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Proper triangular Ga-actions on A4

are translations
Adrien Dubouloz, David R. Finston and Imad Jaradat

We describe the structure of geometric quotients for proper locally triangulable
Ga-actions on locally trivial A3-bundles over a nœtherian normal base scheme X
defined over a field of characteristic 0. In the case where dim X = 1, we show
in particular that every such action is a translation with geometric quotient iso-
morphic to the total space of a vector bundle of rank 2 over X . As a consequence,
every proper triangulable Ga-action on the affine four space A4

k over a field of
characteristic 0 is a translation with geometric quotient isomorphic to A3

k .

Introduction

The study of algebraic actions of the additive group Ga = Ga,C on complex affine
spaces An

= An
C

has a long history which began in 1968 with a pioneering result
of Rentschler [1968] who established that every such action on the plane A2 is
triangular in a suitable polynomial coordinate system. Consequently, every fixed
point free Ga-action on A2 is a translation, in the sense that the geometric quotient
A2/Ga is isomorphic to A1 and that A2 is equivariantly isomorphic to A2/Ga×Ga

where Ga acts by translations on the second factor.
Arbitrary Ga-actions turn out to be no longer triangulable in higher dimensions

[Bass 1984]. But the question whether a fixed point free Ga-action on A3 is a
translation or not was settled affirmatively, first for triangulable actions in [Snow
1988], then in [Deveney and Finston 1994] under the additional assumption that
the action is proper and then in general in [Kaliman 2004]. The argument for
triangulable actions depends on their explicit form in an appropriate coordinate
system which is used to check that the algebraic quotient π : A3

→ A3//Ga =

Spec(0(A3,OA3)Ga ) is a geometric quotient and that A3//Ga is isomorphic to A2.
For proper actions, the properness implies that the geometric quotient A3/Ga ,
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which a priori only exists as an algebraic space, is separated whence a scheme
by virtue of Chow’s Lemma. This means equivalently that the Ga-action is not
only locally equivariantly trivial in the étale topology but in fact locally trivial in
the Zariski topology, that is, that A3 is covered by invariant Zariski affine open
subsets of the form Vi =Ui ×Ga on which Ga acts by translations on the second
factor. Since A3 is factorial, the open subsets Vi can even be chosen to be principal,
which implies in turn that A3/Ga is a quasiaffine scheme, in fact an open subset
of A3//Ga ' A2 with at most finite complement. The equality A3/Ga = A3//Ga

ultimately follows by comparing Euler characteristics. Kaliman’s general proof
proceeds along a completely different approach, drawing on topological arguments
to show directly that the algebraic quotient morphism π :A3

→A3//Ga is a locally
trivial A1-bundle. Similar topological methods have been also applied by Kaliman
and Saveliev [2004] to conclude more generally that every fixed point free Ga-action
on a smooth complex contractible affine threefold X is a translation in the broader
sense that X has the structure of a trivial Ga-bundle over its geometric quotient
X/Ga , which is a smooth contractible affine surface.

Kaliman’s result can be reinterpreted as the striking fact that the topological
contractiblity of A3 is a strong enough constraint to guarantee that a fixed point free
Ga-action on it is automatically proper. This implication fails completely in higher
dimensions where nonproper fixed point free Ga-actions abound, even in the case
of triangular actions on A4 as illustrated by Deveney, Finston and Gehrke [Deveney
et al. 1994]. And starting from dimension 5, properness is known to be no longer
enough to imply global equivariant triviality as illustrated by examples of proper
triangular actions on A5 with strictly quasiaffine geometric quotients constructed
by Winkelmann [1990].

On the other hand, a general characterization claimed by Fauntleroy and Magid
[1976] asserted that proper Ga-actions on factorial affine varieties were always
locally equivariantly trivial in the Zariski topology, with quasiaffine geometric
quotients. But counterexamples were constructed latter on by Deveney and Finston
[1995] in the form of proper triangular actions on A5 whose geometric quotients
exists only as separated algebraic spaces. So the question whether a proper Ga-
action on A4 is a translation or is at least locally equivariantly trivial in the Zariski
topology is essentially the last unsettled problem concerning proper Ga-actions on
affine spaces, and very little progress had been made on the subject during the last
decades.

The only existing partial results so far concern triangular actions: Deveney,
van Rossum and Finston [2004] established that a Zariski locally equivariantly
trivial triangular Ga-action on A4 is a translation. The proof depends on the
finite generation of the ring of invariants for such actions established by Daigle
and Freudenburg [2001] and exploits the very particular structure of these rings.
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Incidentally, it is known in general that local triviality for a proper action on An

follows from the finite generation and regularity of the ring of invariants. But
even knowing the former for triangular actions on A4, a direct proof of the latter
condition remains elusive. The second positive result concerns a special type of
triangular Ga-actions generated by derivations of C[x, y, z, u] of the form r(x)∂y+

q(x, y)∂z+ p(x, y)∂u where r(x)∈C[x] and p(x, y), q(x, y)∈C[x, y, ]. To insist
on the fact that p(x, y) belongs to C[x, y] and not only to C[x, y, z] as it would
be the case for a general triangular situation, these derivations (and the Ga-actions
they generate) were named twin-triangular in [Deveney and Finston 2000]. The
case where r(x) has simple roots was first settled there by explicitly computing
the invariant ring C[x, y, z, u]Ga and investigating the structure of the algebraic
quotient morphism A4

→ A4//Ga = Spec(C[x, y, z1, z2]
Ga ). The simplicity of the

roots of r(x) was crucial to achieve the computation, and the generalization of the
result to arbitrary twin-triangular actions obtained in 2012 by the first two authors
[Dubouloz and Finston 2014] required completely different methods which focused
more on the nature of the corresponding geometric quotients A4

C
/Ga . The latter a

priori exist only as separated algebraic spaces and the crucial step in loc. cit. was to
show that for twin-triangular actions they are in fact schemes, or, equivalently that
proper twin-triangular Ga-actions on A4 are not only locally equivariantly trivial in
the étale topology but also in the Zariski topology. This enabled in turn the use of
the aforementioned result of Deveney, Finston, and van Rossum to conclude that
such actions are indeed translations.

In this article, we reconsider proper triangular actions on A4 in broader framework
and we develop new techniques which enable to completely solve the question of
global equivariant triviality for such actions. The triangularity assumption is of
course a restriction, and it might look quite artificial from a geometric point of view.
But its main consequence is to reduce an a priori four-dimensional problem to a
relative three-dimensional one over a parameter space, a reduction which is crucial
for our argument and turns out to be the natural context in which to interpret the
aforementioned counterexamples to global or Zariski local equivariant triviality. A
second more technical benefit is that it enables an effective characterization of the
properness of a Ga-action in terms of its associated locally nilpotent derivation, a
problem which is in general much more delicate to handle than deciding the weaker
property of being fixed point free.

The existence of smooth factorial affine hypersurfaces of A5 on which the
proper triangular Ga-actions constructed by Deveney and Finston [1995] restrict to
proper actions whose geometric quotients exist only as separated algebraic spaces
shows that even under appropriate triangularity assumptions, the question whether
a proper Ga-action on A4 is Zariski locally equivariantly trivial remains a subtle
problem. It also indicates that in order to weaken these appropriate hypotheses,
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additional algebrogeometric properties of A4 beyond factoriality, such as for instance
topological contractibility, should play a role in the problem. But on the other hand,
the existence of smooth contractible complex affine threefolds nonisomorphic to
A3 shows that topological methods are not sufficient to infer that a given proper
Ga-action on A4 is a translation from its local or even global equivariant triviality.
In particular, knowing that every such action is a translation would solve the Zariski
Cancellation Problem in dimension three, for if X is a variety such that X×A1

'A4,
the Ga-action by translations on the second factor of X ×A1 is obviously proper.

In this article we embed the study of proper triangular Ga-actions on A4 into
the following more general setup: given a nœtherian normal scheme X defined
over a field of characteristic zero, we consider Zariski locally trivial A3-bundles
π : E→ X equipped with proper locally triangulable actions of the additive group
scheme Ga,X . The local triangularity assumption means roughly that X can be
covered by affine open subsets U = Spec(A) over which the restriction of E is
equivariantly isomorphic to A3

U = Spec(A[y, z, u]) equipped with the Ga,U -action
induced by a triangular A-derivation of A[y, z, u]. Our main result then is this:

Theorem. Let X be a nœtherian normal scheme defined over a field of characteris-
tic zero, let π : E→ X be a Zariski locally trivial A3-bundle equipped with a proper
locally triangulable Ga,X -action and let p : X = E/Ga,X → X be the geometric
quotient taken in the category of algebraic X-spaces. Then there exists an open
subscheme U of X with codimX (X \U )≥ 2 such that XU = p−1(U )→U has the
structure of a Zariski locally trivial A2-bundle.

The conclusion of this theorem is essentially optimal. Indeed, in the exam-
ple due to Winkelmann [1990], one has X = Spec(C[x, y]), π = prx,y : A3

X =

Spec(C[x, y][u, v, w])→ X equipped with the proper triangular Ga,X -action gen-
erated by the C[x, y]-derivation ∂= x∂u+y∂v+(1+xv−yu)∂w of C[x, y][u, v, w],
and the geometric quotient p :X=A3

X/Ga,X→ X is the strictly quasiaffine comple-
ment of the closed subset {x = y= z=0} in the 4-dimensional smooth affine quadric
Q ⊂ A3

X with equation xt2+ yt1 = z(z+ 1). The structure morphism p : X→ X
is easily seen to be an A2-fibration, which restricts to a locally trivial A2-bundle
over the open subset U = X \ {(0, 0)}. However, there is no Zariski or étale open
neighborhood of the origin (0, 0)∈ X over which p :X→ X restricts to a trivial A2-
bundle for otherwise p :X→ X would be an affine morphism and so X would be an
affine scheme. The situation for the C[x, y]-derivation ∂ = x∂u+ y∂v+(1+xv2)∂w

of C[x, y][u, v, w] constructed by Deveney and Finston [1995] is very similar: here
the geometric quotient X= A3

X/Ga,X is a separated algebraic space which is not a
scheme and the structure morphism p : X→ X is again an A2-fibration restricting
to a Zariski locally trivial A2-bundle over U = X \ {(0, 0)} but whose restriction to
any Zariski or étale open neighborhood of the origin (0, 0) ∈ X is nontrivial.
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In contrast, in the case of a 1-dimensional affine base, we can immediately derive
the following corollaries:

Corollary. Let π : E→ S be a rank 3 vector bundle over an affine Dedekind scheme
S = Spec(A) defined over a field k of characteristic 0. Then every proper locally
triangulable Ga,S-action on E is equivariantly trivial with geometric quotient
E/Ga,S isomorphic to a vector bundle of rank 2 over S, stably isomorphic to E.

