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On the supersingular locus
of the GU(2,2) Shimura variety

Benjamin Howard and Georgios Pappas

We describe the supersingular locus of a GU.2; 2/ Shimura variety at a prime
inert in the corresponding quadratic imaginary field.

1. Introduction

This paper contributes to the theory of integral models of Shimura varieties, and, in
particular, to the problem of explicitly describing the basic locus in the reduction
modulo p of a canonical integral model. In many cases where this integral model
is a moduli space of abelian varieties with additional structures, the basic locus
coincides with the supersingular locus, i.e., with the subset of the moduli in positive
characteristic where the corresponding abelian variety is isogenous to a product
of supersingular elliptic curves. The first investigations of a higher-dimensional
supersingular locus were for the Siegel moduli space, and are due to Koblitz, Katsura
and Oort, and Li and Oort. See the introduction of [Vollaard 2010] for these and
other references. More recently, such explicit descriptions for certain unitary and
orthogonal Shimura varieties have found applications to Kudla’s program relating
arithmetic intersection numbers of special cycles on Shimura varieties to Eisenstein
series; this motivated further study, as in [Kudla and Rapoport 2009; 1999; 2000;
2011; Vollaard and Wedhorn 2011].

In this paper, we study the supersingular locus of the special fiber of a GU.2; 2/
Shimura variety at an odd prime inert in the corresponding imaginary quadratic field.
Our methods borrow liberally from [Vollaard 2010] and [Vollaard and Wedhorn
2011], which dealt with the GU.n; 1/ Shimura varieties at inert primes, and from
[Rapoport et al. 2014], which considered them at ramified primes. If one attempts
to directly imitate the arguments in those papers to study the general GU.r; s/
Shimura variety, the method breaks down at a crucial point. The key new idea
for overcoming this obstacle is to exploit the linear algebra underlying a twisted
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version of the exceptional isomorphism SU.2; 2/ Š Spin.4; 2/ corresponding to
the Dynkin diagram identity A3 DD3. As such, we do not expect our methods to
extend to unitary groups of other signatures (although we do hope that our result
will eventually help to predict the shape of the answer in the general case). The
problem of understanding the supersingular locus of the GU.3; 2/ Shimura variety,
for example, remains open.

However, our methods should extend to the family of GSpin.n; 2/ Shimura
varieties. Work of Kisin [2010] and Madapusi Pera [2012] (see also [Vasiu 1999])
provides us with a good theory of integral models for these Shimura varieties, and
recent work of W. Kim [2013] gives a good theory of Rapoport–Zink spaces as well.
An extension of our results in this direction would have applications to Kudla’s
program, for example by allowing one to generalize the work of Kudla and Rapoport
[1999; 2000] from GSpin.2; 2/ and GSpin.3; 2/ Shimura varieties to the general
GSpin.n; 2/ case. Using the isomorphism between GSpin.6; 2/ and the similitude
group of a 4-dimensional symplectic module over the Hamiltonian quaternions
[Freitag and Hermann 2000], one could also expect to generalize Bültel’s results
[2012] on the supersingular locus of the moduli space of polarized abelian eightfolds
with an action of a definite quaternion algebra. More ambitiously, one could hope to
exploit the connection between polarized K3 surfaces and the GSpin.19; 2/ Shimura
variety in order to study the moduli space of supersingular K3 surfaces. Some of
these topics will be pursued in subsequent papers.

As this paper was being prepared, Görtz and He were conducting a general
study of basic minuscule affine Deligne–Lusztig varieties for equicharacteristic
discrete valued fields. The preprint [Göertz and He 2013] provides a list of cases
where these affine Deligne–Lusztig varieties can be expressed as a union of usual
Deligne–Lusztig varieties, and that list contains an equicharacteristic analogue of
the GU.2; 2/ Rapoport–Zink space considered here. These results of Görtz and He
in the equicharacteristic case are analogous to our mixed characteristic results.

1.1. The local result. Our main result concerns the structure of the Rapoport–
Zink space parametrizing quasi-isogenies between certain p-divisible groups with
extra structure. Fix an algebraically closed field k of characteristic p > 2, let W
be the ring of Witt vectors over k, and let E=Qp be an unramified degree-two
extension. Consider the family of triples .G; �; �/, defined over W -schemes S on
which p is locally nilpotent, consisting of a supersingular p-divisible group G
with an action � W OE ! End.G/ and a principal polarization � W G ! G_. We
require that the action � and the polarization � be compatible in the sense of
(2-1), and that the action of OE on Lie.G/ satisfy the signature-.2; 2/ determinant
condition of (2-2). A choice of one such triple .G ; �;�/ over k as a basepoint
determines the Rapoport–Zink space, M , parametrizing quadruples .G; �; �; %/ in
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which % WG �S S0!G �k S0 is an OE -linear quasi-isogeny under which � pulls
back to a Q�p -multiple c.%/�. Here, S0D S �W k. The Rapoport–Zink space M is
a formal scheme over W , and admits a decomposition into open and closed formal
subschemes M D

U
`2Z M .`/, where M .`/ is the locus where ordp.c.%// D `.

Here and elsewhere, we use the symbol
U

to denote disjoint union. The group pZ

acts on M , where the action of p sends .G; �; �; %/ 7! .G; �; �; p%/. This action
has M .0/]M .1/ as a fundamental domain. In fact, the action of pZ extends to a
larger group J which acts transitively on the set fM .`/ W ` 2 Zg. Define

N D pZ
nM ;

and let N C and N � be the images of M .0/ and M .1/, respectively, under the
quotient map M !N .

In Section 2, we construct a 6-dimensional Qp-vector space

LˆQ � End.G /Q

of special quasi-endomorphisms of G as the ˆ-fixed vectors in a slope-0 isocrystal
.LQ; ˆ/. The vector spaceLˆ

Q
is endowed with a Qp-valued quadratic formQ.x/D

x ı x, and we define a vertex lattice in Lˆ
Q

to be a Zp-lattice ƒ�Lˆ
Q

such that

pƒ�ƒ_ �ƒ:

The type tƒ 2 f2; 4; 6g of ƒ is the dimension of ƒ=ƒ_. To each point .G; �; �; %/
of N , the quasi-isogeny % allows us to view ƒ as a lattice of quasi-endomorphisms
of G. Let zN ƒ � N be the locus of points where ƒ � End.G/ (i.e., the locus
where these quasi-endomorphisms are integral). It is a closed formal subscheme
of N , whose underlying reduced k-scheme we denote by Nƒ. We show that the
underlying reduced subscheme Nred of N is covered by these closed subschemes:

Nred D
[
ƒ

Nƒ;

and that

Nƒ1
\Nƒ2

D

�
Nƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where the left-hand side is understood to mean the reduced subscheme underlying
the scheme-theoretic intersection (we suspect that the scheme-theoretic intersection
is already reduced, but are unable to provide a proof).

Section 3 is devoted to understanding the structure of N ˙
ƒ DNƒ\N ˙. Setting

dƒ D tƒ=2, we prove that N ˙
ƒ is a projective, smooth, and irreducible k-scheme

of dimension dƒ� 1. In fact:

(1) If dƒ D 1, then N ˙
ƒ is a single point.
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(2) If dƒ D 2, then N ˙
ƒ is isomorphic to P1.

(3) If dƒ D 3, then N ˙
ƒ is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

The irreducible components of N ˙ are precisely the closed subschemes N ˙
ƒ

indexed by the type-6 vertex lattices. From this we deduce the following theorem:

Theorem A. The underlying reduced scheme M
.`/
red of M .`/ is connected. Every

irreducible component of M
.`/
red is a smooth k-scheme of dimension 2, isomorphic

to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

If two irreducible components intersect nontrivially, the reduced scheme underlying
their scheme-theoretic intersection is either a point or a projective line.

See Sections 3.5 and 3.6 for a more detailed description of Mred.

1.2. The global result. In Section 4, we consider the global situation. Let E be a
quadratic imaginary field, and let p > 2 be inert in E. Let O �E be the integral
closure of Z.p/, and let V be a free O-module of rank 4 endowed with a perfect
O-valued Hermitian form of signature .2; 2/. Let G D GU.V / be the group of
unitary similitudes of V , a reductive group over Z.p/. Fix a compact open subgroup
U p �G.A

p

f
/, which we assume is sufficiently small, and define Up DG.Zp/ and

U D UpU
p �G.Af /.

Using this data we define a schemeMU , smooth of relative dimension 4 over Z.p/,
as a moduli space of abelian fourfolds, up to prime-to-p-isogeny, with additional
structure, in such a way that the complex fiber of MU is the Shimura variety

MU .C/DG.Q/n.D�G.Af /=U /:

Here, D is the Grassmannian of negative-definite planes in V ˝O C.
Let k be an algebraically closed field of characteristic p, and denote by M ss

U

the reduced supersingular locus of the geometric special fiber MU �Z.p/
k. The

uniformization theorem of Rapoport and Zink expresses M ss
U as a disjoint union of

quotients of the scheme Mred described above. As a consequence we obtain the
following result:

Theorem B. The k-scheme M ss
U has pure dimension 2. For U p sufficiently small,

all irreducible components of M ss
U are isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

If two irreducible components intersect nontrivially, the reduced scheme underlying
their scheme-theoretic intersection is either a point or a projective line.
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1.3. Notation. We use the following notation throughout Sections 2 and 3. Fix
an odd prime p and an unramified quadratic extension E of the field of p-adic
numbers Qp. The nontrivial Galois automorphism of E is denoted by ˛ 7! ˛.
Let k be an algebraically closed field of characteristic p. Its ring of Witt vectors
W DW.k/ is a complete discrete valuation ring with residue field kDW=pW and
fraction field WQ. Label the two embeddings of OE into W as

 0 WOE !W;  1 WOE !W;

and denote by � both the absolute Frobenius x 7! xp on k and its unique lift to a
ring automorphism of W . Denote by �0; �1 2OE ˝W the orthogonal idempotents
characterized by

�iM D fx 2M W .˛˝ 1/ � x D .1˝ i .˛// � x for all ˛ 2OE g

for any OE˝W -module M . For any Z-module M , we abbreviate MQDM ˝Z Q.
In particular, MQ DM ˝W W Œ1=p� for any W -module M .

2. Moduli spaces and lattices

In this section we recall the Rapoport–Zink space of a GU.2; 2/ Shimura variety,
and define a stratification of the underlying reduced scheme.

2.1. The Rapoport–Zink space. Let NilpW be the category of W -schemes on
which p is locally nilpotent. We wish to parametrize triples .G; �; �/ over objects
S of NilpW in which

� G is a supersingular p-divisible group of dimension 4,

� � WOE ! End.G/ is an action of OE on G,

� � WG!G_ is a principal polarization.

We further require that every ˛ 2OE satisfy both the OE -linearity condition

� ı �.˛/D �.˛/_ ı� (2-1)

and the signature-.2; 2/ condition

det.T � �.˛/ILie.G//D .T � 0.˛//2.T � 1.˛//2 (2-2)

as sections of OS ŒT �. The signature-.2; 2/ condition is equivalent to each of the
OS -module direct summands in Lie.G/ D �0 Lie.G/˚ �1 Lie.G/ being locally
free of rank 2.

Fix one such triple .G ; �;�/ over k as a base point, and let M be the functor on
NilpW sending S to the set of isomorphism classes of quadruples .G; �; i; %/ over S ,
where .G; �; �/ is as above and % W G=S0

! G=S0
is an OE -linear quasi-isogeny

such that %�� D c.%/� for some c.%/ 2 Q�p . Here, S0 is the k-scheme S ˝W k.



1664 Benjamin Howard and Georgios Pappas

The functor M is represented by a formal scheme locally of finite type over Spf.W /
by [Rapoport and Zink 1996]. There is a decomposition M D

U
`2Z M .`/ into

open and closed formal subschemes, where M .`/ is the locus of points where
ordp.c.%//D `.

