lemma follows. �

As in the classical case [Illusie and Raynaud 1983; Hyodo and Kato 1994],
we can define operators F W WnC1 QQ!

q
! Wn QQ!

q , V W Wn QQ!
q
! WnC1 QQ!

q and the
differential d WWn QQ!

q
!Wn QQ!

qC1, which satisfy

d2 D 0; F V D VF D p; dF D pFd; Vd D pdV and FdV D d:

Indeed, fix local liftings .Zn; zNn/ of .Y; zM/! .SpecWnŒ�; ��;N2/ and denote the
crystalline complex zzC

�

Zn
by zzC

�

n. We can see that zzC
�

n is flat over Wn in the same
way as in Lemma 2.22 of [Hyodo and Kato 1994] (using an admissible lifting), and
we have

zzC
�

n˝Z=pnZ Z=pmZ �!� zzC
�

m

for m� n. We let F WWnC1 QQ!
�
!Wn QQ!

� be the map induced by zzC
�

nC1!
zzC
�

n and

V W Wn QQ!
�
! WnC1 QQ!

� be the map induced by p W zzC
�

n!
zzC
�

nC1. We define d to
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be the connecting homomorphism in the exact sequence of cohomology sheaves
associated to the exact sequence of crystalline complexes

0! zzC
�

n

pn

��! zzC
�

2n!
zzC
�

n! 0:

The same operators can be defined for W� Q!�Y and W�!�Y .

Lemma 3.10. Let nD 1. Locally, fix an admissible lifting .Z; zN/ as above. Let Fr
be the relative Frobenius of Y=k. We have Cartier isomorphisms

C�1 W !
q
Y �!
� Hq.Fr� !�Y /;

zC�1 W !
q

.Z0;N 0/=.k;triv/˝kŒu� k �!
� Hq.Fr�.!�.Z0;N 0/=k;triv˝kŒu� k//;

zzC
�1
W !

q

.Z; zN/=.k;triv/
˝kŒt;s� k �!

� Hq.Fr�.!�.Z; zN/=k;triv˝kŒt;s� k//:

Proof. Note that .Y;M/=.Spec k;N/ is log smooth of Cartier type. The Cartier
isomorphism for W1!

q
Y is then defined in Section 2.12 of [Hyodo and Kato 1994].

Similarly, .Z0; N 0/=.Spec k; triv/ and .Z; zN/=.Spec k; triv/ are log smooth and of
Cartier type. Thus, the morphisms zC�1 and zzC

�1
for zC qY and zzC

q

Y are induced from
the Cartier isomorphisms for these schemes.

Since we are working locally on Y , we may assume that Y D Y1 �k Y2 and that
the lifting Z D Z1 �Z2, where Z1; Z2 are smooth over k and Yi is a reduced
normal crossings divisor in Zi . Let Ii be the ideal defining Yi �k Z3�i in Z for
i D 1; 2. Define !�1;2 WD !

�

.Z; zN/=k
˝I1˚!

�

.Z; zN/=k
˝I2 To check that zzC

�1
is an

isomorphism, we use the following commutative diagram of exact sequences:

!
q

.Z; zN/=k
˝I1I2 //

��

!
q
1;2

//

��

!
q

.Z; zN/=k
//

��

zzC
q

Y
//

��

0

Hq.Fr�!�
.Z; zN/=k

˝I1I2/ // !
q
1;2

// Hq.Fr�!�
.Z; zN/=k

/ // Hq.F�
zzC
�

Y /
// 0

The complex !�
.Z; zM/=k;triv

is the same as ��
Z1=k

.logY1/˝k ��Z2=k.logY2/, so it
does satisfy a Cartier isomorphism, by [Deligne and Illusie 1987, 4.2.1.1]. Sim-
ilarly, the complexes on its left are (sums of) products of complexes of the form
��
Zi=k

.˙ logYi / for iD 1; 2, which also satisfy a Cartier isomorphism, by [Deligne
and Illusie 1987, 4.2.1.3]. Therefore, the first three vertical arrows are isomorphisms.
Once we know the exactness of the top and bottom sequence we can also deduce
that the rightmost vertical arrow is an isomorphism. The exactness of the top row
follows from the definition of zzC

q

Y .
The exactness of the bottom row follows from the cohomology long exact

sequence associated to the short exact sequences obtained from the top row combined
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with the Cartier isomorphisms for the first three vertical arrows, which tell us that
the coboundary morphisms of these long exact sequences are all 0. Indeed, if we
let N!�

.Z; zN/
be the complex obtained by completing the inclusion of complexes

!�
.Z; zN/=k

˝I1I2! !�
.Z; zN/=k

˝I1˚!
�

.Z; zN/=k
˝I2

to a distinguished triangle, then we get a long exact sequence

� � � !Hq.!�
.Z; zN/=k

˝I1I2/!Hq.!�
.Z; zN/=k

˝I1/˚Hq.!�
.Z; zN/=k

˝I2/

!Hq. N!�
.Z; zN/

/! � � � :

From the Cartier isomorphisms for !�
.Z; zN/=k

˝I1I2 and !�1;2, we deduce that

Hq.!�
.Z; zN/=k

˝I1I2/ ,!Hq.!�
.Z; zN/=k

˝I1/˚Hq.!�
.Z; zN/=k

˝I2/;

so the coboundaries of the long exact sequence are all 0. By continuing this
argument, we deduce the exactness of the entire bottom row, and this proves that
zzC
�1

is an isomorphism.
Now we prove that zC�1 is an isomorphism. We will show that zC�1 is an

isomorphism in degree q as well. From the short exact sequence (3B.1), we get the
following commutative diagram with exact rows:

0 // C
q�1
Y

//

��

zC
q
Y

//

��

C
q
Y

//

��

0

0 // Hq�1.Fr� C �Y / // Hq.Fr� zC �Y / // Hq.Fr� C �Y / // 0

To see that the bottom row is exact, we have to check that in the long exact
cohomology sequence associated to the top row the coboundaries are all 0, which
is equivalent to showing surjectivity of Hq.Fr� zC �Y /!Hq.Fr� C �Y /. However, by
the top row and the Cartier isomorphism C�1, the composite

zC
q
Y ! C

q
Y !Hq.Fr� C �Y /

is surjective, so the desired map is surjective as well. Now we have a map of short
exact sequences, where the left and right vertical maps are isomorphisms, so the
middle one must be as well. �

We can define canonical projections � WWnC1 QQ!
�

Y !Wn QQ!
�

Y using the Cartier
isomorphisms. The construction works in the same way for Wn Q!�Y . The definition
of � for Wn!�Y can be found in Section 1 of [Hyodo 1991] in the semistable case
and in Section 4 of [Hyodo and Kato 1994] in general. The constructions in [Hyodo
1991] and in [Hyodo and Kato 1994] are the same, although they are formulated
slightly differently. Our construction follows that in Section 1 of [Hyodo 1991],
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by first defining a map p WWn QQ!
�

Y !WnC1 QQ!
�

Y and then showing that p is injective
and its image coincides with the image of multiplication by p on WnC1 QQ!

�

Y . The
projection � will then be the unique map which makes the following diagram
commute:

Wn QQ!
�

Y

p

��

WnC1 QQ!
�

Y�
oo

p

yy
WnC1 QQ!

