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In his reinterpretation of Gauss’s composition law for binary quadratic forms,
Bhargava determined the integral orbits of a prehomogeneous vector space which
arises naturally in the structure theory of the split group Spin8. We consider a
twisted version of this prehomogeneous vector space which arises in quasisplit
SpinE8 , where E is an étale cubic algebra over a field F . We classify the generic
orbits over F by twisted composition F -algebras of E-dimension 2.
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1. Introduction

The seminal work of Bhargava [2004a; 2004b; 2004c] has extended Gauss’s compo-
sition law for binary quadratic forms to far more general situations. The key step in
his extension is the investigation of the integral orbits of a group over Z on a lattice
in a prehomogeneous vector space. The prehomogeneous vector space which plays
a role in elucidating the nature of the classical Gauss’s composition arises from a
simply connected Chevalley group G of type D4. More precisely, let P DMN
be a maximal parabolic subgroup of G corresponding to the branching point of
the Dynkin diagram of type D4. As it is readily seen from the Dynkin diagram,
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the derived group Mder of the Levi factor M is isomorphic to SL32. The unipotent
radical N is 9-dimensional, and is a two-step nilpotent group with 1-dimensional
center Z. The adjoint action of Mder on the abelian quotient N=Z is isomorphic
to V D V2˝ V2˝ V2, where V2 is the standard 2-dimensional representation of
SL2. Since Bhargava regards an element of .Z2/˝3 as a cube whose vertices are
labeled by elements of Z, we shall refer to the prehomogeneous vector space V or
its elements as Bhargava’s cubes.

One of Bhargava’s achievements is the determination of the corresponding
integral orbits, i.e., SL2.Z/3-orbits on Z2˝Z2˝Z2. In particular, he discovered
that generic orbits are in bijection with isomorphism classes of tuples .A; I1; I2; I3/,
whereA is an order in an étale quadratic Q-algebra and I1, I2 and I3 are elements in
the narrow class group of A, i.e., invertible fractional ideals, such that I1 �I2 �I3D 1.
More precisely, to every cube Bhargava attaches three pairs .Ai ; Bi /, i D 1; 2; 3, of
2�2 matrices by slicing the cube in the three possible ways. In this way he obtains
three binary quadratic forms

Qi .x; y/D� det.AixCBiy/:

A remarkable fact, discovered by Bhargava, is that the three forms have the same
discriminant �. It is a degree-4 polynomial on V , invariant under the action of
Mder. The cube is generic if �¤ 0. In this case, the ring A is the unique quadratic
order of discriminant � and the three fractional ideals Ii correspond to the three
quadratic forms Qi by a dictionary that essentially goes back to Gauss.

We now consider the group G over a field F of characteristic different from 2

and 3. The group G is exceptional in the sense that its outer automorphism group
is isomorphic to S3: no other absolutely simple linear algebraic group has such
a large outer automorphism group. In particular, since S3 is also the group of
automorphisms of the split étale cubic F -algebra F �F �F , we see that every
étale cubic F -algebra E determines a quasisplit form GE . Fixing an épinglage of
G defines a splitting of the outer automorphism group S3 to Aut.G/, so that S3 acts
on V by a group of symmetries of the cube, fixing two opposite vertices. Then the
quasisplit group GE contains a maximal parabolic subgroup PE DMENE , which
is a twisted form of the parabolic P mentioned above. The derived group ME;der

of ME is isomorphic to ResE=F SL2. The adjoint action of ME;der on NE=ZE ,
where ZE is the center of NE , is isomorphic to a twisted form VE of V . We shall
call VE .F / (or its elements) the E-twisted Bhargava cube.

Since the action of S3 on V permutes the three pairs .Ai ; Bi / of 2� 2 matrices
obtained by slicing a cube in three different ways, it follows by Galois descent
that � gives rise to a degree-4 polynomial invariant on VE , denoted by �E . It is a
quasi-invariant for ME . More precisely, if v 2 VE .F / and g 2ME .F /, then

�E .gv/D �.v/
2
��E .v/;
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where � is a character of ME given by the adjoint action on ZE . An ME .F /-orbit
O� VE .F / is called generic if �E .v/¤ 0 for one and hence for all v 2 O. If O is
generic, then the quadratic algebra K D F

�p
�E .v/

�
is étale. It is an invariant of

the generic orbit.
The purpose of this paper is to classify the generic ME .F /-orbits on VE .F /.

The main result is:

Theorem 1.1. Let F be a field of characteristic different from 2 or 3. Fix an étale
cubic F -algebra E.

(i) There are natural bijections between the following sets:

(a) Generic ME .F /-orbits O on the E-twisted Bhargava cube.

(b) E-isomorphism classes of E-twisted composition algebras .C;Q; ˇ/ over F
which are of E-dimension 2.

(c) E-isomorphism classes of pairs .J; i/, where J is a Freudenthal–Jordan
algebra over F of dimension 9 and

i WE ,! J

is anF -algebra homomorphism. Here anE-isomorphism from .J; i/ to .J 0; i 0/
is a commutative diagram

E
i

����! J??y ??y
E

i 0

����! J 0

where the first vertical arrows is the identity, while the second is an F -
isomorphism of J and J 0.

(ii) The bijections in (i) identify

StabME
.O/Š AutE .C;Q; ˇ/Š AutE .i WE ,! J /:

(iii) Let K D F
�p
�E .v/

�
be the étale quadratic algebra K attached to a generic

orbit O containing v. Let LDE˝F K. The group StabME
.O/ in (ii) sits in a short

exact sequence of algebraic groups

1 ����! TE;K ����! StabME
.O/ ����! Z=2Z ����! 1;

where
TE;K.F /D fx 2 L

�
WNL=E .x/D 1DNL=K.x/g

is a 2-dimensional torus and where the conjugation action of the nontrivial element
of Z=2Z on TE;K is given by x 7! x�1.
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The reader is probably not familiar with some terminology in the theorem, so
an explanation is necessary. In order to define twisted composition algebras, recall
that the algebra E carries a natural cubic form, the norm NE . The norm defines
a quadratic map x 7! x# from E to E such that x � x# DNE .x/. For example, if
E D F 3, then

NE .x1; x2; x3/D x1x2x3 and .x1; x2; x3/# D .x2x3; x3x1; x1x2/:

Now, an E-twisted composition algebra (or simply twisted composition algebra) of
E-dimension 2 is a triple .C;Q; ˇ/ where:

� C is an E-vector space of dimension 2.

� Q W C �!E is a quadratic form.

� ˇ W C �! C is a quadratic map such that, for every v 2 C and x 2E,

ˇ.xv/D x#
�ˇ.v/ and Q.ˇ.v//DQ.v/#:

� If bQ is the bilinear form associated to Q, then bQ.v; ˇ.v// 2 F for every
v 2 C .

This definition is due to Springer, as is the bijection of the sets (b) and (c). More
precisely, suppose we have an algebra embedding i W E ,! J . Then we have a
decomposition

J DE˚C;

where C is defined as the orthogonal complement to E with respect to the trace
form on J . The upshot is that the Jordan algebra J determines the structure of a
twisted composition algebra on C , and vice versa.

Our contribution is the bijection between the sets (a) and (b). Starting with a
twisted cube, we define a twisted composition algebra. In fact, the construction
works over Z, and can be tied to Bhargava’s description as follows. Let .I1; I2; I3/
be a triple of ideals in a quadratic order A such that I1 �I2 �I3DA. Let N.I / denote
the norm of the ideal I and z 7! Nz denote the action of the nontrivial automorphism
of the étale quadratic Q-algebra containing A. Let

C D I1˚ I2˚ I3:

Then C is a twisted composition algebra with quadratic form Q W C ! Z�Z�Z

defined by

Q.z1; z2; z3/D

�
N.z1/

N.I1/
;
N.z2/

N.I2/
;
N.z3/

N.I3/

�
and quadratic map ˇ W C ! C defined by

ˇ.z1; z2; z3/D . Nz2 Nz3N.I1/; Nz3 Nz1N.I2/; Nz1 Nz2N.I3//:
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The key parts of the paper are as follows. In order to prove the correspondence
of generic ME .F /-orbits and twisted composition algebras, we give a Galois
cohomological argument in Theorem 8.3, based on the observation that the stabilizer
of a distinguished cube is isomorphic to the automorphism group of a distinguished
twisted composition algebra. This gives a conceptual explanation for the existence
of the bijection. However, for arithmetic applications (such as Bhargava’s), it is
essential to have an explicit description of the bijection. This is done in two steps.
Firstly, after reviewing the theory of twisted composition algebras, we prove in
Proposition 3.5 that every twisted composition algebra C of E-dimension 2 has
a reduced basis, i.e., a basis of the form fv; ˇ.v/g for some v 2 C . Secondly, by
reinterpreting Bhargava’s work in the framework of twisted composition algebras in
Section 10, we attach to every genericE-twisted cube a twisted composition algebra
together with a good basis. In this correspondence, changing the cube by another
in the same ME .F /-orbit corresponds to changing the good basis. Since reduced
bases are good, every twisted composition algebra is obtained in this construction.

We also consider zM DM ÌS3 and its twisted form zME . In this case, generic
zME .F /-orbits correspond to the F -isomorphism classes of objects in (b) and (c).

The isomorphisms of the stabilizer groups in (ii) lead us to another description
of TE;K , which we view as an exceptional Hilbert 90 theorem. This is the topic
of Section 11. We conclude the paper by illustrating the main results in the case
where F is a local field.

2. Étale cubic algebras

Let F be a field of characteristic different from 2 and 3. Let F be a separable
closure of F , with absolute Galois group Gal.F =F /.

2-1. Étale cubic algebras. An étale cubic algebra is an F -algebra E such that
E˝F F Š F

3. More concretely, an étale cubic F -algebra is of the form

E D

8<:
F �F �F I

F �K, where K is a quadratic field extension of F ;
a cubic field.

Since the split algebra F � F � F has automorphism group S3 (the symmetric
group on 3 letters), the isomorphism classes of étale cubic algebras E over F are
naturally classified by the pointed cohomology set H 1.F; S3/, or more explicitly
by the set of conjugacy classes of homomorphisms

�E W Gal.F =F / �! S3:

2-2. Discriminant algebra of E . By composing the homomorphism �E with the
sign character of S3, we obtain a quadratic character (possibly trivial) of Gal.F =F /
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which corresponds to an étale quadratic algebra KE . We call KE the discriminant
algebra of E. To be concrete,

KED

8<:
F �F if E D F 3 or a cyclic cubic field;
K if E D F �K;
the unique quadratic subfield in the Galois closure of E otherwise.

2-3. Twisted form of S3. Fix an étale cubic F -algebra E. Then, via the asso-
ciated homomorphism �E , Gal.F =F / acts on S3 (by inner automorphisms) and
thus defines a twisted form SE of the finite constant group scheme S3. For any
commutative F -algebra A, we have

SE .A/D AutA.E˝F A/:

2-4. Quadratic map #. Given an étale cubic F -algebra, let NE WE �! F be the
norm map on E and let TrE WE �! F be the trace map. Then NE is a cubic form
and TrE is a linear form on E. There is a quadratic map

# WE �!E

such that
a#
� aD a � a#

DNE .a/ for a 2E.

It has an associated symmetric bilinear map

a� b WD .aC b/#� a#
� b#:

For the split algebra F 3, we have:

N.a1; a2; a3/D a1a2a3; Tr.a1; a2; a3/D a1C a2C a3;

.a1; a2; a3/
#
D .a2a3; a3a1; a1a2/:

We note the following identity in E:

(2.1) .f �y/yCfy#
D TrE=F .fy

#/:

This curious identity can be checked in E˝F F ŠF 3; we leave it as an interesting
exercise for the reader.

3. Twisted composition algebras

In this section, we introduce the E-twisted composition algebra of dimension 2 over
E. This notion was introduced by Springer, and the two standard (perhaps only)
references, covering many topics of this paper, are [Knus et al. 1998] and [Springer
and Veldkamp 2000]. Twisted composition algebras are treated in Chapter VIII, §36
of the former and Chapter 4 of the latter.
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3-1. Twisted composition algebras. A twisted composition algebra over F is a
quadruple .E; C;Q; ˇ/, where:

� E is an étale cubic F -algebra.

� C is a free E-module equipped with a nondegenerate quadratic form Q, with
associated symmetric bilinear form bQ.v1; v2/DQ.v1Cv2/�Q.v1/�Q.v2/.

� ˇ W C �! C is a quadratic map such that

ˇ.av/D a#
�ˇ.v/ and Q.ˇ.v//DQ.v/#

for every a 2E and v 2 C .

