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Zeros of L-functions
outside the critical strip
Andrew R. Booker and Frank Thorne

For a wide class of Dirichlet series associated to automorphic forms, we show
that those without Euler products must have zeros within the region of absolute
convergence. For instance, we prove that if f ∈ Sk(01(N )) is a classical holo-
morphic modular form whose L-function does not vanish for <(s) > (k+ 1)/2,
then f is a Hecke eigenform. Our proof adapts and extends work of Saias and
Weingartner, who proved a similar result for degree-1 L-functions.

1. Introduction

Saias and Weingartner [2009] showed that if L(s)=
∑
∞

m=1 λ(m)/m
s is a Dirichlet

series with periodic coefficients, then either L(s)= 0 for some s with real part > 1,
or λ(m) is multiplicative at almost all primes (so that L(s) = D(s)L(s, χ) for
some primitive Dirichlet character χ and finite Dirichlet series D). Earlier work
of Davenport and Heilbronn [1936a; 1936b] established this result for the special
case of the Hurwitz zeta-function ζ(s, α) with rational parameter α, and proved an
analogue for the degree-2 Epstein zeta-functions. Also in degree 2, Conrey and
Ghosh [1994] showed that the L-function associated to the square of Ramanujan’s
1 modular form has infinitely many zeros outside of its critical strip. In this paper,
we generalize all of these results and study the extent to which, among all Dirichlet
series associated to automorphic forms (appropriately defined), the existence of an
Euler product is characterized by nonvanishing in the region of absolute convergence.
For instance, for classical degree-2 L-functions, we prove the following:

Theorem 1.1. Let f ∈ Sk(01(N )) be a holomorphic cuspform of arbitrary weight
and level. If the associated complete L-function 3 f (s) =

∫
∞

0 f (iy)ys−1 dy does
not vanish for <(s) > (k+ 1)/2, then f is an eigenfunction of the Hecke operators
Tp for all primes p - N.

Booker was supported by EPSRC Grants EP/H005188/1, EP/L001454/1 and EP/K034383/1. Thorne’s
work was partially supported by the National Science Foundation under grant DMS-1201330.
MSC2010: primary 11F66; secondary 11M99, 11F11.
Keywords: L-functions, Euler products, automorphic forms.
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Our method is sufficiently general to apply to L-functions of all degrees, and in
fact we obtain Theorem 1.1 as a corollary of the following general result:

Theorem 1.2. Fix a positive integer n. For j = 1, . . . , n, let r j be a positive
integer and π j a unitary cuspidal automorphic representation of GLr j (AQ) with
L-series L(s, π j )=

∑
∞

m=1 λ j (m)m−s . Assume that the π j satisfy the generalized
Ramanujan conjecture at all finite places (so that, in particular, |λ j (p)| ≤ r j for all
primes p) and are pairwise nonisomorphic. Let

R =
{ M∑

m=1

am

ms : M ∈ Z≥0, (a1, . . . , aM) ∈ CM
}

denote the ring of finite Dirichlet series, and let P ∈ R[x1, . . . , xn] be a polynomial
with coefficients in R. Then either P(L(s, π1), . . . , L(s, πn)) has a zero with real
part > 1 or P = D(s)xd1

1 · · · x
dn
n for some D ∈ R, d1, . . . , dn ∈ Z≥0.

Remarks. (1) For π j as in the statement of the theorem, it is known (see [Jacquet
and Shalika 1976]) that L(s, π j ) does not vanish for <(s) ≥ 1. Thus if P =
D(s)xd1

1 · · · x
dn
n is a monomial, the matter of whether P(L(s, π1), . . . , L(s, πn))

vanishes for some s with <(s) > 1 is determined entirely by the finite Dirichlet
series D(s). Further, the grand Riemann hypothesis (GRH) predicts that each
L(s, π j ) does not vanish for <(s) > 1

2 . Theorem 1.2 demonstrates that the GRH, if
it is true, is a very rigid phenomenon.

(2) By the almost-periodicity of Dirichlet series, if P(L(s, π1), . . . , L(s, πn)) has
at least one zero with real part > 1 then it must have infinitely many such zeros.
In fact, our proof shows that there is some number η = η(P;π1, . . . , πn) > 0 such
that for any σ1, σ2 with 1< σ1 < σ2 ≤ 1+ η, we have

#
{
s∈C :<(s)∈[σ1,σ2],=(s)∈[−T,T ], P(L(s,π1), . . . , L(s,πn))=0

}
�T (1-1)

for T sufficiently large (where both the implied constant and the meaning of
“sufficiently large” depend on σ1, σ2 as well as P and π1, . . . , πn).

On the other hand, if we restrict to C-linear combinations (that is, homo-
geneous degree-1 polynomials P ∈ C[x1, . . . , xn]) and π1, . . . , πn with a com-
mon conductor and archimedean component π1,∞ ∼= · · · ∼= πn,∞, Bombieri and
Hejhal [1995] showed, subject to GRH and a weak form of the pair correla-
tion conjecture for L(s, π j ), that asymptotically 100% of the nontrivial zeros
of P(L(s, π1), . . . , L(s, πn)) have real part 1

2 .

(3) The assumption of the Ramanujan conjecture in Theorem 1.2 could be relaxed.
For instance, it would suffice to have, for each fixed j :
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(i) Some mild control over the coefficients of the logarithmic derivative

L ′

L
(s, π j )=

∞∑
m=1

c j (m)m−s

at prime powers, namely
∑

p |c j (pk)|2/pk < ∞ for any fixed k ≥ 2 (cf.
[Rudnick and Sarnak 1996, Hypothesis H]).

(ii) An average bound for |λ j (p)|4 over arithmetic progressions of primes, namely

lim sup
x→∞

∑
p≤x

p≡a (mod q)

|λ j (p)|4

∑
p≤x

p≡a (mod q)

1
≤ C j

for all coprime a, q ∈ Z>0, where C j > 0 is independent of a, q .

Note that (i) is known to hold when r j ≤ 4 (see [Rudnick and Sarnak 1996; Kim
2006]). Further, both estimates follow from the Rankin–Selberg method if, for
instance, the tensor square π j ⊗π j is automorphic for each j . Since this is known
when r j = 2 (see [Gelbart and Jacquet 1978]), Theorem 1.2 could be extended to
include the L-functions associated to Maass forms.

(4) The main tool used in the proof is the quasi-orthogonality of the coefficients
λ j (p), i.e., asymptotic estimates for sums of the form

∑
p≤x λ j (p)λk(p)/p as

x→∞. These follow from the Rankin–Selberg method, and were obtained in a
precise form independently by Wu and Ye [2007, Theorem 3] and Avdispahić and
Smajlović [2010, Theorem 2.2]. (We also make use of similar estimates for sums
over p in an arithmetic progression — see Lemma 2.1 for the exact statement —
though it is likely that this could be avoided at the expense of making the proof
more complicated.)

Since quasi-orthogonality and the Ramanujan conjecture are essentially the only
properties of automorphic L-functions that we require, one could instead take
these as hypotheses and state the theorem for an axiomatically defined class of
L-functions, such as the Selberg class. However, it has been conjectured that the
Selberg class coincides with the class of automorphic L-functions, so this likely
offers no greater generality.

(5) The conclusion of Theorem 1.2 is interesting even for n = 1. For instance,
Nakamura and Pańkowski [2012] have shown for a wide class of L-functions L(s)
that if P ∈ R[x] is not a monomial and δ > 0, then P(L(s)) necessarily has zeros in
the half-plane <(s) > 1− δ. Our result strengthens this to <(s) > 1. (On the other
hand, their results also yield the estimate (1-1) for any [σ1, σ2] ⊆

( 1
2 , 1

)
, which

does not follow from our method.)
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(6) Our results are related to universality results for zeta and L-functions. Voronin
[1975] proved, for any compact set K with connected complement contained within
the strip <(s) ∈

( 1
2 , 1

)
and any nonvanishing, continuous function f : K → C

holomorphic on the interior of K , that f can be uniformly approximated by vertical
translates of the zeta function.

Voronin’s results were extended by a number of authors. One result similar to ours,
due to Laurinčikas and Matsumoto [2004], states that given m functions f1, . . . , fm

as above, and L-functions L j (s, F) associated to twists of a Hecke newform F
by pairwise inequivalent Dirichlet characters, that the f j may be simultaneously
approximated by a single vertical translate of the functions L j (s, F). This implies
[loc. cit., Theorem 4] that nontrivial linear combinations of the L j (s, F) must
contain zeros inside the critical strip with <(s) > 1

2 .
References to many more works on universality can be found in [loc. cit.].

Summary of the proof. Our proof closely follows Saias and Weingartner in broad
outline, but becomes more technical in some places. The reader may wish to read
[Saias and Weingartner 2009].

The technical heart of our paper is Proposition 3.1, an extension of their Lemma 2.
Given n nonzero complex numbers z1, . . . , zn , we would like to simultaneously
solve the equations L(s, π j ) = z j , leading to a quick proof of the main theorem.
As a substitute, we solve equations of the form

∏
p>y L(σ + i tp, π j,p)= z j , where

the ordinate of s is allowed to vary for each prime.
Given this, in Section 4 we prove our main theorem, following the proof of

Theorem 2 in [Saias and Weingartner 2009]. As in that work, the main tools are
Weyl’s criterion, allowing us to simultaneously approximate all of the p−σ−i tp by
p−σ−i t for a single t , and Rouché’s theorem, which states that actual zeros must
exist near approximate zeros.