�

Y

The map p W Wn QQ!
i
Y ! WnC1 QQ!

i
Y is induced from p�iC1 Fr� W zzC

i

Y !
zzC
i

Y , where
Fr W .Z; zN/! .Z; zN/ is a lifting of the Frobenius endomorphism of .Z; zN/�W k

such that Fr�.W Œ�; ��/�W Œ�; ��. The injectivity of p and the fact that its image
coincides with that of multiplication by p are deduced as in Section 2 of [Hyodo
1991] (or as in Lemma 6.8 of [Nakkajima 2005]) from the Cartier isomorphism and
from the fact that zzC

�

Y is W -torsion-free (when we take zzC
�

Y to be the crystalline
complex associated to an embedding system for .Y; zM ) over W ).

Now we will consider a different interpretation of the monodromy operator N .
Taking the cohomology sheaves of the short exact sequence

0! C �Y Œ�1�!
zC �Y ! C �Y ! 0;

we get a long exact sequence of sheaves on Y

� � � !Wn!
q�1
Y !Wn Q!

q
Y !Wn!

q
Y ! � � �

whose coboundaries are actually all 0. This can be checked as in Lemma 1.4.3 of
[Hyodo 1991], since it suffices to see that the induced map on cocycles Zq. zCY /!
Zq.CY / modulo pn is surjective, and we can use the Cartier isomorphisms in
Lemma 3.10 to give an explicit formula for cocycles modulo pn. So we have a
short exact sequence of sheaves on Y

0!Wn!
q�1
Y !Wn Q!

q
Y !Wn!

q
Y ! 0; (3B.4)

which is compatible with operators �; F; V and d . We have a morphism of distin-
guished triangles in the derived category D.Yét; W / of sheaves of W -modules on
Y :

C �Y Œ�1�
//

��

zC �Y
//

��

C �Y
//

��

C �Y

��
Wn!

�
Y Œ�1�

// Wn Q!
�
Y

// Wn!
�
Y

// Wn!
�
Y
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The left and right vertical maps are defined in the proof of Theorem 4.19 of [Hyodo
and Kato 1994], and the middle one can be defined in exactly the same way. Note
that the definition of the maps in Theorem 4.19 has a gap which is corrected in
Lemma 7.18 of [Nakkajima 2005], namely, checking that they commute with
the transition morphisms � W WnC1!�Y ! Wn!

�
Y . The fact that the middle map

commutes with the transition morphisms � WWnC1 Q!�Y !Wn Q!
�
Y can be checked

in the same way as in Lemma 7.18 of [Nakkajima 2005], using the corresponding
Cartier isomorphism to check that the complexesWn Q!�Y give rise to formal de Rham–
Witt complexes as in Definition 6.1 of [ibid.] and thus applying Corollary 6.28(8).
We also need to check that lim

 �
Wn Q!

1
Y is torsion-free, but we can use the fact that this

is known for lim
 �

Wn!
1
Y and the exact sequence (3B.4). The first and third vertical

maps are quasi-isomorphisms by Theorem 4.19 of [Hyodo and Kato 1994], so we
get an isomorphism of distinguished triangles. Thus, the exact sequence (3B.4)
induces the monodromy operator N on cohomology.

Assume that Y has an admissible lifting Z over .W Œt; s�;N2/, and set Z D
Z˝W k. We consider a few more variations on the de Rham–Witt complex, which
we will only define locally on Z. Let Wn��Z be the de Rham–Witt complex of Z.
Let

Y 1 D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�=X1 � � �Xr

and
Y 2 D Spec kŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�=Y1 � � �Ys:

Each Y i is a normal crossings divisor in Zr;s;m �W k. Let Din be the structure
sheaf of the divided power envelope of Y i in Zr;s;m and IDin D ker.Din! OY i /.
For i D 1; 2, let Wn��Z.� logY i / be the (pullback to Z) of the “compact support”
version of the de Rham–Witt complex of Zr;s;m with respect to Y i . This complex
was introduced by Hyodo [1991, Section 1] and is defined by

Wn�
q
Zr;s;m

.� logY i /DHq.��Z=Wn.logY i /˝OZr;s;m IDin/:

Let Wn��Z.� logY 1 � logY 2/ be the pullback from Zr;s to Z of the complex
defined by

Wn�
q
Zr;s;m

.� logY 1� logY 2/ WDHq.!�Zr;s;m;Nr˚Ns=Wn
˝OZ ID1ID2/:

This third complex is meant to approximate a product of complexes of the form
Wn�Z.� logY /. When nD1, considerZ1DSpeckŒX1; : : : ;Xn; t �=.X1 � � �Xr�t /,
Z2 D Spec kŒY1; : : : ; Yn; u�=.Y1 � � �Ys �u/ and Z3 D Spec kŒZ1; : : : ; Zm�. Then

W1�
�
Zr;s;m

.� logY 1� logY 2/

'��
Z1=k

.� logY 1/˝k �
�

Z2=k
.� logY 2/˝k �

�

Z3=k
: (3B.5)
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All these also are endowed with operators F; V , differential d and projection � ,
and they also satisfy a Cartier isomorphism.

Let R be Raynaud’s ring, introduced in [Illusie and Raynaud 1983], i.e., the
graded W -algebra generated by F; V in degree 0 and d in degree 1, subject to the
usual relations

d2 D 0; F V D VF D p; dF D pFd; Vd D pdV and FdV D d:

Let Rn be the right R-module R=.V nRC dV nR/.

Lemma 3.11. Let Wn�� be one of the complexes Wn��Z , Wn��Z.� logY i / for
i D 1; 2 or Wn��Z.� logY 1� logY 2/. Let

W�� D lim
 �

Wn�
�:

Then W��˝LR Rn DWn�
�.

Proof. For nD 1, andWn��Z andWn��Z.� logY i /, we have Cartier isomorphisms

W1�
i
�!� Hi .F�W1�

�/;

by [Deligne and Illusie 1987, Result 4.2.1.3]. For Wn��Z.� logY 1� logY 2/ the
Cartier isomorphism follows from the product formula (3B.5) and from the Cartier
isomorphisms above. Let Zn D Z �W Wn. By abuse of notation, we write ��Zn
for the complex of sheaves of Wn-modules such that

Wn�
i
DHi .��Zn/:

In fact, we have complexes ��Z , ��Z.� logY i / or ��Z.� logY 1� logY 2/ which
give the corresponding complexes��Zn , ��Zn.� logY i / or��Zn.� logY 1� logY 2/
when reduced modulo pn. We also denote any of the initial complexes over W as
��Z . Then there is an explicit description of cocycles modulo pn given by

d�1.pn�iC1Z /D

nX
kD0

pkf n�k�iZ C

n�1X
kD0

f kd�i�1Z ;

where f W �iZ ! �iZ is defined by f D Fr =pi . This is the same as Formula A
from Editorial Comment 11 in [Hyodo 1991] and is proven in the same way as in
that paper and in the same way as in the classical crystalline cohomology case (see
[Illusie 1979, 0.2.3.13]).

As in the case ofWn!Y ,W��� (andW��) is endowed with a differential d , oper-
ators F; V satisfying the usual relations and a canonical projection �n WWnC1��!
Wn�

� such that p ı�n coincides with multiplication by p on WnC1��.
We claim that the lemma follows from the Cartier isomorphism, from the descrip-

tion of cocycles modulo pn in ��Z and from the formal properties of Wn��. The
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proof is the same as for Lemma 1.3.3 of [Mokrane 1993]. We outline the argument
in order to show that it applies to our case as well. To prove the desired result, we
use the flat resolution of Rn as an R-module given by

0! R
.F n;�F nd/
���������! R˚R

dV nCV n

�������! R! Rn! 0;

and it suffices by Corollary 1.3.3 of [Illusie and Raynaud 1983] to prove that the
sequence

0!W�i�1
.F n;�F nd/
���������!W�i�1˚W�i

dV nCV n

�������!W�i !Wn�
i
! 0

is exact. The last map is the canonical projection � WW�i !Wn�
i .