Let J � End.G /�
Q

denote the subgroup of E-linear elements such that g��D
�.g/� for some �.g/ 2Q�p . The group J acts on M in an obvious way:

g � .G; �; �; %/D .G; �; �; g ı %/:

As usual, the group J is the Qp-points of a reductive group over Qp. In fact,
by [Vollaard 2010, Remark 1.16], this reductive group is the group of unitary
similitudes of the split Hermitian space of dimension 4 over E. In particular, the
derived subgroup J der is isomorphic to the special unitary group, and the similitude
character � W J ! Q�p is surjective. Note that the action of any g 2 J with
ordp.�.g//D 1 defines an isomorphism M .`/ ŠM .`C1/.

As a special case of this action, the group pZ acts on M by

p � .G; �; �; %/D .G; �; �; p%/;

and the quotient N D pZnM has M .0/ ]M .1/ as a fundamental domain. Let
N C ŠM .0/ and N � ŠM .1/ be the open and closed formal subschemes of N

on which ordp.c.%// is even and odd, respectively. By the previous paragraph there
is an isomorphism N C ŠN �, and we will see later in Theorem 3.12 that N C

and N � are precisely the connected components of N .

2.2. Special endomorphisms. In this subsection we will define a Qp-subspace

LˆQ � End.G /Q

of special quasi-endomorphisms of G in such a way that x 7! x ı x defines a
Qp-valued quadratic form on Lˆ

Q
. The subspace Lˆ

Q
is not quite canonical; it will

depend on the auxiliary choice of a certain tensor ! in the top exterior power of
the Dieudonné module of G .

Denote by D the covariant Dieudonné module of G , with its induced action
of OE and induced alternating form � W

V2
WD ! W satisfying �.F x; y/ D

�.x; Vy/� . Under the covariant conventions, Lie.G /ŠD=VD as k-vector spaces
with OE -actions. Abbreviate

V`
EDD

V`
OE˝W

D. Once we fix a ı2O�E satisfying
ı� D�ı, there is a unique Hermitian form

h � ; � i WD �D!OE ˝W
satisfying

�.x; y/D TrE=Qp
ı�1hx; yi; (2-3)



On the supersingular locus of the GU(2,2) Shimura variety 1665

which in turn induces a Hermitian form on every exterior power
V`
ED by

hx1 ^ � � � ^ x`; y1 ^ � � � ^y`i D
X
�2S`

sgn.�/
Ỳ
iD1

hxi ; y�.i/i:

This Hermitian form identifies each lattice
V`
ED with its dual lattice in

�V`
ED

�
Q

.
In order to make explicit calculations, we now put coordinates on DQ.

Lemma 2.1. There are WQ-bases

e1; e2; e3; e4 2 �0DQ;

f1; f2; f3; f4 2 �1DQ;

such that

hei ; fj i D

�
�0 if i D j ;
0 otherwise,

(2-4)

and the � -semilinear operator F satisfies

Fe1 D f1; Fe2 D f2; Fe3 D pf3; Fe4 D pf4;

Ff1 D pe1; Ff2 D pe2; Ff3 D e3; Ff4 D e4:

Proof. Denote by D0
Q

the isocrystal with WQ-basis fe1; : : : ; e4; f1; : : : ; f4g and
by F the operator defined by the above relations. Endow D0

Q
with the E-action

�0.˛/ei D 0.˛/ei and �0.˛/fi D 1.˛/fi and the unique Hermitian form satisfying
(2-4). This Hermitian form determines a polarization �0.x; y/D TrE=Qp

ı�1hx; yi.
As D0

Q
is isoclinic of slope 1=2, there is an isomorphism of isocrystals

% WDQ ŠD
0
Q:

Any two embeddings of E into End.D0
Q
/ are conjugate, by the Noether–Skolem

theorem, and so % may be modified to make it E-linear. Another application of
Noether–Skolem shows that % may be further modified to ensure that the polariza-
tions on DQ and D0

Q
induce the same Rosati involution on

End.DQ/Š End.D0Q/:

This implies that % identifies the polarizations, and hence the Hermitian forms, on
DQ and D0

Q
up to scaling by an element c.%/ 2Q�p .

Finally, for every c 2Q�p one can find an E-linear isocrystal automorphism g

of D0
Q

such that g rescales the polarization of D0
Q

by the factor c. For example, if
ordp.c/ is even then write c D ˛˛ with ˛ 2E� and take g D �0.˛/. If c D p then
take g to be

e1 7! e3; e2 7! e4; e3 7! pe1; e4 7! pe2;

f1 7! pf3; f2 7! pf4; f3 7! f1; f4 7! f2:
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Thus % may be further modified to ensure that c.%/D 1. �

Lemma 2.2. There is an OE˝W -module generator!2
V4
ED such that h!;!iD1

and F!D p2!. If !0 2
V4
ED is another such element, there is an ˛ 2O�E such

that ˛˛ D 1 and !0 D ˛!.

Proof. The W -module decomposition D D �0D˚ �1D induces a corresponding
decomposition

V4
ED D

V4
�0D ˚

V4
�1D: Fixing a basis as in Lemma 2.1, we

must have V4
�0D DW �p

k0e1 ^ e2 ^ e3 ^ e4;V4
�1D DW �p

k1f1 ^f2 ^f3 ^f4;

for some integers k0 and k1. The self-duality of
V4
ED under h � ; � i implies

k0C k1 D 0. The signature-.2; 2/ condition on

Lie.G /ŠD=VD D �0D=V�1D˚ �1D1=V�0D

implies that each of the summands on the right has dimension 2 over W=pW , and
hence the cokernels of

V W
V4
�0D!

V4
�1D; V W

V4
�1D!

V4
�0D

are each of length 2 as W -modules. Using

V.e1 ^ e2 ^ e3 ^ e4/D p
2f1 ^f2 ^f3 ^f4;

V .f1 ^f2 ^f3 ^f4/D p
2e1 ^ e2 ^ e3 ^ e4;

we deduce that k1 and k2 are equal, and hence both are equal to 0. It follows that

!D e1 ^ e2 ^ e3 ^ e4Cf1 ^f2 ^f3 ^f4 (2-5)

generates
V4
ED as an OE˝W -module. A simple calculation shows that h!;!iD1

and F!D p2!, proving the existence part of the lemma. The uniqueness part of
the claim is obvious. �

Definition 2.3. For any ! as in the lemma, define the Hodge star operator x 7! x?

on
V2
ED by the relation y ^ x? D hy; xi �! for all y 2

V2
ED.

The Hodge operator satisfies .˛x/? D ˛x? for all ˛ 2OE ˝W . Denote by

LD fx 2
V2
ED W x

?
D xg

the W -submodule of Hodge fixed vectors. The Hermitian form h � ; � i on D deter-
mines an injection

V2
ED! EndW .D/ by

.a^ b/.z/D ha; zib� hb; zia;
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and we obtain inclusions L�
V2
ED � EndW .D/: Note that both the Hodge star

operator and the submodule L depend on the choice of !.

Proposition 2.4. For any choice of !, the induced Hodge star operator has the
following properties:

(1) Every x 2
V2
ED satisfies .x?/? D x.

(2) Every x 2L, viewed as an endomorphism ofD, satisfies

x ı x D�
hx; xi

2
: (2-6)

In particular, Q.x/D x ı x defines a W -valued quadratic form on L.

(3) The W -quadratic space L is self-dual of rank 6, and

LD fx 2LQ W xD �Dg:

(4) If C.L/ denotes the Clifford algebra of L, the natural map

C.L/! EndW .D/

induced by the inclusion L � EndW .D/ is an isomorphism. Under this
isomorphism, the even Clifford algebra is identified with the subalgebra of
OE -linear endomorphisms in EndW .D/.

Proof. Fix a basis of DQ as in Lemma 2.1, and suppose first that ! is given by
(2-5). An easy calculation shows that

.e1 ^ e2/
?
D f3 ^f4; .f3 ^f4/

?
D e1 ^ e2;

.e1 ^ e3/
?
D f4 ^f2; .f4 ^f2/

?
D e1 ^ e3;

.e1 ^ e4/
?
D f2 ^f3; .f2 ^f3/

?
D e1 ^ e4;

.e2 ^ e3/
?
D f1 ^f4; .f1 ^f4/

?
D e2 ^ e3;

.e2 ^ e4/
?
D f3 ^f1; .f3 ^f1/

?
D e2 ^ e4;

.e3 ^ e4/
?
D f1 ^f2; .f1 ^f2/

?
D e3 ^ e4;

(2-7)

from which .x?/? D x is obvious. Now set !0 D ˛! with ˛ 2O�E of norm 1, and
denote by x 7! x?0 the Hodge star operator defined by !0. It is related to the Hodge
star operator for ! by x?0 D ˛x?, and hence

.x?0/?0 D .˛.˛x?//? D ˛˛.x?/? D x:

This proves the first claim in full generality.
Keep ! as in (2-5). For the second claim, one first checks that all x; y 2

V2
ED

satisfy the relation
x ıyCy? ı x? D�hx; yi (2-8)
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in EndW .D/. Indeed, it suffices to prove this when x and y are pure tensors of
the form ei ^ ej and fi ^ fj , and this can be done by brute force. Of course
(2-8) immediately implies (2-6) for all x 2L, proving the second claim for !. The
validity of (2-8) for any other !0 follows by the reasoning of the previous paragraph.

For the third claim, note that the quadratic formQ.x/D�hx; xi=2 onL extends
to a quadratic form on

V2
ED by the same formula (using the standing hypothesis

that p is odd), with associated bilinear form

Œx; y�D�1
2
�TrE=Qp

hx; yi;

and that there is an orthogonal decompositionV2
ED DL˚fx 2

V2
ED W x

?
D�xg:

The self-duality of
V2
ED under h � ; � i implies its self-duality under Œ � ; � �, which

then implies the self-duality of the orthogonal summandL. The Hodge star operator
acts on the W -module V2

ED D
V2
�0D˚

V2
�1D

of rank 12 by interchanging the two summands on the right, and hence its submodule
of fixed points, L, has rank 6. Finally, set L0 D fx 2 LQ W xD �Dg. Certainly
L � L0, and the quadratic form Q.x/ D x ı x restricted to L0 takes values in
W DWQ\EndW .D/. Therefore .L0/_ �L_DL�L0 � .L0/_; and so equality
holds throughout.

For the fourth claim, the self-duality of L implies that L=pL is the unique
nondegenerate k-quadratic space of dimension 6, and so its Clifford algebra is
isomorphic to M8.k/. This means that the induced map

C.L=pL/Š C.L/˝W k! EndW .D/˝W k

is a homomorphism between central simple k-algebras of the same dimension, and
hence an isomorphism. It follows from Nakayama’s lemma that C.L/!EndW .D/
is an isomorphism. Every x 2 L satisfies x ı �.˛/ D �.˛/ ı x, and hence the
composition of any two elements of L is OE -linear. This implies that the even
Clifford algebra is contained in EndOE˝W .D/, and equality holds because both
are W -module direct summands of C.L/Š EndW .D/ of the same rank. �

The operator
ˆ.a^ b/D p�1.Fa/^ .F b/

makes
V2
EDQ into a slope-0 isocrystal. In terms of the inclusion

V2
EDQ �

EndW .D/Q, this operator is just

ˆ.a^ b/D F ı .a^ b/ ıF�1:
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As ˆ commutes with the Hodge star operator, it stabilizes the subspace LQ and
makes LQ into a slope-0 isocrystal. In this way, we obtain inclusions of Qp-vector
spaces

LˆQ �
�V2
EDQ

�ˆ
� End.G /Q; (2-9)

where the ˆ superscripts denote the subspaces of ˆ-fixed vectors. Endow Lˆ
Q

with
the quadratic form Q.x/D x ı x and the associated bilinear form

Œx; y�D x ıyCy ı x D�1
2
�TrE=Qp

hx; yi:

Remark 2.5. The 6-dimensional E-vector space .
V2
EDQ/

ˆ is characterized as the
space of all Rosati-fixed x 2 End.G /Q satisfying x ı �.˛/D �.˛/ ı x for all ˛ 2E.
On the other hand, the 6-dimensional Qp-vector space Lˆ

Q
depends on the choice

of !, and so does not have a similar interpretation in terms of � and � alone.

