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Relations between Dieudonné displays
and crystalline Dieudonné theory

Eike Lau

We discuss the relation between crystalline Dieudonné theory and Dieudonné
displays of p-divisible groups. The theory of Dieudonné displays is extended
to the prime 2 without restriction, which implies that the classification of finite
locally free group schemes by Breuil-Kisin modules holds for the prime 2 as well.
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Introduction

Formal p-divisible groups G over a p-adically complete ring R are classified by
Zink’s nilpotent displays [Zink 2002; Lau 2008]. These are projective modules
over the ring of Witt vectors W(R) equipped with a filtration and with certain
Frobenius-linear operators. A central point of the theory is a description of the
Dieudonné crystal of G in terms of the nilpotent display associated to G.

Arbitrary p-divisible groups over R can be classified by displays only when R
is a perfect ring. In certain cases, there is the following refinement.

Assume that R is a local Artin ring with perfect residue field k of characteristic p
and with maximal ideal Ng. Then W(R) has a unique subring W(R), here called
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the Zink ring of R, which is stable under the Frobenius and which sits in an
exact sequence

0 —> W(Ng) — W(R) — W(k) —> 0,

where W means Witt vectors with only finitely many nonzero components. Let
us call R odd if p > 2 or if p annihilates R. The Verschiebung homomorphism v
of W(R), which appears in the definition of displays, stabilises the subring W(R)
if and only if R is odd. In this case, Zink [2001a] defines Dieudonné displays
over R as displays with W(R) in place of W(R), and shows that they classify all
p-divisible groups over R.

The restriction for p = 2 can be avoided with a small trick: The ring W(R) is
always stable under the modified Verschiebung v(x) = v(uox), where ug € W(R)
is the unit defined by the relation v(1g) = p —[p]. This allows to define Dieudonné
displays without assuming that R is odd. It turns out that the Zink ring and
Dieudonné displays can be defined for the following class of rings R, which we
call admissible: the order of nilpotence of nilpotent elements of R is bounded, and
R.eq 1s a perfect ring of characteristic p.

Theorem A. For each admissible ring R there is a functor
DR : (p-divisible groups over R) — (Dieudonné displays over R),
which is an equivalence of exact categories.

The equivalence easily extends to projective limits of admissible rings, which
includes complete local rings with perfect residue field. If R is perfect, the theorem
says that p-divisible groups over R are equivalent to Dieudonné modules. This is a
result of Gabber, which is used in the proof. We repeat that for Artin rings (which
is certainly the case of interest for most applications!), Theorem A is known when
R is odd; in this case, ®g is the inverse of the functor BT of [Zink 2001a] and
[Lau 2009]. But the present construction of the functor ® z based on the crystalline
Dieudonné module is new, and also gives the following second result.

Let D(G) denote the covariant Dieudonné crystal of a p-divisible group G.
Following [Zink 2001b], to a Dieudonné display &2 over an admissible ring R one
can associate a crystal in locally free modules D(2?).

Theorem B. For a p-divisible group G over an admissible ring R with associated
Dieudonné display & = ©g(G), there is a natural isomorphism

D(G) = D(2).

In subsequent work, Dieudonné displays over a larger class of base rings will be used to study
the image of the crystalline Dieudonné functor over l.c.i. schemes.
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This compatibility was not known before and can be useful in applications; see
for example [Viehmann and Wedhorn 2013]. Our proofs of Theorems A and B are
closely related. The main point is to construct the functor ® g and variants of it.
Let [ be the kernel of the natural homomorphism W(R) — R.

First, if R is an odd admissible ring, the ideal [g carries natural divided powers.
Thus the crystalline Dieudonné module of a p-divisible group over R can be
evaluated at W(R), which gives a filtered F-V-module over W(R). We show that
this construction can be extended to a functor ®g as in Theorem A. This is not
evident because a filtered F'-V -module does not in general determine a Dieudonné
display. But the construction of ®r can be reduced to the case where R is a
universal deformation ring; then the Dieudonné display is determined uniquely
because p is not a zero divisor in W(R).

Next, for a divided power extension of admissible rings S — R, one can define
Dieudonné displays relative to S — R, called triples in the work of Zink. They are
modules over an extension W(S/R) of W(S). If R is odd and the divided powers
are compatible with the canonical divided powers of p, then the evaluation of the
crystalline Dieudonné module at the divided power extension W(S/R) — R can
be extended to a functor

®g/ g : (p-divisible groups over R) — (Dieudonné displays for S/R).

Again, this is not evident; the proof comes down to the fact that p is not a zero
divisor in the Zink ring of the divided power envelope of the diagonal of the universal
deformation space of a p-divisible group. Once the functors ®g,g are known to
exist, Theorems A and B for odd admissible rings are straightforward consequences.

Now let R be an admissible ring which is not odd, so p = 2. In this case, the
preceding constructions do not apply directly because the ideal [z does not in
general carry divided powers. This changes when W(R) is replaced by the slightly
larger v-stabilised Zink ring W+ (R) = W(R)[v(1)]. With an obvious definition of
v-stabilised Dieudonné displays, we get a functor

QJ; : (2-divisible groups over R) — (v-stabilised Dieudonné displays over R),

which is, however, not an equivalence. In order to construct a functor @ as in
Theorem A, we have to descend from W (R) to W(R). This can be reduced to
the minimal case where 2N g = 0. Then the ideal lg carries exceptional divided
powers, which allows us to evaluate the crystalline Dieudonné module at W(R). In
order to get the functor ® g, we need some lift towards characteristic zero, which
is provided by the fact that the exceptional divided powers exist on Iz /(v([4])) as
soon as 4N g = 0. Once ®p is known to exist in general, Theorems A and B follow
again quite formally.
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Breuil-Kisin modules. Now let R be a complete regular local ring with perfect
residue field k of characteristic p. Theorem A implies that the classification of
p-divisible groups over R by Breuil windows derived in [Vasiu and Zink 2010] and
[Lau 2010] for odd p holds for p =2 as well. Let us recall what this means: We write
R =G6/EG, where G is a power series ring over W (k) and where E has constant
term p; we also have to choose an appropriate Frobenius lift o on &. A Breuil win-
dow is a free G-module Q equipped with an G-linear map ¢ : Q — Q(") whose cok-
ernel is annihilated by E; this is equivalent to the notion of a Breuil-Kisin module.
As usual, one also gets a classification of finite locally free p-group schemes over R.

In the case of discrete valuation rings this completes the proof of a conjecture of
Breuil [1998], which was proved in [Kisin 2006] if p is odd, and in [Kisin 2009]
for connected p-divisible groups if p = 2. Shortly after the first version of this
article was posted, independent proofs of Breuil’s conjecture by W. Kim [2012]
and T. Liu [2013] appeared online.

Assume that R has characteristic zero, and let S be the p-adic completion of the
divided power envelope of the ideal ES C G. As a consequence of Theorem B,
we show that for a p-divisible group over R the value of its crystalline Dieudonné
module at S coincides with the base change of its Breuil window under o : G — S.

The functor BT. The original proof of Theorem A for odd local Artin rings in
[Zink 2001a] depends on the construction of a functor BT from Dieudonné displays
to p-divisible groups, which is a combination of the functor BT from nilpotent
displays to formal p-divisible groups and a calculation of extensions. A modified
construction of this functor is given in [Lau 2009]. Once the definition of Dieudonné
displays for nonodd local Artin rings is available, all these arguments can be carried
over almost literally to give an alternative proof of Theorem A in that case. In
the present approach this construction serves only as an explicit description of the
inverse of the functor ® g; this is used in [Lau 2012].

All rings are commutative with a unit unless the contrary is stated. For a p-
divisible group G, we denote by D(G) the covariant Dieudonné crystal.

1. The Zink ring

In this section we study the Zink ring W(R), which was introduced in [Zink 2001a]
under the notation W(R), and variants of W(R) in the presence of divided powers,
following [Zink 2001b]. The definitions are stated in more generality, allowing
arbitrary perfect rings instead of perfect fields. The modified Verschiebung v for
p = 2 is new.

1A. Preliminaries. We fix a prime p. A commutative ring without unit N is called
bounded nilpotent if there is a number 7 such that x” = 0 for every x € N. We will
consider the following type of base rings.
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Definition 1.1. A ring R is called admissible if its nilradical A'g is bounded nilpo-
tent and if R..q = R/NR is a perfect ring of characteristic p.

Local Artin rings with perfect residue field are admissible. The ring O¢, / p is
not admissible. We will also consider projective limits of admissible rings:

Definition 1.2. An admissible topological ring is a complete and separated topo-
logical ring R with linear topology such that the ideal AN’ of topologically nilpotent
elements is open, the ring Ryeq = R/NpR is perfect of characteristic p, and for each
open ideal N of R contained in N'g, the quotient Ng/N is bounded nilpotent. Thus
R is the projective limit of the admissible rings R/ N .

Examples of admissible topological rings include complete local rings with
perfect residue field. Admissible topological rings in which A is not topologically
nilpotent arise from divided power envelopes; see Lemma 1.13.

Notation 1.3. For a commutative, not necessarily unitary ring A, let W(A) be
the ring of p-typical Witt vectors of A. We write f and v for the Frobenius and
Verschiebung of W(A). Let 14 = v(W(A)), let w; : W(A) — A be given by the
i-th Witt polynomial, and let W(A) be the group of all elements of W(A) with
nilpotent coefficients which are almost all zero.

Let us recall two well-known facts:

Lemma 1.4. Let A be a perfect ring of characteristic p and let B be a ring with
a bounded nilpotent ideal J C B. Every ring homomorphism A — B/ J lifts to a
unique ring homomorphism W(A) — B.

Proof. See [Grothendieck 1974, Chapitre IV, Proposition 4.3]; the ideal J there is
assumed nilpotent, but the proof applies here as well. O

Lemma 1.5 [Zink 2001b, Lemma 2.2]. Let N be a nonunitary ring which is
bounded nilpotent and annihilated by a power of p. Then W(N) is bounded
nilpotent and annihilated by a power of p. O

1B. The Zink ring. Let R be an admissible ring. By Lemma 1.4, the exact sequence
0 — W(NR) — W(R) —> W(Rped) — 0

has a unique ring homomorphism section s : W(Ryq) — W(R), which is f-
equivariant by its uniqueness. Let

W(R) = sW(Rrea) ® W (NR).

Since W (V) is an [ -stable ideal of W(R), the group W(R) is an f -stable subring
of W(R), which we call the Zink ring of R.
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Lemma 1.6. The ring W(R) is stable under the Verschiebung homomorphism
v:W(R) — W(R) if and only if p > 3 or pR = 0. In this case we have an
exact sequence
0 — W(R) — W(R) — R —> 0.

Proof. See [Zink 2001a, Lemma 2]. For some r > 0, the ring Ry =Z/p"Z is a
subring of R, and we have W(Ro) = W(Rp) NW(R). The calculation in [loc. cit.]
shows that the element v(1) € W(Ry) lies in W(Ry) if and only if p >3 or r = 1.
For a € W(Ryeq) we have v(s(f(a))) = v(f(s(a))) = v(1)s(a). Since W (NR) is
stable under v and since f is surjective on W(Ryeq), the first assertion of the lemma
follows. The sequence is an extension of

00— W(Rred) _—U_> W(Rred) —> Riea —0
and
A~ v A~
0— W(NR) —> W(NR) — Ngp — 0,
which are both exact. O

With a slight modification the exception at the prime 2 can be removed. The ele-
ment p—[p] of W(Z,) lies in the image of v because it maps to zero in Z,,. Moreover,

v~(p —[p]) maps to 1 in W(Fp), so this element is a unit in W(Z,). We define
v IQ2-[2]) if p=2,
Uo = .
1 if p>3.

The image of ug in W(R) is also denoted by ug. For x € W(R), let
V(x) = v(uox).
One could also take ug = v~ (p — [p]) for all p, which would allow us to state

some results more uniformly, but for odd p this would be overcomplicated.

Lemma 1.7. The ring W(R) is stable under v : W(R) — W(R), and there is an
exact sequence

0 —> W(R) —> W(R) —25 R —> 0.

Proof. By Lemma 1.6, we can assume that p = 2. For a € W(Req), we have

V(s(f(a)) = v(uo f(s(a))) = v(uo)s(a) = (2 —[2])s(a), which lies in W(R).
Since W (NR) is stable under v and since f is surjective on W(Rq), it follows
that W(R) is stable under v. The sequence is an extension of

v
0— W(Rred) — W(Rred) — Rred —0
and y
0— W(WNR) — W(NR) — Ng — 0.

They are exact because in both cases V = v o ug, where ug acts bijectively. O
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1C. The enlarged Zink ring. Let us recall the logarithm of the Witt ring. For a
divided power extension of rings (B — R, §) with kernel b C B, the §-divided Witt
polynomials define an isomorphism of W(B)-modules

Log : W(b) = b",

where x € W(B) acts on bY by [bg.by,...] — [wo(x)bg, w1 (x)b1,...]. The
Frobenius and Verschiebung of W(b) act on bN by

Sf(bo.b1,...]) =[pb1, pba,...], v([bo,b1,...]) =1[0,bo,b1,...].

Moreover, Log induces an injective map W(b) — 6™, which is bijective when
the divided powers § are nilpotent; see [Zink 2002, (149)] and the subsequent
discussion. In general, let

W (b) = Log~ ' (6™).

This is an f-stable and v-stable ideal of W(B) containing W(b).

Assume now that (B — R, §) is a divided power extension of admissible rings
(it suffices to assume that R is admissible and that p is nilpotent in B, because then
b is bounded nilpotent due to the divided powers, so B is admissible as well). Let

W(B,§) = W(B) + W (b).

This is an f-stable subring of W(B), which we call the enlarged Zink ring of B
with respect to the divided power ideal (b, ). We also write W(B/R) for W(B, §).
If the divided powers § are nilpotent then W(B, §) = W(B). We have the following
analogues of Lemmas 1.7 and 1.6:

Lemma 1.8. The ring W(B, §) is stable under v : W(R) — W(R), and there is an
exact sequence

0 —> W(B, §) —> W(B, §) — B —> 0.

Proof. The ring W(B, §) is stable under v, because W(B) and W (b) are; see
Lemma 1.7. We have W(B, §)/W (b) = W(R). Thus, the exact sequence follows

from the exactness of 0 —> W(b) BN W(b) —> b —> 0 together with the exact
sequence of Lemma 1.7. O

Lemma 1.9. The ring W(B, §) is stable under v : W(R) — W(R) if p > 3, or if
p € b and the divided powers § on b induce the canonical divided powers on pB.
In this case we have an exact sequence

0 — W(B, §) —> W(B, §) —2 B —> 0.
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Proof. If p > 3 then W(B, §) is stable under v because W(B) and VT/(b) are stable
under v; see Lemma 1.6. Assume that p € b and that § induces the canonical divided
powers on pB. Let £ = p—v(1) € W(B). This element lies in W(pB) € W(b) and
satisfies Log(§) = [p, 0,0, ...]. Thus § € W(b), which implies that v(1) € W(B, 3).
Using this, the proof of Lemma 1.6 shows that W(B, §) is stable under v. The exact
sequence follows as usual. O

1D. The v-stabilised Zink ring. Assume that p = 2. For an admissible ring R,
let y be the canonical divided powers on the ideal 2R. We denote the associated
enlarged Zink ring by

WH(R) = W(R, y) = W(R) + W(2R) € W(R).

The kernel of the projection W (R) — W(R.eq) Will be denoted W+ (WNg). In
view of the following lemma, we call W™ (R) the v-stabilised Zink ring.

Lemma 1.10. Let p = 2. We have
WT(R) = W(R) + W(R)v(1).

The ring W (R) is equal to W(R) if and only if 2R = 0. The W(R)-module
WH(R)/W(R) is an Ryeq-module generated by v(1).

Proof. By Lemma 1.9, we have v(1) € WT(R). Clearly 2R = 0 implies that
W™ (R) = W(R). In general, we consider the filtration

W(Q2NR) € W(2R) € W(R)

and the graded modules for the induced filtrations on W(R) and W™ (R). First, the
restriction of the divided powers y to the ideal 2 is nilpotent, which implies that

WH(R)NWQNR) = W(Q2NR) = W(QNR) = W(R) N W2NR).
Next we have W (R/2R) = W(R/2R), or equivalently
WT(R)/WT(R)NW(Q2R) = W(R)/W(R) N W(2R).
Let ¢ = 2R/2Ng. By the preceding remarks, we have an isomorphism
W*(R)/W(R) = W (¢)/W (c).

This is an R/ANg-module. Assume that 2R # 0, which implies that ¢ # 0. For some
ideal Ng € b C R, multiplication by 2 induces an isomorphism R /b = ¢. Modulo 2,
the divided Witt polynomials are w;(x) = y2(xj—1) + Xi, so the isomorphism
Log: W(c) — ¢V takes the form

Log(2ap,2ay,...) = 2[a0,a(2) +a1,a% +a2,a§ +as,...],
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with a; € R/b. It follows that W (c) / W(c) can be identified with the direct limit of
the Frobenius homomorphism R/b — R/b — ---, which is isomorphic to R/~/b.
Under this identification, the element £ = 2 —v(1) of W(c) maps to 1 in R/~/0,
because we have Log(£) = [2,0,...]. Hence W*(R)/W(R) is generated by v(1),
with annihilator \/E O

Assume again that p = 2. Let (B — R, ) be a divided power extension of
admissible rings with kernel b € B such that § is compatible with the canonical
divided powers y on 2B. Let § be the divided powers on b™ = b+2B that extend
¢ and y. In this case, we write

WT(B,8) =W(B,8") =W(B) + W (™).

Clearly W(B, §) CW™ (B, §) 2 W (B). If the divided powers on b+ /2B induced
by § are nilpotent, then W (B, §) = WT(B).

1E. Passing to the limit. The preceding considerations carry over to the topological
case as follows. For an admissible topological ring R, let

W(R) = imW(R/N),
N
the limit taken over all open ideals N of R with N € Ng. Then Lemmas 1.6 and 1.7
hold for admissible topological rings. The enlarged Zink ring can be defined for
topological divided power extensions in the following sense.

Definition 1.11. Let B and R be admissible topological rings. A topological
divided power extension is a surjective ring homomorphism B — R whose kernel b
is equipped with divided powers § such that b is closed in B, the topology of R
is the quotient topology of B/b, and the linear topology of B is induced by open
ideals N for which N N b is stable under §. Let §/N be the divided powers on
N/N Nbinduced by §. We say that § is topologically compatible with the canonical
divided powers of p if the topology of B is induced by open ideals N such that
8/ N is defined and compatible with the canonical divided powers of p.

