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Let H be a Hopf algebra and let B be a Koszul H -module algebra. We provide
necessary and sufficient conditions for a filtered algebra to be a Poincaré–Birkhoff–
Witt (PBW) deformation of the smash product algebra B # H . Many examples of
these deformations are given.
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Introduction

Given a Hopf algebra (H -)action on a Koszul algebra B, the aim of this work is to
provide necessary and sufficient conditions for a certain filtered algebra, namely
DB,κ in Notation 0.3 below, to be a Poincaré–Birkhoff–Witt (PBW) deformation of
the smash product algebra B # H , i.e., gr DB,κ ∼= B # H (Definition 0.1). One well-
studied case is that of group actions on polynomial rings, where many algebras of
interest arise as such deformations; see for example [Crawley-Boevey and Holland
1998; Drinfeld 1986; Etingof and Ginzburg 2002; Lusztig 1989; Ram and Shepler
2003; Shepler and Witherspoon 2012a]. For group actions on other Koszul algebras,
see [Levandovskyy and Shepler 2014; Naidu and Witherspoon 2014; Shepler and
Witherspoon 2012b; Shroff 2014]. There are some results involving Hopf algebra
actions, such as those of Khare [2007], when H is cocommutative and B is a
polynomial algebra. More specifically, the case when H = U (g), with g the Lie
algebra of a (not necessarily connected) reductive algebraic group, was studied
by Etingof, Gan, and Ginzburg [Etingof et al. 2005], and by Khare and Tikaradze
[2010] where g = sl2. Results for an action of the quantized enveloping algebra
H =Uq(sl2) on the quantum plane are provided by Gan and Khare [2007].

The goal of this paper is to provide a general theorem encompassing all of the
above known classes of examples from the literature. Specifically, Theorem 3.1
gives PBW deformation conditions for B # H , and it only requires the following
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of H and B: (1) the antipode of the Hopf algebra H is bijective, (2) the Koszul
H -module algebra B is connected (B0 = k), and (3) the H -action on B preserves
the grading of B. We then apply our theorem to several different choices of Hopf
algebras acting on Koszul algebras to obtain nontrivial PBW deformations, both
known and new. Our work indicates that such examples abound.

Many ring-theoretic properties are preserved under PBW deformation. To discuss
this, let us consider the following definition:

Definition 0.1. Let D=
⋃

i≥0 Fi be a filtered algebra with {0}⊆ F0⊆ F1⊆· · ·⊆ D.
We say that D is a Poincaré–Birkhoff–Witt (PBW) deformation of an N-graded alge-
bra A if A is isomorphic to the associated graded algebra grF D =

⊕
i≥0 Fi/Fi−1,

as N-graded algebras.

Now if grF D is an integral domain, prime, or (right) noetherian, then so is D.
Moreover, if D is affine with the standard filtration F ′, then the Gelfand–Kirillov
(GK) dimensions of D and of grF ′ D are equal; GKdim(grF D) ≤ GKdim(D) for
a general filtration F of D. The Krull dimension and global dimension of grF D
serve as upper bounds for the corresponding dimensions of D. These ring-theoretic
results can all be found in [McConnell and Robson 2001]. Homological properties
preserved under PBW deformation have also been investigated; see [Berger and
Taillefer 2007] and [Wu and Zhu 2013] regarding the Calabi–Yau property, for
instance. The representation theory of some classes of PBW deformations of smash
product algebras has been thoroughly studied in the literature and still remains an
active area of research. Some examples of PBW deformations whose representation
theory is of interest include rational Cherednik algebras, symplectic reflection
algebras, and various types of Hecke algebras (see, for example, [Drinfeld 1986;
Etingof et al. 2005; Etingof and Ginzburg 2002; Lusztig 1989; Ram and Shepler
2003], and for more recent work, see [Ding and Tsymbaliuk 2013; Losev and
Tsymbaliuk 2014; Tikaradze 2010; Tsymbaliuk 2014]).

In order to state the main result, we need the following notation and terminology.
Let k be a field of arbitrary characteristic and let an unadorned ⊗ mean ⊗k . Let
N denote the natural numbers, including 0. Recall that an N-graded algebra is
Koszul if its trivial module k admits a linear minimal graded free resolution; see
[Polishchuk and Positselski 2005, Chapter 2] for more details.

Notation 0.2 (H, B, I, κ, κC, κL ). Let V be a finite-dimensional vector space over k.

(i) Let H be a Hopf algebra with the standard structure notation (H,m,1, u, ε, S).
Here, we assume that the antipode S of H is bijective.

(ii) Let B = Tk(V )/(I ) be an N-graded, Koszul, left H -module algebra B =⊕
j≥0 B j with B0=k and I ⊆V⊗V . We assume that the action of H preserves

the grading and the subspace I of V ⊗ V . So in this case, V is an H -module.
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(iii) Take κ : I → H ⊕ (V ⊗ H) to be a k-bilinear map, where κ is the sum of its
constant and linear parts κC

: I → H and κL
: I → V ⊗ H , respectively.

Notation 0.3 (DB,κ ). Let DB,κ be the filtered k-algebra given by

DB,κ =
Tk(V ) # H
(r − κ(r))r∈I

.

Here, we assign the elements of H degree 0.

Our main result is given as follows:

Theorem 3.1. The algebra DB,κ is a PBW deformation of B # H if and only if the
following conditions hold:

(a) κ is H-invariant (Definition 1.4); and

If dimk V ≥ 3, then the following equations hold for the maps κC
⊗ id− id⊗κC

and κL
⊗ id− id⊗κL , which are defined on the intersection (I ⊗ V )∩ (V ⊗ I ):

(b) Im(κL
⊗ id− id⊗κL)⊆ I ;

(c) κL
◦ (κL

⊗ id− id⊗κL)=−(κC
⊗ id− id⊗κC);

(d) κC
◦ (id⊗κL

− κL
⊗ id)≡ 0.

In the case that H is cocommutative and B is the symmetric algebra S(V ), this
result was proven by Khare [2007, Theorem 2.1], via the diamond lemma. Our
proof is a generalization of that of [Braverman and Gaitsgory 1996, Lemma 0.4,
Theorem 0.5] (where H = k) and of [Shepler and Witherspoon 2012b, Theorem 5.4]
(where H is a group algebra).

Background information on Hopf algebra (co)actions, Hochschild cohomology,
and deformations of algebras are provided in Section 1. In Section 2, we produce
a free resolution of the smash product algebra B # H ; see Construction 2.5 and
Theorem 2.10. This resolution is adapted from Guccione and Guccione [2002];
Negron [2014] independently constructed a similar resolution. Our resolution is
used in the proof of Theorem 3.1, which is given in Section 3. Many examples of
PBW deformations of B # H are provided in Section 4, including/involving:

• (Example 4.1) the Crawley-Boevey–Holland algebras;

• (Examples 4.2 and 4.4) some actions of semisimple, noncommutative, nonco-
commutative Hopf algebras on skew polynomial rings;

• (Examples 4.13 and 4.16) actions of the Sweedler and the Taft algebras on the
polynomial ring k[u, v];

• (Example 4.18) the quantized symplectic oscillator algebras of rank 1.

All of the examples of B # H above have nontrivial PBW deformations.
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1. Background material

We begin by discussing Hopf (co)actions on algebras and (co)modules and end
with a discussion on deformations of algebras. For further background on these
topics, we refer the reader to [Montgomery 1993] and [Braverman and Gaitsgory
1996; Gerstenhaber 1964], respectively.

1A. Hopf algebra (co)actions.

Definition 1.1. (i) For a left H -module M , we denote the H -action by · : H⊗M→
M , that is, by h ·m ∈ M for all h ∈ H , m ∈ M . Similarly for all h ∈ H and m ∈ M ,
we denote the right h-action on m by m · h.

(ii) Given a Hopf algebra H and an algebra A, we say that H acts on A (from the
left, as a Hopf algebra) if A is a left H -module and

h · (ab)=
∑

(h1 · a)(h2 · b) and h · 1A = ε(h)1A

for all h ∈ H, a, b ∈ A, where the comultiplication is given by 1(h)=
∑

h1⊗ h2

(Sweedler’s notation). In this case, we say that A is a left H-module algebra.

(iii) For any left H -comodule M , we denote the left H -coaction by ρ(M)⊆ H⊗M ,
where ρ(m)=

∑
m−1⊗m0 for m−1 ∈ H and m,m0 ∈ M . Likewise, the right H -

coaction on a right H -comodule M is given by ρ(m)=
∑

m0⊗m1 for m,m0 ∈ M
and m1 ∈ H .

Note that H is naturally an H -bimodule via left and right multiplication. This
yields a left H-adjoint action on H given by

(1-2) h · ` :=
∑

h1`S(h2)

for h, ` ∈ H . Moreover, if V is a left H -module, we give V ⊗ H an H -bimodule
structure as follows: h(v ⊗ `) =

∑
(h1 · v)⊗ h2` and (v ⊗ `)h = v ⊗ `h for all

h, ` ∈ H and v ∈ V . A left H-adjoint action on V ⊗ H arises by combining these:

(1-3) h · (v⊗ `) :=
∑

(h1 · v)⊗ h2`S(h3).

The left H -adjoint actions in (1-2) and (1-3) extend to the standard left H -adjoint
action on A= B#H (where B=Tk(V )/(I ) as in Notation 0.2(ii)), via Definition 1.1,
since the action of H preserves I .

Now we discuss the H -invariance of the map κ (Notation 0.2(iii)), which is one
of the necessary conditions for the filtered algebra DB,κ (Notation 0.3) to be a PBW
deformation of B # H .

Definition 1.4. Recall Notation 0.2. We say that the map κ is H-invariant if
h · (κ(r))= κ(h · r) in H ⊕ (V ⊗ H) for any relation r ∈ I and h ∈ H .
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1B. Deformations of algebras and Hochschild cohomology. In this part, we re-
mind the reader of the notion of a deformation of a k-algebra A and how Hochschild
cohomology plays a role in its construction. This is seminal work of Gerstenhaber
[1964], adapted to our graded setting as in [Braverman and Gaitsgory 1996].