Proof. By the previous theorem, the geometric quotient p : E/Ga,S → S has the
structure of a Zariski locally trivial A2-bundle, hence is a vector bundle of rank 2
by [Bass et al. 1977]. In particular, E/Ga,S is affine, which implies in turn that
ρ : E→ E/Ga,S is a trivial Ga,S-bundle. So E is isomorphic to E/Ga,S ×S A1

S as
vector bundles over S. �

Corollary. Let S = Spec(A) be an affine Dedekind scheme defined over a field of
characteristic 0. Then every proper triangular Ga,S-action on A3

S is a translation.

Proof. By the previous corollary, A3
S/Ga,S is a stably trivial vector bundle of rank 2

over S, whence is isomorphic to the trivial bundle A2
S over S by virtue of [Bass

1968, Chapter IV, Corollary 3.5]. �

Coming back to the question of proper triangular Ga-actions on A4, the observa-
tion that such actions preserve a variable in a appropriate coordinate system and
hence can be considered as proper triangular actions of the additive group scheme
Ga,S on the affine 3-space A3

S over the affine Dedekind base S = A1 suffices to
settle the problem:

Corollary. If k is a field of characteristic 0, then every proper triangular Ga,k-
action on A4

k is a translation.

It is worth mentioning that our Main Theorem and an appeal to the aforementioned
result [Deveney et al. 2004] would already be enough to conclude that every proper
triangular Ga,k-action on A4

k is a translation, but our results do actually eliminate the
need for loc. cit. hence the a priori dependency on the fact that the corresponding
rings of invariants are finitely generated.

Let us now briefly explain the general philosophy behind the proof. After localiz-
ing at codimension 1 points of X , the Main Theorem reduces to the statement that a
proper Ga,S-action σ :Ga,S×S A3

S→A3
S on the affine space A3

S = Spec(A[y, z, u])
over the spectrum of a discrete valuation ring, generated by a triangular A-derivation
∂ = a∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], where a ∈ A \ {0}, q(y) ∈ A[y] and
p(y, z) ∈ A[y, z], is a translation. Triangularity immediately implies that the
restriction of σ to the generic fiber of prS : A

3
S→ S is a translation with a−1 y as a

global slice. This reduces the problem to the study of neighborhoods of points of
the geometric quotient X= A3

S/Ga,S supported on the closed fiber of the structure
morphism p : X→ S. A second feature of triangularity is that σ commutes with
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the action τ : Ga,S ×S A3
S→ A3

S generated by the A-derivation ∂u which therefore
descends to a Ga,S-action τ on the geometric quotient X= A3

S/Ga,S . On the other
hand, σ descends via the projection pry,z : A

3
S→ A2

S = Spec(A[y, z]) to the action
σ on A2

S generated by the A-derivation ∂ = a∂y + q(y)∂z of A[y, z]. Even though
σ and τ are no longer fixed point free in general, if we take the quotient of A2

S by
the action σ as an algebraic stack [A2

S/Ga,S] we obtain a cartesian square

A3
S

pry,z

��

// X= A3
S/Ga,S

��
A2

S
// [A2

S/Ga,S]

which simultaneously identifies the quotient stacks [A2
S/Ga,S] for the action σ and

[X/Ga,S] for the action τ with the quotient stack of A3
S for the G2

a,S-action defined
by the commuting actions σ and τ . In this setting, the global equivariant triviality of
the action σ becomes equivalent to the statement that a separated algebraic S-space
X admitting a Ga,S-action whose algebraic stack quotient [X/Ga,S] is isomorphic
to that of a triangular Ga,S-action on A2

S is an affine scheme.
While a direct proof of this reformulation seems totally out of reach with ex-

isting methods, it turns out that its conclusion holds over a certain Ga,S-invariant
principal open subset V of A2

S which dominates S and for which the algebraic stack
quotient [V/Ga,S] is in fact represented by a locally separated algebraic subspace
of [A2

S/Ga,S]. This provides at least an affine open subscheme V ×S A1
S/Ga,S of

X dominating S, and leaves us with a closed subset of codimension at most 2
of X, supported on the closed fiber of p : X→ S, in a neighborhood of which
no further information is a priori available to decide even the schemeness of X.
But similar to the argument in [Dubouloz and Finston 2014], this situation can be
rescued for twin-triangular actions: the fact that for such actions ∂u = p(y, z) is
actually a polynomial in y only enables the same reasoning with respect to the
other projection pry,u : A

3
S→ A2

S = Spec(A[y, u]), yielding a second affine open
subscheme V ′×S A1

S/Ga,S of X dominating S. This implies at least the schemeness
of X, provided that the open subsets V and V ′ can be chosen so that the union of
the corresponding open subschemes of X covers the closed fiber of p : X→ S.

The scheme of the article is the following. The first two sections recall basic
notions and discuss a couple of preliminary technical reductions. The third section
is devoted to establishing an effective criterion for nonproperness of fixed point free
triangular actions from which we deduce the intermediate fact that every proper
triangular action is twin-triangulable. Then in the next section, we establish that
proper twin-triangular actions are indeed translations. Here, in contrast with the
proof for the complex case given in [Dubouloz and Finston 2014], our argument
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is independent of finite generation of rings of invariants and reduces the system-
atic study of algebraic spaces quotients to a minimum thanks to an appropriate
“Sheshadri cover trick” [Seshadri 1972].

1. Recollection on proper, fixed point free and locally triangulable Ga-actions

1A. Proper versus fixed point free actions. Recall that an action σ :Ga,S×S E→
E of the additive group scheme Ga,S = SpecS(OS[t]) = S ×Z Spec(Z[t]) on an
S-scheme E is called proper if the morphism 8= (pr2, σ ) :Ga,S ×S E→ E ×S E
is proper.

1A1. If S is moreover defined over a field k of characteristic zero, then the fact
that Ga,k is affine and has no nontrivial algebraic subgroups implies that properness
is equivalent to 8 being a closed immersion. In particular, a proper Ga,S-action
is in this case fixed point free and as such, is equivariantly locally trivial in the
étale topology on E . That is, there exists an affine S-scheme U and a surjective
étale morphism f : V = U ×S Ga,S → E which is equivariant for the action of
Ga,S on U ×S Ga,S by translations on the second factor. This implies in turn the
existence of a geometric quotient ρ : E → X = E/Ga,S in the form of an étale
locally trivial principal Ga,S-bundle over an algebraic S-space p : X→ S (see, for
example, [Laumon and Moret-Bailly 2000, Corollary 10.4]). Informally, X is the
quotient of U by the étale equivalence relation which identifies two points u, u′ ∈U
whenever there exists t, t ′ ∈ Ga,S such that f (u, t)= f (u′, t ′).

1A2. Conversely, a fixed point free Ga,S-action is proper if and only if the geometric
quotient X = E/Ga,S is a separated S-space. Indeed, by definition p : X→ S is
separated if and only if the diagonal morphism1 :X→X×SX is a closed immersion,
a property which is local on the target with respect to the fpqc topology [Knutson
1971, II, Extension 3.8; SGA1 1971, VIII, Corollaire 5.5]. Since ρ : E→ X is a
Ga,S-bundle, taking the fpqc base change by ρ × ρ : E ×S E→ X×S X yields a
cartesian square

Ga,S ×S E 8 //

ρ◦pr2

��

E ×S E

ρ×ρ

��
X

1 // X×S X

from which we see that 1 is a closed immersion if and only if 8 is.

1B. Locally triangulable actions. Given an affine scheme S = Spec(A) defined
over a field of characteristic zero, an action σ : Ga,S ×S An

S→ An
S generated by a

locally nilpotent A-derivation ∂ of 0(An
S,OAn

S
) is called triangulable if there exists

an isomorphism of A-algebras τ : 0(An
A,OAn

A
) ∼
−→ A[x1, . . . , xn] such that the
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conjugate δ = τ ◦ ∂ ◦ τ−1 of ∂ is triangular with respect to the ordered coordinate
system (x1, . . . , xn), that is, has the form

δ = p0
∂

∂x1
+

n∑
i=1

pi−1(x1, . . . , xi−1)
∂

∂xi

where p0 ∈ A and for every i = 1, . . . , n, pi−1(x1, . . . , xi−1) ∈ A[x1, . . . , xi−1] ⊂

A[x1, . . . , xn]. By localizing this notion over the base S, we arrive at the following
definition:

Definition 1.1. Let X be a scheme defined over a field of characteristic zero and let
π : E→ X be a Zariski locally trivial An-bundle over X . An action σ :Ga,X×X E→
E of Ga,X on E is called locally triangulable if there exists a covering of Spec(A)
by affine open subschemes Si = Spec(Ai ), i ∈ I , such that E |Si is isomorphic to
An

Si
and such that the Ga,Si -action σi : Ga,Si ×Si An

Si
→ An

Si
on An

Si
induced by σ is

triangulable.

A Zariski locally trivial A1-bundle π : E → X equipped with a fixed point
free Ga,X -action is nothing but a principal Ga,X -bundle. As mentioned in the
introduction, the nature of fixed point free locally triangulable Ga,X -actions on
Zariski locally trivial A2-bundles π : E → X is classically known. Namely, we
have the following generalization of the main theorem of [Snow 1988]:

Proposition 1.2. Let X be a nœtherian normal scheme defined over a field of
characteristic 0 and let π : E→ X be a Zariski locally trivial A2-bundle equipped
with a fixed point free locally triangulable Ga,X -action. Then the geometric quotient
p : E/Ga,X → X has the structure of a Zariski locally trivial A1-bundle over X.