Exactness at the first term follows from the fact that multiplication by p (and
hence also F ) is injective on W��. Indeed, multiplication by p on Wn�� factors
as p ı�n and p is injective by definition, so if p.xn/D 0 for all n then �n.xn/D
xn�1 D 0 for all n, so x D .xn/D 0.

Exactness at the last term is the statement that � is surjective, which follows by
construction, since pD pı� , p is injective and the image of p WWn��!WnC1�

�

coincides with the image of multiplication by p.
Now we check that ker�DdV nW��CV nW��. Recall that�n WWnC1!Wn is

the canonical projection. It is enough to show that ker�nDdV nW1��CV nW1��.
First, if x D V naC dV nb 2WnC1�, it suffices to check that px D 0 and indeed
pxDFV nC1aCdFV nC1bD 0. Now, let Œx�nC1 2 ker�n, where x is an element
of ��Z modulo pnC1. Then Œpx�nC1 D pŒx�nC1 D 0, so it must be the case that
pxDpnC1aCdb. We get dbD0 mod p, so by the description of cocycles mod p
we have b D pb0CFb00C db00, so that db D pdb0CpFdb00. Thus,

Œx�nC1 D Œp
na�nC1C Œdb

0�nC1C ŒFdb
00�nC1

D V nŒa�nC1C dŒp
nFb00�nC1 D V

nŒa�C dV nŒF b00�:

Now we check exactness at the second term. First, note that the sequence

W2n�
q�1 F n

��!Wn�
q�1 d
�!Wn�

q

is exact, which is proved in the same way as Lemma 1.3.4 of [Mokrane 1993], by
taking the long exact sequence of cohomology sheaves of the short exact sequence

0!��Z=p
n��Z

pn

��!��Z=p
2n��Z!��Z=p

n��Z! 0:

We note that the proof of the analogous statement in the classical case in [Illusie 1979,
I(3.21)] is wrong and corrected in [Illusie and Raynaud 1983, II(1.3)]. Nakkajima
[2005, 6.28(6)] proves this statement for formal de Rham–Witt complexes, using
the same argument as Lemma 1.3.4 of [Mokrane 1993].
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We now claim that the projection

W��=pnW��!Wn�
�

is a quasi-isomorphism. This implies that

d�1.pnW�q/D F nW�q�1;

so if dV nxCV ny D 0, then dxCpny D 0, which in turn implies x D F nz and
y D �F ndz for some z 2 W�q�1. This checks exactness at the second term.
Moreover, the fact that

W��=pnW��!Wn�
�

is a quasi-isomorphism follows in the same way as Corollary 3.17 of [Illusie
1979], boiling down to the Cartier isomorphism and to the description of ker� as
dV nCV n. �

Remark 3.12. One can use the Cartier isomorphisms to check Properties 6.0.1–
6.0.5 of [Nakkajima 2005] for ��Z ; �

�
Z.� logY i / and ��Z.� logY 1 � logY 2/,

thus proving the analogue of Proposition 6.27 there for all three complexes. Then
Theorem 6.24 of [Nakkajima 2005] also implies Lemma 3.11.

3C. The weight filtration. The goal of this section is to define a double filtration
Pk;l onW QQ!�Y , which will be an analogue of the weight filtration defined by Mokrane
on Wn Q!�Y in the semistable case (see [1993, Section 3]).

Let .Z; zN/ be an admissible lifting of .Y; zM/ over .W Œ�; ��;N2/. We know that
such liftings exist étale locally. Let Zn DZ �W Wn. Let zN1 be the log structure
on Z (or Zn) obtained by pulling back the log structure on Zr;s;m associated to

Nr !W ŒX1; : : : ; Xn; Y1; : : : ; Yn; Z1; : : : ; Zm�;

.0; : : : ; 0; 1; 0; : : : ; 0/ 7!Xi ;

where 1 is in the i -th position. Define zN2 analogously. The pullback of zNi to Y is
the same as zMi . For i D 1; 2, we have maps of sheaves of monoids zNi ! zN .

We define the following filtration on !�
.Zn; zN/=.Wn;triv/

:

Pi;j!
q

.Zn; zN/=.Wn;triv/

WD Im
�
!i
.Zn; zN1/=.Wn;triv/

˝!
j

.Zn; zN2/=.Wn;triv/
˝�

q�i�j

Zn=k
! !

q

.Zn; zN/=.Wn;triv/

�
for i; j � 0 and i C j � q. This filtration respects the differential and induces a
filtration Pi;j zzC

�

Y on zzC
�

Y (which can be thought of as a quotient of !�
.Zn; zM/=.Wn;triv/

,
as in the proof of Lemma 3.10). Note that if we let

Pk!
q

.Zn; zN/=.Wn;triv/
D Im

�
!k
.Zn; zN/=.Wn;triv/

˝�
q�k

Zn=k
! !

q

.Zn; zN/=.Wn;triv/

�
;
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then Pk is the weight filtration defined in [Mokrane 1993, 1.1.1], and

Pi;j!
�

.Zn; zN/=.Wn;triv/
� PiCj!

�

.Zn; zN/=.Wn;triv/
:

For i D 1; : : : ; r , let D1;i be the pullback to Z of the divisor of Zr;s;m obtained
by setting Xi D 0. Similarly, for i D 1; : : : ; s, let D2;i be the pullback to Z of the
divisor of Zr;s;m obtained by setting Yi D 0. For i; j � 0 let D.i;j / be the disjoint
union of

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ;

over all k1; : : : ; ki 2f1; : : : ; rg and l1; : : : ; lj 2f1; : : : ; sg. And let �i;j WD.i;j /!Z

be the obvious morphism, with D
.i;j /
n , �i;j the pullbacks to Zn. Let

Gri;j !
q

.Zn; zN/=.Wn;triv/

WD Pi;j!
q

.Zn; zN/=.Wn;triv/
=
�
Pi�1;j!

q

.Zn; zN/=.Wn;triv/
CPi;j�1!

q

.Zn; zN/=.Wn;triv/

�
:

For i; j � 1, we will define a morphism of sheaves

Res W Gri;j !
q

.Zn; zN/=.Wn;triv/
! .�i;j /��

q�i�j

D
.i;j /
n =Wn

;

which extends to a morphism of complexes. If

! D ˛^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYkj

Ykj

is a local section of Pi;j!
q

.Zn; zN/=.Wn;triv/
with k1 < � � �< ki and l1 < � � �< lj , then

Res.!/ WD ˛jD1;k1�Z ����ZD1;ki�ZD2;l1�Z ����ZD2;lj :

This factors through Pi�1;j CPi;j�1 and extends to a global map of sheaves.
Alternatively, we can follow the construction in Section 3 of Chapter II of

[Deligne 1970]. Let Dkn be the disjoint union of intersections of k divisorsDj;ki with
j D 1; 2 and ki 2 f1; : : : ; ng. These intersections are in one-to-one correspondence
with images of injections

f W f1; : : : ; kg ! f1; : : : ; ng[ f1; : : : ; ng;

and so we denote one of these k intersections by D
f
n (even though it only really

depends on Imf ). We have

Dkn D
G

iCjDk
i;j�0

Di;jn D
G
Imf

Dfn :



Monodromy and local-global compatibility for l = p 1629

Let �f WD
f
n ! Zn be the closed immersion. In [Deligne 1970, 3.5.2], a morphism

�1 W .�f /��
q�k

D
f
n

! Pk!
q

.Zn; zN/=.Wn;triv/
=Pk�1

(and then a morphism �2, which depends on an ordering of f1; : : : ; ng[f1; : : : ; ng) is
associated to each such injection, and the sum of �2 over all injections f determines
an isomorphism