While the subspace Lˆ
Q
� End.G /Q depends on the choice of !, the following

proposition shows that its isomorphism class as a quadratic space does not. Denote
by H the hyperbolic Qp-quadratic space of dimension 2.

Proposition 2.6. For any choice of !, the quadratic space Lˆ
Q

has Hasse invariant
�1 and determinant det.Lˆ

Q
/ D �� for any nonsquare � 2 Z�p . Furthermore,

the special orthogonal group SO.Lˆ
Q
/ is quasi-split and splits over Qp2 , and the

space Lˆ
Q

with the rescaled quadratic form p�1Q is isomorphic to H2 ˚Qp2 ,
where Qp2 is endowed with its norm form x 7! NormQ

p2=Qp
.x/.

Proof. First suppose that ! is defined by (2-5). In this case the relations (2-7) show
that the vectors

x1 D e1 ^ e2Cf3 ^f4; x2 D e3 ^ e4Cf1 ^f2;

x3 D e1 ^ e3Cf4 ^f2; x4 D e4 ^ e2Cf1 ^f3;

x5 D e1 ^ e4Cf2 ^f3; x6 D e2 ^ e3Cf1 ^f4

form a basis of LQ. In this basis the operator ˆ takes the block-diagonal form

ˆD

0BBBBBBB@

0 p

p�1 0

0 1

1 0

0 1

1 0

1CCCCCCCA
ı �;
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and the matrix of Q is

.Œxi ; xj �/D

0BBBBBB@
0 �1

�1 0

0 �1

�1 0

0 �1

�1 0

1CCCCCCA :

Fix any nonsquare � 2 Z�p , and let u 2W � be a square root of �. The vectors

y1 D px1C x2; y2 D u.px1� x2/;

y3 D x3C x4; y4 D u.x3� x4/;

y5 D x5C x6; y6 D u.x5� x6/

form an orthogonal basis of Lˆ
Q

with

�
Œyi ; yj �

2

�
D

0BBBBBBB@

�p

p�

�1

�

�1

�

1CCCCCCCA
; (2-10)

from which one computes the determinant �� and Hasse invariant .�p;p�/D�1
of Lˆ

Q
. As a nondegenerate quadratic space over Qp is determined by its rank,

determinant, and Hasse invariant, the remaining claims are easily checked for this
special choice of !.

Now suppose !0 D ˛! for some ˛ 2 O�E of norm 1. Hilbert’s Theorem 90
implies that there is some � 2 O�E satisfying ���1 D ˛. Denote by x 7! x?0 the
Hodge star operator defined by !0, by L0 �

V2
ED the submodule of Hodge fixed

vectors, and by Q0 the quadratic form x ıx on L0. Using the relation x?0D ˛x?, it
is easy to see that the function x 7! �x defines an isomorphism of quadratic spaces

.LˆQ ; ��Q/Š .L
0ˆ
Q ;Q

0/:

In particular, there is a basis of L0ˆ
Q

such that the quadratic form Q0 is given by ��
times the matrix of (2-10). The Hasse invariant and determinant (modulo squares)
of the matrix in (2-10) are unchanged if the matrix is multiplied by any element of
Z�p , and so L0ˆ

Q
has the same determinant and Hasse invariant as Lˆ

Q
. �

From now on we fix, once and for all, any ! as in Lemma 2.2.
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2.3. An exceptional isomorphism. Define the unitary similitude group

GU.DQ/D fg 2 AutE˝W .DQ/ W g
��D �.g/� for some �.g/ 2W �Q g;

and set
GU0.DQ/D fg 2 GU.DQ/ W �.g/

2
D det.g/g:

The action � of GU.DQ/ on EndW .D/Q defined by g � x D g ı x ı g�1 leaves
invariant the subspace

V2
EDQ, and satisfies

g � .a^ b/D �.g/�1 � .ga/^ .gb/: (2-11)

Using this formula one checks that the action of the subgroup GU0.DQ/ commutes
with the Hodge star operator on

V2
EDQ, and so preserves the subspace LQ.

The canonical involution x 7! x0 on the Clifford algebra C.L/ is the unique
W -linear endomorphism satisfying .x1 � � � xk/0 D xk � � � x1 for all x1; : : : ; xk 2L,
and the spinor similitude group of LQ is

GSpin.LQ/D fg 2 C0.L/
�
Q W gLQg

�1
DLQ and g0g 2W �Q g:

Here, C0.L/ is the even Clifford algebra. From [Bass 1974] or [Shimura 2010] we
have the exact sequence

1 �!W �Q �! GSpin.LQ/ �! SO.LQ/ �! 1:

Proposition 2.7. There is an isomorphism

GSpin.LQ/Š GU0.DQ/ (2-12)

compatible with the action of both groups on LQ. In particular, the action of
GU0.DQ/ on LQ determines an exact sequence

1 �!W �Q �! GU0.DQ/
g 7!g�
�����! SO.LQ/ �! 1:

Proof. By Proposition 2.4 the inclusion ofL into EndW .D/ induces an isomorphism
C.L/Š EndW .D/, under which C0.L/Š EndOE˝W .D/. We will prove that the
induced isomorphism

C0.L/
�
Q Š AutE˝W .DQ/

restricts to an isomorphism (2-12). Note that every element x 2L, viewed as an
endomorphism of D, satisfies hxa; bi D �ha; xbi (indeed, this already holds for
every x 2

V2
ED). Thus hga; bi D ha; g0bi for every g 2 C0.L/ and a; b 2D.

One inclusion of (2-12) is obvious: if g 2 GU0.DQ/ then, as noted above, the
conjugation action of g on C.L/Q Š EndW .D/Q preserves the subspace LQ. The
relation hga; gbi D ha; g0gbi implies that �.g/D g0g, and so g 2 GSpin.LQ/.
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For the other inclusion, start with a g 2 GSpin.LQ/. The relation hga; gbi D
.g0g/ha; bi shows that g 2 GU.DQ/. To show that �.g/2 D det.g/, fix any x 2L
and any y 2

V2
ED for which hy; xi 6D0. As g�xDgxg�1 lies inLQ by assumption,

the Hodge star operator fixes g � x. Thus

.g �y/^ .g � x/D hg �y; g � xi!D hy; xi!;

where the second equality follows from (2-11). On the other hand, the Hodge star
operator fixes x, and so

.g �y/^ .g � x/D �.g/�2 det.g/.y ^ x/D �.g/�2 det.g/hy; xi!:

This proves that g 2 GU0.DQ/, and completes the proof of (2-12). �

The similitude character � WGU0.DQ/!W �
Q

restricts to x 7!x2 on the subgroup
W �

Q
, and so descends to the spinor norm

Q� W SO.LQ/!W �Q =.W
�

Q /
2:

Remark 2.8. The group J defined in Section 2.1 is characterized by

J D fg 2 GU.DQ/ W g ıF D F ıgg;

and we define a subgroup

J 0 D fg 2 GU0.DQ/ W g ıF D F ıgg:

The isomorphism (2-12) restricts to an isomorphism GSpin.Lˆ
Q
/Š J 0, and hence

there is an exact sequence

1 �!Q�p �! J 0 �! SO.LˆQ/ �! 1;

which identifies J der with Spin.Lˆ
Q
/. See [Knus et al. 1998, Proposition IV.15.27]

for similar exceptional isomorphisms.

2.4. Dieudonné lattices and special lattices. In this subsection we show that the
k-points of N can be identified with the set of homothety classes of certain lattices
in DQ, which we call Dieudonné lattices. We then use the inclusion

LQ � EndW .DQ/

to construct a bijection between the set of homothety classes of Dieudonné lattices
and a set of special lattices in the slope-0 isocrystal LQ. Thus the points of N .k/

are parametrized by these special lattices.
In fact, the proof of Theorem 3.9 below requires that we establish such a bijection

not just over k, but over any extension field k0 � k. Let W 0 be the Cohen ring
of k0. Thus W 0 is the unique, up to isomorphism, complete discrete valuation ring
of mixed characteristic with residue field W 0=pW 0 Š k0. The inclusion k ! k0
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induces an injective ring homomorphism W !W 0, and we set D0 DD˝W W 0

and L0 D L˝W W 0. There is a continuous ring homomorphism � W W 0 ! W 0

reducing to the Frobenius on k0, and the �-semilinear operators F and ˆ on DQ

and LQ have � -semilinear extensions to D0
Q

and L0
Q

. Similarly the symplectic and
Hermitian forms on DQ and the quadratic form on LQ have natural extensions to
D0

Q
and L0

Q
.

Note that the operators F and ˆ are surjective on DQ and LQ, respectively,
but this need not be true of their extensions to D0

Q
and L0

Q
. If D � D0

Q
is a

W 0-submodule then so is its preimage F�1.D/, but its image F.D/ need not be.
Denote by F�.D/ the W 0-submodule generated by F.D/. Similarly, denote by
ˆ�.L/ the W 0-submodule generated by ˆ.L/ for a W 0-submodule L�L0

Q
.

For any W 0-lattice D �D0
Q

, set D1 D F�1.pD/.

Definition 2.9. A Dieudonné lattice in D0
Q

is an OE -stable W 0-lattice D �D0
Q

such that

(1) pD �D1 �D,

(2) D_ D cD for some c 2Q�p ,

(3) D D F�.F�1.D//.

Here, the superscript _ denotes the dual lattice with respect to the symplectic form
�, or, equivalently, with respect to the Hermitian form h � ; � i.

The volume of a lattice D �D0
Q

is the W 0-submodule

Vol.D/D
V8
D �

V8
D0Q;

By considering the slopes of the isocrystal DQ, one can show that Vol.F�.D//D
p4 �Vol.D/. However, taking preimages of lattices may change volumes in unex-
pected ways: a lattice D �D0

Q
satisfies

Vol.F�1.D//� p�4 �Vol.D/;

but equality holds if and only if F�.F�1.D// D D. In particular, the condition
D D F�.F

�1.D// in Definition 2.9 is equivalent to Vol.D1/D p4 Vol.D/, and so
one could replace (3) in the definition of a Dieudonné lattice by

(30) dimk0.D1=pD/D 4.

The volume of a lattice in L0
Q

is defined in the analogous way, but in this case
Vol.ˆ�.L//D Vol.L/ for any lattice L�L0

Q
.

Proposition 2.10. Suppose D is a Dieudonné lattice. The OE -stable k0-subspace
D1=pD � D=pD is Lagrangian with respect to the nondegenerate symplectic
form c�, and every ˛ 2OE acts on D=D1 with characteristic polynomial

det.T � �.˛/ID=D1/D .T � 0.˛//2.T � 1.˛//2: (2-13)
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Proof. For any a; b 2D1 we have

c�.a; b/� D p�1c�.Fa; F b/ 2 p�.cD;D/D pW:

This shows that D1=pD is isotropic. It is maximal isotropic, as D1=pD has
dimension 4. Lemma 2.1 implies thatV4

F�.�0M/D p2 �
V4
�1M;

as submodules of
V4
�1D

0
Q

, for any lattice M �D0
Q

. Applying this with M DD1
shows that �1D=�1D1 has dimension 2. The same argument shows that �0D=�0D1
has dimension 2, and (2-13) follows. �

Corollary 2.11. There is a bijection M .k0/Š fDieudonné lattices inD0
Q
g.

Proof. If k D k0 then this is immediate from the equivalence of categories between
Dieudonné modules and p-divisible groups: for any point .G; �; �; %/ 2 M .k/

we let D be the Dieudonné module of G, viewed as a lattice in DQ using the
isomorphism of isocrystals % WDQ ŠDQ. For general k0 the argument is the same,
using Zink’s theory of windows [2001] in place of Dieudonné modules. �

Theorem 2.12. Given a Dieudonné lattice D, set

LD fx 2L0Q W xD1 �D1g and L] D fx 2L0Q W xD �Dg:

The rule D 7! .L;L]/ defines a bijection from pZnfDieudonné lattices inD0
Q
g to

the set of all pairs of self-dual lattices .L;L]/ in L0
Q

such that

(1) ˆ�.L/D L],

(2) .LCL]/=L has length 1.