Proof. The assertion being local on the base X , we may assume that X = Spec(A)
is the spectrum of a normal local domain containing a field of characteristic 0
and that E = A2

X = Spec(A[y, z]) is equipped with the Ga,X -action generated
by a triangular derivation ∂ = a∂y + q(y)∂z of A[y, z], where a ∈ A and q(y) ∈
A[y]. The fixed point freeness hypothesis is equivalent to the property that a and
q(y) generate the unit ideal in A[y, z]. So q(y) has the form q(y) = b+ cq̃(y)
where b ∈ A is relatively prime with a, c ∈

√
a A and q̃(y) ∈ A[y]. Letting

Q(y)=
∫ y

0 q(τ ) dτ = by+ c
∫ y

0 q̃(τ ) dτ , the polynomial v = az− Q(y) ∈ A[y, z]
belongs to the kernel Ker ∂ of ∂ hence defines a Ga,X -invariant morphism v :

E → A1
X = Spec(A[t]). Since a and b generate the unit ideal in A, it follows

from the Jacobian criterion that v : E→ A1
X is a smooth morphism. Furthermore,

the fibers of v coincide precisely with the Ga,X -orbits on E . Indeed, over the
principal open subset Xa = Spec(Aa) of X , ∂ admits a−1 y as a slice and we
have an equivariant isomorphism E |Xa' Spec(A[a−1v, a−1 y]) ' A1

Xa
×X Ga,X

where Ga,X acts by translations on the second factor. On the other hand, the
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restriction E |Z of E over the closed subset Z ⊂ X with defining ideal
√

a A ⊂ A
is equivariantly isomorphic to A2

Z equipped with the Ga,Z -action generated by the
derivation ∂ = b∂z of (A/

√
a A)[y, z], where b ∈ (A/

√
a A)∗ denotes the residue

class of b. The restriction of v to E |Z coincides via this isomorphism to the
morphism A2

Z → A1
Z defined by the polynomial v = by ∈ (A/

√
a A)[y, z] which

is obviously a geometric quotient. The above properties imply that the morphism
ṽ : E/Ga,X → A1

X induced by v is smooth and bijective. Since it admits étale
quasisections, ṽ is then an isomorphism locally in the étale topology on A1

X whence
an isomorphism. �

2. Preliminary reductions

2A. Reduction to a local base. The statement of the Main Theorem can be re-
phrased equivalently as the fact that a proper locally triangulable Ga,S-action on a
Zariski locally trivial A3-bundle π : E→ S is a translation in codimension 1. This
means that for every point s ∈ S of codimension 1 with local ring OS,s , the fiber
product E×S S′'A3

S′ of E→ S with the canonical immersion S′= Spec(OS,s) ↪→

S equipped with the induced proper triangular action of Ga,S′ = Ga,S ×S S′ is
equivariantly isomorphic to the trivial bundle A2

S′ ×S′ Ga,S′ over S′ equipped with
the action of Ga,S′ by translations on the second factor.

2A1. So we are reduced to the case where S is the spectrum of a discrete valuation
ring A containing a field of characteristic 0, say with maximal ideal m and residue
field κ = A/m, and where π = prS : E = A3

S = Spec(A[y, z, u])→ S = Spec(A)
is equipped with a proper triangulable Ga,S-action σ : Ga,S ×S A3

S→ A3
S . Letting

x ∈m be uniformizing parameter, every such action is equivalent to one generated
by an A-derivation ∂ of A[y, z, u] of the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n ≥ 0, q(y) ∈ A[y] and p(y, z) =
∑`

r=0 pr (y)zr
∈ A[y, z], the fixed point

freeness of σ being equivalent to the property that xn , q(y) and p(y, z) generate
the unit ideal in A[y, z, u].

2B. Reduction to proving the affineness of the geometric quotient. With the nota-
tion of Section 2A1, we can already observe that if n= 0 then y is an obvious global
slice for ∂ and hence that the action is globally equivariantly trivial with geometric
quotient X = A3

S/Ga,S ' A2
S . Similarly, if the residue class of q(y) in κ[y] is a

nonzero constant then the action σ is a translation. Indeed, in this case, the Ga,S-
action σ :Ga,S ×S A2

S→ A2
S on A2

S = Spec(A[y, z]) generated by the A-derivation
∂ = xn∂y + q(y)∂z of A[y, z] is fixed point free hence globally equivariantly
trivial with geometric quotient A2

S/Ga,S ' A1
S by virtue of Proposition 1.2. On the
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other hand, the Ga,S-equivariant projection pry,z : A
3
S→ A2

S descends to a locally
trivial A1-bundle between the geometric quotients A3

S/Ga,S and A2
S/Ga,S , and since

A2
S/Ga,S'A1

S is affine and factorial, it follows that A3
S/Ga,S'A2

S/Ga,S×S A1
S'A2

S .
The affineness of A2

S implies in turn that the quotient morphism A3
S→A3

S/Ga,S is the
trivial Ga,S-bundle whence that σ :Ga,S×S A3

S→A3
S is a translation. Alternatively,

one can observe that a global slice s ∈ A[y, z] for the action σ is also a global slice
for σ via the inclusion A[y, z] ⊂ A[y, z, u]

More generally, the following lemma reduces the question of global equivariant
triviality with geometric quotient X= A3

S/Ga,S isomorphic to A2
S to showing that

X, which a priori only exists as an algebraic S-space, is an affine S-scheme:

Lemma 2.1. A fixed point free triangular action σ :Ga,S ×S A3
S→ A3

S is a transla-
tion if and only if its geometric quotient X= A3

S/Ga,S is an affine S-scheme.

Proof. One direction is clear, so assume that X is an affine S-scheme. It suffices to
show that the structure morphism p : X→ S is an A2-fibration, that is, a faithfully
flat morphism with all its fibers isomorphic to affine planes over the corresponding
residue fields. Indeed, if so, the affineness of X implies on the one hand that X is
isomorphic to the trivial A2-bundle A2

S by virtue of [Sathaye 1983] and on the other
hand that ρ : A3

S→ X is isomorphic to the trivial Ga,S-bundle X×S Ga,S over S,
which yields Ga,S-equivariant isomorphisms A3

S ' X×S Ga,S ' A2
S ×S Ga,S .

To see that p :X→ S is an A2-fibration, recall that prS :A
3
S→ S and the quotient

morphism ρ : A3
S → X = A3

S/Ga,S are both faithfully flat, so that p : X→ S is
faithfully flat too [Knutson 1971, II.3.2; EGA 1965, IV2, Corollaire 2.2.13(iii)].
Letting m and ξ be the closed and generic points of S respectively, the fibers
pr−1

S (m)' A3
κ and pr−1

S (ξ)' A3
κ(ξ) coincide with the total spaces of the restriction

of the Ga,S-bundle ρ : A3
S → X over the fibers Xm = p−1(m) and Xξ = p−1(ξ)

respectively. Since the Ga,κ(ξ)-action induced by σ on pr−1
S (ξ) admits x−n y as a

global slice, it is a translation with geometric quotient A3
κ(ξ)/Ga,κ(ξ) 'A2

κ(ξ) and so
Xξ ' A2

κ(ξ). On the other hand, we may assume in view of the above discussion
that n ≥ 1 so that the Ga,κ -action on pr−1

S (m)'A3
κ induced by σ coincides with the

fixed point free action generated by the κ[y]-derivation ∂ = q(y)∂z + p(y, z)∂u of
κ[y][z, u], where q(y) and p(y, z) denote the respective residue classes of q(y) and
p(y, z) modulo x . By virtue of Proposition 1.2, the geometric quotient A3

κ/Ga,κ

has the structure of a Zariski locally trivial A1-bundle over A1
κ = Spec(κ[y]) hence

is isomorphic to A2
κ . This implies that Xm ' A3

κ/Ga,κ ' A2
κ , as desired. �

Note that the above characterization holds independently of the a priori knowledge
that the corresponding rings of invariants are finitely generated. But on the other
hand, by exploiting the more general fact that arbitrary Ga,S-actions on the affine
3-space A3

S over the spectrum S of a discrete valuation ring A containing a field of
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characteristic 0 have finitely generated rings of invariants [Bhatwadekar and Daigle
2009], one can derive the following stronger alternative:

Proposition 2.2. A fixed point free action σ :Ga,S×SA3
S→A3

S is either a translation
or its geometric quotient X= A3

S/Ga,S is an algebraic space which is not a scheme.

Proof. Indeed, the quotient morphism ρ : A3
S→ X is again an A2-fibration thanks

to [Daigle and Kaliman 2009, Theorem 3.2] which asserts that for every field κ
of characteristic 0 a fixed point free action of Ga,κ -action on A3

κ is a translation,
and so the assertion is equivalent to the fact that a Zariski locally equivariantly
trivial action σ has affine geometric quotient X. This can be seen in a similar way
as in the proof of [Deveney et al. 2004, Theorem 2.1]. Namely, by hypothesis we
can find an open covering of A3

S by finitely many invariant affine open subsets Ui

on which the induced Ga,S-action is a translation with affine geometric quotient
Ui/Ga,S , i = 1, . . . , n. Since Ui and A3

S are affine, A3
S \Ui is a Ga,S-invariant Weil

divisor on A3
S which is in fact principal as A, whence A[y, z, u], is factorial. It

follows that there exists invariant regular functions fi ∈ A[y, z, u]Ga ' 0(X,OX)

such that Ui = Spec(A[x, y, z] fi ) coincides with the inverse image by the quo-
tient morphism ρ : A3

S → X of the principal open subset X fi of X, i = 1, . . . , n.
Since ρ : A3

S → X is a Ga,S-bundle and Ui is isomorphic to Ui/Ga,S ×S Ga,S by
assumption, we conclude that X is covered by the principal affine open subsets
X fi ' Ui/Ga,S , i = 1, . . . , n, whence is quasiaffine. Now since by the afore-
mentioned result [Bhatwadekar and Daigle 2009], A[y, z, u]Ga is an integrally
closed finitely generated A-algebra, it is enough to check that the canonical open
immersion j : X→ X = Spec(0(X,OX))' Spec(A[y, z, u]Ga ) is surjective. The
surjectivity over the generic point of S follows immediately from the fact the kernel
of a locally nilpotent derivation of a polynomial ring in three variables over a field
K of characteristic 0 is isomorphic to a polynomial ring in two variables over
K (see, for example, [Miyanishi 1986]). So it remains to show that the induced
open immersion jm : Xm ' A2

κ ↪→ Xm = Spec(A[y, z, u]Ga ⊗A A/m) between
the corresponding fibers over the closed point m of S is surjective, in fact, an
isomorphism. Since x ∈ A[y, z, u]Ga is prime, Xm ' Spec(A[y, z, u]Ga/(x)) is an
integral κ-scheme of finite type and [Bhatwadekar and Daigle 2009, Corollary 4.10]
can be interpreted more precisely as the fact that Xm is isomorphic to C ×κ A1

κ

for a certain 1-dimensional affine κ-scheme C . This implies in turn that jm is
an isomorphism. Indeed, since C is dominated via jm by a general affine line
A1
κ ⊂ A2

κ , its normalization C̃ is isomorphic to A1
κ and so jm factors through an

open immersion j̃m :A2
κ ↪→ C̃×κ A1

κ 'A2
κ . The latter is surjective for otherwise the

complement of its image would be of pure codimension 1 hence a principal divisor
div( f ) for a nonconstant regular function f on C̃×κ A1

κ . But then f would restrict
to a nonconstant invertible function on the image of A2

κ which is absurd. Thus
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j̃m :A2
κ ↪→ C̃×κ A1

κ 'A2
κ is an isomorphism and since the normalization morphism

C̃ ×κ A1
κ→ C ×κ A1

κ is finite whence closed it follows that jm : A2
κ ↪→ C ×κ A1

κ is
an open and closed immersion hence an isomorphism. �

2C. Reduction to extensions of irreducible derivations. In view of the discussion
at the beginning of Section 2B, we may assume for the A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

that n > 0 and that the residue class of q(y) in κ[y] is either zero or not constant.
In the first case, q(y) ∈ mA[y] has the form q(y) = xµq0(y) where µ > 0 and
where q0(y) ∈ A[y] has nonzero residue class modulo m, so that the derivation
∂ = xn∂y + q(y)∂z induced by ∂ on the subring A[y, z] is reducible. On the other
hand, the fixed point freeness of the Ga,S-action σ generated by ∂ implies that up
to multiplying u by an invertible element in A, one has p(y, z)= 1+ xν p0(y, z)
for some ν > 0 and p0(y, z) ∈ A[y, z].