Definition 1.5 (At , A( j)). Let A be an associative algebra and let t be an indeter-
minate. A deformation of A over k[t] is an associative k[t]-algebra At over k[t]
which is isomorphic to A[t] as k-vector spaces, with multiplication given by

a1 ∗ a2 = µ0(a1⊗ a2)+µ1(a1⊗ a2)t +µ2(a1⊗ a2)t2
+ · · ·

for all a1, a2 ∈ A. Here, µi : A⊗ A→ A is a k-linear map, referred to as the i -th
multiplication map. Moreover, µ0(a1⊗ a2)= a1a2 is the usual product in A.

Now assume that A is graded by N. A graded deformation of A over k[t] is an
algebra At as above, which is itself graded by N, setting deg(t)= 1. The map µi is
homogeneous of degree −i in this case. A j -th-level graded deformation of A is a
graded associative algebra A( j) over k[t]/(t j+1) that is isomorphic to A[t]/(t j+1)

as k-vector spaces, with multiplication given by

a1 ∗ a2 = µ0(a1⊗ a2)+µ1(a1⊗ a2)t + · · ·+µ j (a1⊗ a2)t j .

The maps µi : A⊗ A→ A are extended to be linear over k[t]/(t j+1).

The associativity of ∗ for the deformation At imposes conditions on the maps µi .
Specifically, for each degree i , the following equation must hold for all a1, a2, a3∈ A:

(1-6)
i∑

j=0

µ j (µi− j (a1⊗ a2)⊗ a3)=

i∑
j=0

µ j (a1⊗µi− j (a2⊗ a3)).

We use Hochschild cohomology to study these equations.

Definition 1.7 (B•(A)). Let A be a k-algebra and let M be an A-bimodule, or
equivalently, an Ae-module. Here, Ae

:= A⊗ Aop. The Hochschild cohomology
of M is HHn(A,M) := ExtnAe(A,M). Moreover, this cohomology may be derived
from the bar resolution B•(A) of the Ae-module A:

B•(A) : · · ·
δ3
−−→ A⊗4 δ2

−−→ A⊗3 δ1
−−→ A⊗ A

δ0
−−→ A −→ 0,

where

δn(a0⊗ · · ·⊗ an+1) :=

n∑
i=0

(−1)i a0⊗ · · ·⊗ ai ai+1⊗ · · ·⊗ an+1

for all n ≥ 0 and a0, . . . , an+1 ∈ A. When M = A, write HHn(A) for HHn(A, A).
Moreover, if A is (N-)graded, then HHn(A) inherits the grading of A: If A=

⊕
i Ai ,

then HHn(A)=
⊕

i HHn,i (A).
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Note that Homk(A⊗n, A)∼= HomAe(A⊗(n+2), A), since the Ae-module A⊗(n+2)

is induced from the k-module A⊗n . We will identify these two Hom spaces often
without further comment. Now we make some remarks about the multiplication
maps µi .

Remark 1.8. Using (1-6) for i = 1, we see that

(1-9) µ1(a1⊗ a2)a3+µ1(a1a2⊗ a3)= a1µ1(a2⊗ a3)+µ1(a1⊗ a2a3)

for all a1, a2, a3 ∈ A. In other words, µ1 is a Hochschild 2-cocycle on the bar
resolution of A; that is, δ∗3(µ1) := µ1 ◦ δ3 vanishes. (Here we have identified the
input a1⊗a2⊗a3 with 1⊗a1⊗a2⊗a3⊗ 1 to apply δ3, under the identification of
Hom spaces described above.)

Next, using (1-6) for i = 2, we see that

µ2(a1⊗ a2)a3+µ1(µ1(a1⊗ a2)⊗ a3)+µ2(a1a2⊗ a3)

= a1µ2(a2⊗ a3)+µ1(a1⊗µ1(a2⊗ a3))+µ2(a1⊗ a2a3).

Therefore

(1-10) δ∗3(µ2)(a1⊗ a2⊗ a3)= µ1(µ1(a1⊗ a2)⊗ a3)−µ1(a1⊗µ1(a2⊗ a3))

for all a1, a2, a3 ∈ A. In other words, µ2 is a cochain on the bar resolution of A
whose coboundary is given by the right-hand side of (1-10).

For all i ≥ 1, (1-6) is equivalent to

(1-11) δ∗3(µi )(a1⊗a2⊗a3)=

i−1∑
j=1

µ j (µi− j (a1⊗a2)⊗a3)−µ j (a1⊗µi− j (a2⊗a3)).

That is, µi is a cochain on the bar resolution of A whose coboundary is given by
the right-hand side of (1-11).

Definition 1.12. The right-hand side of (1-11) is the (i − 1)-th obstruction of the
deformation At of A from Definition 1.5. An (i − 1)-th-level graded deformation
(defined by maps µ1, . . . , µi−1) lifts to an i-th-level graded deformation if there
exists a map µi for which µ1, . . . , µi−1, µi define an i-th-level graded deformation.

The next proposition makes clear the choice of terminology in the above definition.
Ultimately, one is interested in a deformation of A over k[t] and its specializations at
particular values of t . The i-th-level graded deformations are steps in this direction.

Proposition 1.13 [Braverman and Gaitsgory 1996, Proposition 1.5]. All obstruc-
tions to lifting an (i − 1)-th-level graded deformation to the next level lie in
HH3,−i (A). An (i − 1)-th-level deformation lifts to the i-th-level if and only if
its (i − 1)-th obstruction cocycle is zero in cohomology, i.e., there is a map µi such
that (1-11) holds for all a1, a2, a3 in A.
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The connection between graded deformations and PBW deformations is well
known; the following statement is a consequence of the canonical embedding of A as
a k-linear direct summand of A[t], with splitting map given by specialization at t=0.

Proposition 1.14 [Braverman and Gaitsgory 1996, Remark 1.4]. Given a graded
algebra A and a graded deformation At of A, then At specialized at t = 1 is a PBW
deformation of A. �

Now we explain that the two notions of deformation of B # H coincide; recall
Notations 0.2 and 0.3. The following result is well known in related contexts, but
we include some details for the reader’s convenience.

Proposition 1.15. The following statements are equivalent.
• The algebra DB,κ := (Tk(V )# H)/(r−κ(r))r∈I is a PBW deformation of B# H.

• The algebra DB,κ,t := (Tk(V ) # H)[t]/(r − κL(r)t − κC(r)t2)r∈I is a graded
deformation of B # H over k[t].

Proof. Assume that DB,κ is a PBW deformation of B # H . By its definition, DB,κ,t

is an associative algebra, and so we need only see that it is isomorphic to B # H [t]
as a vector space. To this end, use the PBW property to define a k-linear map
π : B # H → Tk(V ) # H whose composition with the quotient map onto DB,κ is an
isomorphism of filtered vector spaces. Extend π to a k[t]-linear map from B # H [t]
to Tk(V )# H [t]. Its composition with the quotient map to DB,κ,t is an isomorphism
of k-vector spaces; one sees this by a degree argument.

Conversely, assume that DB,κ,t is a graded deformation of B # H over k[t]. We
may specialize to t = 1 to obtain DB,κ . Now apply Proposition 1.14 to conclude
that DB,κ is a PBW deformation of B # H . �

2. Resolutions for smash product algebras

In this section, let A denote the smash product B # H , which is an N-graded algebra:
A =

⊕
j≥0(B j ⊗ H). Thus A0 ∼= H . The aim is to construct a free Ae-resolution

X• of the Ae-module A from resolutions of H and of B (denoted by C• and D•,
respectively). This construction simultaneously generalizes results of Guccione and
Guccione [2002] and of Shepler and Witherspoon [2012b, Section 4]. A similar
resolution was constructed independently by Negron [2014].

Definition 2.1 (C•, Ci , C ′i ). For i ≥ 0, let Ci denote the H e-module H⊗(i+2). The
left H -comodule structure ρ : Ci → H ⊗Ci is given by

ρ(h0
⊗ h1
⊗ · · ·⊗ hi+1) :=

∑
h0

1 · · · h
i+1
1 ⊗ h0

2⊗ · · ·⊗ hi+1
2 ∈ H ⊗Ci

for all h0, . . . , hi+1
∈ H . For h ∈ H , the left and right h-actions on an element

x ∈ Ci are given respectively by left and right multiplication by h in the leftmost
and rightmost factors of x . Now, let
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C• : · · · −→ C1 −→ C0 −→ H −→ 0

be the bar resolution B•(H) of H (Definition 1.7), which is an H e-free resolution
of H .

There is an isomorphism of free H e-modules Ci ∼= H⊗C ′i⊗H , where C ′i = H⊗i

if i ≥ 1 and C ′0 = k. We give each C ′i the H -comodule structure inducing that on
Ci under the usual tensor product of comodules.

Remark 2.2. The resolution C• satisfies the following conditions:

(i) The right H -action and left H -coaction on Ci commute in the sense that for
all x ∈ Ci and h ∈ H∑

(x · h)−1⊗ (x · h)0 =
∑

x−1h1⊗ (x0 · h2).

That is, each Ci is a Hopf module (for which the action is a left action and the
coaction is a right coaction).

(ii) The differentials are left H -comodule homomorphisms.

Definition 2.3 (D•, Di , D′i ). Recall that B is a Koszul algebra. Let

· · · −→ D1 −→ D0 −→ B −→ 0

be the Koszul resolution of B as a Be-module: D0 = B ⊗ B, D1 = B ⊗ V ⊗ B,
D2 = B⊗ I ⊗ B, and for each n ≥ 3, Di = B⊗ D′i ⊗ B, where

D′i =
i−2⋂
j=0

(V⊗ j
⊗ I ⊗ V⊗(i−2− j)).

Each Di is a subspace of B⊗(i+2), and the differential on the Koszul resolution is
the one induced by the canonical embedding of the Koszul resolution into the bar
resolution of B.

Remark 2.4. The resolution D• satisfies the following conditions:

(i) Each Be-module Di is a left H -module and the differentials are H -module
homomorphisms.

(ii) The left actions of B and H on Di are compatible in the sense that they induce
a left action of A = B # H on Di .