Moreover, LCL] D fx 2L0
Q
W xD1 �Dg.

The proof of Theorem 2.12 will be given in the next subsection.

Definition 2.13. A special lattice is a self-dual W 0-lattice L�L0
Q

such that

length
�
.LCˆ�.L//=L

�
D 1:

Obviously any pair of self-dual lattices .L;L]/ appearing in Theorem 2.12 is
determined by its first element, and in fact the function L 7! .L;ˆ�.L// establishes
a bijection between the set of special lattices and the set of pairs of self-dual lattices
.L;L]/ such thatˆ�.L/DL] and .LCL]/=L has length 1. The only thing to check
is the self-duality of ˆ�.L/ for a special lattice L. The inclusion ˆ�.L/�ˆ�.L/_

is clear from the self-duality of L and the relation Œˆx;ˆy� D Œx; y�� . Equality
holds because Vol.ˆ�.L//DVol.L/ and L is self-dual. The following corollary is
now simply a restatement of Theorem 2.12:
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Corollary 2.14. The rule D 7! fx 2L0
Q
W xD1 �D1g defines a bijection

pZ
nfDieudonné lattices inD0

Q
g Š fspecial lattices in L0Qg:

2.5. Proof of Theorem 2.12. In this subsection we prove Theorem 2.12. Say that
a W 0-lattice D �D0

Q
is nearly self-dual if D_ D cD for some c 2Q�p .

Lemma 2.15. The construction D 7! fx 2L0
Q
W xD �Dg establishes a bijection

pZ
nfnearly self-dual lattices D �D0

Q
g Š fself-dual lattices L] �L0

Q
g:

Proof. Start with a nearly self-dual latticeD, and setL]Dfx 2L0
Q
W xD�Dg. The

condition D_ D cD implies that there is some g 2 GU0.D0
Q
/ such that D D gD0,

and hence L]D g �L0. As g� respects the quadratic form Q, the self-duality of L0

implies the self-duality of L]. Conversely, if we start with a self-dual L] � L0
Q

,
the Clifford algebra C.L]/ is a maximal order in C.L0

Q
/Š EndW 0.D0Q/, and so

there is, up to scaling, a unique lattice D �D0
Q

satisfying

C.L]/D EndW .D/: (2-14)

Choose any h2SO.L0
Q
/ such thatL]DhL0, and lift h to an element g2GU0.D0

Q
/.

By rescaling g we may arrange to haveDDgD0, and the self-duality ofD0 implies
D_ D �.g/�1D. �
Lemma 2.16. Suppose D �D0

Q
is nearly self-dual, L] �L0

Q
is self-dual, and L]

and D are related by L] D fx 2 L0
Q
W xD � Dg. If x 2 L]=pL] is any nonzero

isotropic vector, viewed as an endomorphism of D=pD using (2-14), the kernel
of x is an OE -stable Lagrangian subspace with respect to c�. Conversely, if
D1 �D=pD is an OE -stable Lagrangian subspace then fx 2L]=pL] W xD1 D 0g

is an isotropic line in L]=pL]. This construction establishes a bijection

fisotropic lines in L]=pL]g Š fOE -stable Lagrangian subspaces in D=pDg:

If L1 � L
]=pL] corresponds to D1 �D=pD under this bijection, then

L?1 D fx 2 L
]=pL] W x �D1 � D1g: (2-15)

Proof. Abbreviate L D L]=pL] and D DD=pD, so that D is the unique simple
left module over the Clifford algebra C.L /ŠM8.k

0/. In particular C.L /Š D8

as left C.L /-modules. If x 2 L is any nonzero isotropic vector, the kernel and
image of left multiplication by x on C.L / are equal, and hence the kernel and
image of x 2 End.D/ are also equal. In particular ker.x/ has dimension 4. The
relation ˛x D x˛ for all ˛ 2OE shows that ker.x/ is OE -stable, and the relation
.c�/.xs; t/D .c�/.s; xt/ implies that ker.x/D xD is totally isotropic.

If x; y 2 L are nonzero isotropic vectors with ker.x/ D ker.y/ then, from
the discussion above, ker.x/ D yD and ker.y/ D xD . In particular Œx; y� D
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x ıyCy ıxD 0. If x and y are not colinear then (after possibly extending scalars)
we can find a z 2L such that k0xCk0yCk0z is a maximal isotropic subspace of L .
The left ideal C.L /xyz has dimension 8 as a k-vector space, and so we must have
D Š C.L /xyz as left C.L /-modules. But it is easy to see by direct calculation
that the kernels of left multiplication by x and y on C.L /xyz are different. This
contradiction shows that x and y are colinear, and so x 7! ker.x/ establishes an
injection L1 7! D1 from the set of isotropic lines in L to the set of OE -stable
Lagrangian subspaces in D .

Endow D with the OE˝Zp
k0-valued Hermitian form induced by ch � ; � i. Exactly

as in Proposition 2.7, there is an isomorphism of k0-groups GSpin.L /Š GU0.D/:
This isomorphism is compatible, in the obvious sense, with the map L1 7!D1, and
so the image of the map is stable under the action of GU0.D/. But GU0.D/ acts
transitively on the set of OE -stable Lagrangian subspaces in D , proving surjectivity.

Finally, we verify (2-15). If L1 corresponds to D1 under our bijection, then
D1 D ker.y/D yD for any nonzero y 2L1, and an elementary argument (using
k0\yC.L /D 0 for the middle() shows that

x ? y () xyCyx D 0 () xyC.L /� yC.L / () xyD � yD1: �

Proof of Theorem 2.12. Suppose first that D is a Dieudonné lattice. Using the
relationsDDF�.F�1.D// and hFv; FwiDphv;wi� , one can show that the near
self-duality ofD implies thatD1DF�1.pD/ is also nearly self-dual. Lemma 2.15
then implies that the lattices

LD fx 2L0Q W xD1 �D1g and L] D fx 2L0Q W xD �Dg (2-16)

are self-dual. The relationˆ.x/ıF DF ıx for all x 2L0
Q

implies thatˆ�.L/�L],
and equality must hold as

Vol.ˆ�.L//D Vol.L/D Vol.L]/:

By Proposition 2.10 the k-subspaceD1=pD�D=pD is OE -stable and Lagrangian,
and so it follows from Lemma 2.16 that

L1 D fx 2 L
]=pL] W x.D1=pD/D 0g

is an isotropic line in L]=pL] with orthogonal complement

L?1 D fx 2 L
]=pL] W x.D1=pD/�D1=pDg:

On the other hand, L\L] D fx 2 L] W xD1 �D1g, and so

.LCL]/=LŠ L]=.L\L]/Š .L]=pL]/=L?1

has length 1.
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Now suppose we start with a pair of self-dual lattices .L;L]/ such that ˆ�.L/D
L] and .LCL]/=L has length 1. By Lemma 2.15 there are unique (up to scaling)
nearly self-dual lattices D1 and D in D0

Q
satisfying (2-16). Set L0 D L\L], so

that L]=L0 has length 1, and pick any nonzero y 2 L]=L0. The Clifford algebra
C.L]/ satisfies

C.L]/D C.L0/CyC.L0/;

where C.L0/� C.L]/ is the W -subalgebra generated by L0, and so

C.L]/D1 D C.L0/D1CyC.L0/D1 DD1CyD1:

This implies C.L]/pD1 � D1 � C.L]/D1: The self-duality of L] implies that
C.L]/ is a maximal order in C.L0

Q
/DEndW 0.D0Q/; and so we must have C.L]/D

EndW 0.D/. As the lattice C.L]/D1 is obviously stabilized by C.L]/, it must have
the form C.L]/D1 D p

kD for some integer k. Thus after rescaling D1 we may
assume that C.L]/D1 DD and

pD �D1 �D:

The relation ˆ.x/ ıF D F ı x implies

C.L]/F�.D1/D C.ˆ�.L//F�.D1/D F�.C.L/D1/D F�.D1/;

and so F�.D1/D pkD for some k. Combining

p8k �Vol.D/D Vol.F�.D1//D p4 �Vol.D1/

and
p8 �Vol.D/� Vol.D1/� Vol.D/

shows that in factF�.D1/DpD. The relationsD1DF�1.pD/ andF�.F�1.D//D
D follow easily from this, proving that D is a Dieudonné lattice.

It only remains to prove that LCL] D fx 2 L0
Q
W xD1 � Dg. The inclusion

LCL] � fx 2L0
Q
W xD1 �Dg is obvious from (2-16). On the other hand, each

side contains L] with quotient of length 1 (for the right-hand side this follows from
Proposition 2.10 and Lemma 2.16). Thus equality holds. �

2.6. Vertex lattices and the Bruhat–Tits stratification. If we start with a k-point
.G; �; i; %/ 2 M .k/ and let D be the covariant Dieudonné module of G, then
%.D/�DQ is a Dieudonné lattice. This construction is simply the k0 D k case of
the bijection

M .k/Š fDieudonné lattices in DQg

of Corollary 2.11. Combining this with Corollary 2.14 yields a bijection

N .k/Š fspecial lattices in LQg (2-17)
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defined by

.G; �; i; %/ 7! fx 2LQ W x%.D1/� %.D1/g;

where D1 D VD. Moreover, Theorem 2.12 implies that the special lattice

LD fx 2LQ W x%.D1/� %.D1/g

satisfies

ˆ.L/D fx 2LQ W x%.D/� %.D/g:

The next step is to show that the special lattices come in natural families, indexed
by certain vertex lattices in the Qp-quadratic space Lˆ

Q
. Using this and the bijection

(2-17), we will then express the reduced scheme underlying N as a union of closed
subvarieties indexed by vertex lattices.

Definition 2.17. A vertex lattice is a Zp-lattice ƒ�Lˆ
Q

such that

pƒ�ƒ_ �ƒ:

The type of ƒ is tƒ D dimk.ƒ=ƒ_/.

Lemma 2.18. The type of a vertex lattice is either 2, 4, or 6.

Proof. Let ƒ be a vertex lattice. Proposition 2.6 implies that ordp.det.ƒ// is even,
from which it follows that the type of ƒ is also even. If ƒ has type 0 then ƒ
is self-dual, and hence admits a basis such that the matrix of Q is diagonal with
diagonal entries in Z�p . But this implies thatLˆ

Q
has Hasse invariant 1, contradicting

Proposition 2.6. �

The proof of the following proposition is identical to that of Proposition 4.1 of
[Rapoport et al. 2014]. See also Lemma 2.1 of [Vollaard 2010].

Proposition 2.19. Let L�LQ be a special lattice, and define

L.r/ D LCˆ.L/C � � �Cˆr.L/:

There is an integer d 2 f1; 2; 3g such that

LD L.0/ ¨ L.1/ ¨ � � �¨ L.d/ D L.dC1/:

For each L.r/ ¨ L.rC1/ with 0 � r < d , the quotient L.rC1/=L.r/ is annihilated
by p and satisfies dimk.L.rC1/=L.r//D 1. Moreover,

ƒL D fx 2 L
.d/
W ˆ.x/D xg

is a vertex lattice of type 2d and satisfies ƒ_L D fx 2 L W ˆ.x/D xg:
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By (2-9), each vertex lattice ƒ determines a collection of quasi-endomorphisms
ƒ_�End.G /Q: Define a closed formal subscheme zMƒ�M as the locus of points
.G; �; �; %/ such that

%�1ƒ_%D f%�1 ı x ı % W x 2ƒ_g � End.G/:

In other words, the locus where the quasi-endomorphisms %�1ƒ_% ofG are actually
integral. Set zN ƒ D p

Zn zMƒ; and let Nƒ be the reduced k-scheme underlying
zN ƒ. The bijection (2-17) identifies

Nƒ.k/D fspecial lattices L such that ƒ_ �ˆ.L/g

D fspecial lattices L such that ƒ_ � Lg

D fspecial lattices L such that ƒL �ƒg: (2-18)

The same proof used in [Rapoport et al. 2014, Proposition 4.3] shows that

Nƒ1
\Nƒ2

D

�
Nƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where the left-hand side is understood to mean the reduced subscheme underlying
the scheme-theoretic intersection.