The proof of Proposition 3.1 follows those of Lemmas 1 and 2 of [Saias and
Weingartner 2009]. However, in that work the Dirichlet coefficients λ(m) are all
periodic to some fixed modulus, and this fact, combined with the prime number
theorem for arithmetic progressions, allows for easy control of various partial sums
that need to be estimated. Here, we must do without this periodicity.

To prove Proposition 3.1, we choose (in Proposition 3.3) a partition of the set of
primes p> y into disjoint subsets S, and complex numbers εp ∈ S1 for each p> y,
so that the vectors of partial sums

∑
p∈S εpλ j (p)p−σ are linearly independent in a

precise quantitative sense. Our main tool is the Rankin–Selberg method (substituting
for periodicity and orthogonality of Dirichlet characters); see Lemma 2.1.

We also rely on the rather technical Proposition 3.2, which says that for matrices
g1, . . . , gm , we can continuously solve equations of the form

∑m
i=1 gi fi (z)= z for

n-tuples of complex numbers z= (z1, . . . , zn). The gi are constructed from the sums
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over p∈ S considered in Proposition 3.3, but we are able to formulate Proposition 3.2
in a general manner, without reference to automorphic forms or primes.

The conclusion of Proposition 3.2 is guaranteed only for large m, so that the
number of subsets S needed may be large. We choose these subsets to be arithmetic
progressions, for which the Rankin–Selberg estimates presented in Lemma 2.1 are
known to hold. If such estimates were unavailable, it seems likely that we could still
obtain our result by constructing the S in a more ad hoc fashion instead. In any case,
and in contrast to Saias–Weingartner, the modulus of the arithmetic progression
has no particular arithmetic significance, and is chosen to be coprime to all the
conductors of the π j .

2. Preliminaries

Automorphic L-functions. Let π j be as in the statement of Theorem 1.2. Each π j

can be written as a restricted tensor product π j,∞⊗
⊗

p π j,p of local representations,
where p runs through all prime numbers. Then we have

L(s, π j )=
∏

p

L(s, π j,p) for <(s) > 1. (2-1)

Here each local factor L(s, π j,p) is a rational function of p−s , of the form

L(s, π j,p)=
1

(1−α j,p,1 p−s) · · · (1−α j,p,r j p−s)
(2-2)

for certain complex numbers α j,p,`. The generalized Ramanujan conjecture asserts
that |α j,p,`| ≤ 1, with equality holding for all p - cond(π j ), where cond(π j ) ∈ Z>0

is the conductor of π j . In particular, |λ j (p)| = |α j,p,1+ · · ·+α j,p,r j | ≤ r j .

Lemma 2.1. Let a and q be positive integers satisfying
(
q, a

∏n
j=1 cond(π j )

)
= 1.

Then ∑
p>y

p≡a (mod q)

|u1λ1(p)+ · · ·+ unλn(p)|2

pσ
=

(
1

φ(q)
+ O(σ − 1)

)∑
p>y

p−σ

for all y> 0, σ ∈ (1, 2] and all unit vectors (u1, . . . , un), where the implied constant
depends only on π1, . . . , πn and q.

Proof. Let χ (mod q) be a Dirichlet character, not necessarily primitive. We
consider the sum

E jkχ (x)=
∑
p≤x

(
λ j (p)λk(p)χ(p)− δ jkχ

) log p
p
,

running over primes p ≤ x , where δ jkχ = 1 if j = k and χ is the trivial character,
and δ jkχ = 0 otherwise. Applying [Avdispahić and Smajlović 2010, (2) and (3)]
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with (π, π ′)= (π j ⊗χ, πk) and, if χ is imprimitive, subtracting any contribution
from the terms with p | q , we obtain the bound E jkχ (x)�q 1.

Next, for any nonintegral y ≥ 3
2 and any σ ∈ (1, 2], we have

∑
p>y

λ j (p)λk(p)χ(p)− δ jkχ

pσ
=

∫
∞

y

t1−σ

log t
dE jkχ (t).

Integrating by parts and applying the above estimate for E jkχ , we see that this
is�q y1−σ/ log y.

Now, expanding the square and using orthogonality of Dirichlet characters,
we have∑

p>y
p≡a (mod q)

|u1λ1(p)+ · · ·+ unλn(p)|2

pσ

=
1

φ(q)

n∑
j=1

n∑
k=1

∑
χ (mod q)

u j ukχ(a)
∑
p>y

λ j (p)λk(p)χ(p)
pσ

= Oq

(
y1−σ

log y

)
+

1
φ(q)

∑
p>y

p−σ .

Finally, by the prime number theorem we have
∑

p>y p−σ � y1−σ/((σ −1) log y),
uniformly for y ≥ 3

2 and σ ∈ (1, 2]. The lemma follows. �

A few lemmas. In the remainder of this section we discuss the topology of GLn(C)

and prove some simple lemmas, to be used in the more technical propositions which
follow.

Let Matn×n(C) denote the set of n×n matrices with entries in C. For A= (ai j )∈

Matn×n(C), the Frobenius norm is defined by

‖A‖ =
√

tr(AT A)=
√∑

|ai j |
2.

Note that this agrees with the Euclidean norm under the identification of Matn×n(C)

with Cn2
. By the Schwarz inequality, we have |Av|≤‖A‖·|v| for any A∈Matn×n(C)

and v ∈ Cn .
We endow GLn(C)= {g ∈Matn×n(C) : det g 6= 0} with the subspace topology.

In particular, it is easy to see that a set K ⊆ GLn(C) is compact if and only if K is
closed in Matn×n(C) and there are positive real numbers c and C such that

‖g‖ ≤ C and |det g| ≥ c for all g ∈ K .

Since g−1 can be expressed in terms of 1/det g and the cofactor matrix of g, it
follows that ‖g−1

‖ is bounded on K (and indeed the map g 7→ g−1 is continuous,
so that GLn(C) is a topological group with this topology).
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Lemma 2.2. Suppose K is a compact subset of GLn(C), g ∈ K , and U ⊆ Cn con-
tains an open δ-neighborhood of some point. Then gU contains an ε-neighborhood,
where ε > 0 depends only on δ and K .

Proof. By linearity, we may assume without loss of generality that U contains the
δ-neighborhood of the origin, Nδ. Since K is compact, there is a number C > 0
such that ‖g−1

‖≤C for all g ∈ K . Put ε=C−1δ, and let Nε be the ε-neighborhood
of the origin. For any v ∈ Nε we have |g−1v| ≤ ‖g−1

‖ · |v| < Cε = δ, so that
v = g(g−1v) ∈ gNδ. Since v was arbitrary, gNδ ⊇ Nε. �

Lemma 2.3. For any v0, . . . , vk ∈ Cn , there exist θ0, . . . , θk ∈ [0, 1] such that∣∣∣∣ k∑
j=0

e(θk)v j

∣∣∣∣≤
√

k∑
j=0
|v j |

2.

Proof. We have ∫
[0,1]k

∣∣∣∣ k∑
j=0

e(θ j )v j

∣∣∣∣2dθ1 · · · dθk =

k∑
j=0

|v j |
2.

Thus, the average choice of (θ0, . . . , θk) satisfies the conclusion. �

Lemma 2.4. Let P ∈ C[x1, . . . , xn]. Suppose that every solution to the equation
P(x1, . . . , xn)=0 satisfies x1 · · · xn=0. Then P is a monomial; i.e., P=cxd1

1 . . . x
dn
n

for some c 6= 0 and nonnegative integers d1, . . . , dn .

Proof. Let V = {(x1, . . . , xn) ∈ Cn
: P(x1, . . . , xn) = 0} be the vanishing set

of P . By hypothesis, the polynomial x1 · · · xn vanishes on V . Thus, since C is
algebraically closed, Hilbert’s Nullstellensatz implies that there is some d ∈ Z≥0

such that (x1 · · · xn)
d is contained in the ideal generated by P ; i.e., P | (x1 · · · xn)

d .
Since C[x1, . . . , xn] is a unique factorization domain, this is only possible if P is
a monomial. �

Lemma 2.5. Let P ∈ C[x1, . . . , xn] and suppose that y ∈ Cn is a zero of P. Then
for any ε>0 there exists δ >0 such that any polynomial Q ∈C[x1, . . . , xn] obtained
by changing any of the nonzero coefficients of P by at most δ each has a zero z ∈Cn

with |y− z|< ε.

Proof. If P is identically 0 then so is Q, so we may take z = y. Otherwise, set

p(t)= P(y+ tu) and q(t)= Q(y+ tu)

for t ∈ C, where u is any unit vector for which p(t) does not vanish for all t ;
shrinking ε if necessary, assume that p(t) does not vanish on Cε = {t ∈ C : |t | = ε},
and let γ > 0 be the minimum of |p(t)| on Cε. For t ∈ Cε we have

|q(t)− p(t)|< δN (1+ ε+ |y|)deg P ,
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where N is the number of nonzero coefficients of P . Choosing δ so that the right
side of this expression is bounded by γ , we have |q(t)− p(t)|< |p(t)| for t ∈ Cε.
By Rouché’s theorem q(t) has a zero t0 of modulus |t0|< ε, and taking z = y+ t0u
completes the proof. �

3. Simultaneous representations of n-tuples of complex numbers

The technical heart of our work is the following analogue of Lemma 2 of [Saias
and Weingartner 2009]:

Proposition 3.1. For any real numbers y, R > 1 there exists η > 0 such that, for
all σ ∈ (1, 1+ η], we have{(∏

p>y

L(σ + i tp, π j,p)

)
j=1,...,n

: tp ∈ R for each prime p > y
}

⊇ {(z1, . . . , zn) ∈ Cn
: R−1

≤ |z j | ≤ R for all j}.

