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`-modular representations of unramified
p-adic U(2,1)

Robert James Kurinczuk

We construct all irreducible cuspidal `-modular representations of a unitary group
in three variables attached to an unramified extension of local fields of odd residual
characteristic p with ` 6= p. We describe the `-modular principal series and show
that the supercuspidal support of an irreducible `-modular representation is unique
up to conjugacy.

1. Introduction

The abelian category RR(G) of smooth representations of a reductive p-adic
group G over an algebraically closed field R has been well studied when R has
characteristic zero. The same cannot be said when R has positive characteristic `;
here many questions remain unanswered. In this paper, we are concerned only with
the case ` 6= p. We study the set IrrR(G) of isomorphism classes of irreducible
R-representations, eventually specialising to G = U(2, 1), a unitary group in three
variables attached to an unramified extension F/F0 of nonarchimedean local fields
of odd residual characteristic. All R-representations henceforth considered will be
smooth.

A classical strategy for the classification of irreducible R-representations is
to split the problem into two steps: firstly, for any parabolic subgroup P of G
with Levi decomposition P = M n N and any σ ∈ IrrR(M), decompose the
(normalised) parabolically induced R-representation i G

P (σ ); and, secondly, con-
struct the irreducible R-representations which do not appear as a subquotient of an
R-representation appearing in the first step, the supercuspidal R-representations.
For any parabolic subgroup P , a supercuspidal irreducible R-representation π will
have trivial Jacquet module r G

P (π)= 0, by Frobenius reciprocity (i G
P is right-adjoint

to r G
P ). When R has characteristic zero the irreducible cuspidal R-representations,

those whose Jacquet modules are all trivial, are all supercuspidal. However, in
positive characteristic `, there can exist irreducible cuspidal nonsupercuspidal
R-representations.
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By transitivity of the Jacquet module and the geometric lemma — see [Vignéras
1996, II 2.19] — the cuspidal support of π ∈ IrrR(G), that is, the set of pairs (M, σ )
with M a Levi factor of a parabolic subgroup P of G and σ an irreducible cuspidal
R-representation of M such that π is a subrepresentation of i G

P (σ ), is a nonempty
set consisting of a single G-conjugacy class; we say that the cuspidal support is
unique up to conjugacy. By transitivity of parabolic induction, the supercuspidal
support of π ∈ IrrR(G), that is, the set of pairs (M, σ ) with M a Levi factor of a
parabolic subgroup P of G and σ an irreducible supercuspidal R-representation
of M such that π is a subquotient of i G

P (σ ), is nonempty. However, in general, it is
not known if the supercuspidal support of an irreducible R-representation is unique
up to conjugacy.

For GLn and its inner forms, Vignéras [1996] and Mínguez and Sécherre [2014b;
2014a] showed that the supercuspidal support of an irreducible R-representation is
unique up to conjugacy. The unicity of supercuspidal support is of great importance.
Firstly, the unicity of supercuspidal support (up to inertia) for GLn leads to the block
decomposition of RR(G) into indecomposable summands; see [Vignéras 1998].
Secondly, it is important in Vignéras’ `-modular local Langlands correspondence
for GLn , which is first defined on supercuspidal elements by compatibility with
the characteristic zero local Langlands correspondence and then extended to all
irreducible `-modular representations of GLn . In this paper, we prove unicity of
supercuspidal support for U(2, 1). We hope this is the first step in establishing
similar results for U(2, 1) and in extending these to classical groups in general.

Our strategy is first to construct all irreducible cuspidal R-representations by
compact induction from irreducible R-representations of compact open subgroups.
The type of construction we employ has been used to great effect to construct all
irreducible cuspidal R-representations in a large class of reductive p-adic groups
when R has characteristic zero: [Morris 1999] for level zero R-representations
of any reductive p-adic group, [Bushnell and Kutzko 1993a; 1993b] for GLn

and SLn , [Sécherre and Stevens 2008] for inner forms of GLn , [Yu 2001] and
[Kim 2007] for arbitrary connected reductive groups under “tame” conditions,
and [Stevens 2008] for classical p-adic groups with p odd. Vignéras [1996] and
Mínguez and Sécherre [2014b; 2014a] adapted the characteristic zero constructions
for GLn and its inner forms to `-modular representations. We perform similar
adaptations to Stevens’ construction to exhaust all irreducible cuspidal `-modular
representations of U(2, 1).

Theorem 5.3. Let G = U(2, 1) and let π be an irreducible cuspidal R-representa-
tion of G. There exist a compact open subgroup J of G with pro-unipotent radical
J 1 such that J/J 1 is a finite reductive group, an irreducible R-representation κ of J
and an irreducible cuspidal R-representation σ of J/J 1 such that π ' indG

J (κ⊗σ).
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The construction is explicit and, furthermore, all R-representations

Iκ(σ )= indG
J (κ ⊗ σ)

constructed in this way are cuspidal. Moreover, we show that Iκ(σ ) is supercuspidal
if and only if σ is supercuspidal (Remark 8.2). In work in progress, joint with
Stevens, we extend Stevens’ construction for arbitrary classical groups to the
`-modular setting.

In the split case, for general linear groups all irreducible cuspidal `-modular
representations lift to integral `-adic representations. For inner forms of GLn , this
is no longer true; some cuspidal nonsupercuspidal `-modular representations do not
lift. For U(2, 1) we also find cuspidal nonsupercuspidal `-modular representations
which do not lift (Remark 5.5). These nonlifting phenomena appear quite different.
For U(2, 1) this nonlifting occurs because, in certain cases, there are `-modular
representations of the finite group J/J 1 which do not lift. For inner forms of GLn ,
the nonlifting occurs when the normaliser of the reduction modulo ` of the inflation
of a cuspidal `-adic representation of an analogous group to J/J 1 is larger than
the normaliser of all of its cuspidal lifts. We find that all supercuspidal `-modular
representations of U(2, 1) lift (Remark 8.2), as is the case for GLn and its inner
forms.

Secondly, by studying the corresponding Hecke algebras, we find the charac-
ters χ of the maximal diagonal torus T of U(2, 1) such that the principal series
R-representation iU(2,1)

B (χ) is reducible. We let χ1 denote the character of F× given
by χ1(x)= χ(diag(x, x̄ x−1, x̄−1)), where x̄ is the Gal(F/F0)-conjugate of x .

Theorem 6.2. Let G = U(2, 1). Then i G
B (χ) is reducible exactly in the following

cases:

(1) χ1 = ν
±2, where ν is the absolute value on F ;

(2) χ1 = ην
±1, where η is any extension of the quadratic class field character

ωF/F0 to F×;

(3) χ1 is nontrivial, but χ1 |F×0
is trivial.

When R is of characteristic zero this is due to Keys [1984]. In our proof we
need to apply his results to determine a sign. It should be possible to remove
this dependency by computation using the theory of covers (cf. [Blondel 2012,
Remark 3.13]). An alternative proof, when F0 is of characteristic zero, would be to
use the computations of [Keys 1984] with [Dat 2005, Proposition 8.4].

Finally, by studying the interaction of the right adjoints Rκ of the functors Iκ
with parabolic induction we find cuspidal subquotients of the principal series. When
cuspidal subquotients appear in the principal series we show exactly which ones
from our exhaustive list do, finding that the supercuspidal support of an irreducible
R-representation is unique up to conjugacy.
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Theorem 8.1. Let π be an irreducible R-representation of U(2, 1). Then the
supercuspidal support of π is unique up to conjugacy.

In fact, in many cases, we obtain extra information on the irreducible quotients
and subrepresentations which appear. If ` 6= 2 and ` | q − 1, we show that all
the principal series R-representations iU(2,1)

B (χ) are semisimple (Lemma 6.8). If
` | q + 1, we show that iU(2,1)

B (χ) has a unique irreducible subrepresentation and a
unique irreducible quotient, and these are isomorphic (Lemma 6.10). A striking
example of the reducibilities that occur is when χ = ν−2.

Theorem (see Theorem 6.12 for more details). Let G = U(2, 1).

(1) If ` - (q − 1)(q + 1)(q2
− q + 1), then i G

B (ν
−2) has length two with unique

irreducible subrepresentation 1G and unique irreducible quotient StG .

(2) If ` 6= 2 and ` | q − 1, then i G
B (ν
−2)= 1G ⊕StG is semisimple of length two.

(3) If ` 6= 3 and ` | q2
− q + 1, then i G

B (ν
−2) has length three with unique cuspidal

subquotient. The unique irreducible subrepresentation is not isomorphic to the
unique irreducible quotient.

(4) If ` 6= 2 and ` | q + 1, or if ` = 2 and 4 | q + 1, then i G
B (ν
−2) has length six

with 1G appearing as the unique subrepresentation and the unique quotient, and
four cuspidal subquotients, one of which appears with multiplicity two. A maximal
cuspidal subquotient of i G

B (ν
−2) is not semisimple.

(5) If ` = 2 and 4 | q − 1, then i G
B (ν
−2) has length five with 1G appearing as the

unique subrepresentation and the unique quotient. All cuspidal subquotients of
i G

B (ν
−2) are semisimple and the irreducible cuspidal subquotients are pairwise

nonisomorphic.

2. Notation

2A. Unramified unitary groups. Let F0 be a nonarchimedean local field of odd
residual characteristic p. Let F be an unramified quadratic extension of F0 and a
generator of Gal(F/F0). If D is a nonarchimedean local field, we let oD denote the
ring of integers of D, pD denote the unique maximal ideal of oD , and kD = oD/pD

denote the residue field. We let o0 = oF0 , p0 = pF0 , k0 = kF0 , and q = q0 = |kF0 |.
We fix a choice of uniformiser $F of F0.

Let V be a finite-dimensional F-vector space and h :V×V→ F a hermitian form
on V , that is, a nondegenerate form which is sesquilinear (linear in the first variable
and -linear in the second variable) and such that h(v1, v2)= h(v2, v1) for all v1,
v2 ∈ V . The unitary group U(V, h) is the subgroup of isometries of GL(V ), i.e.,
U(V, h)= {g ∈GL(V ) : h(gv1, gv2)= h(v1, v2), v1, v2 ∈ V }. The form h induces
an anti-involution on EndF (V ) which we denote by . Let σ denote the involution
g 7→ ḡ−1 for g∈GL(V ). We also let σ act on EndF (V ) by a 7→−ā for a∈EndF (V ).
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2B. Parahoric subgroups. An oF -lattice in V is a compact open oF -submodule
of V . Let L be an oF -lattice in V and let Lat V denote the set of all oF -lattices
in V . The oF -lattice L] = {v ∈ V : h(v, L) ⊆ pF }, defined relative to h, is called
the dual lattice of L . Let A = EndF (V ) and g = {X ∈ A : X + Xσ

= 0}. An
oF -lattice sequence is a function 3 : Z→ Lat V which is decreasing and periodic.
Let 3 be an oF -lattice sequence. The dual oF -lattice sequence 3] of 3 is the
oF -lattice sequence defined by3](n)= (3(−n))] for all n ∈Z. We call3 self-dual
if there exists k ∈ Z such that 3(n) = 3](n + k) for all n ∈ Z. If 3 is self-dual
then we can always consider a translate 3k of 3 such that either 3k(0)=3

]
k(0) or

3k(1)=3
]
k(0).

Let 3 be an oF -lattice sequence in V . For n ∈ Z define

Pn(3)= {x ∈ A : x3(m)⊂3(m+ n) for all m ∈ Z},

which is an oF -lattice in A. We let P−n (3)=Pn(3)∩ g.
If 3 is self-dual then the groups Pn(3) are stable under the involution which h

induces on A. In this case, define compact open subgroups of G, called parahoric
subgroups, by

P(3)=P0(3)
×
∩G,

Pm(3)= (1+Pm(3))∩G, m ∈ N.

The pro-unipotent radical of P(3) is isomorphic to P1(3). The sequence
(Pm(3))m∈N is a fundamental system of neighbourhoods of the identity in G and
forms a decreasing filtration of P(3) by normal compact open subgroups. The
quotient M(3) = P(3)/P1(3) is the k0-points of a connected reductive group
defined over k0.

Let P1 = P(31) and P2 = P(32) be parahoric subgroups of G. Fix a set of
distinguished double coset representatives D2,1 for P2\G/P1, as in [Morris 1993,
§3.10]. Let n ∈ D2,1; then

P31,n32 = P1
1(P1 ∩Pn

2)/P1
1

is a parabolic subgroup of M1 = P1 /P1
1, by [Morris 1993, Corollary 3.20]. Fur-

thermore, the pro-p unipotent radical of P1
1(P1 ∩Pn

2) is P1
1(P1 ∩(Pn

2)
1), by [Morris

1993, Lemma 3.21]. If D2,1 is a set of distinguished double coset representatives
for P2\G/P1, then D−1

2,1 is a set of distinguished double coset representatives for
P1\G/P2. Hence

P32,n−131 = P1
2(P2 ∩

nP1)/P1
2

is a parabolic subgroup of M2 = P2 /P1
2. Furthermore, the pro-p unipotent radical

of P1
2(P2 ∩

nP1) is P1
2(P2 ∩

nP1
1).
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2C. U(2, 1)(F/F0). Let xi ∈ F for i = 1, 2, . . . , n. Denote by diag(x1, . . . , xn)

the n-by-n diagonal matrix with entries xi on the diagonal and by adiag(x1, . . . , xn)

the n-by-n matrix (ai, j ) such that am,n+1−m = xn+1−m and all other entries are zero.
Let V be a three-dimensional F-vector space with standard basis {e−1, e0, e1} and

h : V ×V → F be the nondegenerate hermitian form on V defined by, for v,w ∈ V ,

h(v,w)= v−1w1+ v0w0+ v1w−1

if v = (v−1, v0, v1) and w = (w−1, w0, w1) with respect to the standard basis
{e−1, e0, e1}. Let U(2, 1)(F/F0) denote the unitary group attached to the hermitian
space (V, h), i.e.,

U(2, 1)(F/F0)= {g ∈ GL3(F) : g J ḡT J = 1},

where J = adiag(1, 1, 1) is the matrix of the form h. We let U(1, 1)(F/F0) and
U(2)(F/F0) denote the two-dimensional unitary groups defined by the forms whose
associated matrices are adiag(1, 1) and diag(1,$F ) respectively. Let

U(1)(F/F0)= {g ∈ F× : gḡ = 1}

and occasionally, for brevity, let F1
= U(1)(F/F0). We use analogous notation for

unitary groups defined over extensions of F0 and defined over finite fields.
Let B be the standard Borel subgroup of U(2, 1)(F/F0) with Levi decomposition

B = T n N , where T = {diag(x, y, x̄−1) : x ∈ F×, y ∈ F1
} and

N =
{1 x y

0 1 x̄
0 0 1

 : x, y ∈ F, y+ ȳ = x x̄
}
.