Remark 1.12. The existence of divided powers on b implies that b € Np. If B
is a noetherian complete local ring, then every ideal b of B is closed; moreover,
if b is given, for each n there is an open ideal N C m’, such that b N N is stable
under arbitrary divided powers § on b. Indeed, by Artin—Rees there is an / with
mipb D m% N b; then take N = m’b + m%, which implies that bN N = m/, b.

Given a topological divided power extension of admissible topological rings
(B — R, 5) with kernel b C B, we define

W(B,8) = imW(B/N,§/N),
N
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where N runs through the open ideals of B contained in Np such that N N b is
stable under . Lemmas 1.8 and 1.9 hold in the topological case.
Assume that p = 2. Then for an admissible topological ring, we put

+(RY — 1 +
WH(R) = limW* (R/N),
N
the limit taken over all open ideals N of R contained in Ng. If (B — R,§) is
a topological divided power extension of admissible topological rings which is
topologically compatible with the canonical divided powers of 2, we can define

W*(B,§) = l(iLnWJ“(B/N, §/N),
N
where N runs through the open ideals of B contained in Np such that §/N is
defined and compatible with the canonical divided powers of 2.
The following example of admissible topological rings is used in Section 3:

Lemma 1.13. Let R be a ring which is I -adically complete for an ideal I C R
such that K = R/ is a perfect ring of characteristic p. Assume that I = J + pR
for an ideal J C R such that R/J" has no p-torsion for each n. For a projective
R-module t of finite type, we consider the complete symmetric algebra

R[] = [ | Sym% ().
n>0
Let (a C S, 8) be the divided power envelope of the ideal tR[[t]] C R[[t]], and let S
be the I-adic completion of S. Then:

(1) S — Ris naturally a topological divided power extension of admissible topo-
logical rings which is topologically compatible with the canonical divided

powers of p.
(i1) S has no p-torsion.

Proof. Let R, =R/(p"R+J")and S,, = S ®g R,. We have S = R @ a and thus
S, =R, ® a, with @, = a ® g R,; moreover, the ideal a,, carries divided powers
8, induced by §; see [Berthelot 1974, Chapitre I, Proposition 1.7.1]. In particular,
S, is admissible. Since S — Ris the projective limit over n of S,, — R, to prove
(1) it suffices to show that §, is compatible with the canonical divided powers of p.
Now, Spec R — Spec R[[¢] is a regular immersion by Lemma A.3, and thus S is
flat over R by Proposition A.1. Since R has no p-torsion the same holds for S,
so the divided powers on a extend canonically to the ideal b = a + pS. We have
S/b = R/pR. The assumptions imply that Torf (R/J"™, R/pR) is zero. Hence
there is an exact sequence

0—b/J"6—S/J"S — R/(pR+J")—0,
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which in turn gives an exact sequence
0— (b/J"b)/p"(S)J"S)— S/(J"S + p"S) — R/(pR+J") — 0.

In both sequences the kernels carry divided powers which extend the canonical
divided powers of p, since the ideals J"b of S and p"(S/J"S) of S/J"S are
stable under the given divided powers. Thus the divided powers §, on a, are
compatible with the canonical divided powers of p, which proves (i).

Let S, = S/J"S, and let Sy be its p-adic completion Since S is flat over
R and since R/J" has no p- -torsion, S; and Sn have no p-torsion. Using that
S = 11m Sn, it follows that S has no p-torsion, which proves (ii). O

1F. Completeness. For an admissible ring R, the Zink ring W(R) is p-adically
complete. Indeed, W(Rq) is p-adically complete, and W(N R) is annihilated by a
power of p because this holds for W(Ng) by Lemma 1.5. The following topological
variant of this fact seems to be less obvious:

Proposition 1.14. Let R be an I -adically complete ring such that the ideal I is
finitely generated and K = R/ 1 is a perfect ring of characteristic p. Then the ring
W(R) is p-adically complete. If p = 2, the ring W (R) is p-adically complete too.

This is similar to [Zink 2002, Proposition 3], which says that W(R) is p-adically
complete if this holds for R.

Proof. The ring W(R) is p-adically separated, because this holds for each W(R/I").
Thus W(R) is p-adically separated too. Let S = W(K)([t1,...,t ], andlet S — R
be a homomorphism which maps #1, ..., to a set of generators of //I2. Then
S — R is surjective, and so is W(S) — W(R). Since W(R) is p-adically separated,
in order to show that W(R) is p-adically complete we may assume that R = §.
Consider the ideals J, = p" W(R)+ W (") of W(R) and J,, =W(R)NJ, of W(R).
Then

W(R)/Jn = Wa(K) ® W /T™), W(R)/Ip = Wn(K)® W /I").

It follows that W(R) and W(R) are complete and separated for the linear topologies
generated by the ideals J, and J,, respectively; moreover, W(R) is closed in W(R).
The ring W(R) is also complete and separated for the linear topology generated
by the ideals J,;,m = Ker(W(R) — W, (R/I™)). The J-topology is finer than the
J'-topology because J2, € J, ,

We claim that for each r > 1 the ideal p” W(R) of W(R) is closed in the J’-
topology. This is a variant of [Zink 2002, Lemma 6] with essentially the same proof.
First, for s > 1, an element x = (xog, ..., X;») of Wy, +1(R) satisfies x; € I for all i
if and only if w;(x) € 1 i+ for all i; see the proof of [Zink 2002, Lemma 4]. Then
the proof of Lemma 5 in that work shows that an element x € W,,(R) is divisible
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by p” if and only if for each s the image x € W,,,(R /1) is divisible by p”. Using
this, the claim follows from the proof of [Zink 2002, Lemma 6].

Thus p" W(R) is closed in the finer J-topology as well. Assume that we have
pW(R) = pW(R) NW(R). Then p"W(R) is closed in the J-topology, which
implies that W(R) is p-adically complete; see [Zink 2002, Lemma 7]. Thus for
p = 3, the proof is completed by Lemma 1.15 below. For p = 2 the same reasoning
shows that W (R) is p-adically complete. Now W (R)/W(R) is isomorphic to
K as abelian groups by the proof of Lemma 1.10. We get exact sequences

0 — K — W(R)/2"W(R) — W (R)/2"WT(R) — K — 0,

where the transition maps from 7 41 to n are zero on the left-hand K and the identity
on the right-hand K. It follows that W(R) is p-adically complete as well. O

Lemma 1.15. For a perfect ring K of characteristic p, let R = W(K)[[t1, ..., ],
with the (p,t1, ..., t;)-adic topology. If p > 3 then

pW(R)NW(R) = pW(R).
If p =2 then
2W(R)NWT(R) =2WT(R).

Proof. Assume p = 2. Let I be the kernel of R — K and let I = I/pR. The
filtration 0 C W(pR) C W(I) € W(R) induces a filtration of W(R) with successive
quotients I/T/(pR) = l(lnn W(pR/I"pR) and W(I_) = 1(&1” W(f/f”) and W(K).
To prove the lemma it suffices to show that

pw(H)NW () =pWw()
and B B
pW(pR)NW(pR) = pW(pR).

The first equality holds since multiplication by p on W(I) is given by (ag,ay,...)—
(O,aé’, a?,...),andfora € I with a? € IP" we have a € I". The second equality
holds because the isomorphism Log : W(pR) = (pR)N induces an isomorphism
between W (pR) and the group of all sequences in (pR)" that converge to zero
I -adically. The proof for p > 3 is similar. O

1G. Divided powers. In Section 3, we will use that the augmentation ideals of the
Zink ring and its variants carry natural divided powers, with some exception when
p = 2; see also Section 4A.

Let us first recall the canonical divided powers on the Witt ring. If R is a Zp)-
algebra, then W(R) is a Z,)-algebra as well, and the ideal /g carries divided
powers y which are determined by (p — 1)!y,(v(x)) = p?~2v(x?). Assume that
(B — R, ) is a divided power extension of Z,)-algebras with kernel b C B. Let
I/ be the kernel of W(B) — R. If i : b — W(b) is defined by Log(i (b)) =
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[6,0,0,...], we have Ip/g = Ip ®i(b), and the divided powers y on /g extend
to divided powers y’ =y @ 6 on I/ such that y,, (i(b)) = i(8,(b)) for b € b. If
p € b and if § extends the canonical divided powers of p, then y & § extends the
canonical divided powers of p, and f preserves y @ 6. This is clear when B has no
p-torsion; the general case follows because (B — R) can be written as the quotient
of a divided power extension (B’ — R’), where B’ is the divided power algebra of
a free module over a polynomial ring R” over Z(,), and R" = R”/pR".
These facts extend to the Zink ring as follows:

Lemma 1.16. Let | CW be one of the following:

(1) 1 =1r and W = W(R) for an admissible ring R with p > 3.
() 1= I]; and W = W (R) for an admissible ring R with p = 2.

Then the divided powers y on Ig induce divided powers on .

Proof. Since W is a Z)-algebra, it suffices to show that [ is stable under the map
Yp : IR — IR, which is true because | = v(W) by Lemmas 1.6 and 1.9. O

Lemma 1.17. Let (B — R, ) be a divided power extension of admissible rings
with kernel b C B, and let lg /g be the kernel of W(B, §) — R. Assume that p > 3;
or that p =2 and p € b and § extends the canonical divided powers of p. Then
the divided powers y @ § on Ig g induce divided powers on lg,g. If p € b and
if 8 extends the canonical divided powers of p, then the divided powers on lg /g
induced by y @ § extend the canonical divided powers of p and are preserved by f.

Proof. Let I’y be the kernel of W(B/R) — B. Then lg g =’y ®i(b), and we have
I’y =v(W(B/R)) by Lemma 1.9. Thus Iy is stable under y, and [ g, g is stable under
y @4. The second assertion follows from the corresponding fact for the Witt ring. [

2. Dieudonné displays

In this section, Dieudonné displays and a number of variants related to divided power
extensions are defined. We use the formalism of frames and windows introduced in
[Lau 2010]. First of all, let us recall a well-known fact:

Lemma 2.1. Let A be a commutative, not necessarily unitary ring. For x € W(A)
we have f(x) = x? modulo pW(A). Similarly, for x € W(A) we have f(x) = x?
modulo pW (A).

Proof. For x € W(R) write x = [xo] + v(y) with xo € R and y € W(R). Then
flx) = [xé’] = x? modulo pW(R) because fv = p and v(y)? = p?~lv(y?).
The same calculation applies with W in place of W. O
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2A. Frames and windows. We recall the notion of frames and windows from [Lau
2010], with some additions. A preframe is a quintuple

F=(S,I,R,0,01)

where S and R = S/ are rings, where o : S — S is a ring endomorphism with
o(a) = a? modulo pS, and where o1 : I — S is a o-linear map of S-modules
whose image generates S as an S-module. Then there is a unique element 6 € S
with 6(a) = 8a1(a) for a € I. The preframe F is called a frame if

I + pS C Rad(S).

If, in addition, all projective R-modules of finite type can be lifted to projective .S
modules, then F is called a lifting frame.

A homomorphism of preframes or frames « : F — F’ is a ring homomorphism
o:S — S8 witha(l) €I’ such that 0'e = a0 and oja = u-aoy for a unitu € S/,
which is then determined by «. It also follows that «(6) = u6’. We say that « is a
u-homomorphism of preframes or frames. If ¥ = 1 then « is called strict.

Now let F be a frame. An F-window is a quadruple

P=(P,Q,F, Fy)

where P is a projective S-module of finite type with a submodule Q such that
there exists a decomposition of S-modules P = L @ T with Q =L@ IT, called a
normal decomposition, and where F : P — P and F; : Q — P are o-linear maps
of S-modules with

Fi(ax) =o01(a)F(x)

for a € I and x € P; we also assume that F;(Q) generates P as an S-module.
Then F(x) = 0F1(x) for x € Q. If F is a lifting frame, every pair (P, Q) such
that P is a projective S-module of finite type and P/ Q is a projective R-module
admits a normal decomposition. In general, for given (P, Q) together with a normal
decomposition P = L@ T, giving o-linear maps (F, F;) which make an F-window
& is equivalent to giving a o-linear isomorphism

V:LeT — P

defined by F; on L and by F on T. The triple (L, T, V) is called a normal
representation of .

A frame homomorphism « : F — F’ induces a base change functor ax from
F-windows to F’'-windows. In terms of normal representations, it is given by

(L. T, )~ (S'®sL.S'" ®sT.¥)
with W/'(s' ® [) = uo’(s') @ ¥(l) and ¥'(s' ® 1) = 0/ (s') @ ¥(¢).
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A frame homomorphism « : F — F' is called crystalline if the functor a4 is an
equivalence of categories. For reference, we recall [Lau 2010, Theorem 3.2]:

Theorem 2.2. Let a : F — F' be a homomorphism of frames which induces an
isomorphism R = R’ and a surjection S — S’ with kernel a. We assume that there is
a finite filtration of ideals a=a¢g 2 --- D a, =0witho1(a;) Ca; and o (a;) C aj+1,
that o is elementwise nilpotent on each a; /a; 1, and that all projective S’-modules
of finite type lift to projective S-modules of finite type. Then « is crystalline. O

Let us recall the operator V# of a window. For an S-module M we write
MO =5 ®o,s M. A filtered F-V-module over F is a quadruple

(P,Q,F* vh

where P is a projective S-module of finite type, Q is a submodule of P such that
P/ Q is projective over R, and F¥: P — P and V#: P — P©) are S-linear
maps with FAV# =0 and VHF# = 6.

Lemma 2.3. There is a natural functor from F-windows to filtered F -V -modules
over F, which is fully faithful if 9 is not a zero divisor in S.

Proof. The functoris (P, Q, F, F1)— (P, Q, Fﬂ, Vﬁ), where F# is the linearisation
of F,and V# is the unique S-linear map such that VH(Fi(x)) =1®x for x € 0.
Clearly this determines V¥ if it exists. In terms of a normal representation (L, T, V)
of 2, thus P = L @ T, one can define V¥ = (1 @ 6)(¥¥)1 . The required
relation F#VH =0 on P is equivalent to FﬁVﬁFl = OF; on Q, which is clear
since OF) = F. The required relation VEF% = 0 on P© holds if and only if
it holds after multiplication with o;j(a) for all @ € I. For x € P we calculate
o1(@)VEFRF(1®x) = VHFi(ax) = 0(a) ® x = 0o1(a)(1 ® x).

Assume that 6 is not a zero divisor in S. It suffices to show that the forgetful
functors from windows to triples (P, Q, F') and from filtered F' -V -modules to triples
(P, Q, F¥) are fully faithful. In the first case this holds because 6F; = F. In the
second case, for an endomorphism « of P with o F # = F#a (@) we calculate Va0 =
VEaFRVE = VEFRQ@ YR = 9o (@ VE which implies that Vie = «@VE O

Finally, we recall the duality formalism. Let F denote the F-window (S, I, 0, 01).
A bilinear form between F-windows

B:PxP —F

is an S-bilinear map B : P x P’ — S such that (Q x Q') € I and B(Fix, F{x') =
o1(B(x,x")) for x € Q and x” € Q. For each 2, the functor ' > Bil(# x &', F)
is represented by an F-window 7!, called the dual of 2. The tautological bilinear
form & x 2! — § is a perfect bilinear map P x P! — §. There is a bijection
between normal representations P = L @ T and P! = L' @ T"' determined by
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(L,L"Y =0=(T,T"). The associated operators ¥ : P — P and ¥’ : P! — P!
are related by (¥x, W'x’) = o (x, x’).

There is also an obvious duality of filtered F'-V -modules over F: the dual of
M=(P,Q,F* V¥ is M! =(P*, Q', V¥, F#) where P* =Homg(P, S) and
Q' is the submodule of all y in P* with y(Q) C I. It is easy to see that the functor
in Lemma 2.3 preserves duality.

2B. Frames associated to the Witt ring. For an arbitrary ring R let f; : I —
W(R) be the inverse of the Verschiebung v. Then

#r=W(R),IR. R, f, f1)

is a preframe with 6 = p. If R is p-adically complete, # is a lifting frame because
W(R) is Igr-adically complete by [Zink 2002, Proposition 3], and windows over
Wpg are displays over R.

For a divided power extension of rings (B — R, §) with kernel b € B, one can
define a preframe

#g/r = (W(B). Ig/r. R. . f1)

with Ig,;gr = Ig + W(b) such that fi: Ig/r — W(B) is the unique extension of f
whose restriction to W(b) is given by [ag, a1, a2, ...]— [a1,az, ...] inlogarithmic
coordinates; see Section 1C. The projection #p — #r factors into strict preframe
homomorphisms #p — #g/r — ¥R.

As a special case, assume that R is a perfect ring of characteristic p. Then f is
an automorphism of W(R), and Ig = pW(R). Let us define a Dieudonné module
over R to be a triple (P, F, V) where P is a projective W(R)-module of finite type
equipped with an f-linear endomorphism F and an f ~!-linear endomorphism V'
such that F'V = p, or, equivalently, VF = p.

Lemma 2.4. Displays over a perfect ring R are equivalent to Dieudonné modules
over R.

Proof. To a display (P, Q, F, F1) we associate the Dieudonné module (P, F, V),
where the linearisation of V' : P — P is the operator V¥ defined in Lemma 2.3.
Then VF; : Q — P is the inclusion. Here Fj is surjective since f is bijective.
Thus Q = V(P), and the functor is fully faithful; see Lemma 2.3. It remains to
show that for every Dieudonné module (P, F, V') the R-module M = P/V(P) is
projective. For p € Spec R let £37(p) be the dimension of the fibre of M at p. Let
N = P/F(P). Then {p +{yN = €p;,p as functions on Spec R. Since M and
N are of finite type and since P/pP is projective, the functions {57 and £ are
upper semicontinuous, and £p,,p is locally constant. It follows that £ is locally
constant, which implies that M is projective because R is reduced. O
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2C. Dieudonné frames. For an admissible ring R in the sense of Definition 1.1,
let [ g be the kernel of wo : W(R) — R, and let f : g — W(R) be the inverse of v,
which is well-defined by Lemma 1.7. If p is odd, then v=v and f; = f7.

Lemma 2.5. The quintuple

2r = (Wg, IR, R, f.f1)

is a lifting frame.
We call 2 the Dieudonné frame associated to R.