� If we set
NC .v/ WD bQ.v; ˇ.v//;

then NC .v/ 2 F for every v 2 C .

For a fixed E, we shall call .C;Q; ˇ/ an E-twisted composition algebra (over F ),
and the cubic form NC the norm form of C . Frequently, for ease of notation, we
shall simply denote this triple by C , suppressing the mention of Q and ˇ.

3-2. Morphisms. An F -morphism of twisted composition algebras .E; C;Q; ˇ/
and .E 0; C 0;Q0; ˇ0/ is a pair .�; �/ 2 HomF .C; C 0/�HomF .E;E 0/ such that

�.av/D �.a/ ��.v/

for v 2 C and a 2E, and

� ıˇ D ˇ0 ı� and � ıQDQ0 ı�:

In particular, we have the automorphism group AutF .E; C;Q; ˇ/. The second
projection gives a natural homomorphism

AutF .E; C;Q; ˇ/! SE :

The kernel of this map is the subgroup AutE .C;Q; ˇ/ consisting of those � which
are E-linear; we shall call these E-morphisms.

3-3. AutF .E;C /-action and isomorphism classes. Let us fix an E-vector space
C and let AutE .C / be the automorphism group of C as an E-vector space. Let

AutF .E; C /D f.g; �/ 2 AutF .C /�AutF .E/ W g ı�D �.�/ �g for all � 2Eg:

This is the group of E-sesquilinear automorphisms of C . The second projection
induces a short exact sequence

1 ����! AutE .C / ����! AutF .E; C / ����! SE ����! 1:
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This short exact sequence is split. Indeed, the choice of an E-basis for C gives a
splitting, with SE acting on the coordinates with respect to the basis.

Now if .C;Q; ˇ/ is an E-twisted composition algebra, then for any .g; �/ 2
AutF .E; C /, the triple

.C 0;Q0; ˇ0/D .C; � ıQ ıg�1; g ıˇ ıg�1/

is also an E-twisted composition algebra. The norm forms are related by

NC 0 DNC ıg
�1:

Moreover, we have

.g; �/ 2 HomF ..E; C;Q; ˇ/; .E; C 0;Q0; ˇ0//:

Thus the map .Q; ˇ/ 7! .Q0; ˇ0/ defines an action of AutF .E; C / on the set of
pairs .Q; ˇ/ which define an E-twisted composition algebra structure on C . The
orbits of such pairs under AutF .E; C / are precisely the F -isomorphism classes of
E-twisted composition algebras of a given E-dimension dimE C , and the stabilizer
of a given pair .Q; ˇ/ is precisely the automorphism group AutF .E; C;Q; ˇ/.
Similarly, the set of orbits under AutE .C / is the set of E-isomorphism classes of
such E-twisted composition algebras, and the stabilizer of a particular .Q; ˇ/ is
AutE .C;Q; ˇ/.

3-4. Dimension-2 case. It is known, by Corollary 36.4 in [Knus et al. 1998], that
for any E-twisted composition algebra .C;Q; ˇ/, dimE C D 1, 2, 4 or 8. We shall
only be interested in the case when dimE C D 2.

We give an example that will feature prominently in this paper. We set CE D
E˚E, and define Q and ˇ by

Q.x; y/D x �y and ˇ.x; y/D .y#; x#/

for every .x; y/ 2 E ˚ E. It is easy to check that this defines an E-twisted
composition algebra over F , with norm form

NC .x; y/DNE .x/CNE .y/:

The group of automorphisms of this E-twisted composition algebra is easy to
describe. Let E1 be the set of elements e in E such thatN.e/D e �e#D 1. For every
element e 2E1, we have an E-automorphism ie defined by ie.x; y/D .ex; e#y/.
We also have an E-automorphism w defined by w.x; y/D .y; x/. The group of
E-automorphisms is

AutE .CE ;Q; ˇ/DE1 ÌZ=2Z
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and the group of F -automorphisms is

AutF .CE ;Q; ˇ/D .E1 ÌZ=2Z/ÌSE DE1 Ì .Z=2Z�SE /:

If E D F �F �F , we denote the corresponding twisted composition algebra by
C0 D .C0;Q0; ˇ0/ and refer to it as the split twisted composition algebra. In this
case, E1 consists of .t1; t2; t3/ such that t1t2t3 D 1, so that

AutE .C0;Q0; ˇ0/Š G2m ÌZ=2Z:

Observe that there is a natural splitting

(3.1) S3 �Z=2Z �! AutF .C0;Q0; ˇ0/:

3-5. Identities. It follows by [Knus et al. 1998, Proposition 36.3] that if .E;C;Q; ˇ/
is a twisted composition algebra over F , then C ˝F F is isomorphic to C0˝F F .
This fact is useful for verifying polynomial identities in C . Indeed, any polynomial
identity in C may be verified over F and thus just needs to be checked in C0. In
the following lemma, we list some useful identities which may be checked in this
manner.

Lemma 3.2. Let .E; C;Q; ˇ/ be a twisted composition algebra over F . Then

(3.3) ˇ2.v/DNC .v/v�Q.v/ˇ.v/

and

(3.4) ˇ.xvCyˇ.v//D .y#NC .v/� .�Q.v/x/�y/ � vC .x
#
�Q.v/y#/ �ˇ.v/

for any v 2 C and x; y;2E.

It follows from (3.3) that Q is in fact determined by ˇ in a twisted composition
algebra. The proof of these identities can be found in [Springer and Veldkamp
2000, Lemmas 4.1.3 and 4.2.7]. We note that (3.4) looks slightly different from its
counterpart there (Lemma 4.2.7), but the two are equivalent by the identity (2.1).

3-6. Reduced basis. If dimE C D 2, we call an E-basis of C of the form fv; ˇ.v/g
a reduced basis of C . We note:

Proposition 3.5. Let .C;Q; ˇ/ be an E-twisted composition algebra.

(i) For v 2 C , let
�C .v/DNC .v/

2
� 4 �NE .Q.v// 2 F:

Then fv; ˇ.v/g is an E-basis of C if and only if �C .v/¤ 0.

(ii) The degree-6 homogeneous polynomial �C factors over F as

�C D a �P
2;
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with a 2 F � and P an absolutely irreducible homogeneous polynomial of degree 3
overF . The square class of a is uniquely determined, and for any g2AutE.C;Q;ˇ/,

(3.6) P.gv/D

�
P.v/ if g 2 AutE .C;Q; ˇ/0,
�P.v/ if g … AutE .C;Q; ˇ/0.

(iii) The algebra .C;Q; ˇ/ has a reduced basis.

(iv) Let fv0; ˇ.v0/g be another reduced basis of C . Let g 2 AutE .C / be such that
g.v/D v0 and g.ˇ.v//D ˇ.v0/. Then det.g/ 2 F �.

Proof. (i) The set fv; ˇ.v/g is a basis if and only if the matrix of the symmetric
bilinear form bQ with respect to fv; ˇ.v/g has determinant in E�. Since

bQ.v; v/D 2Q.v/; bQ.ˇ.v/; ˇ.v//D 2Q.v/
# and bQ.v; ˇ.v//DNC .v/;

it follows that the determinant is ��C .v/.

(ii) We first work over F , in which case we may assume that C DE2, with EDF 3,
Q.x; y/D xy and ˇ.x; y/D .y#; x#/. Then NC .x; y/DNE .x/CNE .y/. So

�C .x; y/D .NE .x/CNE .y//
2
� 4NE .x/NE .y/D .NE .x/�NE .y//

2:

The cubic polynomial P0.x; y/ D NE .x/ � NE .y/ D x1x2x3 � y1y2y3 (with
x D .x1; x2; x3/ 2 F

3) is easily seen to be irreducible over F .
To descend back to F , we note that for any � 2 Gal.F =F /, �.P0/D˙P0 by

unique factorization of polynomials over F . Thus there is a quadratic character �K
of Gal.F =F / such that �.P0/D �K.�/ �P0. If K is the quadratic étale F -algebra
associated to �K , represented by a2F �, then we see that P D

p
a
�1
�P0 is defined

over F and �C D a �P 2.
It is clear that the square class of a is uniquely determined. Equation (3.6) can

be checked over F ; we leave it to the reader.

(iii) Since F has more than 3 elements (as we assumed that char.F / ¤ 2 or 3),
there exists v 2 C such that P.v/¤ 0. Hence �C .v/¤ 0 by (ii) and fv; ˇ.v/g is a
reduced basis by (i).

(iv) If v0 D xv C yˇ.v/, then ˇ.v0/ is given by (3.4). So the transition matrix
between the bases fv; ˇ.v/g and fv0; ˇ.v0/g is given by

g D

�
x y#NC .v/� .�Q.v/x/�y

y x#�Q.v/y#

�
:

Hence

det.g/DNE .x/�NE .y/NC .v/C .�Q.v/xy#
C ..�Q.v/x/�y/y/

DNE .x/�NE .y/NC .v/�TrE .Q.v/xy#/ 2 F
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where the second equality follows by applying (2.1). �

We note that Proposition 3.5(i) and (iii) are contained in [Springer and Veldkamp
2000, Lemma 4.2.12], but (ii) seems to be new; at least we are not able to find it in
[Springer and Veldkamp 2000] or [Knus et al. 1998]. The results of the proposition
will be used later in the paper.

3-7. The quadratic algebra KC . An immediate consequence of the proposition
is that to every twisted composition algebra .E; C;Q; ˇ/ with dimE C D 2, we
can associate an étale quadratic algebra KC which is given by the square-class of
�C .v/ 2 F

� as in the proof of Proposition 3.5(ii). Thus we have a map

(3.7) ftwisted composition F -algebras with E-rank 2g

�! fétale quadratic F -algebrasg:

For example, if CE is the twisted composition algebra introduced in Section 3-4,
then

�C .x; y/D .NE .x/�NE .y//
2

and the quadratic algebra associated to CE is the split algebra F �F .

3-8. Cohomological description. We come now to the classification of twisted
composition algebras C of rank 2 over E. Since every such C is isomorphic to C0
over F , the set of isomorphism classes of twisted composition algebras over F is
classified by the pointed cohomology set

H 1.F;AutF .F 3; C0;Q0; ˇ0//:

We have seen that AutF .F 3; C0;Q0; ˇ0/Š G2m Ì .Z=2Z�S3/, and so there is a
natural map

(3.8) H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F;Z=2Z/�H 1.F; S3/:

Composing this with the first or second projections, we obtain natural maps

(3.9) H 1.F;AutF .F 3; C0;Q0; ˇ0//

�!H 1.F;Z=2Z/D fétale quadratic F -algebrasg

and

(3.10) H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F; S3/:

All these projection maps are surjective, because of the natural splitting in (3.1).
Indeed, (3.1) endows each fiber of the maps in (3.8), (3.9) and (3.10) with a
distinguished point. We shall see in a moment that the map in (3.9) is the map
defined in (3.7).
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For an étale cubic F-algebraE with associated cohomology class ŒE�2H1.F;S3/,
the fiber of (3.10) over ŒE� is precisely the set of F -isomorphism classes of E-
twisted composition algebras. Moreover, a Galois descent argument shows that the
distinguished point in this fiber furnished by the splitting (3.1) is none other than
the E-twisted composition algebra CE constructed in Section 3-4.

Using CE as the base point, the fiber in question is identified naturally with the
set H 1.F;AutE .CE ;Q; ˇ// modulo the natural action of SE .F / (by conjugation).
The cohomology setH 1.F;AutE .CE ;Q; ˇ// classifies theE-isomorphism classes
of E-twisted composition algebras C over F , and the action of SE .F / is given by

� W .C;Q; ˇ/ 7! .C ˝E;� E; � ıQ;ˇ/

for � 2 SE .F /.

Lemma 3.11. The maps defined by (3.7) and (3.9) are the same.

Proof. We fix the cubic algebra E and let CE D .E2;Q; ˇ/ be the distinguished
E-twisted composition algebra introduced in Section 3-4. Let �C D P 2 be the
homogeneous polynomials as given in Proposition 3.5(ii).

Any E-twisted composition algebra C 0 is given by a pair of tensors .Q0; ˇ0/
on E2, and there is an element g 2 GL2.E˝F F / such that g � .Q; ˇ/D .Q0; ˇ0/.
A 1-cocycle associated to .Q0; ˇ0/ is given by

a� D g
�1�.g/ 2 AutF 3.E

2;Q; ˇ/ for � 2 Gal.F =F /.