(iii) In addition, the right B-action on Di is compatible with the left H -action on
Di in the sense that for all h ∈ H , y = b0

⊗ y′ ⊗ b1
∈ Di for y′ ∈ D′i and

b0, b1, b ∈ B,

h · (y · b)=
∑

(h1 · y) · (h2 · b)=
[∑

(h1 · b0)⊗ (h2 · y′)⊗ (h3 · b1)
]
· (h4 · b)

=

∑
(h1 · b0)⊗ (h2 · y′)⊗ (h3 · b1)b = (h · y) · b.
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(iv) Each Di is considered to be a left H -comodule in a trivial way by requiring
that it be H -coinvariant; that is, the comodule structure is given by maps
ρi : Di → H ⊗ Di , where ρi (y)= 1⊗ y for all y ∈ Di . The maps ρi are maps
of left H -modules, if we give H ⊗ Di the tensor product H -module structure,
where the factor H has the adjoint H -module structure. See Section 1A.

Construction 2.5 (X•). We wish to combine the two resolutions, C• and D• from
Definitions 2.1 and 2.3, to form a resolution X• of A = B # H by A-bimodules, via
a tensor product. To that end, we first apply (A⊗H −) to C•. Note that A is free
as a right H -module (under multiplication) and that A⊗H H ∼= A. The following
sequence of A⊗ H op-modules is therefore exact:

· · · −→ A⊗H C1 −→ A⊗H C0 −→ A −→ 0.

Similarly, we apply (−⊗B A) to D•. Note that A is free as a left B-module, and
that B⊗B A ∼= A. The following sequence of B⊗ Aop-modules is therefore exact:

· · · −→ D1⊗B A −→ D0⊗B A −→ A −→ 0.

We will next extend the actions on the modules in each of these two sequences so
that they become Ae-modules. Then, we will take their tensor product over A.

We extend the right H -module structure on A⊗H C• to a right A-module structure
by defining a right action of B on A⊗H C•: for all a ∈ A, x ∈ Ci , b ∈ B, we set

(2-6) (a⊗H x) · b :=
∑

a(x−1 · b)⊗H x0.

This does indeed make A⊗H Ci into a right B-module, and, by combining with
the right action of H , gives a right action of A on A ⊗H Ci . Note that for
x = x0

⊗ · · ·⊗ x i+1
∈ Ci (with x0, . . . , x i+1

∈ H ),

ρ(hx)=
∑

(hx)−1⊗ (hx)0 =
∑

h1x0
1 · · · x

i+1
1 ⊗ h2x0

2 ⊗ · · ·⊗ x i+1
2

=

∑
h1x−1⊗ h2x0.

The action is well-defined: If h ∈ H , then

(ah⊗H x)·b
(2-6)
=

∑
ah(x−1 ·b)⊗H x0=

∑
a(h1x−1 ·b)⊗H h2x0

(2-6)
= (a⊗H hx)·b.

Since the differentials on C• are H -comodule homomorphisms (Remark 2.2(ii)),
this action commutes with the differentials.

We extend the left B-module structure on Di ⊗B A to a left A-module structure
by defining a left action of H by

(2-7) h · (y⊗B a) :=
∑

(h1 · y)⊗B h2a
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for all h ∈ H , y ∈ Di , a ∈ A. It is well-defined, since for all h ∈ H , b ∈ B, we have
by the definitions in Section 1A that

h · (yb⊗B a)
(2-7)
=

∑
(h1 · (yb))⊗B (h2aS(h3))=

∑
(h1 · y)(h2 · b)⊗B h3aS(h4)

=

∑
(h1 · y)⊗B (h2 · b)h3aS(h4)=

∑
(h1 · y)⊗B (h2 · (ba))

(2-7)
= h · (y⊗B ba).

The left H -action on Di is compatible with the right B-action on Di by Remark
2.4(iii). Again, this action commutes with the differentials, since the differentials
on D• are H -module homomorphisms (Remark 2.4(i)).

We may now consider A⊗H C• and D•⊗B A to be complexes of Ae-modules
via the A-bimodule structure defined above. We take their tensor product over A,
letting X•,• := (A⊗H C•)⊗A (D•⊗B A); that is, for all i, j ≥ 0,

(2-8) X i, j := (A⊗H Ci )⊗A (D j ⊗B A),

with horizontal and vertical differentials

dh
i, j : X i, j → X i−1, j and dvi, j : X i, j → X i, j−1

given by dh
i, j := dC•

i ⊗ id and dvi, j := (−1)i id⊗d D•
j .

Finally, let X• be the total complex of X•,•:

(2-9) · · · −→ X2 −→ X1 −→ X0 −→ A −→ 0,

with Xn =
⊕

i+ j=n X i, j .

Theorem 2.10. We have the following statements:

(a) For each i, j , the Ae-module X i, j is isomorphic to A⊗C ′i ⊗ D′j ⊗ A.

(b) The complex X• given in (2-9) is a free resolution of the Ae-module A.

Proof. (a) Write Ci ∼= H ⊗C ′i ⊗ H and D j ∼= B⊗ D′j ⊗ B for vector spaces C ′i and
D′j , as in Definitions 2.1 and 2.3. Then

X i, j ∼= (A⊗H H ⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ B⊗B A)
∼= (A⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ A).

We will show that this is isomorphic to A⊗C ′i ⊗ D′j ⊗ A as an Ae-module. First,
define a map as follows:

(2-11)
(A⊗C ′i ⊗ H)× (B⊗ D′j ⊗ A)→ A⊗C ′i ⊗ D′j ⊗ A,

(a⊗ x ⊗ h, b⊗ y⊗ a′) 7→
∑

a(x−1h1 · b)⊗ x0⊗ (h2 · y)⊗ h3a′
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for all a, a′ ∈ A, x ∈ C ′i , y ∈ D′j , h ∈ H , b ∈ B. This map is k-bilinear by
definition, and we will check that it is A-balanced. First, let b′ ∈ B. We rewrite
(a⊗x⊗h) ·b′ as follows. First, using A⊗C ′i⊗H ∼= A⊗H Ci , identify this element
with a⊗H (1⊗ x ⊗ h) ∈ A⊗H Ci . By (2-6),

(a⊗H (1⊗ x ⊗ h)) · b′ =
∑

a((1⊗ x ⊗ h)−1 · b′)⊗H (1⊗ x ⊗ h)0.

By Definition 2.1, and by identifying x ∈ C ′i with x1
⊗ x2
⊗ · · ·⊗ x i , we have that

ρ(1⊗ x ⊗ h)=
∑

(1⊗ x ⊗ h)−1⊗ (1⊗ x ⊗ h)0

=

∑
(x1

1 x2
1 · · · x

i
1h1)⊗ (1⊗ x1

2 ⊗ x2
2 ⊗ · · ·⊗ x i

2⊗ h2).

So, (1⊗ x ⊗ h)−1 = x−1h1 and (1⊗ x ⊗ h)0 = x0⊗ h2. Now Ci ∼= H ⊗C ′i ⊗ H as
an H -comodule, so

((a⊗ x⊗h) ·b′, b⊗ y⊗a′)=
∑

(a(x−1h1 ·b′)⊗ x0⊗h2, b⊗ y⊗a′)

7→

∑
a(x−2h1 ·b′)(x−1h2 ·b)⊗ x0⊗ (h3 · y)⊗h4a′.

On the other hand,

((a⊗ x ⊗ h, b′ · (b⊗ y⊗ a′))= (a⊗ x ⊗ h, b′b⊗ y⊗ a′)

7→

∑
a(x−1h1 · (b′b))⊗ x0⊗ (h2 · y)⊗ h3a′),

which is the same as the previous image since B is an H -module algebra. Now let
` ∈ H . Then

((a⊗ x ⊗ h) · `, b⊗ y⊗ a′)= (a⊗ x ⊗ h`, b⊗ y⊗ a′)

7→

∑
a(x−1h1`1 · b)⊗ x0⊗ (h2`2 · y)⊗ h3`3a′.

On the other hand,

(a⊗ x ⊗ h, ` · (b⊗ y⊗ a′))=
∑

(a⊗ x ⊗ h, (`1 · b)⊗ (`2 · y)⊗ `3a′)

7→

∑
a(x−1h1`1 · b)⊗ x0⊗ (h2`2 · y)⊗ h3`3a′,

which is the same as the previous image. Therefore, there is an induced map

(A⊗C ′i ⊗ H)⊗A (B⊗ D′j ⊗ A)→ A⊗C ′i ⊗ D′j ⊗ A.

Now, we verify that the map below is an inverse map of (2-11):

(2-12) a⊗ x ⊗ y⊗ a′ 7→ (a⊗ x ⊗ 1)⊗A (1⊗ y⊗ a′).

It is clear that first applying (2-12) and then (2-11) yields the identity map on
A⊗C ′i ⊗ D′j ⊗ A. On the other hand, the image of first applying (2-11) then (2-12)
to (a⊗ x ⊗ h, b⊗ y⊗ a′) is
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(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (1⊗ (h2 · y)⊗ h3a′)

=

∑
(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (ε(h2)⊗ (h3 · y)⊗ h4a′)

=

∑
(a(x−1h1 · b)⊗ x0⊗ 1)⊗A (h2 · (1⊗ y⊗ a′))

=

∑
(a(x−1h1 · b)⊗ x0⊗ h2)⊗A (1⊗ y⊗ a′)

(2-6)
= ((a⊗ x ⊗ h) · b)⊗A (1⊗ y⊗ a′)

= (a⊗ x ⊗ h)⊗A (b⊗ y⊗ a′).

Therefore the two Ae-modules X i j and A⊗C ′i⊗D′i⊗ A are isomorphic, as claimed.

(b) We wish to apply the Künneth theorem to show that the complex X• is a
free resolution of the Ae-module A. To that end, we check that each term in the
complex D•⊗B A is a free left A-module and that the image of each differential
in the complex is also projective as a left A-module. First, write each Di ⊗B A ∼=
(B⊗D′i⊗B)⊗B A∼= B⊗D′i⊗A. Define a k-linear map f : A⊗D′i⊗B→ B⊗D′i⊗A
by

f (rh⊗ y⊗ b)=
∑

r ⊗ (h1 · y)⊗ h2b

for h ∈ H , y ∈ D′i , and r, b ∈ B. Give A⊗ D′i ⊗ B the structure of a left A-module
by requiring A to act by left multiplication on the leftmost factor. Clearly this is
a free left A-module. The map f is an A-module homomorphism by the definition
of the left A-action on B ⊗ D′i ⊗ A; see (2-7). We claim that the following map
is an inverse map, so that f is an isomorphism of A-modules: let S−1 denote the
(composition) inverse of the antipode S of H . Let g : B⊗ D′i ⊗ A→ A⊗ D′i ⊗ B
be the k-linear map defined by

g(r ⊗ y⊗ hb)=
∑

rh2⊗ (S−1(h1) · y)⊗ b.