� W .�k/��
�

Dkn=Wn
Œ�k� �!� Pk!

q

.Zn; zN/=.Wn;triv/
=Pk�1

by Proposition 3.6 of Chapter II of [Deligne 1970].
We are only interested in injections qi;j W f1; : : : ; iCj g!f1; : : : ; ng[f1; : : : ; ng

with image of cardinality i in the first f1; : : : ; ng term and cardinality j in the second
f1; : : : ; ng term. We let Res�1 be the sum of the morphisms �2 over all injections
qi;j . When we have an injection of type qi;j , the image of the morphism �2 defined
by Deligne falls in

Pi;j!
q

.Zn; zN/=.Wn;triv/
=.Pi�1;j CPi;j�1/� PiCj!

q

.Zn; zN/=.Wn;triv/
=PiCj�1:

For k � 1, we have the direct sum decompositions

Pk!
�

.Zn; zN/=.Wn;triv/
=Pk�1 D

M
iCjDk
i;j�0

Gri;j !�.Zn; zN/=.Wn;triv/
;

.�k/��
q�k

D
.k/
n =Wn

D

M
iCjDk
i;j�0

.�i;j /��
q�i�j

D
.i;j /
n =Wn

:

It is easy to check that the isomorphism � matches up the .i; j / terms in each
decomposition. Putting this discussion together, we get the following:

Lemma 3.13. For i; j � 1, the map

Res�1 W .�i;j /��
q�i�j

D
.i;j /
n =Wn

! Gri;j !
q

.Zn; zN/=.Wn;triv/

is an isomorphism.

We also have the following analogue of Lemma 1.2 of [Mokrane 1993].

Lemma 3.14. We have an exact sequence of complexes

0! Pi�1;j�1!
�

.Zn; zN/=.Wn;triv/

! Pi�1;j!
�

.Zn; zN/=.Wn;triv/
˚Pi;j�1!

�

.Zn; zN/=.Wn;triv/

! Pi;j!
�

.Zn; zN/=.Wn;triv/
! Gri;j !�.Zn; zN/=.Wn;triv/

! 0:
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The long exact cohomology sequence(s) associated to this have all coboundaries 0,
so we get the exact sequence

0!Hq.Pi�1;j�1!
�

.Zn; zN/=.Wn;triv/
/

!Hq.Pi�1;j!
�

.Zn; zN/=.Wn;triv/
/˚Hq.Pi;j�1!

�

.Zn; zN/=.Wn;triv/
/

!Hq.Pi;j!
�

.Zn; zN/=.Wn;triv/
/!Hq.��

D
.i;j /
n =Wn

Œ�i � j �/! 0:

Proof. The first assertion is clear. In order to show that the second sequence is
exact, it suffices to show the following two statements about cocycles:

(1) ZPi;j!
q

.Zn; zN/=.Wn;triv/
�Z�

q�i�j

D
.i;j /
n =Wn

.

(2) ZPi�1;j!
q

.Zn; zN/=.Wn;triv/
˚ZPj;i�1!

q

.Zn; zN/=.Wn;triv/

�Z
�
Pi�1;j!

q

.Zn; zN/=.Wn;triv/
CPi;j�1!

q

.Zn; zN/=.Wn;triv/

�
.

The first statement is proved in the same way as the main step in Lemma 1.1.2 of
[Mokrane 1993]. If ˛ is a local section of Z�q�i�j

D
.i;j /
n =Wn

, assume that ˛ is supported
on some

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ;

for some k1; : : : ; ki , l1; : : : ; lj 2 f1; : : : ; ng. Let

� W Zn!D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj

be the retraction associated to the immersion

D1;k1 �Z � � � �ZD1;ki �ZD2;l1 �Z � � � �ZD2;lj ! Zn:

Then ��˛ lifts ˛ to a section of Z�q�i�j
Zn=Wn

and the section

!˛ D �
�˛^

dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYlj

Ylj
2 Pi;j!

q

.Zn; zN/=.Wn;triv/

satisfies d! D 0 and Res.!/D ˛. From this, we know that the coboundaries of the
long exact sequence associated to

0! Pi�1;j!
�

.Zn; zN/=.Wn;triv/
CPi;j�1!

�

.Zn; zN/=.Wn;triv/

! Pi;j!
�

.Zn; zN/=.Wn;triv/
! Gri;j !�.Zn; zN/=.Wn;triv/

! 0

are 0, so we also know that

Hq
�
Pi�1;j!

�

.Zn; zN/=.Wn;triv/
CPi;j�1!

�

.Zn; zN/=.Wn;triv/

�
,!Hq.Pi;j!

�

.Zn; zN/=.Wn;triv/
/

for every i; j � 1.
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For the second statement, we have to prove that if ˛ 2 Pi�1;j!
q

.Zn; zN/=.Wn;triv/
and ˇ 2 Pi;j�1!

q

.Zn; zN/=.Wn;triv/
satisfy d.˛ C ˇ/ D 0, then we can find ˛0 2

ZPi�1;j!
q

.Zn; zN/=.Wn;triv/
and ˇ0 2 ZPi;j�1!

q

.Zn; zN/=.Wn;triv/
such that ˛0 C ˇ0 D

˛Cˇ. If ˛ 2 Pi�1;j�1!
q

.Zn; zN/=.Wn;triv/
, then we are done, since we can just take

˛0D0, ˇ0D˛Cˇ. The same holds for ˇ. Otherwise, we have d˛2Pi�1;j�1, so by
the injectivity proved in statement (1) for .i �1; j /, we know that d˛D d˛1Cd˛2
for some ˛1 2 Pi�1;j�1 and ˛2 2 Pi�2;j . Thus, we’ve reduced our problem from
.i �1; j / to .i �2; j /. Proceeding by induction, we may assume that i D 0. In that
case d˛2i 2 P0;j�1. By (the same argument as in the proof of) Lemma 1.1.2 of
[Mokrane 1993], we have an injection

Hq.P0;j�1!
�

.Zn; zN/=.Wn;triv/
/ ,!Hq.P0;j!

�

.Zn; zN/=.Wn;triv/
/;

which implies d˛2i D d˛2iC1 for some ˛2iC1 2 P0;j�1. Then

˛0 WD ˛�

iX
i 0D0

˛2i 0C1 2ZPi�1;j ; ˇ0 WD ˇC

iX
i 0D0

˛2i 0C1 2ZPi;j�1

satisfy the desired relations. �

The double filtration Pi;j on !�
.Zn; zN/=.Wn;triv/

induces a double filtration Pi;j
on zzCZn , and, for i; j � 1, the residue morphism Res W Pi;j!

q

.Zn; zN/=.Wn;triv/
!

�
q�i�j

D
.i;j /
n =Wn

factors through Pi;j zzCZn .