The corresponding �C 0 is related to �C by

�C 0.v/D�C .g
�1v/:

Now, the quadratic algebra associated to C 0 by (3.9) corresponds to the quadratic
character

� W � 7! Œa� � 2 �0.AutF 3.E
2;Q; ˇ//D Z=2Z

of Gal.F =F /. By (3.6), we thus have

P.a�1� v/D �.�/ �P.v/

for any v 2 .E˝F F /2.
On the other hand, the quadratic algebra associated to C 0 by (3.7) is defined byp
�C 0.v/ for any v 2E2 such that �C 0.v/¤ 0. Sincep

�C 0.v/D

q
�C .g�1v/D P.g

�1v/;

we need to show that

�.P.g�1v//D �.�/P.g�1v/:
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But we have

�.P.g�1v//D P.�.g/�1v/D P.a�1� g�1v/D �.�/ �P.g�1v/;

as desired. �

3-9. Tits construction. Given an element

.ŒE�; ŒK�/ 2H 1.F; S3/�H
1.F;Z=2Z/;

we describe the composition algebras in the fiber of (3.8) over .ŒE�; ŒK�/. Note that
by (3.1), we have a distinguished point in this fiber. Now, we have:

Proposition 3.12. If C is an E-twisted composition algebra, with associated étale
quadratic algebra K, then we may identify C with E˝F K, such that

Q.x/D e �NE˝FK=E .x/ for some e 2E�

and
ˇ.x/D x#

� e�1 � � for some � 2K

where x 7! x is induced by the nontrivial automorphism of K over F . Moreover,
we have:

NE=F .e/DNK=F .�/:

The distinguished point in the fiber of (3.8) over .ŒE�; ŒK�/ corresponds to taking
.e; �/D .1; 1/.

Proof. The proof of Proposition 3.5(i) shows that the quadratic discriminant algebra
associated to Q is E ˝F K. Hence, we may identify C with E ˝F K with Q
given by e �NE˝FK=E for some e 2 E�. On the other hand, we claim that for
x 2E˝F K and x0 2 C , one has

ˇ.x � x0/D x
#
�ˇ.x0/:

Indeed, one can check this by going to F , where one is reduced to checking this
identity in the split algebra C0, which is straightforward. This shows that ˇ is
determined by ˇ.1/D � � e�1 for some � 2E˝F K. However, the identity

Q.1/# DQ.ˇ.1//

implies that
� � � DNE˝FK=E .�/DNE=F .e/ 2 F:

The requirement that N.x/ 2 F for all x 2E˝F K implies that

TrE˝FK=E .� �NE˝FK=K.x// 2 F:
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In particular, taking x D 1 and then a trace-zero element ı 2 K one obtains,
respectively,

�C � 2 F and �ıC �ı 2 F:

All these conditions imply that � 2K.
Finally, it is easy to see by Galois descent that the distinguished point in the fiber

over .ŒE�; ŒK�/ corresponds to .e; �/D .1; 1/. �

The description of twisted composition algebras given in the above proposition
is sometimes referred to as a Tits construction (though usually this terminology is
reserved for the Jordan algebra associated to the above twisted composition algebra
by Springer’s construction, which is the subject matter of the next section).

3-10. Automorphism group. Using Proposition 3.12, it is not difficult to determine
the automorphism group of any twisted composition algebra C . Indeed, if C Š
E˝F K as in the proposition, then the special orthogonal group

SO.C;Q/D f� 2E˝F K WNE˝K=E .�/D 1g

acts E ˝K-linearly on C by multiplication and preserves Q. An element � 2
SO.C;Q/ preserves ˇ if and only if

�#
D �:

But �# D ��1 since NE˝K=E .�/D � ��# D 1. So

AutE .C;Q; ˇ/\SO.C;Q/Df�2LDE˝K WNL=E .�/D1DNL=K.�/gDTE;K ;

which is a 2-dimensional torus. Since we know the automorphism group of the split
twisted composition algebra .C0;Q0; ˇ0/, we see that

AutE .C;Q; ˇ/0 D TE;K

and AutE .C;Q; ˇ/ sits in short exact sequences of algebraic groups as in (iii) of
Theorem 1.1.

3-11. Cohomology of TE;K . Using Proposition 3.12 and the above description of
AutE .C;Q; ˇ/0, we can describe the fiber of the natural map

H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F;Z=2Z/�H 1.F; S3/

over the element .ŒK�; ŒE�/ 2 H 1.F;Z=2Z/ �H 1.F; S3/. Indeed, this fiber is
equal to

H 1.F; TE;K/ modulo the action of SE .F /�Z=2Z.
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The cohomology group H 1.TE;K/ classifies twisted composition algebras with
fixed E and K, up to E˝F K-linear isomorphism. With LDE˝F K, one has a
short exact sequence of algebraic tori

1 ����! TE;K ����! L�
NL=E�NL=K

���������! .E� �K�/0 ����! 1;

where

.E �K/0 D f.e; �/ 2E� �K� WNE=F .e/DNK=F .�/g:

The associated long exact sequence gives

(3.13) H 1.F; TE;K/Š .E
�
�K�/0= ImL�:

This isomorphism is quite evident in the context of Proposition 3.12. Indeed,
Proposition 3.12 tells us that any twisted composition algebra C with invariants
.E;K/ is given by an element .e; �/ 2 .E� �K�/0. Any L-linear map from C

to another twisted composition algebra C 0 with associated pair .e0; �0/ is given by
multiplication by an element a 2 L�, and this map is an isomorphism of twisted
composition algebras if and only if

.e; �/D .e0 �NL=E .a/; �
0
�NL=K.a//:

This is precisely what (3.13) expresses.

4. Springer’s construction

We can now relate twisted composition algebras to Freudenthal–Jordan algebras.
This construction is due to Springer. Our exposition follows [Knus et al. 1998,
§38A, p. 522].

4-1. Freudenthal–Jordan algebra of dimension 9. A Freudenthal–Jordan algebra
J of dimension 9 over F is a Jordan algebra which is isomorphic over F to the
Jordan algebra J0 associated to the associative algebra M3.F / of 3� 3-matrices,
with Jordan product

a ı b D 1
2
� .abC ba/:

An element a 2 J satisfies a characteristic polynomial

X3�TJ .a/X
2
CSJ .a/X �NJ .a/ 2 F ŒX�:

The maps TJ and NJ are called the trace and norm maps of J respectively. The
element

a#
D a2�TJ .a/aCSJ .a/
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is called the adjoint of a. It satisfies a � a# D NJ .a/. The cross product of two
elements a; b 2 J is defined by

a� b D .aC b/#� a#
� b#:

4-2. Cohomological description. The automorphism group of J0 is PGL3 ÌZ=2Z,
with g 2 PGL3 acting by conjugation and the nontrivial element of Z=2Z acting
by the transpose a 7! at . Thus, the isomorphism classes of Freudenthal–Jordan
algebras of dimension 9 are parametrized by the pointed set H 1.F;PGL3 ÌZ=2Z/,
and there is an exact sequence of pointed sets

H 1.F;PGL3/
f

����! H 1.F;PGL3 ÌZ=2Z/
�

����! H 1.F;Z=2Z/



fétale quadratic F -algebrasg:

The map � is surjective and the fiber of � over the split quadratic algebra F 2 is the
image of f . By [Serre 2002, Proposition 39(ii) and Corollary 1, p. 52], the image of
f is H 1.F;PGL3/ modulo a natural action of Z=2Z. Now the set H 1.F;PGL3/
parametrizes the set of central simple F -algebras B of degree 3, and the Z=2Z

action in question is B 7! Bop. Then the map f sends B to the associated Jordan
algebra.

In general, for any étale quadratic F -algebra K, an element in the fiber of � over
ŒK� 2H 1.F;Z=2Z/ is the Jordan algebra J3.K/ of 3� 3-Hermitian matrices with
entries inK. The automorphism group of J3.K/ is an adjoint groupPGUK3 ÌZ=2Z.
Using J3.K/ as the base point, the fiber of � over ŒK� can then be identified with
H 1.F; PGUK3 / modulo the action of Z=2Z (by [Serre 2002, pp. 50 and 52]). By
[Knus et al. 1998, p. 400], H 1.F; PGUK3 / has an interpretation as the set of
isomorphism classes of pairs .BK ; �/ where

� BK is a central simple K-algebra of degree 3,

� � is an involution of the second kind on BK .

Moreover, the action of the nontrivial element �K 2 Aut.K=F /D Z=2Z is via the
Galois twisting action B 7! B˝K;�K K, so that

H 1.F; PGUK3 /=Z=2Z ! fF -isomorphism classes of .BK ; �/g:

Then the map f sends .BK ; �/ to the Jordan algebra B�K of � -symmetric elements
in BK .

If J is a Freudenthal–Jordan algebra of dimension 9, we will write KJ for the
étale quadratic algebra corresponding to �.J /.



Twisted Bhargava cubes 1929

4-3. Relation with twisted composition algebras. Fix an étale cubic F -algebra E
and a Freudenthal–Jordan algebra J . Suppose we have an algebra embedding

i WE ,! J:

Then, with respect to the trace form TJ , we have an orthogonal decomposition

J D i.E/˚C;

where C D i.E/?. We shall identify E with its image under i . Then for e 2E and
v 2 C , one can check that e� v 2 C . Thus, setting

e ı v WD �e� v

equips C with the structure of an E-vector space. Moreover, writing

v#
D .�Q.v/; ˇ.v// 2E˚C D J

for Q.v/ 2E and ˇ.v/ 2 V , we obtain a quadratic form Q on C and a quadratic
map ˇ on C . Then, by Theorem 38.6 in [Knus et al. 1998], the triple .C;Q; ˇ/ is
an E-twisted composition algebra over F .

Conversely, given anE-twisted composition algebra C over F , the same theorem
says that the spaceE˚C can be given the structure of a Freuthendal–Jordan algebra
over F . In particular, we have described the bijective correspondence between the
objects in (b) and (c) of the main theorem:

fE-twisted composition algebras over F g

l

fi WE �! J with J Freudenthal–Jordan of dimension 9g:

It is also clear that under this identification, one has

AutF .i WE! J /D AutF .i.E/?/:

4-4. Example. Let K be an étale quadratic F -algebra and consider the Jordan
algebra J3.K/ of 3� 3 Hermitian matrices with entries in K. Let E D F �F �F
be the subalgebra of J3.K/ consisting of diagonal matrices. Then C consists of
matrices

v D

0@ 0 Nz3 z2z3 0 Nz1
Nz2 z1 0

1A :
Thus C DK �K �K, and one checks that

Q.z1; z2; z3/D .z1 Nz1; z2 Nz2; z3 Nz3/ and ˇ.z1; z2; z3/D . Nz2 Nz3; Nz3 Nz1; Nz1 Nz2/:



1930 Wee Teck Gan and Gordan Savin

The algebra C is the distinguished point in the fiber of .ŒF 3�; ŒK�/, in the sense of
Proposition 3.12. The automorphism group of C is given by

AutF .C;Q; ˇ/D .K1 �K1 �K1/0 Ì .Z=2Z�S3/;

whereK1 denotes the torus of norm-1 elements inK and .K1�K1�K1/0 denotes
the subgroup of triples .t1; t2; t3/ such that t1t2t3 D 1.

4-5. The quadratic algebra associated to i WE !J . If an E-twisted composition
algebra C corresponds to a conjugacy class of embeddings i W E �! J , then we
may ask how the quadratic algebra KC associated to C can be described in terms
of i WE �! J . In this case, C DE? is an E-twisted composition algebra, and so
C DE˝KC for a quadratic algebra KC as in Proposition 3.12. On the other hand,
we know that J is associated to a pair .BKJ

; �/, where BKJ
is a central simple

algebra over an étale quadratic F -algebra KJ and � is an involution of the second
kind. Now, Examples (5) and (6) on page 527 in [Knus et al. 1998] show that

ŒKC � � ŒKE � � ŒKJ �D 1 2H
1.F;Z=2Z/D F �=F �2:

5. Quasisplit groups of typeD4

In this section, we shall introduce the E-twisted Bhargava’s cube by way of the
quasisplit groups of type D4.

5-1. Root system. Let ‰ be a root system of type D4 and …D f˛0; ˛1; ˛2; ˛3g a
set of simple roots such that the corresponding Dynkin diagram is

3

0 �
�
��HHHH

2 1

The group of diagram automorphisms Aut.…/ is identified with S3, the group of
permutations of f1; 2; 3g. We denote the highest root by ˇ0 D ˛1C˛2C˛3C 2˛0.