Since for each h ∈ H we have
∑

h2S−1(h1) = ε(h) =
∑

S−1(h2)h1 (see, e.g.,
[Radford 2012, Proposition 7.1.10]), the function g is indeed the inverse of f . Thus,
each term in the complex D•⊗B A is a free left A-module.

That the image of each differential is projective as a left A-module may be proved
inductively, starting on one end of the complex

· · · −→ D1⊗B A
d1⊗id
−−−−−→ D0⊗B A

d0⊗id
−−−−−→ A −→ 0,

as follows. Since A is a projective left A-module and d0⊗ id is surjective, the map
splits, implying that Ker(d0⊗ id)= Im(d1⊗ id) is a direct summand of the free left
A-module D0⊗B A. Therefore it is projective. Again, since Im(d1⊗id) is projective,
the map d1⊗ id from D1⊗B A to its image splits so that Ker(d1⊗ id)= Im(d2⊗ id)
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is a direct summand of the free left A-module D1⊗B A. Continuing in this way,
we see that Im(di ⊗ id) is a free left A-module for each i .

The Künneth theorem [Weibel 1994, Theorem 3.6.3] then gives for each n an
exact sequence

0−→
⊕

i+ j=n

Hi (A⊗H C•)⊗A H j (D•⊗B A)−→ Hn((A⊗H C•)⊗A (D•⊗B A))

−→

⊕
i+ j=n−1

TorA
1 (Hi (A⊗H C•),H j (D•⊗B A))→ 0.

Now A⊗H C• and D•⊗B A are exact except in degree 0, where their homologies
are each A; that is, H0(A⊗H C•)= A and H0(D•⊗B A)= A. Therefore the only
potentially nonzero Tor term is when i = 0= j , or TorA

1 (A, A), yet this equals 0
since A is flat over A. So for each n, we have

Hn((A⊗H C•)⊗A (D•⊗B A))∼=
⊕

i+ j=n

H j (A⊗H C•)⊗A Hi (D•⊗B A).

Again the right side is only nonzero when i = 0= j , so we have

H0((A⊗H C•)⊗A (D•⊗B A))∼= H0(A⊗H C•)⊗A H0(D•⊗B A)∼= A⊗A A ∼= A

and Hn((A⊗H C•)⊗A (D•⊗B A))= 0 for all n > 0. Thus we have proven that X•
is an Ae-free resolution of A. �

We next relate the resolution X• of A (from Construction 2.5) to the bar resolution
B•(A) of A:

Lemma 2.13. There exist degree-preserving chain maps between X• and the bar
resolution B•(A) of A,

φ• : X• −→ B•(A) and ψ• : B•(A)−→ X•,

such that ψnφn is the identity map on the Ae-submodule X0,n of Xn for each n ≥ 0.

Proof. Recall by Notation 0.2 that B is generated by the vector space V , with
quadratic relations I ⊆ V ⊗ V . First we prove by induction on n that there are
degree-preserving maps φn : Xn → A⊗(n+2) and ψn : A⊗(n+2)

→ Xn commuting
with the differentials. For clarity, we denote the differential on the bar resolution of
A by δ. We have the diagram

X• : · · · // X3
d3
//

φ3
��

X2
d2
//

φ2
��

X1
d1

//

φ1
��

X0
d0

//

φ0

��

A // 0

B•(A) : · · · // A⊗5 δ3
//

ψ3

OO

A⊗4 δ2
//

ψ2

OO

A⊗3 δ1
//

ψ1

OO

A⊗ A
δ0

//

ψ0

OO

A // 0

where Bn(A) = A⊗(n+2) and Xn =
⊕

i+ j=n X i, j , with X i, j defined in (2-8); see
also Theorem 2.10(a).
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Define φ0 = id⊗ id = ψ0, the identity map from A⊗ A to itself. We wish to
define φ• so that when restricted to X0,• it corresponds to the standard embedding
of the Koszul complex into the bar complex: for n = 1, this is the embedding of
A⊗ V ⊗ A into A⊗ A⊗ A via the containment of V in A. We may define φ1 on
X1 = X0,1⊕ X1,0 ∼= (A⊗V ⊗ A)⊕ (A⊗H⊗ A) by φ1(1⊗v⊗1)= 1⊗v⊗1 and
φ1(1⊗ h⊗ 1)= 1⊗ h⊗ 1 for all v ∈ V , h ∈ H . Note that for n ≥ 2,

(2-14) X0,n ∼= A⊗
(n−2⋂

i=0

V⊗i
⊗ I ⊗ V⊗(n−i−2)

)
⊗ A,

which is a free Ae-submodule of A⊗(n+2). For each i, j with i + j = n, choose a
basis of the vector space C ′i⊗D′j (whose elements are homogeneous of degree j , as
H is declared to have degree 0). By hypothesis, φn−1 is degree-preserving, and dn

is degree-preserving by construction. So, applying φn−1dn to these basis elements
of C ′i ⊗ D′j produces elements of degree j in the kernel of δn−1, that is, the image
of δn . We define φn by choosing (arbitrary) corresponding elements in the inverse
image of Im(δn). If we start with an element in X0,n , we may choose its image in
A⊗(n+2) under the canonical embedding of X0,n into A⊗(n+2) (see (2-14)). Given
X i, j and X i ′, j ′ with i + j = i ′ + j ′ = n and i 6= 0, i ′ 6= 0, elements of X i, j have
degree j and elements of X i ′, j ′ have degree j ′. So their images under φn may be
chosen independently, and in particular, independently of those of X0,n . Thus, we
have the maps φn , as desired.

Now we show that ψn may be chosen so that ψnφn is the identity map on X0,n .
In degree 1, we have summands X0,1 ∼= A⊗ V ⊗ A and X1,0 ∼= A⊗ H ⊗ A. Note
that V ⊕ H is a direct summand of A as a vector space. We may therefore define
ψ1(1⊗ v⊗ 1)= 1⊗ v⊗ 1 in X0,1 for all v ∈ V , and ψ1(1⊗ h⊗ 1)= 1⊗ h⊗ 1 in
X1,0 for all h ∈ H . We also have that ψ1 is the identity map on elements of the form
1⊗ z⊗ 1, for z ranging over a basis of a chosen complement of V ⊕ H as a vector
subspace of A. This complement may be chosen arbitrarily, subject to the condition
that d1ψ1(1⊗ z⊗1)=ψ0δ1(1⊗ z⊗1). Since ψ0, d1, δ1 all have degree 0 as maps,
one may also choose ψ1 to have degree 0. In particular, note that ψ1φ1 is the identity
map on X0,1. Now let n ≥ 2 and assume that ψn−2 and ψn−1 have been defined to
be degree-0 maps for which dn−1ψn−1 = ψn−2δn−1 and ψn−1φn−1 is the identity
map on X0,n−1. To define ψn , first note that A⊗(n+2) contains the space X0,n as an
Ae-submodule (see (2-14)) and the image of each X i, j under φn (n = i + j , i ≥ 1).
By construction, their images intersect in 0, the image of X0,n under φn is free and,
moreover, φn is injective on restriction to X0,n . Choose a set of free generators of
φn(X0,n), and choose a set of free generators of its complement in A⊗(n+2). For
each chosen generator x of X0,n , we define ψn(φn(x)) to be x . On the complement
of φn(X0,n), define ψn arbitrarily, subject to being a chain map of degree 0. Thus,
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ψnφn is the identity map on X0,n . Now for all x ∈ X0,n , since dn(x) ∈ X0,n−1,
we have that ψn−1φn−1dn(x) = dn(x), by induction. As δnφn(x) = φn−1dn(x), it
follows that dnψnφn(x) = ψn−1δnφn(x). So ψn also extends the chain map from
degree n− 1 to degree n, as desired. �

3. Poincaré–Birkhoff–Witt theorem for Hopf algebra actions

Consider the algebra DB,κ from Notation 0.3. The goal of this section is to prove
our main result, Theorem 3.1. We provide necessary and sufficient conditions for
DB,κ to be a PBW deformation of B # H (Definition 0.1) as follows:

Theorem 3.1. The algebra DB,κ is a PBW deformation of B # H if and only if the
following conditions hold:

(a) κ is H-invariant (Definition 1.4);

If dimk V ≥ 3, then the following equations hold for the maps κC
⊗ id− id⊗κC

and κL
⊗ id− id⊗κL , which are defined on the intersection (I ⊗ V )∩ (V ⊗ I ):

(b) Im(κL
⊗ id− id⊗κL)⊆ I ;

(c) κL
◦ (κL

⊗ id− id⊗κL)=−(κC
⊗ id− id⊗κC);

(d) κC
◦ (id⊗κL

− κL
⊗ id)≡ 0.

Recall Notation 0.2: B is generated by the k-vector space V with quadratic
relations I ⊂ V ⊗ V , so B = Tk(V )/(I ). Moreover, consider:

Notation 3.2 (U , TH (U ), R, P). Let U := V ⊗ H , which is an H -bimodule under
the actions defined in Section 1A. Set R = I ⊗H , similarly an H -bimodule, and an
H -subbimodule of U ⊗H U . Let P = {r ⊗ 1− κ(r) | r ∈ I } be the relation space
of DB,κ , generating an H -submodule of H ⊕U ⊕ (U ⊗H U ) in the tensor algebra

TH (U )= H ⊕U ⊕ (U ⊗H U )⊕ (U ⊗H U ⊗H U )⊕ · · · .

Note that U⊗
n
H ∼= V⊗n

⊗ H as k-vector spaces. We see that π(P)= R, where the
map π is the projection onto the homogeneous quadratic part of P .