Lemma 3.15. For any two admissible liftings .Z1; zN/ and .Z2; zN/ of .Y; zM/, we
have a canonical isomorphism

˛Z1Z2 WH
q.Pi;j

zzC
�

Z1;n
/!Hq.Pi;j

zzC
�

Z2;n
/

satisfying the cocycle condition for any three admissible liftings.
Moreover, the residue morphism

ResZ WHq.Pi;j
zzC
�

Zn
/!Hq�i�j .��

D
.i;j /
n =Wn

/'Wn�
q

Y .i;j /

induced on cohomology satisfies the compatibility

ResZ1 D ResZ2 ı˛Z1Z2 :

Proof. The proof of the first part is basically the same as the proof of Lemma 3.5.
We take admissible lifts .Z1; zN/ and .Z2; zN/ (we denote the log structures on both
simply by zN , as it will be understood from the context which is the underlying
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scheme). As in the proof of Lemma 3.5, we form .Z12; zN/, which is smooth over
.Zi ; zN/, even though it is not quite an admissible lift. However, Z12 is étale over

SpecW ŒX1; : : : ;Xn;Y1; : : : ;Yn;X 01; : : :X
0
n;Y
0
1; : : : ;Y

0
n;v
˙1
1 ; : : : ;v˙1r ;u˙11 ; : : :u˙1s �

=.Xivi �X
0
i :Yj vj �Y

0
j /:

So we can endow zzC
�

Z12;n
with a filtration Pi;j zzC

�

Z12;n
defined as above, in terms of

log structures zN1 and zN2 (which come from formally “inverting” the Xi and X 0i or
the Yi and Y 0i ). Then the same argument used in the proof of Lemma 3.5 gives us
quasi-isomorphisms

Pi;j
zzCZi;n ! Pi;j

zzCZ12;n

for i D 1; 2, which satisfy the right compatibility condition for three admissible
lifts.

For the second part, we follow the argument in Lemma 3.4(2) of [Mokrane 1993].
We let

! D ˛^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli

be a section of Pi;j!
q

.Z1;n; zN/=.Wn;triv/
and

!0 D ˛0 ^
dX 0

k1

X 0
k1

^ � � � ^
dX 0

ki

X 0
ki

^
dY 0

l1

Y 0
l1

^ � � � ^
dY 0

li

Y 0
li

be a section of Pi;j!
q

.Z2;n; zN/=.Wn;triv/
such that ! D !0 in Pi;j!

q

.Z12;n; zN/=.Wn;triv/
.

We have to check that ˛j
D
.i;j /
12;n

D ˛0j
D
.i;j /
12;n

. But

! �!0 D .˛�˛0/^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli
C‰;

where ‰ 2 Pi;j�1!
q

.Z2;n; zN/=.Wn;triv/
CPi�1;j!

q

.Z2;n; zN/=.Wn;triv/
. This means that

.˛�˛0/^
dXk1
Xk1

^ � � � ^
dXki
Xki

^
dYl1
Yl1
^ � � � ^

dYli
Yli

is also a section of Pi;j�1!
q

.Z2;n; zN/=.Wn;triv/
C Pi�1;j!

q

.Z2;n; zN/=.Wn;triv/
, and so

.˛�˛0/j
D
.i;j /
12;n

D 0. �

Corollary 3.16. We can define the sheaves

Pi;jWn QQ!
q
Y WDHq.Pi;j

zzC
�

Y /:
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The complexes Pi;jWn QQ!
�

Y form an increasing double filtration of Wn QQ!
�

Y such that
the graded pieces for i; j � 1

Gri;j Wn QQ!
�

Y WD Pi;jWn QQ!
�

Y =Pi;j�1CPi�1;j

are canonically isomorphic to the de Rham–Witt complexes of the smooth sub-
schemes Y .i;j /:

Res W Gri;j Wn QQ!
�

Y �!
� Wn�

�

Y .i;j /
Œ�i � j �.�i � j /:

Lemma 3.17. The constructions in Section 3C are compatible with the transition
morphisms � , in the following way:

(1) The following diagrams are commutative:

WnC1 QQ!
q
Y

^
d�
� ��

� // Wn QQ!
q
Y

^
d�
���

WnC1 QQ!
q
Y

� // Wn QQ!
q
Y

and

WnC1 QQ!
q
Y

^
d�
� ��

� // Wn QQ!
q
Y

^
d�
���

WnC1 QQ!
q
Y

� // Wn QQ!
q
Y

(2) The projection � WWnC1 QQ!
q
Y !Wn QQ!

q
Y preserves the weight filtration Pi;j on

Wm QQ!
q
Y for mD n; nC 1.

(3) The morphism � W Pi;jWnC1 QQ!
q
Y ! Pi;jWn QQ!

q
Y is surjective.

Proof. The first part follows in the same way as Proposition 8.1 of [Nakkajima
2005], by using a local admissible lifting .Z; zN/ of .Y; zM/ together with a lift of
the Frobenius ˆ. Then ˆ�.�/D �p.1Cpu/ for some

u 2 OZ ˝W Œ�;��Wnh�; �i

and soˆ�.d log �/ is equivalent to pd log � modulo an exact form. The same holds
for � .

The second part follows in the same way as Proposition 8.4 of [Nakkajima
2005]. The question is local, so we may assume that the admissible lift .Z; zN/
is étale over SpecW ŒX1; : : : ; Xn; Y1; : : : ; Yn�, Nr ˚Ns . First we see that, for a
lift ˆ of Frobenius we have that ˆ�.d logXi / is equivalent modulo an exact form
to pd logXi for 1 � i � r and that ˆ�.d logYj / is equivalent modulo an exact
form to pd logYj for 1� j � s. This implies that the map p WWn QQ!

q
Y !WnC1 QQ!

q
Y

preserves the weight filtration Pi;j .
In order to see that� WWnC1 QQ!

q
Y!Wn QQ!

q
Y also preservesPi;j we use a descending

induction on .i; j / in lexicographic order. Note that Pr;sWn QQ!
q
Y DWn

QQ!
q
Y , so there

is nothing to prove in this case. We can prove the result for .r; s� 1/ in the same
way as Proposition 8.4(2) of [Nakkajima 2005], using the commutative diagrams
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Pi;jWnC1 QQ!
q
Y

�

��

Res // WnC1�
q�i�j

Y .i;j /

�

��

Pi;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

for .i; j / successively equal to .r; s/; .r �1; s/; : : : ; .1; s/. At the last step we get a
commutative diagram of (vertical) exact sequences

0

��

0

��
Pr;s�1WnC1 QQ!

q
Y CP0;sWnC1

QQ!
q
Y

��

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y

��
Pr;s�1WnC1 QQ!

q
Y CP1;sWnC1

QQ!
q
Y �

//

��

Pr;s�1Wn QQ!
q
Y CP1;sWn

QQ!
q
Y

��

WnC1�
q�s�1

Y .1;s/

��

�
// Wn�

q�s�1

Y .1;s/

��
0 0

which means there is an induced morphism � WPr;s�1WnC1 QQ!
q
Y CP0;sWnC1

QQ!
q
Y !

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y .

At this stage, we note that we can define

Y .0;s/ D
G

T�f1;:::;ng
#TDs

�\
i2T

Y 2i

�
:

This will be a simple reduced normal crossings divisor over k, and we can endow it
with the pullback of the log structure zM1 so that .Y; zM/ is a .k;N/-semistable log
scheme, in the terminology of Section 2.4 of [Mokrane 1993]. There is a surjective
residue morphism obtained via the restriction

Pi;jWn QQ!
q
Y

Res
��! PiWn Q!

q�j

Y .0;j/
;

which respects the weight filtrations. Just as the commutative diagram 8.4.3 of
[Nakkajima 2005] is obtained, we can use the injectivity of p W Wn Q!

q

Y .0;s/
!