Proposition 2.20. Each k-scheme Nƒ is projective.

Proof. Let Rƒ be the W -subalgebra of EndW .DQ/ generated by ƒ_, and let zRƒ be
a maximal order in EndW .DQ/ containing Rƒ. It follows from the isomorphism
C.LQ/ Š EndW .DQ/ of Proposition 2.4 that Rƒ is a W -lattice in EndW .DQ/,
and hence zRƒ=Rƒ is killed by some power of p, say pM . Up to scaling by powers
of p, there is a unique W -lattice zD �DQ such that zRƒ zD D zD.

Now suppose .G; �; �; %/ is a k-point of Nƒ. The quasi-isogeny % determines
(up to scaling) a W -lattice D � DQ satisfying RƒD D D. It follows from
zRƒD D zD that

pM zD �D � zD;

after possibly rescaling D, and so there are integers a < b, independent of the point
.G; �; �; %/, such that paD �D � pbD. It follows from this bound and [Rapoport
and Zink 1996, Corollary 2.29] that Nƒ is a closed subscheme of a projective
scheme, hence is projective. �

An obvious corollary of Proposition 2.19 is that every special lattice L contains
some ƒ_ (take ƒDƒL), and hence

Nred D
[
ƒ

Nƒ;
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where the subscript red indicates the underlying reduced scheme. This union is not
disjoint, as N ˙

ƒ1
�N ˙

ƒ2
whenever ƒ1 �ƒ2. Define

N ı
ƒ DNƒ n

[
ƒ0¨ƒ

Nƒ0 ;

so that (2-17) identifies

N ı
ƒ.k/D fspecial lattices L such that ƒL Dƒg:

It follows easily that Nƒ D
U
ƒ0�ƒN ı

ƒ0 ; and that

Nred D
]
ƒ

N ı
ƒ : (2-19)

Abbreviate N ˙
ƒ DNƒ\N ˙ and N ˙ı

ƒ DN ı
ƒ\N ˙. By analogy with [Rapoport

et al. 2014; Vollaard 2010; Vollaard and Wedhorn 2011], we call the decomposition
(2-19) the Bruhat–Tits stratification of Nred. This terminology should be taken with
a grain of salt: unlike the situation in those references, the strata in (2-19) are not
in bijection with the vertices in the Bruhat–Tits building of the group J der. See
Sections 2.7 and 3.6 below.

Remark 2.21. One could also define an E-vertex lattice to be an OE -lattice ƒE �
.
V2
EDQ/

ˆ such that pƒE �ƒ_E �ƒE , where the dual lattice is taken with respect
to h � ; � i. The rule ƒ 7! OE �ƒ establishes a bijection between vertex lattices
and E-vertex lattices, with inverse ƒE 7! fx 2ƒE W x? D xg: The action (2-11)
of GU.DQ/ on

V2
EDQ restricts to an action of J on .

V2
EDQ/

ˆ, and induces an
action of J on the set of all E-vertex lattices. In particular, J acts on the set of
all vertex lattices. This action is compatible with the action of J on N defined in
Section 2.1, in the obvious sense: gNƒ DNg�ƒ. The restriction of this action to
the subgroup J 0 of Remark 2.8 factors through the surjection J 0! SO.Lˆ

Q
/, and

agrees with the obvious action of SO.Lˆ
Q
/ on the set of vertex lattices.

2.7. The Bruhat–Tits building. In [Garrett 1997, § 20.3] one finds a description
of the Bruhat–Tits building of SO.Lˆ

Q
/ in terms of lattices. See also [Tits 1979,

§1.16]. We will translate this description into the language of our vertex lattices.
Consider the set Vadm of all vertex lattices ƒ of type 2 or 6. We call such vertex
lattices admissible, and define an adjacency relation � in Vadm as follows: distinct
admissible vertex lattices are adjacent (ƒ�ƒ0) if either:

(1) ƒ0 �ƒ or ƒ0 �ƒ.

(2) ƒ and ƒ0 are both type-6 and

dimFp
.ƒ=ƒ\ƒ0/D dimFp

.ƒ0=ƒ\ƒ0/D 1;

dimFp
.ƒCƒ0=ƒ/D dimFp

.ƒCƒ0=ƒ0/D 1:
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If ƒ and ƒ0 are of type 6 and are adjacent, then ƒ\ƒ0 is a vertex lattice of type 4
(so is not admissible). We construct an abstract simplicial complex with set of
vertices Vadm as follows: An m-simplex (0�m� 2) of Vadm is a subset of mC 1
admissible vertex lattices ƒ0; ƒ1; : : : ; ƒm which are mutually adjacent. The group
SO.Lˆ

Q
/ acts simplicially on Vadm by g 2 SO.Lˆ

Q
/ taking ƒ to g �ƒ.

Now consider the Bruhat–Tits building BT of SO.Lˆ
Q
/. We will use the same

symbol BT to denote the underlying simplicial complex.

Proposition 2.22. There is an SO.Lˆ
Q
/-equivariant simplicial bijection BT ŠVadm.

Furthermore, every vertex lattice of type 4 is contained in precisely two vertex
lattices of type 6, and is equal to their intersection.

Proof. Define a new quadratic space .V0;Q0/D .LˆQ ; p
�1Q/, and note that, by

Proposition 2.6, V0 Š H2˚Qp2 . The rule ƒ 7! pƒ defines a bijection from the
set of vertex lattices in Lˆ

Q
to the set of lattices L� V0 satisfying

L� L� � p�1L:

Here L� is the dual lattice of L with respect to the quadratic form Q0. The
isomorphism BT Š Vadm now follows from the description and properties of the
affine building of SO.Lˆ

Q
/Š SO.V0/ found in [Garrett 1997, Section 20.3].

If ƒ is a type-4 vertex lattice, the lattice LD pƒ in V0 satisfies dim.L�=L/D 2.
Moreover, the k-quadratic space L�=L is a hyperbolic plane (choose a basis of
L for which the bilinear form has diagonal matrix, and use the fact that V0 has
Hasse invariant 1), and so contains exactly two isotropic lines. Those lines have
the form L1=L and L2=L, and p�1L1 and p�1L2 are the unique type-6 vertex
lattices containing ƒ. �

We can also construct a simplicial complex V with vertices the set of all vertex
lattices as follows (compare to [Rapoport et al. 2014, §3]). We call two distinct
vertex lattices ƒ and ƒ0 neighbors if ƒ�ƒ0 or ƒ0 �ƒ. An m-simplex (m � 2)
in V is formed by vertex lattices ƒ0; ƒ1; : : : ; ƒm such that any two members of
this set are neighbors. The vertex lattices of type 4 are in bijection with pairs of
adjacent type-6 vertex lattices. Hence a vertex lattice of type 4 corresponds to
an edge in the Bruhat–Tits building between type-6 vertex lattices. From basic
properties of the Bruhat–Tits building, we deduce the following:

Corollary 2.23. The group SO.Lˆ
Q
/ acts transitively on the set of vertex lattices of

a given type, and any two vertex lattices are connected by a sequence of adjacent
vertices in V . In particular, the group J , and even the subgroup J 0, act transitively
on the set of vertex lattices of a given type (under the action of Remark 2.21).
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3. Deligne–Lusztig varieties and the Bruhat–Tits strata

In this section we show that for any vertex lattice ƒ, the varieties

Nƒ DN C

ƒ ]N �
ƒ and N ı

ƒ DN ıC

ƒ ]N ı�
ƒ

of Section 2.6 can be identified with varieties over k defined purely in terms of the
linear algebra of the k-quadratic space �D .ƒ=ƒ_/˝Fp

k.

3.1. Deligne–Lusztig varieties. Let us recall the general definition of Deligne–
Lusztig varieties. Suppose that G0 is a connected reductive group over the finite
field Fp, and set G D G0 ˝Fp

k. We will also use the symbol G to denote the
abstract group of k-valued points of G0. Denote by ˆ W G ! G the Frobenius
morphism. By Lang’s theorem, G0 is quasi-split, and so we may choose a maximal
torus T �G and a Borel subgroup containing T , both defined over Fp. The Weyl
group W that corresponds to the pair .T; B/ is acted upon by ˆ, and the group W
with its ˆ-action does not depend on our choices. In fact, in [Deligne and Lusztig
1976] a Weyl groupW withˆ-action is defined as a projective limit over all choices
of pairs .T; B/, without having to assume that these pairs are ˆ-stable.

Let �� D f˛1; : : : ; ˛ng be the set of simple roots corresponding to the pair
.T; B/, and consider the corresponding simple reflections si D s˛i

in the Weyl
group W . For I ���, let WI be the subgroup of W generated by fsi W i 2 I g, and
consider the corresponding parabolic subgroup PI D BWIB . The quotient G=PI
parametrizes parabolic subgroups of G of type I . Suppose J � �� is another
subset with corresponding standard parabolic PJ . Since

G D
]

w2WI nW=WJ

PIwPJ ;

we have a bijection
PInG=PJ ŠWInW=WJ :

Composing this with G=PI �G=PJ ! PInG=PJ given by .g1; g2/ 7! g�11 g2
defines the relative position invariant

inv WG=PI �G=PJ !WInW=WJ :

The Frobenius ˆ WG!G induces ˆ WG=PI !G=Pˆ.I/.

Definition 3.1. For w 2WInW=Wˆ.I/, the Deligne–Lusztig variety XPI
.w/ is the

locally closed reduced subscheme of G=PI with k-points

XPI
.w/D fgPI 2G=PI W inv.g;ˆ.g//D wg:

The variety XPI
.w/ is actually defined over the unique extension of degree r

of Fp in k, where r is the smallest positive integer for which ˆr.I /D I .
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Proposition 3.2. The Deligne–Lusztig variety XPI
.w/ is smooth of pure dimension

dimXPI
.w/D `.w/C dim.G=PI\ˆ.I//� dim.G=PI /:

If I Dˆ.I / then dimXPI
.w/D `I .w/� `.wI /, where wI is the longest element

in WI and `I .w/ is the maximal length of an element in WIwWI . Taking I D ∅,
the variety XB.w/ is irreducible of dimension dimXB.w/D `.w/.

Proof. This is standard. See, e.g., [Vollaard and Wedhorn 2011, Section 3.4]. �

Remark 3.3. If w D 1, then XPI
.1/ can be identified with the intersection of the

image of the closed immersion G=PI\ˆ.I/ ,!G=PI �G=Pˆ.I/ with the graph of
the Frobenius ˆ WG=PI !G=Pˆ.I/. In particular XPI

.1/ is projective. If[
r�0

ˆr.I /D��

then XPI
.1/ is also irreducible, by [Bonnafé and Rouquier 2006].

3.2. An even orthogonal group. We now consider the case that G0 is a nonsplit
special orthogonal group in an even number of variables. Let �0 be an Fp-vector
space of dimension 2d equipped with a nondegenerate nonsplit quadratic form.
There is a basis fe1; : : : ; ed ; f1; : : : ; fd g of �D�0˝Fp

k such that he1; : : : ; ed i
and hf1; : : : ; fd i are isotropic, Œei ; fj �D ıij , and the Frobenius

ˆD id˝ �

acting on � fixes ei and fi for 1� i � d � 1, and interchanges ed with fd . Note
that � contains no ˆ-invariant Lagrangian subspaces. Abbreviate G0 D SO.�0/
and G D SO.�/.

Denote by OGr.r/ the scheme whose functor of points assigns to a k-scheme S
the set of all totally isotropic local OS -module direct summands L � �˝k OS
of rank r . In particular, OGr.d/ is the moduli space of Lagrangian subspaces
of �. Denote by OGr.d � 1; d/ the scheme whose functor of points assigns to a k-
scheme S the set of all flags of totally isotropic local OS -module direct summands
Ld�1 � Ld ��˝k OS of rank d � 1 and d , respectively. The following lemma
is elementary:

Lemma 3.4. For each totally isotropic local OS -module direct summand

Ld�1 ��˝k OS

of rank d � 1, there are exactly two totally isotropic local OS -module direct sum-
mands of rank d containing Ld�1.