Consider the following preliminary results:

Lemma 3.3. Since TH (U ) is canonically isomorphic to Tk(V ) # H , we have that

TH (U )/(P)∼= DB,κ and TH (U )/(R)∼= (Tk(V ) # H)/(I )∼= B # H,

where (I ) is identified with the ideal of Tk(V ) # H generated by I .
Hence, DB,κ is a PBW deformation of B # H if and only if TH (U )/(P) is a PBW

deformation of TH (U )/(R). �
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Lemma 3.4 [Shepler and Witherspoon 2012b, Lemma 5.2]. If TH (U )/(P) is a
PBW deformation of TH (U )/(R), then the following conditions hold for maps
α : R→U and β : R→ H for which P = {x −α(x)−β(x) | x ∈ R}:

(i) Im(α⊗H id− id⊗Hα)⊆ R.

(ii) α ◦ (α⊗H id− id⊗Hα)=−(β⊗H id− id⊗Hβ).

(iii) β ◦ (id⊗Hα−α⊗H id)≡ 0.

Here, the maps α⊗H id− id⊗Hα and β⊗H id− id⊗Hβ are defined on the subspace
(R⊗H U )∩ (U ⊗H R) of TH (U ). �

Remark 3.5. Given the maps κL
: I → V ⊗ H and κC

: I → H as in Notation 0.2,
we see that α = κL

⊗ idH and β = κC
⊗ idH .

Lemma 3.6. Consider the algebra

(TH (U )/(P))t :=
TH (U )[t]

(x −α(x)t −β(x)t2)x∈R
.

We have that (TH (U )/(P))t is a PBW deformation of TH (U )/(R) over k[t] if and
only if DB,κ,t (of Proposition 1.15) is a PBW deformation of B # H over k[t].

Proof. This follows from Lemma 3.3 and Remark 3.5. �

Now we provide the proof of Theorem 3.1. A somewhat shorter proof would
suffice in case H is semisimple: The first proof of [Shepler and Witherspoon 2012a,
Theorem 3.1] may be generalized from semisimple group algebras to semisimple
Hopf algebras. In that context, one has on hand a much smaller resolution than that
which we will use below.

Proof of Theorem 3.1. Note that we will employ the identifications given in the
lemmas and remark above, sometimes without comment. Namely, results from
Section 2 will be used here where, for instance, I is identified so that R = I ⊗ H
and B # H is identified with TH (U )/(R).

Necessity of conditions (a)–(d). Let us first show that conditions (a)–(d) are necessary.
Assume that DB,κ is a PBW deformation of B#H , and take Q to be the relation space
of DB,κ . Then, for all h ∈ H and r ∈ I , we have that h ·r−h · (κ(r))∈ Q. (Refer to
Section 1A for the definition of these actions.) We also have that h ·r−κ(h ·r)∈ Q,
so h · (κ(r))− κ(h · r) ∈ Q. This implies that h · (κ(r))= κ(h · r) in DB,κ , since Q
cannot contain nonzero elements in degree less than two. Thus, condition (a) holds.
Moreover, by Lemma 3.3, TH (U )/(P) satisfies the PBW property.

Now by applying Lemma 3.4, we see that conditions (i), (ii), (iii) hold for
TH (U )/(P). These conditions are equivalent to conditions (b), (c), (d) in Theorem
3.1 for the algebra DB,κ by Notation 3.2 and Remark 3.5. Thus, if DB,κ is a PBW
deformation of B # H , then conditions (a)–(d) of Theorem 3.1 must hold.
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Sufficiency of conditions (a)–(d). Conversely, let us assume that conditions (a)–(d) of
Theorem 3.1 hold for the algebra DB,κ . Equivalently, by Notation 3.2, Lemma 3.3,
and Remark 3.5, we assume the following for the algebra TH (U )/(P):

• The maps α and β are H -invariant.

• Conditions (i), (ii), (iii) of Lemma 3.4 hold.

The goal is to show that DB,κ is a PBW deformation of B # H , which, by Proposition
1.15, is equivalent to showing that DB,κ,t (of Proposition 1.15) is a graded defor-
mation of B # H over k[t]. Hence, by Lemma 3.6, the goal is then equivalent to
verifying that the algebra (TH (U )/(P))t is a graded deformation of TH (U )/(R)
over k[t]. We thus have the following strategy:

• Let A denote TH (U )/(R).

• Construct multiplication maps, µi : A⊗ A→ A, as in Definition 1.5, subject
to the restraints listed in Remark 1.8.

• Form the graded deformation At of A as in Definition 1.5.

• Conclude that A′ := TH (U )/(P) ∼= (At)|t=1 is a PBW deformation of A by
Proposition 1.15.

We generalize the proof in [Shepler and Witherspoon 2012b] from group actions
to Hopf algebra actions. Namely, we use the free resolution X• of the Ae-module A
in Construction 2.5 to define the maps µi . Recall that X• is constructed from
C• = B•(A), the bar resolution of H , and from D•, the Koszul resolution of B.

Extending α and β to be maps on X•. We first extend α and β to be maps on
X• as follows. In degree 2, X2 contains as a direct summand X0,2 ∼= A⊗ I ⊗ A;
see (2-14). As α, β are H -bilinear by H -invariance, we may extend them to
Ae-module maps from A⊗ R ⊗H A ∼= A⊗ I ⊗ A to A by composing with the
multiplication map. By abuse of notation, denote these extended maps by α, β
as well. Extend α and β yet further by setting them equal to 0 on the summands
X2,0 and X1,1 of X2 so that they become maps α, β : X2 → A. More precisely,
α, β ∈ HomAe(X2, A)∼= Homk(X ′2, A) for X2 ∼= A⊗ X ′2⊗ A.

Construction of the multiplication map µ1. To build µ1 ∈ Homk(A ⊗ A, A) ∼=
HomAe(A⊗4, A), recall that it must be a Hochschild 2-cocycle as in (1-9). We will
show that α : X2→ A is a Hochschild 2-cocycle on X•, that is, d∗3 (α)= 0. Recall
the chain maps of Lemma 2.13. We set µ1 = ψ

∗

2 (α), which will be a Hochschild
2-cocycle on B•(A), that is, δ∗3(µ1)= 0.

To show that d∗3 (α) : X3 → A is the zero map, first note that X3 = X0,3 ⊕

X1,2⊕ X2,1⊕ X3,0 from (2-9) and that the images of X2,1 and X3,0 under d3 lie in
X1,1⊕ X2,0. Since α|X1,1⊕X2,0 ≡ 0 by the extension above, it suffices to show that
d∗3 (α)|X0,3 and d∗3 (α)|X1,2 are zero maps.



1718 Chelsea Walton and Sarah Witherspoon

Rewriting condition (i) of Lemma 3.4, we see that it implies that α is 0 on
the image of the differential on X0,3 as follows: let

∑
i 1⊗ xi ⊗ yi ⊗ zi ⊗ 1 ∈

A⊗ ((I ⊗ V )∩ (V ⊗ I ))⊗ A = X0,3; see (2-14). Then

α

(
d3

(∑
i

1⊗ xi ⊗ yi ⊗ zi ⊗ 1
))

= α

(∑
i

xi ⊗ yi ⊗ zi ⊗ 1−
∑

i

1⊗ xi yi ⊗ zi ⊗ 1

+

∑
i

1⊗ xi ⊗ yi zi ⊗ 1−
∑

i

1⊗ xi ⊗ yi ⊗ zi

)
=

∑
i

(xiα(yi ⊗ zi )−α(xi ⊗ yi )zi ).

(To see this, note that applying the multiplication map of A to elements in I
yields 0.) Thus d∗3 (α)= id⊗α−α⊗ id on X0,3; here, we identify id⊗α−α⊗ id
with m ◦ (id⊗α− α⊗ id), where m is the multiplication map on A. We see that
condition (i) indeed implies (in fact, is equivalent to) d∗3 (α)|X0,3 ≡ 0.

Next, we claim that α being H -invariant implies that α is also 0 on the image of
the differential on X1,2. Let a, b ∈ A, h ∈ H , and r ∈ I , and consider a⊗h⊗ r ⊗b
as an element of X1,2 ∼= A⊗ H ⊗ I ⊗ A by Theorem 2.10(a). By the definition of
the differential on X1,2,

d(a⊗ h⊗ r ⊗ b)= d((a⊗ h⊗ 1)⊗ (1⊗ r ⊗ b))

= d(a⊗ h⊗ 1)⊗ (1⊗ r ⊗ b)− (a⊗ h⊗ 1)⊗ d(1⊗ r ⊗ b).

The second term lies in X1,1, but α is 0 on X1,1 by definition. Therefore,

(3-7) α(d(a⊗ h⊗ r ⊗ b))= α((ah⊗ 1− a⊗ h)⊗ (1⊗ r ⊗ b))

= α
(

ah⊗ r ⊗ b−
∑

a⊗ (h1 · r)⊗ h2b
)

= ahα(r)b−
∑

aα(h1 · r)h2b.

Since α is H -invariant, we have that

hα(r)=
∑

h1ε(h2)α(r)=
∑

h1α(r)ε(h2)=
∑

h1α(r)S(h2)h3=
∑

α(h1·r)h2,

where the last equality used the fact that α is H -invariant. Thus, α is zero on the
image of d = d3 on X1,2 by (3-7). It follows that α is a Hochschild 2-cocycle on X•.

Now, let µ1 = ψ
∗

2 (α), where ψ• is a chain map satisfying the conditions of
Lemma 2.13. We conclude that

δ∗3(µ1)= δ
∗

3(ψ
∗

2 (α))= ψ
∗

3 (d
∗

3 (α))≡ 0,
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as desired. So, we have a first-level graded deformation A(1) of A with first
multiplication map µ1 : A⊗ A→ A.

As an aside, we also get that φ∗2(µ1)= α as cochains. To see this, first note that
since α is homogeneous of degree −1 by its definition, so is µ1. Let x ∈ X0,2. By
Lemma 2.13, ψ2φ2(x)= x , and thus

µ1φ2(x)= αψ2φ2(x)= α(x).

Now let y be a free generator of X1,1 or of X2,0, which may always be chosen to have
degree 1 or 0, respectively. Then ψ2φ2(y) has degree 1 or 0 respectively, implying
that its component in X0,2 is 0. It follows that µ1φ2(y)= αψ2φ2(y)= 0= α(y);
the last equation follows from the extension of α to X•. Therefore φ∗2(µ1)= α.