If µ≥ n, then letting Q0(y)=
∫ y

0 q0(τ ) dτ ∈ A[y], the Ga,S-invariant polynomial
z1 = z− xµ−n Q0(y) is a variable of A[y, z, u] over A[y, u], and so ∂ is conjugate
to the derivation xn∂y + p(y, z1 + xµ−n Q0(y))∂u of the polynomial ring in two
variables A[z1][y, u] over A[z1]. Since σ is fixed point free, Proposition 1.2 implies
that it is equivariantly trivial with geometric quotient isomorphic to the total space
of the trivial A1-bundle over A1

S = Spec(A[z1]) whence to A2
S .

Otherwise, if µ < n, then the Ga,S-action σ̃ : Ga,S ×S A3
S → A3

S on A3
S =

Spec(A[ỹ, z̃, ũ]) generated by the A-derivation

∂̃ = xn−µ∂ỹ + q0(ỹ)∂z̃ + (1+ xν p0(ỹ, z̃))∂ũ

is again fixed point free, hence admits a geometric quotient ρ̃ :A3
S→ X̃=A3

S/Ga,S

in the form of an étale locally trivial Ga,S-bundle over a certain algebraic S-space
X̃.

Lemma 2.3. The quotient spaces X = A3
S/Ga,S and X̃ = A3

S/Ga,S for the Ga,S-
actions σ and σ̃ on A3

S generated by ∂ and ∂̃ respectively are isomorphic. In
particular σ is proper (resp. equivariantly trivial) if and only if σ̃ is proper (resp.
equivariantly trivial).

Proof. Letting ρ̃i : Vi = A3
S→ X̃i = Vi/Ga,S , i = 0, . . . , µ, denote the geometric

quotient of Vi =Spec(A[ỹi , z̃i , ũi ]) for the fixed point free Ga,S-action σ̃i generated
by the A-derivation

∂̃i = (1+ xν p0(ỹi , z̃i ))∂ũi + xµ−i q0(ỹi )∂z̃i + xn−i∂ỹi ,

the first assertion will follow from the more general fact that X̃i ' X̃i+1 for every
i = 0, . . . , µ− 1. Indeed, we first observe that since ũi is a slice for ∂̃i modulo x ,
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X̃i,m= X̃i×S Spec(κ) is isomorphic to A2
κ =Spec((A/m)[ỹi , z̃i ]) and the restriction

of ρ̃i over X̃i,m is isomorphic to the trivial bundle pr1 : X̃i,m×κ Spec(κ[ũi ])→ X̃i,m.
Now let βi : Vi+1→ Vi be the affine modification of the total space of ρ̃i :A

3
S→ X̃i

with center at the zero section of the induced bundle pr1 : X̃i,m×κSpec(κ[ũi ])→ X̃i,m

and with principal divisor x . In view of the previous description, βi : Vi+1→ Vi

coincides with the affine modification of Spec(A[ỹi , z̃i , ũi ]) with center at the ideal
(x, ũi ) and principal divisor x , that is, with the birational S-morphism induced by
the homomorphism of A-algebra

β∗i : A[ỹi+1, z̃i+1, ũi+1] → A[ỹi , z̃i , ũi ],

(ỹi+1, z̃i+1, ũi+1) 7→ (ỹi , z̃i , xũi ).

By construction, βi is equivariant for the Ga,S-actions σ̃i+1 and σ i generated re-
spectively by the locally nilpotent A-derivations ∂̃i+1 of A[ỹi+1, z̃i+1, ũi+1] and
∂ i = x ∂̃i of A[ỹi , z̃i , ũi ]. Furthermore, since ρ̃i : Vi → X̃i is also Ga,S-invariant
for the action σ i , the morphism ρ̃i ◦ βi : Vi+1 → X̃i is Ga,S-invariant, whence
descends to a morphism β̃i : X̃i+1→ X̃i . Since the latter restricts to an isomorphism
over the generic point of S, it remains to check that it is also an isomorphism in
a neighborhood of every point p ∈ X̃i lying over the closed point m of S. Let
f :U = Spec(B)→ X̃i be an affine étale neighborhood of such a point p ∈ X̃i over

which ρ̃i :Vi→ X̃i becomes trivial, say Vi×X̃i U is isomorphic to A1
U =Spec(B[ṽi ]).

The Ga,S-action on Vi generated by ∂ i lifts to the Ga,U -action on A1
U generated

by the locally nilpotent B-derivation x∂ṽi and since βi : Vi+1→ Vi is the affine
modification of Vi with center at the zero section of the restriction of ρ̃i : Vi → X̃i

over the closed point of S, we have a commutative diagram

Vi+1

ρ̃i+1
��

βi

~~

A1
U

oo

prU

��

δi

��
Vi

ρ̃i

��

A1
U

oo

prU

��

X̃i+1
β̃i

~~

Uoo

X̃i U
foo

in which the top and front squares are cartesian, and where the morphism δi :

A1
U = Spec(B[ṽi+1])→ A1

U = Spec(B[ṽi ]) is defined by the B-algebras homomor-
phism B[ṽi ] → B[ṽi+1], ṽi 7→ x ṽi+1. The latter is equivariant for the action on
Spec(B[ṽi+1]) generated by the locally nilpotent B-derivation ∂ṽi+1 and we conclude
that pr2 : A

1
U ' A1

U ×Vi Vi+1→ Vi+1 is an étale trivialization of the Ga,S-action
induced by σ̃i+1 on the open subscheme (ρ̃i ◦βi )

−1( f (U )) of Vi+1. This implies
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in turn that U ×X̃i
X̃i+1 'U , whence that β̃i : X̃i+1→ X̃i is an isomorphism in a

neighborhood of p ∈ X̃i as desired.
The second assertion is a direct consequence of the fact that properness and global

equivariant triviality of σ and σ̃ are respectively equivalent to the separatedness
and the affineness of the geometric quotients X' X̃. �

2C1. Summing up, we are now reduced to proving that a proper Ga,S-action on
A3

S generated by an A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

of A[y, z, u], such that n > 0 and q(y) ∈ A[y] has nonconstant residue class in
κ[y], has affine geometric quotient X= A3

S/Ga,S . This will be done in two steps
in the next sections: we will first establish that a proper Ga,S-action as above is
conjugate to one generated by a special type of A-derivation called twin-triangular.
Then we will prove in Section 4 that proper twin-triangular Ga,S-actions on A3

S do
indeed have affine geometric quotients.

3. Reduction to twin-triangular actions

We keep the same notation as in Section 2A1 above, namely A is a discrete valuation
ring containing a field of characteristic 0, with maximal ideal m, residue field
κ = A/m, and uniformizing parameter x ∈m. We let again S = Spec(A).

We call an A-derivation ∂ of A[y, z, u] twin-triangulable if there exists a co-
ordinate system (y, z+, z−) of A[y, z, u] over A[y] in which the conjugate of ∂
is twin-triangular, that is, has the form xn∂y + p+(y)∂z+ + p−(y)∂z− for certain
polynomials p±(y) ∈ A[y]. This section is devoted to the proof of the following
intermediate characterization of proper triangular Ga,S-actions:

Proposition 3.1. With the notation above, let ∂ be an A-derivation of A[y, z, u] of
the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n > 0 and where q(y) ∈ A[y] has nonconstant residue class in κ[y]. If the
Ga,S-action on A3

S = Spec(A[y, z, u]) generated by ∂ is proper, then ∂ is twin-
triangulable.

The proof given below proceeds in two steps: we first construct a coordinate ũ of
A[y, z, u] over A[y, z] with the property that ∂ ũ = p̃(y, z) is either a polynomial
in y only or its leading term p̃`(y) as a polynomial in z has a very particular form.
In the second case, we exploit the properties of p̃`(y) to show that the Ga,S-action
generated by ∂ is not proper.
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3A. The ]-reduction of a triangular A-derivation. The conjugate of an A-deriv-
ation ∂ = xn∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], as in Proposition 3.1, by an
isomorphism of A[y, z]-algebras ψ : A[y, z][ũ] ∼−→ A[y, z][u] is again triangular
of the form

ψ−1∂ψ = xn∂y + q(y)∂z + p̃(y, z)∂ũ

for some polynomial p̃(y, z) ∈ A[y, z]. In particular, we may choose from the
very beginning a coordinate system of A[y, z, u] over A[y, z] with the property
that the degree of ∂u ∈ A[y, z] with respect to z is minimal among all possible
conjugates ψ−1∂ψ of ∂ as above. In what follows, we will say for short that such
a derivation ∂ is ]-reduced with respect to the coordinate system (y, z, u). Letting
Q(y)=

∫ y
0 q(τ ) dτ ∈ A[y], this property can be characterized effectively as follows:

Lemma 3.2. Let ∂ = xn∂y + q(y)∂z + p(y, z)∂u be a ]-reduced derivation of
A[y, z, u] as in Proposition 3.1. If ∂ is not twin-triangular (i.e. p(y, z)= p0(y) ∈
A[y]) then the leading term p`(y), ` ≥ 1, of p(y, z) as a polynomial in z is not
congruent modulo xn to a polynomial of the form q(y) f (Q(y)) for some f (τ ) ∈
A[τ ].

Proof. Suppose that p(y, z)=
∑`

r=0 pr (y)zr with `≥ 1 and that

p`(y)= q(y) f (Q(y))+ xng(y)

for some polynomials f (τ ), g(τ ) ∈ A[τ ]. Then letting G(y)=
∫ y

0 g(τ ) dτ and

ũ = u−G(y)z`−
deg f∑
k=0

(−1)k∏k
j=0(`+ 1+ j)

f (k)(Q(y))xknz`+1+k,

one checks by direct computation that

∂ ũ =
`−2∑
r=0

pr (y)zr
+ (p`−1(y)−G(y)q(y))z`−1.