Proof. In order that 2 is a preframe we need that f(a) = a? modulo pW(R)
for a € W(R), which follows from Lemma 2.1 applied to W(Req) and to W (NR).
Since W (NR) is a nilideal by Lemma 1.5 and since the quotient W(R)/ W(NR) =
W (Ryeq) is p-adically complete with pW(Ryeq) = IR,,,, the kernel of W(R) — Ryeq
lies in the radical of W(R), and projective Ry4-modules of finite type lift to
projective W(R)-modules of finite type. It follows that 2 is a lifting frame. [

The inclusion W(R) — W(R) is a ug-homomorphism of frames Zgp — #Rr.
Thus for 2g we have 6 = p if p isodd and 0 = 2ug =2—[4] if p =2.

Definition 2.6. A Dieudonné display over R is a window over Zg.

Thus a Dieudonné display is a quadruple & = (P, Q, F, F1) where P is a
projective W(R)-module of finite type with a filtration I[g P € Q C P such that
P/Q is a projective R-module, F: P — P and F; : Q — P are f-linear maps
with Fi(ax)=T(a)F(x) foraelg and x € P, and F(Q) generates P. We write

Lie(2) = P/ Q.

The height of 2 is the rank of the W(R)-module P, and the dimension of & is
the rank of the R-module Lie(Z?), both viewed as locally constant functions on

Spec R. As in the case of general frames, we also denote by 2 the Dieudonné
display (W(R), IR, f,f1) over R.

2D. Relative Dieudonné frames. Let (B — R, §) be a divided power extension
of admissible rings with kernel b € B. Let W(B/R) = W(B, §) as in Section 1C
and let [g/r be the kernel of the projection W(B/R) — R; thus

Ig/r =g + W (b).

Lemma 2.7. There is a unique extension of Ty : lp — W(B) to an f-linear -map
f, :lg/r = W(B/R) of W(B/R)-modules such that the restriction of f1 10 W (b)
is given by

f1([ao, a1, az,...]) = [wolugV)ar, wi(ug Haz, ...] (-1
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in logarithmic coordinates. The quintuple

IB/R = Z/Rs = (W(B/R),Ip/r, R, f.T1)
is a lifting frame.

Proof. Clearly f, is determined by (2-1). Let I’; be the kernel of W(B/R) — B.
By Lemma 1.8, the inverse of v is an f-linear map f; : I, — W(B/R) which
extends ;. In logarithmic coordinates, the restriction of v to W(b) is given by
[ao.ai1....] — [0, wo(uo)ao, wi(ug)ai,...]. Thus f| extends to the desired fi.
As in the proof of Lemma 2.5, the kernel of W(B/R) — Ryeq lies in the radical of
W(B/R), and projective R q-modules of finite type lift to W(B/R). O

We call Zp/r the relative Dieudonné frame associated to the divided power
extension (B/R, §), and g, gr-windows are called Dieudonné displays for B/R.
There are natural strict frame homomorphisms

9B —> YB/R —> ZR-
If the divided powers § are nilpotent, then W(B) = W(B/R).

Proposition 2.8. The frame homomorphism 9g;r — ZR is crystalline.

Proof. This follows from Theorem 2.2. Indeed, let a denote the kernel of the
surjective homomorphism W(B/R) — W(R); thus a = W (b) =~ b™). The endo-
morphism fi of a is elementwise nilpotent by (2-1). The required filtration of a
can be taken to be a; = p'a; this is a finite filtration by Lemma 1.5. We have
fi(a)=q; by (2-1), and f(a;) = a;4+1 because the endomorphism f of a is given
by [ao,a1,...]— [pai, pas,...] in logarithmic coordinates. O

2E. v-stabilised Dieudonné frames. Assume that p = 2. The preceding construc-
tions can be repeated with W and v in place of W and v. More precisely, for an
admissible ring R, let I'; be the kernel of W+ (R) — R and let f; : 1} — W™ (R) be
the inverse of v, which is well-defined by Lemma 1.9. The v-stabilised Dieudonné
frame associated to R is defined as

7% = WH(R).IE. R, f. f1).

This is a lifting frame by the proof of Lemma 2.5. The inclusion W(R) — W™ (R)
is a ug-homomorphism of frames I — 27}, which is invertible if and only if
2R = 0. Windows over .@I"{ are called v-stabilised Dieudonné displays over R.

Assume again that p = 2, and let (B — R, §) be a divided power extension of
admissible rings with kernel b € B which is compatible with the canonical divided
powers of 2. Let [I"!r /R be the kernel of the natural map W; /R R; thus

T R 77
IR =15 + W)
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There is a unique extension of f : If — W™ (B) to an f-linear map of W+ (B/R)-
modules f : I]Z; /R~ W™ (B/R) such that its restriction to W (b) is given by
[ao,ai,az,...]—Jai,as,...] in logarithmic coordinates, and the quintuple

T3 =WH(B/R), UL o R, £, /1)

is a lifting frame. This follows from the proof of Lemma 2.7. We have a ug-
homomorphism of frames Yg,/g — 9;/ g> Which is invertible if and only if 2R =0,
and strict frame homomorphisms

98 — 9

+
B/R_>‘@R‘

If the divided powers induced by § on (b + 2B)/2B are nilpotent, then W (B) is
equal to WT(B/R).

Corollary 2.9. The frame homomorphism 9;/ R 9; is crystalline.

Proof. This follows from the proof of Proposition 2.8. O

2F. The crystals associated to Dieudonné displays. Let R be an admissible ring.
We denote the category of divided power extensions (Spec A — Spec B, §), where
A is an R-algebra which is an admissible ring, and where p is nilpotent in B, by
CriSagm(R). Then the kernel of B — A is bounded nilpotent, so B is an admissible
ring as well.

Let £ be a Dieudonné display over R. For (Spec A — Spec B, §) in Crisygm(R),
we denote the base change of & to A by &4 and the unique Dieudonné display for
B/ A which lifts 224 by

ZBia = (Ppja, OB/a, F, F1);

see Proposition 2.8. A homomorphism of divided power extensions of admissible
ringsa: (B — A,8) — (B’ — A’, §') induces a frame homomorphism % : 7,4 —
9B’/ 4’ and we have a natural isomorphism

(Za)+«(PBJ4) = PB4

In more sophisticated terms, this can be expressed as follows: The frames Zg, 4
form a presheaf of frames Zss on Crisagm(R), and Proposition 2.8 implies that the
category of Dieudonné displays over R is equivalent to the category of crystals in
Px«-windows on Crisyam(R). Then Pp, 4 is the value in (Spec A — Spec B, §) of
the crystal associated to 2.

For a Dieudonné display & = (P, Q, F, F1) over R, we define the Witt crystal
K(2) on Crisyam(R) by

K(Z)Bja = Pp/a-
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This is a projective W(B/A)-module of finite type. The Dieudonné crystal D(£?)
on Crisygm(R) is defined by

D(P)Bja = Pp/a ®w(B/4) B.

This is a projective B-module of finite type. The Hodge filtration of & is the
submodule

Q/IrP C P/IgxP =D(P)g/g.

Corollary 2.10. Let (B — R, §) be a nilpotent divided power extension of admissi-
ble rings. The category of Dieudonné displays over B is equivalent to the category
of Dieudonné displays &2 over R together with a lift of the Hodge filtration of & to
a direct summand of D(Z)p/Rr.

Proof. If the divided powers are nilpotent, then W(B/R) = W(B), and lifts of
windows under the frame homomorphism Zp — %/ are in bijection with lifts of
the Hodge filtration. O

The preceding definitions have a v-stabilised variant. Let Cris,am(R/Z,) be the
full subcategory of Cris,gm (R) where the divided powers are compatible with the
canonical divided powers of p. Assume now that p =2, and let 2™ be a v-stabilised
Dieudonné display over R, i.e., a window over 9;. For (Spec A — Spec B, §) in
Crisaam (R /Z5) we denote by W: the base change of 2% to 9} and by

+ _(pt +
Zpia= Ppia Qpja- F- F1)

the unique lift of (@: toa .@; / 4~Window, which exists by Corollary 2.9. The v-
stabilised Witt crystal K™ (22 7) and the v-stabilised Dieudonné crystal D+ (22™)
on Crisygm(R/Z) are defined by KT(2%)p,4 = P];"/ 4 and

Dt (2 1)pju= P;/A Qw+(B/4) B-

Corollary 2.11. Assume that p = 2. Let (B — R, §) be a divided power extension
of admissible rings which is compatible with the canonical divided powers of 2 such
that the divided powers induced by § on the kernel of B/2B — R /2R are nilpotent.
Then the category of v-stabilised Dieudonné displays over B is equivalent to the
category of v-stabilised Dieudonné displays 2 over R together with a lift of the
Hodge filtration of 27 to a direct summand of |D+(L@+)B/R.

Proof. This is analogous to Corollary 2.10, using that W+ (B/R) = W (B) under
the given assumptions on §; see the end of Section 1D. O

Lemma 2.12. Let & be a Dieudonné display over an admissible ring R with p =2,
and let 27 be its base change to .@;{. Then D(2 ™) is naturally isomorphic to the
restriction of D(2) to Crisyuam(R/Z2).
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Proof. For each (Spec A — Spec B, §) in Crisagm(R/Z>3), the 9;/ 4~ Window 9;/ 4
is the base change of #p,4 by the frame homomorphism Zg,4 — 9; /4 by its

uniqueness. The lemma follows easily. O

Remark 2.13. Lemma 2.12 does not imply that the infinitesimal deformations of
2 and of 2% coincide: Let B be an admissible ring with 4B = 0 and 2B # 0 and
let R = B/2B. The ideal 2B carries the canonical divided powers y and the trivial
divided powers §. Corollary 2.10 applies to (B — R, §) but not to (B — R, y),
while Corollary 2.11 and Lemma 2.12 apply to (B — R, y) but not to (B — R, §).

2G. Passing to the limit. The preceding considerations extend easily to the case
of admissible topological rings with a countable base of topology. Let us begin with
a standard lemma. For a ring A, let V(A) be the category of projective A-modules
of finite type.

Lemma 2.14. Let A = l(iLnnGN Ay be an inverse limit of rings such that the tran-
sition maps mwy . Ay, — An—1 are surjective with Ker(w,) C Rad(Ay). Then the
natural functor p : V(A) — Llrlln V(Ay) is an equivalence.

Proof. Since for P € V(A) we have P = l(lnn (P ®4 Ay), the functor p is fully faith-
ful. For a system of P, € V(A,) with isomorphisms P, ® 4 Ay—1 = P,—1, we have
to show that the A-module P = limn P, lies in V(A). Choose a surjective homo-
morphism ¢ : A7 — Py and lift this to a compatible system of homomorphisms ¢y, :
A}, — Py. All the g, are surjective by Nakayama’s Lemma. Let S, be the set of lin-
ear sections of ¢g. Since Sy, carries a simply transitive action of Hom( P, Ker(gy)),
the reduction maps S, — S,—1 are surjective. Thus the limit map g : A" — P has
a section, and we have P € V(A). This proves that p is an equivalence. O

For a ring A, let BT(A) be the category of p-divisible groups over A.

Lemma 2.15. For an inverse limit A = l(lnn Ay as in Lemma 2.14, the natural
Sfunctor v : BT(A) — l(lnn BT(Ay) is an equivalence.

Proof. See [Messing 1972, Chapter II, Lemma 4.16]. The functor p of Lemma 2.14
preserves tensor products, and a complex P — P’ — P” — 0in V(A) is exact if and
only if its reduction to A is exact. As in [Messing 1972, Chapter II, Lemma 4.16]
it follows that v is an equivalence. O

For an admissible topological ring R, let g = lim  Zg/n, where N runs
through the open ideals of R contained in NVg. As before, Zg-windows are called
Dieudonné displays over R.

Lemma 2.16. If R is an admissible topological ring with a countable base of
topology, then Dieudonné displays (or p-divisible groups) over R are equivalent to
compatible systems of Dieudonné displays (or p-divisible groups) over R/ N for
each open ideal N contained in NR.
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Proof. One can write R = l<i£1nGN R,, for a surjective system of admissible rings R,
with Rieq = (Rp)req for each n. Then the case of p-divisible groups follows from
Lemma 2.15, and the case of Dieudonné displays follows from Lemma 2.14 applied
to R and to W(R) = limn W(R;); here the successive kernels are nilideals due to
Lemma 1.5. See [Lau 2010, Lemma 2.1]. O

3. From p-divisible groups to Dieudonné displays

In this section we define a functor from p-divisible groups over odd admissible
rings to Dieudonné displays. In the nonodd case there is a v-stabilised version of
this functor, which will serve as a first step towards the true functor in the next
section. We begin with some preparation.

3A. Finiteness over admissible rings. We show that the categories of p-divisible
groups or Dieudonné displays over an admissible ring R are the direct limit of
the corresponding categories over the finitely generated W (R;eq)-subalgebras of R,
with fully faithful transition maps.

Proposition 3.1. Every Dieudonné display over an admissible ring R is defined
over a finitely generated W(Req)-subalgebra of R. For an injective homomorphism
of admissible rings R — S such that Rieq — Sreq is bijective, the base change of
Dieudonné displays from R to S is fully faithful.

Proof. For aring A, let V(A) be the category of projective A-modules of finite type.
Since the ring W(R) is the filtered union of W(R’), where R’ runs through the
finitely generated W (Rq)-subalgebras of R, the category V(W(R)) is equivalent
to the direct limit over R” of V(W(R’)). Since a Dieudonné display over R can be
given by L, T € V(W(R)) together with an f-linear automorphism W of L& T,
the first assertion of the proposition follows. Similarly, every homomorphism
of Dieudonné displays over R is defined over some finitely generated R’. Thus
for the second assertion we may assume that N7 = 0. Let S = S //\/g_l and
R=R/RNNG ' Let R” C S be the inverse image of R C S. By induction on r,
the base change of Dieudonné displays from R to S is fully faithful. It follows that
the base change from R” to S is fully faithful as well. By Corollary 2.10, using
trivial divided powers, Dieudonné displays over R or over R” are equivalent to
Dieudonné displays over R together with a lift of the Hodge filtration to R or to
R”, respectively. Since R — R” is injective, it follows that the base change of
Dieudonné displays from R to R” is fully faithful. O

For the case of p-divisible groups we first recall some standard facts.

Lemma 3.2. Let B — A be a surjective ring homomorphism with kernel I such
that pI = 0 and x? = 0 for all x € 1. For an affine flat group scheme H over B,
the kernel of H(B) — H(A) is annihilated by p.
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Proof. Let By = B/ pB and Hy = H ® g By. The abelian group By @ I becomes a
ring with multiplication (a®i)(a’®i’) =aa’®(ai’+a’i +ii’), and one can identify
B x4 B with B xp, (Bo @ I). Since the evaluation of affine schemes commutes
with fibred products of rings, we obtain an isomorphism of abelian groups

Ker(H(B) = H(A)) = Ker(Ho(Bo @ 1) — Ho(Bo)).

The right-hand side lies in the kernel of the Frobenius Fg, of Ho, which lies in
Hy[p] since Vg, o Fg, = p by [SGA 1970, VII 4.3]. This proves the lemma. [

Lemma 3.3. Let B — A be a surjective ring homomorphism with kernel I such
that p is nilpotent in B and I is a nilideal. For a p-divisible group G over B, the
homomorphism G(B) — G(A) is surjective.

Proof. For a given x € G,(A), since Gy, is finitely presented there is a finitely
generated ideal I’ C I such that x lifts to an element x” € G, (B/1’). Now we can
use that G is formally smooth by [Messing 1972, Chapter II, Theorem 3.3.13]. [

Lemma 3.4. Let B — A be a surjective ring homomorphism whose kernel is
bounded nilpotent and such that p is nilpotent in B. Then there is a number r such
that for two p-divisible groups G and H over B, the reduction homomorphism
Hom(G, H) — Hom(Gy4, Hy) is injective with kernel annihilated by p".

Proof. This is an easy consequence of Lemmas 3.2 and 3.3; see the proof of [Katz
1981, Lemma 1.1.3]. O

Proposition 3.5. Every p-divisible group over an admissible ring R is defined over
a finitely generated W(Ryeq)-subalgebra of R. For an injective homomorphism
of admissible rings R — S such that Rieq — Sreq IS bijective, the base change of
p-divisible groups from R to S is fully faithful.

Proof. For a p-divisible group G over R, let Go = G @R Rieq- Using Lemma 3.4,
we chose r such that for two p-divisible groups G and H over R, the cokernel of
Hom(G, H) — Hom(Gy, Hyp) is annihilated by p”. Now let G be given, let G” be
alift of Go to W(Rreq) and let G’ = G” ®w(g,,,) R. There are homomorphisms ¢ :
G’ — G and ¥ : G — G’ which each lift the multiplication p” : Go — G¢. Thus @
and Y ¢ are multiplication by p?”. We obtain an isomorphism G 2~ G’/ K, where
Kg C G’ is a finite locally free group scheme annihilated by p?”; see Lemma 3.6
below. In particular K g is finitely presented, and the first assertion of the proposition
follows. To prove the second assertion, we consider two p-divisible groups G and H
over R and a homomorphism ¢q : Go — Hg over Ryeq = Steq. There is a unique lift
of p” gy to ahomomorphism v : G — H, and there is a lift of ¢g to R if ¥ vanishes
on G[p"]. Since R — S is injective, this holds if and only if the scalar extension
Y¥s vanishes on Gg[p"], which is equivalent to the existence of a lift of pg to S. [
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Lemma 3.6. Let ¢ : G — H and ¥ : H — G be homomorphisms of p-divisible
groups over a scheme S with o = p™ and Y@ = p™. Then Ker(¢) and Ker(yr)
are finite locally free group schemes.

Proof. Clearly Ker(¢) and Ker(y) are finite group schemes of finite presentation.
Thus we may assume that S = Spec R for a local ring R with residue field k. Let
Ker(y) = Spec A and G, = Spec B. Choose elements ay,...,a,r € A which
map to a k-basis of Ay, so they generate A as an R-module. We have a surjective
homomorphism of fppf sheaves ¢ : G, — Ker(v). It follows that By, is a locally
free Az-module of some rank p’, thus a free Ax-module since Ay is finite. Choose
b1,...,bps € B which map to an Ag-basis of By. The elements a;b; € B map to
a k-basis of By. Since B is a free R-module they form an R-basis of B. It follows
that A is free over R with basis a;. O

3B. Deformation rings. Let A — K be a surjective ring homomorphism with
finitely generated kernel / € A such that A is [-adically complete. The ring K is
not assumed to be a field. Let Nilp /g be the category of A-algebras A together
with a homomorphism of A-algebras A — K with nilpotent kernel. We consider
covariant functors

F :Nilp /g — (sets)

with the following properties (cf. [Schlessinger 1968]):
(3-1) The set F(K) has precisely one element.