WnC1 Q!
q

Y .0;s/
for Y .0;s/=k [Nakkajima 2005, Corollary 6.28(2)] to see that there is
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a commutative diagram

P0;sWnC1 QQ!
q
Y

�

��

Res // P0WnC1 Q!
q�s

Y .0;s/

�

��
P0;sWn QQ!

q
Y

Res // P0Wn Q!
q�s

Y .0;s/

We therefore get a commutative diagram of (vertical) exact sequences:

0

��

0

��
Pr;s�1WnC1 QQ!

q
Y

��

Pr;s�1Wn QQ!
q
Y

��
Pr;s�1WnC1 QQ!

q
Y CP0;sWnC1

QQ!
q
Y �

//

��

Pr;s�1Wn QQ!
q
Y CP0;sWn

QQ!
q
Y

��
P0WnC1 Q!

q�s

Y .0;s/

��

�
// P0Wn Q!

q�s

Y .0;s/

��
0 0

so there is an induced morphism � W Pr;s�1WnC1 QQ!
q
Y ! Pr;s�1Wn QQ!

q
Y .

Finally, the third part follows in the same way as Corollary 8.6.4 of [Nakkajima
2005]. For an admissible lift .Z; zN/, let Z1 WDZ �W k. We have surjective mor-
phisms Wn�

q
Z1
! P0;0Wn QQ!

q
Y , which commute with the transition morphisms � .

So � is surjective for P0;0. Using the exact sequences of the form

0! P0;j�1Wn QQ!
q
Y ! P0;jWn QQ!

q
Y ! P0Wn Q!

q�j

Y .0;j/
! 0

and the surjectivity of � on the third term, we prove by induction on j that � is
surjective for P0;j . The same statement holds for Pi;0. Then, we prove that � is
surjective for a general Pi;j by induction on i C j , using the exact sequences of
the form

0! Pi�1;jWn QQ!
q
Y CPi;j�1Wn

QQ!
q
Y ! Pi;jWn QQ!

q
Y !Wn�

q�i�j

Y .i;j /
! 0: �

4. Generalizing the Mokrane spectral sequence

In this section, we derive a generalization of the Mokrane spectral sequence which
will allow us to compute the log crystalline cohomology of the Shimura varieties
we are interested in terms of the crystalline cohomology of certain proper smooth
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Newton polygon strata in the special fiber. Mokrane’s spectral sequence applies
to the case of semistable reduction. Here we treat the case of a scheme whose
singularities are locally those of a product of semistable schemes which is no longer
semistable.

We define a double complex WnA�� as follows. Its terms are

WnA
ij
WD

jM
kD0

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/ for i; j � 0;

and WnAij WD 0 otherwise. The operators d , � , F , V of W� QQ!
� induce oper-

ators d 0, � , F , V of the procomplexes W�A�j . For x in the direct summand
Wn QQ!

iCjC2
Y =.Pk;iCjC2 C PiCjC2;j�k/ of WnAij , d 0x is the class of .�1/jd Qx,

where Qx is a lift of x in Wn QQ!
iCjC2
Y . We also have a differential d 00 W WnAij !

WnA
ijC1 given by

d 00x D .�1/i
�
d�

�
^ xC

d�

�
^ x

�
;

where d�=� and d�=� are the global sections of Wn QQ!
1
Y defined in Lemma 3.9. We

have d 0d 00 D d 00d 0, so we indeed get a double procomplex .W�A��; d 0; d 00/. As
in Lemma 3.9 of [Mokrane 1993], we can use dévissage by weights to see that
the components of this procomplex are p-torsion-free. Let W�A� be the simple
procomplex associated to the double procomplex W�A��.

We define now an endomorphism � of bidegree .�1; 1/ of WnA�� which will
induce the monodromy operator on cohomology. For each k 2 f0; : : : ; j g we have
natural maps

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/

!Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;jC1�k/

˚Wn QQ!
iCjC2
Y =.PkC1;iCjC2CPiCjC2;j�k/;

which are sums of .�1/iCjC1 proj on each factor. Summing over k we get maps
� WWnA

ij !WnA
i�1jC1, which induce an endomorphism � of bidegree .�1; 1/.

The morphism of complexes Wn QQ!
�

Y !WnA
�0 given by

x 7!
d�

�
^
d�

�
^ x

factors through Wn!�Y . We get a morphism of complexes

‚ WWn!
�
Y !WnA

�:
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The following lemma is analogous to Theorem 9.9 of [Nakkajima 2005]. It
ensures that the resulting spectral sequence will be compatible with the Frobe-
nius endomorphism (defined as an endomorphism of Wn-modules). We let ˆn W
Wn!Y !Wn!Y be the Frobenius endomorphism induced by the absolute Frobenius
endomorphism of .Y;M/.

Lemma 4.1. Let n be a positive integer. Then the following hold:

(1) There exists a unique endomorphism zẑ
�;�

n of WnA�� of double complexes,
making the following diagram commutative:

WnC1A
qm � //

pqF

��

WnA
qm

zẑ
qm

n

��
WnA

qm id // WnA
qm

(2) The endomorphism zẑ
�;�

n induces an endomorphism zẑn of the complex WnA�,
fitting in a commutative diagram

Wn!
�
Y

ˆn //

‚

��

Wn!
�
Y

‚

��
WnA

�
zẑ
n // WnA

�

(3) Finally, the Poincaré residue isomorphism Res fits in the following commutative
diagrams for i; j � 1:

Gri;jWn QQ!
q
Y

Res //

‰n

��

Wn�
q�i�j

Y .i;j /

piCjˆn

��

Gri;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

where ‰n is an endomorphism of Wn QQ!
�

Y which respects the weight filtration

Pi;j and which induces zẑ
�;�

n on WnA�;�.

Proof. The proof is essentially the same as that of Theorem 9.9 of [Nakkajima
2005]. We emphasize only the key points. We can define a morphism

‰j;qn WWn QQ!
q
Y !Wn QQ!

q
Y

via the composition
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Wn QQ!
q
Y

p
�!WnC1 QQ!

q
Y

pj�1

����!WnC1 QQ!
q
Y

F
��!Wn QQ!

q
Y :

The fact that these morphisms commute with the maps .d�=�/^ and .d�=�/^
follows from the proof of the first part of Lemma 3.17. This implies that the second
diagram is commutative. The fact that the ‰��n respect the weight filtration follows
from the analogous statement for p, which is proved in Lemma 3.17 as well. This
means that we can use ‰jjCqC2n to define endomorphisms zẑ

jq

n of WnAjq , at least
for j �1. For j D0we use the Frobenius endomorphismˆn ofWn.OY .kC1;j�kC1//
together with the residue isomorphisms to define zẑ

0q

n . The commutativity of the
first diagram now follows from the definitions, from the commutative diagram

WnC1 QQ!
qm
Y

�
//

pqF

��

Wn QQ!
qm
Y

‰
qm
n

��
WnA

qm
id

// WnA
qm

(which is deduced from pd D dp and dF D pFd ) and from Diagram 9.2.2 of
[Nakkajima 2005] in the case of a smooth morphism. The fact that the first diagram
is commutative ensures the uniqueness of ˆq;mn . Finally, the third commutative dia-
gram follows from the surjectivity of � proved in Lemma 3.17, from Diagram 9.2.2
of [Nakkajima 2005] in the case of a smooth morphism and from the commutative
diagrams

Pi;jWnC1 QQ!
q
Y

�

��

Res // WnC1�
q�i�j

Y .i;j /

�

��

Pi;jWn QQ!
q
Y

Res // Wn�
q�i�j

Y .i;j /

for i; j � 1. �

Proposition 4.2. The sequence

0!Wn!
�
Y

‚
�!WnA

�0 d 00

��!WnA
�1 d 00

��! � � �

is exact.