In other words, the forgetful map OGr.d � 1; d/! OGr.d � 1/ is a two-to-one
cover. In fact, the Grassmannian OGr.d � 1; d/ has two connected components,
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which are interchanged by the action of any orthogonal transformation of determi-
nant �1. Each of the two components maps isomorphically to OGr.d � 1/ under
the forgetful map. Label the two components as

OGr.d � 1; d/D OGrC.d � 1; d/]OGr�.d � 1; d/

in such a way that the flags

he1; : : : ; ed�1i � he1; : : : ; ed�1; ed i (3-1)

and
he1; : : : ; ed�1i � he1; : : : ; ed�1; fd i (3-2)

define k-points of OGrC.d � 1; d/ and OGr�.d � 1; d/, respectively.
Denote by X � OGr.d/ the reduced closed subscheme with k-points

X D fL 2 OGr.d/ W dim.LCˆ.L//D d C 1g:

There is a closed immersion X ! OGr.d � 1; d/ sending

L 7! L\ˆ.L/� L;

and the open and closed subvariety X ˙DX \OGr˙.d �1; d/ of X is identified
with

X ˙ D fLd�1 � Ld 2 OGr˙.d � 1; d/ W Ld�1 �ˆ.Ld /g: (3-3)

Remark 3.5. Although we have defined OGr.d �1; d/ and X as k-schemes, they
both have natural Fp-structures. The Frobenius morphism from OGr.d � 1; d/
to itself interchanges the flags (3-1) and (3-2), and hence interchanges the two
connected components. It follows that X ˙ Š ��X �, and that the individual
components X C and X � have natural Fp2-structures.

Our choice of basis of � determines a maximal ˆ-stable torus T �G. Set

F˙i D he1; : : : ; ei i for 1� i � d � 1;

FC
d
D he1; : : : ; ed�1; ed i;

F�d D he1; : : : ; ed�1; fd i:

(3-4)

This gives two “standard” isotropic flags FC� and F�� in� satisfying F˙� Dˆ.F�� /:
These flags have the same stabilizer B �G, which is a ˆ-stable Borel subgroup
containing T . The corresponding set of simple reflections in the Weyl group is

fs1; : : : ; sd�2; t
C; t�g

where:

� si interchanges ei with eiC1, fi with fiC1, and fixes the other basis elements.
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� tC interchanges ed�1 with ed , fd�1 with fd , and fixes the other basis ele-
ments.

� t� interchanges ed�1 with fd , fd�1 with ed , and fixes the other basis elements.

Notice that ˆ.si /D si and ˆ.t˙/D t�, and so the products

w˙ D t�sd�2 � � � s2s1

are Coxeter elements: products of exactly one representative from each ˆ-orbit in
the set of simple reflections above. More generally, define w0 D 1, w˙1 D t

�, and

w˙r D t
�
� sd�2 � � � sd�r

for 2� r � d � 1. In particular, w˙
d�1
D w˙. Define parabolic subgroups

B D Pd�1 � Pd�2 � � � � � P0 � P
˙

ofG as follows: set Pd�1DPd�2DB , and for 0� r �d�2 let Pr be the parabolic
corresponding to the set fs1; : : : ; sd�.rC2/g. DefineP˙ to be the maximal parabolic
corresponding to fs1; : : : ; sd�2; t˙g. One can easily check that P0 is the stabilizer
in G of F˙

d�1
, and so

G=P0 Š OGr.d � 1/: (3-5)

More generally,Pr is the stabilizer of the standard isotropic flag F˙
d�r�1

�� � ��F˙
d

.
Similarly, P˙ is the stabilizer of the Lagrangian subspace F˙

d
, and so

G=P˙ Š OGr.d/: (3-6)

Proposition 3.6. The isomorphism (3-6) identifies X ˙ with the Deligne–Lusztig
variety XP˙.1/. In particular, X ˙ is projective, irreducible, and smooth of
dimension d � 1.

Proof. Note that P0 D PC \ P�, and that the Frobenius ˆ interchanges PC

and P�. The two projections G=P0!G=P˙ combine to give closed immersions

iC WG=P0!G=PC �G=P� and i� WG=P0!G=P� �G=PC;

while the Frobenius induces morphisms ˆ W G=PC! G=P� and ˆ W G=P�!
G=PC with graphs �Cˆ �G=P

C�G=P� and ��ˆ �G=P
��G=PC, respectively.

The isomorphisms (3-5) and (3-6) identify the intersection of �˙ˆ and the image
of i˙ with the set of flags Ld�1�Ld 2OGr˙.d �1; d/ such that Ld�1�ˆ.Ld /.
By (3-3), this intersection is isomorphic to X C. All of the claims now follow from
Remark 3.3, together with the dimension formula

dimXP˙.1/D dim.G=P0/� dim.G=P˙/D d � 1

of Proposition 3.2. �
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It is also useful to view X ˙ as the closure of a Deligne–Lusztig variety in the
flag variety G=P0.

Lemma 3.7. The isomorphism OGr˙.d � 1; d/ Š OGr.d � 1/ Š G=P0 identi-
fies X ˙ with the closure in G=P0 of the Deligne–Lusztig variety

XP0
.t�/D fg 2G=P0 W inv.g;ˆ.g//D t�g:

Proof. Using (3-3), we may characterize the k-points of X ˙ by

X ˙ D
˚
Ld�1 � Ld 2 Gr˙.d � 1; d/ W

ˆ.Ld�1/D Ld�1 or Ld�1Cˆ.Ld�1/Dˆ.Ld /
	
:

Recalling the standard isotropic flags of (3-4), the rule g 7! gF˙
d�1
� gF˙

d
defines

an isomorphism

XP0
.1/Š fLd�1 � Ld 2 Gr˙.d � 1; d/ W Ld�1 Dˆ.Ld�1/g;

while the same rule defines an isomorphism

XP0
.t�/Š fLd�1 � Ld 2 Gr˙.d � 1; d/ W Ld�1Cˆ.Ld�1/Dˆ.Ld /g:

Thus X ˙ is the disjoint union of XP0
.1/ and XP0

.t�/. Elementary properties of
the Bruhat order (see Section 8.5 of [Springer 1998], for example) imply that

XP0
.t�/DXP0

.1/]XP0
.t�/;

completing the proof. �

The following proof is essentially the same as [Rapoport et al. 2014, Proposi-
tion 5.5].

Proposition 3.8. There is a stratification

X ˙ D

d�1]
rD0

XPr
.w˙r /

of X ˙ into a disjoint union of locally closed subvarieties. The stratum XPr
.w˙r /

is smooth of pure dimension r , and has closure

XPr
.w˙r /DXP0

.w˙0 /] � � � ]XPr
.w˙r /:

The highest-dimensional stratum XPd�1
.w˙
d�1

/ D XB.w
˙/ is irreducible, open,

and dense.

Proof. Suppose L is a k-point of X ˙ � Gr.d/, and define

L.i/ D L\ˆ.L/\ � � � \ˆi .L/:
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An inductive argument, using

L.i/\ˆ.L.i//D L.i�1/\ˆ.L.i�1//\ˆ2.L.i�1//;

shows that L.iC1/ has codimension at most 1 in Li . Denote by X ˙r �X ˙ the
reduced closed subscheme whose k-valued points are those L satisfying L.rC2/ D
L.rC1/. The complement X ˙r nX ˙r�1 is the locally closed subvariety of X ˙

consisting of those L for which

L.rC2/ D L.rC1/ ¨ � � �¨ L.1/ ¨ L.0/ D L: (3-7)

Recalling that the parabolic subgroupPr is the stabilizer of the standard isotropic flag
F˙
d�r�1

� � � � �F˙
d

of length rC 2, we obtain a morphism X ˙r nX ˙r�1!G=Pr
by sending L to the flag (3-7). By similar reasoning as [Rapoport et al. 2014,
Proposition 5.5], this defines an isomorphism X ˙r nX

˙
r�1ŠXPr

.w˙r / with inverse
g 7! gF˙

d
. All claims now follow easily. �

3.3. A few special cases. We continue to let G0 D SO.�0/, where �0 is the
nonsplit quadratic space over Fp of dimension 2d ,�D�0˝k, andGDSO.�/. In
the applications we will only need to consider d � 3, and in these cases the structure
of the k-variety X (with its Fp2-structure of Remark 3.5) can be made more explicit.

(a) First suppose d D 1. In this case X ˙ is a single point, defined over Fp2 .

(b) Now suppose d D 2. In this case P1 D P0 D B , and the stratification of
Proposition 3.8 is

X ˙ DXB.1/]XB.t
�/;

where XB.1/ is a 0-dimensional closed subvariety and the open stratum XB.t
�/

has dimension 1. The Dynkin diagram identity D2 D A1 �A1 corresponds to an
exceptional isomorphism Spin.�/Š SL2 �SL2. Indeed, the even Clifford algebra
C0.�0/ is isomorphic to M2.Fp2/, and hence C0.�/ Š M2.k/ �M2.k/. This
isomorphism restricts to an isomorphism of algebraic groups

GSpin.�/Š f.x; y/ 2 GL2 �GL2 W det.x/D det.y/g

over k, which in turn determines an isomorphism of k-varieties G=P0 Š P1 �P1

in such a way that the Frobenius morphism on the left corresponds to .x; y/ 7!
.ˆ.y/;ˆ.x// on the right. The subvarieties X ˙ �G=P0 are identified with

X C D f.ˆ.x/; x/ W x 2 P1g;

X � D f.x;ˆ.x// W x 2 P1g:

Therefore, both X C and X � are isomorphic (over Fp2) to P1. The closed stratum
XB.1/ corresponds to the Fp2-rational points of P1.
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(c) Finally, suppose d D 3. In this case

X ˙ DXP0
.1/]XB.t

�/]XB.t
�s1/: (3-8)

The open stratum XB.t
�s1/ has dimension 2, the stratum XB.t

�/ is locally closed
of dimension 1, and the closed stratum XP0

.1/ has dimension 0. To continue,
we will use the Dynkin diagram isomorphism D3 D A3, corresponding to an
isomorphism between the adjoint forms of G and a unitary group in 4 variables, as
in Proposition 2.7 and Remark 2.8.

Let V0 be the 4-dimensional Fp2-vector space with basis e1; e2; e3; e4, endowed
with the split Fp2=Fp-Hermitian form defined by hei ; e5�j i D ıij . Denote by U0
the unitary group of V0, an algebraic group over Fp , so that U D U0 �Fp

k acts on
V D V0˝Fp

k. Recall the isomorphism Fp2 ˝Fp
k ' k˚ k defined by x˝ a 7!

.xa; xpa/, and denote by �0 and �1 the idempotents that correspond to .1; 0/ and

.0; 1/, so that
�0V Š V0˝F

p2
k: (3-9)

The action of U on �0V defines an isomorphism U ŠGL4. The diagonal torus and
the standard Borel subgroup of upper-triangular matrices in GL4 give a maximal
torus and a Borel subgroup of U , both defined over Fp . Given r; s� 0 with rCsD 4,
the pair .r; s/, viewed as an ordered partition of 4, defines a parabolic subgroup
P.r;s/ containing B with Levi component GLr �GLs . The parabolic subgroup
P.r;s/ is defined over Fp2 and satisfies ˆ.P.r;s//D P.s;r/.