Loosely speaking, after simultaneously approximating the tp by a common t ,
it will follow that we can make the L(s, π j ) independently approach any desired
n-tuple of nonzero complex numbers, and this will allow us to find zeros in linear
or polynomial combinations.

The proof relies on an analogue of Lemma 1 of [Saias and Weingartner 2009],
whose adaptation is not especially straightforward. We carry out this work by
proving two technical propositions; the first establishes the existence of solutions
to a certain equation involving matrices in a fixed compact subset of GLn(C).

Proposition 3.2. Let

T = {(z1, . . . , zn) ∈ Cn
: |z1| = · · · = |zn| = 1},

D = {(z1, . . . , zn) ∈ Cn
: |z1|, . . . , |zn| ≤ 1},

and fix a compact set K ⊆ GLn(C). Then there is a number m0 > 0 such that
for every m ≥ m0 and all (g1, . . . , gm) ∈ K m , there are continuous functions
f1, . . . , fm : D→ T such that

∑m
i=1 gi fi (z)= z for all z ∈ D.

We will carry out the proof in three steps:

(1) We first show that there exist ε > 0 and m1 such that for all m ≥ m1 and
all (g1, . . . , gm) ∈ K m , the set

{∑m
i=1 gi ti : t1, . . . , tm ∈ T

}
contains an open

ε-neighborhood of a point in Cn .

(2) “Fattening” the neighborhood constructed in the first step, we will then
show that there exists m2 such that for m ≥ m2 and all (g1, . . . , gm) ∈ K m ,{∑m

i=1 gi ti : t1, . . . , tm ∈ T
}

contains {(z1, . . . , zn) : |z1|
2
+ · · · + |zn|

2
≤ 4},

the closed ball of radius 2.
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(3) Although the previous step yields a parametrization of a large closed set, it is
not obviously continuous. By repeating the construction from step (1) using
the added knowledge of step (2), we show that one can achieve a continuous
parametrization of D.

Proof. We begin by showing (1). By compactness, there is an m1 such that for any
m≥m1 and any m-tuple (g1, . . . , gm), there is a distinct pair of indices i, j such that
‖g−1

i g j − I‖< 1/(3
√

n). Assume, without loss of generality, that (i, j)= (1, 2),
and put 1= g−1

1 g2− I . Then for any choice of t1, t2 ∈ T , we have

g1t1+ g2t2 = g1(t1+ (I +1)t2),

where ‖1‖< 1/(3
√

n).
We introduce some notation. First, define A =

{
z ∈ C : |z − 1| ≤ 1

3

}
and

B=
{
z ∈C : |z−1|≤ 2

3

}
. Next, let s1, s2 : B→C be the unique continuous functions

satisfying z= s1(z)+s2(z), |s1(z)|= |s2(z)|=1 and =(s1(z)/s2(z))>0 for all z ∈ B.
For j = 1, 2, let t j : Bn

→ T be defined by t j (z1, . . . , zn)= (s j (z1), . . . , s j (zn)).
Given an arbitrary elementw∈ An , we define a continuous function hw : Bn

→Cn

by hw(z) = w − 1t2(z). Since |t2(z)| =
√

n and ‖1‖ < 1/(3
√

n), we have
|1t2(z)|< 1

3 . In particular, each entry of 1t2(z) is bounded in magnitude by 1
3 , so

by the triangle inequality, the image of hw is contained in Bn . By the Brouwer
fixed point theorem, there exists z ∈ Bn with hw(z)= z, so that

t1(z)+ (I +1)t2(z)= z+1t2(z)= z+w− hw(z)= w.

Therefore, all of An is in the image of the map z 7→ t1(z)+ (I +1)t2(z), so that
in particular

An
⊆ {t1+ g−1

1 g2t2 : t1, t2 ∈ T }.

Applying Lemma 2.2 with δ = 1
3 , there is an ε > 0 depending only on K such

that {g1t1 + g2t2 : t1, t2 ∈ T } contains an ε-neighborhood of some point in Cn .
We conclude the same of the set {g1t1+ · · ·+ gm tm : t1, . . . , tm ∈ T } by choosing
arbitrary fixed t3, . . . , tm ∈ T .

Proceeding to step (2), let k1 be a large integer to be determined later, set
m2 = m1k1, and for any m ≥ m2 write m = km1+ l with k ≥ k1 and 0≤ l < m1.

For each j with 0 ≤ j < k, applying step (1) to (g jm1+1, . . . , g jm1+m1), we
obtain an ε-neighborhood centered at some v j ∈ Cn . Further, we put vk =

gkm1+1E1+· · ·+gkm1+lE1, where E1= (1, . . . , 1)∈ T . Since m1 is fixed and K is com-
pact, we have |v j | ≤C for 0≤ j ≤ k, for some C independent of the individual gi .

Let Nε = {(z1, . . . , zn) ∈ Cn
: |z1|

2
+ · · · + |zn|

2 < ε2
} be the ε-neighborhood

of the origin in Cn . Then by the above observations, for any θ0, . . . , θk ∈ [0, 1],
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i=1 gi ti : t1, . . . , tm ∈ T

}
contains the set

k−1∑
j=0

e(θ j )(v j + Nε)+ e(θk)vk =

k∑
j=0

e(θ j )v j + k Nε.

By Lemma 2.3, there is a choice of θ0, . . . , θk for which
∣∣∑k

j=0 e(θ j )v j
∣∣≤C
√

k+ 1.
Now let k1 be the smallest positive integer satisfying k1ε > C

√
k1+ 1+ 2. Then

for k ≥ k1, we have shown that
{∑m

i=1 gi ti : t1, . . . , tm ∈ T
}

contains the closed
ball of radius 2.

Proceeding to step (3), we put m0=3nm2. Suppose that m≥m0 and (g1, . . . , gm)

are given, and choose a partition of {1, . . . ,m} into 3n sets I j,` (for 1 ≤ j ≤ n,
1≤ `≤ 3), each of size at least m2. For each j with 1≤ j ≤ n, write

v j = v j,1 = v j,2 = v j,3 = (0, . . . , 0, 2, 0, . . . , 0),

where the 2 is in the j -th position. For each j and ` we use step (2) to express v j,`

in the form
v j,` =

∑
i∈I j,`

gi ti (3-1)

for some ti ∈ T .
Next, note that the set

{
2[(1, . . . , 1)+α+β] :α, β ∈T

}
contains D. As in step (1),

we can choose continuous functions α = (α1, . . . , αn), β = (β1, . . . , βn) : D→ T
such that z j = 2[1+α j (z)+β j (z)] for every z = (z1, . . . , zn) ∈ D. Thus,

z =
n∑

j=1

[1+α j (z)+β j (z)]v j =

n∑
j=1

[v j,1+α j (z)v j,2+β j (z)v j,3].

Finally, we use (3-1) to rewrite this as

z =
n∑

j=1

( ∑
i∈I j,1

gi ti +
∑

i∈I j,2

gi
(
tiα j (z)

)
+

∑
i∈I j,3

gi
(
tiβ j (z)

))
,

which is a decomposition of the type required. �

Next, we use the quasi-orthogonality of the coefficients λ j (p) (Lemma 2.1) to
show that, by choosing an arbitrary “twist” εp ∈ S1 for each large prime p, we can
make sums of the εpλ j (p) line up in linearly independent directions, as quantified
in the following proposition.

Given a real parameter y > 0, we write

S(y)= {p prime : p > y} and s(y, σ )=
∑

p∈S(y)

p−σ .
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Proposition 3.3. There is a compact set K ⊆ GLn(C), explicitly defined in (3-5),
depending only on the degrees r1, . . . , rn , with the following property:

Let m be a positive integer. Then there is a real number δ > 0 (depending on the
π j and m) such that for any y > 0 and any σ ∈ (1, 1+ δ], there exists a partition
of S(y) into mn pairwise disjoint subsets Sik(y) (i = 1, . . . ,m, k = 1, . . . , n) and a
choice of εp ∈ S1 for each p ∈ S(y) such that the m-tuple of matrices (g1, . . . , gm)

defined by

gi =

(
mn

s(y, σ )

∑
p∈Sik(y)

εpλ j (p)
pσ

)
1≤ j,k≤n

, i = 1, . . . ,m (3-2)

lies in K m .

Proof. Let q be the smallest prime number satisfying q ≡ 1 (mod mn) and
q -

∏n
j=1 cond(π j ). We put t = (q − 1)/mn and define S◦ik(y) to be the union

of residue classes

S◦ik(y)=
t⋃
`=1

{p ∈ S(y) : p ≡ tn(i − 1)+ t (k− 1)+ ` (mod q)},

and

Sik(y)=
{

S◦ik(y)∪ {q} if i = k = 1 and y < q,
S◦ik(y) otherwise.