The maximal F0-split torus contained in T is T0 = {diag(x, 1, x−1) : x ∈ F×0 }. The
subgroup of T generated by its compact subgroups is

T 0
= {diag(x, y, x̄−1) : x ∈ o×F , y ∈ F1

}.

Let T 1
= T 0

∩ diag(1+ pF , 1+ pF , 1+ pF ).
Let3I be the oF -lattice sequence of period three given by3I (0)= oF⊕oF⊕oF ,

3I (1) = oF ⊕ oF ⊕ pF and 3I (2) = oF ⊕ pF ⊕ pF with respect to the standard
basis. The (standard) Iwahori subgroup of G is the parahoric subgroup

P(3I )=

oF oF oF

pF oF oF

pF pF pF

∩G.

There are two parahoric subgroups of G which contain P(3I ), both of which are
maximal. These correspond to the lattice sequences 3x of period one and 3y of pe-
riod two with3x(0)=oF⊕oF⊕oF ,3y(0)=oF⊕oF⊕pF and3y(1)=oF⊕pF⊕pF .
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Note that we have M(3x)' U(2, 1)(kF/k0), M(3y)' U(1, 1)(kF/k0)× k1
F and

M(3I )' k×F × k1
F . Furthermore, M(3I ) is a maximal torus in M(3x) and P(3I )

is equal to the preimage in P(3x) of a Borel subgroup Bx , which we call standard,
under the projection map P(3x)→M(3x); the same holds with y in place of x
throughout.

The affine Weyl group W̃ = NG(T )/T 0 of U(2, 1)(F/F0) is an infinite dihedral
group generated by the cosets represented by the elements wx = adiag(1, 1, 1) and
wy = adiag($F , 1,$−1

F ). Furthermore, we have P(3x)=P(3I )∪P(3I )wx P(3I )

and P(3y)= P(3I )∪P(3I )wy P(3I ).

2D. Reduction modulo `. Let Q` be an algebraic closure of the `-adic numbers,
Z` be the ring of integers of Q`, 0 be the unique maximal ideal of Z`, and F`=Z`/0

be the residue field of Q`, which is an algebraic closure of the finite field with
` elements. Let GrR(G) denote the Grothendieck group of R-representations, i.e.,
the free abelian group with Z-basis IrrR(G). A representation in RQ`

(G) will be
called `-adic and a representation in RF`

(G) will be called `-modular. We say ` is
banal for G if it does not divide the pro-order of any compact open subgroup of G.

Let (π,V) be a finite-length `-adic representation of G. We call π integral if π sta-
bilises a Z`-lattice L in V. In this case π stabilises 0L and π induces a finite-length
`-modular representation on the space L/0L. In general, this depends on the choice
of the lattice L. However, due to [Vignéras 2004, Theorem 1], the semisimplification
of L/0L is independent of the lattice chosen and we define r`(π), the reduction
modulo ` of π , to be this semisimple `-modular representation. If π is a finite-length
R-representation of G we write [π ] for the semisimplification of π in GrR(G).

We fix choices of square roots of p in Q×` and F×` such that our chosen square
root of p in F×` is the reduction modulo ` of our chosen square root of p in Q×` ,
and make use of these choices in our definitions of normalised parabolic induction
and the Jacquet module.

Parabolic induction preserves integrality and commutes with reduction modulo `:
if P = MnN is a parabolic subgroup of G and σ is a finite-length integral `-adic
representation of M , then r`(i G

P (σ ))'
[
i G

P (r`(σ ))
]
. Furthermore, compact induction

commutes with reduction modulo `: if H is a closed subgroup of G and σ an
integral finite-length representation of H such that indG

H (σ ) is of finite length, then
r`(indG

H (σ ))= [indG
H (r`(σ ))]. For classical groups, due to [Dat 2005], the Jacquet

module preserves integrality and commutes with reduction modulo `: if P =MnN
is a parabolic subgroup of G and π is a finite-length integral `-adic representation
of G, then r`(r G

P (π))'
[
r G

P (r`(π))
]
. This implies that the reduction modulo ` of a

finite-length integral cuspidal `-adic representation is cuspidal.
An irreducible R-representation is admissible, due to [Vignéras 1996, II 2.8]. If π

is an R-representation, we let π̃ or π∼ denote the contragredient representation of π .
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The abelian category RR(G) has a decomposition as a direct product of full
subcategories Rx

R(G), consisting of all representations all of whose irreducible
subquotients have level x for x ∈Q>0, which is preserved by parabolic induction
and the Jacquet functor, by [Vignéras 1996, II 5.8 and 5.12].

3. Cuspidal representations of U(1, 1)(kF/k0) and U(2, 1)(kF/k0)

Our description of the supercuspidal `-adic representations of U(1, 1)(kF/k0) and
U(2, 1)(kF/k0) and the decomposition of the `-adic principal series follow from
similar arguments made for GL2(kF ) and SL2(kF ) by Digne and Michel [1991,
§15.9]. The character tables of both groups were first computed by Ennola [1963]
and the `-modular representations of U(2, 1)(kF/k0) were first studied by Geck
[1990]. In this section, let H = U(1, 1)(kF/k0) and G = U(2, 1)(kF/k0). We can
realise H and G as the fixed points of GL2(k̄) and GL3(k̄) under twisted Frobenius
morphisms F̃ : (ai j ) 7→ (aq

ji )
−1, where k̄ is an algebraic closure of k0 containing kF .

A torus T of GL2(k̄) (resp. GL3(k̄)) is called minisotropic if it is stable under the
twisted Frobenius morphism F̃ and is not contained in any F̃-stable parabolic sub-
group of GL2(k̄) (resp. GL3(k̄)). We call a torus in H or G minisotropic if it is equal
to the F̃-fixed points of a minisotropic torus of the corresponding algebraic group.

3A. Cuspidals of U(1, 1)(kF/k0).

3A1. Cuspidals. There are 1
2(q

2
+ q) irreducible `-adic supercuspidal represen-

tations of H . These can be parametrised by the regular irreducible characters of
the minisotropic tori of H . There is only one conjugacy class of minisotropic tori
in G, which is isomorphic to k1

F × k1
F ; hence a character of this torus corresponds

to two characters of k1
F . Furthermore, this character is regular if and only if it

corresponds to two distinct characters of k1
F . Thus the `-adic supercuspidals can be

parametrised by unordered pairs of distinct irreducible characters of k1
F . Let χ1, χ2

be distinct `-adic characters of k1
F . Let σ(χ1, χ2) denote the `-adic supercuspidal

representation parametrised by the set {χ1, χ2}.
Using Clifford Theory, the decomposition numbers for H follow from the

well-known decomposition numbers of SU(1, 1)(kF/k0) ' SL2(k0). We have
|H | = q(q − 1)(q + 1); hence, because q is odd, there are four cases to consider:
` | q − 1, ` | q + 1, `= 2, and ` is prime to (q2

− 1).
All irreducible `-modular cuspidal representations of H are isomorphic to the

reduction modulo ` of an irreducible `-adic supercuspidal representation. If χ is an
`-adic character we let χ denote its reduction modulo `. If χ ′1, χ

′

2 are `-adic charac-
ters of k1

F , we have r`(σ (χ1, χ2))= r`(σ (χ ′1, χ
′

2)) if and only if {χ1, χ2}={χ
′

1, χ
′

2}.
We let σ(χ1, χ2)= r`(σ (χ1, χ2)). Furthermore, σ(χ1, χ2) is supercuspidal if and
only if |{χ1, χ2}| = 2 and we have σ(χ1, χ2)= σ(χ2, χ1). Hence the irreducible
cuspidal nonsupercuspidal `-modular representations of H are parametrised by the
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`-modular characters of k1
F and, if χ is an `-modular character of k1

F equal to the
reduction modulo ` of two distinct `-adic characters of k1

F , we let σ(χ)= σ(χ, χ).
When ` - q+1, all irreducible cuspidal `-modular representations are supercuspidal.

3A2. Cuspidal nonsupercuspidals when ` | q + 1. Let `a
‖q + 1, so that there are

(q + 1)/`a cuspidal nonsupercuspidal `-modular representations denoted by σ(χ);
these occur as the reduction modulo ` of σ(χ1, χ2) when χ = χ1 = χ2. Let
T = {diag(x, x̄−1) : x ∈ k×F } be the maximal diagonal torus of H and BH be
the standard Borel subgroup containing T . The principal series representations
i H

BH
(χ ◦ ξ)' i H

BH
(1̄)(χ ◦ det) are uniserial of length three with (χ ◦ det) appearing

as the unique irreducible subrepresentation and the unique irreducible quotient, and
unique irreducible cuspidal subquotient σ(χ).

3B. Cuspidals of U(2, 1)(kF/k0).

3B1. `-adic supercuspidals. There are two conjugacy classes of minisotropic tori
in G, which give rise to two classes of irreducible supercuspidal `-adic repre-
sentations coming from regular irreducible characters of these tori. Let E be
an unramified cubic extension of F . One conjugacy class of the minisotropic
tori has representatives isomorphic to k1

F × k1
F × k1

F ; the other conjugacy class
has representatives isomorphic to k1

E . However, in contrast to H , the irreducible
representations parametrised by the irreducible regular characters of these tori do
not constitute all the irreducible supercuspidal representations of G: additionally
there exist unipotent supercuspidal representations of G. Thus we have three classes
of `-adic supercuspidals:

(1) There are 1
6(q+1)q(q−1) `-adic supercuspidals of dimension (q−1)(q2

−q+1)
parametrised by the irreducible regular characters of k1

F × k1
F × k1

F . An irreducible
`-adic character of k1

F × k1
F × k1

F is of the form χ1 ⊗ χ2 ⊗ χ3, with χ1, χ2, χ3

irreducible `-adic characters of k1
F , and is regular if and only if |{χ1, χ2, χ3}| = 3.

We let σ(χ1, χ2, χ3) denote the `-adic supercuspidal corresponding to the set
{χ1, χ2, χ3}.

(2) There are 1
3(q+1)q(q−1) `-adic supercuspidals of dimension (q−1)(q+1)2

parametrised by the irreducible regular characters of k1
E . An irreducible `-adic

character ψ of k1
E is regular if and only if ψq+1

6= 1. We let τ(ψ) denote the `-adic
supercuspidal representation corresponding to ψ .

(3) There are (q+1) unipotent `-adic supercuspidals of dimension q(q−1). These
can be parametrised by the irreducible characters of k1

F . We write ν(χ) for the
unipotent `-adic supercuspidal representation corresponding to the irreducible `-adic
character χ of k1

F .

3B2. `-modular cuspidals. We have |G| = q3(q − 1)(q + 1)3(q2
− q + 1); hence

there are six cases to consider: `=2, `=3 and ` |q+1, ` |q−1, ` |q+1, ` |q2
−q+1,
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and ` is prime to (q−1)(q+1)(q2
−q+1). When ` 6=2, the decomposition numbers

can be obtained from [Geck 1990] and [Okuyama and Waki 2002] using Clifford
theory. Parabolic induction of the trivial character is completely described in [Hiss
2004, Theorem 4.1]. When ` | q− 1 or ` | q+ 1, all irreducible cuspidal `-modular
representations lift to irreducible cuspidal `-adic representations. Analogously
to the two-dimensional case, we write ν(χ) = r`(ν(χ)), τ(ψ) = r`(τ (ψ)) and
σ(χ1, χ2, χ3)= r`(σ (χ1, χ2, χ3)).

When ` 6= 3 and ` | q2
−q+1, we have irreducible `-modular cuspidal represen-

tations which do not lift: if ψ is an `-adic character of k1
E such that ψq+1

6= 1 but
ψq+1

= 1̄, then r`(τ (ψ))= ν(χ)⊕τ+(χ), where χ is the character of k1
F such that

ψ = χ ◦ ξ , where ξ(x)= xq−1, and τ+(χ) does not lift. When `= 2 and 4 | q − 1,
we also have cuspidal representations which do not lift: if ψ is an `-adic character
of k1

E such that ψq+1
6= 1 but ψq+1

= 1̄, then r`(τ (ψ)) = ν(χ)⊕ ν(χ)⊕ τ+(χ),
where χ is the character of k1

F such that ψ = χ ◦ ξ , where ξ(x)= xq−1, and τ+(χ)
does not lift. All other irreducible cuspidal `-modular representations of G lift to
`-adic representations and we use the same notation as before.