Thus (y, z, ũ) is a coordinate system of A[y, z, u] over A[y, z] in which the image
of ũ by the conjugate of ∂ has degree ≤ `− 1, a contradiction to the ]-reducedness
of ∂ . �

To prove Proposition 3.1, it remains to show that a proper Ga,S-action on A3
S

generated by a ]-reduced A-derivation of A[y, z, u] is twin-triangular. This is done
in the next subsection.

3B. A nonvaluative criterion for nonproperness. To disprove the properness of an
algebraic action σ :Ga,S×S E→ E of Ga,S on an S-scheme E , it suffices in principle
to check that the image of8= (pr2, σ ) :Ga×S E→ E×S E is not closed. However,
this image turns out to be complicated to determine in general, and it is more
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convenient for our purpose to consider the following auxiliary construction: letting
j : Ga,S ' Spec(OS[t]) ↪→ P1

S = Proj(OS[w0, w1]), t 7→ [t : 1] be the natural open
immersion, the properness of the projection prE×S E :P

1
S×S E×S E→E×S E implies

that (p2, σ ) is proper if and only if ϕ= ( j ◦pr1, pr2, σ ) :Ga,S×S E→P1
S×S E×S E

is proper, hence a closed immersion. Therefore the nonproperness of σ is equivalent
to the fact that the closure of Im(ϕ) in P1

S ×S E ×S E intersects the “boundary”
{w1 = 0} in a nontrivial way.

3B1. Now let σ : Ga,S ×S A3
S→ A3

S be the Ga,S-action generated by a non-twin-
triangular ]-reduced A-derivation ∂ = xn∂y + q(y)∂z + p(y, z)∂u of A[y, z, u] and
let

ϕ = ( j ◦ pr1, pr2, µ) : Ga,S ×S A3
S = Spec(A[t][y, z, u])→ P1

S ×S A3
S ×S A3

S

be the corresponding immersion. To disprove the properness of σ , it is enough to
check that the image by ϕ of the closed subscheme H = {z= 0} ' Spec(A[t][y, u])
of Ga,S ×S A3

S is not closed in P1
S ×S A3

S ×S A3
S . After identifying A[y, z, u] ⊗A

A[y, z, u] with the polynomial ring A[y1, y2, z1, z2, u1, u2] in the obvious way, the
image of H by (pr1, pr2, σ ) :Ga,S×S A3

S→A1
S×S A3

S×S A3
S is equal to the closed

subscheme of Spec(A[t][y1, y2, z1, z2, u1, u2]) defined by the following system of
equations:

y2 = y1+ xnt,

z1 = 0,

z2 = x−n(Q(y1+ xnt)− Q(y1))= (y1− y2)
−1(Q(y2)− Q(y1))t,

u2 = u1+ x−n
∫ t

0 p(y1+ xnτ)(Q(y1+ xnτ)− Q(y1)) dτ.

Letting p(y, z)=
∑̀
r=0

pr (y)zr with `≥ 1 and

0r (y1, y2)=

∫ y2

y1

pr (ξ)(Q(ξ)− Q(y1))
r dξ ∈ A[y1, y2], r = 0, . . . , `,

the last equality can be rewritten modulo the first ones in the form

u2 = u1+
∑̀
r=0

x−nr
∫ t

0
pr (y1+ xnτ)(Q(y1+ xnτ)− Q(y1))

r dτ

= u1+ t (y2− y1)
−1
∑̀
r=0

x−nr
∫ y2

y1

pr (ξ)(Q(ξ)− Q(y1))
r dξ

= u1+
∑̀
r=0

(
(y2− y1)

−r−10r (y1, y2)
)
tr+1.



Proper triangular Ga -actions on A4 are translations 1975

It follows that the closure V of ϕ(H) is contained in the closed subscheme W of
P1

S ×S A3
S ×S A3

S defined by the equations z1 = 0 and

(y2− y1)w1− xnw0 = 0,

w1z2− (y2− y1)
−1(Q(y2)− Q(y1))w0 = 0,

w`+1
1 (u2− u1)−

∑`
r=0
(
(y2− y1)

−r−10r (y1, y2)
)
wr+1

0 w`−r
1 = 0.

We further observe that W is irreducible, whence equal to V , given that 0`(y1, y2)∈

A[y1, y2] does not belong to the ideal generated by xn and Q(y2)− Q(y1). If so,
then W = V intersects {w1 = 0} along a closed subscheme Z isomorphic to the
spectrum of the algebra(

A[y1, y2]/(xn, (y2−y1)
−1(Q(y2)−Q(y1)), (y2−y1)

−`−10`(y1, y2))
)
[z2, u1, u2].

By virtue of the ]-reducedness assumption p`(y) is not of the form q(y) f (Q(y))+
xng(y), so the nonproperness of σ : Ga,S ×S A3

S → A3
S is then a consequence of

the following lemma which guarantees precisely that 0`(y1, y2) 6∈ (xn, Q(y2)−

Q(y1))A[y1, y2] and that Z is not empty.

Lemma 3.3. Let q(y) ∈ A[y] be a polynomial with nonconstant residue class in
κ[y] and let Q(y) =

∫ y
0 q(τ ) dτ . For a polynomial p(y) ∈ A[y] and an integer

`≥ 1, the following holds:

(a) The polynomial 0`(y1, y2) =
∫ y2

y1
p(y)(Q(y) − Q(y1))

` dy belongs to the
ideal (xn, Q(y2) − Q(y1)) if and only if p(y) can be written in the form
q(y) f (Q(y))+ xng(y) for certain polynomials f (τ ), g(τ ) ∈ A[τ ].

(b) The polynomial (y2 − y1)
−`−10`(y1, y2) is not invertible modulo the ideal

(xn, (y2− y1)
−1(Q(y2)− Q(y1))).

Proof. For the first assertion, a sequence of ` successive integrations by parts shows
that

0`(y1, y2)=
[
E1(y)(Q(y)− Q(y1))

`
]y2

y1
− `

∫ y2

y1

E1(y)q(y)(Q(y)−Q(y1))
`−1 dy

= S(y1, y2)+ (−1)``!
∫ y2

y1

E`(y)q(y) dy

= S(y1, y2)+ (−1)``!(E`+1(y2)− E`+1(y1)),

where Ek is defined recursively by E1(y)=
∫ y

0 p(τ )dτ, Ek+1(y)=
∫ y

0 Ek(τ )q(τ )dτ ,
and where S(y1, y2) ∈ (Q(y2)−Q(y1))A[y1, y2]. So

∫ y2
y1

p(y)(Q(y)−Q(y1))
r dy

belongs to (xn, Q(y2)−Q(y1))A[y1, y2] if and only if E`+1(y2)−E`+1(y1) belongs
to this ideal.

Since the residue class of Q(y) ∈ A[y] in κ[y] is not constant, it follows from
the local criterion for flatness that A[y] is a faithfully flat algebra over A[Q(y)].
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By faithfully flat descent, this implies in turn that the sequence

A[Q(y)] ↪→ A[y]
·⊗1−1⊗·
−→ A[y]⊗A[τ ] A[y]

is exact whence, with the natural identification

A[y]⊗A[τ ] A[y] ' A[y1, y2]/(Q(y2)− Q(y1)),

that a polynomial F ∈ A[y] with F(y2)− F(y1) belonging to the ideal

(Q(y2)− Q(y1))A[y1, y2]

has the form F(y) = G(Q(y)) for a certain polynomial G(τ ) ∈ A[τ ]. Thus
E`+1(y2) − E`+1(y1) belongs to (xn, Q(y2) − Q(y1))A[y1, y2], if and only if
E`+1(y) is of the form G(Q(y)) + xn R`+1(y) for some G(τ ), R`+1(τ ) ∈ A[τ ].
This implies in turn that E`(y)q(y)= G ′(Q(y))q(y)+ xn R′`+1(y) whence, since
q(y) ∈ A[y] \mA[y] is not a zero divisor modulo xn , that E`(y) = G ′(Q(y))+
xn R`(y) for a certain R`(τ ) ∈ A[τ ]. We conclude by induction that E1(y) =
G(`+1)(Q(y))+ xn R1(y) and finally that p(y)= G(`+2)(Q(y))q(y)+ xn R(y) for
a certain R(τ ) ∈ A[τ ]. This proves (a).

The second assertion is clear in the case where p(y) ∈ mA[y]. Otherwise,
if p(y) ∈ A[y] \ mA[y] then reducing modulo x and passing to the algebraic
closure κ of κ , it is enough to show that if q(y) ∈ κ[y] is not constant and p(y) ∈
κ[y] is a nonzero polynomial then for every ` ≥ 1, the affine curves C and D
in A2

κ = Spec(κ[y1, y2]) defined by the vanishing of the polynomials 2(y1, y2)=

(y2−y1)
−`−1

∫ y2
y1

p(y)(Q(y)−Q(y1))
` dy and R(y1, y2)= (y2−y1)

−1
∫ y2

y1
q(y) dy

respectively always intersect each other. Suppose on the contrary that C ∩ D =∅
and let m = deg q ≥ 1 and d = deg p ≥ 0. Then the closures C and D of C and
D respectively in P2

κ = Proj(κ[y1, y2, y3]) intersect each others along a closed
subscheme Y of length deg C · deg D = m(d + `m) supported on the line {y3 =

0} ' Proj(κ[y1, y2]). By definition, up to multiplication by a nonzero scalar, the top
homogeneous components of R and 2 have the form

∏m
i=1(y2−ζ

i y1), where ζ ∈ κ
is a primitive (m+ 1)-th root of unity, and (y2− y1)

`−1
∫ y2

y1
yd(ym+1

− ym+1
1 )` dy

respectively. But on the other hand, we have for every i = 1, . . . ,m

κ[y2]

/(
y2− ζ

i , (y2− 1)−r−1
∫ y2

1
yd(ym+1

− 1)r dy
)

' κ[y2]

/(
y2− ζ

i , (ζ i
− 1)−r−1

∫ ζ i

1
τ d(τm+1

− 1)r dτ
)
,

and hence the length of the above algebra is either 1 or 0 depending on whether∫ ζ i

1 τ d(τm+1
− 1) dτ ∈ κ is zero or not. This implies that the length of Y is at most

equal to m and so the only possibility would be that d = 0 and `= m = 1, in other
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words C and D are parallel lines in A2
κ . But since

∫
−1

1 (τ 2
− 1) dτ 6= 0, this last

possibility is also excluded. �

4. Global equivariant triviality of twin-triangular actions

By virtue of Proposition 3.1, every proper triangular Ga,S-action on σ :Ga,S×S A3
S→

A3
S on A3

S is conjugate to one generated by a twin-triangular A-derivation ∂ of
A[y, z+, z−] of the form

∂ = xn∂y + p+(y)∂z+ + p−(y)∂z−

for certain polynomials p±(y) ∈ A[y]. So to complete the proof of the Main
Theorem, it remains to show the following generalization of the main result in
[Dubouloz and Finston 2014]:

Proposition 4.1. Let S be the spectrum of discrete valuation ring A containing a
field of characteristic 0. Then a proper twin-triangular Ga,S-action on A3

S has affine
geometric quotient X= A3

S/Ga,S .