Then the Sik(y) are pairwise disjoint and cover S(y).
For a fixed choice of i , let vk denote the k-th column of gi , as defined in (3-2),

with the εp yet to be chosen. We will show by induction that there is a choice of
the εp such that

|v`− projspan{v1,...,v`−1}
v`| ≥

1
2r

(3-3)

holds for every ` = 1, . . . , n, where r =
√

r2
1 + · · ·+ r2

n . To that end, let k
be given, and assume that (3-3) has been established for `= 1, . . . , k− 1. Choose
a unit vector u = (u1, . . . , un) orthogonal to v1, . . . , vk−1. By the Schwarz in-
equality and the Ramanujan bound |λ j (p)| ≤ r j , for each prime p we have
|ū1λ1(p)+ · · ·+ ūnλn(p)| ≤ r. Therefore

mn
s(y, σ )

∑
p∈Sik(y)

|ū1λ1(p)+ · · ·+ ūnλn(p)|
pσ

≥
mn

rs(y, σ )

∑
p∈S◦ik(y)

|ū1λ1(p)+ · · ·+ ūnλn(p)|2

pσ

=
1+ Om,n(σ − 1)

r
, (3-4)
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the latter equality following by Lemma 2.1. We choose δ so that the O term above
is bounded in modulus by 1

2 , and for each p ∈ Sik(y) we choose εp such that
εp(ū1λ1(p)+ · · · + ūnλn(p)) is real and nonnegative. Then the left side of (3-4)
equals

〈u, vk〉 = 〈u, vk − projspan{v1,...,vk−1}
vk〉 ≤ |vk − projspan{v1,...,vk−1}

vk |,

so that (3-3) follows for `= k.
Applying Gram–Schmidt orthogonalization to v1, . . . , vn , it follows from (3-3)

that |det gi | ≥ (2r)−n . Moreover, by the Schwarz inequality and Lemma 2.1 again,
each entry of gi is bounded above by 1+ Om,n(σ − 1), so that ‖gi‖ ≤ 2n for a
suitable choice of δ. Thus,

K = {g ∈ GLn(C) : ‖g‖ ≤ 2n, | det g| ≥ (2r)−n
} (3-5)

has the desired properties. �

We are now ready to prove Proposition 3.1, largely following [Saias and Wein-
gartner 2009].

Proof of Proposition 3.1. We use Propositions 3.3 and 3.2 to determine a compact
set K ⊆GLn(C), a positive integer m0, and a real number δ > 0 with the properties
described there. Taking m = m0, the aforementioned propositions yield, for any
σ ∈ (1, 1+ δ], an m-tuple of matrices (g1, . . . , gm) ∈ K m , elements εp ∈ S1 for
each prime p > y, and continuous functions f1, . . . , fm : D→ T such that

m∑
i=1

gi fi (z)= z for all z ∈ D. (3-6)

Now, let µ = s(y, σ )/(mn). For each prime p > y, we define a continuous
function tp : µD→ R satisfying

p−i tp(z) = εp fi (µ
−1z)k, (3-7)

where (i, k) is the unique pair of indices for which p ∈ Sik(y), and fi (µ
−1z)k

denotes the k-th component of fi (µ
−1z). (Note that the lift from S1 to R is possible

since D is simply connected.)
Define an error term E(z)= (E1(z), . . . , En(z)) by writing, for each j=1, . . . , n,

E j (z)=
∑
p>y

(
log L(σ + i tp(z), π j,p)− λ j (p)p−(σ+i tp(z))

)
.

By the Ramanujan bound, we have

log L(s, π j,p)− λ j (p)p−s
= O(p−2)

uniformly for <(s)≥ 1. Since
∑

p p−2 converges, the continuity of E follows from
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that of the individual tp. Moreover, each component E j (z) is bounded by a number
C > 0, independent of j , z, y, or σ .

Set R′ =
√
π2
+ log2 R. We take η ∈ (0, δ] small enough that the condition

σ ∈ (1, 1+η] ensures that µ≥C+R′. By (3-6), (3-7), and Proposition 3.3 we have∑
p>y

λ j (p)p−(σ+i tp(z)) =

m∑
i=1

n∑
k=1

∑
p∈Sik(y)

λ j (p)εp fi (µ
−1z)k

pσ
= z j

for any z = (z1, . . . , zn) ∈ µD. Now, fix w ∈ R′D and define a function Fw :
(C+ R′)D→C by Fw(z)=w− E(z). By the estimate for E j (z) above, the image
of Fw is contained in (C + R′)D. Thus, by the Brouwer fixed point theorem, there
exists z ∈ (C + R′)D with Fw(z)= z, so that(∑

p>y

log L(σ + i tp(z), π j,p)

)
j=1,...,n

= z+ E(z)= z+w− Fw(z)= w.

Taking exponentials yields the proposition. �

4. Proof of Theorem 1.2

The proof will be carried out in two steps:

(1) Applying our previous results, we show that unless P is a monomial (as
described in Theorem 1.2), for every σ > 1 sufficiently close to 1 there are
real numbers tp (for each prime p) and t0 such that P|s=σ+i t0 vanishes at(∏

p L(σ + i tp, π1,p), . . . ,
∏

p L(σ + i tp, πn,p)
)
.

(2) Simultaneously, approximating the p−i tp by p−i t for a common value of t ,
we use Rouché’s theorem to find a zero of P(L(s, π1), . . . , L(s, πn)) close to
σ + i t .

Note that the second step is standard and is applied in [Saias and Weingartner 2009]
in much the same way.

We begin with a polynomial P whose coefficients are finite Dirichlet series
D(s) =

∑M
m=1 amm−s , and let y be the largest value of M occurring in any of

these coefficients. We rewrite each L(s, π j ) as L≤y(s, π j )L>y(s, π j ), splitting
each Euler product into products over primes p ≤ y and p> y respectively. Setting

Q(x1, . . . , xn)= P(L≤y(s, π1)x1, . . . , L≤y(s, πn)xn),

we have P(L(s, π1), . . . , L(s, πn))= Q(L>y(s, π1), . . . , L>y(s, πn)).
The coefficients of Q are rational functions of the p−s for p≤ y. More precisely,

for any monomial term D(s)xd1
1 · · · x

dn
n in the expansion of P , the corresponding

term of Q is
D(s)L≤y(s, π1)

d1 · · · L≤y(s, πn)
dn xd1

1 · · · x
dn
n .
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Since the finite Euler products L≤y(s, π j ) are nonvanishing holomorphic functions
on {s ∈C : <(s)≥ 1}, the corresponding terms of P and Q have the same zeros there.

Let D1(s), . . . , Dm(s) run through the coefficients of P which do not vanish
identically, and consider their product f (s) = D1(s) · · · Dm(s). Then f is itself
a finite Dirichlet series which does not vanish identically. By complex analy-
sis, f cannot vanish at 1 + i t for every t ∈ R, so there is some t0 for which
D1(1+ i t0), . . . , Dm(1+ i t0) are all nonzero, and the same holds for the corre-
sponding terms of Q.

Next, we specialize the coefficients of Q to a fixed value of s, obtaining a
polynomial hs ∈ C[x1, . . . , xn]. Considering s = 1+ i t0, Lemma 2.4 implies either
that h1+i t0 = cxd1

1 · · · x
dn
n for some c ∈ C and d1, . . . , dn ∈ Z≥0, or that there are

y1, . . . , yn ∈ C, none zero, for which h1+i t0(y1, . . . , yn)= 0. In the former case, it
follows from our choice of t0 that P = D(s)xd1

1 · · · x
dn
n is a monomial, as allowed

in the conclusion of Theorem 1.2. Henceforth, we assume that we are in the latter
case, and aim to show that P(L(s, π1), . . . , L(s, πn)) has a zero with <(s) > 1.

We choose R> 1 so that R−1/2
≤|y j |≤ R1/2 for every j . By Lemma 2.5, there is

a number ε>0 such that for every σ ∈ (1, 1+ε], there exists (z1(σ ), . . . , zn(σ ))∈Cn

satisfying hσ+i t0(z1(σ ), . . . , zn(σ )) = 0 and R−1
≤ |z j (σ )| ≤ R for every j . We

use Proposition 3.1 to determine η in terms of y and R, and assume that η ≤ ε by
shrinking η if necessary. Proposition 3.1 then guarantees that, for every σ ∈ (1, 1+η],
we can solve the simultaneous system of equations∏

p>y

L(σ + i tp, π j,p)= z j (σ ), j = 1, . . . , n,

in the tp for p > y. For p ≤ y we set tp = t0, thereby completing step (1).

Turning to step (2), let σ1, σ2∈R with 1<σ1<σ2≤1+η, and put σ = (σ1+σ2)/2.
With the t0 and tp resulting from step (1) for this choice of σ , let Pi t0 denote the poly-
nomial obtained from P by replacing s by s+i t0 in all of its coefficients, and define

F(s)= Pi t0

(∏
p

L(s+ i tp, π1,p), . . . ,
∏

p

L(s+ i tp, πn,p)

)
. (4-1)

Then F is holomorphic for |s− σ |< σ − 1 and satisfies F(σ )= 0 by construction.
It follows that there is a number ρ ∈ (0, (σ2 − σ1)/2] such that F(s) 6= 0 for all
s ∈ Cρ = {s ∈ C : |s− σ | = ρ}. Write γ for the minimum of |F(s)| on Cρ .