Let Gr.r/ be the Grassmanian of r-planes in �0V . The above isomorphism
U Š GL4 induces an isomorphism U=P.r;s/ Š Gr.r/ defined over Fp2 , and the
Frobenius morphism ˆ W U=P.r;s/! U=P.s;r/ corresponds to a morphism

ˆ W Gr.r/ �! Gr.s/ (3-10)

which can be described, as in [Vollaard 2010], as follows. Consider the k-valued
form hh � ; � ii on (3-9) defined by

hhx˝ a; y˝ bii D hx; yi˝ abp:

It is k-linear in the first variable but Frobenius-semilinear in the second. For a
subspace U � �0V , denote by Ux the perpendicular of U for the form hh � ; � ii. If U
is Fp2-rational then UxD U?. If dimk.U/D r then dimk.Ux/D s, and, according
to [Vollaard 2010, Lemma 2.12], the morphism (3-10) is given by ˆ.U/D Ux on
k-valued points. Using this description of ˆ, the unitary Deligne–Lusztig variety
XP.r;s/

.1/� Gr.r/ is seen to be

XP.r;s/
.1/D

�
fU � �0V W dimk.U/D r; U � Uxg if r � s;
fU � �0V W dimk.U/D r; Ux � Ug if s � r:
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By Remark 3.3 these Deligne–Lusztig varieties are projective and smooth.
By inspecting the Dynkin diagram identity D3 D A3 we can see that the excep-

tional isomorphism between the adjoint forms of G and U can be chosen so that
the parabolic subgroups PC, P� and P0 of G correspond to P.1;3/, P.3;1/ and
P.1;3/\P.3;1/ of U Š GL4 respectively. Therefore, the Deligne–Lusztig variety
X C is isomorphic to the unitary Deligne–Lusztig variety

XP.1;3/
.1/D fU � k4 W dimk.U/D 1; U � Uxg:

Similarly X � is isomorphic to the unitary Deligne–Lusztig variety

XP.3;1/
.1/D fU � k4 W dimk.U/D 3; Ux � Ug:

Therefore, both X C and X � are isomorphic over Fp2 to the smooth hypersurface
in P3 given by the homogeneous equation

x1x
p
4 C x2x

p
3 C x3x

p
2 C x4x

p
1 D 0:

In fact, since all nondegenerate Hermitian forms on V0 D F4
p2 are isomorphic we

can also determine equations for the unitary Deligne–Lusztig varieties using the
Hermitian form given by the identity matrix I4. This gives the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0;

which is isomorphic to the surface above.
The stratification (3-8) of X C now corresponds to the stratification of the unitary

Deligne–Lusztig variety XP.1;3/
.1/ studied in [Vollaard 2010, Theorem 2.15]. The

Frobenius � Wk!k defines an operator on V which interchanges the two summands
V D �0V ˚ �1V . Thus we obtain an operator � D �2 on �0V . Any k-subspace
U � �0V satisfies �.U/D .Ux/x. The open 2-dimensional stratum of XP.1;3/

.1/

has k-valued points corresponding to lines U such that

dimk.U C �.U//D 2;
dimk.U C �.U/C �2.U//D 3:

The 1-dimensional stratum has k-valued points corresponding to lines U such that
dimk.U C �.U//D 2 and U C �.U/ is �-invariant (i.e., Fp2-rational). Finally, the
0-dimensional stratum consists of k-valued points corresponding to lines U which
are �-invariant. In other words, the 0-dimensional stratum of X C is just the set
of Fp2-rational points. For a k-valued point U on the 1-dimensional stratum, set
U 0DUC�.U/. This is an Fp2-rational plane with U 0xDU 0?DU 0. The irreducible
components of the 1-dimensional stratum are parametrized by such planes. Indeed,
conversely, given an Fp2-rational plane U 0 which is isotropic (U 0D U 0?), we obtain
a closed subscheme of XP.1;3/

.1/ with points corresponding to all lines U with
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U � U 0. This subscheme is isomorphic to P1 and gives the Zariski closure of the
corresponding irreducible component of the 1-dimensional stratum.

We can now also determine the number of components of the strata:
� The 0-dimensional stratum consists of .p3C1/.p2C1/ points. Indeed, observe

that, as in [Vollaard and Wedhorn 2011, Example 5.6], we can calculate that
the number of Fp2-valued points of the Fermat surface above is equal to
.p3C 1/.p2C 1/. (Note that there is a typographical error in [loc. cit.]: the
summation for †l should start at j D 0.) This is equal to the number of
Fp2-rational lines U � F4

p2 such that U � U?, where the orthogonal is with
respect to the (standard) Hermitian form h � ; � i on F4

p2 . Therefore, we have
.p3C 1/.p2C 1/ components of the 0-dimensional stratum.

� The 1-dimensional stratum has .p3C1/.pC1/ components. Note that by the
above, the Zariski closure of each component is isomorphic to a projective
line P1 over Fp2 and the corresponding component is the complement of all
Fp2-rational points in this line. To determine the number of irreducible compo-
nents of the 1-dimensional stratum, we start by counting the number of such
components whose closure passes a given Fp2-rational point, i.e., the number
of copies of P1 in our configuration that cross at that point: By the above, this
count is given by the number of Fp2-rational planes U 0 which are isotropic and
satisfy U �U 0�U?. These are given by Fp2-rational lines in U?=U which are
isotropic for the induced hermitian form. We can easily see that there are exactly
pC1 such lines. Since there are a total of .p3C1/.p2C1/ Fp2-rational points,
each belonging on pC1 projective lines which each have p2C1 points, we con-
clude that there are exactly .p3C1/.pC1/ projective lines in our configuration.

The same discussion applies to X �.

3.4. Deligne–Lusztig varieties and the Bruhat–Tits stratification. Now we relate
the varieties X studied above to the varieties N ı

ƒ � Nƒ of Section 2.6. Fix a
vertex lattice ƒ of type 2d 2 f2; 4; 6g, and endow the 2d -dimensional Fp-vector
space

�0 Dƒ=ƒ
_

with the nondegenerate Fp-valued quadratic form q.x/D pQ.x/ induced by the
quadratic form Q on Lˆ

Q
. Set �D�0˝Fp

k, and let G be the special orthogonal
group of �. Note that �0 is nonsplit: the existence of a d -dimensional totally
isotropic subspace in �0 would imply the existence of a self-dual lattice in Lˆ

Q
,

contradicting the Hasse invariant calculation of Proposition 2.6.
Recall from Section 3.2 the reduced closed subscheme X D Xƒ � OGr.d/

whose k-points are the Lagrangian subspaces L�� with

dimk.LCˆ.L//D d C 1: (3-11)
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The Lagrangian subspaces of � are in bijection with the W -lattices L � LQ

satisfying LD L_ and ƒ_ � L, and the condition (3-11) is equivalent to L being a
special lattice. Combining this with (2-18), we obtain bijections

Xƒ.k/Š fspecial lattices L�LQ such that ƒ_ � Lg ŠNƒ.k/:

Theorem 3.9. There is an isomorphism of k-schemes NƒŠXƒ inducing the above
bijection on k-points. After possibly relabeling the two connected components of
Xƒ DX Cƒ ]X �ƒ , we may assume that this isomorphism identifies N ˙

ƒ ŠX ˙ƒ .

Proof. Let R be a reduced k-algebra of finite type. Given an R-valued point
.G; �; �; %/ 2Nƒ.R/, there is an induced map of Zp-modules

ƒ_! End.G/

defined by x 7! %�1 ı x ı %. Let D be the covariant Grothendieck–Messing crystal
of G, evaluated at the trivial divided power thickening Spec.R/! Spec.R/, so
that D is a locally free R-module sitting in an exact sequence

0 �!D1 �!D �! Lie.G/ �! 0:

The formation of the pair D1�D is functorial inG, so there are induced morphisms
of R-modules

 W .ƒ_=pƒ_/˝Fp
R! EndR.D/

and
 1 W .ƒ

_=pƒ_/˝Fp
R! EndR.D1/

with ker. / � ker. 1/. Given x 2 ker. 1/ and y 2 .ƒ_=pƒ_/˝Fp
R, the endo-

morphism
Œx; y�D x ıyCy ı x 2 EndR.D1/

is trivial. Thus the kernel of  1 is contained in the radical of the quadratic space
.ƒ_=pƒ_/ ˝Fp

R, which is .pƒ=pƒ_/ ˝Fp
R. Let L] � K be the images of

ker. /� ker. 1/ under the obvious isomorphism

.pƒ=pƒ_/˝Fp
RŠ .ƒ=ƒ_/˝Fp

RŠ�˝k R:

When R D k, the point .G; �; �; %/ corresponds to some Dieudonné lattice D
with D1 D VD, and D1 � D is canonically identified with D1=pD � D=pD.
Under these identifications,

ker. /D fx 2 .pƒ=pƒ_/˝Fp
k W xD � pDg;

ker. 1/D fx 2 .pƒ=pƒ_/˝Fp
k W xD1 � pDg;

and so
L] D fx 2 .ƒ=ƒ_/˝ k W xD �Dg;
KD fx 2 .ƒ=ƒ_/˝ k W xD1 �Dg:
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If we identify a subspace of .ƒ=ƒ_/˝ k with the lattice in LQ that it generates,
then L] corresponds to the lattice L] D fx 2 LQ W xD � Dg of Theorem 2.12,
and K corresponds to LCL] D fx 2LQ W xD1 �Dg. In particular, L] is totally
isotropic of dimension d and K has dimension dC1. Moreover, the quadratic space
K=K? is a hyperbolic plane, and so has precisely two isotropic lines. One of them
is L], and the other is the subspace L corresponding to LD fx 2LQ W xD1 �D1g.

For a general reduced R of finite type, it follows from the previous paragraph
(use Exercise X.16 of [Lang 2002] and the fact thatR is a Jacobson ring) that L] is a
totally isotropic rank-d local direct summand of�˝kR and K is a rank-.dC1/ local
direct summand. By Lemma 3.4 there is a unique totally isotropic rank-d local direct
summand L 6D L] of �˝k R contained in K. As Nƒ is itself reduced and locally
of finite type, the construction .G; �; �; %/ 7! L defines a morphism of k-schemes

Nƒ! OGr.d/

inducing the desired bijection Nƒ.k/ŠXƒ.k/ on k-valued points. As the argu-
ments of Section 2.4 were all done over an arbitrary extension of k, the above
morphism induces a bijection Nƒ.k

0/ ŠXƒ.k
0/ for every field extension k0=k.

The morphism Nƒ ! Xƒ is therefore birational, quasi-finite, and proper (by
Proposition 2.20). As Xƒ is smooth (and therefore normal), Zariski’s main theorem
implies Nƒ ŠXƒ. The claim about connected components is obvious. �

3.5. The main results. Now we state our main results about the structure of the
underlying reduced subscheme Nred DN C

red tN �
red of N . Recall from Section 2.6

that N ˙
red is covered by the closed subschemes N ˙

ƒ as ƒ runs over the vertex
lattices of type tƒ D 2dƒ 2 f2; 4; 6g in the 6-dimensional Qp-quadratic space Lˆ

Q
,

and that their intersections are given by the simple rule

N ˙
ƒ1
\N ˙

ƒ2
D

�
N ˙
ƒ1\ƒ2

if ƒ1\ƒ2 is a vertex lattice;
∅ otherwise;

where, as before, the left-hand side is understood to mean the reduced scheme
underlying the scheme-theoretic intersection. In other words, the combinatorics of
the intersections are controlled by the combinatorics of the simplicial complex V
of Section 2.7.

Theorem 3.10. The k-variety N ˙
ƒ is projective, smooth, and irreducible of dimen-

sion dƒ� 1. Moreover:

(1) If dƒ D 1, then N ˙
ƒ is a single point.

(2) If dƒ D 2, then N ˙
ƒ is isomorphic to P1.

(3) If dƒ D 3, then N ˙
ƒ is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:
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Proof. Combine Theorem 3.9 with the discussion of Section 3.3. �
Theorem 3.11. Under the isomorphism X ˙ƒ ŠN ˙

ƒ , the stratification of Proposi-
tion 3.8 and the stratification

N ˙
ƒ D

]
ƒ0�ƒ

N ˙ı
ƒ0

of Section 2.6 are related by

XPr
.w˙r /Š

]
ƒ0�ƒ

dƒ0DrC1

N ˙ı
ƒ0 (3-12)

for all 0 � r � dƒ � 1. In particular (by taking r D dƒ � 1), the dense open
subvariety N ˙ı

ƒ is isomorphic to the Deligne–Lusztig variety XB.w˙/ associated
with a Coxeter element.