(3-2) For a surjective homomorphism Ay — A in Nily /g, the induced map
F(A1) — F(A) is surjective.

(3-3) For each pair of homomorphisms A; — A <= A3 in Nilp /g such that one
of them is surjective, the natural map F (A1 x4 A2) — F(A1) XFp4) F(A2)
is bijective. Then for each K-module N the set F(K & N) is naturally a
K-module. In particular, 1 = F(K]|¢]) is a K-module, which is called the
tangent space of F'.

(3-4) For each K-module N the natural homomorphism of K-modules tr @ g N —
F(K & N) is bijective.

(3-5) The K-module 7 is finitely presented.

The first three conditions imply that the functor N — F (K @ N) preserves exact se-
quences of K-modules. Thus (3-4) is automatic if N is finitely presented. Moreover
(3-1)—(3-4) imply that the K-module ?F is flat, so (3-5) implies that g is projective.

Proposition 3.7. Assume that F satisfies (3-1)—(3-5). Then F is prorepresented by
a complete A-algebra B. Let t be a projective A-module of finite type which lifts
tr. Then B is isomorphic to the complete symmetric algebra A[[t*]], where the *
means the dual. This is a power series ring over A if tg is a free K-module.
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Proof. The K-module ¢f is projective as explained above. Thus 7 exists. Let
B = A[f*] and let B = K @ t}. We have an obvious projection B — B. Let
£ € F(B)=tr @t} =End(tF) correspond to the identity of 77 and let £ € F(B)
be a lift of £. We claim that the induced homomorphism of functors £ : B — F is
bijective. Note that the functor B satisfies (3-1)—(3-5). By induction it suffices to
show that if A — A is a surjection in Nil /K Whose kernel N is a K-module of
square zero and if B(A) — F(A) is bijective, then B(A) — F(A) is bijective as well.
We have a natural isomorphism 4 X 7 4 = A xg (K & N). It follows that the fibres
of B(A) — B(A) and the fibres of F(A) — F(A) are principal homogeneous sets
under the K-modules B(K @ N) and F(K & N ), respectively. The homomorphism
tp — tF induced by £ is bijective by construction, so B(K @ N) — F(K & N) is
bijective, and the proposition follows. O

Corollary 3.8. A homomorphism of functors which satisfy (3-1)-(3-5) is an isomor-
phism if and only if it induces an isomorphism on the tangent spaces. O

Remark 3.9. Let A’ — K’ be another pair as above and let g : A’ — A be a ring
homomorphism which induces a homomorphism g : K’ — K. For given functors F
onNilp /g and F’ on Nila+/ g/, ahomomorphism /2 : F — F’ over g is a compatible
system of maps

h(A): F(A) - F'(Axg K')

for AinNily /g ; here Ax g K’ is naturally an object of Nil o/ . If F and F' satisfy
(3-1)—(3-5) and if B and B’ are the complete algebras which prorepresent F and F’,
respectively, then & corresponds to a homomorphism B’ — B compatible with g
and g. If h(A) is bijective for all A, the induced homomorphism B’®/A — B is
an isomorphism.

Definition 3.10. Assume that p is nilpotent in K = A /I as above. For a p-divisible
group G over K let
Defg : Nilp /g — (sets)

be the deformation functor of G. This means that Defg (A) is the set of isomorphism
classes of p-divisible groups G’ over A together with an isomorphism G'®4 K =~ G.
Let tg = Lie(G") ®k Lie(G).

Proposition 3.11. The functor Defg is prorepresented by a complete A-algebra B.
Explicitly, if T is a projective A-module which lifts tg, then B is isomorphic to the
complete symmetric algebra A[[t*]).

We note that Lemma 2.15 gives a universal p-divisible group over B.

Proof. The functor Defg satisfies (3-1)—(3-5) with tangent space tg because for
a surjective homomorphism A" — A in Nil /g whose kernel N is a K-module
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of square zero and for H € Defg(A), the set of lifts of H to A’ is a principally
homogeneous set under the K-module tg ® x N by [Messing 1972]. O

Remark 3.12. Let g : A’ — A over g : K/ — K be as in Remark 3.9, such that
p is nilpotent in K’. Let G over K be the base change of a p-divisible group G’
over K'. For A in Nila /g we have a natural map

Defg/(A xg K') — Defg (A).

This map is bijective, and its inverse is a homomorphism Defg — Defg’ over g in
the sense of Remark 3.9. If B and B’ prorepresent Defg and Defg/, respectively,
we get an isomorphism B’® /A = B.

Definition 3.13. Assume that K = A /I is an admissible ring. For a Dieudonné
display & = (P, Q, F, F1) over K, we denote by

Def : Nilp /g — (sets)

the deformation functor of 2. Let t5» = Hom(Q/Ix P, P/ Q).

We are mainly interested in the case where K is perfect and A = W(K). Then
Dieudonné displays over K are displays because W(K) = W(K).

Proposition 3.14. The functor Def 5 is prorepresented by a complete A-algebra B.
Explicitly, if t is a projective A-module which lifts t », then B is isomorphic to the
complete symmetric algebra A[[t*].

We note that Lemma 2.16 gives a universal Dieudonné display over B.

Proof. The functor Def 5 satisfies (3-1)—(3-5) with tangent space ¢4 because for
a surjective homomorphism A" — A in Nil, /g whose kernel N is a K-module
of square zero and for &2’ € Def4(A), the set of lifts of &2’ to A’ is a principally
homogeneous set under the K-module 1 ® g N by Corollary 2.10. O

Remark 3.15. Let g: A’ — A over g: K’ — K be as in Remark 3.9, such that K
and K’ are admissible rings. Assume that 2 is the base change of a Dieudonné
display 2’ over K’'. If B and B’ represent Def» and Def ., respectively, then
B'® /A = B. This is analogous to Remark 3.12.

3C. Crystals and frames. Let F = (S, 1, R,0,01) be a frame as in Section 2A,
such that S and R are p-adically complete, S has no p-torsion, / carries divided
powers, and 0 = poq on /. Thus (S, 0) is a frame for each R/ p” R in the sense
of [Zink 2001b]. By a well-known construction, the crystalline Dieudonné functor
allows us to associate to a p-divisible group over R an F-window; this is explained
in the proof of [Zink 2001b, Theorem 1.6] for the Dieudonné crystal of a nilpotent
display, and in [Kisin 2006; 2009] for p-divisible groups.

The construction goes as follows. First, one can define a filtered F-1 -module;
here it is not necessary to assume that S has no p-torsion.
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Construction 3.16. Let 7 = (S, I, R,0,01) be a frame such that S and R are
p-adically complete, I is equipped with divided powers § which are compatible
with the canonical divided powers of p, and 0 = poy on I. Let 8’ be the divided
powers on I’ = I + pS which extend § and the canonical divided powers of p. We
assume that o preserves §’, which is automatic if S has no p-torsion. Then one can
define a functor

®? : (p-divisible groups over R) — (filtered F-V -modules over F),
G (P, Q. F*.VF)

as follows. Let Ry = R/pR and let g¢ be its Frobenius endomorphism. For a
given p-divisible group G over R put P = D(G)g/r = D(Go)s/Rr,. Wwhere D(G)
is the covariant®> Dieudonné crystal of G, and let Q be the kernel of the natural
map P — Lie(G). Since o preserves §’, there is a natural isomorphism

P(a) = D(U(TGO)S/RO-

Thus we can define V#: P — P () (o be induced by the Frobenius F : Go — 0§ Go
and F*: P© — P to be induced by the Verschiebung V : o5 Go — Go.

In the second step one associates Fj.

Proposition 3.17. Let F be a frame as in the beginning of Section 3C. For a p-
divisible group G over R let ®°(G) = (P, Q, F*, V#) be the filtered F-V -module
over F given by Construction 3.16. There is a unique F1 : Q — P such that
(P, Q. F, Fy) is an F-window, and it gives back V# by the functor of Lemma 2.3.

Proof. We have functors (P, Q, F, Fy) — (P, Q, F*, V) > (P, 0, F*), which
are fully faithful; see Lemma 2.3. Thus we have to show that F(Q) lies in pP
so that F; = p~!F is well-defined, that F;(Q) generates P, and that the pair
(P, Q) admits a normal decomposition. Since R and S are p-adically complete
and since the kernel of S/ pS — R/pR is a nilideal due to its divided powers, all
projective R-modules of finite type lift to .S. Thus a normal decomposition exists.
The existence of F; and the surjectivity of its linearisation are proved in [Kisin
2006, Lemma A.2] if S is local with perfect residue field, but the proof can be
easily adapted to the general case. To prove surjectivity, for each maximal ideal of
S, which necessarily comes from a maximal ideal m of R, we choose an embedding
of R/m into a perfect field k. There is a ring homomorphism « : S — W(k) which
lifts R — k such that fa = ao; it can be constructed as S — W(S) — W(k). Then
« is a homomorphism of frames F — %}, and the assertion is reduced to the case
of %4, which is classical. O

2 This differs from the notation of [Berthelot et al. 1982], where D(G) is contravariant. One can
switch between the covariant and contravariant crystals by passing to the dual of G or of D(G), which
amount to the same thing by the crystalline duality theorem [Berthelot et al. 1982, 5.3].



2228 Eike Lau

Remark 3.18. The surjectivity of F; in the proof of Proposition 3.17 can also
be deduced from the crystalline duality theorem. Let P = L @& T be a normal
decomposition and let ¥ : P — P be given by F; on L and by F on 7. We have to
show that the linearisation U#: P(©©) — P is an isomorphism. Let (P’, Q’, F’, F))
be the quadruple associated to the Cartier dual G". The duality theorem gives a
perfect pairing P x P’ — S such that (F(x), F'(x")) = po{(x, x’). It follows that
(F(x), F{(x")) = o(x,x") and (F;(x), F'(x")) = o(x,x’) whenever this makes
sense. The unique decomposition P/ = L' @ T’ with (L,L') =0=(T,T') is a
normal decomposition of P’, and the dual of the associated W’ # is an inverse of W#,

3D. The Dieudonné display associated to a p-divisible group. For an admissible
ring R with p > 3, we consider the Dieudonné frame g defined in Lemma 2.5.
The ring W(R) is p-adically complete by the remark preceding Proposition 1.14.
By Lemma 1.17 the ideal g carries natural divided powers compatible with the
canonical divided powers of p, and the induced divided powers on the kernel
of W(R) — R/pR are preserved by the Frobenius. Thus Construction 3.16
gives a functor

®% @ (p-divisible groups over R) — (filtered F-V -modules over Zg)

which is compatible with base change in R.

Theorem 3.19. For each admissible ring R with p > 3, there is a unique functor
@R : (p-divisible groups over R) — (Dieudonné displays over R)

which is compatible with base change in R such that the filtered F-V -module
over 9 associated to ®R(G) is equal to ®%(G). In particular there is a natural
isomorphism Lie(G) = Lie(Pr(G)).

Proof. Clearly ®%(G) = (P, Q. F # V#) is functorial in R and G. We have to
show that there is a unique operator F; : Q — P which is functorial in R and G
such that ®g(G) = (P, O, F, Fy) is a Dieudonné display over R.

Let K = Reg and A = W(K). Let G = G ®g K and let B be the complete
A-algebra which prorepresents the functor Defg on Nily /g ; see Proposition 3.11.
Let ¢ be the universal deformation of G over B. If I denotes the kernel of B — K,
we can define

%(¥) = Lian)%/I”(g ®p B/I1").

n

On the other hand, the ring W(B) is p-adically complete by Proposition 1.14.
Therefore we can also define ®% (%) be a direct application of Construction 3.16,
and this agrees with the limit definition. The ring W(B) has no p-torsion because
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B has no p-torsion. Thus by Proposition 3.17 there is a unique operator F; which
makes ®% () into a Dieudonné display ®g (%) over B.

By Proposition 3.5 there is a unique homomorphism B — R of augmented
algebras such that G = ¢ ®p R as deformations of G. Necessarily we define
®Rr(G) as the base change of ®p(¥) under B — R. It remains to show that
®r(G) is functorial in R and G.

Assume that G is the base change of a p-divisible group G’ over R’ under a
homomorphism of admissible rings R’ — R. Let K/, A’, G’, B’, 4’ have the
obvious meaning. We have a natural homomorphism of W(K’)-algebras B’ — B
together with an isomorphism 4’ ® g B =~ ¢; see Remark 3.12. By the uniqueness
of Fi over B, we see that ®g(¥4) coincides with the base change of ®p/(¥’). It
follows that ®g(G) is the base change of ®g/(G’).

Assume that ¥ : G — G is a homomorphism of p-divisible groups over R. Let
G1, B1, % have the obvious meaning. We have to show that CID[I’e (1) commutes
with F;. We may assume that u is an isomorphism because otherwise one can
pass to the automorphism (; (1)) of G @ G;. This reasoning uses that the natural
isomorphism ®% (G & G1) = ®%(G) ® ®%(G1) preserves the operators F defined
on the three modules, which follows from the uniqueness of F; over the ring which
prorepresents Defg x Defg . Anisomorphism u : G — G induces an isomorphism
u : G = G1, which gives an isomorphism B = B; together with an isomorphism
u:9 Qp B1 = % that lifts u. By the uniqueness of F; over B it follows that
CD%I (1) preserves Fy. Since u is the base change of # by the homomorphism
B1 — R defined by Gy, it follows that ®% (u) preserves Fy as well. O

In order to analyse the action of the functors @ g on infinitesimal deformations, we
need the following extension of Theorem 3.19. Let (R" — R, §) be a divided power
extension of admissible rings with p > 3 which is compatible with the canonical
divided powers of p. Again, the ring W(R’/R) is p-adically complete, and g/ g
carries natural divided powers compatible with the canonical divided powers of p
such that f preserves their extension to the kernel of W(R’/R) — R/pR. Thus
Construction 3.16 gives a functor

D%/ /R: (p-divisible groups over R) — (filtered F'-V -modules over Zg//R)
which is compatible with base change in the triple (R’ — R, §).

Theorem 3.20. Assume that p > 3. For each divided power extension of admissible
rings (R — R, §) compatible with the canonical divided powers of p, there is a
unique functor

®ri/r - (p-divisible groups over R) — (Dieudonné displays for R'/R)
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which is compatible with base change in the triple (R' — R, §) such that the filtered
F-V-module over Pg: g associated to g/ r(G) is equal to CD‘I’Q,/R(G).

Proof. For a given p-divisible group G over R we choose a lift to a p-divisible
group G’ over R’, which exists by [Illusie 1985, Théoréme 4.4]. The Dieudonné
display ® g/ (G') is well-defined by Theorem 3.19, and necessarily ®g//g(G) is
defined as the base change of ®z/(G’) by the frame homomorphism Zg' — Zg//R.
We have to show that the operator F; on ®9%, /R (G) defined in this way does not
depend on the choice of G'. If this is proved it follows easily that ®r//g(G)
is functorial in G and in (R’ — R, §); here, instead of arbitrary homomorphisms of
p-divisible groups, it suffices to treat isomorphisms.

Let K, A, G, B, ¢ be as in the proof of Theorem 3.19. We have an isomorphism
B = A[[t] for a finitely generated projective A-module 7. Let C = B®&, B. The

automorphism 7 = ((1) }) of t @t defines an isomorphism

C=Atdt] — At ®¢] = B[[t5]

under which the multiplication homomorphism @ : C — B corresponds to the
augmentation B[¢g]] — B defined by ¢ + 0. Let I be the kernel of B — K, let
S be the divided power envelope of the ideal g B[[tg]] € B[[¢g]], and let C’ be the
[ -adic completion of S. By Lemma 1.13, u extends to a divided power extension
of admissible topological rings i’ : C’ — B which is topologically compatible with
the canonical divided powers of p.3

Assume that G and G are two lifts of G to p-divisible groups over R’. Let %
and ¢, be the p-divisible groups over C which are the base change of ¢ by the
two natural homomorphisms B — C. By Proposition 3.5 there are well-defined
homomorphisms & : B — R and « : C — R’ such that G = ¥ ®p 5 R and
G =% ®c.q R’ as deformations of G. We have the commutative diagram of rings

o

— ., T~

C——C ---3F

RN

B—2% 4R

where o’ is constructed as follows. There is a unique homomorphism «” : § — R’
which extends & and which commutes with the divided powers on the kernel of
S — B and of R" — R. Each of the two homomorphisms B — C — R’ factors
over B/I" for some n. Thus «” induces a homomorphism S/I"S — R’, which

3The construction of C’ seems to depend on choosing one of the two natural maps B — C, but
actually it is independent of the choice as the [-adic topologies defined on S by these two maps
coincide.
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gives the required o’. We obtain the following commutative diagram of frames,
where ¢ is given by C — C’, and ( is given by the identity of R’:

-@C —L> -@C’/B

/7

@R’ L—) @R//R

We have to show that the isomorphism of filtered F-V -modules over Zg//g
L (PR(G1)) = O p(G) = (PR (G2)) (3-6)

commutes with the operator F; defined on the outer terms by the functor ® /. The
construction of ®° can be extended to topological divided power extensions of
admissible topological rings by passing to the projective limit. Then (3-6) arises by
o}, from the natural isomorphism of filtered F-V-modules over Z¢-/p

L (PG (1)) = CD%,/B(%) = 14 (P (4)). 3-7)

Since ax preserves Fj it suffices to show that (3-7) commutes with the operators
F defined on the outer terms by the functor ®¢. This follows from the relation
pF1 = F because W(C’/B) has no p-torsion by Lemma 1.13. d

Corollary 3.21. Assume that p > 3. For a p-divisible group G over an admis-
sible ring R with associated Dieudonné display & = ®g(G), there is a natural
isomorphism of crystals on Crisaam(R/Zp)

D(G) = D(2)
which is compatible with the natural isomorphism Lie(G) = Lie(Z?).

The category Crisagm and the crystal D(£?) were defined in Section 2F.