5-2. Quasisplit groups of typeD4. Let G be a split, simply connected Chevalley
group of type D4. We fix a maximal torus T contained in a Borel subgroup B
defined over F . The group G is then generated by root groups U˛ Š Ga, where
˛2‰. Steinberg showed that one can pick the isomorphisms x˛ WGa!U˛ such that

Œx˛.u/; x˛0.u
0/�D x˛C˛0.˙uu

0/
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whenever ˛C˛0 is a root. Fixing such a system of isomorphisms fixes an épinglage
(or pinning) for G. As Kac noted, a choice of signs corresponds to an orientation
of the Dynkin diagram. Since one can pick an orientation of the Dynkin diagram
which is invariant under Aut.…/, the group of automorphisms of … can be lifted
to a group of automorphisms of G. Thus, we have a semidirect product

zG DG ÌAut.…/DG ÌS3;

where the action of S3 permutes the root subgroups U˛ and the isomorphisms x˛.
Since the outer automorphism group S3 of G is also the automorphism group of

the split étale cubic F -algebra F 3, we see that every cubic étale algebra E defines
a simply connected quasisplit form GE of G, whose outer automorphism group is
the finite group scheme SE . Thus,

zGE DGE ÌSE

is a form of zG, and it comes equipped with a pair BE � TE , consisting of a Borel
subgroup BE containing a maximal torus TE , both defined over F , as well as a
Chevalley–Steinberg system of épinglage relative to this pair.

5-3. G2 root system. The subgroup of GE fixed pointwise by SE is isomorphic
to the split exceptional group of type G2.

Observe that B D G2 \BE is a Borel subgroup of G2 and T D TE \G2 is a
maximal split torus of G2. Via the adjoint action of T on GE , we obtain the root
system ‰G2

of G2, so that
‰G2
D‰jT :

We denote the short simple root of this G2 root system by ˛ and the long simple
root by ˇ. Then

ˇ D ˛0jT and ˛ D ˛1jT D ˛2jT D ˛3jT :

Thus, the short root spaces have dimension 3, whereas the long root spaces have
dimension 1. For each root 
 2‰G2

, the associated root subgroup U
 is defined
over F and the Chevalley–Steinberg system of épinglage gives isomorphisms

U
 Š

�
ResE=F Ga if 
 is short,
Ga if 
 is long.

5-4. The parabolic subgroup PE . The G2 root system gives rise to two parabolic
subgroups of GE . One of these is a maximal parabolic PE DMENE known as the
Heisenberg parabolic. Its unipotent radical NE is a Heisenberg group with center
ZE D Uˇ0

; see Section 2 in [Gan et al. 2002]. Moreover,

NE=ZE DUˇ �UˇC˛�UˇC2˛�UˇC3˛ ŠGa�ResE=F Ga�ResE=F Ga�Ga
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and
zME DME ÌSE Š GL2.E/0 ÌSE ;

where
GL2.E/0 D fg 2 GL2.E/ W det.g/ 2 F �g:

We shall fix the isomorphism ME ÌSE Š GL2.E/0 ÌSE as follows. We first
consider the case when E D F 3 is split. The pinning gives us an identification

Mder.F /Š SL2.F /3

such that

˛_1 .t/D

��
t

t�1

�
; 1; 1

�
2 SL2.F /3;

while ˛_2 .t/ and ˛_3 .t/ are defined analogously by cyclically permuting the entries
of ˛_1 .t/. We extend this identification to M.F / by

˛_0 .t/D

��
1

t

�
;

�
1

t

�
;

�
1

t

��
2 .GL2.F /3/0:

Note that, under the identification,

ˇ_0 .t/D

��
t

t

�
;

�
t

t

�
;

�
t

t

��
2 .GL2.F /3/0:

Finally, since the pinning is invariant under the action of Aut.…/ŠS3, it follows that

zM.F /Š .GL2.F /3/0 ÌS3;

where S3 acts on .GL2.F /3/0 by permuting the components. For general E, one
obtains the desired isomorphism by a Galois descent argument.

6. Bhargava’s cube

In this section, we shall examine the split case, where the pinning for G gives a
Z-structure on N=Z; for more details see Section 4 in [Gan et al. 2002].

6-1. Bhargava’s cube. Let V2 be the standard representation of SL2. Recall that
we have identified Mder with SL32 and M with .GL32/

0. Under this identification,
the representation of Mder on N=Z is isomorphic to the representation of SL32 on
V D V2˝V2˝V2. Since ˇ_0 .t/ acts on N=Z as multiplication by t , it follows that
.GL32/

0 acts on V by the standard action twisted by det�1. The group S3ŠAut.…/
acts on V2˝V2˝V2 by permuting the three factors.

Since V is an absolutely irreducible SL32-module, the isomorphism of N=Z and
V is unique up to a nonzero scalar. Since ˇ_0 .t/ acts on N=Z as multiplication
by t , the bijection between M -orbits on N=Z and M -orbits on V does not depend
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on the choice of the isomorphism. If we demand that the isomorphism preserves
Z-structures, i.e., that it gives an isomorphism of .N=Z/.Z/ and Z2˝ Z2˝ Z2,
then it is unique up to a sign.

An element v 2 V.F / is represented by a cube

e3 f1

f2 b












a e2

e1 f3













where a; : : : ;b2F and the vertices correspond to the standard basis inF 2˝F 2˝F 2.
More precisely, we fix this correspondence so that�

1

0

�
˝

�
1

0

�
˝

�
1

0

�
and

�
0

1

�
˝

�
0

1

�
˝

�
0

1

�
correspond to the vertices marked with letters a and b, respectively. We note that
elementary matrices in SL2.F /3 act on the space of cubes by the following three
types of “row-column” operations on cubes:

� add or subtract the front face from the rear face of the cube, and vice-versa;

� add or subtract the top face from the bottom face of the cube, and vice-versa;

� add or subtract the right face from the left face of the cube, and vice-versa.

The group S3 ŠAut.…/ acts as the group of symmetries of the cube fixing the two
vertices marked a and b. We shall often write the cube as a quadruple

.a; e;f; b/;

where e D .e1; e2; e3/ and f D .f1; f2; f3/ 2 F 3.

6-2. Reduced and distinguished cube. It is not hard to see that, using the action
of M.F /, every cube can be transformed into a cube of the form .1; 0; f; b/:

0 f1

f2 b












1 0

0 f3
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We shall call such a cube a reduced cube. In particular, we call the cube v0 D
.1; 0; 0;�1/ the distinguished cube.

6-3. Stabilizer of distinguished cube. Let StabM .v0/ and Stab zM .v0/ be the re-
spective stabilizers in M and zM of the distinguished cube v0 2 V . Since Aut.…/
stabilizes v0, the group Stab zM .v0/ is a semidirect product of StabM .v0/ and
Aut.…/. We shall now compute StabM .v0/. Let g D .g1; g2; g3/ 2M.F /, where

gi D

�
ai bi
ci di

�
:

Since

v0 D

�
1

0

�
˝

�
1

0

�
˝

�
1

0

�
�

�
0

1

�
˝

�
0

1

�
˝

�
0

1

�
and

g � v0 D det.g/�1 �
�
a1
c1

�
˝

�
a2
c2

�
˝

�
a3
c3

�
� det.g/�1 �

�
b1
d1

�
˝

�
b2
d2

�
˝

�
b3
d3

�
;

g � v0 D v0 if and only if eight equations hold. Six of these equations are homoge-
neous. They are

a1c2a3 D b1d2b3; a1c2c3 D b1d2d3;

with the additional four obtained by cyclically permuting the indices. If we multiply
the first equation by d3, the second by b3, and subtract them, then

0D a1c2a3d3� a1c2c3b3 D a1c2.a3d3� c3b3/:

Since a3d3 � c3b3 ¤ 0, we have a1c2 D 0. A similar manipulation of these two
equations gives b1d2 D 0. By permuting the indices, we have aicj D bidj D 0 for
all i ¤ j . This implies that all the gi are simultaneously diagonal or off-diagonal.
Now it is easy to see that the remaining two equations imply that StabM .v0/ has
two connected components, and the identity component consists of gD .g1; g2; g3/
such that gi are diagonal matrices, aidi D 1, and a1a2a3D 1. The other component
of StabM .v0/ contains an element w D .w1; w2; w3/ of order 2, where

wi D

�
0 1

1 0

�
:

We now have a complete description of StabM .v0/ (and of Stab zM .v0/):

StabM .v0/Š f.a1; a2; a3/ 2 G3m W a1a2a3 D 1gÌZ=2ZŠ G2m ÌZ=2Z:

In particular, we have shown:
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Proposition 6.1. The stabilizer Stab zM .v0/ in zM of the distinguished cube v0 D
.1; 0; 0;�1/ is isomorphic to the group of F -automorphisms of the split twisted
composition algebra C0. Indeed, they give identical subgroups of .GL2.F /3/0ÌS3,
where we fix the isomorphism M.F /Š .GL2.F /3/0 as above.

6-4. Three quadratic forms. One key observation in [Bhargava 2004a] is that one
can slice the cube (given in the picture in Section 6-1) in three different ways, giving
three pairs of matrices:

A1 D

�
a e2
e3 f1

�
; B1D

�
e1 f3
f2 b

�
;

A2 D

�
a e3
e1 f2

�
; B2D

�
e2 f1
f3 b

�
;

A3 D

�
a e1
e2 f3

�
; B3D

�
e3 f2
f1 b

�
:

Note that the pairs .A2; B2/ and .A3; B3/ are obtained by rotating the pair .A1; B1/
about the axis passing through a and b. For each pair .Ai ; Bi /, Bhargava defines a
quadratic binary form by

Qi D� det.AixCBiy/:

Proposition 6.2. Given a cube v, the three forms Q1, Q2 and Q3 have the same
discriminant �D�.v/.

Proof. We may assume the cube is reduced. Now an easy computation show that
the three forms are 8<:

Q1.x; y/D�f1x
2� bxyCf2f3y

2;

Q2.x; y/D�f2x
2� bxyCf3f1y

2;

Q3.x; y/D�f3x
2� bxyCf1f2y

2:

These forms have the same discriminant �D b2C 4f1f2f3. �

6-5. Quartic invariant. To every cube v 2 V , the discriminant �.v/ described
in the previous proposition is a homogeneous quartic polynomial in v, which is
invariant under the action of SL2.F /3. This describes the quartic invariant of the
prehomogeneous vector space V . An explicit computation gives the formula

�D a2b2� 2ab.e1f1C e2f2C e3f3/C e
2
1f

2
1 C e

2
2f

2
2 C e

2
3f

2
3

C 4af1f2f3C 4be1e2e3� 2.e1e2f1f2C e2e3f2f3C e3e1f3f1/:

If v is reduced, then this simplifies to �.v/D b2C 4f1f2f3. It is easy to check
that for g 2M , one has

�.g � v/D det.g/2 ��.v/:
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Thus, we see that � gives a well-defined map

� W fgeneric zM.F /-orbits on V.F /g�!F �=F �2Dfétale quadratic F -algebrasg:

7. E -twisted Bhargava cube

Now we can extend the discussion of the previous section to the case of general E,
where VE D F ˚E ˚E ˚ F and zME D GL2.E/0 Ì SE , via a Galois descent
using a cocycle in the class of

ŒE� 2H 1.F;Aut.…//DH 1.F; S3/:

A cube is a quadruple vD .a; e;f; b/, where e; f 2E. As in the split case, we shall
call cubes of the form v D .1; 0; f; b/ reduced, and the vector v0;E D .1; 0; 0;�1/
the E-distinguished cube.