Construction of the multiplication map µ2. Given µ1 as above, note that the map
µ2 must satisfy (1-10); that is, δ∗3(µ2) = µ1 ◦ (µ1⊗ id− id⊗µ1) as cochains on
the bar resolution B•(A) of A. We will show that a modification of ψ∗2 (β) is such
a map, as follows:

First, note that β = φ∗2(ψ
∗

2 (β)) as cochains, by an argument similar to that above
for α. Moreover, condition (ii) implies that d∗3 (β) = α ◦ (α ⊗H id− id⊗Hα) as
cochains on X0,3. Let

(3-8) γ = δ∗3ψ
∗

2 (β)−µ1 ◦ (µ1⊗ id− id⊗µ1).

Then φ∗3(γ ) is zero on X0,3: φ∗3δ
∗

3ψ
∗

2 (β)=d∗3 (β) and φ∗3(µ1◦(µ1⊗id− id⊗µ1))=

α ◦ (α ⊗ id− id⊗α) by Lemma 3.4(ii). To see the last statement, note that the
image of φ3 on X0,3 is contained in A⊗ ((I ⊗V )∩ (V ⊗ I ))⊗ A with φ∗(µ1)= α.
We also see that φ∗3(γ ) is 0 on X2,1 and X3,0 since it is a map of degree −2. We
claim it is also 0 on X1,2 as follows. As an Ae-module, the image of X1,2 under φ3

is generated by elements of degree 2. Since µ1 = ψ
∗

2 (α), it is zero on elements of
degree less than two, and so the map µ1◦(µ1⊗id− id⊗µ1)must be 0 on the image
of X1,2 under φ3. Since β is H -invariant, and thus β is a cocycle (see the argument
following (3-7)) and φ∗2ψ

∗

2 (β)=β, we have that φ∗3δ
∗

3ψ
∗

2 (β)= d∗3φ
∗

2ψ
∗

2 (β)= d∗3 (β)
is 0 on X1,2. Therefore φ∗3(γ ) is 0 on X1,2.

We have shown that φ∗3(γ ) is 0 on all of X3, and so γ must be a coboundary on
the bar resolution B•(A) of A. Thus there is a 2-cochain µ of degree −2 on the bar
resolution with

(3-9) δ∗3(µ)= γ.

Consider ψ∗2 (β)−µ, yet note that φ∗2(ψ
∗

2 (β)−µ) may not agree with β on X2.
We need such a statement for the next step of constructing µ3. Now,

d∗3φ
∗

2(µ)= φ
∗

3δ
∗

3(µ)= φ
∗

3(γ )= 0,
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so the 2-cochain φ∗2(µ) is a cocycle on the complex X•. Thus, φ∗2(µ) lifts to a cocycle
µ′ of degree −2 on the bar complex B•(A). In other words, φ∗2(ψ

∗

2 (β)−µ+µ
′)

agrees with β on X2.
Moreover, δ∗3(µ

′) = 0, and by (3-8) and (3-9), we have that δ∗3(ψ
∗

2 (β)−µ) =

µ1 ◦ (µ1⊗ id− id⊗µ1). So,

(3-10) δ∗3(ψ
∗

2 (β)−µ+µ
′)−µ1 ◦ (µ1⊗ id− id⊗µ1)= 0

on the bar resolution B•(A) of A.
Thus, setting µ2 equal to ψ∗2 (β)− µ+ µ

′, we have maps µ1, µ2 to obtain a
second-level graded deformation A(2) of A extending A(1).

Construction of the multiplication map µ3. Recall the restraint on µ3 given in (1-11):
µ3 is a cochain on B•(A) whose coboundary is given by µ1 ◦ (µ2⊗ id− id⊗µ2)+

µ2 ◦ (µ1⊗ id− id⊗µ1). We construct µ3 as follows.
By (3-10) and condition (iii) of Lemma 3.4, we have that µ2◦(µ1⊗ id− id⊗µ1)

is 0 on the image of φ. By degree considerations, µ1◦(µ2⊗id− id⊗µ2) is always 0
on the image of φ. Therefore, the obstruction

µ2 ◦ (µ1⊗ id− id⊗µ1)+µ1 ◦ (µ2⊗ id− id⊗µ2)

is a coboundary. Thus there exists a 2-cochain µ3, necessarily having degree −3,
satisfying the restraint given above, and the deformation lifts to the third level.

Construction of the multiplication maps µi for i ≥ 4. The obstruction for a third-
level graded deformation A(3) of A to lift to the fourth level lies in HH3,−4(A)
by Proposition 1.13. We apply φ∗3 to this obstruction to obtain a cochain on X3.
Since there are no cochains of degree −4 on X3 by definition (as it is generated by
elements of degree 3 or less), φ∗3 applied to the obstruction is automatically zero.
Therefore, the deformation may be continued to the fourth level. Similar arguments
show that it can be continued to the fifth level, and so on.

Construction of At . Let At be the graded deformation of A that we obtain in this
manner (Definition 1.5). Then, At is the k-vector space A[t] with multiplication
defined for all a1, a2 ∈ A by

a1 ∗ a2 = a1a2+µ1(a1⊗ a2)t +µ2(a1⊗ a2)t2
+µ3(a1⊗ a2)t3

+ · · · ,

where a1a2 is the product in A and each µi : A ⊗ A→ A is a k-linear map of
homogeneous degree −i . Now for any r in R, µ1(r) = (ψ∗2α)(r) and µ2(r) =
(ψ∗2 (β)−µ+µ

′)(r) by construction, and µi (r)= 0 for i ≥ 3 since deg(r)= 2.

Conclusion that A′ := TH (U )/(P) is a PBW deformation of A = TH (U )/(R).
Now we show that A′ := TH (U )/(P) is isomorphic, as a filtered algebra, to the
fiber of the deformation At at t = 1 as follows. Let A′′ = (At)|t=1. Then A′′ is
generated by V and H and one thus obtains a surjective algebra homomorphism
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TH (U )∼= Tk(V )# H→ A′′. The elements of P lie in the kernel (by definition of A′′),
and thus this map induces a surjective algebra homomorphism A′ = TH (U )/(P)�
A′′. This map is in fact an isomorphism of filtered algebras by a dimension argu-
ment in each degree. Therefore A′ is a PBW deformation of A, since A′′ is one
(Proposition 1.14). �

4. Examples

For our examples, we restrict k to be an algebraically closed field of characteristic
zero. There are many interesting examples, both known and new, in this setting. Less
is known about Hopf actions on Koszul algebras and corresponding deformations
in positive characteristic.

As an application of Theorem 3.1, we provide various examples of PBW defor-
mations DB,κ of smash products B # H ; recall Notations 0.2 and 0.3. We do this by
describing deformation parameter(s) κ = κC

+ κL below. In particular, Examples
4.1, 4.2, and 4.4 involve semisimple Hopf actions, and Examples 4.13, 4.16, and 4.18
involve nonsemisimple Hopf actions on (skew) polynomial rings. Recall that skew
polynomial rings are Koszul by [Polishchuk and Positselski 2005, Example 4.2.1
and Theorem 4.3.1].

4A. Semisimple Hopf actions. We begin by revisiting the well-known PBW de-
formations of Crawley-Boevey and Holland [1998].

Example 4.1. Take H = k0, for 0 a finite subgroup of SL2(k), and B = k[u, v].
For g =

(a
b

c
d

)
∈ 0, let the action of g on B be given by g · u = au + cv and

g · v = bu+ dv.
By [Crawley-Boevey and Holland 1998], the deformation parameter κ of the

PBW deformation DB,κ of B # H must be in the center of 0, which we verify again
with Theorem 3.1. We assume here that κL

≡ 0, as in that work.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. So we have for all

g ∈ 0 that g · (κ(uv−vu))= κ(g · (uv−vu)). Now since the determinant of g is 1,
g · (κ(uv− vu))= κ(uv− vu), and the image of κ lies in the center of k0. That is,

DB,κ =
k〈u, v〉 # k0
(uv− vu− λ)

is a PBW deformation of k[u, v] # k0 if and only if λ ∈ Z(k0).

It is worth pointing out that there are analogues of Crawley-Boevey–Holland
algebras when working in positive characteristic; see the work of Emily Norton
[2013] for some examples that are quite different from those in characteristic zero.

The following two Hopf actions were produced by Walton in joint work with
Kenneth Chan, Ellen Kirkman, and James Zhang [Chan et al. 2012]. We thank
them for permitting us to use these results.
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Example 4.2. Let H := H8 be the unique noncommutative noncocommutative
semisimple 8-dimensional Hopf algebra [Kac and Paljutkin 1966; Masuoka 1995],
and let B = k〈u, v〉/(u2

+ v2) (which is isomorphic to the skew polynomial ring
k〈u, v〉/(uv+vu)). The Hopf algebra H8 is generated by x , y, z, and the relations are

x2
= y2
= 1, xy = yx, zx = yz, zy = xz, z2

=
1
2(1+ x + y− xy).

The rest of the structure of H8 and the left H8-action on B are given by

1(x)= x⊗ x, 1(y)= y⊗ y, 1(z)= 1
2(1⊗1+1⊗ x+ y⊗1− y⊗ x)(z⊗ z),

ε(x)= ε(y)= ε(z)= 1, S(x)= x, S(y)= y, S(z)= z,

x · u =−u, x · v = v, y · u = u, y · v =−v, z · u = v, z · v = u.

Let r := u2
+ v2 and note that

x · r = r, y · r = r, z · r = r,

so the ideal of relations of B, I = 〈r〉, is H -stable.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. We begin by

computing κC . Let

κC(r)= γ0+ γ1x + γ2 y+ γ3xy+ γ4z+ γ5xz+ γ6 yz+ γ7xyz

for some scalars γi ∈k. Since h·(κC(r))=
∑

h1(κ
C(r))S(h2) (see Section 1A), both

x ·(κC(r))=κC(r) and y·(κC(r))=κC(r) imply that γ7=γ4 and γ6=γ5. Moreover,

z · (κC(r))= γ0+ γ2x + γ1 y+ γ3xy+ γ4z+ γ5xz+ γ5 yz+ γ4xyz = κC(r),

which implies that γ2 = γ1. Thus,

(4-3) κC(r)=: g(γ0, γ1, γ3, γ4, γ5)

= γ0+ γ1(x + y)+ γ3xy+ γ4(z+ xyz)+ γ5(xz+ yz).