3B3. `-adic principal series. Let T ={diag(x, y, x̄−1) : x ∈k×F , y∈k1
F } be the max-

imal diagonal torus in G and B be the standard Borel subgroup of G containing T .
Let χ1 be an `-adic character of k×F and χ2 an `-adic character of k1

F . Let χ be
the irreducible character of T defined by χ(diag(x, y, x−q)) = χ1(x)χ2(xyx−q).
The character χ is regular if and only if χq+1

1 6= 1, and in this case the principal
series representation i G

B (χ) is irreducible.
If χq+1

1 = 1 then χ1 = χ
′

1 ◦ ξ , where ξ(x)= xq−1 and χ ′1 is an `-adic character
of k1

F . If χ ′1 = 1, or equivalently χ1 = 1, then

i G
B (χ)= 1G(χ2 ◦ det)⊕StG(χ2 ◦ det),

where StG is an irreducible q3-dimensional representation of G. If χ ′1 6= 1 then

i G
B (χ)= R1H (χ

′

1)
(χ2 ◦ det)⊕ RStH (χ

′

1)
(χ2 ◦ det),

where R1H (χ
′

1)
and RStH (χ

′

1)
are irreducible representations of G of dimensions

q2
− q + 1 and q(q2

− q + 1) respectively. The reducibility here comes from
inducing first to the Levi subgroup L∗ = U(1, 1)(kF/k0)×U(1)(kF/k0), which is
not contained in any proper rational parabolic subgroup of G. Here 1H and StH

denote the trivial and Steinberg representations of U(1, 1)(kF/k0), and R is a
generalised induction from L∗ to G.

3B4. Cuspidal subquotients of `-modular principal series. If ` 6= 2 and ` | q − 1,
or ` is prime to (q− 1)(q+ 1)(q2

−q+ 1), then all irreducible cuspidal `-modular
representations are supercuspidal and the principal series representations are all
semisimple.
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Let χ2 be an `-modular character of k1
F . We first describe the `-modular principal

series representations i G
B (1̄)(χ2 ◦ det) in all the cases where cuspidal subquotients

appear.

(1) If ` 6= 3 and ` | q2
− q + 1, i G

B (1̄)(χ2 ◦ det) are uniserial of length three with
(χ ◦ det) appearing as the unique irreducible subrepresentation and the unique
irreducible quotient and τ+(χ) as the unique irreducible cuspidal subquotient.

(2) If ` 6= 2 and ` | q + 1, or ` = 2 and 4 | q + 1, then i G
B (1̄)(χ ◦ det) have

irreducible cuspidal subquotients ν(χ) and σ(χ)=σ(χ, χ, χ). The principal series
representations i G

B (1̄)(χ ◦ det) are uniserial of length five with (χ ◦ det) appearing
as the unique irreducible subrepresentation and the unique irreducible quotient.
A maximal cuspidal subquotient of i G

B (1̄)(χ ◦ det) is uniserial of length three
with ν(χ) appearing as the unique irreducible quotient and the unique irreducible
subrepresentation, and remaining subquotient σ(χ).

(3) If `= 2 and 4 | q−1 then i G
B (1̄)(χ ◦det) has length four with (χ ◦det) appearing

as the unique irreducible subrepresentation and the unique irreducible quotient, and
cuspidal subquotient ν(χ)⊕ τ+(χ).

Now let χ ′1 and χ2 be `-modular characters of k1
F with χ ′1 nontrivial and let

χ1 = χ
′

1 ◦ ξ . Let χ be the `-modular character of T defined by

χ(diag(x, y, x−q))= χ1(x)χ2(xyx−q).

If ` - q + 1 then i G
B (χ) does not possess any cuspidal subquotients. If ` | q + 1

then i G
B (χ) is uniserial of length three with R1̄H (χ

′

1)
(χ2 ◦ det) appearing as the

unique irreducible subrepresentation and the unique irreducible quotient and cusp-
idal subquotient σ(χ ′1, χ

′

1, χ2). This follows from [Bonnafé and Rouquier 2003,
Theorem 11.8] and the principal block of H as χ corresponds to a semisimple
element with centraliser H × k1

F in the dual group.

4. Irreducible cuspidal R-representations of U(2, 1)(F/F0)

Let G =U(2, 1)(F/F0). We construct all irreducible cuspidal representations of G
by compact induction from certain irreducible representations of compact open
subgroups. We review some general theory first and recall results of Vignéras on
level zero representations. Our construction of all irreducible cuspidal representa-
tions of G then follows the outline of Stevens’ construction [2008] of all irreducible
cuspidal representations of classical p-adic groups in the complex case. While his
construction is carried out when R=C the first part remains equally valid when R is
any algebraically closed field of characteristic unequal to p, essentially as all groups
involved are pro-p . However, when we move to defining β-extensions and beyond
the subgroups we are dealing with no longer have pro-order necessarily invertible
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in F`. It is here, and after, where we need to be careful and have to make nontrivial
changes to the proofs of the statements of [Stevens 2008]. It turns out that, even
though we have to change the proofs, the definitions and properties of β-extensions
in the `-modular case are completely analogous to those of complex β-extensions.
We note that as we are in the special case of unramified U(2, 1)(F/F0), using the
framework of Stevens, we can show that our β-extensions satisfy closer compatibility
properties than are available in the general case of classical groups.

4A. Types and Hecke algebras. By an R-type, we mean a pair (K , σ ) consisting
of a compact open subgroup K of G and an irreducible R-representation σ of K .
Given an R-type we consider the compactly induced representation indG

K (σ ) of G,
the goal being to find pairs (K , σ ) such that indG

K (σ ) is irreducible and cuspidal.
Let π ∈ IrrR(G); we say that π contains the R-type (K , σ ) if π is a quotient
of indG

K (σ ).
Let (K , σ ) be an R-type in G and W be the space of σ . The spherical Hecke

algebra H(G, σ ) of σ is the R-module consisting of the set of all functions f :
G → EndR(W) such that the support of f is a finite union of double cosets in
K\G/K and f transforms by σ on the left and the right, i.e., for all k1, k2 ∈ K
and all g ∈ G, f (k1gk2) = σ(k1) f (g)σ (k2). The product in H(G, σ ) is given by
convolution: if f1, f2 ∈H(G, σ ) then

f1 ? f2(h)=
∑
G/K

f1(g) f2(g−1h).

The spherical Hecke algebra H(G, σ ) is isomorphic to EndG(indG
K (σ )), where

multiplication in EndG(indG
K (σ )) is defined by composition. For g ∈ G, let

Ig(σ )= HomK (σ, indK
K∩K g σ g) and let IG(σ )= {g ∈ G : Ig(σ ) 6= 0}.

Let M(G, σ ) denote the category of right H(G, σ )-modules. Define

Mσ :RR(G)→M(G, σ )

by π 7→ HomG(indG
K (σ ), π); this is a (right) EndG(indG

K (σ ))-module by precom-
position. In the `-adic case, if (K , σ ) is a type in the sense of [Bushnell and Kutzko
1998, p. 584], Mσ induces an equivalence of categories between M(G, σ ) and the
full subcategory of RR(G) of representations all of whose irreducible subquotients
contain (K , σ ).

An R-representation (π,V) of G is quasiprojective if, for all R-representations
(σ,W) of G, all surjective 8 ∈ HomG(V,W) and all 9 ∈ HomG(V,W), there
exists 4 ∈ EndG(V) such that 9 =8 ◦4.

Theorem 4.1 [Vignéras 1998, Appendix, Theorem 10]. Let π be a quasiprojective,
finitely generated R-representation of G. The map ρ 7→HomG(π, ρ) induces a bijec-
tion between the irreducible quotients of π and the simple right EndG(π)-modules.
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Let P be a parabolic subgroup of G with Levi decomposition P=MnN . Let Pop

be the opposite parabolic subgroup of P with Levi decomposition Pop
= M n N op.

Let K+ = K ∩ N and K− = K ∩ N op. An element z of the centre of M is called
strongly (P, K )-positive if:

(1) zK+z−1
⊂ K+ and zK−z−1

⊃ K−.

(2) For all compact subgroups H1, H2 of N (resp. N op), there exists a positive
(resp. negative) integer m such that zm H1z−m

⊂ H2.

Let (KM , σM) be an R-type of M . An R-type (K , σ ) is called a G-cover of
(KM , σM) relative to P if we have:

(1) K ∩M = KM and we have an Iwahori decomposition K = K−KM K+.

(2) ResK
KM
(σ ) = σM , ResK

K+(σ ) and ResK
K−(σ ) are both multiples of the trivial

representation.

(3) There exists a strongly (P, K )-positive element z of the centre of M such that
the double coset K z−1K supports an invertible element of HR(G, σ ).

The point is that the properties of a G-cover allow one to define an injective
homomorphism of algebras jP :H(M, σM)→H(G, σ ) and hence a (normalised)
restriction functor ( jP)

∗
:M(G, σ )→M(M, σM); see [Bushnell and Kutzko 1998,

p. 585] and [Vignéras 1998, II §10].

Theorem 4.2 [Vignéras 1998, II §10.1]. Let π be a finitely generated `-modular
representation of G. We have an isomorphism ( jP)

∗(Mσ (π)) ' MσM (r
G
P (π)) of

representations of M.

4B. Level zero `-modular representations. An irreducible representation π of G
is of level zero if it has nontrivial invariants under the pro-p unipotent radical of
some maximal parahoric subgroup of G.

Let 3 be a self-dual oF -lattice sequence in V and P(3) the associated parahoric
subgroup in G. We define parahoric induction I3 :RR(M(3))→RR(G) on the
objects of RR(M(3)) by

I3(σ )= indG
P(3)(σ )

for σ an R-representation of M(3), where, by abuse of notation, we also write σ
for the inflation of σ to P(3) by defining P1(3) to act trivially. This functor has
a right-adjoint, parahoric restriction R3 :RR(G)→RR(M(3)), defined on the
objects of RR(G) by

R3(π)= πP1(3)

for π an R-representation of G. Parahoric induction and restriction are exact
functors.
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We have the following important lemma, due to Vignéras [2001]. In her paper,
the statement is for a general p-adic reductive group G.

Lemma 4.3 [Vignéras 2001]. Let P1 = P(31) and P2 = P(32) be parahoric sub-
groups of G. Let σ be a representation of M(32) and fix a set D1,2 of distinguished
double coset representatives of P1\G/P2. We have an isomorphism

R31 ◦ I32(σ )'
⊕

n∈D1,2

iM(31)
P31,n32

(
rM(32)

P
32,n

−131
(σ )

)n
.

Lemma 4.4. Let P(31) and P(32) be parahoric subgroups of G associated to the
oF -lattice sequences 31 and 32 in V . Suppose that P(32) is maximal and let σ be
an irreducible cuspidal representation of M(32). We have

R31 ◦ I32(σ )'

{
σ if P(31) is conjugate to P(32) in G,
0 otherwise.

Proof. By cuspidality of σ , if rM(32)
P32,n

−131
(σ ) 6= 0, then P32,n−131 = M(32). If P(32)

is not conjugate to P(31) then, for all n ∈ D1,2, the parabolic subgroup P32,n−131 is
a proper parabolic subgroup of M(32). Hence R32 ◦ I31(σ )' 0 by Lemma 4.3. As
NG(P(32)) = P(32), if there exists n ∈ D1,2 such that P(n−131) = P(32), there
can be only one such n. In this case, R31 ◦ I32(σ )' σ , by Lemma 4.3. �

4C. Positive level cuspidal `-modular representations.

4C1. Semisimple strata and characters. Let [3, n, r, β] be a skew semisimple
stratum in A; see [Stevens 2008, Definition 2.8]. Associated to [3, n, r, β] and a
fixed level one character of F×0 are:

(1) A decomposition V =
⊕l

i=1 Vi , orthogonal with respect to h, and a sum of
field extensions E =

⊕l
i=1 Ei of E such that 3=

⊕l
i=13i with 3i an oEi -lattice

sequence in Vi ; we say that 3 is an oE -lattice sequence and write 3E when we are
considering 3 as such.

(2) The F0-points of a product of unramified unitary groups defined over F0,
G E =

∏l
i=1 G Ei .

(3) Compact open subgroups H(3, β)⊆ J (3, β) of G with decreasing filtrations
by pro-p normal compact open subgroups H n(3, β) = H(3, β) ∩ Pn(3) and
J n(3, β) = J (3, β) ∩ Pn(3), n > 1. When 3 is fixed we write J = J (3, β),
H = H(3, β), and use similar notation for their filtration subgroups. We have
J = P(3E)J 1, where P(3E) is the parahoric subgroup of G E obtained by consid-
ering 3 as an oE -lattice sequence.

(4) A set of semisimple characters C−(3, r, β) of H r+1(3, β). For r = 0, we
write C−(3, β)= C−(3, 0, β).



`-modular representations of unramified p-adic U(2,1) 1815

Let [3i , n, 0, β], i=1, 2, be skew semisimple strata in A. For all θ1∈C−(31, β),
there is a unique θ2 ∈ C−(32, β) such that 1 ∈ IG(θ1, θ2), by [Stevens 2005,
Proposition 3.32]. This defines a bijection

τ31,32,β : C−(31, β)→ C−(32, β)

and we call θ2 = τ31,32,β(θ1) the transfer of θ1.
The skew semisimple strata in A fall into three classes:

(1) Skew simple strata [3, n, 0, β], where E is a field.

(a) If E = F we say that [3, n, 0, β] is a scalar skew simple stratum. In this
case, J/J 1

= P(3)/P1(3) is isomorphic to one of GL1(kF )×U(1)(kF/k0),
U(1, 1)(kF/k0)×U(1)(kF/k0) or U(2, 1)(kF/k0).