Proof. We follow the proof of Proposition 3.15 of [Mokrane 1993]. Let � W
Wn QQ!

i�1
Y ˚Wn QQ!

i�1
Y !Wn QQ!

i
Y be defined by

.x; y/ 7!
d�

�
^ xC

d�

�
^y:
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It suffices to check that the sequence

Wn QQ!
i�2
Y

.d�
�
^;d�

�
^/

��������!Wn QQ!
i�1
Y ˚Wn QQ!

i�1
Y

�
�!Wn QQ!

i
Y

d�
�
^d�
�
^

�������!Wn QQ!
iC2
Y =.P0;iC2CPiC2;0/

d 00

��!Wn QQ!
iC3
Y =.P1;iC3CPiC3;0/˚Wn QQ!

iC3
Y =.P0;iC3CPiC3;1/

d 00

��! � � � (4.1)

is exact. We do this by using first a dévissage by weights, reducing to the case nD 1
and then using the fact that the scheme Y is Zariski-locally étale over a product of
(the special fibers of) strictly semistable schemes.

We let

K�4 DWn QQ!
i�2
Y ;

K�3 DWn QQ!
i�1
Y ˚Wn QQ!

i�1
Y ;

K�2 DWn QQ!
i
Y ;

Kj D

jM
kD0

Wn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/; j � 0:

For j � �4; j 6D �1 we define a double filtration of Kj as follows:

Pl;mK�4 D Pl�2;m�2Wn QQ!
i�2
Y ;

Pl;mK�3 D Pl�2;m�1Wn QQ!
i�1
Y ˚Pl�1;m�2Wn QQ!

i�1
Y ;

Pl;mK�2 W D Pl�1;m�1Wn QQ!
i
Y ;

Pl;mKj W D

jM
kD0

PlCk;mCj�kWn QQ!
iCjC2
Y =.Pk;iCjC2CPiCjC2;j�k/; j � 0:

Here we set the convention Pl;mWn QQ!
i
D 0 if either l < 0 or m< 0. The sequence

(4.1) is a filtered sequence and to prove exactness it suffices to prove exactness for
each graded piece

Grl;mKj WD Pl;mKj =.Pl;m�1Kj CPl�1;mKj /:

For l; m� 0 we can rewrite the sequences of graded pieces as:

Grl�2;m�2Wn QQ!
i�2
Y ! Grl�2;m�1Wn QQ!

i�1
Y ˚Grl�1;m�2Wn QQ!

i�1
Y

! Grl�1;m�1Wn QQ!
i
Y ! Grl;mWn QQ!

iC2
Y

! GrlC1;mWn QQ!
iC3
Y ˚Grl;mC1Wn QQ!

iC3
Y ! � � � :
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For l < 0 or m< 0 the sequence is trivial.
It suffices to show that the sequence of complexes

Grl�2;m�2Wn QQ!
�

Y Œ�2�! Grl�2;m�1Wn QQ!
�

Y Œ�1�˚Grl�1;m�2Wn QQ!
�

Y Œ�1�

! Grl�1;m�1Wn QQ!
�

Y

�
�! Grl;mWn QQ!

�

Y Œ2�

! GrlC1;mWn QQ!
�

Y Œ3�˚Grl;mC1Wn QQ!
�

Y Œ3�! � � � (4.2)

is exact. Note that we can check this locally. When l; m � 1, we know by
Corollary 3.16 that

Grl;mWn QQ!
�

Y 'Wn�
�

Y .l;m/
Œ�l �m�.�l �m/:

For lD0 andm�1 let YD0;m be the normal crossing divisor ofD0;m corresponding
to s D 0. In this case we have

Grl;mWn QQ!
�

Y ' ŒWn�D0;m.� logYDo;m/!Wn�D0;m �;

and for l D 0;mD 0 we have the quasi-isomorphism

Grl;mWn QQ!
�

Y ' ŒWn�
�
Z.� logY 1� logY 2/

!Wn�
�
Z.� logY 1/˚Wn��Z.� logY 2/!Wn�

�
Z �;

where Z DZ˝W k. In any case, Grl;mWn QQ!
� satisfies the property

.lim Grl;mWn QQ!
�
/˝LR Rn ' Grl;mWn QQ!

�

by Lemma 1.3.3 of [Mokrane 1993] and Lemma 3.11. By Proposition 2.3.7 of
[Illusie 1983], it suffices to check exactness of the sequence (4.2) for nD 1.

For nD 1 and working locally with our admissible lifts, we know that the exact
sequence (4.2) is the pullback to Y of the corresponding exact sequence on Y1�kY2.
We can assume that Y D Y1 �k Y2 and Z D Z1 �k Z2. Each Yi for i D 1; 2 is a
reduced normal crossings divisor in Zi , for which we know that

Grli�2W1 Q!
�
Yi
Œ�1�! Grli�1W1 Q!Yi ! Grl W1 Q!

�
Yi
Œ1�! GrlC1W1 Q!

�
Yi
Œ2�! � � �

is exact, by the proof of Proposition 3.15 of [Mokrane 1993]. In other words,
for i D 1; 2 we have quasi-isomorphisms between the top row and the bottom
row. Multiplying the quasi-isomorphisms for i D 1; 2 gives us exactly the quasi-
isomorphism � needed to prove the exactness of (4.2) in the case nD 1. Here, we
use the Cartier isomorphisms for W1 Q!Yi and for W1 QQ!Y and the fact that

.!�
.Z1; zN1/=k

˝OZ1
OY1/˝k .!

�

.Z2; zN2/=k
˝OZ2

OY2/' !
�

.Z; zN/
˝OZ OY ;

where the two complexes on the left determine W1 Q!�Yi for i D 1; 2 and the one on
the right determines W1 QQ!

�

Y . �
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Corollary 4.3. The morphism of complexes ‚ WWn!�Y !WnA
� is a quasi-isomor-

phism. It induces a quasi-isomorphism ‚ WW!�Y �!
� WA�.

Proposition 4.4. The endomorphism � of W�A�� induces the monodromy operator
N over H�cris..Y;M/=.W;N//:

Proof. We define the double complex B��n as follows:

B��n DWnA
i�1j
˚WnA

ij ; i; j � 0;

d 0.x1; x2/D .d
0x1; d

0x2/;

d 00.x1; x2/D .d
00x1C �.x2/; d

00x2/:

We have a morphism of complexes ‰ W Wn Q!�Y ! B�n defined as follows: for
x 2Wn Q!

i
Y ,

‰.x/

D

��
d�

�
�
d�

�

�
^x .mod P0;iC1CPiC1;0/;

d�

�
^
d�

�
^x .mod P0;iC2CPiC2;0/

�
:

Thus we have a commutative diagram of exact sequences of complexes:

0 // Wn!
�
Y Œ�1�

‚Œ�1�

��

// Wn Q!
�
Y

//

‰
��

Wn!
�
Y

//

‚
��

0

0 // WnA
�Œ�1� // B�n

// WnA
� // 0

where the left and right downward arrows are quasi-isomorphisms. Thus, ‰ is
also a quasi-isomorphism and the commutative diagram defines an isomorphism of
distinguished triangles. Thus the monodromy operatorN on cohomology is induced
by the coboundary operator of the bottom exact sequence, which by construction
is �. �

We can compute the monodromy filtration of the nilpotent operator N on coho-
mology from the monodromy filtration of � on WnA�. We will exhibit a filtration
Pk.WnA

�/D
L
i;j�0 Pk.WnA

ij / which satisfies the following:

(1) �.Pk.W�A�//� Pk�2.W�A�/.�1/.

(2) For k � 0, the induced map �k W Grk.W�A�/ ! Gr�k.W�A�/.�k/ is an
isomorphism.

A filtration satisfying these two properties must be the monodromy filtration of �.