7-1. Quartic invariant. By Galois descent, we see that the basic polynomial in-
variant �E is given by

�E .a; e;f; b/D a
2b2� 2ab TrE=F .ef /CTrE=F .e

2f 2/

C 4aNE=F .f /C 4bNE=F .e/� 2TrE=F .e
#f #/:

If v is reduced, then this simplifies to

�E .1; 0; f; b/D b
2
C 4 �NE=F .f /:

7-2. Group action. It is useful to note the action of certain elements of GL2.E/0

on VE . Specifically, � 2 SE acts by �.a; e;f; b/D .a; �.e/; �.f /; b/. Moreover,
the diagonal torus elements

t˛;ˇ D

�
˛ 0

0 ˇ

�
with ˛ˇ 2 F �

act by
.a; e;f; b/ 7! .˛#ˇ�1a; ˛#˛�1e; ˇ#ˇ�1f; ˇ#˛�1b/:

It is easy to check that

�E .t˛;ˇ � v/D .˛ˇ/
2
��E .v/:

Since the actions of SL2.E/ and SE preserve �E , we see that

�E .g � v/D .detg/2 ��E .v/;

so that �E induces a map

f zME -orbits on VE g �! F �=F �2 D fétale quadratic algebrasg:
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In addition, the standard Weyl group element

w D

�
0 1

1 0

�
2 GL2.E/0

acts by

w W .a; e;f; b/ 7! .�b;�f;�e;�a/:

7-3. Stabilizer of distinguished E -cube. We can readily determine the stabilizer
of the E-distinguished cube . Namely, under the action described in Section 7-2, it
is easy to see that the subgroup

E1 D

��
˛

˛�1

�
W ˛ 2E1

�
� SL2.E/

fixes the E-distinguished cube v0;E . So does the Weyl group element w. Thus,
we see that

StabME
.v0;E /ŠE

1 ÌZ=2Z and Stab zME
.v0;E /DE

1 Ì .Z=2Z�SE /:

In particular, we have shown:

Proposition 7.1. The stabilizer Stab zME
.v0;E / in zME of the E-distinguished cube

.1; 0; 0;�1/ is isomorphic to the group of F -automorphisms of the twisted composi-
tion algebra CE introduced in Section 3-4. Indeed, they are identical as subgroups
of GL2.E/0 ÌSE .F / under the fixed isomorphism ME .F /Š GL2.E/0.

8. Generic orbits

We come now to the main result of this paper: the determination of the generic
zME .F /-orbits in VE .F /.

8-1. A commutative diagram. We have the following commutative diagram

(8.1)

H 1.F;Stab zM .v0// ����! H 1.F; zM/??y ??y
H 1.F;AutF .C0;Q0; ˇ0// ����! H 1.F; S3/

We make several observations about this commutative diagram.

Lemma 8.2. (i) The first vertical arrow is bijective.
(ii) The second vertical arrow is bijective.
(iii) The horizontal arrows are surjective.
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Proof. (i) This follows by Proposition 6.1.

(ii) Let the second vertical arrow be denoted by  . Since zM is a semidirect product
of M and S3, the map  is surjective. For injectivity, we shall use the exact
sequence of pointed sets

1 �!H 1.F;M/ �!H 1.F; zM/ �!H 1.F; S3/ �! 1:

Let c 2H 1.F; S3/ and let E be the étale cubic algebra corresponding to c. Then
ME is the twist of M by c. In order to prove that  �1.c/ consists of one element,
it suffices to show that H 1.F;ME / is trivial, by the twisting argument on page 50
of [Serre 2002]. We have an exact sequence of algebraic groups

1 �!ME;der �!ME �! GL1 �! 1;

where ME;der Š ResE=F SL2. By Hilbert’s theorem 90, H 1.F;GL1/ is trivial.
Since

H 1.F;ResE=F SL2/DH 1.E;SL2/D 0

(see [Serre 2002, p. 130]), it follows that H 1.F;ME / is trivial.

(iii) This follows because Stab zM .v0/D StabM .v0/ÌAut.…/, hence

H 1.F;Stab zM .v0//!H 1.F;Aut.…//

has a natural splitting. �

8-2. Determination of orbits. We can now determine the generic zME .F /-orbits
on VE .F /.

Theorem 8.3. Fix an étale cubic F -algebra E.

(i) The generic zME .F /-orbits on VE .F / are in bijective correspondence with the
set of F -isomorphism classes of E-twisted composition algebras over F , with the
orbit of v0;E D .1; 0; 0; 1/ corresponding to the twisted composition algebra CE
introduced in Section 3-4.

(ii) The generic ME .F /-orbits on VE .F / are in bijective correspondence with the
set of E-isomorphism classes of E-twisted composition algebras over F .

(iii) There is a commutative diagram

fE-twisted composition algebrasg ����! fétale quadratic F -algebrasg??y ??y
fgeneric zME -orbits on VE g ����! F �=F �2

where the bottom arrow is the map induced by �E (see Section 7-2).
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Proof. (i) Given a cohomology class ŒE� 2H 1.F; S3/ corresponding to an étale
cubic F -algebra, we consider the fibers of the two horizontal arrows in the commu-
tative diagram (8.1) over ŒE�. Since the map Stab zM .v0/ �! S3 splits, the fiber of
the second horizontal arrow has a distinguished element which corresponds to the
twisted composition algebra CE . Similarly, the fiber over ŒE� of the first horizontal
arrow has a distinguished point which corresponds to the orbit of v0;ED .1; 0; 0;�1/.
Moreover, these two distinguished point correspond under the first vertical arrow.

By the twisting argument [Serre 2002, p. 50] we see that both fibers in question
are naturally identified with

Ker.H 1.F;Stab zME
.v0;E // �!H 1.F; zME //:

Thus, the fiber of the first horizontal map over ŒE� are the generic zME -orbits in
VE , while the fibers of the second map are F -isomorphism classes of E-twisted
composition algebras.

(ii) The bijection follows because both sets are in natural bijection with the set
H 1.F;StabME

.v0;E /DH
1.F;AutE .CE //.

(iii) Suppose an E-twisted composition algebra is represented by a cocycle

.a� / 2H
1.F;StabME

.v0;E //:

Then the associated étale quadratic F -algebra K corresponds to the group homo-
morphism

�K W Gal.F =F / ����! StabME
.v0;E /.F / ����! Z=2Z

given by � 7! a� 7! �.a� /, where � W StabME
.v0;E / ! Z=2Z is the natural

projection. In fact, regarding StabME
.v0;E /�ME as described in Section 7-3, we

see that the map � is simply given by the determinant map on ME D GL2.E/0.
On the other hand, the cocycle splits in H 1.F;ME /D 0, so that we may write

a� D g
�1
� �.g/ for some g 2ME .F /:

Then the zME -orbit associated to .a� / is that of g � v0;E . Now, we have

�E .g � v0;E /D det.g/2 ��E .v0;E /D det.g/2

and
�K.�/D det.a� /D det.g/�1 � �.det.g//

for any � 2Gal.F =F /. This shows that det.g/ is a trace-zero element in K, so that
K is represented by the square class of det.g/2 2 F �, as desired. �

In particular, we have established Theorem 1.1. However, the bijection between
the generic zME .F /-orbits on VE .F / and the F -isomorphism classes of twisted
composition algebras is obtained by a Galois cohomological argument, which is
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quite formal and not at all explicit. For applications, it is necessary to have an
explicit description of the bijection. We shall arrive at such an explicit description
in the following sections.

9. Reinterpreting Bhargava

In this section, revisiting the case when E D F 3 is split, we shall reinterpret
[Bhargava 2004a] in the framework of twisted composition algebras, leading to an
explicit recipe for the bijection in Theorem 8.3.

9-1. Bhargava’s result. We first review briefly Bhargava’s results and, following
him, we shall work over Z. Note that we have an action of the group SL2.Z/3

on the set of integer-valued cubes, by the “row-column” operations described in
Section 6-1.

In order to state the main result of Bhargava, we need a couple of definitions.
Fix a discriminant �. Let K DQ.

p
�/ and R the unique order of discriminant �.

A module M is a full lattice in K. In particular, it is a Z-module of rank 2. We
shall write M D fu; vg if u and v span M . For example,

RD

�
1;
�C
p
�

2

�
:

By fixing this basis of R, we have also fixed a preferred orientation of bases of
modules. An oriented module is a pair .M; �/, where � is a sign. IfM Dfu; vg, then
M becomes an oriented module .M; �/, where �D 1 if and only if the orientation of
fu; vg is preferred. The norm of an oriented module .M; �/ is N.M/D � � ŒR WM�.

Then:

� A triple of oriented modules .M1;M2;M3/, with R as the multiplier ring, is
said to be colinear if there exists ı 2 K� such that the product of the three
oriented modules is a principal oriented ideal ..ı/; �/, where � D sign.N.ı//,
i.e.,M1M2M3D .ı/, as ordinary modules, andN.M1/N.M2/N.M3/DN.ı/.

� A cube is projective of discriminant� if the three associated forms are primitive
and have discriminant �.

� Two triples of oriented modules .M1;M2;M3/ and .M 01;M
0
2;M

0
3/ are equiva-

lent if there exist �1; �2; �3 in K� with M 0i D�iMi and �0i D sign.N.�i //�i
for i D 1; 2; 3.

Then, Bhargava [2004a] showed:

Theorem 9.1. There is a bijection, to be described in the proof , between the
equivalence classes of oriented colinear triples of discriminant� and the SL2.Z/3-
equivalence classes of projective cubes of discriminant �.
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Sketch of proof. Let v be a projective cube. Again, without any loss of generality
we can assume that the cube is reduced and that the numbers f1, f2 and f3 are
nonzero. Define three modules by

M1 D

�
1;
b�
p
�

2f1

�
; M2 D

�
1;
b�
p
�

2f2

�
and M3 D

�
1;
b�
p
�

2f3

�
:

The norms of the three modules are �1=f1;�1=f2 and �1=f3, respectively, if we
take the given bases to be proper. For ı, we shall take

ı D�
2

bC
p
�
;

which has the correct norm �1=.f1f2f3/.
The modulesMi , with given oriented bases, correspond to the quadratic formsQi .

More precisely, if

zi D xi Cyi
b�
p
�

2fi
2Mi ;

then
�fiN.zi /DQi .xi ; yi /D�fix

2
i � bxiyi Cf

#
i y

2
i ;

where f # D .f2f3; f3f1; f1f2/. �

9-2. Integral twisted composition algebras. We can now give a reinterpretation
of Bhargava’s results, in particular of Bhargava’s triples .M1;M2;M3/, in the
framework of twisted composition algebras. Assume the notation from the previous
subsection, so that M1M2M3 D .ı/. Set

C DM1˚M2˚M3:

We shall define a pair of tensors .Q; ˇ/ on C as follows:
� Define a quadratic form Q W C ! Z�Z�Z by

Q.z1;z2;z3/D .�f1N.z1/;�f2N.z2/;�f3N.z3//D�f �.N.z1/;N.z2/;N.z3//:

� Define a quadratic map ˇ W C ! C by

ˇ.z1; z2; z3/D ı.f2f3 Nz2 Nz3; f3f1 Nz3 Nz1; f1f2 Nz1 Nz2/D ı �f
#
� . Nz1; Nz2; Nz3/

#:

The relations M1M2M3 D .ı/ and M NM D N.M/ imply that ˇ is well defined.
Moreover, using N.ı/D�1=.f1f2f3/, one checks that

Q.ˇ.z1; z2; z3//DQ.z1; z2; z3/
#

and

NC .z1; z2; z3/D Tr
�
z1z2z3

ı

�
:

Thus the triple .C;Q; ˇ/ is a twisted composition algebra over Z.
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In terms of the coordinates .xi ; yi / given by

zi D xi Cyi
b�
p
�

2fi
;

we have seen in the sketch proof of Theorem 9.1 that

Qi .zi /D�fiN.zi /D�fix
2
i � bxiyi Cf

#
i y

2
i :

We shall now do the same for ˇ. Write ˇ.z1; z2; z3/D .z01; z
0
2; z
0
3/, and let .x0i ; y

0
i /

be the coordinates of z0i . A short calculation shows that

x01 D�
�
x3 y3

� � 0 f3
f2 b

��
x2
y2

�
and y01 D

�
x3 y3

� �1 0

0 f1

��
x2
y2

�
;

while the expressions for .x02; y
0
2/ and .x3; y3/ are obtained by cyclically permuting

the indices.
There are two important observations to be made here:

� Firstly, these formulas make sense for any triple .f1; f2; f3/ and any b, i.e.,
the fi can be zero. The axioms of twisted composition algebra are satisfied
for formal reasons. For example, if .f1; f2; f3/D .0; 0; 0/ and b D �1, we
get the split algebra C0.

� Secondly, the two matrices are two opposite faces of the cube. This gives a
hint how to directly associate a composition algebra to any cube in general
(i.e., not just a reduced cube).

9-3. From cubes to twisted composition algebras. The above discussion suggests
an explicit recipe for associating a twisted composition algebra over F �F �F to
any cube v 2 V.F /.