(b) Otherwise, E/F is cubic and J/J 1
' P(3E)/P1(3E) ' U(1)(kE/kE0) is a

finite unitary group of order qE0 + 1, where

qE0 =

{
q3

0 if E/F is unramified,
q0 if E/F is ramified.

(2) Skew semisimple strata [3, n, 0, β] = [31, n1, 0, β1] ⊕ [32, n2, 0, β2], not
equivalent to a skew simple stratum, with [3i , ni , 0, βi ] skew simple strata in
EndF0(Vi ). Without loss of generality, suppose that V1 is one-dimensional and
V2 is two-dimensional. We have J/J 1

'
∏2

i=1 P(3i,E)/P1(3i,E). If β2 ∈ F
and V2 is hyperbolic, then G E ' U (1, 1)(F/F0)×U(1)(F/F0) and P(32,E) is a
parahoric subgroup of U(1, 1)(F/F0) and need not be maximal. If β2 ∈ F and
V2 is anisotropic, then G E ' U(2)(F/F0)×U(1)(F/F0) is compact. If E2/F is
quadratic then it is ramified, because there is a unique unramified extension of F0

in each degree and E0
2/F0 is quadratic and also fixed by the involution. Thus, if

E2/F is quadratic then J/J 1
' U(1)(kF/k0)×U(1)(kF/k0).

(3) Skew semisimple strata [3, n, 0, β] =
⊕3

i=1[3i , ni , 0, βi ], not equivalent to a
skew semisimple stratum of the first two classes, with [3i , ni , 0, βi ] skew simple
strata in EndF0(Vi ). In this case, J/J 1

'U(1)(kF/k0)×U(1)(kF/k0)×U(1)(kF/k0).

We say that π contains the skew semisimple stratum [3, n, 0, β] if it contains a
character θ ∈ C−(3, β).

Theorem 4.5 [Stevens 2005, Theorem 5.1]. Let π be an irreducible cuspidal
`-modular representation of G. Then π contains a skew semisimple stratum
[3, n, 0, β].

4C2. Heisenberg representations. Let θ ∈ C−(3, β). By [Stevens 2008, Corol-
lary 3.29], there exists a unique irreducible representation η of J 1(3, β) which
contains θ . We call such an η a Heisenberg representation. Furthermore, by [Stevens
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2008, Proposition 3.31],

dimR(Ig(η))=

{
1 if g ∈ J 1G E J 1,

0 otherwise.

4C3. β-extensions. Assume P(3E) is maximal. A β-extension of a Heisenberg
representation η to J = J (3, β) is an extension κ with maximal intertwining,
IG(κ)= IG(η). By [Blasco 2002, Lemma 5.8], for all maximal skew semisimple
strata which are not skew scalar simple strata, β-extensions exist in the `-adic
case for G, and for `-modular representations we obtain β-extensions by reduction
modulo ` from the `-adic extensions. Note that the reduction modulo ` of an `-adic
β-extension κ̃ of J is irreducible: its restriction to J 1 is the reduction modulo ` of
η̃ = ResJ

J 1(κ̃), reduction modulo ` commutes with restriction, and, as J 1 is pro-p ,
the reduction modulo ` of η̃ is irreducible. Let [3, n, 0, β] be a scalar skew simple
stratum and θ ∈C−(3, β). Then J 1

= H 1
= P1(3), J = P(3), and θ = χ ◦det for

some character χ of P1(3) (cf. [Bushnell and Kutzko 1993a, Definition 3.23]). The
character χ extends to a character χ̃ of F1 and we define κ : J→ R× by κ = χ̃ ◦det.
Then κ extends θ and is intertwined by all of G, hence is a β-extension. Hence, in
the maximal case, β-extensions exist.

Let [3, n, 0, β] be a skew semisimple stratum. Suppose P(3E) is not maximal
and choose a maximal parahoric subgroup P(3m

E ) of G E associated to the oE -lattice
sequence 3m

E in V such that P(3E)⊂ P(3m
E ). This implies that P(3)⊂ P(3m).

Note that this is the case for unramified U(2, 1)(E/F), but not for classical groups
in general. Let θ ∈ C−(3, β) and let η be the irreducible representation of
J 1

m = J 1(β,3) which contains θ . Let θm = τ3,3m ,β(θ) and let ηm be the irreducible
representation of J 1(β,3m) which contains θm . Let κm be a β-extension of ηm .

Lemma 4.6. There exists a unique extension κ of η to J such that ResJm
P(3E )J 1

m
(κm)

and κ induce equivalent irreducible representations of P(3E)P1(3).

Proof. If P(3E) is maximal then κm = κ and there is nothing to prove. Let κ̃m be a
lift of κ . By [Stevens 2008, Lemma 4.3], there exists a unique irreducible `-adic
representation κ̃ of J such that ResJm

P(3E )J 1
m
(κ̃m) and κ induce equivalent irreducible

representations of P(3E)P1(3). By reduction modulo `, we have an irreducible
`-modular representation κ = r`(κ̃) which extends η such that[

indP(3E )P1(3)
J κ

]
=
[
indP(3E )P1(3)

P(3E )J 1
m

ResJm
P(3E )J 1

m
(κm)

]
.

By Mackey Theory,

ResP(3E )P1(3)
P1(3)

(indP(3E )P1(3)
J κ)' indP1(3)

J 1 κ.

Furthermore, J 1
⊆ IP1(3)(κ)⊆ IP1(3)(η)= J 1, so indP1(3)

J 1 κ and hence indP(3E )P1(3)
J κ

are irreducible. �
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A β-extension of η is an extension κ of η to J constructed in this way. We call two
β-extensions which induce equivalent representations, as in Lemma 4.6, compatible.
With the next lemma we show we can “go backwards” and from a β-extension
defined in the minimal case we define two unique compatible β-extensions in the
maximal case. In this way we get a triple of compatible β-extensions. Let P(3r

E) be
a maximal parahoric subgroup of G E containing P(3E) associated to the oE -lattice
sequence 3r

E in V . Let θr = τ3,3r ,β(θ), ηr be the irreducible representation of
J 1(β,3r ) which contains θr , and κ be a β-extension of η.

Lemma 4.7. There exists a unique β-extension κr of ηr which is compatible with κ .

Proof. By [Stevens 2008, Lemma 4.3], there exists a representation κ̂ of P(3E)J 1
r

such that κ and κ̂ induce equivalent representations of P(3E)P1(3). Let κ ′ be a
β-extension of ηr . The restriction to P(3E)J 1

r of κ ′ and κ̂ differ by a character
χ of Br = P(3E)/P1(3

r
E) which is trivial on the unipotent part of Br and inter-

twined by the nontrivial Weyl group element w. By the Bruhat decomposition,
Mr = M(3r

E) = Br ∪ BrwBr ; hence χ is intertwined by the whole of Mr and
extends to a character of Mr . Hence κr = κ ⊗χ

−1 is a β-extension of ηr which is
compatible with κ . By reduction modulo `, as in the proof of Lemma 4.6, we have
the corresponding statement in the `-modular setting. �

4C4. κ-induction and restriction. Fix [3, n, 0, β] a skew semisimple stratum in A,
θ ∈ C−(3, β), η the unique Heisenberg representation containing θ and κ a
β-extension of η.

Let σ be an R-representation of M(3E) and, by abuse of notation, we also write σ
for the inflation of σ to J obtained by defining J 1 to act trivially. The functor
RR(M(3E))→RR(J ) given by σ 7→ κ ⊗ σ identifies RR(M(3E)) with the full
subcategory of η-isotypic representations of J ; see [Vignéras 2001, Definition 8.1].
Define κ-induction, Iκ :RR(M(3E))→RR(G), by

Iκ(σ )= indG
J (κ ⊗ σ)

for σ an R-representation of M(3E) and defined analogously on the morphisms of
RR(M(3E)). This functor has a right adjoint, Rκ :RR(G)→RR(M(3E)), called
κ-restriction, defined by

Rκ(π)= HomJ 1(κ, π),

where the action of M(3E) is given by: for f ∈HomJ 1(κ, π) and m ∈M(3E), let
j ∈ J represent the coset m ∈ J/J 1, then m · f = π( j) ◦ f ◦ κ( j−1).

In the level zero case, we have J = P(3) and we can choose κ to be trivial,
thus we have Iκ = I3 and Rκ = R3. Hence κ-restriction and induction generalise
parahoric restriction and induction. Related to [3, n, 0, β], we also have functors
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of parahoric induction IE
3 : RR(M(3E)) → RR(G E) and parahoric restriction

RE
3 :RR(G E)→RR(M(3E)) obtained by considering3 as an oE -lattice sequence.

Theorem 4.8 [Kurinczuk and Stevens 2014]. Let [3i , n, 0, β], i = 1, 2, be skew
semisimple strata. Let θ1 ∈ C−(3

1, β) and θ2 = τ31,32,β(θ1). For i = 1, 2, let ηi

be a Heisenberg extension of θi , κi be compatible β-extensions of ηi , and let σ be
an R-representation of M(31

E). Then

Rκ2 ◦ Iκ1(σ )' RE
32 ◦ IE

31(σ ).

The proof of Theorem 4.8 in [Kurinczuk and Stevens 2014] follows from a
combination of Mackey theory, isomorphisms defined as in [Bushnell and Kutzko
1993a, Proposition 5.3.2], and the computation of the intertwining spaces Ig(η1, η2)

for g ∈ G, which are one-dimensional if g ∈ G E and zero otherwise.

Lemma 4.9. In the setting of Lemma 4.6, let κ and κm be compatible β-extensions.
Then, for all σ ∈RR(M(3E)), we have

Iκ(σ )' indG
J 1

m P(3E )
(κm ⊗ σ)

and, for all R-representations π of G, we have Rκ(π)' HomJ 1
m P1(3E )(κm, π).

Proof. By transitivity of induction and Lemma 4.6, Iκ(σ ) ' indG
J 1

m P(3E )
(κm ⊗ σ).

By reciprocity, for π an R-representation of G, Rκ(π)' HomJ 1
m P1(3E )(κm, π). �

Define κ̃-induction Iκ̃ : RR(M(3E))→ RR(G) by Iκ̃(σ ) = indG
J (κ̃ ⊗ σ) for

σ an R-representation of M(3E). This functor has a right adjoint, κ̃-restriction,
Rκ̃ : RR(G) → RR(M(3E)) defined by Rκ̃(π) = HomJ 1(κ̃, π), where the ac-
tion of M(3E) on Rκ̃(π) is defined analogously to κ-restriction. In fact, κ̃ is
a −β-extension for the semisimple character θ−1 for the semisimple stratum
[3, n, 0,−β].

Lemma 4.10. Let π be an R-representation of G and σ be an irreducible repre-
sentation of M(3E). Then (Rκ(π))∼ ' Rκ̃(π̃) and, if Iκ(σ ) is irreducible, then
Iκ(σ )∼ ' Iκ̃(σ̃ ).

Proof. We have an isomorphism of vector spaces

HomJ 1(κ, π)∼ ' HomJ 1(π, κ)' HomJ 1(κ̃, π̃)

by [Henniart and Sécherre 2014, Proposition 2.6], and checking the action of J/J 1

we have (Rκ(π))∼ ' Rκ̃(π̃). If Iκ(σ ) is irreducible, then it is admissible and we
have Iκ(σ )∼ ' Iκ̃(σ̃ ) by [Vignéras 1996, I 8.4]. �

If P(3E) is not maximal, let κT = ResJ
T 0(κ). Define RκT ,3 :RR(T )→RR(T )

by RκT ,3(π)= HomT 1(κT , π).
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5. Exhaustion of cuspidal representations

In this section, we exhaust all irreducible cuspidal `-modular representations of
unramified U(2, 1)(F/F0). To do this we construct covers. The construction we
give here is a vast simplification of that of [Stevens 2008], available as we are in the
special case of unramified U(2, 1). As the covers are constructed on compact open
subgroups with pro-order not necessarily invertible in F` it is not clear whether or
not the construction will follow mutatis mutandis the complex construction. In fact,
for the relatively simple proof we give here for U(2, 1)(F/F0), it does. It is only
when we come to computing the parameters of associated Hecke algebras later that
we have to change the complex proof, and these changes occur in computing the
parameters of Hecke algebras of certain associated finite reductive groups.

5A. Covers. In the `-adic case our construction of G-covers is a special case of the
general results of [Stevens 2008, Propositions 7.10 and 7.13]. Let [3, n, 0, β] be a
skew semisimple stratum in A such that P(3E) is not a maximal parahoric subgroup
of G E . For unramified U(2, 1)(F/F0), this implies H 1(3, β)= J 1(3, β), which,
in the notation of [ibid.], implies that J = JB . Moreover, P(3E)/P1(3E) is abelian
and isomorphic to k1

E×k×E . Let θ ∈C−(3, β); then η= θ is the unique Heisenberg
representation containing θ . Let κ be a β-extension of η and σ ∈ IrrR(J/J 1). Then
λ = κ ⊗ σ is a character of J . Let κT = ResJ

T 0(κ) and set λT = κT ⊗ σ . Let
J = (J ∩ N )(J ∩ T )(J ∩ N ) be the Iwahori decomposition of J with respect to B.
We have λ( j− jT j+)= λT ( jT ) for j− ∈ (J ∩ N ), jT ∈ J ∩ T , and j+ ∈ (J ∩ N ).

Lemma 5.1. The element wx intertwines λ if and only if wy intertwines λ.

Proof. Suppose wx ∈ IG(λ). Then, as wx normalises T 0, wx normalises ResJ
T 0(λ).