Next, by abuse of notation, we write P(s) to denote P(L(s, π1), . . . , L(s, πn)).
As P(s)=

∑
∞

m=1 amm−s converges absolutely as a Dirichlet series for <(s) > 1,
there is an integer M > 0 with

∑
∞

m=M |am |m−σ1 ≤ γ /3. By (4-1) we have
F(s)=

∑
∞

m=1 bmm−s , where bm = am
∏

p|m p−i tp ordp(m), and by the joint uniform
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distribution of pi t for primes p < M , it follows that the set of t ∈ R satisfying

M−1∑
m=1

|amm−i t
− bm |

mσ1
<
γ

3

has positive lower density. The triangle inequality yields |P(s+ i t)− F(s)|< γ
for any such t and for all s with <(s) ≥ σ1, and in particular for all s ∈ Cρ . By
Rouché’s theorem, it follows that P(s + i t) has a zero s with |s − σ | < ρ. Thus,
P(s) has zeros with real part in [σ1, σ2], and indeed we have

#{s ∈ C : <(s) ∈ [σ1, σ2],=(s) ∈ [−T, T ], P(s)= 0} �σ1,σ2 T

for all T ≥ T0(σ1, σ2).
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Tropical independence I: Shapes of divisors
and a proof of the Gieseker–Petri theorem

David Jensen and Sam Payne

We develop a framework to apply tropical and nonarchimedean analytic methods
to multiplication maps for linear series on algebraic curves, studying degenera-
tions of these multiplications maps when the special fiber is not of compact type.
As an application, we give a new proof of the Gieseker–Petri theorem, including
an explicit tropical criterion for a curve over a valued field to be Gieseker–Petri
general.

1. Introduction

Classical Brill–Noether theory studies the schemes Gr
d(X) parametrizing linear

series of degree d and rank r on a smooth curve X of genus g. The Brill–Noether
number ρ(g, r, d)= g−(r+1)(g−d+r) is a naive dimension estimate for Gr

d(X),
and the following two fundamental results give the local structure of these schemes
when the curve is general in its moduli space.

Brill–Noether Theorem [Griffiths and Harris 1980]. Let X be a general curve of
genus g. Then Gr

d(X) has pure dimension ρ(g, r, d), if this is nonnegative, and is
empty otherwise.

Gieseker–Petri Theorem [Gieseker 1982]. Let X be a general curve of genus g.
Then Gr

d(X) is smooth.

The Zariski tangent space to Gr
d(X) at a linear series W ⊂L(DX ) has dimension

ρ(g, r, d)+ dim kerµW , where

µW :W ⊗L(K X − DX )→ L(K X )

is the adjoint multiplication map. In particular, Gr
d(X) is smooth of dimension

ρ(g, r, d) at a linear series W if and only if the multiplication map µW is injective
[Arbarello et al. 1985, §IV.4].

Supported in part by NSF grants DMS 1068689 and CAREER DMS 1149054.
MSC2010: primary 14T05; secondary 14H51.
Keywords: tropical Brill–Noether theory, tropical independence, nonarchimedean geometry,

Gieseker–Petri theorem, chain of loops, multiplication maps, Poincaré–Lelong.

2043

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2014.8-9
http://dx.doi.org/10.2140/ant.2014.8.2043


2044 David Jensen and Sam Payne

v1

w1

v2 wg−1

vg wg

`i

mi

Figure 1. The graph 0.

Gieseker’s original proof thatµW is injective for all W when X is general involves
a subtle degeneration argument. Eisenbud and Harris [1983; 1986] developed a
more systematic method for studying limits of linear series for one-parameter
degenerations of curves in which the special fiber has compact type, and applied
this theory to give a simpler proof of the Gieseker–Petri theorem. Lazarsfeld [1986]
gave another proof, without degenerations, using vector bundles on K3 surfaces.

Here, we give a new proof of the Gieseker–Petri theorem, using a different class
of degenerations, where the special fiber is not of compact type. Our arguments
are based in tropical geometry and Berkovich’s theory of nonarchimedean analytic
curves and their skeletons.

Let 0 be a chain of g loops connected by bridges, with generic edge lengths.
The genericity condition on edge lengths on the loops is the same as in [Cools

et al. 2012]; we require that `i/mi is not equal to the ratio of two positive integers
whose sum is less than or equal to 2g− 2.

Theorem 1.1. Let X be a smooth projective curve of genus g over a complete
nonarchimedean field such that the minimal skeleton of the Berkovich analytic space
X an is isometric to 0. Then the multiplication map

µW :W ⊗L(K X − DX )→ L(K X )

is injective for all linear series W ⊂ L(DX ) on X.

There do exist such curves over valued fields of arbitrary pure or mixed charac-
teristic. This follows from the fact that the moduli space of tropical curves is the
skeleton of the Deligne–Mumford compactification of the moduli space of curves
[Abramovich et al. 2012], and can also be proved by deformation theory, as in
[Baker 2008, Appendix B]. The existence of Gieseker–Petri general curves over
an arbitrary algebraically closed field then follows by standard arguments from
scheme theory, using the fact that the coarse moduli space of curves is defined
over Spec Z, as in [Cools et al. 2012, Section 3]. In particular, the Gieseker–Petri
theorem follows from Theorem 1.1, by standard arguments.

The proof of Theorem 1.1 is essentially independent of the tropical proof of
the Brill–Noether theorem and does not involve the combinatorial classification of
special divisors on a chain of loops from [Cools et al. 2012]. (In Section 6, we give
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a simplified proof in the special case where ρ(g, r, d) is zero, which does use this
classification; see Remark 1.5.) Our approach involves not only the distribution of
degrees over components of the special fiber, but also algebraic geometry over the
residue field. In particular, we use Thuillier’s nonarchimedean analytic Poincaré–
Lelong formula [Thuillier 2005; Baker et al. 2011], which relates orders of vanishing
at nodes in the special fiber of a semistable model to slopes of piecewise linear
functions on the skeleton. The resulting interplay between tropical geometry and
algebraic linear series is close in spirit to the important recent work [Amini and
Baker 2014] on linear series on metrized complexes of curves, which was a source
of inspiration.

Remark 1.2. The graph 0 differs from the chain of loops studied in [Cools et al.
2012] only by the addition of bridges between the loops. The tropical Jacobians
of two graphs that differ by the addition or deletion of bridges are canonically
isomorphic, and these isomorphisms respect the images of the Abel–Jacobi maps,
so the Brill–Noether theory of 0 is the same as that of the chain of loops. See [Lim
et al. 2012; Len 2014] for the basics of tropical Brill–Noether theory.

We do not need to introduce bridges for the case where ρ(g, r, d) is zero; the
arguments in Section 6 work equally well for a chain of loops without bridges.
However, when ρ(g, r, d) is positive we need to relate the slopes of piecewise linear
functions along the bridge edges to orders of vanishing at nodes in the special fiber,
through the nonarchimedean Poincaré–Lelong formula, in order to produce bases
for the algebraic linear series L(DX ) with the required properties. In particular,
we do not know whether the conclusion of Theorem 1.1 holds for chains of loops
without bridges when ρ(g, r, d) is positive.

On the way to proving Theorem 1.1, we introduce some new techniques for
working with tropical linear series and relating them to algebraic linear series. In
Section 3A, we present a notion of tropical independence, which gives a sufficient
condition for linear independence of rational functions on an algebraic curve X
in terms of the associated piecewise linear functions on the Berkovich skeleton of
the analytic curve X an. The key to applying such an independence condition is to
produce well-understood piecewise linear functions on the skeleton that are not
only in the tropical linear series, but are in fact tropicalizations of rational functions
in a given algebraic linear series. In the case where ρ(g, r, d) is zero, the necessary
piecewise linear functions come from tropicalizing a basis for the linear series and
a basis for the adjoint linear series. In this case, the piecewise linear functions are
explicit and uniquely determined by the graph, and the proof that they all come
from the algebraic linear series is essentially combinatorial. (See Proposition 6.3.)
When ρ is positive, we have much less control over which tropical functions come
from a given algebraic linear series. In the general case, we work one loop at a
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time on the metric graph and use an existence argument from algebraic geometry,
inspired by [Eisenbud and Harris 1983, Lemma 1.2]. (See Lemma 7.2.)

One new insight on the tropical side is the importance of shapes of effective
divisors, expressed in terms of connected subsets that do or do not meet the divisor.
When the metric graph is a chain of loops, a typical connected subset to consider
would be a loop minus a single point. See Sections 3B and 4B, along with the
proofs of Theorems 6.6 and 1.1 at the ends of Sections 6 and 7, respectively.

We also use a new patching construction, gluing together tropicalizations of
different rational functions in a fixed algebraic linear series on different parts of the
graph, to arrive at a piecewise linear function in the corresponding tropical linear
series that may or may not come from any linear combination of the original rational
functions. See the construction of θ at the beginning of the proof of Theorem 1.1.
The most delicate step in this construction is to ensure that no poles are introduced
at the gluing points.

We now briefly sketch relations between the approach developed here, the classi-
cal theory of limit linear series, and the tropical theory of divisors on graphs.

Suppose X is defined over a discretely valued field with valuation ring R, and
let L be a line bundle on X . Consider a regular model X over Spec R with general
fiber X , in which the special fiber X is semistable with smooth components Xi . (By
the semistable reduction theorem, such a model exists after a finite, totally ramified
extension of the valued field.) The special fiber of this model has compact type,
meaning that its Jacobian is compact, if and only if its dual graph is a tree. In this
case, for each component Xi there is a unique extension Li of the line bundle L
such that

deg
(
Li |X j

)
=

{
d if i = j,
0 otherwise.

Given a linear subspace W ⊂ H 0(X, L) of degree d and dimension r + 1, the
R-submodule Wi ⊂W consisting of sections that extend to Li is free of rank r +1,
and restricts to a linear series of degree d and dimension r on Xi . The theory of
limit linear series studies these distinguished linear series on the components of the
special fiber, with special attention to their vanishing sequences at the nodes of X.

In contrast, if X is not of compact type, then its dual graph is not a tree, and
there is an obstruction to extending L to a line bundle Li with degrees as above on
the components of the special fiber. This obstruction is given by an element in the
component group of the Néron model of the Jacobian of X .