LetC DF 2�F 2�F 2. An element z2C is a triple .z1; z2; z3/ of column vectors
zi D

�
xi

yi

�
. Slice a cube into three pairs of 2�2-matrices .Ai ; Bi /, as before, and let

Qi .zi /D� det.Aixi CBiyi /:

Then, we set:

� Q W C ! F �F �F , defined by

Q.z1; z2; z3/D .Q1.z1/;Q2.z2/;Q3.z3//:

� ˇ W C ! C , defined by

ˇ.z1; z2; z3/D .z
0
1; z
0
2; z
0
3/;
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where z0i D
�
x0

i

y0
i

�
,

x01 D�z
>
3 B1z2; x02 D�z

>
1 B2z3; x03 D�z

>
2 B3z1

and
y01 D z

>
3 A1z2; y02 D z

>
1 A2z3; y03 D z

>
2 A3z1:

Thus, starting from a cube v, we have defined a pair of tensors .Q; ˇ/ on
C D F 2 �F 2 �F 2. Let

Q� W V.F / �! ftensors .Q; ˇ/ on C g

be the resulting map. We may express this map using the coordinates .a; e;f; b/ of
a cube. A short calculation gives

Q.x; y/D .e#
� af /x2C .�ab� 2ef CTr.ef //xyC .f #

� be/y2;

ˇ.x; y/D .�ex#
� by#

� .f x/�y; ax#
Cfy#

C .ey/� x/:

In the next section, we shall study the properties of the map Q�; for example,
we shall show that a .Q; ˇ/ in the image of Q� does define a twisted composition
algebra on C .

10. Explicit parametrization

Using the results of the previous section, we can now give an explicit description of
the bijection between zME .F /-orbits of nondegenerate cubes and F -isomorphism
classes of E-twisted composition algebras.

10-1. Definition of Q�. Let us write C D E � e1˚E � e2. Motivated by the case
where E D F 3, studied in the previous section, we define the map

Q� W VE .F / �! ftensors .Q; ˇ/ on C g

using the coordinates v D .a; e;f; b/ of a cube, with a; b 2 F and e; f 2E, by

(10.1)
Q.x; y/D .e#

� af /x2C .�ab� 2ef CTr.ef //xyC .f #
� be/y2;

ˇ.x; y/D .�ex#
� by#

� .f x/�y; ax#
Cfy#

C .ey/� x/:

In particular, for a reduced cube .1; 0;f; b/, one has

(10.2)
Q.x; y/D�f x2� bxyCf #y2;

ˇ.x; y/D .�by#
� .f x/�y; x#

Cfy#/:

Thus, the image of the distinguished cube vE;0 D .1; 0; 0;�1/ is the algebra CE .
Observe also that one has

(10.3) ˇ.1; 0/D .0; 1/ and ˇ.0; 1/D .�b; f /:
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Thus, the standard basis fe1; e2g is a reduced basis with respect to .Q; ˇ/, in the
sense of Section 3-6.

Proposition 10.4. (i) The map Q� is injective.

(ii) For g 2 GL2.E/0 and � 2 SE .F /, one has

Q�.g � v/D tg�1 � Q�.v/ and Q�.� � v/D � � Q�.v/

for any v 2 VE .F /.
Thus, the map Q� is GL2.E/0ÌSE -equivariant, with respect to the outer automor-

phism .g; �/ 7! . tg�1; �/ of GL2.E/0ÌSE , and where the action of GL2.E/0ÌSE
on the set of .Q; ˇ/ is given as in Section 3-3.

(iii) For any nondegenerate cube v, Q�.v/D .Q; ˇ/ defines a twisted composition
algebra on C .

Proof. (i) If Q�.a; e;f; b/D .Q; ˇ/, then

ˇ.1; 0/D .�e; a/ and ˇ.0; 1/D .�b; f /:

Hence the cube .a; e;f; b/ is uniquely determined by ˇ.

(ii) We can verify this equivariance property over F ; thus we only need to check it
for E DF 3. For the central element .t; t; t /2GL2.E/0 or the element � 2 SE , the
desired equivariance property is clear. Thus, it remains to verify it for elementary
matrices such as

g D .Eu; 1; 1/D

��
1 u

0 1

�
; 1; 1

�
2 .GL2.F /�GL2.F /�GL2.F //0:

Now, if the cube v has a pair of faces .A1; B1/, then the corresponding pair for g�v is

.A01; B
0
1/D .A1CuB1; B1/:

Slicing the cube in the other two ways, we obtain

.A02; B
0
2/D .EuA2; EuB2/ and .A03; B

0
3/D .A3E

t
u; B3E

t
u/:

Hence, if Q�.g � v/D .Q0; ˇ0/, then ˇ0 is given on .z1; z2; z3/ 2 F 2 �F 2 �F 2 by�
x01 x

0
2 x
0
3

y01 y
0
2 y
0
3

�
D

�
�zt3B1z2 �zt1EuB2z3 �z

t
2B3E

t
uz1

zt3.A1CuB1/z2 zt1EuA2z3 zt2A3E
t
uz1

�
:
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On the other hand, tg�1 acts on ˇ by precomposing by .tg�1/�1 D gt , and post-
composing by tg�1:

tg�1 �ˇ.gt .z1; z2; z3//D
tg�1 �ˇ.Etuz1; z2; z3/

D
tg�1 �

�
�zt3B1z2 �z

t
1EuB2z3 �z

t
2B3E

t
uz1

zt3A1z2 zt1EuA2z3 zt2A3E
t
uz1

�
D

�
�zt3B1z2 �zt1EuB2z3 �z

t
2B3E

t
uz1

zt3.A1CuB1/z2 zt1EuA2z3 zt2A3E
t
uz1

�
D ˇ0.z1; z2; z3/:

(iii) Again, we may work over F , and hence we may assume that E D F 3. If
v is a reduced cube, we have seen in Section 9-2 that .Q; ˇ/ defines a twisted
composition algebra on E2. Since every zM.F /-orbit contains a reduced cube, the
result follows by (ii). �

The occurrence of the outer automorphism g 7! tg�1 is natural here. Indeed,
assume that E D F 3 and regard GL2.F / as GL.V / for a 2-dimensional F -vector
space V . Then the quadratic map ˇ is an element of .V �/˚3˝F .V �/˚3˝F V ˚3,
whereas its associated cube is an element in V ˝F V ˝F V ˝F det.V /�1. Thus
scaling a cube by t 2 F � corresponds to scaling ˇ by t�1.

10-2. Reduced cubes and bases. To describe the image of Q�, we examine the case
of reduced cubes more carefully.

Proposition 10.5. Suppose that the pair .Q; ˇ/ defines a twisted composition alge-
bra structure onE2 such that the standard basis fe1; e2g is reduced (i.e., ˇ.e1/De2).
Then .Q; ˇ/ is the image under Q� of the reduced cube

v D .1; 0;�Q.e1/;�NQ;ˇ .e1//:

Moreover, �E .v/D�Q;ˇ .e1/ (where the � on the left side is the quasi-invariant
form on the space VE of cubes while the one on the right is defined in Proposition 3.5).

Proof. We need to show that Q and ˇ are uniquely determined by f D �Q.e1/
and b D�NQ;ˇ .e1/. Since

Q.e2/DQ.ˇ.e1//D f
# and bQ.e1; e2/D bQ.e1; ˇ.e1//DN.e1/D�b;

we see that Q is uniquely determined. Then ˇ.xe1Cye2/ is uniquely determined
by (3.4) in Lemma 3.2. Finally, observe that

�E .v/D�Q;ˇ .e1/D b
2
C 4NE .f /: �
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10-3. Good bases. We call a basis of C a good basis if it is in the AutE .C /0 Š
GL2.E/0-orbit of a reduced basis. By Proposition 3.5(iv), this notion is independent
of the choice of the reduced basis. Similarly, since the action of SE preserves the
set of reduced cubes, the notion of good bases does not depend on whether one
uses AutE .C /0 or AutF .E; C /0 Š GL2.E/0 ÌSE .

As a consequence of the proposition, we have:

Corollary 10.6. (i) The map Q� gives a bijection between the set of reduced (nonde-
generate) cubes and the set of .Q; ˇ/ on E2 such that the standard basis fe1; e2g
is reduced.

(ii) The image of Q� consists precisely of those .Q; ˇ/ such that the standard basis
fe1; e2g of C DE2 is a good basis for .Q; ˇ/.

The definition we have given for a good basis fe1; e2g may not seem very
satisfactory. It would have been more satisfactory if one defines a good basis for
.C;Q; ˇ/ using purely the forms .Q; ˇ/ rather than using the action of AutE .C /0.
Indeed, it will not be easy to check that a given basis is good by our definition.
However, by Corollary 10.6, one knows a posteriori that a basis fe1; e2g is good for
.C;Q; ˇ/ if and only if ˇ.xe1Cye2/ has the form given in (10.1) with a; b 2 F .
We would have taken this as a definition, but it would have seemed completely
unmotivated without the results of this section!

10-4. A commutative diagram. As a summary of the above discussion, we have
the following refinement and explication of Theorem 8.3:

Theorem 10.7. (i) The bijective map Q� descends to give a commutative diagram

VE .F /
0 D fc 2 VE .F / W�E .c/¤ 0g ��! zME .F /-orbits on VE .F /0

Q�

??y ??y�
fpairs .Q; ˇ/ on E2: standard basis is goodg ��! fGL2.E/0 ÌSE .F /-orbits of .Q; ˇ/g??y ??y
fF -isomorphism classes of pairs .C; b/g ��! fF -isomorphism classes of C g

where all vertical arrows are GL2.E/0 ÌSE .F /-equivariant bijections and, in the
last row, C denotes an E-twisted composition algebra and b denotes a good basis
of C . Moreover the action of GL2.E/0 ÌSE .F / on a pair .C; fe1; e2g/ is given as
follows: g 2 GL2.E/0 sends the pair to .C; fe01; e

0
2g/, where�

e01
e02

�
D g �

�
e1
e2

�
;

whereas � 2 SE sends the pair to .E˝E;� C; fe1; e2g/.
(ii) The bijection � agrees with the one given in Theorem 8.3.
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Proof. (i) Our discussion above already shows that Q� is bijective and descends
to give the map �. It remains to show that the induced map � is bijective. The
surjectivity of � follows from Proposition 3.5(iii) and (iv) and Corollary 10.6(i).
The injectivity of � follows from Proposition 10.4(i) and (ii). We leave the bijection
and the equivariance of the lower half of the diagram to the reader.

(ii) The map Q� sends the distinguished cube vE;0 D .1; 0; 0;�1/ to the pair
.Q0; ˇ0/ on E2, which defines the algebra CE . Moreover, Q� is equivariant with
respect to the automorphism g 7! tg�1 of GL2.E/, which preserves the subgroup
StabGL2.E/0

.vE;0/D AutE .Q0; ˇ0/� GL2.E/0. Finally, since Q� is algebraic, it
is Galois-equivariant with respect to base field extension. All these imply that we
have a commutative diagram

fGL2.E/0-orbits on VE .F /0g ����! H 1.F;StabGL2.E/0
.vE;0//??y� ??yg 7! tg�1

fE-isomorphism classes
of twisted composition algebrasg ����! H 1.F;AutE .CE //

Since the map g 7! tg�1 of StabGL2.E/0
.vE;0/D AutE .Q0; ˇ0/ is given by con-

jugation by the element w 2 AutE .Q0; ˇ0/.F /, we see that the induced map on
H 1 is trivial. Hence � agrees with the bijection given in Theorem 8.3 by a Galois
cohomological argument. �

10-5. An example. As an example, assume that K D F.
p
�/ and consider the

composition algebra given by the example in Section 4-4. (This is the distinguished
point in the fiber of .ŒF 3�; ŒK�/.) Then vD .

p
�;
p
�;
p
�/ and ˇ.v/D .�;�;�/

is a reduced basis. The corresponding reduced cube is

0 �

� 0













1 0

0 �













10-6. Relation with Tits’ construction. If f 2E�, we can relate the construction
of Q� attached to the reduced cube .1; 0;�f; b/ to Proposition 3.12. Identify E˚E
with E˝K using the E-linear isomorphism given by

.x; y/ 7! x˝ 1C
y

f
˝
b�
p
�

2
D xCy

b�
p
�

2f
;
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where, in the last expression, we omitted tensor product signs for readability.
Then Q can be written as

Q

�
xCy

b�
p
�

2f

�
D�f �NE˝K=E

�
xCy

b�
p
�

2f

�
and ˇ as

ˇ

�
xCy

b�
p
�

2f

�
D�

2

bC
p
�
�f #
�

�
xCy

bC
p
�

2f

�#

:

Indeed, if E D F 3, these formulae are exactly the same as those in Section 9-2 .
Let

e D�f and � D�
bC
p
�

2
:

Using e�1 � N� D ��1 � e# (since NE=F .e/ D NK=F .�/) this composition algebra
is the algebra attached to the pair .e; �/, as in Proposition 3.12. Conversely, a
composition algebra given by a pair .e; �/, as in Proposition 3.12, arises from the
cube .1; 0;�e; b/ where b D�TrK=F .�/.