Proof. Let (R — R, y) be a divided power extension of admissible rings with
p = 3 compatible with the canonical divided powers of p. The Dieudonné display
®r//r(G) given by Theorem 3.20 is the unique lift of %7 under the crystalline
frame homomorphism Zg//g — Zg. By the construction of the underlying filtered
F-V-module ®%, /R (G) and by the definition of the crystal [K(Z?) in Section 2F
we obtain a natural isomorphism of W(R’/R)-modules

D(G)w(ry/r = K(Z) R/ R-

The tensor product with the projection W(R’/R) — R’, which is a homomor-
phism of divided power extensions of R, gives a natural isomorphism of R’-
modules D(G) g/ g = D(Z) g/ g Which is compatible with the natural isomorphism
Lie(G) = Lie(2). O
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Now Theorem B for odd primes can be deduced quite formally:

Corollary 3.22. Assume that p > 3. For a p-divisible group G over an admis-
sible ring R with associated Dieudonné display & = ®gr(G), there is a natural
isomorphism of crystals on Crisyqm(R)

D(G) = D(2)
which is compatible with the natural isomorphism Lie(G) = Lie(2).

Here the covariant Dieudonné crystal D(G) can be defined for divided power
extensions that are not necessarily compatible with the canonical divided powers of p
by [Mazur and Messing 1974, Chapter II §9]; see also [Berthelot et al. 1982, §1.4].

Proof. Let D'(G) = D(®g(G)). Consider a divided power extension R’ — R of
admissible rings which need not be compatible with the canonical divided powers
of p. We claim that for two lifts G; and G, of G to R’ the following diagram of
natural isomorphisms commutes:

D(G2)r /g +——— D(G)gyr —— D(G1)r/r’ (3-8)

D'(G2)r/r — D'(G)ryr +—— D' (G1)r/r

This gives a well-defined isomorphism «(G) : D(G) gy g = D'(G) g/ It is easy
to see that «(G) is compatible with the natural isomorphism Lie(G) = Lie(4?), that
«(G) is functorial in the divided power extension R” — R and that (G & H) =
a(G) ® a(H). In order to show that « is functorial in G it suffices to consider
isomorphisms. So let ¥ : G — H be an isomorphism of p-divisible groups over R.
We can choose lifts G of G and H; of H to R’ such that u extends to %7 : G — H;.
Then the following diagram shows that & commutes with u:

D(G)gjg —— D(G1)pyjgr —— D'(G)rypr — D'(G)pyR

D(u)l D(ﬁ)l lD’(ﬁ) lD’(u)

D(H)g/jg — D(H1)rjgw —— D'(H)pjrr —— D'(H)g/R

It remains to show that (3-8) commutes. Let K, A, G, B be as in the proof of
Theorem 3.19. Let C = B&, B and C’ be as in the proof of Theorem 3.20 so
that the multiplication homomorphism pu : C — B extends to a topological divided
power extension ' : C’ — B of admissible topological rings without p-torsion
which is topologically compatible with the canonical divided powers of p. We
have homomorphisms B — R defined by G and C — R’ defined by (G, G»2),
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which extend to a homomorphism of divided power extensions from (C’ — B) to
(R’ — R). Thus (3-8) is the base change of a similar diagram for (C’ — B), which
commutes by Corollary 3.21. O

3E. A v-stabilised variant. Let R be an admissible ring with p = 2. The v-
stabilised Zink ring W™ (R) considered in Section 1D and in Section 2E is 2-adically
complete, and its ideal I]; carries natural divided powers which are compatible with
the canonical divided powers of 2. The proof of Theorem 3.19 with W in place
of W shows the following:

Proposition 3.23. For each admissible ring R with p = 2 there is a unique functor
CID"RS : (2-divisible groups over R) — (@;-windows)

which is compatible with base change in R such that the filtered F -V -module over
.@; associated to @;(G) is given by Construction 3.16. O

Corollary 3.24. For each admissible ring R with p = 2 and 2R = 0 there is a
unique functor

D g : (2-divisible groups over R) — (Dieudonné displays over R)

which is compatible with base change in R such that the filtered F -V -module over
PR associated to PR(G) is given by Construction 3.16.

Proof. Proposition 3.23 gives the functors ® g since 9;{ = 9g when 2R = 0. The
uniqueness follows as in the proof of Theorem 3.19, using B/2B instead of B. [

Let (R" — R, §) be a divided power extension of admissible rings with p = 2
which is compatible with the canonical divided powers of 2. The ring Wt (R’/R)
is 2-adically complete, and its ideal I];, /R carries natural divided powers compatible
with the canonical divided powers of 2. The proof of Theorem 3.20 with W in
place of W gives the following:

Proposition 3.25. For each divided power extension of admissible rings (R’ — R, §)
with p = 2 such that § is compatible with the canonical divided powers of 2 there
is a unique functor

CIDZ, /R" (2-divisible groups over R) — (_@;, / R-windows)

which is functorial in the triple (R — R, §) such that the filtered F-V -module over
@;, /R associated to CID;F, / g(G) is given by Construction 3.16. O

The proof of Corollary 3.21 then shows the following:
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Corollary 3.26. Assume that p = 2. For a 2-divisible group G over an admissible
ring R with associated v-stabilised Dieudonné display 2+ = dD"Rf(G) there is a
natural isomorphism of crystals on Crisyqm(R/Z7)

D(G) =D (2™)
which is compatible with the natural isomorphism Lie(G) = Lie(2 7). O

There is no analogue of Corollary 3.22 for @; because DT (2™1) is only a
crystal on Crisagm (R /Z5) and not on Crisygm (R), but see Corollary 4.10.

4. From 2-divisible groups to Dieudonné displays

In this section we construct a functor ® g from p-divisible groups over an admissible
ring R with p = 2 to Dieudonné displays. When 2R = 0, this has been done in
the previous section, and the extension to all R is unique, as will be shown in the
end of this section. The construction relies on the following definition of divided
powers on the ideal g € W(R) when 4R = 0.

4A. Divided powers on Zink rings. We note that for a Z,)-algebra B and an ideal
b C B, divided powers on b are equivalent to a map y : b — b such that

y(xy) =x?y(y) forx e Band y € b, 4-1)
y(x+y)=yx)+xy+y(y) forx,yeb. (4-2)

Here (4-1) and (4-2) also give 2y(x) = x? for x € b, since we can calculate
4y(x) = y(2x) = y(x + x) = 2y(x) + x2.

For an admissible ring R with p = 2, the canonical divided powers on the ideal
IR € W(R) defined by y(v(a)) = v(a?) induce divided powers on Ig € W(R)
only if 2R = 0; see Section 1G. Using Vv instead of v we get a little further.

Proposition 4.1. For an admissible ring R with p = 2 we consider the map
y:lr—>Ir.  y(V(a) =Vv(@®).

If 4R = 0, then y defines divided powers on |g which are compatible with the
canonical divided powers of 2, and the corresponding extension of y to lg +2W(R)
is stable under the Frobenius f of W(R).

If 8R =0, let U € W(R) be the set of all Witt vectors of the form v([x]) =
(0,x,0,...) with x € 4R. This is an ideal. Let S = W(R)/U. Then y induces
divided powers on the ideal lr /U of S, which can naturally be extended to divided
powersonlg/U + 28 that commute with the endomorphism o on S induced by f,
and the extended divided powers stabilise the ideal 28.
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Proof. We will only consider the case 8 R = 0 and show that the extended divided
powers satisfy y(2) = 2 — [4]. Then the case 4R = 0 follows.

Since 4R is an ideal of square zero, we have W(4R) = (4R)™) as W(R)-
modules, where W(R) acts on the i-th component of the right-hand side by the i-th
Witt polynomial w;, and f annihilates W(4R) Thus U is an ideal of W(R), and
f induces o : S — S. Let us show that y factors over amap lg/U — Ig. Indeed,
for a € W(R) and x € 4R we have

y(V(@) + v([x]) = y(v(a) + V([x]) = V((a + [x])?) = v(a®) = y(v(a));

here v([x]) = v([x]) because uo maps to 1 in W([F;) and thus ug[x] = [x]. Let us
verify axiom (4-1) for the map y : lg — lg. For a, b € W(R) we have

y(av(h)) = y(V(f(@)h)) = V(f(@*)b?) = a®v(b?) = a®y (v(D)).
Consider now axiom (4-2). For a,b € W(R) we calculate
y(V(@) + V(b)) = V((a + b)*) = y(V(a)) +V(2ab) + y (vV(b))
so that V(2ab) has to be related with v(a)v(b), which is
v(a)v(b) = v(upa)v(uoh) = v(2uiab) = v(2ugab).
Since 2ug = 2 — [4], we get
v(2ab) —v(a)v(b) = v([4]ab) = v([4apbo]) € U.

Thus (4-2) holds for y : lg/U — g/ U, and y defines divided powers on this ideal.
We want to extend these to divided powers on the ideal

T=1g/U+25=1g/U+W(QR)/U.
Let
b ={(2ao.4a1.0,...) |a; € R} C W(2R).

This is an ideal of W(R) with lg N b = U, and we have
T=Ig/U®b/U.

Thus the extension of y to T corresponds to giving arbitrary divided powers on
b/U = 2R. We take y([2a]) = [-2a?] for a € R. Using v(1) = 2 — [2] we obtain

v =y(2]+v(1) =[-2]+ V() = [-2] +2-[2] =2 [4]
in S, as announced. Let us show that Yo = 0) on I:forace W(R), we have

yo(V(a)) = y((2—[4)a) = y(2 —[4])a® = y(2)a>
—[4])a* = o(v(a?)) = oy (V(a)).
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Finally we have [4] = 2[2] in b/ U, which implies that y(2) € 2S. This finishes the
proof of Proposition 4.1. O

Remark 4.2. The proof shows that the extension of y is uniquely determined by
the condition that it commutes with o. By choosing y([2a]) = [2a?], we get an
extension with y(2) = 2 but which does not commute with o.

Let R be an admissible ring with 4R = 0. Proposition 4.1 implies that its
Dieudonné frame Zg satisfies the hypotheses of Construction 3.16 so that we
obtain a functor

% : (2-divisible groups over R) — (filtered F-V-modules over Zg).

However, we cannot argue as in Theorem 3.19 in order to get a Zg-window, because
the divided powers on [ do not exist for universal deformation rings, and thus
Proposition 3.17 cannot be applied directly. The following modification will be
sufficient for our purpose.

4B. A frame lift. Assume we are given a strict frame homomorphism
F'=(S'I'.R,0",0}) = F=(S,1,R,0,01)

such that both 7 : 8" — S and I’ — I are surjective, and an ideal U C Ker()
which is stable under o’. Let

S=S8"/U J=Ker(n)/U, I=Ker(S— R):

thus S =S/J and R=S/I. Let 5 : S — S be the homomorphism induced by o”,
let 8" € S’ be the element defined by the relation o’ = 6’0 on I, and let 6 eS8 and
6 € S be its images. We assume that F satisfies the conditions of Construction 3.16;
i.e., S and R are p-adically complete, I carries divided powers compatible with
the canonical divided powers of p and with ¢, and & = p. Then Construction 3.16
gives a functor

@ : (p-divisible groups over R) — (filtered F-V-modules over F).

We also assume that the following conditions are satisfied.
(4-3) We have 5(J) =0and J = {x € § | px =0}.
(4-4) We have 6 = pu for aunit i € S,

(4-5) The ideal I + p§ is equipped with divided powers which lift the given divided
powers on / + pS, which commute with ¢, and which stabilise the ideal pS.

(4-6) There is an ideal a C S with o(a) € a € Rad S such that the ring S/a has
no p-torsion.
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If S has no p-torsion one can take 7' = F and all axioms are clear. The following
extends Proposition 3.17. Note that the prime p is arbitrary here.

Proposition 4.3. In this situation there is a well-defined functor
® : (p-divisible groups over R) — (F-windows)

such that for ®°(G) = (P, Q. F*, V¥) the filtered F-V -module associated to ®(G)
is equal to (P, O, F¥, uV%), where u € S is the image of ii € S.

Proof. Conditions (4-3) and (4-4) imply that multiplication by 6 on S induces
an injective map 6:5 — § with image 685 = p§ . Moreover ¢ induces a homo-
morphism 6 : S — S that lifts 0. The relation 0'o; =0 on I’ gives fooy =6
as maps [ — S.

Let G be a p-divisible group over R and let ®°(G) be as above, i.e.,

P =D(G)s/r =D(GRry)s/Ro

with Ry = R/pR, the submodule Q C P is the kernel of P — Lie G, and F*
and V* are induced by the Verschiebung and Frobenius of G Ro- The proof of
[Kisin 2006, Lemma A.2] shows that F(Q) C pP. Let us recall the argument: for
So = S/pS, the kernel of So — Ry is a nilideal because it carries divided powers.
By [Illusie 1985, Théoreme 4.4] there is a lift G, of Gg, to Sp, and we have
P =D(Gs,)s/s,- Let Q1 = Ker(P — Lie Gg,). Then Q € Q1 + I P, and the
image of F applied to both summands lies in pP.
Since pJ =0 and S is p-adically complete, so is S. By (4-5) we can define

P =D(G)g,g = D(GR)§ /g,

Here we use the (dual of the) Dieudonné crystal of [Mazur and Messing 1974, Chap-
ter IT §9], which is defined for divided power extensions that are not necessarily com-
patible with the canonical divided powers of p; see also [Berthelot et al. 1982, §1.4].
Let Q C P be the kernel of P — Lie G; this is the inverse image of Q under the
projection P - P/J P =P, Again, the Verschiebung and Frobenius of Gg,
induce S-linear maps F#: P© — P and V¥ : P — P©_ Since the divided
powers stabilise the ideal pS , the argument of [Kisin 2006, Lemma A.2] again
shows that F (Q) C pﬁ =0 P, where F : P — P is the 6-linear map corresponding
to F*. Since & annihilates J, the map F induces a map F : P — P which lifts F.
Let Fy : Q — P be the composition

~~ 0
Q—>9P<—P,

ie., F1 = 0710 F. We define ®(G) = (P, Q, F, F1). In order that this is an
F-window we have to verify that
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(i) for x € P and a € I we have F(ax) = o1(a) F(x);

(ii) the image F1(Q) generates P.
Moreover, uV'# is the operator associated to ©(G) as we have claimed if and only if
(iii) for x € Q we have uV#(Fj(x)) =1Q® x in P,

The equatlon in (i) is equivalent to F (ax) = 0(01 (a)F(x)). Since F (ax) =
a(a)F (x) and 6 = 6 o o1, this is clear. To prove (ii), it suffices to show that for
each maximal ideal m of R and perfect field extension R/m C k the vector space
P®g gkis generated by F1(Q). Using (4-6) we get a sequence of - equlvarlant
maps S — S /Ja— W(S /a) = W(k); the second arrow exists uniquely since S /a
has no p-torsion and carries a Frobenius lift induced by 7 ; see [Bourbaki 1983,
IX, §1.2, Proposition 2] and the explanation following [Zink 2001b, Theorem 4].
By functoriality we are reduced to the case where 7' = F = #4, which is classical.
Assertion (iii) is equivalent to aVH(F(x)) = 9(1 ® x) for x € Q, which holds since
VEF(x)) = p(1®x) in P©@ forallx € P. O

Now we construct an example for Proposition 4.3 with p = 2. Let A4 be
a perfect ring of characteristic 2 and let A = W(Arq)[[?]l, where ¢ is a finitely
generated projective W(Areq)-module. Let m = (2, ¢) be the kernel of A — Ayeq.
We write A, = A/2" A and A,+ = A/2"m. Only the rings
Az = A1+ —> Ay

will play a role. We consider the frames 7' = 94, , — F = 4, . i.e.,

S=W(A14), [=l4, R=A414,

S'=W(Az4), I'=l4,,, R =A24.

Then 6’ =2 —[4] in S” and thus # =2 in S. Let U C S’ be the ideal of all Witt
vectors v([x]) with x € 44,4, and let S = S’/ U. As above, we write

J =Ker(S —> §) = W(2m/4m)/U
and
I =Ker(S — R) = (I'"+ W(2m/4m))/U.
Proposition 4.4. These data satisfy the axioms (4-3)—(4-6).

Proof. The divided powers required in (4-5) are given by Proposition 4.1. Since
2m/4m C A, is an ideal of square zero, we have

J = W(Q2m/4m) = (2m/4m)™

as W(Az+)-modules, where W(A>4) acts on the i-th component of the right-hand
side via the i-th Witt polynomial. We have 6’(J') =2J'=0and J = J'/U. Thus
0 : S — § is defined and vanishes on J, and 2J = 0.
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Lemma 4.5. Multiplication by 2 induces an isomorphism of groups
W(Q2A14) = W(4424)/ U.

Proof. The divided Witt polynomials for the canonical divided powers of 2 give an
isomorphism Log : W(2A4) 2 24N, The composition

Log N N
WQR2A) — 24" — (2A/4A)

is given by (2ayp,2a1,...) — 2[ao, a% + al,a% + as, ...], while the composition

Log N N
W(44) —> 44N —> (44/84)

is simply (4ag, 4ay,...) — 4[ag,ay,...]. It follows that the homomorphism of
the lemma is isomorphic to the homomorphism

AfSi) — Ar(Si), (ap,ai,...)— (ao,a% —I—az,a% +as,...).

Since Arq is perfect this map is bijective. O

Let us continue with the proof of Proposition 4.4. To verify (4-3), let x € S with
2x = 0. Since W(A;) has no 2-torsion we have x € W(2A2+)/U. Lemma 4.5
implies that x € J, and (4-3) is proved. Let u = 1 —[2] in W(A2+), which is a unit.
By the proof of Lemma 4.5 we have 2u =2 —(4,4,0,...) =2 —[4] = 6’ modulo
U, which proves (4-4). In (4-6) we can take a = W (2A414). O

4C. The Dieudonné display associated to a 2-divisible group. Let p = 2 and let
u = 1—[2] in W(Z,). We begin to construct the functor ® in an initial case.
Recall that ®9, was defined in the end of Section 4A when 4R = 0.

Proposition 4.6. For each admissible ring R with p = 2 and 2Ng = 0 there is
a functor
® R : (2-divisible groups over R) — (2g-windows)

compatible with base change in R such that for ®4(G) = (P, Q, F* V#) the
filtered F-V -module associated to ®g(G) is equal to (P, Q, F*, uV#).