The theory of divisors on graphs follows a deep analogy between divisors on
algebraic curves and the distributions of degrees of specializations of L over the
components of the special fiber. In this framework, one considers the dual graph
whose vertices vi correspond to components Xi and whose edges correspond to
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nodes of X. Then an extension L of L to X gives rise to a formal sum

DL =

∑
i

deg
(
L|Xi

)
vi ,

which is considered as a divisor on the graph. Since the divisors arising from
different specializations of L differ by a sequence of chip-firing moves, one studies
the tropical Picard group parametrizing equivalence classes of divisors on the graph
modulo the relation generated by chip-firing. The tropical Jacobian, the degree
zero part of this tropical Picard group, is canonically identified with the component
group of the Néron model of the Jacobian of X .

Baker’s specialization lemma [2008] says that a line bundle whose complete
linear series has dimension r can be specialized so that all degrees are nonnegative
and the distribution of degrees dominates any given divisor of degree r on the dual
graph. In other words, it has rank at least r in the sense of [Baker and Norine
2007]. Therefore, the specialization of any line bundle whose complete linear
series has dimension at least r lies in the tropical Brill–Noether locus parametrizing
divisor classes of degree d with rank at least r . In [Cools et al. 2012], a careful
analysis of the Brill–Noether loci of the chain of loops shows that if a curve X
has a regular semistable model whose special fiber has this dual graph, then the
curve must be Brill–Noether general, meaning that Gr

d(X) has dimension ρ(g, r, d)
if this is nonnegative, and is empty otherwise. In particular, we get not only a new
proof of the Brill–Noether theorem, but an explicit and computationally verifiable
sufficient condition for a curve to be Brill–Noether general, the existence of a
regular semistable model whose special fiber has a particular dual graph.

Remark 1.3. This tropical proof of the Brill–Noether theorem can be reframed
in the language of Berkovich’s nonarchimedean analytic geometry to show that
any curve of genus g over a valued field whose skeleton is a chain of g loops
with generic edge lengths must be Brill–Noether general. Here, we follow this
more general approach, with skeletons of analytifications in place of dual graphs of
regular semistable models. Similar arguments, combined with the basepoint-free
pencil trick, lead to a proof of the Gieseker–Petri theorem in the special case where
r = 1 [Baratham et al. 2014].

Remark 1.4. In some ways, the tropical geometry of divisors on a chain of loops
with generic edge lengths appears similar to the geometry of limit linear series
on a chain of elliptic curves with generic attaching points. As is well-known to
experts in Brill–Noether theory, the theory of limit linear series on such curves
gives a characteristic-free proof of the Brill–Noether and Gieseker–Petri theorems
[Osserman 2011; Castorena et al. 2012], and some steps in our approach, including
Lemma 7.2 and Proposition 7.4, can be viewed as tropical analogues of such
arguments from classical algebraic geometry.
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Other steps seem more difficult to translate. In the limit linear series proofs
of Gieseker–Petri, both [Eisenbud and Harris 1983] and [Castorena et al. 2012]
assume the multiplication map is not injective and use a degeneration argument
to construct a divisor in |K X | of impossible degree. We assume the multiplication
map is not injective and reach a contradiction by constructing an impossible di-
visor in |K0|, but it is not the degree of this divisor that creates the contradiction.
Our argument relies on Proposition 3.5 and Lemma 4.4 to show that the divisor
has impossible shape.

The relations to the geometry of the Deligne–Mumford compactification of Mg

are also different. Limit linear series arguments produce stable curves corresponding
to points in the boundary of Mg that are not in the closure of the Gieseker–Petri
special locus, whereas the special fibers of our models are semistable, but necessarily
unstable, and their stabilizations are always in the closure of the hyperelliptic locus.
(Limit linear series arguments may also involve semistable curves that are not stable,
but the configurations of rational curves collapsed by stabilization tend to play
an incidental role. In sharp contrast, the precise combinatorial configurations of
collapsed curves are essential to our arguments.)

It may still be tempting to try to interpret the tropical approach as a rephrasing or
retranslation of classical degeneration arguments, at least in broad strokes, but there
are fundamental obstacles to overcome. As explained above, the data in our tropical
arguments are in some sense strictly complementary to the data involved in limit
linear series. We work primarily in the component group of the Néron model of the
Jacobian (or its analytic counterpart, the tropical Jacobian) whereas classical limit
linear series are defined only in the case where this component group is trivial. On the
other hand, the limit linear series approach depends on computations in the compact
part of the Jacobian of the special fiber, which is trivial in the cases we consider.

Finally, we note that even the tropical Riemann–Roch theorem has not been
reinterpreted or reproved using classical algebraic geometry, despite multiple at-
tempts. Our proof of Gieseker–Petri uses this result in a crucial way, to control the
shapes of effective canonical divisors (Lemma 4.4), so any satisfying interpretation
of our argument in terms of classical degeneration methods should explain tropical
Riemann–Roch as well.

Remark 1.5. In Section 6, we give a simplified proof of Theorem 1.1 in the special
case where ρ(g, r, d) is zero. The simplified argument in this special case is essen-
tially combinatorial, and relies on the classification of special divisors on a chain
of loops in terms of rectangular tableaux [Cools et al. 2012] and the interpretation
of adjunction in terms of transposition [Agrawal et al. 2013]. It does not involve
algebraic geometry over the residue field or the Poincaré–Lelong formula.

Although the guts of the argument are different, the overall structure of the proof
by contradiction is the same as in the general case. We assume that the multiplication



Shapes of divisors and a proof of the Gieseker–Petri theorem 2049

map has nonzero kernel, deduce that certain carefully constructed collections of
piecewise linear functions are tropically dependent, and use this dependence to
produce a canonical divisor of impossible shape. Although this section is not
logically necessary, we believe that most readers will find it helpful to work through
this special case first, as we did, before proceeding to the proof of Theorem 1.1.

2. Background

We briefly review the theory of divisors and divisor classes on metric graphs, along
with relations to the classical theory of algebraic curves via Berkovich analytification
and specialization to skeletons. For further details and references, see [Baker and
Norine 2007; Baker 2008; Baker et al. 2011; Amini and Baker 2014].

2A. Divisors on graphs and Riemann–Roch. Let 0 be a metric graph. A divisor
on 0 is a finite formal sum

D = a1v1+ · · ·+ asvs,

where the vi are points in 0 and the coefficients ai are integers. The degree of a
divisor is the sum of its coefficients

deg(D)= a1+ · · ·+ as,

and a divisor is effective if all of its coefficients are nonnegative. We say that an
effective divisor contains a point vi if its coefficient ai is strictly positive. We will
frequently consider questions about whether a given effective divisor D contains at
least one point in a connected subset 0′ ⊂ 0. See, for instance, Section 3B.

Let PL(0) be the additive group of continuous piecewise linear functions ψ with
integer slopes on 0. (Throughout, all of the piecewise linear functions that we
consider have integer slopes.) The order of such a piecewise linear function ψ at a
point v is the sum of its incoming slopes along edges containing v, and is denoted
ordv(ψ). Note that ordv(ψ) is zero for all but finitely many points v in 0, so

div(ψ)=
∑
v∈0

ordv(ψ) v

is a divisor. A divisor is principal if it is equal to div(ψ) for some piecewise linear
function ψ , and two divisors D and D′ are equivalent if D− D′ is principal. Note
that every principal divisor has degree zero, so the group Pic(0) of equivalence
classes of divisors is graded by degree.

Let D be a divisor on 0. The complete linear series |D| is the set of effective
divisors on 0 that are equivalent to D, and

R(D)= {ψ ∈ PL(0) | D+ div(ψ) is effective}.
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These objects are closely analogous to the complete linear series of a divisor on an
algebraic curve and the vector space of rational functions with poles bounded by
that divisor. There is a natural surjective map from R(D) to |D| taking a piecewise
linear function ψ to div(ψ)+ D, and two functions ψ and ψ ′ have the same image
in |D| if and only if ψ −ψ ′ is constant. The vector space structure on rational
functions with bounded poles is analogous to the tropical module structure on R(D).
Addition in this tropical module is given by the pointwise minimum; if ψ0, . . . , ψr

are in R(D) and b0, . . . , br are real numbers, then the function θ given by

θ(v)=min
j

{
ψ j (v)+ b j

}
,

is also in R(D) [Haase et al. 2012].
The rank r(D) is the largest integer r such that D−E is equivalent to an effective

divisor for every effective divisor E of degree r . In other words, a divisor D has
rank at least r if and only if its linear series contains divisors that dominate any
effective divisor of degree r . This invariant satisfies the following Riemann–Roch
theorem with respect to the canonical divisor K0 =

∑
v∈0(deg(v)− 2) v:

Tropical Riemann–Roch Theorem [Baker and Norine 2007; Gathmann and Ker-
ber 2008; Mikhalkin and Zharkov 2008]. Let D be a divisor on a metric graph 0
with first Betti number g. Then

r(D)− r(K0 − D)= deg(D)− g+ 1.

Remark 2.1. Although it is closely analogous to the classical Riemann–Roch
theorem for curves, the tropical Riemann–Roch theorem has no known proof via
algebraic geometry. Indeed, neither of these results is known to imply the other.

2B. Specialization of divisors from curves to graphs. Throughout, we work over
a fixed algebraically closed field K that is complete with respect to a nontrivial
valuation

val : K ∗→ R.