11. Exceptional Hilbert 90

Assume that E is an étale cubic F -algebra with corresponding étale quadratic
discriminant algebra KE , and let K be an étale quadratic F -algebra. Recall that

TE;K D fx 2E˝F K WNE=F .x/D 1DNK=F .x/g:

Suppose, for example, that ŒKE �D ŒK�D 1, so E is a Galois extension, and TE;K
is the group of norm-one elements in E�. Let � be a generator of the Galois group
GE=F . Then Hilbert’s theorem 90 states that the map

x 7! �.x/=�2.x/

induces an isomorphism of E�=F � and TE;K.F /. Our goal in this section is to
generalize this statement to all tori TE;K , thus obtaining an exceptional Hilbert’s
theorem 90. As an application, we give an alternative description of H 1.F; TE;K/.

11-1. The torus TE;K . We first describe the torus TE;K by Galois descent. OverF ,
we have the identification

TE;K.F /D f.a; b/ 2 F
3
˝F 2 W aibi D 1 for all i and a1a2a3 D 1g:

The F -structure is given by the twist of the Galois action on coordinates by the
cocycle

�E � �K W Gal.F =F / �! Aut.F 3/�Aut.F 2/Š S3 �Z=2Z;
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where S3 and Z=2Z act on Z3 and Z2, respectively, by permuting the coordinates.
We may describe TE;K using its cocharacter lattice X . We have

X D f.a;�a/ 2 Z3˝Z2 W a1C a2C a3 D 0g;

equipped with the Galois action given by

�E ˝ �K W Gal.F =F / �! S3 �Z=2Z:

11-2. The torus T 0
E;K

. Now we introduce another torus T 0E;K over F . Let KJ
be the étale quadratic F -algebra such that ŒKJ � � ŒK� � ŒKE �D 1 in H 1.F;Z=2Z/.
We define the tori

zT 0E;K D fx 2E˝F KJ WNE˝KJ =E .x/ 2 F
�
g

and
T 0E;K D

zT 0E;K=K
�
J ;

where the last quotient is taken in the sense of algebraic groups. If J D B� , where
B is a degree-3 central simple KJ -algebra with an involution � of the second kind,
andE!J is an F -embedding or, equivalently, E˝F KJ !B is aKJ -embedding
such that � pulls back to the nontrivial element of Aut.E˝F KJ =E/, then T 0E;K
acts naturally as a group of automorphisms of the embedding E! J .

We may again describe these tori by Galois descent. Over F , we may identify

zT 0E;K.F /D f.a; b/ 2 .F
�/3˝ .F �/2 W a1b1 D a2b2 D a3b3g;

and T 0E;K.F / is the quotient of this by the subgroup consisting of the elements
.a � 1; b � 1/. The action of Gal.F =F / which gives the F -structure of zT 0E;K is then
described as follows. Let �E W Gal.F =F / �! S3 be the cocycle associated to E,
so that sign ı�E W Gal.F =F / �! Z=2Z is the homomorphism associated to KE .
On the other hand, we let �K be the homomorphism associated to K, so that

.sign ı�E / � �K W Gal.F =F / �! Z=2Z

is the homomorphism associated to KJ . Now the action of Gal.F =F / on F 3˝F 2

is the twist of the action on coordinates by the cocycle

�E � .sign ı�E / � �K W Gal.F =F / �! S3 �Z=2Z:

As before, we may describe the tori zT 0E;K and T 0E;K by their cocharacter lattice.
The cocharacter lattice zY of zT 0E;K is given by

zY D f.a; b/ 2 Z3˝Z2 W a1C b1 D a2C b2 D a3C b3g;

equipped with the Galois action given by

�E � .sign ı�E / � �K W Gal.F =F / �! S3 �Z=2Z:
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This contains the Galois-stable sublattice

Z D .1; 1; 1/˝Z2;

so that Y D zY =Z is the cocharacter lattice of T 0E;K .

11-3. A homomorphism. We are going to construct a morphism of tori from zT 0E;K
to TE;K . We shall first define this morphism over F and then shows that it descends
to F .

Now we may define a morphism over F ,

f W zT 0E;K.F / �! TE;K.F /;

by

f W

�
a1 a2 a3
b1 b2 b3

�
7!

�
a2=a3 a3=a1 a1=a2
b2=b3 b3=b1 b1=b2

�
:

It is easy to see that this defines an F -isomorphism of tori

f W T 0E;K.F /Š TE;K.F /:

Moreover, if � 2 Se.F /D S3 is the cyclic permutation

.a1; a2; a3/ 7! .a2; a3; a1/;

then the map f is given by

f .x/D �.x/=�2.x/:

Now the morphism f induces a map

f� W zY �!X;

given by �
a1 a2 a3
b1 b2 b3

�
7!

�
a2� a3 a3� a1 a1� a2
b2� b3 b3� b1 b1� b2

�
:

This induces an isomorphism of Z-modules Y ŠX .

11-4. Exceptional Hilbert 90. The main result of this section is:

Theorem 11.1. The isomorphism f WT 0E;K�F F �!TE;K�F F is defined over F ,
and thus gives an isomorphism of tori

T 0E;K �! TE;K

given by
x 7! �.x/=�2.x/:
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Proof. It remains to prove that f is defined over F . For this, we may work at the
level of cocharacter lattices, and we need to show that f� is Galois-equivariant. For
this, regard Z3˝Z2 as a S3�Z=2Z-module with the permutation of the coordinates
in Z3 and Z2. Then observe that f� is not equivariant with respect to S3 �Z=2Z.
On the other hand, we have the automorphism of S3 �Z=2Z given by

.g; h/ 7! .g; sign.g/ � h/

If we twist the S3 �Z=2Z-module structure on the domain of f� by this automor-
phism, then f� is easily seen to be equivariant. Together with our description of
the Gal.F =F /-actions on the domain and codomain of f�, the desired Gal.F =F /-
equivariance follows. �

11-5. Cohomology of TE;K . As an application of the exceptional Hilbert 90, we
may give an alternative description of the cohomology group H 1.F; TE;K/, which
classifies twisted composition algebras with fixed invariants .E;K/ up to E˝F K-
linear isomorphisms.

In order to state our results, we need additional notation. For every quadratic
extension KJ of F , let Res1

KJ =F
Gm be the 1-dimensional torus defined by the

short exact sequence of algebraic tori

1 ����! Res1
KJ =F

Gm ����! ResKJ =F Gm ����! Gm ����! 1:

By the classical Hilbert theorem 90, the associated long exact sequence gives the
exact sequence

1 �!H 2.F;Res1KJ =F
Gm/ �!H 2.KJ ;Gm/ �!H 2.F;Gm/;

where the last map is the corestriction. By a theorem of Albert, Riehm, and
Scharlau [Knus et al. 1998, Theorem 3.1], the kernel of the corestriction map is the
set of Brauer equivalence classes of central simple algebras over KJ that admit an
involution of the second kind, and so we can view H 2.F;Res1

KJ =F
Gm/ as the set

of Brauer equivalence classes of such algebras.

Proposition 11.2. LetKJ be an étale quadratic algebra with ŒKJ � � ŒK� � ŒKE �D 1,
and set M DE˝F KJ .

(i) If KJ is a field, then we have an exact sequence

1 �!E�=F �NM=E .M
�/ �!H 1.F; TE;K/

�!H 2.F;Res1KJ =F
Gm/ �!H 2.E;Res1M=E Gm/:

The image ofH 1.F; TE;K/ consists of those central simple algebras overKJ which
contain M as a KJ -subalgebra and which admit an involution of the second kind
fixing E (or equivalently, restricting to the nontrivial automorphism of M over E).
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(ii) If KJ D F 2, then we have a simplified version of the above sequence:

H 1.F; TE;K/D Ker.H 2.F;Gm/ �!H 2.E;Gm//:

Proof. (i) By the exceptional Hilbert theorem 90, we have a short exact sequence
of algebraic tori

1 ����! Res1
KJ =F

Gm ����! ResE=F Res1
M=E

Gm ����! TE;K ����! 1:

Now, (i) follows from the associated long exact sequence, using

H 1.F;Res1KJ =F
Gm/D F

�=NKJ =FK
�
J ;

H 1.E;Res1M=E Gm/DE
�=NM=EM

�:

(ii) One argues as above, except that since KJ D F 2, we have

1 ����! Gm ����! ResE=F Gm ����! TE;K ����! 1:

Thus the long exact sequence gives

1 ����! H 1.F; TE;K/ ����! H 2.F;Gm/ ����! H 2.E;Gm/: �

11-6. Interpretation. The above description of H 1.F; TE;K/ fits beautifully with
the correspondence between E-twisted composition algebras and conjugacy classes
of embeddings E ,! J , where J is a Freudenthal–Jordan algebra of dimension 9.

More precisely, Proposition 11.2 exhibitsH 1.F; TE;K/ as the set of isomorphism
classes of triples .B; �; i/, where:

� B is a central simple KJ -algebra of degree 3.

� � is an involution of the second kind on B .

� i W E �! B� is an F -algebra embedding, or equivalently a KJ -algebra em-
bedding i WM D E ˝F KJ �! B such that � pulls back to the nontrivial
element of Aut.M=E/.

The map � WH 1.F; TE;K/!H 2.F;Res1
KJ =F

Gm/ sends .B; �; i/ toB . For a fixed

ŒB� 2 Ker.H 2.F;Res1KJ =F
Gm/ �!H 2.E;Res1M=E Gm//;

so thatB containsM DE˝FKJ as anKJ -subalgebra, the fiber of � over ŒB� is the
set of AutKJ

.B/-conjugacy classes of pairs .�; i/. The Skolem–Noether theorem
says that any two embeddings M ,! B are conjugate, and on fixing an embedding
i W M ,! B , the fiber of � over ŒB� is then the set of AutKJ

.B; i/-conjugacy
classes of involutions of the second kind on B which restricts to the nontrivial
automorphism of M over E. Therefore, the exact sequence in Proposition 11.2(i)
says that the set of such AutKJ

.B; i/-conjugacy classes of involutions is identified
with E�=F �NM=E .M�/. One has a natural map on the fiber ��1.ŒB�/ sending a
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AutKJ
.B; i/-conjugacy class of involutions to its AutKJ

.B/-conjugacy class. This
is the surjective map described in Corollary 19.31 in [Knus et al. 1998].

On the other hand, the map sending the triple .B; �; i/ to the pair .B; �/ is the
natural map

H 1.F; TE;K/ �!H 1.F; PGU
KJ

3 /

induced by the map TE;K ,! PU
KJ

3 where PGUKJ

3 is the identity component
of the automorphism group of the Freuthendal–Jordan algebra associated to the
distinguished twisted composition algebra with invariants .E;K/.

12. Local fields

In this section, we specialize and explicate the main result in the case of local fields.

12-1. Local fields. Let F be a local field, E an étale cubic F -algebra, and KE the
corresponding discriminant algebra. Let K be an étale quadratic F -algebra. We
consider
z�E;K D fgeneric zME -orbits on VE with associated quadratic algebra Kg;

�E;K D fgeneric ME -orbits on VE with associated quadratic algebra Kg:

We have seen that z�E;K has a distinguished element: this is the distinguished point
ofH 1.TE;K/which is fixed by SE .F /�Z=2Z. Moreover, by Galois cohomological
arguments,

z�E;K DH
1.F; TE;K/=SE .F /�Z=2Z and �E;K DH

1.F; TE;K/=Z=2Z:

We would like to explicate the sets z�E;K and �E;K .

12-2. Cohomology of tori. Recall that in (3.13), we have shown

H 1.F; TE;K/D .E
�
�K�/0= Im.L�/;

where LDE˝F K,

.E� �K�/0 D f.e; �/ 2E� �K� WNE=F .e/DNK=F .�/g

and the map from L� to .E� �K�/0 is given by

a 7! .NL=E .a/; NL=K.a//:

This description of H 1.F; TE;K/ is natural but may not be so explicit. When F is
a local field, we can further explicate this description.

Since the case when E or K is not a field is quite simple, we consider the case
when E and K are both fields. In that case, the norm map induces an isomorphism

E�=NL=E .L
�/ �! F �=NK=F .K

�/Š Z=2Z;
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so that any .e; �/2 .E��K�/0 has eDNL=E .a/ for some a 2L�. Hence any ele-
ment inH 1.F; TE;K/ is represented by .1; �/ for �2K1Df�2K� WNK=F .�/D1g.
We thus deduce that, with L1 D fa 2 L� WNL=E .a/D 1g,

H 1.F; TE;K/DK
1=NL=K.L

1/ŠK�=F �NL=K.L
�/;

where the last isomorphism is induced by the usual Hilbert theorem 90. Using this
last expression, we easily see that

H 1.F; TE;K/D

�
1 if K ¤KE ,
Z=3Z if K DKE .