For all t ∈ T 0 we have wx twx = wy twy; hence wy normalises ResJ
T 0(λ). Let

j ∈ J ∩wy Jwy be such that j = wy j ′wy with j ′ ∈ J . Using the Iwahori decom-
position of J we have j = jN jT jN and j ′ = j ′N j ′T j ′

N
with jN , j ′N upper triangular

unipotent, jN , j ′
N

lower triangular unipotent and jT , j ′T in T . Thus

j = wy j ′w−1
y = (wy j ′Nwy)(wy j ′Twy)(wy j ′Nwy)

and, by unicity of the Iwahori decomposition, jN = wy j ′Nwy , jT = wy j ′Twy and
jN = wy j ′

N
wy . Therefore wy ∈ IG(λ). �

Lemma 5.2. Let λT = κT ⊗ σ . Then (J, λ) is a G-cover of (T 0, λT ).

Proof. In the `-modular case, it remains to show that there exists a strongly
(B, J )-positive element z of the centre of T such that J z−1 J supports an invertible
element of H(G, λ). Let ζ = wxwy . Then ζ is strongly (B, J )-positive. For
g ∈ IG(λ), because λ is a character, Ig(λ) ' R and there is a unique function in
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fg ∈ H(G, λ) with support Jg J such that fg(g) = 1. We have ζ, ζ−1
∈ IG(λ);

hence fζ , fζ−1 ∈H(G, λ).
Suppose that wx 6∈ IG(λ), i.e., IG(λ)= J T J . As ζ is strongly positive,

Jζ Jζ−1 J = Jζ J−ζ−1 J.

Suppose y ∈ Jζ Jζ−1 J ∩ J T J . Then we can write y = j1t j2 and y = j3ζ j−ζ−1 j4
with j1, j2, j3, j4 ∈ J , t ∈ T and j− ∈ J−. Thus, we can write

ζ j−ζ−1
= j t j ′

with j, j ′ ∈ J . By the Iwahori decomposition of J applied to the elements j and
( j ′)−1, we have

ζ j−ζ−1
= jN jT jN t j ′N j ′T j ′N

with jN , j ′N ∈ J∩N , jN , j ′
N
∈ J∩N and jT , j ′T ∈ J∩T . Then j−1

N
ζ j−ζ−1( j ′

N
)−1
∈N

and j−1
N
ζ j−ζ−1( j ′

N
)−1
= jT jN t j ′N j ′T ∈ B; hence j−1

N
ζ j−ζ−1( j ′

N
)−1
= 1 and

ζ j−ζ−1
∈ J . Therefore, y ∈ J and Jζ Jζ−1 J ∩ J T J = J . Hence fζ ? fζ−1 is

supported on the single double coset J . We have fζ ? fζ−1(1G)= q4. Hence fζ−1

is an invertible element of H(G, λ) supported on the single double coset Jζ−1 J .
Now, suppose that wx ∈ IG(λ), then wy ∈ IG(λ) by Lemma 5.1. Hence

fwx , fwy ∈H(G, λ). Let s ∈ {x, y}. The maximal parahoric subgroup P(3s) of G
contains J and ws and P(3s)∩G E is a maximal parahoric subgroup of G E . More-
over, (J∩G E)/(P1(3s)∩G E) is a Borel subgroup of (P(3s)∩G E)/(P1(3s)∩G E).
By [Stevens 2008, Lemma 5.12], IG(η)= J G E J , thus the support of H(G, λ) is
contained in J G E J . Hence,

supp( fws ? fws )⊆ (Jws Jws J )∩ J G E J

⊆ P(3s)∩ J G E J = J (P(3s)∩G E)J

= J ((J ∩G E)∪ (J ∩G E)ws(J ∩G E))J,

by the Bruhat decomposition of (P(3s)∩G E)/(P1(3s)∩G E), which is a finite
reductive group. Thus, supp( fws ? fws )⊆ J ∪ Jws J . We have that fws ? fws (1G)=

[J : J ∩ws Jws] is a power of q. Let as = fws ? fws (1G) and bs = fws ? fws (ws).
Therefore, for s ∈ {x, y}, fws is an invertible element of H(G, λ) with inverse
(1/as)( fws − bs f1). By [Stevens 2008, Lemma 7.11], we have (J ∩ N )wx ⊆ J ∩ N
and (J ∩ N )wy ⊆ J ∩ N . By the Iwahori decomposition of J ,

Jwy Jwx J = J (wy(J ∩ N )wy)wywx(wx(J ∩ T )wx)(wx(J ∩ N )wx)J

= J (J ∩ N )wywywx(J ∩ T )wx (J ∩ N )wx J

⊆ J (J ∩ N )wywx(J ∩ T )(J ∩ N )J = Jwywx J.

Moreover, we clearly have Jwywx J ⊆ Jwy Jwx J . Hence Jwywx J = Jwy Jwx J .
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Therefore, fwy ? fwx is an invertible element of H(G, λ) supported on the single
double coset Jζ−1 J . �

5B. Cuspidal representations. The following theorem addresses the construction
of all irreducible cuspidal `-modular and `-adic representations of G.

Theorem 5.3. (1) Let [3,n,0,β] be a skew semisimple stratum in A, θ ∈C−(β,3),
η the unique Heisenberg representation containing θ , κ a β-extension of η and σ
an irreducible cuspidal representation of M(3E). Then Iκ(σ ) is quasiprojective.
Furthermore, if P(3E) is a maximal parahoric subgroup of G E , then Iκ(σ ) is
irreducible and cuspidal.

(2) Let π be an irreducible cuspidal representation of G. Then there exist a
skew semisimple stratum [3, n, 0, β] with P(3E) a maximal parahoric subgroup
of G E , θ ∈ C−(β,3), a β-extension κ of the unique Heisenberg representation η
which contains θ and an irreducible cuspidal representation σ of M(3E) such
that π ' Iκ(σ ).

Proof. (1) Quasiprojectivity follows mutatis mutandis the proof given in [Vignéras
2001, Proposition 6.1]. So suppose P(3E) is a maximal parahoric subgroup of G E .
By Theorem 4.8 and Lemma 4.4 we have

Rκ ◦ Iκ(σ )' RE
3 ◦ IE

3(σ )' σ.

The proof of irreducibility follows mutatis mutandis the proof given in [Vignéras
2001, Proposition 7.1].

(2) By Theorem 4.5, π contains a skew semisimple stratum [3, n, 0, β]. Suppose
θ ∈ C−(3, β) is a skew semisimple character which π contains. Let κ be a
β-extension of the unique Heisenberg representation η which contains θ . Then π
contains κ⊗σ for some σ ∈ IrrR(M(3E)). We show that we may assume that σ is
cuspidal. If P(3E) is not maximal then σ is cuspidal, so we can suppose that P(3E)

is maximal. Let B(3E) be the standard Borel subgroup of M(3E) and P(3′E) the
preimage of B(3E) under the projection map. Suppose that rM(3E )

B(3E )
(σ ) 6= 0. Then,

as π contains σ , rM(3E )
B(3E )

(Rκ(π)) 6= 0. We have

rM(3E )
B(3E )

(Rκ(π))' HomJ 1(κ, π)P1(3
′

E )J
1/J 1
' HomP1(3

′

E )J
1(κ, π),

which, by Lemma 4.9, implies that Rκ ′,3′(π) 6= 0 where κ ′ is the unique β-extension
containing τ3,3′,β(θ) compatible with κ . Hence π contains a skew semisimple
stratum [3′, n, 0, β] such that P(3′E) is not maximal and thus contains κ ′ ⊗ σ ′,
with σ ′ a cuspidal representation of M(3′E). By Theorem 4.2 and Lemma 5.2, if π
contains a skew semisimple stratum [3, n, 0, β] such that P(3E) is not a maximal
parahoric subgroup of G E , then π is not cuspidal. Therefore P(3E) is maximal
and σ is cuspidal. �
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For level zero representations we can refine the exhaustive list of irreducible
cuspidal representations given in Theorem 5.3 into a classification.

Theorem 5.4. For i = 1, 2, let P(3i ) be a maximal parahoric subgroup of G and
σi an irreducible cuspidal representation of M(3i ). If HomG(I31(σ1), I32(σ2)) 6= 0
then (P(31), σ1) and (P(32), σ2) are conjugate.

Proof. By reciprocity and Lemma 4.3,

HomG(I31(σ1), I32(σ2))'
⊕

n∈D1,2

HomM(31)

(
σ1, iM(31)

P31,n32

(
rM(32)

P
32,n

−131
(σ2)

)n)
.

Hence
HomG(I31(σ1), I32(σ2)) 6= 0

if and only if there exists n ∈ D1,2 such that

HomM(31)

(
σ1, iM(31)

P31,n32

(
rM(32)

P
32,n

−131
(σ2)

)n)
6= 0.

Assume there exists such an element n. By cuspidality of σ2, P32,n−131 =M(32),
so P1(32)(P(32)∩P(n−131))/P1(32)=M(32). By cuspidality of σ1, P31,n32 =

M(31), so P1(31)(P(31)∩P(n32))/P1(31)=M(31). If P(31) and P(32) are not
conjugate then for all g ∈G, in particular n ∈ D1,2, the group P(31)∩P(g32) must
stabilise an edge in the building and hence is not maximal. Thus it cannot surject
onto either M(31) or M(32). Hence there exists n∈D1,2 such that P(31)=P(n32)

and HomM(31)(σ1, σ
n
2 ) 6= {0}; i.e., (P(31), σ1) and (P(32), σ2) are conjugate. �

Remark 5.5. Let ` | (q2
− q + 1). The irreducible cuspidal `-modular represen-

tations I3x (τ
+(χ)) do not lift. A lift must necessarily be cuspidal as the Jacquet

functor commutes with reduction modulo `. However, by Theorem 5.3, all `-adic
level zero irreducible cuspidal representations are of the form I3x (σx) or I3y (σy)

with σx (resp. σy) an irreducible cuspidal `-adic representation of M(3x) (resp.
M(3y)). Furthermore, r`(I3w(σw))= I3w(r`(σw)) as compact induction commutes
with reduction modulo `, for w ∈ {x, y}. Hence, by Section 3B2, I3x (τ

+(χ))

does not lift, but does appear in the reduction modulo ` of I3x (τ (ψ)), where
r`(I3x (τ (ψ))= I3x (ν(χ))⊕ I3x (τ

+(χ)).

6. Parabolically induced representations

Let ωF/F0 be the unique character of F×0 associated to F/F0 by local class field
theory. That is, ωF/F0 is defined by ωF/F0 |o×F0

= 1 and ωF/F0($F ) = −1. All
extensions of ωF/F0 to F× take values in Z×` , hence are integral. Let χ1 be a
character of F× and χ2 be a character of F1. Let χ be the character of T defined
by

χ(diag(x, y, x̄−1))= χ1(x)χ2(x x̄−1 y),
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which is well-defined because x 7→ x x̄−1 is a surjective map F×→ F1. Every
character of T appears in this way: we can recover χ1 and χ2 from χ by

χ1(x)= χ(diag(x, x̄/x, x̄−1)), χ2(y)= χ(diag(1, y, 1)).

The character χ2 factors through the determinant and

i G
B (χ)' i G

B (χ1)(χ2 ◦ det),

where χ1 is the character χ1(diag(x, y, x̄−1))= χ1(x) of T . Hence the reducibility
of i G

B (χ) is completely determined by that of i G
B (χ1). The character χ is not regular

if χ1(x) = χ1(x̄)−1, which occurs if and only if χ1 is an extension of 1 or ωF/F0

to F×. An irreducible character χ has level zero if and only if both χ1 and χ2 have
level zero.

Let ν be the character of T given by ν(diag(x, y, x̄−1))= |x |F , i.e., the character
with χ1(x) = |x |F and χ2 trivial, where we normalise | · |F so that |$ |F = 1/q.
The modulus character δB of B is given on T by δB = ν

−4. Because the image of ν
is contained in Z×` , ν and δB are integral. If q4

≡ 1 mod ` then δB is trivial.

6A. Hecke Algebras. To find the characters χ such that the induced representation
i G

B (χ) is reducible we study the algebras H(G, λ).

Theorem 6.1. Suppose λT is a character of T 0. Let (J, λ) be a G-cover of (T 0, λT )

as constructed in Lemma 5.2.

(1) If λT is regular then H(G, λ)' R[X±1
].

(2) If λT is not regular then H(G, λ) is a two-dimensional algebra generated as an
R-algebra by fwx and fwy and the relations

fwx ? fwx = (q
a
− 1) fwx + qa,

fwy ? fwy = (q − 1) fwy + q,

where a = 3 and fwx (1)= fwy (1)= 1 if λT is trivial on T 1 and factors through the
determinant, and a = 1, fwx (1)= 1/q and fwy (1)= 1 if not.

Proof. If g ∈ IG(λ) then Ig(λ) ' R, because χ is a character. For g ∈ IG(λ),
r ∈ R, we let fg,r denote the unique function supported on Jg J with fg,r (g)= r .
If λT is regular then the support of H(G, λ) is J T J =

⋃
n∈Z Jζ n J and, since each

intertwining space is one-dimensional and fζ n,1 has support Jζ n J , we have an
isomorphism H(G, λ)' R[X±1

] defined by fζ,1 7→ X .
Suppose wx ∈ IG(λ). By Lemma 5.1, wx intertwines λ if and only if wy

intertwines λ. The support of the Hecke algebra is contained in the intertwining of
η = ResJ

J 1(κ), which is J G E J . By the semisimple intersection property [Stevens
2008, Lemma 2.6] and the Bruhat decomposition we have J G E J =

⋃
w∈W̃ JwJ .