Proof. This is similar to the proof of Theorem 3.19. Propositions 4.3 and 4.4 give
the desired system of functors ® g for topological admissible rings R of the type
R = A4 as above. For a p-divisible group G over an admissible ring R as in the
proposition, let A = W(Ryeq) and G = G ®R Ryeq. Let A be the A-algebra that
prorepresents the functor Defg on Nily /g (this A was denoted by B in Section 3),
let 4 over A be the universal deformation, and let 4+ = ¥ ®4 A1+. The unique
homomorphism of A-algebras A — R with G = ¥ ®4 R as deformations of G
factors over a homomorphism A4+ — R, and we define ®g(G) as the base change
of @4, (¢1+) under this map. We have to show that the operator F attached to
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®%(G) in this way is functorial in G and in R. This is analogous to the proof of
Theorem 3.19, using that F; is functorial with respect to homomorphisms of rings
of the type A1 +. O

For an admissible ring R, leti : Zp — 91"{ be the natural homomorphism.

Proposition 4.7. Let R be an admissible ring with p = 2 and 2Ng = 0. For each
2-divisible group G over R there is a natural isomorphism of Qﬁ—windows

D} (G) = ixPr(G).
The functor @;ﬁ was defined in Proposition 3.23.

Proof. Let us write Vg(G) = i« Pr(G) so that we have two functors
CD} Wpr : (2-divisible groups over R) — (Qg—windows).

When 2R = 0, thus Zr = _@;g, these functors coincide by the uniqueness assertion
of Corollary 3.24. The rest is quite formal. Let Ry = R/2R. For a p-divisible
group G over R, let G; = G ®g Ry and G = G ®R Rieq. The canonical divided
powers of 2 make R — R; into a divided power extension. By Corollaries 2.11
and 3.26, the Qz-windows <1>"R§ (G) and W (G) correspond to two lifts of the Hodge
filtration of G to D(G1)g/R, - Their difference is measured by a homomorphism
of Ri-modules
hg : V(G1) — Lie(G1) ®Rr 2R,

where V(G) is the kernel of D(G)g — Lie(G). We have to show that & is zero
for all G. Since hy; is functorial in R we may assume that R = A4 /m” for
some n > 2, where A is the universal deformation ring of G. Then 2R is a free
Req-module of rank one, so h’G corresponds to an element

hG € Hom(V(G), Lie(G)).

Now an injective homomorphism Req — R}, gives an injective homomorphism of
the associated rings R — R’, while a product decomposition Ryeq = [ | Rj red gives
R =] R;. Since R.q embeds into the product of its localisations at minimal prime
ideals, we may assume that k := Ryq is a field. There is a deformation G’ of G over
R/ := k[[x]*" with ordinary generic fibre. Let A" be its universal deformation
ring and let G’ over R’ = A /m" be given by the universal deformation. By
functoriality it suffices to show that ig- = 0. Again we can pass to the field
of fractions k((x))P*". Thus we are left to show that hg = 0 if G is ordinary
over R = Aj4/m”, where k = R.q is a perfect field. There is a deformation
G" of Gy over R” := W, (k) which decomposes into the direct sum of its étale
and multiplicative part. Let R — R” be the unique homomorphism such that
G” = G ®R R” as deformations of Gy. Since this does not change hg we may
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replace G by G”. Since Wy and @; both preserve direct sums we may assume that
G is étale or of multiplicative type. Then hg vanishes since Hom(V(G), Lie(G))
is zero. .

Lemma 4.8. Let R be an admissible ring with p = 2 and let R1+ = R/2NR. The
commutative diagram of frames

.@R—l'>9;

|

i +
@Rl—‘r @Rl-‘r
is Cartesian on each component of the frames, and the associated diagram of
window categories is 2-Cartesian.

Proof. The vertical arrows are surjective, and the horizontal arrows are injective
with equal cokernel by Lemma 1.10 and its proof. Thus the diagram of frames is
Cartesian on each component. For a ring A4, let V(A) be the category of projective
A-modules of finite type. The functor

V(W(R)) = V(W (R)) Xyu+(r,4)) VW(R1+))

is fully faithful since the diagram is Cartesian, and it is essentially surjective
since V(W(R)) — V(W(R;+)) and V(W™ (R)) — V(W™ (R;4)) are bijective on
isomorphism classes and surjective on automorphism groups. It follows easily that
the diagram of window categories is 2-Cartesian. O

Theorem 4.9. For each admissible ring R with p = 2 there is a functor
DR : (2-divisible groups over R) — (2gr-windows)

compatible with base change in R such that ®g is given by Proposition 4.6 when
2NR =0, and such that there is a natural isomorphism of @;{ -windows

®}(G) =i Pr(G).
Proof. This is clear from Propositions 3.23 and 4.7 and Lemma 4.8. O

Corollary 4.10. Let p = 2. For each 2-divisible group G over an admissible ring
R with associated Dieudonné display &2 = ®g(G), there is a natural isomorphism
of crystals on Crisygm(R)

D(G) = D(2)

which is compatible with the natural isomorphism Lie(G) = Lie(Z?).
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Proof. We have a natural isomorphism of crystals on Cris,qm(R/Z2)
D(G) = D(P}(G)) = D(Pr(G))

by Corollary 3.26, Theorem 4.9, and Lemma 2.12. The isomorphism of crystals on
Crisaam (R) follows as in the proof of Corollary 3.22. O

4D. Uniqueness of the functor ® .

Proposition 4.11. Assume that for each admissible ring R with p = 2 we have
a functor

@', : (2-divisible groups over R) — (Zg-windows)

compatible with base change in R such that ', = ®g when 2R = 0. Then there is
a natural isomorphism ®'y = ® g which is functorial in R and equal to the identity
when 2R = 0.

Proof. We first show that @, =~ ®r when 4R = 0. Let Ry = R/2R. For a
p-divisible group G over R, let G; = G ®r R; and let

'gzlquRl(Gl):(P’Q’F’Fl)

be its Dieudonné display. If we take the trivial divided powers on the ideal 2R,
Corollary 2.10 implies that the difference between ®g(G) and @', (G) as lifts of
Z1 is measured by a homomorphism

c:0Q/IrR, P — P/O®Rg, 2R.

Let V(G) = Lie(G")". By Corollary 3.24 and by the construction of ®%(G) we
can view hy; as a homomorphism

hg : V(G1) — Lie(G1) ®R, 2R.

We want to show that g = 0. We may assume that R = A/(m” +4A4), where A is
the universal deformation ring of G ® g Rq and m is the kernel of 4 — Riq. As in
the proof of Proposition 4.7, one reduces to the case where k = Ryq is a field and
G is ordinary. Assume that G is an extension 0 — ppyc0c — G — Q, /7, — 0.
Then V(G) = V(Qp/Zp) = R and Lie(G) = Lie(up~) = R, so that hg € 2R.
Thus G — hg defines a map g : Ext! (Qp/Zp, ppp=) — Gg of functors on the
category of local Artin rings with residue field k and annihilated by 4. It is easy to
see that g is additive. Here Ext!( ) = Mpoo, and it follows that g = 0. This implies
easily that hj; = 0 when G is ordinary. Thus ®g = &/, when 4R = 0. If for some
n > 1 we know that ®p =~ dD’R when 2" R = 0, the same reasoning shows that
g = P, when 2" R =0, and the proposition follows. O
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5. Equivalence of categories

Let R be an admissible ring. Dieudonné displays over R.q are displays, and they are
equivalent to Dieudonné modules over R;.q by Lemma 2.4. Under this equivalence,
the functor ®g_, corresponds to CD(I)?red‘

Proposition 5.1. For an admissible ring R the following diagram of categories is
2-Cartesian:

[
(p-divisible groups over R) — R (Dieudonné displays over R)

l q, l

(p-divisible groups over Rieq) L (Dieudonné modules over Rieq)

Proof. The categories of p-divisible groups and Dieudonné displays over R are
the direct limit of the corresponding categories over all finitely generated W(Ryeq)-
algebras contained in R; see Section 3A. Thus we may assume that the ideal Ng
is nilpotent. If a C R is an ideal equipped with nilpotent divided powers and if the
proposition holds for R /a, then it holds for R. This follows from the comparison of
crystals in Corollaries 3.21 and 4.10, since lifts from R/a to R of p-divisible groups
and of Dieudonné displays are both classified by lifts of the Hodge filtration by
[Messing 1972] and by Corollary 2.10. When a? = 0, we can take the trivial divided
powers on a. The result follows by induction on the order of nilpotence of Ng. [

Remark 5.2. Since p-divisible groups and Dieudonné displays over a perfect ring
K have universal deformation rings which are twisted power series rings over A =
W(K), in order to prove Proposition 5.1 the case R = K |[¢] is sufficient. In particular,
for p = 2 this means that as soon as the functors ® g defined in Corollary 3.24 when
2R = 0 are known to exist for all R, Proposition 5.1 is automatic. This reasoning
does not apply to the functors dD"Rf (which also extend the functors ®g for 2R =0to
all R but which are not an equivalence in general) because the deformation functors
of v-stabilised Dieudonné displays are not prorepresentable.

We have the following result of Gabber, which is classical when R4 is a field.
It is also proved in [Lau 2013, Corollary 6.5].

Theorem 5.3. The functor ®p,_, is an equivalence of categories. O

Corollary 5.4. For every admissible ring R the functor ®g is an equivalence of
exact categories.

Proof. By Theorem 5.3 and Proposition 5.1, the functor ® is an equivalence of
categories. A short sequence 0 — A — B —> C — 0 of p-divisible groups
or of Dieudonné displays over R is exact if and only if all its scalar extensions to
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perfect fields are exact. Thus ® g and its inverse preserve exact sequences, since
this holds over perfect fields. O

This proves Theorem A. Using Lemmas 2.15 and 2.16, we also get:

Corollary 5.5. For every admissible topological ring R with a countable base of
topology, p-divisible groups over R are equivalent to Dieudonné displays over R. [

Finally we note the following consequence of the crystalline duality theorem.
The duality of windows is recalled in the end of Section 2A.

Corollary 5.6. Let G be a p-divisible group over an admissible ring R and let GV
be its Cartier dual. There is a natural isomorphism

PR(GY) = Pr(G)".

Proof. Assume first that p is odd. The crystalline duality theorem [Berthelot et al.
1982, 5.3] gives an isomorphism of filtered F-V-modules ®%(G")" = ®%(G).
Since the functor from windows to filtered F-V -modules preserves duality, the
uniqueness part of Theorem 3.19 implies that this isomorphism preserves Fi, i.e., it
is an isomorphism of Dieudonné displays ® g (G V) = ® g (G). For p = 2, using the
uniqueness part of Corollary 3.24 we similarly get an isomorphism of Dieudonné
displays ®gr(G")" =~ ®x(G) when 2R = 0. Then Proposition 4.11 gives such an
isomorphism for all R. O

6. Breuil-Kisin modules

We recall the main construction of [Lau 2010] without restriction on p. Let R be a
complete regular local ring with maximal ideal mg and with perfect residue field k
of characteristic p. Choose a representation R = &/ EG with

S = Wk)[x1, ..., %]

such that E is a power series with constant term p. Let J C & be the ideal generated
by x1,...,xr. Choose a ring endomorphism o : & — & which lifts the Frobenius
of §/p&S suchthat 6(J) C J. Let o1 : EG — & be defined by 01(Ex) = o(x)
for x € &. These data define a frame

#=(6,ES,R,0,01).
For each positive integer a, let R; = R/m% and &, = &/J“. We have frames
%a = (6(1’ EGCI’ Ra,Oa Gl)a

where o and o7 are induced by the corresponding operators of .
The frames % and %, are related with the Witt and Dieudonné frames of R
and of R, as follows. Let § : & — W(&) be the unique lift of the identity of &
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such that 6 = 8o, or equivalently w,8 = ¢” for n > 0; see [Bourbaki 1983, IX,
§1.2, Proposition 2] and the explanation following [Zink 2001b, Theorem 4]. The
composition of § with the projection W(&) — W(R) is a ring homomorphism

x:6 — W(R)

which lifts the projection & — R such that fx = xo. The same construction gives
compatible homomorphisms

for a > 1, which induce x in the projective limit. Since the element »(E) maps to
zero in R it lies in the image of v : W(R) — W(R). Let

u=v"'((E)) = fi(x(E)).
We will denote the image of u in W(R,) also by u.

Lemma 6.1. The element u € W(R) is a unit. The homomorphisms x and x, are
u-homomorphisms of frames »x : 8 — Wr and xq : Bg — WR,-

Proof. See [Lau 2010, Proposition 6.1]. Since W(R) — W(k) is a local homomor-
phism, in order to show that u is a unit we can work with x1, i.e., consider the case
where R = k and & = W(k). Then E = p and u = 1. In order that » and x, are
u-homomorphisms of frames we need that f1x = u -xo;. For x € & we calculate
N1(e(Ex)) = fi(x(E)x(x)) = fi(x(E))- f(x(x)) =u-x(0(x)) =u-x(01(Ex)),

as required. O

Let G be the semilinear endomorphism of the free W(k)-module J/J? induced
by o. Since o induces the Frobenius modulo p, o is divisible by p.

Proposition 6.2. The following conditions are equivalent:

(1) The image of x : S — W(R) lies in W(R).

(ii) The image of § : & — W(S) lies in W(S).

1

(iii) The endomorphism p~'G of J/J? is nilpotent modulo p.

Remark 6.3. In the special case o (x;) = xl.p the conditions of Proposition 6.2 hold.
This is easy to see directly: we have §(x;) = [x;], which gives (i) and (ii), moreover
(iii) holds since o is zero.

Proof of Proposition 6.2. For odd p the equivalence between (i) and (iii) is [Lau
2010, Proposition 9.1]; its proof shows that (i) = (iii) = (ii)) = (i). The proof
also applies for p = 2 if [Lau 2010, Lemma 9.2] is replaced by Lemma 6.4. [
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Lemma 6.4. For x € G let 1(x) = (6(x) —x?)/p. Let m be the maximal ideal
of ©. For n > 0, the map t preserves " J and induces a o-linear endomorphism
gr,, () of the k-module gr, (J) =m"J /m™ 1], The endomorphism gry(t) is equal

to p~'& modulo p. For n > 1, there is a surjective k-linear map

Tin gty (J) — gro(J)

such that gry(v)m, = mp gr,(t) and such that gr,(t) vanishes on Ker(mwy,). In

1

particular, p~" & is nilpotent modulo p if and only if gry(t) is nilpotent, which

implies that gr, (t) is nilpotent for each n.

Proof. We have 6(J) € J? 4+ pJ CmJ and thus o(m”J) € m"+1J. It follows
that pr(m™J) € p&SNm"t1J = pm™J and t(m"J) Cm”*J. For x, y e m"J the
element (x4 y)—1(x)—1(y) is a multiple of xy and thus lies in m?”+1J. Hence ¢
induces an additive endomorphism gr,, (7) of gr,, (J). Itis o-linear because fora € &
and x € m"J the element t(ax) —o(a)t(x) = t(a)x? lies in m?"J? Cm"**+1 ],
Let us write o (x;) = xlp + py; with y; € J. We have 7(x;) = y; and p~16(x;) = y;
modulo J2. Thus gry(t) coincides with p~!5 modulo p.

For each n > 0, a basis of gr, (J) is given by all elements pb x€ with ¢ e N" and
1<|c|<n+1land b+|c|=n+1. Letn > 1, and define m, to be the k-linear map
with 7, (p"x;) = x; and 7, (pPx€) = 0if |c| > 1. Then gr,, (7) vanishes on Ker(s,,)
because o(J) € mJ, thus o(J?) € m?J2, and because for x € m"J we have x? €
m"*2J . The relation gry(t)m, = 7, gr,,(7) holds since T(p"x;) = p" ' xF + p" y;
modulo m”t1(J). The last assertion of the lemma is immediate. O

Lemma 6.5. If the equivalent conditions of Proposition 6.2 hold, then x and x,
are U-homomorphisms of frames

X.B—> DR, Ha:PBa—> DR,
where the unit U € W(R) is given by
u=v""(x(E)) = fi(%(E)).
In W(R) we have U= u if p is odd and u = (v"'Q2—=[2])) " tu if p = 2.

Proof. The proof of Lemma 6.1 with f; replaced by f; shows that u is a unit of
W(R) and that » and x, are u-homomorphisms of frames as indicated. The relation
between U and u follows from the fact that g — #g is a ug-homomorphism,
where ug = 1 if p is odd and v(ug) =2 —[2] if p = 2. O

Theorem 6.6. If the equivalent conditions of Proposition 6.2 hold, the frame homo-
morphisms x : B — Pr and xq : B — DR, are crystalline.

Proof. The proof for odd p in [Lau 2010, Theorem 9.3] works almost literally for
p = 2 as well. Let us recall the essential parts of the argument. Fix an integer
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a > 1. One can define a factorisation of the projection %,41 — %, into strict frame
homomorphisms

L ~ 4
Ba+1 —> Ba+1 —> PBa (6-1)

such that B,4+1 = (Gg41, T ,Rg,0,01). This determines T and 01 uniquely as
follows. Let J% = J“/J““. We have f=E6a+1+f“ and E6a+lﬂJ_“ =p.7".
The endomorphism & of J¢ induced by o is divisible by p?, and the operator
o1 : I — G4 +1 is the unique extension of o; such that 61(x) = p_lc_r(x) for
x € J%. On the other hand, we consider the factorisation

’ /7

L b1
‘@Ru—&-l - -@RaJr]/Ra e @Ra (6-2)

with respect to the trivial divided powers on the kernel m% / m%"'l. Then 441 is

a u-homomorphism of frames %,11 — Z Rat1/R,- Indeed, the only condition to
be verified is that for x € J¢ we have

f10tat1(x) = U-xa41(51(x)) (6-3)

in the k-vector space I/T/(m‘;e / m‘};rl). On this space U acts as the identity. Let

y = (y0, ¥1,...) in W(J4) be defined by y, = 61 (x). Then §(x) = y because the
Witt polynomials give wy,(y) = p"67(x) = 0" (x) = wu(8(x)) as required. Thus
Xa+1(x) is the reduction of y. Since f; acts on VT/(m‘j{2 / m‘}fl) by a shift to the
left, the relation (6-3) follows. We obtain compatible U-homomorphisms of frames
%% : (6-1) — (6-2). The homomorphisms 7 and 7’ are crystalline; see the proof of
[Lau 2010, Theorem 9.3]. Lifts of windows under ¢ and under ¢’ are both classified
by lifts of the Hodge filtration from R, to R,41 in a compatible way. Thus if x,
is crystalline then so is 41, and Theorem 6.6 follows by induction, using that
x1 is an isomorphism. O

Following the terminology of [Vasiu and Zink 2010], a Breuil window relative
to & — R is a pair (Q, ¢) where Q is a free G-module of finite rank and where
¢ : 0 — 0 is an S-linear map with cokernel annihilated by E. For such (Q, ¢)
there is a unique linear map ¥ : Q@) — Q with ¥¢ = E; the pairs (Q, V) are
usually called Breuil-Kisin modules or Kisin modules. The category of #-windows
is equivalent to the category of Breuil windows relative to & — R by the assignment
(P,Q,F, F1)— (Q, ¢), where ¢ is the composition of the inclusion Q — P with
the inverse of F lﬁ : Q(U) ~ P; see [Lau 2010, Lemma 8.2].