On the other hand, let κL(r)= u⊗ f + v⊗ f ′ ∈ V ⊗ H with

f = δ0+ δ1x + δ2 y+ δ3xy+ δ4z+ δ5xz+ δ6 yz+ δ7xyz,

f ′ = δ′0+ δ
′

1x + δ′2 y+ δ′3xy+ δ′4z+ δ′5xz+ δ′6 yz+ δ′7xyz,

for some scalars δi , δ
′

i ∈ k. Note that h · (κL(r)) =
∑

h1 · u ⊗ h2 f S(h3) +∑
h1 · v⊗ h2 f ′S(h3) (see Section 1A). Since x · (κL(r))= κL(r), it follows that:

δ0 = δ1 = δ2 = δ3 = 0, δ4 =−δ7, δ5 =−δ6 δ′4 = δ
′

7, and δ′5 = δ
′

6.

By considering the coefficient of u in the equation y · (κL(r)) = κL(r), we now
find that f = 0. Similarly, by considering the coefficient of v in the equation
y · (κL(r))= κL(r), we find that f ′ = 0. Hence, κL(r)= 0.
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Thus the deformation parameter κ of DB,κ equals its constant part κC , which
depends on five scalar parameters as described above. In short,

DB,κ =
k〈u, v〉 # H8

(u2+ v2− κ(u2+ v2))

is a PBW deformation of (k〈u, v〉/(u2
+ v2)) # H8 if and only if κ(u2

+ v2) =

g(γ0, γ1, γ3, γ4, γ5) as given in (4-3). This yields a five-parameter family of PBW
deformations of B # H8.

Example 4.4. Let H be Ha:1, one of the 16-dimensional semisimple Hopf algebras
classified in [Kashina 2000], and let B be the skew polynomial ring

B =
k〈t, u, v, w〉(

rtu := tu− ut, rtv := tv− vt, rtw := tw+wt
ruv := uv− vu, ruw := uw+wu, rvw := vw−wv

) .
The Hopf algebra Ha:1 is generated by x , y, z, subject to the relations

x4
= y2
= z2
= 1, yx = xy, zx = xyz, zy = yz.

The rest of the structure of Ha:1 and the left Ha:1-action on B are given by

1(x)= x⊗x, 1(y)= y⊗ y, 1(z)= 1
2(1⊗1+1⊗x2

+ y⊗1− y⊗x2)(z⊗z),

ε(x)= ε(y)= ε(z)= 1, S(x)= x3, S(y)= y, S(z)= 1
2(1+x2

+ y−x2 y)z,

x · t = i t, y · t =−t, z · t = u, x · u =−iu, y · u =−u, z · u = t,

x · v = v, y · v =−v, z · v = w, x ·w =−w, y ·w =−w, z ·w = v,

where i is a primitive fourth root of unity in k. Note that

x · rtu = rtu, x · rtv = irtv, x · rtw =−irtw,

x · ruv =−iruv, x · ruw = iruw, x · rvw =−rvw,

y · rtu = rtu, y · rtv = rtv, y · rtw = rtw,

y · ruv = ruv, y · ruw = ruw, y · rvw = rvw,

z · rtu = rtu, z · rtv = ruw, z · rtw = ruv,

z · ruv = rtw, z · ruw = rtv, z · rvw =−rvw.

So, the ideal of relations I = 〈rtu, rtv, rtw, ruv, ruw, rvw〉 of B is H -stable.
Now we compute the possible values κC(r)∈ H for all r ∈ I , under condition (a)

of Theorem 3.1. Take κC(r)= g(γ ) ∈ H given by

g(γ )= γ0+ γ1x + γ2x2
+ γ3x3

+ γ4 y+ γ5xy+ γ6x2 y+ γ7x3 y

+γ8z+ γ9xz+ γ10x2z+ γ11x3z+ γ12 yz+ γ13xyz+ γ14x2 yz+ γ15x3 yz,
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where γi ∈ k. Note that h · g(γ )=
∑

h1g(γ )S(h2). With the assistance of Affine, a
subpackage of Maxima, we have the following computations:

x ·g(γ )= xg(γ )x3
= γ0+γ1x+γ2x2

+γ3x3
+γ4 y+γ5xy

+γ6x2 y+γ7x3 y+γ8 yz+γ9xyz+γ10x2 yz

+γ11x3 yz+γ12z+γ13xz+γ14x2z+γ15x3z;

(4-5)

y ·g(γ )= yg(γ )y = g(γ );(4-6)

z ·g(γ )= 1
2(zg(γ )S(z)+ zg(γ )S(x2z)+ yzg(γ )S(z)− yzg(γ )S(x2z))

= γ0+γ1xy+γ2x2
+γ3x3 y+γ4 y+γ5x

+γ6x2 y+γ7x3
+γ8z+γ9xyz+γ10x2z

+γ11x3 yz+γ12 yz+γ13xz+γ14x2 yz+γ15x3z.

(4-7)

For rtu , let κC(rtu)= g(γ ). We have that x ·κC(rtu)= κ
C(rtu) and y ·κC(rtu)=

κC(rtu) imply that γ8= γ12, γ9= γ13, γ10= γ14, γ11= γ15. Moreover, z ·κC(rtu)=

κC(rtu) implies that γ1 = γ5, γ3 = γ7, γ9 = γ13, γ11 = γ15. Therefore,

(4-8) κC(rtu)= g(γ0, γ1, γ2, γ3, γ4, γ6, γ8, γ9, γ10, γ11)

= γ0+γ1(x+xy)+γ2x2
+γ3(x3

+x3 y)+γ4 y+γ6x2 y

+γ8(z+yz)+γ9(xz+xyz)+γ10(x2z+x2 yz)+γ11(x3z+x3 yz).

For rvw, let κC(rvw) = g(γ ′). We have that x · κC(rvw) = −κC(rvw) and
y · κC(rvw) = κC(rvw) implies that γ ′0 = · · · = γ

′

7 = 0, γ ′8 = −γ
′

12, γ ′9 = −γ
′

13,
γ ′10 =−γ

′

14, and γ ′11 =−γ
′

15. Moreover, we have that z · κC(rvw)=−κC(rvw). So
the conditions on γ ′i in (4-7) then imply that γ ′i = 0 for i = 0, . . . , 7, 8, 10, 12, 14
with γ ′9 =−γ

′

13, γ
′

11 =−γ
′

15. Thus,

(4-9) κC(rvw)= g(γ ′9, γ
′

11)= γ
′

9(xz− xyz)+ γ ′11(x
3z− x3 yz).

For r 6= rtu, rvw, we have that x · κC(r)=±iκC(r) implies that κC(r)= 0.
We compute κL(r) under condition (a) of Theorem 3.1. Fix r ∈ I and let

κL(r)= t ⊗ ft + u⊗ fu + v⊗ fv +w⊗ fw ∈ V ⊗ H

for some ft , fu, fv, fw ∈ H . Since y is central in H and y ·r = r for each relation r ,
we have that

κL(r)= y · κL(r)

= y · t ⊗ y ft S(y)+ y · u⊗ y fu S(y)+ y · v⊗ y fvS(y)+ y ·w⊗ y fwS(y)

=−t ⊗ ft − u⊗ fu − v⊗ fv −w⊗ fw =−κL(r).

Thus, κL(r)= 0.
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To finish, we apply to κ conditions (b)–(d) of Theorem 3.1. Since κL(r) = 0
for all r ∈ I , only condition (c) is pertinent. Namely, we only need to impose
κC
⊗id= id⊗κC as maps on (I⊗V )∩(V⊗ I ). This intersection is a 4-dimensional

k-vector space with basis

stuv := tuv− tvu− utv+ uvt + vtu− vut,

stuw := tuw+ twu− utw− uwt +wtu−wut,

stvw := tvw− twv− vtw+ vwt +wtv−wvt,

suvw := uvw− uwv− vuw− vwu−wuv+wvu.

Since κC(rtv)= κ
C(ruv)= 0, we get that

(4-10) (κC
⊗ id− id⊗κC)(stuv)= κ

C(ruv)t − κC(rtv)u+ κC(rtu)v

− tκC(ruv)+ uκC(rtv)− vκ
C(rtu)

= κC(rtu)v− vκ
C(rtu).

Identify b ∈ V with b # 1 ∈ A and h ∈ H with 1 # h ∈ A. Recall that in A we have
(1 # h)(b # 1)=

∑
(h1 ·b)# h2. Now by using (4-8) and by setting (4-10) equal to 0,

we get that

(4-11) κC(rtu)= g(γ0, γ2)= γ0+ γ2x2.

Moreover,

(κC
⊗ id− id⊗κC)(stuw)=−κ

C(ruw)t + κC(rtw)u+ κC(rtu)w

− tκC(ruw)+ uκC(rtw)−wκ
C(rtu)

= κC(rtu)w−wκ
C(rtu)= 0

imposes no new restrictions on κC(rtu), nor do (κC
⊗ id− id⊗κC)(stvw) = 0,

(κC
⊗ id− id⊗κC)(suvw)= 0. Therefore, κC(rtu) is given by (4-11).

To compute κC(rvw), consider the calculation

(4-12) (κC
⊗ id− id⊗κC)(stvw)= κ

C(rvw)t − κC(rtw)v+ κ
C(rtv)w

− tκC(rvw)+ vκC(rtw)−wκ
C(rtv)

= κC(rvw)t − tκC(rvw).

Now by using (4-9) and by setting (4-12) equal to 0, we get that κC(rvw)= 0.
Therefore, the filtered algebra DB,κ is a PBW deformation of B # Ha:1 if and only

if the deformation parameter κ = κC of DB,κ is defined by (4-11) for the relation
rtu , and κC(r) = 0 for r 6= rtu . Hence, we have a two-parameter family of PBW
deformations of B # Ha:1.
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4B. Nonsemisimple Hopf actions. Here, we consider nonsemisimple Hopf actions
to illustrate Theorem 3.1. We begin with an example of a Taft algebra action.