4A1. The principle of the proof given below is the following: we exploit the twin
triangularity to construct two Ga,S-invariant principal open subsets W0+ and W0−

in A3
S with the property that the union of corresponding principal open subspaces

X0± =W0±/Ga,S of X covers the closed fiber of the structure morphism p :X→ S.
We then show that X0+ and X0− are in fact affine subschemes of X. On the
other hand, since ∂ admits x−n y as a global slice over Ax , the generic fiber of p
is isomorphic to the affine plane over the function field Ax of S. So it follows
that X is covered by three principal affine open subschemes X0+ , X0− and Xx

corresponding to regular functions x , 0+, 0− which generate the unit ideal in
0(X,OX)' A[y, z+, z−]Ga,S ⊂ A[y, z+, z−], whence is an affine scheme.

4A2. The fact that the affineness of p : X = A3
S/Ga,S → S = Spec(A) is a local

property with respect to the fpqc topology on S [SGA1 1971, VIII, Corollaire 5.6]
enables a reduction to the case where the discrete valuation ring A is Henselian or
complete. Since it contains a field of characteristic zero, an elementary application
of Hensel’s Lemma implies that a maximal subfield of such a local ring A is a
field of representatives, that is, a subfield which is mapped isomorphically by the
quotient projection A 7→ A/m onto the residue field κ = A/m. This is in fact the
only property of A that we will use in the sequel. So from now on, (A,m, κ) is a
discrete valuation ring containing a field κ of characteristic 0 and with residue field
A/m' κ .

4B. Twin-triangular actions in general position and associated invariant cover-
ing. Here we construct a pair of principal Ga,S-invariant open subsets W±=W0± of
A3

S associated with a twin-triangular A-derivation of A[y, z+, z−] whose geometric
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quotients will be studied in the next subsection. We begin with a technical condition
which will be used to guarantee that the union of W+ and W− covers the closed
fiber of the projection prS : A

3
S→ S.

Definition 4.2. Let (A,m, κ) be a discrete valuation ring containing a field of
characteristic 0 and let x ∈ m be a uniformizing parameter. A twin-triangular A-
derivation ∂ = xn∂y+ p+(y)∂z++ p−(y)∂z− of A[y, z+, z−] is said to be in general
position if it satisfies the following properties:

(a) The residue classes p± ∈ κ[y] of the polynomials p± ∈ A[y] modulo m are
both nonzero and relatively prime.

(b) There exist integrals P± ∈ A[y] of p± with respect to y for which the inverse
images of the branch loci of the morphisms P+ :A1

κ→A1
κ and P− :A1

κ→A1
κ

are disjoint.

Lemma 4.3. With the notation above, every twin-triangular A-derivation ∂ of
A[y, z+, z−] generating a fixed point free Ga,S-action on A3

S is conjugate to one in
general position.

Proof. A twin-triangular derivation ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− generates a
fixed point free Ga,S-action if and only if xn , p+(y) and p−(y) generate the unit
ideal in A[y, z+, z−]. So the residue classes p+ and p− of p+ and p− are relatively
prime and at least one of them, say p−, is nonzero. If p+= 0 then p− is necessarily
of the form p−(y)= c+ x p̃−(y) for some c ∈ A∗ and so changing z+ for z++ z−
yields a twin-triangular derivation conjugate to ∂ for which the corresponding
polynomials p±(y) both have nonzero residue classes modulo x . More generally,
changing z− for az−+ bz+ for general a ∈ A∗ and b ∈ A yields a twin-triangular
derivation conjugate to ∂ and still satisfying condition (a) in Definition 4.2. So it
remains to show that up to such a coordinate change, condition (b) in the definition
can be achieved.

This can be seen as follows : we consider A2
κ embedded in P2

κ = Proj(κ[u, v, w])
as the complement of the line L∞ = {w = 0} so that the coordinate system (u, v)
on A2 is induced by the projections from the κ-rational points [0 : 1 : 0] and
[1 : 0 : 0] respectively. We let C be the closure in P2 of the image of the morphism
j = (P+, P−) : A1

κ = Spec(κ[y])→ A2
κ defined by the residue classes P+ and

P− in κ[y] of integrals P±(y) ∈ A[y] of p±(y), and we denote by Z ⊂ C the
image by j of the inverse image of the branch locus of P+ : A1

κ → A1
κ . Note

that Z is a finite subset of C defined over k, and therefore the set of lines in P2
k

passing through a point of Z and tangent to a local analytic branch of C at some
point is finite. This follows from the fact that the set of lines in P2

k intersecting
transversely a fixed curve is Zariski open. Therefore, the complement of the finitely
many intersection points of these lines with L∞ is a Zariski open subset U of L∞
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with the property that for every q ∈U , the line through q and every arbitrary point
of Z intersects every local analytic branch of C transversally at every point. By
construction, the rational projections from [0 : 1 : 0] and an arbitrary κ-rational point
in U \ {[0 : 1 : 0]} induce a new coordinate system on A2

κ of the form (u, av+ bu),
a 6= 0, with the property that Z is not contained in the inverse image of the branch
locus of the morphism a P−+ bP+ : A1

κ → A1
κ . Changing z− for az−+ bz+ for

a pair (a, b) ∈ κ∗ × κ ⊂ A∗ × A corresponding to a general point in U yields a
twin-triangular derivation conjugate to ∂ and satisfying simultaneously conditions
(a) and (b) in Definition 4.2. �

4B1. Now let ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− be a twin-triangular A-derivation
of A[y, z+, z−] generating a proper whence fixed point free Ga,S-action σ :Ga,S×S

A3
S → A3

S . By virtue of Lemma 4.3 above, we may assume up to a coordinate
change preserving twin-triangularity that ∂ is in general position. Property (a) in
Definition 4.2 then guarantees in particular that the triangular derivations ∂± =
xn∂y + p±(y)∂z± of A[y, z±] are both irreducible. Furthermore, given any integral
P±(y) ∈ A[y] of p±(y), the morphism P± : A1

κ → A1
κ obtained by restricting

P± : A1
S = Spec(A[y])→ A1

S = Spec(A[t]) to the closed fiber of prS : A
3
S→ S is

not constant. The branch locus of P± is then a principal divisor div(α±(t)) for a
certain polynomial α±(t)∈ κ[t] ⊂ A[t] generating the kernel of the homomorphism
κ[t] → κ[y]/(p±(y)), t 7→ P±(y) + (p±(y)). Property (b) in Definition 4.2
guarantees that we can choose P+ and P− in such a way that the polynomial
α+(P+(y)) and α−(P−(y)) generate the unit ideal in κ[y]. Up to a diagonal
change of coordinates on A[y, z+, z−], we may further assume without loss of
generality that P+ and P− are monic.

4B2. We let R± = A[t]α± and we let U± = Spec(R±) be the principal open subset
of A1

S = Spec(A[t]) where α± does not vanish. The polynomial 8± = −xnz±+
P±(y) ∈ A[y, z+, z−] belongs to the kernel of ∂ hence defines a Ga,S-invariant
morphism 8± : A

3
S = Spec(A[y, z+, z−])→ A1

S = Spec(A[t]). We let

W± =8−1
±
(U±)' Spec

(
R±[y, z+, z−]/(−xnz±+ P±(y)− t)

)
Note that W± is a Ga,S-invariant open subset of A3

S which can be identified with
the principal open subset where the Ga,S-invariant regular function 0± = α± ◦8±
does not vanish. Since α+(P+(y)) and α−(P−(y)) generate the unit ideal in κ[y],
it follows that the union of W+ and W− covers the closed fiber of the projection
prS : A

3
S→ S.

4C. Affineness of geometric quotients. With the notation of Section 4B2 above,
the geometric quotientX±=W±/Ga,S for the action induced by σ :Ga,S×SA3

S→A3
S

can be identified with the principal open subspace X0± of X = A3
S/Ga,S where
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the invariant function 0± ∈ A[y, z+, z−]Ga,S ' 0(X,OX) does not vanish. The
properness of σ implies that X, whence X+ and X−, are separated algebraic spaces,
and the construction of W+ and W− guarantees that the closed fiber of the structure
morphism p : X→ S is contained in the union of X+ and X−. So to complete the
proof of Proposition 4.1, it remains to show that X± is an affine scheme. In fact, since
X± is by construction an algebraic space over the affine scheme U± = Spec(R±),
its affineness is equivalent to that of the structure morphism q± : X± → U±, a
property which can be checked locally with respect to the étale topology on U±.

4C1. In our situation, there is a natural finite étale base change ϕ± : Ũ±→ U±
which is obtained as follows: By construction, see Section 4B1 above, the morphism
P± :A1

κ =Spec(κ[y])→Spec(κ[t]), restricts to a finite étale covering h0,± :C1,±=

Spec(κ[y]α±(P±(y)))→C±= Spec(κ[t]α±(t)) of degree r±= degy(P±(y)). Letting
C̃± = Spec(B±) be the normalization of C± in the Galois closure L± of the field
extension i± : κ(t) ↪→ κ(y), the induced morphism h± : C̃±→C± is an étale Galois
cover with Galois group G± = Gal(L±/κ(t)), which factors as

h± : C̃± = Spec(B±)
h1,±
−→ C1,± = Spec

(
κ[y]α±(P±(y))

) h0,±
−→ C± = Spec(κ[t]α±(t))

where h1,± : C̃±→ C1,± is an étale Galois cover for a certain subgroup H± of G±
of index r±. Letting R̃± = A⊗κ B± ' A[t]α±(t)⊗κ[t]α±(t) B± and Ũ± = Spec(R̃±),
the morphism ϕ± = pr1 : Ũ± ' U±×C± C̃±→ U± is an étale Galois cover with
Galois group G±, in particular a finite morphism. Since X± is separated, the
algebraic space X̃± = X±×U± Ũ± is separated and, by construction, isomorphic to
the geometric quotient of the scheme

W̃± =W±×U±Ũ± ' Spec
(
R̃±[y, z+, z−]/(−xnz±+ P±(y)− t)

)
by the proper Ga,Ũ±-action generated by the locally nilpotent R̃±-derivation xn∂y+

p+(y)∂z+ + p−(y)∂z− of R̃±[y, z+, z−]//(−xnz±+ P±(y)− t), which commutes
with the action of G±. The following lemma completes the proof of Proposition 4.1
whence of the Main Theorem.