Proof. For each special lattice L, we defined in Proposition 2.19 a sequence of
lattices

LD L.0/ ¨ L.1/ ¨ � � �¨ L.d/ D L.dC1/

by L.r/ D LCˆ.L/C � � �Cˆr.L/; and a type-2d vertex lattice

ƒL D fx 2 L
.d/
W ˆ.x/D xg:

The bijection (2-18) identifies N ˙
ƒ .k/with the set of special latticesLwithƒL�ƒ,

and the k-points of the right-hand side of (3-12) correspond to those L for which
ƒL has type 2r C 2; in other words, those L for which

LD L.0/ ¨ L.1/ ¨ � � �¨ L.rC1/ D L.rC2/:

If we instead define L.r/DL\ˆ.L/\� � �\ˆr.L/; this condition is equivalent to

L.rC2/ D L.rC1/ ¨ � � �¨ L.1/ ¨ L.0/ D L:

In the proof of Proposition 3.8, this is the same as the condition defining the strata
XPr

.w˙r /. �
Theorem 3.12. The reduced k-scheme Nred is equidimensional of dimension two. It
has two connected components, N C

red and N �
red, and these connected components are

isomorphic. The irreducible components of Nred are precisely the closed subschemes
N ˙
ƒ as ƒ varies over the type-6 vertex lattices. Furthermore:

(1) For each irreducible component Nƒ, there are exactly .p3C 1/.pC 1/ irre-
ducible components Nƒ0 such that Nƒ \Nƒ0 Š P1, and .p3C 1/.p2C 1/
irreducible components Nƒ0 such that Nƒ\Nƒ0 consists of a single point.

(2) For each type-4 vertex lattice ƒ, the closed subscheme Nƒ Š P1 is contained
in exactly two irreducible components, and is equal to their intersection.



1694 Benjamin Howard and Georgios Pappas

Proof. The isomorphism N C
red ŠN �

red follows from the isomorphism N CŠN � of
Section 2.1. The connectedness of N ˙

red follows from Corollary 2.23. The remaining
claims are clear from the theorems above and the discussion of Section 3.3. �

3.6. Hermitian vertex lattices. As in [Rapoport et al. 2014; Vollaard 2010; Vol-
laard and Wedhorn 2011], it is possible to describe the stratification of N in terms
of the Bruhat–Tits building of the special unitary group J der, although in our setting
the description in these terms is slightly convoluted. Recall from Remark 2.8 the
central isogeny J der! SO.Lˆ

Q
/. Using [Bruhat and Tits 1984, § 4.2.15], we see

that this gives an identification of the building BT of SO.Lˆ
Q
/, which was described

in Section 2.7, with the building of J der. Therefore, using [Vollaard 2010] and
J der Š SU.T /, we can see that the underlying simplicial complex of the building
BT can also be described using OE -lattices in the split Hermitian space T of
dimension 4 over E.

We say that an OE -lattice „� T is a Hermitian vertex lattice if

„�„_ � p�1„:

The type of „ is dimF
p2
.„_=„/; the type can be 0, 2 or 4. As in [Vollaard 2010],

these Hermitian vertex lattices correspond bijectively to the vertices of the Bruhat–
Tits building of SU.T /. The action of the group SU.T / preserves the vertex type
and is transitive on the set of vertices of a given type. The simplicial structure of
the building of SU.T / is generated, as above, using a notion of adjacency, in which
„ and „0 are adjacent if either „�„0 or „0 �„. Consider now the identification
of the buildings given by the central isogeny SU.T /! SO.Lˆ

Q
/. We can see by

looking at the local Dynkin diagrams that Hermitian vertex lattices „ of type 0
and 4 are sent to vertex lattices ƒ of type 6, and Hermitian vertex lattices „ of
type 2 are sent to vertex lattices ƒ of type 2. Note that SO.Lˆ

Q
/ acts transitively on

the set of vertex lattices of type 6, but the map SU.T /! SO.Lˆ
Q
/ is not surjective

on Qp-points: its image is the kernel of the spinor norm.
Consider the set S which is defined as the disjoint union of the set of Hermitian

vertex lattices „ with the set of all pairs f„;„0g consisting of adjacent Hermitian
vertex lattices of types 0 and 4. Note that there is a natural bijection between the
set S and the set of all vertex lattices ƒ. Hermitian vertex lattices of type 0 and 4
in S correspond to vertex lattices of type 6, Hermitian vertex lattices of type 2 in S
correspond to vertex lattices of type 2, and finally the pairs f„;„0g correspond to
vertex lattices of type 4.

We define a partial order on S as follows: For two Hermitian vertex lattices we
define „<„0 if either

(1) „ is of type 2, „0 is of type 0, and „�„0,

(2) „ is type 2, „0 is of type 4, and „0 �„
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(so Hermitian vertex lattices of type 0 and 4 are not comparable). Two pairs
f„1; „

0
1g and f„2; „02g in S are not compared. If „ is a Hermitian vertex lattice

then „< f„1; „2g if „, „1, and „2 form a simplex in the building of J der (which
requires that „ have type 2). Finally, f„1; „2g<„ if „ 2 f„1; „2g. Under the
bijection between S and the set of vertex lattices, this partial order corresponds to
inclusion of vertex lattices. Define an adjacency relation in S by x �S y if either
x < y or y < x. We also define a dimension function d W S!f0; 1; 2g by d.x/D 0
if x is a Hermitian vertex lattice of type 2, d.x/ D 2 if x is a Hermitian vertex
lattice of type 0 or 4, and d.x/D 1 if x is a pair f„;„0g.

The following theorems are simply restatements in this new language of some
results of the previous subsection:

Theorem 3.13. Writing the reduced k-scheme as a union

Mred D
]
`2Z

M
.`/
red

gives the decomposition of Mred into its connected components M
.`/
red . These con-

nected components are all isomorphic and are of pure dimension 2.

(1) There is a stratification of M
.0/
red by locally closed smooth subschemes given by

M
.0/
red D

]
x2S

M ı
x :

Each stratum M ı
x is isomorphic to N Cı

ƒ , where ƒ is the vertex lattice that
corresponds to x, and is therefore isomorphic to a Deligne–Lusztig variety of
dimension d.x/. The closure Mx of any M ı

x in M
.0/
red is

Mx D

]
y�x

M ı
y :

(2) We have My � Mx if and only if y � x. In particular, the irreducible
components of M

.0/
red are precisely the closed subschemes M„ for „ 2 S a

Hermitian vertex lattice of type 0 or 4.

(3) The schemes Mx are as follows:

(a) If d.x/D 0, then Mx is a single point.
(b) If d.x/D 1, then Mx is isomorphic to P1.
(c) If d.x/D 2, then Mx is isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0:

Theorem 3.14. The irreducible components of M
.0/
red are parametrized by vertices

of type 0 and 4 in the Bruhat–Tits building of J der. Two irreducible components
M„ and M„0 intersect if and only if „ and „0 are either adjacent, or are adjacent
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to a common element of S . If they are adjacent then one is type 0, the other of type 4,
and they intersect along a P1. If they are not adjacent but have a common adjacent
point y 2 S , then y is a Hermitian vertex lattice of type 2, and M„\M„0 DMy is
a single point.

4. Applications to Shimura varieties

We now use our explicit description of the Rapoport–Zink space N D pZnM to
describe the supersingular locus of a GU.2; 2/-Shimura variety. With the results of
Section 3.5 in hand, this is exactly as in the GU.n�1; 1/ cases studied in [Rapoport
et al. 2014; Vollaard and Wedhorn 2011]. Accordingly, our discussion will be brief.

4.1. The Shimura variety. Let E � C be a quadratic imaginary field, fix a prime
p > 2 inert in E, and let O � E be the integral closure of Z.p/ in E. Let V be a
free O-module of rank 4 endowed with a perfect O-valued Hermitian form h � ; � i of
signature .2; 2/, and denote by G D GU.V / the group of unitary similitudes of V .
It is a reductive group over Z.p/. Fix a compact open subgroup U p �G.Ap

f
/, and

define Up DG.Zp/ and U D UpU p �G.Af /.
The Grassmannian D of negative-definite planes in V ˝O C is a smooth complex

manifold of dimension 4, with an action of G.R/. Define

MU .C/DG.Q/n.D�G.Af /=U /:

For sufficiently small U p , this is a smooth complex manifold parametrizing prime-
to-p isogeny classes of quadruples .A; �; �; Œ�p�/, in which A is an abelian variety
of dimension 4, � WO! End.A/.p/ is a ring homomorphism such that

det.T � �.˛/ILie.A//D .T �˛/2.T �˛/2

for all ˛ 2O, � 2 Hom.A;A_/.p/ is a prime-to-p-quasi-polarization satisfying

� ı �.˛/D �.˛/_ ı�

for all ˛ 2O, and Œ�p� is the U p-orbit of an O˝A
p

f
-linear isomorphism

�p W yTa
p
.A/˝A

p

f
! V ˝A

p

f

respecting the Hermitian forms up to scaling by .Ap
f
/� (the Hermitian form on the

source is determined by �, as in (2-3)). A prime-to-p-isogeny between two such pairs
.A; �; �; Œ�p�/ and .A0; �0; �0; Œ�p0�/ is an O-linear quasi-isogeny in Hom.A;A0/.p/
of degree prime to p that respects the level structures, and such that �0 pulls back
to a Z�

.p/
-multiple of �.

The parametrization is similar to the constructions found in [Kudla and Rapoport
2009], and can be described as follows. For each triple .A; i; �; Œ��/ above, the
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existence of �p implies that H1.A;Q/ and V ˝Q are isomorphic, as Hermitian
spaces, locally at all places v − p. But this implies that they are also isomorphic
at p, and hence there is a global isomorphism

ˇ WH1.A;Q/! V ˝Q:

As Tap.A/˝Qp Š V ˝Qp , a result of Jacobowitz, stated in [Kudla and Rapoport
2009, Proposition 2.14], shows that there is a unique Up-orbit of isomorphisms
Tap.A/Š V ˝Zp compatible with the O-actions and Hermitian forms. Thus there
is a unique way to extend �p to a U -orbit of isomorphisms

� W yTa.A/˝Af Š V ˝Af

compatible with the O-actions and the symplectic forms, and identifying Tap.A/
with V ˝Zp. The composition

V ˝Af
��1

���!H1.A;Af /
ˇ
�! V ˝Af

defines an element g 2G.Af /=U , and the Hodge structure on V ˝R induced by
the isomorphism ˇ corresponds to a point of D, as in [Kudla and Rapoport 2009,
Section 3].

4.2. The uniformization theorem. Let k be an algebraic closure of the field of p
elements.

Extending the moduli problem of the previous subsection to Z.p/-schemes in the
obvious way yields a schemeMU , smooth of relative dimension 4 over Z.p/. Denote
byM ss

U the reduced supersingular locus of the geometric special fiberMU �Z.p/
k. A

choice of geometric point .A; �;�; Œ��/ 2M ss
U .k/ determines a base point .G ; �;�/

with G D AŒp1�, and so defines a Rapoport–Zink space M as in Section 2.1,
endowed with an action of the subgroup J �End.G /�

Q
. Denote by I.Q/�End.A/�

Q

the subgroup of O-linear quasi-automorphisms that preserve the Q�-span of �. It
is the group of Q-points of an algebraic group I over Q satisfying I.Qp/ Š J ,
and the orbit Œ�� determines a right U p-orbit of isomorphisms I.Ap

f
/ŠG.A

p

f
/. In

particular, I.Q/ acts on both M and on G.Ap
f
/=U p.

Theorem 4.1 (Rapoport–Zink). There is an isomorphism of k-schemes

M ss
U Š I.Q/n.Mred �G.A

p

f
/=U p/:

As in [Vollaard 2010, Corollary 6.2], combining the above uniformization theo-
rem with the results of Section 3.5 yields the following corollary:

Corollary 4.2. The k-schemeM ss
U has pure dimension 2. For U p sufficiently small,

all irreducible components of M ss
U are isomorphic to the Fermat hypersurface

x
pC1
0 C x

pC1
1 C x

pC1
2 C x

pC1
3 D 0;
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and any two irreducible components either intersect trivially, intersect at a single
point, or their intersection is isomorphic to P1. Here “intersection” is understood
to mean the reduced scheme underlying the scheme-theoretic intersection.
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