Exchanging the roles of E and K in the above argument, one also has

H 1.F; TE;K/DE
1=NL=E .L1/;

where now L1 D fa 2 L
� WNL=K.a/D 1g. If E=F is Galois (and K is a field), it

follows by the usual Hilbert theorem 90 that

H 1.F; TE;K/DE
1=NL=E .L1/ŠE

�=F �NL=E .E
�/D 1;

thus partially recovering the result of the last section.
Alternatively, we could use Proposition 11.2 to computeH 1.F; TE;K/. IfKJ is a

field, then the only central simpleKJ -algebra which admits an involution of the sec-
ond kind is the split algebraM3.KJ /. Thus we deduce from Proposition 11.2(i) that

H 1.F; TE;K/ŠE
�=F �NM=E .M

�/;

where M DE˝F KJ . On the other hand, if KJ is split, Proposition 11.2(ii) gives

H 1.F; TE;K/Š Ker.H 2.F;Gm/ �!H 2.E;Gm//;

which is Z=3Z when E is a field.

12-3. Fibers. With the various computations ofH 1.F; TE;K/ given above, it is not
difficult to show the following proposition which determines j z�E;K j and j�E;K j.

Proposition 12.1. We have

E K TE;K H 1.F; TE;K/ j z�E;K j j�E;K j

F�KE K DKE K� 1 1 1

F�KE ,KE a field field¤KE .K˝KE /
�=K�E Z=2Z 2 2

F�KE ,KE a field F�F K�E 1 1 1

F 3 field K�=F ��K�=F � Z=2Z�Z=2Z 2 4

field K DKE E�=F � Z=3Z 2 2

field K ¤KE 1 1 1
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Here, the difference in the last two columns reflects the fact that SE .F / acts
trivially on H 1.F; TE;K/ except when E D F 3 and K is a field.

12-4. Embeddings into J . The main theorem says that the elements of �E;K are
in bijection with the conjugacy classes of embeddings

E ,! J;

where J is a 9-dimensional Freudenthal–Jordan algebra associated to a pair .B; �/,
where B is a central simple algebra over the quadratic algebra KJ and � is an
involution of the second kind on B . We now describe the elements of �E;K in
terms of such embeddings.

� When F is p-adic and K DKE , so that KJ D F �F is split, then

.B; �/D .D �Dop; sw/

where D is a central simple F -algebra of degree 3 and sw denotes the involution
which switches the two factors. Thus, there are two possible J in this case: the
Jordan algebra JC attached to M3.F / or the Jordan algebra J� attached to a cubic
division F -algebra (and its opposite). In either case, the set of embeddings E �! J

is either empty or a single conjugacy class, and it is empty if and only if J D J�

and E is not a field. Thus when K DKE , we have

z�E;K D�E;K D

�
fE! JC; E! J�g if E is a field;
fE! JCg if E is not a field.

On the other hand, when KJ is a field, then B DM3.KJ /, and there is a unique
isomorphism class of involution of the second kind on B , given by conjugation by
a nondegenerate hermitian matrix, so that J is isomorphic to the Jordan algebra
of 3�3-Hermitian matrices with entries in KJ . According to the proposition, there
is a unique conjugacy class of embedding E ,! J unless E D F �KE and K is
a field with K ¤ KE . In the exceptional case, there are two subalgebras E � J
up to conjugacy. We may write down the 2 non-F -isomorphic twisted composition
algebras corresponding to these. The twisted composition algebra can be realized on

E˝F K DK � .KE ˝K/:

Let f1; ˛g denote representatives of F �=NK�. Then the two twisted composition
algebras correspond to

.e; �/D ..1; 1/; 1/ or ..1; ˛/; ˛/ 2 .F �KE /
�
�K�:

We see that these two twisted composition algebras are not isomorphic because
they are not isomorphic as quadratic spaces over E (even allowing for twisting
by SE .F /).
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Further, when E D F 3, there are in fact four conjugacy classes of embed-
dings E ,! J . This corresponds to the fact that the F -isomorphism class of
the twisted composition algebras associated to ..1; ˛/; ˛/ above breaks into three
E-isomorphism classes. These are associated to

.e1; �1/D ..1; ˛; ˛/; ˛/; .e2; �2/D ..˛; 1; ˛/; ˛/; .e3; �3/D ..˛; ˛; 1/; ˛/:

� When F D R, then E D R3 or R�C. When KJ D R2 is split, then there is a
unique J , namely the one associated to M3.R/, and there is a unique conjugacy
class of embeddings E ,! J .

When KJ D C, then there are two possible J , associated to B DM3.C/ and
the involution � given by the conjugation action of two Hermitian matrices with
signature .1; 2/ and .3; 0/. We denote these two Jordan algebras by J1;2 and J3;0.

When E D R3 and K D C, we have j�E;K j D 2. However, the two elements in
question correspond to embeddings

R3 ,! J3;0 and R3 ,! J1;2:

Thus, we see that these subalgebras are unique up to conjugacy. When E D R�C

and K DR2, we have j�E;K j D 1. This reflects the fact that there is no embedding
R�C ,! J3;0, and there is a unique conjugacy class of embeddings C ,! J1;2.

Acknowledgment

This work began when both authors participated in the program “Branching Laws”
at the Institute for Mathematical Sciences at the National University of Singapore in
March 2012, and was completed during Savin’s stay at the Hong Kong University
of Science and Technology in May 2013. Both authors thank Chengbo Zhu for
his invitation to the IMS program. Savin would like to thank Jianshu Li for the
invitation, and HKUST for excellent working environment.

Gan is partially supported by AcRF Tier One grant R-146-000-155-112, and
Savin is supported by a National Science Foundation grant DMS-0852429.

References

[Bhargava 2004a] M. Bhargava, “Higher composition laws, I: A new view on Gauss composition,
and quadratic generalizations”, Ann. of Math. .2/ 159:1 (2004), 217–250. MR 2005f:11062a
Zbl 1072.11078

[Bhargava 2004b] M. Bhargava, “Higher composition laws, II: On cubic analogues of Gauss compo-
sition”, Ann. of Math. .2/ 159:2 (2004), 865–886. MR 2005f:11062b Zbl 1169.11044

[Bhargava 2004c] M. Bhargava, “Higher composition laws, III: The parametrization of quartic rings”,
Ann. of Math. .2/ 159:3 (2004), 1329–1360. MR 2005k:11214 Zbl 1169.11045

[Gan et al. 2002] W. T. Gan, B. Gross, and G. Savin, “Fourier coefficients of modular forms on G2”,
Duke Math. J. 115:1 (2002), 105–169. MR 2004a:11036 Zbl 1165.11315

http://dx.doi.org/10.4007/annals.2004.159.217
http://dx.doi.org/10.4007/annals.2004.159.217
http://msp.org/idx/mr/2005f:11062a
http://msp.org/idx/zbl/1072.11078
http://dx.doi.org/10.4007/annals.2004.159.865
http://dx.doi.org/10.4007/annals.2004.159.865
http://msp.org/idx/mr/2005f:11062b
http://msp.org/idx/zbl/1169.11044
http://dx.doi.org/10.4007/annals.2004.159.1329
http://msp.org/idx/mr/2005k:11214
http://msp.org/idx/zbl/1169.11045
http://dx.doi.org/10.1215/S0012-7094-02-11514-2
http://msp.org/idx/mr/2004a:11036
http://msp.org/idx/zbl/1165.11315


Twisted Bhargava cubes 1957

[Knus et al. 1998] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions,
American Mathematical Society Colloquium Publications 44, Amer. Math. Soc., Providence, RI,
1998. MR 2000a:16031 Zbl 0955.16001

[Serre 2002] J.-P. Serre, Galois cohomology, Springer, Berlin, 2002. MR 2002i:12004 Zbl 1004.12003

[Springer and Veldkamp 2000] T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and
exceptional groups, Springer, Berlin, 2000. MR 2001f:17006 Zbl 1087.17001

Communicated by Efim Zelmanov
Received 2014-02-24 Revised 2014-07-23 Accepted 2014-07-26

matgwt@nus.edu.sg Department of Mathematics, National University of Singapore,
Block S17, 10 Lower Kent Ridge Road, Ridge Road,
Singapore 119076, Singapore

savin@math.utah.edu Department of Mathematics, University of Utah,
Salt Lake City, UT 84112, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/2000a:16031
http://msp.org/idx/zbl/0955.16001
http://dx.doi.org/10.1007/978-3-642-59141-9
http://msp.org/idx/mr/2002i:12004
http://msp.org/idx/zbl/1004.12003
http://dx.doi.org/10.1007/978-3-662-12622-6
http://dx.doi.org/10.1007/978-3-662-12622-6
http://msp.org/idx/mr/2001f:17006
http://msp.org/idx/zbl/1087.17001
mailto:matgwt@nus.edu.sg
mailto:savin@math.utah.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 8 2014

1787Relative cohomology of cuspidal forms on PEL-type Shimura varieties
KAI-WEN LAN and BENOÎT STROH

1801`-modular representations of unramified p-adic U(2,1)
ROBERT JAMES KURINCZUK

1839McKay natural correspondences on characters
GABRIEL NAVARRO, PHAM HUU TIEP and CAROLINA VALLEJO

1857Quantum matrices by paths
KAREL CASTEELS

1913Twisted Bhargava cubes
WEE TECK GAN and GORDAN SAVIN

1959Proper triangular Ga-actions on A4 are translations
ADRIEN DUBOULOZ, DAVID R. FINSTON and IMAD JARADAT

1985Multivariate Apéry numbers and supercongruences of rational functions
ARMIN STRAUB

2009The image of Carmichael’s λ-function
KEVIN FORD, FLORIAN LUCA and CARL POMERANCE

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.8

http://dx.doi.org/10.2140/ant.2014.8.1787
http://dx.doi.org/10.2140/ant.2014.8.1801
http://dx.doi.org/10.2140/ant.2014.8.1839
http://dx.doi.org/10.2140/ant.2014.8.1857
http://dx.doi.org/10.2140/ant.2014.8.1959
http://dx.doi.org/10.2140/ant.2014.8.1985
http://dx.doi.org/10.2140/ant.2014.8.2009

	1. Introduction
	2. Étale cubic algebras
	2-1. Étale cubic algebras
	2-2. Discriminant algebra of E
	2-3. Twisted form of S3
	2-4. Quadratic map #

	3. Twisted composition algebras
	3-1. Twisted composition algebras
	3-2. Morphisms
	3-3. AutF(E,C)-action and isomorphism classes
	3-4. Dimension-2 case
	3-5. Identities
	3-6. Reduced basis
	3-7. The quadratic algebra KC
	3-8. Cohomological description
	3-9. Tits construction
	3-10. Automorphism group
	3-11. Cohomology of TE,K

	4. Springer's construction
	4-1. Freudenthal–Jordan algebra of dimension 9
	4-2. Cohomological description
	4-3. Relation with twisted composition algebras
	4-4. Example
	4-5. The quadratic algebra associated to i:E J

	5. Quasisplit groups of type D4
	5-1. Root system
	5-2. Quasisplit groups of type D4
	5-3. G2 root system
	5-4. The parabolic subgroup PE

	6. Bhargava's cube
	6-1. Bhargava's cube
	6-2. Reduced and distinguished cube
	6-3. Stabilizer of distinguished cube
	6-4. Three quadratic forms
	6-5. Quartic invariant

	7. E-twisted Bhargava cube
	7-1. Quartic invariant
	7-2. Group action
	7-3. Stabilizer of distinguished E-cube

	8. Generic orbits
	8-1. A commutative diagram
	8-2. Determination of orbits

	9. Reinterpreting Bhargava
	9-1. Bhargava's result
	9-2. Integral twisted composition algebras
	9-3. From cubes to twisted composition algebras

	10. Explicit parametrization
	10-1. Definition of 
	10-2. Reduced cubes and bases
	10-3. Good bases
	10-4. A commutative diagram
	10-5. An example
	10-6. Relation with Tits' construction

	11. Exceptional Hilbert 90
	11-1. The torus TE,K
	11-2. The torus T'E,K
	11-3. A homomorphism
	11-4. Exceptional Hilbert 90
	11-5. Cohomology of TE,K
	11-6. Interpretation

	12. Local fields
	12-1. Local fields
	12-2. Cohomology of tori
	12-3. Fibers
	12-4. Embeddings into J

	Acknowledgment
	References
	
	