Lemma 4.4. The geometric quotient X̃± = W̃±/Ga,Ũ± is an affine Ũ±-scheme.

Proof. Since Ũ± is affine, the assertion is equivalent to the affineness of X̃±.
From now on, we only consider the case of X̃+ = W̃+/Ga,Ũ+ , the case of X̃− being
similar. To simplify the notation, we drop the corresponding subscript “+”, writing
simply W̃ = Spec(R̃[y, z, z−]/(−xnz+ P(y)− t)). We denote x⊗1∈ R̃= A⊗κ B
by x and we further identify B with a sub-κ-algebra of R̃ via the homomorphism
1⊗ idB : B→ R̃ and with the quotient R̃/x R̃ via the composition 1⊗ idB : B→
A⊗κ B→ A⊗κ B/((x ⊗ 1)A⊗κ B)= κ ⊗κ B ' B.

By construction of B, the monic polynomial P(y)− t ∈ B[y] splits as P(y)− t =∏
g∈G/H (y−tg) for certain elements tg ∈ B, g ∈G/H , on which the Galois group G
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acts by permutation g′ · tg = t (g′)−1·g. Furthermore, since h0 : C1→ C is étale, it
follows that for distinct g, g′ ∈ G/H , tg − tg′ ∈ B is an invertible regular function
on C̃ whence on Ũ = S×Spec(κ) C̃ via the identifications made above. This implies
in turn that there exists a collection of elements σg ∈ R̃ with respective residue
classes tg ∈ B = R̃/x R̃ modulo x , g ∈ G/H , on which G acts by permutation, a
G-invariant polynomial S1 ∈ R̃[y] with invertible residue class modulo x and a
G-invariant polynomial S2 ∈ R̃[y] such that in R̃[y] one can write

P(y)− t = S1(y)
∏

g∈G/H

(y− σg)+ xn S2(y).

Concretely, the elements σg=σg,n−1∈ R̃, g∈G/H , can be constructed by induction
via a sequence of elements σg,m ∈ R̃, g ∈ G/H , m = 0, . . . , n− 1, starting with
σg,0= tg ∈ B⊂ R̃ and culminating in σg,n−1= σg, and characterized by the property
that for every m = 0, . . . , n − 1, there exists µg,m ∈ R̃ such that P(σg,m)− t =
xm+1µg,m , g ∈ G/H . Indeed, writing P(y)− t =

∏
g∈G/H (y− tg)+ x P̃(y) for a

certain P̃(y) ∈ R̃[y] and assuming that the σg,m , g ∈ G/H , have been constructed
up to a certain index m < n− 1, we look for elements σg,m+1 ∈ R̃ written in the
form σg,m+xm+1λg for some λg ∈ R̃. For a fixed g0 ∈G/H , the conditions impose
that

P(σg0,m+1)− t =
∏

g∈G/H

(σg0,m + xm+1λg0 − tg)+ x P̃(σg0,m + xm+1λg0)

= xm+1λg0

∏
g∈(G/H)\{g0}

(tg0 − tg)+ P(σg0,m)− t + xm+2νg0,m

= xm+1λg0

∏
g∈(G/H)\{g0}

(tg0 − tg)+ xm+1µg0,m + xm+2νg0,m

for some νg0,m ∈ R̃, and since
∏

g∈(G/H)\{g0}
(tg0 − tg) ∈ R̃∗, we conclude that

λg0 =
µg0,m∏

g∈(G/H)\{g0}
(tg0 − tg)

and µg0,m+1 = νg0,m .

A direct computation shows further that g′ · σg,m+1 = σ(g′)−1·g,m+1 and that g′ ·
µg,m+1 = µ(g′)−1·g,m+1. Iterating this procedure n − 1 times yields the desired
collection of elements σg = σg,n−1 ∈ R̃. By construction,

∏
g∈G/H (y− σg) ∈ R̃[y]

is then an invariant polynomial which divides P(y)− t modulo xn R̃, which implies
in turn the existence of the G-invariant polynomials S1(y), S2(y) ∈ R̃[y].

The closed fiber of the induced morphism W̃ → S consists of a disjoint union
of closed subschemes Dg ' Spec(R̃[z, z−])' A2

C̃
with defining ideals (x, y− σg),

g ∈G/H . The open subscheme W̃g= W̃ \
⋃

g′∈(G/H)\{g} Dg′ of W̃ is Ga,Ũ -invariant
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and one checks using the above expression for P(y)− t that the rational map
W̃ 99K Spec(R̃[ug, z−]),

(y, z, z−) 7→ (ug, z−)=
(

y− σg

xn =
z− S2(y)

S1(y)
∏

g′∈(G/H)\{g}(y− σg′)
, z−

)
induces a Ga,Ũ -equivariant isomorphism τg : W̃g

∼
−→A2

Ũ
=Spec(R̃[ug, z−]) for the

Ga,Ũ -action on A2
Ũ

generated by the locally nilpotent R̃-derivation ∂ug+ p−(xnug+

σg)∂z− of R̃[ug, z−]. The latter is a translation with ug as a global slice and with
geometric quotient W̃g/Ga,Ũ isomorphic to Spec(R̃[vg]) where

vg = z−− x−n(P−(xnug + σg)− P−(σg)) ∈ R̃[ug, z−]Ga,Ũ .

By construction, for distinct g, g′ ∈ G/H , the rational functions τ ∗g vg and τ ∗g′vg′ on
W̃ differ by the addition of the element

fg,g′ = x−n(P−(σg)− P−(σg′)) ∈ R̃x ∈ 0(W̃g ∩ W̃g′,OW̃ ).

This implies that X̃ = W̃/Ga,Ũ is isomorphic to the Ũ -scheme obtained by glu-
ing r copies X̃g = Spec(R̃[vg]) of A1

Ũ
along the principal open subsets X̃g,x '

Spec(R̃x [vg]) via the isomorphisms induced by the R̃x -algebra isomorphisms

ξ∗g,g′ : R̃x [vg] → R̃x [vg′], vg 7→ vg′ + fg,g′, g, g′ ∈ G/H, g 6= g′.

Since by assumption X̃ is separated, it follows from [EGA 1960, I, Proposition
(5.5.6)] that for every pair of distinct elements g, g′∈G/H , the subring R̃[vg′, fg,g′]

of R̃x [vg′] generated by the union of R̃[vg′] and ξ∗g,g′(R̃[vg]) is equal to R̃x [vg′].
This holds if and only if R̃[ fg,g′] = R̃x whence if and only if fg,g′ ∈ R̃x has the
form fg,g′ = x−mg,g′ Fg,g′ for a certain mg,g′ > 1 and an element Fg,g′ ∈ R̃ with
invertible residue class modulo x .

This additional information enables a proof of the affineness of X̃ by induction on
r as follows: given a pair of distinct elements g, g′ ∈G/H such that mg,g′ =m > 0
is maximal, we let θg = 0 and θg′′ = xm−mg,g′′ Fg,g′′ ∈ R̃ for every g′′ ∈ (G/H)\ {g}.
The choice of the elements θg′′ ∈ R̃ guarantees that the local sections

ψg′′ = xmvg′′ + θg′′ ∈ 0(X̃g′′,OX̃), g′′ ∈ G/H,

glue to a global regular functionψ ∈0(X̃,OX̃). Since θg′= Fg,g′ is invertible modulo
x , the regular functions x , ψ and ψ − θg′ generate the unit ideal in 0(X̃,OX̃). The
principal open subset X̃x of X̃ is isomorphic to X̃g,x ' Spec(R̃x [vg]) for every
g ∈ G/H , hence is affine. On the other hand, X̃ψ and X̃ψ−θg′

are contained
respectively in the open subschemes X̃(g) and X̃(g′) obtained by gluing only the
r − 1 open subsets X̃g′′ corresponding to the elements g′′ in (G/H) \ {g} and
(G/H) \ {g′} respectively. By the induction hypothesis, the latter are both affine
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and hence X̃ψ and X̃ψ−θg′
are affine as well. This shows that X̃ is an affine scheme

and completes the proof. �

References

[Bass 1968] H. Bass, Algebraic K -theory, W. A. Benjamin, New York, 1968. MR 40 #2736
Zbl 0174.30302

[Bass 1984] H. Bass, “A nontriangular action of Ga on A3”, J. Pure Appl. Algebra 33:1 (1984), 1–5.
MR 85j:14086 Zbl 0555.14019

[Bass et al. 1977] H. Bass, E. H. Connell, and D. L. Wright, “Locally polynomial algebras are
symmetric algebras”, Invent. Math. 38:3 (1977), 279–299. MR 55 #5613 Zbl 0371.13007

[Bhatwadekar and Daigle 2009] S. M. Bhatwadekar and D. Daigle, “On finite generation of kernels
of locally nilpotent R-derivations of R[X, Y, Z ]”, J. Algebra 322:9 (2009), 2915–2926. MR 2011b:
13088 Zbl 1234.13027

[Daigle and Freudenburg 2001] D. Daigle and G. Freudenburg, “Triangular derivations of k[X1, X2,
X3, X4]”, J. Algebra 241:1 (2001), 328–339. MR 2002g:13058 Zbl 1018.13013

[Daigle and Kaliman 2009] D. Daigle and S. Kaliman, “A note on locally nilpotent derivations and
variables of k[X, Y, Z ]”, Canad. Math. Bull. 52:4 (2009), 535–543. MR 2011j:14125 Zbl 1185.
14056

[Deveney and Finston 1994] J. K. Deveney and D. R. Finston, “Ga actions on C3 and C7”, Comm.
Algebra 22:15 (1994), 6295–6302. MR 95j:13004 Zbl 0867.13002

[Deveney and Finston 1995] J. K. Deveney and D. R. Finston, “A proper Ga action on C5 which is
not locally trivial”, Proc. Amer. Math. Soc. 123:3 (1995), 651–655. MR 95j:14065 Zbl 0832.14036

[Deveney and Finston 2000] J. K. Deveney and D. R. Finston, “Twin triangular derivations”, Osaka J.
Math. 37:1 (2000), 15–21. MR 2001f:14088 Zbl 0968.14025

[Deveney et al. 1994] J. K. Deveney, D. R. Finston, and M. Gehrke, “Ga actions on Cn”, Comm.
Algebra 22:12 (1994), 4977–4988. MR 95e:14038 Zbl 0817.14029

[Deveney et al. 2004] J. K. Deveney, D. R. Finston, and P. van Rossum, “Triangular Ga actions on
C4”, Proc. Amer. Math. Soc. 132:10 (2004), 2841–2848. MR 2005d:14064 Zbl 1077.14093