Let R ⊂ K be the valuation ring, and let κ be the residue field.
Let X be an algebraic curve over K . The underlying set of the Berkovich analytic

space X an consists of the closed points X (K ) together with the set of valuations on
the function field K (X) that extend the given valuation on K . We write

valy : K (X)→ R∪ {+∞}

for the valuation corresponding to a point y in X an
\ X (K ).

Remark 2.2. We treat the points in X (K ) differently, because they do not corre-
spond to valuations on the function field K (X). Nevertheless, one can still study
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the closed points in terms of generalized valuations on rings, as follows. If U ⊂ X
is any affine open neighborhood of a closed point x ∈ X (K ), then the map

valx : OX (U )→ R∪ {+∞}

is a ring valuation. Note that valx , unlike a valuation on a field, may take a nonzero
element to +∞.

The topology on X an is the weakest containing U an for every Zariski-open U
in X and such that, for any f ∈ OX (U ), the function taking x ∈ U an to valx( f )
is continuous.

The points in X (K ) are called type-1 points of X an, and the remaining points in
X an
\X (K ) are classified into three more types according to the algebraic properties

of the corresponding valuation on K (X). For our purposes, the most relevant points
are type-2 points, the points y such that the residue field of K (X) with respect to
valy has transcendence degree 1 over κ . We write X y for the smooth projective
curve over the residue field of K with this function field.

Remark 2.3. By passing to a spherically complete extension field whose valuation
surjects onto R, one could assume that all points in X an

\ X (K ) are of type-2.

Suppose X is smooth and projective. Then X has a semistable vertex set, a
finite set of type-2 points whose complement is a disjoint union of a finite number
of open annuli and an infinite number of open balls. Each semistable vertex set
V ⊂ X an corresponds to a semistable model XV of X . The normalized irreducible
components of the special fiber XV are naturally identified with the curves X y , for
y ∈ V , and the preimages of the nodes in XV under specialization are the annuli
in X an

\ V . The annulus corresponding to a node where X y meets X y′ contains
a unique embedded open segment with endpoints y and y′, whose length is the
logarithmic modulus of the annulus. The union of these open segments together
with V is a closed connected metric graph embedded in X an

\ X (K ) with a natural
metric. We write 0V for this metric graph, and call it the skeleton of the semistable
model XV . If X has genus at least 2, which we may assume since the Gieseker–Petri
theorem is trivial for curves of genus 0 and 1, there is a unique minimal semistable
vertex set in X an. We write 0 for the skeleton of this minimal semistable vertex set,
and call it simply the skeleton of X an.

Each connected component of X an
\0 has a unique boundary point in 0, and

there is a canonical retraction to the skeleton

X an
→ 0

taking a connected component of X an
\0 to its boundary point. Restricting to X (K )

and extending linearly gives the tropicalization map on divisors

Trop : Div(X)→ Div(0).
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This map respects rational equivalence of divisors, as follows.
Let f ∈ K (X) be a rational function. We write trop( f ) for the real-valued

function on the skeleton 0 given by y 7→ valy( f ). The function trop( f ) is piecewise
linear with integer slopes. Furthermore, if y is a type-2 point and trop( f )(y)= 0,
then the residue f̄y is a nonzero rational function on X y whose slope along an edge
incident to y is the order of vanishing of f̄y at the corresponding node. This is the
nonarchimedean Poincaré–Lelong formula, due to Thuillier; see [Thuillier 2005]
and [Baker et al. 2011, §5]. One immediate consequence of this formula is that the
tropical specialization map for rational functions

trop : K (X)∗→ PL(0)

is compatible with passing to principal divisors. More precisely, for any nonzero
rational function f ∈ K (X), we have

Trop(div( f ))= div(trop( f )).

Therefore, the tropicalization map on divisors respects equivalences and descends
to a natural map on Picard groups

Trop : Pic(X)→ Pic(0).

Furthermore, since tropicalizations of effective divisors are effective, if DX is a
divisor on X and f is a rational function in L(DX ), then trop( f ) is in R(Trop(DX )).
This leads to the following version of Baker’s specialization lemma:

Lemma 2.4. Let DX be a divisor on X. Then r(Trop(DX ))≥ r(DX ).

Here, the rank r(DX ) is the dimension of the complete linear series of DX on X .

Remark 2.5. The specialization lemma and Riemann–Roch theorem together imply
that Trop(K X )= K0 , and hence tropicalization respects adjunction. In other words,
Trop(K X − DX )= K0 −Trop(DX ).

Remark 2.6. Note that trop(L(DX )) is often much smaller than R(Trop(DX )). It
is difficult in general to determine which piecewise linear functions in R(Trop(DX ))

are tropicalizations of rational functions in L(DX ).

3. Tropical multiplication maps

We now introduce a basic tropical lemma for studying linear dependence of rational
functions and ranks of multiplication maps on linear series.

3A. Tropical independence. Let f0, . . . , fr be rational functions on X . Suppose
{ f0, . . . , fr } is linearly dependent, so there are constants c0, . . . , cr in K , not all
zero, such that

c0 f0+ · · ·+ cr fr = 0.
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Then, for any point v ∈ X an, the minimum of the valuations

{valv(c0 f0), . . . , valv(cr fr )}

must occur at least twice. In particular, if f0, . . . , fr are linearly dependent in K (X)
then there are real numbers b0, . . . , br such that the minimum of the piecewise
linear functions {trop( f0)+ b0, . . . , trop( fr )+ br } occurs at least twice at every
point of the skeleton 0. Here, take b j = val(c j ) if c j is nonzero, and otherwise
make b j sufficiently large such that ψ j + b j is never minimal.

Definition 3.1. A set of piecewise linear functions {ψ0, . . . , ψr } is tropically de-
pendent if there are real numbers b0, . . . , br such that the minimum

min{ψ0(v)+ b0, . . . , ψr (v)+ br }

occurs at least twice at every point v in 0.

If there are no such real numbers b0, . . . , br then we say {ψ0, . . . , ψr } is tropically
independent.

Lemma 3.2. Let DX and EX be divisors on X , with { f0, . . . , fr } and {g0, . . . , gs}

bases for L(DX ) and L(EX ), respectively. If {trop( fi )+ trop(g j )}i j is tropically
independent, then the multiplication map

µ : L(DX )⊗L(EX )→ L(DX + EX )

is injective.

Proof. The elementary tensors fi⊗g j form a basis for L(DX )⊗L(EX ). The image
of fi ⊗ g j under µ is the rational function fi g j , and these are linearly independent,
since their tropicalizations are tropically independent. �

Remark 3.3. The main difficulty in applying this lemma is that one must prove the
existence of rational functions in the algebraic linear series whose tropicalizations
have the appropriate independence property. Finding such piecewise linear functions
in the tropical linear series is not enough.

3B. Shapes of equivalent divisors. Here we prove a technical proposition about
how the tropical module structure on R(D) is reflected in the shapes of divisors in
|D|. The proposition will be particularly useful when combined with our notion of
tropical dependence of piecewise linear functions.

Lemma 3.4. Let D be a divisor on a metric graph 0, with ψ0, . . . , ψr piecewise
linear functions in R(D), and let

θ =min{ψ0, . . . , ψr }.

Let 0 j ⊂ 0 be the closed set where θ = ψ j . Then div(θ)+ D contains a point
v ∈ 0 j if and only if v is in either
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(1) the divisor div(ψ j )+ D, or

(2) the boundary of 0 j .

Proof. If ψ j agrees with θ on some open neighborhood of v, then ordv(θ) =
ordv(ψ j ), and hence div(θ)+ D contains v if and only if div(ψ j )+ D does. On
the other hand, if v is in the boundary of 0 j then there is an edge containing v
such that the incoming slope of θ along this edge is strictly greater than that of ψ j ,
and the incoming slope of θ along any other edge containing v must be at least as
large as that of ψ j . By summing over all edges containing v, we find that ordv(θ)
is strictly greater than ordv(ψ j ). Since divψ j + D is effective, by hypothesis, it
follows that the coefficient of v in div(θ)+ D is strictly positive, as required. �

Proposition 3.5. Let D be a divisor on a metric graph 0, with ψ0, . . . , ψr in
R(D), and

θ =min{ψ0, . . . , ψr }.

Let 0′ ⊂ 0 be a connected subset, and suppose that div(ψ j )+ D contains a point
in 0′ for all j . Then div(θ)+ D also contains a point in 0′.

Proof. Pick j such that θ is equal to ψ j at some point in 0′, and let

0′j = {v ∈ 0
′
| θ(v)= ψ j (v)}.

If 0′j is properly contained in 0′, then its boundary is nonempty, since 0′ is con-
nected, and each of the boundary points is contained in div(θ)+ D, by Lemma 3.4.

Otherwise, if θ agrees with ψ j on all of 0′, then div(θ)+ D contains the points
of div(ψ j )+ D in 0′, and the proposition follows. �

4. The chain of loops with bridges

We now restrict attention to the specific graph 0 shown in Figure 1, consisting of a
chain of g loops separated by bridges. Throughout, we assume that the loops of 0
have generic edge lengths in the same sense as in [Cools et al. 2012], meaning that
`i/mi is never equal to the ratio of two positive integers whose sum is less than or
equal to 2g− 2.

4A. Reduced divisors. Fix a point v ∈ 0. Recall that an effective divisor D is
v-reduced if the multiset of distances from v to points in D is lexicographically
minimal among all effective divisors equivalent to D. Every effective divisor is
equivalent to a unique v-reduced divisor, and the rank of a v-reduced divisor is
bounded above by the coefficient of v. In particular, if D is a v-reduced divisor that
does not contain v, then r(D) is zero. See [Luo 2011, Proposition 2.1].