As in the proof of Lemma 5.2 we have Jwx Jwy J = Jwxwy J and, similarly,
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Jwy Jwx J = Jwywx J . Hence, as the intertwining spaces are one-dimensional, the
support of fwx ? fwy ? fwx ? · · ·? fwi is Jwxwywx · · ·wi J . Thus, as W̃ is an infinite
dihedral group generated bywx andwy , H(G, λ) is generated by fwx ,1 and fwy ,1 and
the quadratic relations fwx ,1 ? fwx ,1 and fwy ,1 ? fwy ,1. Let 3x and 3y be oE -lattice
sequences such that the parahoric subgroups P(3x

E)=P(3E)∪P(3E)wx P(3E) and
P(3y

E)= P(3E)∪P(3E)wy P(3E). The parahoric subgroups P(3x
E) and P(3y

E)

are nonconjugate, maximal and contain P(3E). Let κx and κy be the β-extensions,
compatible with κ , defined by Lemma 4.6 related to the skew semisimple strata
[3x , n, 0, β] and [3y, n, 0, β].

For z ∈ {x, y}, let κ̂z = ResJ
J 1(β,3i )P(3E )

(κz). We have a support-preserving
isomorphism

H(G, κ ⊗ σ)'H(G, κ̂z ⊗ σ)

by Lemma 4.6 and transitivity of compact induction. We have a support-preserving
injection of algebras

H(P(3z
E), σ )→H(P(3z), κ̂z ⊗ σ)

defined by 8 7→ κ̂z ⊗8, where σ is considered as a character of P(3E) trivial on
P1(3E).

Let Bz be the standard Borel subgroup of M(3z
E). In the `-adic case, by [Howlett

and Lehrer 1980, Theorem 4.14], if iM(3z
E )

Bz
(σ )= ρz

1⊕ ρ
z
2 with dim(ρz

1)> dim(ρz
2)

then H(M(3z
E), σ ) is generated by T z

w, which is supported on the double coset
Bzwx Bz and satisfies the quadratic relation

T z
w ? T z

w = (dz − 1)T z
w + dzT z

1 ,

where dz= dim(ρz
1)/ dim(ρz

2) and T z
1 is the identity of H(M(3z

E), σ ). By Section 3,
dy = q and

dx =

{
q3 if λT is trivial on T 1 and factors through the determinant,
q otherwise.

In the `-modular case, we choose a lift σ̂ of σ such that σ̂
wx
= σ̂ . Let L be

a lattice in σ̂ . Recall that σ̂ is called a reduction stable of σ if H(M(3z
E), σ ) =

Z` ⊗F`
H(M(3z

E), L) and H(M(3z
E), σ̂ ) = Q` ⊗F`

H(M(3z
E), L). A basis of

H(M(3z
E), σ̂ ) is called reduction stable if it is a basis of H(M(3z

E), L) and σ̂ is
reduction stable. By [Geck et al. 1996, Section 3.1], σ̂ is reduction stable and a basis
of H(M(3z

E), σ̂ ) is reduction stable. Hence we obtain a basis of H(M(3z
E), σ )

satisfying the quadratic relations required by reduction modulo `.
By inflation, T z

w determines an element fwz,rz ∈H(P(3z
E), σ ) supported on Jwz J .

Furthermore, fwx ,1 ? fwx ,1(1G) = [J : J ∩wx Jwx ] = q3 and fwy ,1 ? fwy ,1(1G) =
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[J : J ∩wy Jwy] = q in all cases; hence rx = ry = 1 if λT is trivial on T 1 and
factors through the determinant, and rx = 1/q and ry = 1 otherwise. �

6B. Reducibility points. Suppose i G
B (χ) is reducible and let λT = ResT

T 0(χ). By
Theorem 6.1, λT is not regular. Let (J, λ) be a G-cover of (T 0, λT ) as constructed
in Lemma 5.2 with λ = κ ⊗ σ . If π is an irreducible quotient of Iκ(σ ) and an
irreducible quotient of i G

B (χ) then, by exactness of the Jacquet functor, r G
B (π)

is one-dimensional. Hence, as ( jB)
∗(Mλ(π)) ' MλT (r

G
B (π)) by Theorem 4.2, π

must correspond to a character of H(G, λ) under the bijection of Theorem 4.1.
The characters of H(G, λ) are determined by their values on the generators fwx ,b

and fwy ,1, where we let b = 1 if λT is trivial on T 1 and factors through the
determinant and b= 1/q otherwise. Let a be given by Theorem 6.1. The characters
of H(G, λ) are summarised as follows:

Character of HR(G, λ) Value on fwx ,b Value on fwy ,1

4sgn −1 −1
4ind qa q
41 qa

−1
42 −1 q

If qa
6= −1 mod `, these characters are distinct; if qa

=−1 mod ` but q 6= −1
mod `, there are two characters, 4sgn =41 and 4ind =42; if q =−1 mod `, there
is a unique character 4sgn =41 =4ind =42.

To calculate the values of χ where this reducibility occurs we study the re-
striction of the characters of HR(G, λ) to H(T, λT ) under ( jB)

∗. The injection
jB :H(T, λT )→H(G, λ) is induced by taking the unique function f T

ζ,1 ∈H(T, λT )

with support JT ζ and f T
ζ,1(ζ ) = 1 to fζ,1, the unique function in H(G, λ) with

support Jζ J and fζ,1(ζ ) = 1. Moreover, we know that fζ,1 = ε fwx ,1 ? fwy ,1 for
some scalar ε ∈ R. It is determining the sign of this scalar which requires work.
The normalised restriction map ( jB)

∗ is then induced by this injection and twisting
by ν−2. To find ε we compare the value of the characters of H(G, λ) on fwx ,1? fwy ,1

twisted by εν−2(ζ ) to known reducibility points.

Character χ of εν−2(ζ )χ( fwx ,1 ? fwy ,1) εν−2(ζ )χ( fwx ,1 ? fwy ,1)

HR(G, λ) a = 3, b = 1 a = 1, b = 1/q

4sgn q−2ε q−1ε

4ind q2ε qε
41 −qε −ε

42 −q−1ε −ε
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First consider the case when a = 3 and b = 1/q . As the trivial representation is
an irreducible subquotient of i G

B (ν
±2), the induced representations are reducible.

Thus ν±2(ζ )= q±2
∈ {q−2ε, q2ε,−qε,−q−1ε} and this multiset of values of the

characters must be {q−2, q2,−q,−q−1
}. Moreover, by compatibility with the

`-adic case by reduction modulo `, we must have ε = 1 with ν±2 corresponding to
4sgn and 4ind. The other reducibility points, corresponding to the characters 41

and 42 of H(G, λ), are the characters χ of T of the form χ = ην±1, where η is
any extension of ωF/F0 to F× which is trivial on F1 such that χ |T 0 factors through
the determinant.

Now consider the case when a = 1 and b = 1/q. Using an alternative method,
Keys [1984] computed the `-adic reducibility points. Comparing the value of a pair
of these on ζ — see [Keys 1984, Section 7] — with our values in the table we must
have ε =−1 in all other cases. This gives reducibility points the characters χ of T
of the form χ = ην±1, where η is any extension of ωF/F0 to F× not trivial on F1,
corresponding to the characters4sgn and4ind of H(G, λ), and the characters χ of T
of the form χ1 is nontrivial, but χ1 |F×0

is trivial, corresponding to the characters
41 and 42 of H(G, λ).

Theorem 6.2. Let χ be an irreducible `-modular character of T . Then i G
B (χ) is

reducible exactly in the following cases:

(1) χ = ν±2;

(2) χ = ην±1, where η is any extension of ωF/F0 to F×;

(3) χ1 is nontrivial, but χ1 |F×0
is trivial.

6C. Parahoric restriction and parabolic induction. As the parabolic functors re-
spect the decomposition of RR(G) by level, by [Vignéras 1996, II 5.12], if χ is a
level zero character of T (i.e., a character of T trivial on T 1) then all irreducible
subquotients of i G

B (χ) have level zero.

Lemma 6.3. Let w ∈ {x, y} and let χ be a level zero character of T . Then
R3w(i

G
B (χ))' iM(3w)

Bw (χ).

Proof. The proof follows by Mackey theory, as the maximal parahoric subgroups
of G satisfy the Iwasawa decomposition. �

Let [3, n, 0, β] be a skew semisimple stratum in A. Let θ ∈ C−(3, β) and κ be
a β-extension of the unique Heisenberg representation containing θ . Let χ be
an irreducible `-modular character of T which contains the R-type (JT , κT ⊗ σ).
Furthermore, suppose that (J, κ⊗σ) is a G-cover of (JT , κT ⊗σ) relative to B, as
in Lemma 5.2. Let 3m be an oE -lattice sequence in V such that P(3m

E ) is maximal
and P(3E) ⊂ P(3m

E ). Let θm = τ3,3m ,β(θ) and κm be the unique β-extension of
the unique Heisenberg representation containing θm which is compatible with κ ,
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as in Lemma 4.6. Let B(3m
E ) be the Borel subgroup of M(3m

E ) whose preimage
under the projection map P(3m

E )→ M(3m
E ) is equal to J . Suppose B(3m

E ) has
Levi decomposition B(3m

E )= T (3m
E )n N (3m

E ).
The next theorem is a generalisation of a weakening of Lemma 6.3; precisely,

it generalises the isomorphism Lemma 6.3 induces in the Grothendieck group
GrR(M(3w)).

Theorem 6.4. With the notation as above, there is an isomorphism[
Rκm (i

G
B (χ))

]
'
[
i

M(3m
E )

B(3m
E )
(RκT (χ))

]
.

Proof. We prove the corresponding result in the `-adic case first and deduce the
`-modular result by reduction modulo `. The proof in the `-adic case follows a simi-
lar argument made for GLn(F) in [Schneider and Zink 1999]. Let�T =[T, ρ]T and
�=[T, ρ]G be inertial equivalence classes. Let RQ`

(�) denote the full subcategory
of RQ`

(G) of representations all of whose irreducible subquotients have inertial
support in�, and RQ`

(�T ) denote the full subcategory of RQ`
(T ) of representations

all of whose irreducible subquotients have inertial support in �T . Let ω denote the
M(3m

E )-conjugacy class of σ and ωT the T (3m
E )-conjugacy class of σ . Let RQ`

(ω)

be the full subcategory of RQ`
(M(3m

E )) of representations all of whose irreducible
subquotients have supercuspidal support in ω and RQ`

(ωT ) be the full subcategory
of RQ`

(T (3m
E )) of representations all of whose irreducible subquotients have lie

in ωT . Let Mω : RQ`
(ω)→ M(M(3m

E ), σ ) be defined by ρ 7→ HomB(3m
E )
(σ, ρ)

for ρ ∈ RQ`
(ω). Similarly, let MωT : RQ`

(ωT )→ M(T (3m
E ), σ ) be defined by

ρ 7→ HomT (3m
E )
(σ, ρ) for ρ ∈ RQ`

(ωT ). We prove that the following diagram
commutes.

RQ`
(ω) M(M(3m

E ), σ ) RQ`
(ω)

RQ`
(�) M(G, κ ⊗ σ) M(T (3m

E ), σ ) RQ`
(ωT )

RQ`
(�T ) M(T, κT ⊗ σ) RQ`

(�T )
'

MκT⊗σ

'

MκT⊗σ

'

Mκ⊗σ

'

MωT

i G
B ( jB)∗ Res RκT

'

Mω

'

Mω

Rκm Res ( jB(3m
E )
)∗ i

M(3m
E )

B(3m
E )

We have Mω◦i
M(3m

E )

B(3m
E )
' ( jB(3m

E )
)∗◦MωT and Mκ⊗σ ◦i G

B ' ( jB)∗◦MκT⊗σ by [Bushnell
and Kutzko 1998, Corollary 8.4], and Mκ⊗σ is an equivalences of categories by
[Bushnell and Kutzko 1998, Theorems 4.3 and 8.3].

We have support-preserving injections α1 :H(M(3m
E ), σ )→H(G, κ ⊗ σ) and

α2 :H(T (3m
E ), σ )→H(T, κT⊗σ), as in the proof of Theorem 6.1, hence restriction
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functors M(G, κ ⊗ σ)→M(M(3m
E ), σ ) and M(T, κT ⊗ σ)→M(T (3m

E ), σ ), de-
noted in the diagram by Res. Because H(T (3m

E ), σ ) is one-dimensional and the in-
jections defined are homomorphisms of algebras, we must have jB◦α1' jB(3m

E )
◦α2,

hence also Res ◦( jB)∗ ' ( jB(3m
E )
)∗ ◦Res.

We show that Mω◦Rκm 'Res ◦Mκ⊗σ ; a similar argument shows that MωT ◦RκT '

Res ◦MκT⊗σ . Let π ∈RQ`
(�). By Lemma 4.9 and adjointness, we have

Mω(Rκm (π))= HomB(3m
E )
(σ,Rκm (π))= HomB(3m

E )
(σ,Rκm (π))

' HomJ (σ, (Rκm (π))
J 1

m P1(3E )/J 1
m )

' HomJ (σ,Rκ(π))

' HomJ 1(κ ⊗ σ, π)= Mκ⊗σ (π).

In the `-modular case, we choose lifts of κ and χ and then by the `-adic isomor-
phism and reduction modulo ` we have

[
Rκm (i

G
B (χ))

]
'
[
i

M(3m
E )

B(3m
E )
(RκT (χ))

]
. �

6D. Parabolic induction, κ-restriction, and covers. Let χ be an irreducible char-
acter of T . Let (T 0, λT ) be an R-type contained in χ such that (J, λ) is a G-cover of
(T 0, λT ) relative to B as constructed in Lemma 5.2 with λ= κ⊗σ and λT = κT⊗σ ,
where κT = ResJ

T 0(κ). Hence J = P(3E)J 1 with P(3E) a nonmaximal parahoric
subgroup of G E corresponding to the oE -lattice sequence 3E . In all cases, there
are two nonconjugate maximal parahoric which contain P(3E); we denote the
oE -lattice sequences that correspond to these by 3x

E and 3y
E . Let m ∈ {x, y} and

let (κm,3
m
E ) be the unique pair compatible with (κ,3E) as in Lemma 4.6.