Example 4.13. Let H = T (n), the n2-dimensional nonsemisimple Taft algebra.
We take n ≥ 3 here and we consider the (slightly different) case n= 2 (the Sweedler
algebra) in Example 4.16 below. Let B = k[u, v]. The Hopf algebra T (n) is
generated by g, x and the relations are gn

= 1, xn
= 0, and xg = ζgx , for ζ ∈ k×

a primitive n-th root of unity. The rest of the structure of T (n) and the left T (n)-
action on B are given by

1(g)= g⊗ g, 1(x)= g⊗ x + x ⊗ 1, ε(g)= 1, ε(x)= 0,

S(g)= g−1
= gn−1, S(x)=−gn−1x,

g · u = u, g · v = ζ−1v, x · u = 0, x · v = u.

Let r := uv − vu and note that g · r = ζ−1r and x · r = 0. Hence, the ideal of
relations I = 〈r〉 of B is H -stable.

Since dimk V = 2, only condition (a) of Theorem 3.1 applies. Now, we compute
κC . Let κC(r)=

∑n−1
i, j=0 γi j gi x j . Since h ·(κC(r))=

∑
h1(κ

C(r))S(h2) for h ∈ H ,
we have that the equality g · (κC(r))= ζ−1κC(r) implies that all terms equal zero
except when j = 1; hence

κC(r)= γ0x + γ1gx + · · ·+ γn−1gn−1x

for γi ∈ k. Also, the equality x · (κC(r))= 0 implies that all terms equal zero except
for i = n− 1, so

(4-14) κC(r)= γ gn−1x

for γ ∈ k.
On the other hand, let κL(r)= u⊗ f +v⊗ f ′ ∈ V ⊗H for f =

∑n−1
i, j=0 λi j gi x j

and f ′ =
∑n−1

i, j=0 λ
′

i j g
i x j . Notice that h · (κL(r)) =

∑
h1 · u ⊗ h2 f S(h3) +∑

h1 · v⊗ h2 f ′S(h3) (see Section 1A). Since g · (κL(r)) = ζ−1κL(r), all terms
equal zero except possibly those in the first sum for which j = 1 and those in the
second sum for which j = 0. Therefore κL(r)= u⊗ f + v⊗ f ′ for

f = λ0x + λ1gx + · · ·+ λn−1gn−1x and f ′ = λ′0+ λ
′

1g+ · · ·+ λ′n−1gn−1

with λi , λ
′

i ∈ k. Applying x , we obtain

0= x · κL(r)= (g · u)⊗ (g f S(x)+ x f S(1))+ (x · u)⊗ f

+ (g · v)⊗ (g f ′S(x)+ x f ′S(1))+ (x · v)⊗ f ′

= u⊗ (−g f gn−1x + x f + f ′)+ ζ−1v⊗ (−g f ′gn−1x + x f ′).
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It follows that

−g f gn−1x + x f + f ′ = 0 and − g f ′gn−1x + x f ′ = 0.

Since f ′ is in the group algebra kG(T (n))∼= kZn and gn
= 1, the second equation

implies that x f ′= f ′x , and so f ′= λ0 is constant. The first equation further implies
that f ′ = 0 and that all terms of f are equal to zero except for i = n− 1. Thus,

(4-15) κL(r)= u⊗ λgn−1x

for λ ∈ k.
In summary,

DB,κ =
k〈u, v〉 # T (n)

(uv− vu− κ(uv− vu))

is a PBW deformation of k[u, v]# T (n) if and only if the deformation map κ equals
κC
+κL as given in (4-14) and (4-15). So, we have a two-parameter family of PBW

deformations of k[u, v] # T (n).

Example 4.16. Let H be HSw = T (2), the 4-dimensional nonsemisimple Sweedler
algebra, which is a Taft algebra with n = 2. Let B = k[u, v]. Retaining the notation
from Example 4.13, the Hopf algebra HSw is generated by g, x and acts on B by
g ·u = u, g ·v =−v, x ·u = 0, x ·v = u. Similar to Example 4.13, let r := uv−vu
and note that g · r =−r and x · r = 0. So, I = 〈r〉 is H -stable.

Let κC(r)= γ0+γ1g+γ2x+γ3gx . We have that g · (κC(r))=−κC(r) implies
that γ0= γ1= 0. Moreover, x ·(κC(r))= 0 does not yield new restrictions on κC(r).
Thus, for γ, γ ′ ∈ k, we get that κC(r) = γ x + γ ′gx . In the same fashion as
Example 4.13, we also get that κL(r)= u⊗ (λx + λ′gx) for λ, λ′ ∈ k.

In summary,

DB,κ =
k〈u, v〉 # HSw

(uv− vu− κ(uv− vu))

is a PBW deformation of k[u, v]# HSw if and only if the deformation map κ equals
κC
+ κL , where

κC(uv− vu)= γ x + γ ′gx and κL(uv− vu)= u⊗ (λx + λ′gx)

for γ, γ ′, λ, λ′ ∈ k. Thus, we have a four-parameter family of PBW deformations
of k[u, v] # HSw.

Remark 4.17. The invariant ring resulting from the action of HSw on k[u, v] is
isomorphic to the polynomial ring k[u, v2

], that is to say, k[u, v]HSw is regular.
Recall that the Shephard–Todd–Chevalley theorem states that when given a finite
group (G-) action on a commutative polynomial ring R that is linear and faithful, RG

is regular if and only if G is a reflection group. Our results would then suggest that
HSw is a “reflection Hopf algebra”. Ram and Shepler [2003] showed that there are
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no nontrivial PBW deformations of k[v1, . . . , vn]# kG for many complex reflection
groups G; such deformations are referred to as graded Hecke algebras. Now by
broadening their setting to Hopf actions on (possibly noncommutative) regular
algebras, we consider new objects in representation theory: Hopf analogues of
graded Hecke algebras. Nontrivial examples of these objects exist as we showed in
the example above. Further examples and a general explanation of this phenomenon
are worthy of further investigation.

Now we consider the well-known Hopf action of Uq(sl2) on k〈u, v〉/(uv−qvu),
where q ∈ k× with q2

6= 1. A PBW deformation of (k〈u, v〉/(uv−qvu)) # Uq(sl2)

was studied by Gan and Khare [2007]; we recover their result below. Such algebras
are known as quantized symplectic oscillator algebras of rank 1.

Example 4.18. Fix q ∈ k×, with q2
6= 1. Let H be the Hopf algebra Uq(sl2), and

B = k〈u, v〉/(uv−qvu). As in [Brown and Goodearl 2002, I.6.2], we take Uq(sl2)

to be generated by E, F, K , K−1 with relations:

E F − F E = (q − q−1)−1(K − K−1), K E K−1
= q2 E,

K F K−1
= q−2 F, K K−1

= K−1K = 1.

So, Uq(sl2) has a k-vector space basis {E i F j K m
}i, j∈N;m∈Z. The rest of the structure

of Uq(sl2) and the left Uq(sl2)-action on B is given by:

1(E)= E ⊗ 1+ K ⊗ E, 1(F)= F ⊗ K−1
+ 1⊗ F,

1(K )= K ⊗ K , 1(K−1)= K−1
⊗ K−1,

ε(E)= 0, ε(F)= 0, ε(K )= 1, ε(K−1)= 1,

S(E)=−K−1 E, S(F)=−F K , S(K )= K−1, S(K−1)= K ,

E · u = 0, F · u = v, K · u = qu, K−1
· u = q−1u,

E · v = u, F · v = 0, K · v = q−1v, K−1
· v = qv.

Let r := uv− qvu and note that E · r = F · r = 0 and K · r = K−1
· r = r . Hence,

the ideal of relations I = 〈r〉 of B is H -stable.
Since dimk V = 2, only condition (a) of Theorem 3.1 applies. Let us compute

κC(r). Since K · κC(r)= κC(K · r)= κC(r), we have that KκC(r)S(K )= κC(r)
(see Section 1A). Hence, KκC(r)= κC(r)K . Moreover,

0= κC(E · r)= E · κC(r)= EκC(r)S(1)+ KκC(r)S(E),

so EκC(r)= κC(r)E . Likewise, F ·κC(r)= 0 implies that FκC(r)= κC(r)F . So,
κC(r) is in the center of Uq(sl2). For q not a root of unity, the center of Uq(sl2) is
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generated by the quantum Casimir element [Kassel 1995, Theorem VI.4.8],

Cq = E F +
q−1K + q K−1

(q − q−1)2
= F E +

q K + q−1K−1

(q − q−1)2
,

whereas for q a root of unity, the elements Ee, Fe, K e also belong to the center of
Uq(sl2), where e = ord(q2).

To compute κL(r), let κL(r)= u⊗
∑
γi jm E i F j K m

+ v⊗
∑
γ ′i jm E i F j K m for

γi jm, γ
′

i jm ∈ k. Then,

κL(r)= κL(K · r)

=

∑
K · u⊗ γi jm K (E i F j K m)K−1

+

∑
K · v⊗ γ ′i jm K (E i F j K m)K−1

=

∑
qu⊗ γi jmq2(i− j)E i F j K m

+

∑
q−1v⊗ γ ′i jmq2(i− j)E i F j K m

=

∑
q2(i− j)+1u⊗ γi jm E i F j K m

+

∑
q2(i− j)−1v⊗ γ ′i jm E i F j K m .

Thus, given m ∈ Z/nZ, define the subspace Vm ⊂ Uq(sl2) to be the k-span of
all monomials E i F j K ` such that j − i ≡ m mod n. Then κL(uv − qvu) ∈
u⊗V2−1+v⊗V−2−1 if q is a primitive root of unity of odd order, and κL(uv−qvu)=
0 otherwise.

Therefore,

DB,κ =
k〈u, v〉 # Uq(sl2)

(uv− qvu− κ(uv− qvu))

is a PBW deformation of (k〈u, v〉/(uv−qvu))#Uq(sl2) if and only if κ = κC
+κL ,

where κC(uv−qvu) is in the center of Uq(sl2) and κL(uv−qvu) is given as above.

More generally, there is a standard Uq(sln)-action on a q-polynomial ring B in
n variables.

Question 4.19. Are there nontrivial PBW deformations of the resulting smash
product algebra B # Uq(sln)?

These would be quantized symplectic oscillator algebras of rank n− 1, and merit
further investigation.
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