Corollary 6.7. If the equivalent conditions of Proposition 6.2 hold, there is an
equivalence of exact categories between p-divisible groups over R and Breuil
windows relative to S — R.

Proof. This is analogous to [Lau 2010, Corollary 8.3], using Corollary 5.4. O
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Following [Vasiu and Zink 2010] again, a Breuil module relative to & — R
is a triple (M, ¢, ) where M is a finitely generated G-module annihilated by a
power of p and of projective dimension at most one and where ¢ : M — M ()
and ¥ : M© — M are G-linear maps with ¢y = E and ¥¢ = E. If R has
characteristic zero, such triples are equivalent to pairs (M, ¢) or (M, ¥); see [Lau
2010, Lemma 8.6]. Again, the pairs (M, 1) are usually called Breuil-Kisin modules
or Kisin modules.

Corollary 6.8. If the equivalent conditions of Proposition 6.2 hold, there is an
equivalence of exact categories between commutative finite locally free group
schemes of p-power order over R and Breuil modules relative to & — R.

Proof. This is analogous to [Lau 2010, Theorem 8.5]. O

Example 6.9. Let R = W(k) and & = W(k)[¢] with o(t) = t?. Define & — R
byt + p;thus E = p —t. We have x(E) = p —[p] and thus u = v=1(p — [p]).
Assume that p = 2. Then u = ug, and & — Zp is a strict frame homomorphism.
This example has motivated the definition of Dieudonné displays for p = 2.

7. Breuil-Kisin modules and crystals

We keep the notation of Section 6 and assume that the equivalent conditions of
Proposition 6.2 hold. Assume that R has characteristic zero. Let S be the p-adic
completion of the divided power envelope of the ideal EG C &, and let I be
the kernel of S — R. Since 0 : & — & preserves the ideal (E, p), it extends to
0:5— S. Itiseasy toseethato (/) € pS, thuso : S — S is a Frobenius lift again.

Proposition 7.1. Let (Q, ¢) be a Breuil window relative to G — R and let G be
the associated p-divisible group over R; see Corollary 6.7. There is a natural
isomorphism

D(G)s/r = S ®s 0@

such that the Hodge filtration of D(G) s, corresponds to the submodule generated
by ¢(Q) + IQ("), and the Frobenius of D(G)gs g corresponds to the o-linear
endomorphism of Q(") defined by x — 1 ® ¢~ 1 (Ex).

In Kisin’s theory (when R is one-dimensional) the analogous result is immediate
from the construction. To prove Proposition 7.1, we consider the frame

S =(S,1,R,0,01)

with 01(x) = a(x)/p for x € I. The inclusion & — § is a u-homomorphism
of frames ¢ : Z — . withu = o(E)/p € S. This element is a unit as required,
since the arrow & — R is mapped surjectively onto W(k) — k, which gives a
local homomorphism S — W(k) that maps u to 1. Recall that we have frames
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IR — 9; when p = 2 and let us write 9; = 9g when p > 3. Then we have the
commutative diagram of frames

B — 7

|l

QR—>@$

Indeed, since W (R) — R is a divided power extension of p-adically complete
rings, the ring homomorphism x : & — W™ (R) extends to xg : § — W (R), which
is a strict frame homomorphism . — @;{. Here x is crystalline by Theorem 6.6.
The proof of Proposition 7.1 will use the following fact:

Theorem 7.2. The frame homomorphism xg is crystalline.

This is a variant of the main result of [Zink 2001b]. It is easy to see that S is an
admissible topological ring in the sense of Definition 1.2 if and only if r =1, i.e.,
if R is a discrete valuation ring. In that case, the methods of [Zink 2001b] apply
directly, but additional effort is needed to prove Theorem 7.2 in general. The proof
is postponed to the next section.

Proof of Proposition 7.1. Let 29 = (P, Q, F, F1) be the Z-window associated to
(0, ¢); thus P = 09 the inclusion map Q — P is ¢, and F : P — P is the
o-linear endomorphism of Q (%) defined by x — 1 ® ¢! (Ex). By definition we
have ®R(G) = %« (), which implies that CDXF(G) = xs5«Lx(Pp); here we use
Theorem 4.9 when p = 2. On the other hand, the frames . and @; both satisfy the
hypotheses of the beginning of Section 3C. Thus Construction 3.16 and Proposition
3.17 applied to G give an .-window 47| with an isomorphism g (%) = CID;(G),
using the characterisation of CIJ;F in Theorem 3.19 and Proposition 3.23. Since
the base change functor xg is fully faithful by Theorem 7.2, the isomorphism
xsx () = CI>;(G) =~ xs«tx(Pg) descends to an isomorphism 2 = 1,(P),
which proves the proposition. O

7A. Proof of Theorem 7.2. Let us begin with a closer look on the p-adically
complete ring . For m > 0 let S(,;,y € S be the closure of the G-algebra generated
by Ei /il fori < p™.

Proposition 7.3. For m > 1, there is a surjective homomorphism of &-algebras
Slt1.....tm]l = Sim) defined by t; — EP' /p'1.

In particular, S, is a noetherian complete local ring.

Lemma 7.4. Let A be a noetherian complete local ring with a descending sequence
ofideals ADap2a1 2. Then A — 1<i_IE,- A/q; is surjective.
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Proof. Let m be the maximal ideal of A. For each r, the images of a; — A/m”
stabilise for i — oo to an ideal a, € A/m”. We have

. L . N1 =
lglA/az = lgLnA/(az +m') = I%H(A/m )/@r.
i i,r
Since the ideals a, form a surjective system, taking the limit over r of the exact

sequences 0 — a, —> A/m" —> (A/m")/a, —> 0 proves the lemma. d

Proof of Proposition 7.3. Since the image of £ P’ /p'lin S/ p"S is nilpotent, there is
a well-defined homomorphism 7, ,, : S[[t1, ..., tn] = S/p"S with t; > EP'/pi1.
By definition, S is the projective limit over n of the image of 7wy ,. The

proposition follows by Lemma 7.4. O
Let K =W(k)® Qand &Gg = K[[x1,...,xr]. Since 0 : & — & preserves the
ideal J = (x1,...,X,), it extends to a homomorphism ¢ : 6g — Sq. Forr = 1

it is easy to describe S and S, as explicit subrings of Gg, since instead of the
divided powers of E one can take the divided powers of x{, where e is defined by
pR =m$. For r > 2 the situation is more complicated.

Proposition 7.5. The natural embedding G — Sq extends to an injective homo-
morphism S — Gg that commutes with o.

Thus S, is the image of &1, ..., 1] — Sq as in Proposition 7.3.

Proof of Proposition 7.5. Recall that J = (x1,...,x,) as an ideal of &. Choose
E' € J¢ with E — E’ € p& such that e is maximal; thus p € m% \mi“. Let us
write gr'z, (&) = E""S/E" 116, etc.

Lemma 7.6. The map of graded rings grg/(S) — grg/.(Sq) is injective.

Proof. Tt suffices to show that §/E'S — Sq/ E'Sq is injective. The choice of E’
implies that the image of E” in the regular local rings &/ p& and S lies in the same
power of the maximal ideals. Therefore the k-dimension of &/(p& + E'S + J™)
is equal to the K-dimension of Sg/(E'Sg + J"Sg). Since the last module is
isomorphic to &/(E’'S + J") ® Q, it follows that §/(E'S + J") is a free W(k)-
module and injects into Sq/(E'Sg + J"Sg). Since §/E’'S and Sq/ E'Sg are
J -adically complete the lemma follows. O

Let So € Gg be the G-algebra generated by E” /i! for i > 1, or equivalently
by E/il fori > 1, so0 S is the p-adic completion of Sy. Let So,» be the image
of Sog — Gq/E™Sg and let S = hm So,n- Each So 5 is a noetherian complete
local ring with residue field k& and thus a p-adically complete ring. Since So,, has
no p-torsion it follows that S is p- adlcally complete. We obtain a homomorphism
§—>Sc S which extends Sp € Sc Go.

Lemma 7.7. We have So N pS = pSo inside S.
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Proof. Let x € So N p§ be given. We have to show that x lies in pSp. Assume that
x # 0 and choose an expression (x) x = Y ;_, a; E™ /n;! with a; € & such that
ng <--+-<ng. We use induction on ny — ng.

Suppose E’ divides ag in &. Thenag E™0/ngy! = a6E’”6/(n6)! withny =no+1
and ay = ngae/E'. If s > 0 this allows us to find a new expression of x of the type
(») with a smaller value of ns—n¢, and we are done by induction. If s =0 we replace
the expression () by x = ayE’ o /ng!; call this a modification of the first type.

Suppose E’ does not divide a¢ in &. Lemma 7.6 implies that the image of x
in gr%o, (Sq) is nonzero. In Sp »,41 we have x = py. Choose an expression y =
Z?g (G E' /i1 with ¢; € & such that £ is maximal. Then E’ does not divide c; in
G, and Lemma 7.6 implies that y has nonzero image in gr%,(G@). Thus £ = ny.
Using Lemma 7.6 again, it follows that the image of ag in &/ E’S is divisible by p.
Letag = pbo+b1 E’ with b; € S and let x’ = x— pbo E'™° /ng!. Then x—x’ € pSy;
thus x’ € SoN pS, and we have to show that x’ € pSp. If s > 0 we get an expression
of x’ of the type (%) with a smaller value of ng —ng, and we are done by induction.
If s = 0 we replace x by x’ and take for (x) the expression x’ = agE’”E)/n()! with
ng =no + 1 and ay = nyby; call this a modification of the second type.

If s > O the inductive step is already finished. So we may assume that s = 0. We
successively apply modifications of the first or second type depending on whether
E’ divides ag. After at most p steps, the new value of ag becomes divisible by p,
and thus x lies in pSp. O

Lemma 7.7 implies that So/ p"So — S / p”§ is injective, so the projective limit
S — Sis injective, and thus S — Gq is injective. In order that this map commutes
with o it suffices to show that S — &g /J"Sg commutes with ¢ for each n; this
is true since So - Sg/J"Sg commutes with o, and the image of this map is
p-adically complete. Thus Proposition 7.5 is proved. O

We turn to the frames associated to the rings S and Sy;,).

Lemma 7.8. For m > 1 we have a subframe of & = (S, 1, R, 0,01),
Limy = Simy> Lim), R, 0,01).

Proof. Necessarily 1,y = I N S(;,). We have to show that o : § — § stabilises Sy;;)
and that 0y = p~lo : I — S maps () into Sy, We will show that o(S) and
o1([1) are even contained in S(;). Namely, we have o (E) = px with x € S[E?/p].
Thus o1 (E'/i!) = (p-i!)~ (px)’ lies in S[E?/ p], using that 1 + vp(i!) <i for
i > 1. Since I/p"I is the kernel of S/p"S — R/p"™R, this ideal is generated
as an G-module by the elements E’/i! for i > 1. Thus the image of the map
I/p"*t1I — S/p"S induced by o lies in the image of S(1)» and it follows that
01(1) € S1y. Since § = & + 1, we get o(S) € Sqy). O

Proposition 7.9. For m > 1 the inclusion .,y — . is crystalline.
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Proof. This is a formal consequence of the relations o'(S) € S,y and o1 (1) C S
verified in the proof of Lemma 7.8.

Indeed, let #Z = (P, Q, F, F1) be an “-window. Choose a normal decomposition
P=L®T,andlet W: L & T — P be the o-linear isomorphism defined by
Fyon L and by F on T. Then P, := S;,,)W(L ® T) is a free S, -module
with S ®s,,,, Pim) = P. Moreover, F1(Q) C Py and F(P) C Pyyy. Let
Qm) = O N Pyyy. Then Py, /Quny = P/Q is a projective R-module. Let
Piny = L ) ® Ty be a normal decomposition and let Wi,y @ L ) © Ty —> P
be the o-linear map defined by F; on L) and by F on Tj,). In order that
the quadruple 7,y = (Pimy, Q (m), F. F1) is an .7,y -window with base change
2 we need that the determinant of Wy,,) is invertible. But the determinant of
W(,u) becomes invertible in S because & is a window, and Sy,,) — S is a local
homomorphism. Thus the base change functor from .7/,,,)-windows to .#-windows
is essentially surjective.

In order that the functor is fully faithful it suffices to show that it induces a
bijection End(Z,,)) — End(2?). Clearly the map is injective. We have to show that
every h € End(2) stabilises P,,). But h(F1(Q)) = F1(h(Q)) € F1(Q) C Py,
and F1(Q) generates Py, as an S, -module. This proves the proposition. [

Proposition 7.10. For m > 1, the composition %,y —> LI 9}5 is crystalline.

This is the main step in the proof of Theorem 7.2. The proof of Proposition 7.10
is a variant of the proof of Theorem 6.6.

Proof. We choose e such that p € m$ \m;“, and consider the index set N =

{1,2,...}U{e+}, ordered by the natural order of Z and e <e+ <e+1. Forn e N
let n+ € N be its successor. Let mé" = m‘;;rl + pR. Forn € N let R, = R/m,.
We equip the ideal m’, / m'l’;r of R,+ with the trivial divided powers if n # e+ and
with the canonical divided powers of p if n = e+; these are again trivial if p is odd.
In all cases the divided powers are compatible with the canonical divided powers
of p, and we obtain frames

@;H—F/Rn = (W+(Rn+)’ HE’H_/RM Ry, f, f1)-

Let T, be the image of Sy, 5 WHR) — W™ (R,). Since xso = fxg,
the ring 7}, is stable under f. Let K, be the kernel of 7, — R, and let En be the
kernel of T,,+ — R,.

We claim that ];I(En) C Thn+.

To prove this, let M, be the kernel of S,y — Ry, so IZ,, is the image of M,, —
W™ (R, 4). Since xs0 = fxg and since f;is f-linear it suffices to show that a set
of generators x; of the ideal M, with images xg(x;) = X; € f,, satisfies f1(X;) €
Ty+. Since mg = JR, for n # e+ the ideal M}, is generated by (,,,) and J", while
M, is generated by I,y and J ¢+1 and p. We check these generators case by case.
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First, for x € I,,) we have f1(x) € T+ because .,y — @;H is a frame
homomorphism.

Assume that n # e+. The homomorphism § : J?/J" Tl — W(J"/J"T1) is
given by §(x) = (x, 01(x), (61)%(x), ...). Indeed, applying the Witt polynomial w,,
to this equation gives 0" (x) = p"(01)"(x), which is true. Since the divided powers
on m’ /m’g * are trivial, the endomorphism f1 of W(m” R/ /m *) is given by a shift
to the left. Thus the map xg : J*/J" ! — W (m', /m’g ) satlsﬁes ’§O1 = f1 xS,
and we see that f1(x) € T,,+ for x € J".

Assume now that n = e+. Since J¢T! maps to zero in W(R. 1), it remains
to show that fl(p) € Ty+. Now Log(p —v(1)) = [p,0,0,...]; see the proof of
Lemma 1.9. Thus f1(p) = f1(v(1)) = 1, and the claim is proved.

We obtain frames

T = (Tn, Kns Ry £ /1)y T yn = (Tus, Kns Rus £ 1),

and a commutative diagram of frames with strict homomorphisms

/7

Tnt — Tyin —— T

S

+ v +
@Rn + @Rn —+ /Rn

— 7%

Here 7 is crystalline because the hypotheses of Theorem 2.2 are satisfied; see
the proof of Corollary 2.9. Since the vertical arrows are injective, it follows that 7’
satisfies the hypotheses of Theorem 2.2 as well, and thus 7/ is crystalline. Moreover,
lifts of windows under ¥ and under v correspond to lifts of the Hodge filtration
from R, to R, in the same way. Since ¢ is bijective, it follows that ¢, is crystalline
for each n. Consider the limit frame

7 =1im 7, = (T.K.R. f. f1).

n
The inclusion ¢ : F — 91"2' is the projective limit over n of ¢, and thus crystalline.
Since S, is noetherian by Proposition 7.3, Lemma 7.4 implies that 7' = 1<£n Ty is
the image of xg : Sg,) — W™ (R). If xg is injective, we get Smy = 7, S0
SLm) —> 78 g 1s crystalline as required.

Since we have not proved that xg is injective we need an extra argument. Let a be
the kernel of xg : S(,) — W (R) and let a,, = anNJ"Ggq for n > 1; here we use that
S is a subring of G by Proposition 7.5. We have a = ay. The ideals a, of S, are
stable under o, and they are also stable under o7 since S ;) /a and a;/a,+1 have no
p-torsion. Thus we can define frames .7,y , = (S(m)/@n, L(m)/an, R, 0,01). We
have .7,y 1 = 7, and the projective limit over n of .7/, , is isomorphic to .#;)
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by Lemma 7.4 and Proposition 7.5. The ideal a,,/a, +1 is a finitely generated W (k)-
submodule of (J”/J"*t1)® Q. Since the conditions of Proposition 6.2 are satisfied,
the endomorphism o1 of a, /a,+1 is p-adically nilpotent. Thus .7y n4+1—> L) .n
is crystalline; see the proof of [Lau 2010, Theorem 9.3]. It follows that .7,y — 7
is crystalline, s0 .7,y — @; is crystalline too. O

Theorem 7.2 follows from Propositions 7.9 and 7.10. O

Remark 7.11. Assume that » = 1; i.e., R is a discrete valuation ring. If pR = m;,
the ring S is the p-adic completion of W(k)[[t]|[{t¢"/m!}m>1]. It is easy to see
that each quotient S/ p"S is admissible, so the p-adically complete ring S is an
admissible topological ring. In particular, W (S) is defined. Since we assumed
that the image of § : & — W(O) lies in W(O), it follows that the image of
§:8 — W(S) lies in WT(S), using that W+ (S) — R is the projective limit of
the divided power extensions W (S/p"S) — R/p™ R and that each W+ (S/p"S)
is p-adically complete. If p is odd this means that . is a Dieudonné frame in
the sense of [Zink 2001b, Definition 3.1], and Theorem 7.2 becomes a special
case of [Zink 2001b, Theorem 3.2]. For p = 2 the proof of [loc. cit.] works as
well. The starting point is the construction of an inverse functor of xg; it maps a
@;—window 2 to the value of its crystal DT (2) g /R> €quipped with an appropriate
.-window structure.