Lemma 6.5. Let π be an irreducible subrepresentation or quotient of i G
B (χ) and

m ∈ {x, y}. Then Rκm (π) 6= 0.

Proof. By the geometric lemma, r G
B (i

G
B (χ)) is filtered by χ and χwx =ψχ for some

unramified character ψ . Hence, by exactness of the Jacquet functor, r G
B (π)= ψχ .

By Theorem 4.2, π contains (J, λ) if and only if r G
B (π) contains (T 0, λT ). Thus π

contains (J, λ); hence Rκ(π) 6= 0. Therefore Rκm (π) 6= 0. �

The next lemma is crucial in our proof of unicity of supercuspidal support. It
shows that parabolic induction preserves the semisimple character up to transfer.

Lemma 6.6. Suppose that i G
B (χ) has an irreducible cuspidal subquotient π . Then

there exists m ∈ {x, y} such that Rκm (π) 6= 0.

Proof. By Theorem 5.3 there exist a skew semisimple stratum [3′, n′, 0, β ′] such
that P(3′E ′) is a maximal parahoric subgroup of G E ′ , where G E ′ denotes the
G-centraliser of β ′, a semisimple character θ ′ ∈ C−(3

′, β ′), a β ′-extension κ ′ to
J ′ = J (3′, β ′) of the unique Heisenberg representation η′ containing θ ′ and a
cuspidal representation σ ′ ∈ Irr(J ′/(J ′)1) such that π ' Iκ ′(σ ′).
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As π contains κ ′⊗σ ′, the restriction of i G
B (χ) to J ′ has κ ′⊗σ ′ as a subquotient.

We choose χ̂ an `-adic character lifting χ such that i G
B (χ̂) is reducible. Then,

because restriction and parabolic induction commute with reduction modulo `,
the restriction of i G

B (χ̂) to J ′ has an irreducible subquotient δ such that r`(δ)
contains κ ′ ⊗ σ ′. On restricting to (J ′)1 we see that δ contains the unique lift
η̂′ of η′ and, since δ is irreducible and J ′ normalises η̂′, ResJ ′

(J ′)1(δ) is a multiple
of η′. Thus δ = κ̂ ′⊗ ξ , with κ̂ ′ a lift of κ ′ and ξ an irreducible representation of
J ′/(J ′)1 whose reduction modulo ` contains σ . However, ξ cannot be cuspidal,
otherwise i G

B (χ̂) would have a cuspidal subquotient Iκ̂ ′(ξ). Hence G E ′ is not
compact. Therefore [3′, n′, 0, β ′] is either a scalar skew simple stratum or a skew
semisimple stratum with splitting V = V ′1 ⊕ V ′2, with V ′1 one-dimensional and
V ′2 two-dimensional hyperbolic. (Note that, as σ is cuspidal nonsupercuspidal, we
must have ` | q + 1 or ` | q2

− q + 1 by Section 3.)
We continue by induction on the level l(π) of π .
The base step is when π has level zero. If π has level zero then, as all subquotients

of i G
B (χ) have the same level as χ by [Vignéras 1996, 5.12], χ and i G

B (χ) have
level zero. Thus we can choose, and assume that we have chosen, κ ′, κ and κT to
be trivial. By conjugating, we may assume 3′ =3m for some m ∈ {x, y} and then
κm = κ

′ is trivial and Rκm (π)= R3m (π) 6= 0.
Suppose first that [3, n, n−1, β] is equivalent to a scalar stratum [3, n, n−1, γ ].

The stratum [3, n, n−1, γ ] corresponds to a character ψγ of Pn(3) which extends
to a character φ ◦ det of G. Twisting by φ−1

◦ det we reduce the level of π and
the level of i G

B (χ). The stratum [3, n, n− 1, β − γ ] is equivalent to a semisimple
stratum [3, n, n − 1, α] and the representations κ(φ−1

◦ det), κT (φ
−1
◦ det) and

κm(φ
−1
◦ det) for m ∈ {x, y} are α-extensions defined on the relevant groups.

Similarly, the stratum [3′, n′, n′− 1, β ′− γ ] is equivalent to a semisimple stratum
[3, n′, n′− 1, α′] and κ ′(φ−1

◦ det) is an α′-extension. Moreover, κm(φ
−1
◦ det) is

compatible with κ(φ−1
◦ det) for m ∈ {x, y}, (κ ⊗ σ)(φ−1

◦ det) is a G-cover of
(κT ⊗σ)(φ

−1
◦det) relative to B, (κT ⊗σ)(φ

−1
◦det) is contained in χ(φ−1

◦det),
and (κ ′⊗ σ ′)(φ−1

◦ det) is contained in π(φ−1
◦ det). Thus, by induction, we have

Rκm (π)' Rκm(φ−1◦det)(π(φ
−1
◦ det))

is nonzero for some m ∈ {x, y}.
Secondly, suppose that [3′, n′, n′ − 1, β ′] is equivalent to a scalar stratum
[3′, n′, n′ − 1, γ ′]. As in the last case, we can twist by a character to reduce
the level.

Hence we may assume that both [3, n, n− 1, β] and [3′, n′, n′− 1, β ′] are not
equivalent to scalar simple strata. This forces [3, n, 0, β] (resp. [3′, n′, 0, β ′]) to
be semisimple — and nonsimple — with splitting V = V1⊕ V2 (resp. V = V ′1⊕ V ′2)
with V1 (resp. V ′1) one-dimensional and V2 (resp. V ′2) two-dimensional hyperbolic.
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Thus, by conjugation we may assume that the splitting of [3′, n′, 0, β ′] is the same
as the splitting of [3, n, 0, β], i.e., V ′1 = V1 and V ′2 = V2. We have E = E ′ and
G E = G E ′ , and conjugating further we may assume that 3′E and 3E lie in the
closure of the same chamber of the building of G E . Moreover, 3′E is a vertex
and 3E is the barycentre of the chamber.

Let

w =

0 1 0
1 0 0
0 0 1

 .
We have

J (β ′,3)= w

 A0(3)
11 A

b
r ′+1

2 c
(3)12

A
b

r ′+1
2 c
(3)12 A0(3)

22

w∩G,

and

J (β,3)= w

 A0(3)
11 A

b
r+1

2 c
(3)12

A
b

r+1
2 c
(3)12 A0(3)

22

w∩G,

where r ′ (resp. r ) is minimal such that [3, n′, r ′, β] (resp. [3, n, r, β]) is equivalent
to a scalar stratum. Thus, as we are now assuming that [3, n, n − 1, β] and
[3′, n′, n′− 1, β ′] are not equivalent to scalar simple strata, we have r ′ = n′ and
r = n. Furthermore, we have l(χ) = l(π), i.e., n′/e(3′) = n/e(3). We let κ ′′ be
the unique β-extension to J (β ′,3) compatible with κ ′ relative to a semisimple
stratum [3, n, 0, β ′]. Therefore, J (β,3)= J (β ′,3). Similar considerations yield
H(β,3)= H(β ′,3) and J (β,3′)= J (β ′,3′).

As ξ is not cuspidal, it is a direct factor of i M(3′E )
B(3′E )

(τ̂ ′), where we choose B(3′E)
to be the image of P(3E) in M(3′E), for some representation τ̂ ′ of T (3′E). Fur-
thermore, i G

B (χ̂) contains κ̂ ′′⊗ τ̂ ′ with κ̂ ′′ a lift of κ ′′, by Lemma 4.6 and transitivity
of induction. By Lemma 5.2, (J, κ̂ ′′⊗ τ̂ ′) is a G-cover of (T 0, κ̂ ′′T ⊗ τ̂

′) relative
to B, where κ̂ ′′T = ResJ

T 0(κ̂
′′). By [Blondel 2005, Theorem 2], indG

J (κ̂
′′
⊗ τ̂ ′) '

IndG
Bop(indT

T0
(κ̂ ′′T ⊗ τ̂

′)). By second adjunction of parabolic induction and parabolic
restriction for `-adic representations, and right adjunction of restriction with compact
induction we have

HomT 0(κ̂ ′′T ⊗ τ̂
′, r G

B ◦ i G
B (χ̂))' HomG(indG

J (κ̂
′′
⊗ τ̂ ′), i G

B (χ̂)) 6= 0.

We have [r G
B ◦ i G

B (χ̂) |T 0] = χ̂ ⊕ χ̂wx |T 0= χ̂ ⊕ χ̂ |T 0 . Hence κ̂ ′′T ⊗ τ̂
′
= ResT

T 0(χ̂).
Similarly if we let κ̂ be a lift of κ , σ̂ be a lift of σ , and κ̂T =ResT

T 0(κ̂), then we have
κ̂T ⊗ σ̂ =ResJ

T 0(χ̂). This implies that we have an equality of semisimple characters
τ3′,3,β ′(θ̂

′) = θ̂ , where θ̂ ′ ∈ C−(β
′,3′) is contained in κ̂ ′ and θ̂ ∈ C(β,3) is

contained in κ̂ .
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We let H̃(β,3) (resp. H̃(β ′,3′)) denote the compact open subgroup of GL3(F)
defined in [Stevens 2008], which defines H(β,3) (resp. H(β ′,3′)) by inter-
secting with U(2, 1)(F/F0). The Iwahori decomposition for H̃ 1(β ′,3′) gives
H̃ 1(β ′,3′) = H̃ 1(β ′,3′)−(H̃ 1(β ′,3′)∩ M̃)H̃ 1(β ′,3′)+ where H̃ 1(β ′,3′)− de-
notes the lower triangular unipotent matrices in H̃ 1(β ′,3′), H̃ 1(β ′,3′)+ denotes
the upper triangular unipotent matrices in H̃ 1(β ′,3′), and M̃ the subgroup of
diagonal matrices. As H̃ 1(β ′,3) contains (H̃ 1(β ′,3′)∩ M̃) and is contained in
H̃ 1(β ′,3′), we have

H̃ 1(β ′,3′)= H̃ 1(β ′,3′)−
(
H̃ 1(β ′,3′)∩ H̃ 1(β ′,3)

)
H̃ 1(β ′,3′)+.

Thus a character of H̃ 1(β ′,3′) is determined by its values on H̃ 1(β ′,3′)−,
H̃ 1(β ′,3′)∩ H̃ 1(β ′,3), and H̃ 1(β ′,3′)+.

The semisimple characters θ̂ and θ̂ ′ are equal to the restriction of semisimple
characters θ̃ and θ̃ ′ of GL3(F). Moreover, τ3′,3,β ′(θ̃ ′) = θ̃ as τ3′,3,β ′(θ̂ ′) = θ̂ . It
follows from the decomposition of H̃ 1(β ′,3′) given above that τ3,3′,β(θ̃) = θ̃ ′;
they are both trivial on H̃ 1(β ′,3′)− and H̃ 1(β ′,3′)+, and as θ ′ = τ3,3′,β ′(θ) they
both agree with θ̃ on H̃ 1(β,3′) ∩ H̃ 1(β,3) = H̃ 1(β ′,3′) ∩ H̃ 1(β ′,3). Hence,
τ3,3′,β(θ)= θ

′ by restriction and reduction modulo `. As there is a unique Heisen-
berg representation containing θ ′, we have Rκm (π) 6= 0 for some m ∈ {x, y}. �

Lemma 6.7. Suppose that i G
B (χ) is reducible with irreducible subrepresentation π1

and quotient π2= i G
B (χ)/π1. If6 is a maximal cuspidal subquotient of Rκm (i

G
B (χ)),

i.e., all subquotients of Rκm (i
G
B (χ)) not contained in6 are not cuspidal, then Iκm (6)

is a subrepresentation of π2.

Proof. Let 6 be a maximal cuspidal subquotient of Rκm (i
G
B (χ)). By Lemma 6.5,

Rκm (π1) and Rκm (π2) are nonzero and must contain noncuspidal subquotients as
π1 and π2 are not cuspidal. However, by Theorem 6.4 and Section 3, there are only
two noncuspidal subquotients of Rκm (i

G
B (χ)). Thus each of Rκm (π1) and Rκm (π2)

must have a single noncuspidal irreducible subquotient, say ρ1 and ρ2 respectively.
If Rκm (π1) 6= ρ1 then Rκm (π1) has an irreducible cuspidal subrepresentation or

an irreducible cuspidal quotient. If Rκm (π1) has an irreducible cuspidal subrepre-
sentation σ then, by adjointness of Rκm and Iκm , Iκm (σ ) is an irreducible cuspidal
subrepresentation of π1, contradicting the irreducibility and noncuspidality of π1.
If Rκm (π1) has an irreducible cuspidal quotient σ then Rκ̃m (π̃1) has a cuspidal
subrepresentation σ̃ by Lemma 4.10. Thus Iκ̃m (σ̃ ) is an irreducible cuspidal subrep-
resentation of π̃1 by adjointness. Hence Iκm (σ ) is an irreducible cuspidal quotient
of π1 by Lemma 4.10, contradicting the irreducibility and noncuspidality of π1.
Thus Rκm (π1)= ρ1.
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Similarly, if Rκm (π2) has an irreducible cuspidal quotient σ , then Iκm (σ ) is an
irreducible cuspidal quotient of π2. Hence Iκm (σ ) is a quotient of i G

B (χ), contradict-
ing the cuspidality of Iκm (σ ). Hence Rκm (π2) can have no cuspidal quotients. Hence,
by Section 3, Lemma 6.3 and Theorem 6.4, 6 is a subrepresentation of Rκm (π2).
Note that, as Theorem 6.4 only gives us an isomorphism in the Grothendieck group
of finite-length representations of M(3E), we have used that 6 is irreducible by
Section 3 in the skew semisimple nonscalar case to imply it is a subrepresenta-
tion of Rκm (π2); in all other cases we twist by a character (if necessary) and use
Lemma 6.3. By reciprocity, Iκm (6) is a subrepresentation of π2. �

By [Blondel 2005, Theorem 2] and Lemma 5.2, Iκ(σ )' IndG
Bop(indT

T 0(κT ⊗ σ)).
By second adjunction (cf. [Dat 2009, Corollaire 3.9]),

HomG(IndG
Bop(indT

T 0(κT ⊗ σ)), π)' HomT (indT
T 0(κT ⊗ σ), r G

B (π)).