[Dubouloz and Finston 2014] A. Dubouloz and D. R. Finston, “Proper twin-triangular Ga-actions on
A4 are translations”, Proc. Amer. Math. Soc. 142:5 (2014), 1513–1526. MR 3168459 Zbl 06269648
arXiv 1109.6302

[EGA 1960] A. Grothendieck and J. Dieudonné, “Éléments de géométrie algébrique, I: Le langage
des schémas”, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 5–228. MR 29 #1207 Zbl 0118.36206

[EGA 1965] A. Grothendieck and J. Dieudonné, “Éléments de géométrie algébrique, IV: Étude locale
des schémas et des morphismes de schémas, II”, Inst. Hautes Études Sci. Publ. Math. 24 (1965),
5–231. MR 33 #7330 Zbl 0135.39701

[Fauntleroy and Magid 1976] A. Fauntleroy and A. R. Magid, “Proper Ga-actions”, Duke Math. J.
43:4 (1976), 723–729. MR 54 #5254 Zbl 0351.14026

[Kaliman 2004] S. Kaliman, “Free C+-actions on C3 are translations”, Invent. Math. 156:1 (2004),
163–173. MR 2005b:14102 Zbl 1058.14076

[Kaliman and Saveliev 2004] S. Kaliman and N. Saveliev, “C+-actions on contractible threefolds”,
Michigan Math. J. 52:3 (2004), 619–625. MR 2005h:14145 Zbl 1067.14067

[Knutson 1971] D. Knutson, Algebraic spaces, Lecture Notes in Math. 203, Springer, Berlin, 1971.
MR 46 #1791 Zbl 0221.14001

http://www.math.uni-bielefeld.de/~rehmann/DML/BOOKS/bass.pdf
http://msp.org/idx/mr/40:2736
http://msp.org/idx/zbl/0174.30302
http://dx.doi.org/10.1016/0022-4049(84)90019-7
http://msp.org/idx/mr/85j:14086
http://msp.org/idx/zbl/0555.14019
http://dx.doi.org/10.1007/BF01403135
http://dx.doi.org/10.1007/BF01403135
http://msp.org/idx/mr/55:5613
http://msp.org/idx/zbl/0371.13007
http://dx.doi.org/10.1016/j.jalgebra.2008.05.003
http://dx.doi.org/10.1016/j.jalgebra.2008.05.003
http://msp.org/idx/mr/2011b:13088
http://msp.org/idx/mr/2011b:13088
http://msp.org/idx/zbl/1234.13027
http://dx.doi.org/10.1006/jabr.2001.8763
http://dx.doi.org/10.1006/jabr.2001.8763
http://msp.org/idx/mr/2002g:13058
http://msp.org/idx/zbl/1018.13013
http://dx.doi.org/10.4153/CMB-2009-054-5
http://dx.doi.org/10.4153/CMB-2009-054-5
http://msp.org/idx/mr/2011j:14125
http://msp.org/idx/zbl/1185.14056
http://msp.org/idx/zbl/1185.14056
http://dx.doi.org/10.1080/00927879408825190
http://msp.org/idx/mr/95j:13004
http://msp.org/idx/zbl/0867.13002
http://dx.doi.org/10.2307/2160782
http://dx.doi.org/10.2307/2160782
http://msp.org/idx/mr/95j:14065
http://msp.org/idx/zbl/0832.14036
http://projecteuclid.org/euclid.ojm/1200789035
http://msp.org/idx/mr/2001f:14088
http://msp.org/idx/zbl/0968.14025
http://dx.doi.org/10.1080/00927879408825115
http://msp.org/idx/mr/95e:14038
http://msp.org/idx/zbl/0817.14029
http://dx.doi.org/10.1090/S0002-9939-04-07500-8
http://dx.doi.org/10.1090/S0002-9939-04-07500-8
http://msp.org/idx/mr/2005d:14064
http://msp.org/idx/zbl/1077.14093
http://dx.doi.org/10.1090/S0002-9939-2014-11932-0
http://dx.doi.org/10.1090/S0002-9939-2014-11932-0
http://msp.org/idx/mr/3168459
http://msp.org/idx/zbl/06269648
http://msp.org/idx/arx/1109.6302
http://www.numdam.org/item?id=PMIHES_1960__4__5_0
http://www.numdam.org/item?id=PMIHES_1960__4__5_0
http://msp.org/idx/mr/29:1207
http://msp.org/idx/zbl/0118.36206
http://www.numdam.org/item?id=PMIHES_1965__24__5_0
http://www.numdam.org/item?id=PMIHES_1965__24__5_0
http://msp.org/idx/mr/33:7330
http://msp.org/idx/zbl/0135.39701
http://dx.doi.org/10.1215/S0012-7094-76-04356-8
http://msp.org/idx/mr/54:5254
http://msp.org/idx/zbl/0351.14026
http://dx.doi.org/10.1007/s00222-003-0336-1
http://msp.org/idx/mr/2005b:14102
http://msp.org/idx/zbl/1058.14076
http://dx.doi.org/10.1307/mmj/1100623416
http://msp.org/idx/mr/2005h:14145
http://msp.org/idx/zbl/1067.14067
http://dx.doi.org/10.1007/BFb0059750
http://msp.org/idx/mr/46:1791
http://msp.org/idx/zbl/0221.14001


1984 Adrien Dubouloz, David R. Finston and Imad Jaradat

[Laumon and Moret-Bailly 2000] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) 39, Springer, Berlin, 2000. MR 2001f:14006
Zbl 0945.14005

[Miyanishi 1986] M. Miyanishi, “Normal affine subalgebras of a polynomial ring”, pp. 37–51 in
Algebraic and topological theories (Kinosaki, 1984), edited by M. Nagata et al., Kinokuniya, Tokyo,
1986. MR 1102251 Zbl 0800.14018

[Rentschler 1968] R. Rentschler, “Opérations du groupe additif sur le plan affine”, C. R. Acad. Sci.
Paris Sér. A 267 (1968), 384–387. MR 38 #1093 Zbl 0165.05402

[Sathaye 1983] A. Sathaye, “Polynomial ring in two variables over a DVR: a criterion”, Invent. Math.
74:1 (1983), 159–168. MR 85j:14098 Zbl 0538.13006

[Seshadri 1972] C. S. Seshadri, “Quotient spaces modulo reductive algebraic groups”, Ann. of Math.
(2) 95 (1972), 511–556; errata, ibid. (2) 96:3 (1972), 599. MR 46 #9044 Zbl 0241.14024

[SGA1 1971] A. Grothendieck et al., Revêtements étales et groupe fondamental, Lecture Notes in
Math. 224, Springer, Berlin, 1971. MR 50 #7129 Zbl 1039.14001

[Snow 1988] D. M. Snow, “Triangular actions on C3”, Manuscripta Math. 60:4 (1988), 407–415.
MR 89e:32043 Zbl 0644.14018

[Winkelmann 1990] J. Winkelmann, “On free holomorphic C-actions on Cn and homogeneous Stein
manifolds”, Math. Ann. 286:1-3 (1990), 593–612. MR 90k:32094 Zbl 0708.32004

Communicated by Hubert Flenner
Received 2014-04-23 Accepted 2014-09-10

adrien.dubouloz@u-bourgogne.fr CNRS, Institut de Mathématiques de Bourgogne,
Université de Bourgogne, 9 Avenue Alain Savary,
BP 47870, 21078 Dijon, France

dfinston@nmsu.edu Department of Mathematical Sciences, New Mexico
State University, Las Cruces, NM 88003, United States

imad_jar@nmsu.edu Department of Mathematical Sciences, Jordan University of
Science and Technology, P.O.Box 3030, Irbid 22110, Jordan

mathematical sciences publishers msp

http://books.google.com?id=RZOe_4CnWqMC
http://msp.org/idx/mr/2001f:14006
http://msp.org/idx/zbl/0945.14005
http://msp.org/idx/mr/1102251
http://msp.org/idx/zbl/0800.14018
http://gallica.bnf.fr/ark:/12148/bpt6k480295b/f408.image
http://msp.org/idx/mr/38:1093
http://msp.org/idx/zbl/0165.05402
http://dx.doi.org/10.1007/BF01388536
http://msp.org/idx/mr/85j:14098
http://msp.org/idx/zbl/0538.13006
http://dx.doi.org/10.2307/1970870
http://dx.doi.org/10.2307/1970828
http://msp.org/idx/mr/46:9044
http://msp.org/idx/zbl/0241.14024
http://arxiv.org/abs/math/0206203
http://msp.org/idx/mr/50:7129
http://msp.org/idx/zbl/1039.14001
http://dx.doi.org/10.1007/BF01258660
http://msp.org/idx/mr/89e:32043
http://msp.org/idx/zbl/0644.14018
http://dx.doi.org/10.1007/BF01453590
http://dx.doi.org/10.1007/BF01453590
http://msp.org/idx/mr/90k:32094
http://msp.org/idx/zbl/0708.32004
mailto:adrien.dubouloz@u-bourgogne.fr
mailto:dfinston@nmsu.edu
mailto:imad_jar@nmsu.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 8 2014

1787Relative cohomology of cuspidal forms on PEL-type Shimura varieties
KAI-WEN LAN and BENOÎT STROH

1801`-modular representations of unramified p-adic U(2,1)
ROBERT JAMES KURINCZUK

1839McKay natural correspondences on characters
GABRIEL NAVARRO, PHAM HUU TIEP and CAROLINA VALLEJO

1857Quantum matrices by paths
KAREL CASTEELS

1913Twisted Bhargava cubes
WEE TECK GAN and GORDAN SAVIN

1959Proper triangular Ga-actions on A4 are translations
ADRIEN DUBOULOZ, DAVID R. FINSTON and IMAD JARADAT

1985Multivariate Apéry numbers and supercongruences of rational functions
ARMIN STRAUB

2009The image of Carmichael’s λ-function
KEVIN FORD, FLORIAN LUCA and CARL POMERANCE

1937-0652(2014)8:8;1-3

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.8


	Introduction
	1. Recollection on proper, fixed point free and locally triangulable Ga-actions
	1A. Proper versus fixed point free actions
	1A1. 
	1A2. 

	1B. Locally triangulable actions

	2. Preliminary reductions
	2A. Reduction to a local base
	2A1. 

	2B. Reduction to proving the affineness of the geometric quotient
	2C. Reduction to extensions of irreducible derivations
	2C1. 


	3. Reduction to twin-triangular actions
	3A. The -reduction of a triangular A-derivation
	3B. A nonvaluative criterion for nonproperness
	3B1. 


	4.  Global equivariant triviality of twin-triangular actions
	4A1. 
	4A2. 

	4B. Twin-triangular actions in general position and associated invariant covering
	4B1. 
	4B2. 

	4C. Affineness of geometric quotients
	4C1. 


	References
	
	