If r > 2, the ring S is not admissible and thus the crystal of a 27} g -Window can
not be evaluated at S/R. However, one can define by hand a subframe @S /R of
W5 R such that @;‘/ R 7% g is crystalline. This allows us to evaluate the crystal
at S/R and to define an inverse functor of xg4 as before. The underlying ring
of @;/R is defined as follows. Let Sy, be the image of S,y — §/p"S and
let I, » be the kernel of S, , — R/p" R. The divided Witt polynomials define
an isomorphism Log : W(I/p™I) = (I/p™I)N, and our ring is hm hm of the
rings W (So.,) + Log™ 1((Im )N, The hm of these rmgs for ﬁxed m>1
gives a frame @ /R with a crystalline homomorph1sm to @R This allows us
to construct the i 1nverse functor from 27 g -Windows to .#(;;,)-windows. We leave out
the details.

8. Rigidity of p-divisible groups

In this section, we record a rigidity property of the category of p-divisible groups
that will be used in Section 9. As preparation, for a local ring R we consider the
additive category F g of commutative finite locally free p-group schemes over R.
It is known that Fg is equivalent to the full subcategory of the bounded derived
category of the exact category of p-divisible groups over R formed by the complexes
of length one which are isogenies; see [Kisin 2006, (2.3.5)]. In elementary terms
this equivalence can be expressed as follows:
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Proposition 8.1. For a local ring R, let TR be the category with isogenies of
p-divisible groups over R as objects and homomorphisms of complexes modulo
homotopy as homomorphisms. The set S of quasi-isomorphisms in L allows a
calculus of right fractions. In particular, the localised category S~ Ig is additive.
It is equivalent to the additive category FR.

For completeness let us prove this directly.

Proof. Let 7Zr be the category with isogenies of p-divisible groups over R as objects
and homomorphisms of complexes as homomorphisms. We denote isogenies by
X = [X° — X!]. Let h°(X) be the kernel of X° — X!. A homomorphism
f:X—>Yin TR is homotopic to zero if and only if h1%( f) is the zero map; the
homotopy is unique if it exists. We claim:

(») For each homomorphism f : X — Y in TR, one can find a quasi-isomorphism
t:Z—>XinZganda homomorphism g: Z — Y in Zg which is an epimorphism
in both components such that ¢ is homotopic to g. Namely, embed 4°(X) into
Z°=X°@ Y% by (1, f) and put Z! = Z°/h%(X). Define ¢ and g by the
projections Z% — X% and Z° — Y°. There is a homotopy between ft and g
because ft = g on h%(Z), and (%) is proved.

Next, for given homomorphisms X i) Y < Y'in Zr, where s is a quasi-
isomorphism, one can find an isogeny X’ with a homomorphism g : X’ — Y’ and a
quasi-isomorphism ¢ : X’ — X such that f7 is homotopic to sg. Indeed, by (x) we
can assume that the components of f are epimorphisms. Then take X' = X xy Y’
componentwise. It follows easily that S allows a calculus of right fractions. We
have an additive functor 4% : S~1Z — F. It is surjective on isomorphism classes
by a theorem of Raynaud [Berthelot et al. 1982, Théoreme 3.1.1]. Let X and Y be
isogenies. The functor A° is full, because for a given homomorphism fy : h%(X) —
h°(Y), the construction in (x) allows us to represent fo as h°(gz~1). The functor
is faithful because if a right fraction g¢t~! : X — Y induces zero on /° then g
induces zero on 1%, and thus g is homotopic to zero. O

Let (Art) be the category of local Artin schemes with perfect residue field of
characteristic p, and let (p-div) — (Art) be the fibred category of p-divisible groups
over schemes in (Art).

Lemma 8.2. Assume that u is an exact automorphism of the fibred category (p-div)
over (Art) such that for the group E = Q /Z,, over Spec [y, there is an isomorphism
u(E) = E. Then u is isomorphic to the identity functor.

Proof. For each U in (Art) we are given a functor G — G* from the category of p-
divisible groups over U to itself, which preserves short exact sequences, compatible
with base change in U, such that Hom(G, H) =~ Hom(G¥, H"*). We have to show
that there is an natural isomorphism G* = G for all G, compatible with base change



2256 Eike Lau

in U. Let (p-fin) — (Art) be the fibred category of commutative finite locally free
p-group schemes over schemes in (Art). By Proposition 8.1, # induces an automor-
phism of (p-fin) over (Art). Let H € (p-fin) over U € (Art) be given. Assume that
p" annihilates H and H*. For each T — U in (Art) there is a natural isomorphism

H(T) = Homy(Z/p"Z, Hr) = Homy (Z/p"Z, H¥) = H*(T),

using that (Z/p"Z)* =~ 7Z/p"Z. Since commutative finite locally free group
schemes over U form a full subcategory of the category of abelian presheaves
on (Art)/U, we get a natural isomorphism H =~ HY, which induces a natural
isomorphism G = G¥ for all p-divisible groups G over U. O

9. The reverse functor

We fix an admissible ring R which is local of dimension zero; thus kK = Ryeq is
a perfect field of characteristic p. In this case, one can write down an inverse of
the functor ® g as follows. The construction appears in [Lau 2009] when p > 3 or
pR = 0 and extends to the general case with appropriate changes.

Definition 9.1. Let Jg be the category of R-algebras A such that N is bounded
nilpotent and Aeq is the union of finite dimensional k-algebras.

We call a ring homomorphism A — B ind-étale if B is the filtered direct limit
of étale A-algebras.

Lemma 9.2. Every A € JR is admissible. The category JR is stable under tensor
products. If A — B is an ind-étale or a quasi-finite ring homomorphism with
A€ Jg then B € Jg.

Proof. Since a reduced finite k-algebra is étale and thus perfect, every A4 in Jg
is admissible. Let A — B a ring homomorphism with A € Jg. Then N4 B is
bounded nilpotent, so B is lies in Jg if and only if B/Ny B lies in Jg. For given
homomorphisms B <— A — C in Jg we have to show that B ® 4 C lies in Jg. By
the preceding remark, we may assume that A, B, C are reduced. Then B ®4 C is
the direct limit of étale k-algebras and thus lies in Jg. Let g: A — B be an ind-étale
or quasi-finite ring homomorphism with A € Jg. In order to show that B € Jr we
may assume that A is reduced. Then every finitely generated k-subalgebra of A is
étale. Thus each étale A-algebra is defined over an étale k-subalgebra of A. If g
is ind-étale it follows that B lies in Jg. Assume that g is quasi-finite. Then B is
defined over an étale k-subalgebra of A. Since all finite k-algebras lie in Jr and
since JR is stable under tensor products, it follows that B € JR. O

Let S = Spec R and let Js be the category of affine S-schemes Spec A with
A € Jg. If 7 is either ind-étale or fpqc, we consider the 7-topology on Jg in
which coverings are finite families of morphisms (Spec B; — Spec A) such that
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the associated homomorphism A — [[; B; is faithfully flat, and ind-étale if 7 is
ind-étale. Let S 7  be the category of t-sheaves on Js.

Lemma 9.3. The presheaf of rings W on Js is an fpqc sheaf.

Proof. See [Lau 2009, Lemma 1.5]. Since the presheaf W is an fpqc sheaf, it
suffices to show that for an injective ring homomorphism A — B in Jgr we have
W(A) =W(B)NW(A) in W(B). This is easily verified using that Ayeq — Breq is
injective and W (Ny) = W (Ng) N W(A) in W(N3). O

Let £ be a Dieudonné display over R. For SpecA € Js let 24 = (P4,Q04,F, F1)
be the base change of & to A. We define two complexes Z(#) and Z'(2?) of
presheaves of abelian groups on Js by

Z(2)(Spec A) = [Q4 ——5 Py]. O-1)
Z'(2)(Spec A) = [04 = PAI® [Z — Z{1/ p]l. 9-2)

such that Z(2) lies in degrees 0,1 and Z'(%) lies in degrees —1,0, 1, so the
second tensor factor lies in degrees —1, 0.

Proposition 9.4. The components of Z' () are fpqc sheaves on Js. The ind-étale
(and thus the fpgc) cohomology sheaves of Z'(<?) vanish outside degree zero, and
the cohomology sheaf in degree zero is represented by a well-defined p-divisible
group BTR(Z) over R. This defines an additive and exact functor

BTg : (Dieudonné displays over R) — (p-divisible groups over R).

One can also express the definition of the functor BT g by the formula

F1—1
BTR(2) =[Q — P|®" Q,/Z,
in the derived category of either ind-étale or fpqc abelian sheaves on Jg.

Proof. This is essentially proved in [Lau 2009], but we recall the arguments for
completeness and because there is a small modification when p = 2. To begin with,
p-divisible groups over R form a full subcategory of the abelian presheaves on Jg
because finite group schemes over R lie in Js; see Lemma 9.2. Hence BTg is a
well-defined additive functor if the assertions on the cohomology of Z'(£?) hold.
Since an exact sequence of Dieudonné displays over R induces an exact sequence of
the associated complexes of presheaves Z’, the functor BTy is exact if it is defined.

The components of Z(£) and Z'(Z?) are fpqc sheaves on Jg by Lemma 9.3.
These complexes carry two filtrations. First, a Dieudonné display is called étale
if 0 = P, and nilpotent if VHis topologically nilpotent. Every Dieudonné display
over R is naturally an extension of an étale by a nilpotent Dieudonné display, which
induces exact sequences of the associated complexes Z(...) and Z'(...). Thus we
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may assume that & is étale or nilpotent. Second, for every & we have an exact
sequence of complexes of presheaves

0 —> Z(P) —> Z(P) —> Zyea(P) —> 0,

defined by Zeq(2)(Spec A) = Z(2)(Spec Areq). The same holds for Z’ instead
of Z. We write Z(@) = [Q — ﬁ]

Assume that & is étale. Then F; : P — P is an f-linear isomorphism. Thus
Fy: P — P is elementwise nilpotent, and the complex Z (£) is acyclic. It follows
that Z (&) is quasi-isomorphic to the complex Z;.q(#?) = Zieq, Which is the
projective limit of the complexes Zeq,n = Zred/ P" Zrea- In the étale topology, each
Zed,n 1s a surjective homomorphism of sheaves whose kernel is a locally constant
sheaf G, of free Z/p"Z-modules of rank equal to the rank of P. The system
(Gpn)n defines an étale p-divisible group G over R, and Z,eq is quasi-isomorphic
to T,G = h(_m G as ind-étale sheaves. It follows that Z'(2?) >~ Z! () is quasi-
isomorphic to the complex [T,G — T,G ® Z[1/p]] in degrees —1,0, which is
quasi-isomorphic to G in degree zero (as ind-étale sheaves).

Assume that & is nilpotent. Then the complex Z.q4(?) is acyclic because its
value over Spec A is isomorphic to [1—-V : P4, — P4, ], where V isa topologlcally
nilpotent f~!-linear homomorphism. Thus Z () is quasi-isomorphic to Z (P). To
& we associate a nilpotent display by the ug-homomorphism of frames Pg — #R.
By [Zink 2002, Theorem 81 and Corollary 89] there is a formal p-divisible group G
over R associated to this display such that for each A € Jg there is an exact sequence

0— O(4) 7L Bra) — G(4) —> 0;

this is the direct limit of the corresponding sequences for the finitely generated
(nilpotent) subalgebras of Ajy. Since ug € W(Z,) maps to 1 in W(F,), there is
a unique ¢ € W(Z,) which maps to 1 in W(F,) such that ug = cf(c™'), namely
¢ =ug f(uo) f*(ugp) - --. Multiplication by ¢ in both components defines an iso-
morphism of complexes

[Q(A) S P(A)] = [0(4) 22 B4y
It follows that Z'( %) ~ Z'(2) is quasi-isomorphic to G in degree zero. O

Remark 9.5. Recall that 2 = (W(R), IR, f, 1) is viewed as a Dieudonné display
over R. We have BTRr(ZR) = ppoe by [Zink 2002, (211)].

Lemma 9.6. Let R — R’ be a homomorphism of admissible rings which are local
of dimension zero. For each Dieudonné display &7 over R there is a natural
isomorphism

BTRr(Z)r = BTr/(Zr).
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Proof. 1f the residue field of R’ is an algebraic extension of k, every ring in Jg’ lies
in JR, and the assertion follows directly from the construction of BT g. In general,
let &g be the category of all R-algebras which are admissible rings, and let &5 be
the category of affine S-schemes Spec A with A € &g, endowed with the ind-étale
topology. The complexes of presheaves Z (<) and Z'(2?) on Js defined in (9-1)
and (9-2) extend to complexes of presheaves on &s defined by the same formulas.
The proof of Lemma 9.2 shows that for an ind-étale ring homomorphism A — B
with A € &g we have B € &g as well. Using this, the proof of Proposition 9.4 shows
that the ind-étale cohomology sheaves of Z’(4?) on &g vanish outside degree zero,
and H%(Z'(2)) is naturally isomorphic to BTg(2) as a sheaf on &s. Since every
ring in &g lies in &g, the lemma follows as in the first case. O

Proposition 9.7. The functor BT is an equivalence of exact categories which is a
quasi-inverse of the functor ®pg.

Proof. By Section 3A we may assume that R is a local Artin ring. Since p-divisible
groups and Dieudonné displays over k£ have universal deformation rings which are
power series rings over W(k), once the functor BT is defined, in order to show
that it is an equivalence of categories it suffices to consider the cases R = k and
R = k[e]. In particular, if p = 2, we may assume that pR = 0, so that the results of
[Zink 2001a] and [Lau 2009] can be applied. The category Cg used in [Lau 2009]
is the category of all A € Jg such that Ny is nilpotent. Since this subcategory
is stable under ind-étale extensions, it does not make a difference whether the
functor BT is defined in terms of Cg or Jg. Thus BTg is an equivalence by [Lau
2009, Theorem 1.7], which relies on the equivalence proved in [Zink 2001a]. It
is easily verified that BTr(®g(Q,/Zp)) is isomorphic to Q,/Z,. Thus BTg is a
quasi-inverse of ®g by Lemmas 8.2 and 9.6. It is easily verified that the functors
BTpg and ®g preserve short exact sequences. O

Appendix: PD envelopes of regular immersions

This section provides a reference for the flatness of the divided power envelope of a
regular immersion, which is used in the proof of Lemma 1.13. Let us recall regular
immersions following [SGA 1971, VII]. For a ring A4, a projective A-module M of
finite type, and a linear map f : M — A, one defines the Koszul complex

Ke(A, f)=[-— A’M - A'M — A]

with differential given by x1 A---Axy > Y (1) 1 f(x;)x1 A~ Ri -+ Axp. Let
I = f(M) C A. One calls f regular if the augmentation K. (A4, f) — A/I is
a quasi-isomorphism. If x1, ..., x, is a regular sequence in 4 and f : A" — A4
is given by f(a) = ) a;x;, then f is regular in the previous sense. For a ring
homomorphism 4 — A’, let f": M’ — A’ be the scalar extension of f, and let
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I’ = f/(M’). If both f and f’ are regular, then TorlA(A/I,A’) =0fori > 1and
thus I’ =1 ®4 A’. A closed immersion of schemes ¥ — X is called regular if
locally in X it takes the form Spec A/I — Spec A, where I = f(M) for a regular
homomorphism f : M — A.

Proposition A.1. Let S be a scheme and i : Y — X be a regular closed immersion
of flat S-schemes. Then the divided power envelope Zx (Y) is flat over S.

Under additional hypotheses, this is proved in [Berthelot et al. 1982, Lemme 2.3.3].
We use the following description of the divided power polynomial algebra:
Lemma A.2. For aring R, let Ao = R[T1,...,Ty], and let By = R(T1,...,Ty,)
be the divided power envelope of Ig = (T1,...,Ty) € Ag. Then one can write
By = limr My » as an Ao-module, the direct limit taken over r € N ordered multi-
plicatively, such that there are exact sequences of Ag-modules

0— Jo, —> Mo, — Noyr —> 0

with Jo, = (T],...,T,)) and where Ny, has a finite filtration with quotients
isomorphic to Ag/Ilo = R.

Proof. The assertion is stable under base change in R, so we may take R = Z. Then
By is the Ag-subalgebra of A9®Q generated by all 7" /m!. Let Mo, = Bonr—14¢
inside A9 ® Q. Then r~! Jo,r is contained in My, and the quotient Ny, coincides
with the image of My, in (Ao/Jo,r) ® Q. Any maximal filtration of the latter by
monomial ideals gives the required filtration of Ng ;. O

Proof of Proposition A.1. We may assume that S = Spec R, X = Spec 4 and
Y = Spec A/I, where [ is the image of a regular map f : A” — A. We have
f(a) = > a;x; for a sequence xi,...,x, in A. Let Ag = Z[T1,...,Ty] and
My = A} with fo : Mg — Ap given by ar > a;T;. Let Iy = fo(My). We
consider the homomorphism A9 — A defined by T; — x;. Let B = 24(1) and
Bo = 24,(1p) be the divided power envelopes. Since f and fo are regular, we
have I = Io ®4 Ao. As in [Berthelot 1974, (3.4.8)] it follows that B = Bg ®4, A.
Usmg Lemma A.2, we get B = hm M, with M, = My, ® 4, A. Moreover, since

Tor} O(Ao /1o, A) =0, we obtam exact sequences of A-modules

0—J,— M, — N, —0

with J, = Jo,r ®4, A and N, = No » ®4, A, and we obtain filtrations of N, with
quotients isomorphic to A/ 1. Similarly there are exact sequences of A-modules

0—J,—A—A/J, —0

and filtrations of A/J, with quotients isomorphic to A/I. Since A and A/I are
flat over R, it follows that J,, and M, and B are flat over R. O
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We will use the following example of regular immersions.

Lemma A.3. For a ring R and a projective R-module T of finite type we consider
the complete symmetric algebra A = R[[T] = [[,5o Symz(T) and M = T ®p A.
Then the homomorphism f : M — A given by t @ a > ta is regular.

Proof. The complex K. (M, f) is the direct product over m > 0 of complexes K ,Em)
with K,(,m) = A"T ® g Sym™ " (T), using the convention Sym’ (7') = 0 for r < 0.
Since the complexes K*m) are compatible with base change in R, the general case
can be reduced to the case where T is free. Then an R-basis of T is a regular
sequence in A, and the assertion follows. O
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