By Clifford theory, the irreducible quotients of indT
T 0(κT ⊗σ) are all the twists of χ

by an unramified character. Hence, π is an irreducible quotient of Iκ(σ ) if and only
if it is an irreducible quotient of i G

B (χψ) for some unramified character ψ of T .
The R-type (J, λ) is quasiprojective by Theorem 5.3; hence a simple module

of H(G, λ) corresponds to an irreducible quotient of i G
B (χψ) for some unramified

character ψ , by the bijection of Theorem 4.1. If i G
B (χψ) is reducible with proper

quotient π , then the Jacquet module of π is one-dimensional by the geometric
lemma. Hence, by Theorem 4.2, π must correspond to a character of H(G, λ) under
the bijection of Theorem 4.1 and all characters of H(G, λ) must correspond to a
proper quotient of a reducible principal series representation i G

B (χψ) with ψ an
unramified character of T .

Lemma 6.8. Suppose ` 6= 2 and ` | q − 1. Then i G
B (χ) is semisimple.

Proof. If i G
B (χ) is irreducible then it is semisimple, so suppose i G

B (χ) is re-
ducible. If i G

B (χ) has a cuspidal subquotient it is of the form Iκm (σ ) for m ∈ {x, y}
and σ an irreducible cuspidal representation of M(3x

E) by Theorem 5.3. By
Theorem 6.4, Rκx (i

G
B (χ))= iM(3x

E )

B(3x
E )
(RκT (χ)), and Rκx (Iκx (σ ))= σ , by Theorem 4.8

and Lemma 4.4. Hence, by exactness, σ is a cuspidal subquotient of i
M(3x

E )

B(3x
E )
(RκT (χ)).

However, by Section 3, when ` | q − 1 no such cuspidal subquotients exist; hence
i G

B (χ) has no cuspidal subquotients. Thus, by exactness of the Jacquet functor and
the geometric lemma, i G

B (χ) has length two. When ` 6= 2 and ` | q−1 there are four
characters of H(G, λ), yet only two reducibility points. Hence these two reducible
principal series representations must both have two nonisomorphic irreducible
quotients and must be semisimple. �

Remark 6.9. If χ−1
= χ then i G

B (χ) is self-contragredient and there is a simple
proof of Lemma 6.8 using the contragredient representation and avoiding the use
of covers or second adjunction.
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Lemma 6.10. Let ` | q + 1. Then the unique irreducible quotient of i G
B (χ) is

isomorphic to the unique irreducible subrepresentation.

Proof. Let π denote the unique irreducible quotient of i G
B (χ). When ` | q + 1 there

is only one character of H(G, κ⊗σ). Hence π corresponds to the unique character
of H(G, λ). Hence, if V is the space of π , Rκ(V) is one-dimensional and the action
of J is given by σ . As δB is trivial, the contragredient commutes with parabolic
induction: we have (i G

B (χ))
∼
' i G

B (χ̃). Furthermore, χ̃ = χ−1, where χ−1 is the
character defined by, for all x ∈ F×, χ−1(x) = χ(x−1). The character χ−1 is
not regular and similar arguments, given for i G

B (χ), apply to i G
B (χ

−1). We find
that i G

B (χ
−1) has a unique irreducible quotient ρ which corresponds to the unique

character of H(G, λ̃) under the bijection of Theorem 4.1. As the contragredient is
contravariant and exact, ρ̃ is a subrepresentation of i G

B (χ). By Lemma 4.10, we
have (Rκ̃(ρ))∼ ' Rκ(ρ̃) which is one-dimensional and hence must be isomorphic
to σ . Hence ρ̃ is irreducible and isomorphic to π . Thus π appears twice in the
composition series of i G

B (χ), as the unique irreducible quotient and as the unique
irreducible subrepresentation. �

Remark 6.11. If ` 6= 3 and ` |q2
−q+1, then similar counting arguments show that

the unique irreducible subrepresentation is not isomorphic to the unique irreducible
quotient. However, in these cases we find out more information later so this
argument is not necessary.

6E. On the unramified principal series.
6E1. Decomposition of i G

B (ν
2) and i G

B (ν
−2). In all cases of coefficient field, the

space of constant functions forms an irreducible subrepresentation of i G
B (ν
−2)

isomorphic to 1G . We let StG denote the quotient of i G
B (ν
−2) by 1G . Parabolic

induction preserves finite-length representations; hence StG has an irreducible
quotient υG . By the geometric lemma,

[
r G

B ◦i
G
B (ν
−2)
]
'ν−2

⊕(ν−2)wx . Considering
ν−2 as a character of F×, we have (ν−2)wx (x)= ν−2(x̄−1)= ν2(x), as ν−2(x)=
ν−2(x̄). Thus

[
r G

B ◦ i G
B (ν
−2)
]
= ν−2

⊕ ν2. We have r G
B (1G)= ν

−2, thus r G
B (StG)=

ν2 by exactness of the Jacquet functor. A quotient of a parabolically induced
representation has nonzero Jacquet module; hence r G

B (υG)= ν
2. Thus any other

composition factors which occur in i G
B (ν
−2) must be cuspidal.

Theorem 6.12. (1) If ` - (q − 1)(q + 1)(q2
− q + 1) then i G

B (ν
−2) has length two

with unique irreducible subrepresentation 1G and unique irreducible quotient StG .

(2) If ` 6= 2 and ` | q − 1 then i G
B (ν
−2)= 1G ⊕StG is semisimple of length two.

(3) If ` 6= 3 and ` | q2
− q + 1 then i G

B (ν
−2) has length three with unique cuspidal

subquotient I3x (τ
+(1̄)). The unique irreducible quotient υG is not a character.

(4) If ` 6= 2 and ` | q + 1, or if ` = 2 and 4 | q + 1, then i G
B (ν
−2) has length

six with 1G appearing as the unique subrepresentation and the unique quotient,
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and four cuspidal subquotients. Let π be a maximal proper submodule of StG .
Then π ' ρ ⊕ I3y (σ (1̄)⊗ 1̄), where ρ is of length three with unique irreducible
subrepresentation and unique irreducible quotient, both of which are isomorphic to
I3x (ν(1̄)), and remaining subquotient isomorphic to I3x (σ (1̄)).

(5) If ` = 2 and 4 | q − 1, then i G
B (ν
−2) has length five with unique irreducible

subrepresentation and unique irreducible quotient both isomorphic to 1G . Let π be
a maximal proper submodule of StG . Then

π ' I3x (ν(1̄))⊕ I3x (τ
+(χ))⊕ I3y (σ (1̄)⊗ 1̄).

Proof. By Theorem 5.3 and Lemma 6.6, if i G
B (ν
−2) has a cuspidal subquotient π

then π ' I3w(σ ) for w ∈ {x, y} and σ an irreducible cuspidal representation of
P(3w)/P1(3w).

If 6w is a maximal cuspidal subquotient of R3w(i
G
B (ν
−2)) then I3w(6w) is a

subrepresentation of StG , by Lemma 6.7. Thus, we have an exact sequence

0→ I3x (6x)⊕ I3y (6y)→ StG→ υG→ 0.

By exactness and Section 3, we obtain composition series of I3x (6x) and of I3y (6y).
If ` - (q− 1)(q+ 1)(q2

− q+ 1), or ` 6= 2 and ` | q− 1, then R3x (i
G
B (ν
−2)) and

R3y (i
G
B ν
−2)) are of length two with no cuspidal subquotients, by Theorem 5.3 and

Lemma 6.6. Hence, i G
B (ν
−2) has no cuspidal subquotients as R3w(I3w(σ ))' σ is

cuspidal by Lemma 4.4. By the geometric lemma, i G
B (ν
−2) is of length two with 1G

as an irreducible subrepresentation and StG as an irreducible quotient. By second
adjunction,

HomG(i G
B (ν
−2), 1G)' HomT (ν

−2, 1T ).

The character ν−2 is nontrivial when ` - (q−1)(q+1)(q2
−q+1) and trivial when

` | q − 1. Hence 1G is a direct factor when ` 6= 2 and ` | q − 1 and i G
B (ν
−2) is

semisimple, and i G
B (ν
−2) is nonsplit when ` - (q − 1)(q + 1)(q2

− q + 1).
In all other cases, i G

B (ν
−2) has cuspidal subquotients. Thus 1G cannot be a

direct factor. Therefore i G
B (ν
−2) has a unique irreducible quotient υG and a unique

irreducible subrepresentation 1G . When ` | q + 1 the unique irreducible quotient
is isomorphic to the unique irreducible subrepresentation by Lemma 6.10; hence
υG ' 1G . When ` 6= 3 and ` | q2

− q + 1, the representation R3y (i
G
B (ν
−2)) has

noncuspidal subquotients 1My and StMy . By exactness, R3y (υG)' StMy ; hence 1G

is not isomorphic to υG , which is not a character. �

Note that i G
B (ν

2)' i G
B (ν
−2)∼; hence decompositions of i G

B (ν
2) can be obtained

from Theorem 6.12.

6E2. Decomposition of unramified i G
B (ην) and i G

B (ην
−1). Let η be the unique un-

ramified character of F× extending ωF/F0 . If ` | q+1, then ωF/F0ν
−1
=ωF/F0ν= 1;
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hence we refer to Theorem 6.12. When ` | q2
+ q + 1 we have ν2

= ην−1 and
ν−2
= ην; hence once more we refer to Theorem 6.12. When ` | q − 1, ν is trivial,

hence ην = ην−1
= η. Thus i G

B (η) is self-contragredient. By Lemma 6.8, i G
B (η)

has length two and is semisimple.

6F. Cuspidal subquotients of the ramified level zero principal series. We describe
the reducible principal series i G

B (χ) which have length greater than two when χ
is a level zero character of T which does not factor through the determinant map.
We twist by a character that factors through the determinant map so that we can
assume χ2 = 1. Then χq+1

= 1 and χ = ψ ◦ ξ for ψ a nontrivial character of k1
F .

When ` - q + 1, because R3x (i
G
B (χ)) and R3y (i

G
B (χ)) have no cuspidal subquo-

tients, i G
B (χ) is of length two.

Theorem 6.13. Let ` | q + 1. The representation i G
B (χ) has length four with

a unique irreducible subrepresentation and a unique irreducible quotient, and
cuspidal subquotient isomorphic to I3x (σ (ψ,ψ, 1̄))⊕I3y (σ (ψ)⊗ 1̄). Furthermore,
the unique irreducible subrepresentation is isomorphic to the unique irreducible
quotient.

Proof. The proof is similar to the proof of Theorem 6.12. �

7. Cuspidal subquotients of positive level principal series

In this section, suppose that χ1 is a positive level character of F× trivial on F×0
and χ is the character of T given by χ1 and χ2 = 1. We assume we are in the same
setting as Section 6D with (T 0, λT ) an R-type contained in χ , (J, λ) a G-cover of
(T 0, λT ) relative to B with λ = κ ⊗ σ , and (κm,3

m) compatible with (κ,3) for
m ∈{x, y}. We have M(3m

E )'U(1, 1)(kF/k0)×U(1)(kF/k0). When ` -q+1, there
are no cuspidal subquotients of U(1, 1)(kF/k0), and hence no cuspidal subquotients
of i G

B (χ), by Lemma 6.6. Thus it remains to look at the case when ` | q + 1. Let
ψ = (χκ−1

T )T
1

and χ the character of k1
F such that ψ = χ ◦ ξ .

Theorem 7.1. Suppose ` | q + 1. The representation i G
B (χ) has length four with

unique irreducible subrepresentation and unique irreducible quotient which are
isomorphic, and cuspidal subquotient isomorphic to Iκx (σ (χ)⊗ 1̄)⊕ Iκy (σ (χ)⊗ 1̄).

Proof. The proof is similar to the proof of Theorem 6.12. �

8. Supercuspidal support

Theorem 8.1. Let G be an unramified unitary group in three variables and π an
irreducible `-modular representation of G. Then the supercuspidal support of π is
unique up to conjugacy.
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Proof. Suppose π is not cuspidal. Then the supercuspidal support of π is equal
to the cuspidal support of π and is thus unique up to conjugacy. If π is cuspidal
nonsupercuspidal then it appears in one of the decompositions given in Theorems
6.12, 6.13, and 7.1, or is a twist of such a representation by a character that factors
through the determinant map, and we see that the supercuspidal support of π is
unique up to conjugacy. �

Remark 8.2. Let Iκ ′(σ ′) be an irreducible cuspidal representation of G as con-
structed in Theorem 5.3. After the decomposition of the parabolically induced
representations given in Theorems 6.12, 6.13, and 7.1, we see that Iκ ′(σ ′) is super-
cuspidal if and only if σ ′ is supercuspidal. Hence all supercuspidal representations
of G lift, by Section 3.
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