Note 4.5. From now on, we will not work in the category C of complexes of sheaves
of W -modules but rather in Q˝ C, which is the category with the same set of
objects as C, but with morphisms Q˝HomC.A;B/. We will in fact identify the
monodromy filtration of � on Q˝WnA

�, but for simplicity of notation we still
denote an object A of C as A when we regard it as an object of Q˝C.
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Define Pl.WnA��/ WD
L
i;j�0

Pl.WnA
ij / for l � 0, where Pl.WnAij / is 0 if

l < 2n� 2� j and

jM
kD0

� l�2nC2CjX
mD0

PkCmC1;2j�kCl�2n�mC3Wn QQ!
iCjC2
Y =.Pk;iCjC2CPj�k;iCjC2/

�
if l � 2n�2�j . It is easy to check that �.Pl.WnAij //�Pl�2WnAiC1;j�1. More-
over, we can also compute the graded pieces Grl.WnA��/D

L
i;j�0 Grl.WnAij /,

where

Grl.WnA
ij /

D

�
0 if l < 2n�2�j;Lj

kD0

Ll�2nC2Cj
mD0 GrkCmC1;2j�kCl�2n�mC3Wn QQ!

iCjC2
Y if l � 2n�2�j:

For l D 2n�2Ch, with h>0, we claim that � induces an injection Grl.WnAij / ,!
Grl�1.WnAij /. This can be verified through a standard combinatorial argument.
We have

Grl.WnA
ij /D

jM
kD0

hCjM
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y

and

Grl�1.WnA
ij /D

jC1M
kD0

hCj�1M
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y :

The map � sends the term corresponding to a pair .k;m/ to the direct sum of
terms corresponding to .k;m/ and to .k C 1;m � 1/. Therefore, it is easy to
see that � restricted to the direct sum of terms for which k Cm is constant is
injective, so � is injective. Moreover, we see that �h induces an isomorphism
Gr2n�2Ch.WnAij /' Gr2n�2�h.WnAi�h;jCh/, since the terms on the right-hand
side are of the form

jM
kD0

hCjM
mD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y

and the terms on the left-hand side are of the form
jM

mD0

hCjM
kD0

Gr.kCm/C1;2jChC1�.kCm/Wn QQ!
iCjC2
Y ;

so on either side we have the same number of terms corresponding to k C m.
Since the filtration Pl.WnA��/ satisfies the two properties above, it must be the
monodromy filtration of �.



Monodromy and local-global compatibility for l = p 1643

Note that the differentials d 00 on Grl.W�A��/ are always 0. Using the isomor-
phisms in Corollary 3.16 we can rewrite

Gr2n�2Ch.W�A
�/

'

M
j�0;j��h

jM
kD0

jChM
mD0

.W��
�

Y .kCmC1;2jChC1�.kCm//
/Œ�2j � h�.�j � h/:

This leads to the main geometric result of the paper. Recall from Section 3.1
that Y=k is the special fiber of X=OK , which is Zariski-locally étale over a product
of strictly semistable schemes. Recall also that Y is globally the union of certain
proper, smooth .2n� 2/-dimensional subschemes Yi;j with i D 1; 2, j D 1; : : : ; n.
Taking disjoint unions of intersections of these subschemes gives rise to schemes
Y .l1;l2/=k for 1� l1; l2� n, which cover closed strata in Y . Each Y .l1;l2/ is proper,
smooth and has dimension 2n� l1� l2.

Theorem 4.6. There is a spectral sequence

E
�h;iCh
1 D

M
j�0;j��h

jM
kD0

jChM
mD0

H
i�2j�h
cris .Y .kCmC1;2jChC1�.kCm//=W /.�j �h/

)H i
cris.Y=W /:

Remark 4.7. Note that the schemes Y .l1;l2/ are proper and smooth so the E�h;iCh

terms of the spectral sequence are strictly pure of weight iCh. If the above spectral
sequence degenerates at the first page, then H i

cris.Y=W / is pure of weight i .

5. Proof of the main theorem

In this section we prove the main theorem. By Corollary 2.3, its proof reduces to
the following proposition.

Proposition 5.1. Let A
m�
UIw

be the universal abelian variety over Xm�UIw
. The direct

limit of log crystalline cohomologies

lim
!
UIw

a�
�
H
2n�2Cm�
cris .A

m�
UIw
�OK k=W /˝W Ql.t�/

�
Œ…1;S�

is pure of a certain weight.

Proof. Recall that we have chosen

UIw D U
l
�U

p1;p2
l

.m/� Iwn;p1 � Iwn;p2 �G.A
1/:

Pick m large enough such that .�l/U
p1;p2
l

.m/�Iwn;p1 � Iwn;p2 is nonzero, where
�l 2 Irrl.G.Ql// is such that BC.�l/ D ��1l …l . The results of Sections 3 and 4
apply to A

m�
UIw

. We have a stratification of its special fiber by closed Newton polygon
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strata A
m�
UIw;S;T

with S; T � f1; : : : ; ng nonempty. For brevity, let K1 WD kCmC1
and K2 WD 2j C hC 1� .kCm/. By Theorem 4.6, we have a spectral sequence

E
�h;iCh
1 D

M
j�0
j��h

jM
kD0

jChM
mD0

M
#SDK1
#TDK2

H
i�2j�h
cris

�
.A
m�;
UIw;S;T

=W /.�j � h/
�

)H i
cris.A

m�
UIw
�OK k=W /:

We replace the cohomology degree i by iCm� , tensor with Ql.t�/, apply a� (which
is obtained from a linear combination of étale morphisms); passing to a direct limit
over U l and taking the …1;S-isotypic components we get a spectral sequence

E
�h;iCh
1

D

M
j�0
j��h

jM
kD0

jChM
mD0

M
#SDK1
#TDK1

lim
!

U l

�
a�H

iCm��2j�h

cris

�
.A
m�;
UIw;S;T

=W /.�j � h/

˝W;�0Ql.t�/
�
Œ…1;S�

�
) lim
!

U l

�
a�H

iCm�
cris .A

m�
UIw
�OK k=W /˝W;�0 Ql.t�/

�
Œ…1;S�:

For any compact open subgroup U l �G.A1;l/ and any prime p 6D l with isomor-
phism �p WQp �!

� C, set � 0 WD .�p/�1�l� and …0 WD .�p/�1…1.
We have

dimQl

�
lim
!

U l

a�H
iCm��2j�h

cris

�
.A
m�;
UIw;S;T

=W /.�j � h/˝W;�0 Ql

��
Œ…1;S�U

l

D dimQp

�
lim
!

U l

a�0H
iCm�0�2j�h.A

m�
UIw;S;T

;Qp/
�
Œ.…0/S�U

l

D dimQp
.lim
!

U l

H i�2j�h
�
XUIw;S;T ;L�0

�
/Œ.…0/S�U

l

:

The first equality is a consequence of the main theorem of [Gillet and Messing
1987] and of Theorem 2(2) of [Katz and Messing 1974]. The former proves that
crystalline cohomology is a Weil cohomology theory in the strong sense. The
latter is the statement that the characteristic polynomial on H i .X/ of an integrally
algebraic cycle on X �X of codimension n, for a projective smooth variety X=k
of dimension n, is independent of the Weil cohomology theory H .

The dimension in the third row is equal to 0 unless i D 2n�2 by Proposition 5.10
of [Caraiani 2012]. Therefore, E�h;iCh1 D 0 unless i D 2n�2, so theE1 page of the
spectral sequence is concentrated on a diagonal. The spectral sequence degenerates
at the E1 page and the term corresponding to Eh;2n�2Ch1 is strictly pure of weight
hC 2n� 2Cm� � 2t� , which shows that the abutment is pure. �
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