It is relatively straightforward to classify v-reduced divisors on 0. We will only
need the special case of wg-reduced divisors. For each i , let γi be the i-th loop
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v1

γ1

w1

br1

· · ·

γi
bri

· · ·

γg

wg

Figure 2. A decomposition of 0.

minus wi , the union of the two half-open edges [vi , wi ), and let bri be the half-open
bridge [wi , vi+1). Note that 0 decomposes as a disjoint union

0 = γ1 t br1 t · · · t γg t {wg},

as shown in Figure 2.

Proposition 4.1. An effective divisor D is wg-reduced if and only if it contains

(1) no points in the bridges br1, . . . , brg−1, and

(2) at most one point in each cell γ1, . . . , γg.

Proof. This is a straightforward application of Dhar’s burning algorithm, as in
[Cools et al. 2012, Example 2.6]. �

4B. The shape of a canonical divisor. As mentioned in the introduction, our strat-
egy is a proof by contradiction; we assume that a multiplication map has nonzero
kernel and use Proposition 3.5 to construct a canonical divisor of impossible shape.

The following basic lemma, which we state and prove but do not use, restricts
the possibilities for the shape of a canonical divisor on an arbitrary graph:

Lemma 4.2. Let 0′ be a metric graph of genus g, let e1, . . . , eg be disjoint open
edges of 0′ whose complement is a tree, and let D be an effective divisor equivalent
to K0′ . Then at least one of the open edges e1, . . . , eg contains no point of D.

Proof. Suppose that each open edge e1, . . . , eg contains a point of D, let pi

be a point in ei , and let D′ = p1 + · · · + pg. Since K0′ − D′ is effective, by
construction, the tropical Riemann–Roch theorem says that r(D′) is at least 1.
However, Dhar’s burning algorithm [1990] shows that D′ is v-reduced for any
point v in the complement of e1 ∪ · · · ∪ eg. Since D′ does not contain v, it follows
that r(D′) is zero. �

Remark 4.3. Lemma 4.2 also follows from the rigidity of effective representatives
for classes in the relative interiors of top-dimensional cells in the natural subdivision
of Picg(0) into parallelotopes studied by An, Baker, Kuperberg, and Shokrieh [An
et al. 2014, Lemma 3.5].

On the chain of loops with bridges, we can use the classification of wg-reduced
divisors to refine the preceding lemma as follows:
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Lemma 4.4. Let D be an effective divisor equivalent to K0. Then D contains no
point in at least one of the cells γ1, . . . , γg.

Proof. Suppose each cell γ1, . . . , γg contains a point of D. Let pi be a point of
D in γi , and let D′ = p1+ · · · + pg. Then K0 − D′ is equivalent to an effective
divisor, by construction, so the tropical Riemann–Roch theorem says that r(D′) is
at least 1. However, D′ is wg-reduced by Proposition 4.1 and does not contain wg,
so r(D′) is zero. �

Remark 4.5. Note that the point pi in the proof of Lemma 4.4 may be equal to
vi for some 2≤ i ≤ g, in which case the complement of {p1, . . . , pg} is not a tree.
For this reason, the lemma does not follow from Lemma 4.2. We use Lemma 4.4
to obtain contradictions and prove our main results at the end of Sections 6 and 7.

5. Preliminaries for the proof of injectivity

Let X be a curve over K with skeleton 0, and let DX be a divisor of degree d and
rank r on X . To prove that X is Gieseker–Petri general we must show that the
multiplication map µW is injective for every linear subspace W ⊂L(DX ). It clearly
suffices to consider the case where W =L(DX ). In other words, we must show that

µ : L(DX )⊗L(K X − DX )→ L(K X )

is injective.
Given Lemma 3.2, a natural strategy is to show that there are bases { fi } and {g j }

for L(DX ) and L(K X − DX ), respectively, such that the set of piecewise linear
functions

{trop( fi )+ trop(g j )}i j

is tropically independent. We prove the existence of such a basis when the Brill–
Noether number ρ(g, r, d) is zero. The following section, which treats this special
case, is not logically necessary for the proof of Theorem 1.1. However, the basic
strategy that we use is the same as in the general case, only the details are simpler.

Remark 5.1. When ρ(g, r, d) is positive, we do not know whether there are bases
{ fi }, {g j } for L(DX ) and L(K X−DX ), respectively, such that {trop( fi )+trop(g j )}

is tropically independent.

6. A special case: Brill–Noether number zero

The results of this sections are not used in the proof of Theorem 1.1, but working
through this special case where ρ(g, r, d) is zero before proceeding to the proof of
the general case should be helpful for most readers. An overview of the argument
is as follows.
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We start by assuming that the multiplication map has a kernel, and therefore
the tropicalization of the image under µ of any basis for L(DX )⊗L(K X − DX ) is
tropically dependent. We use this tropical dependence together with Proposition 3.5
to construct a divisor in |K0| that violates Lemma 4.4, i.e., a canonical divisor of
impossible shape. When the Brill–Noether number is zero, the bases for L(DX )

and L(K X − DX ) are explicit and canonically determined, and we only need to
choose one basis for each.

Additional subtleties in the general case include the choice of g different bases for
L(DX ) and L(K X − DX ), one for each loop in 0, and the application of Poincaré–
Lelong to control the slopes of tropicalizations along the bridges. Furthermore, the
bases are not explicit in the general case, but Lemma 7.2 gives the existence of
bases with the required properties.

Remark 6.1. For a completely different tropical proof of the Gieseker–Petri theo-
rem in the case ρ(g, r, d)= 0, using lifting arguments instead of tropical indepen-
dence, see [Cartwright et al. 2014, Proposition 1.6].

Suppose DX is a divisor of degree d and rank r on X , with ρ(g, r, d)= 0, and let
D be the v1-reduced divisor equivalent to Trop(DX ). There are only finitely many
v1-reduced divisors of degree d and rank r on 0, and they are explicitly classified
in [Cools et al. 2012]. These divisors correspond naturally and bijectively to the
rectangular standard tableau with (g− d + r) rows and (r + 1) columns. Note that,
since ρ(g, r, d)= 0, the genus g factors as

g = (r + 1)(g− d + r).

In particular, the entries in the tableau corresponding to D are the integers 1, . . . , g.
Fix the tableau corresponding to D. We label the columns from 0 to r and the

rows from 0 to g − d + r − 1. The tableau determines a Dyck path, consisting
of a series of points p0, . . . , pg in Zr , as follows. We write e0, . . . , er−1 for the
standard basis vectors on Zr . The starting and ending point of the Dyck path is

p0 = pg = (r, . . . , 1),

and the i-th step pi − pi−1 is equal to

• the standard basis vector e j if i appears in the j-th column of the tableau, for
0≤ j < r , or

• the vector (−1, . . . ,−1) if i appears in the last column.

The tableau properties exactly ensure that each pi lies in the open Weyl chamber
x0 > · · ·> xr−1 > 0. We write pi ( j) for the j-th coordinate of pi .

The divisor D can be recovered from the Dyck path as follows. The coefficient of
v1 is r . If i appears in the j -th column of the tableau, for 0≤ j < r , then D contains
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the point on the i-th loop at distance pi−1( j)mi modulo (`i+mi ) counterclockwise
from wi with coefficient 1. If i appears in the last column of the tableau, then D
contains no point in the i-th loop.

Remark 6.2. In this bijection, adjunction of divisors corresponds to transposition
of tableaux [Agrawal et al. 2013, Theorem 39]. Therefore, the v1-reduced divisor E
equivalent to Trop(K X − DX ) is exactly the divisor corresponding to the transpose
of the tableau for D.

Proposition 6.3. For each integer 0≤ j ≤ r , there is a unique divisor D j equivalent
to D such that D j − jv1− (r − j)wg is effective. Moreover, γi contains no point of
D j if and only if i appears in the j-th column of the tableau corresponding to D.

Proof. The divisor Dr is exactly D. The remaining divisors D j are constructed
in the proof of Proposition 4.10 in [Cools et al. 2012] by an explicit chip-firing
procedure. One takes a pile of r − j chips from v1 and moves it to the right. The
pile of chips changes size as it moves, and has pi ( j) chips when it reaches vi . As
the pile moves across the i-th loop, there is a single chip left behind in the interior
of one of the edges unless i appears in the j-th loop, in which case the i-th loop is
left empty. When the pile reaches wg, it has pg( j) = r − j chips. Since j chips
were left at v1 at the start of the procedure, D j − jv1 − (r − j)wg is effective.
To see that D j is the unique divisor equivalent to D with this property, note that
D j − jv1− (r − j)wg does not move; it is effective and contains no points on the
bridges or at the vertices, and hence is v-reduced for every v in 0. �

Similarly, for 0 ≤ k ≤ g− d + r − 1 there is a unique divisor Ek equivalent to
the v1-reduced adjoint divisor E such that Ek − kv1 − (g − d + r − 1− k)wg is
effective, and γi contains no point of Ek if and only if i appears in the k-th row of
the tableau.

It follows that the g divisors D j + Ek are distinct and correspond to the loops of
0, as follows.

Corollary 6.4. The connected subset γi ⊂ 0 contains no point of D j + Ek if and
only if i appears in the j-th column and k-th row of the tableau corresponding to D.

Proposition 6.5. There is a basis f0, . . . , fr for L(DX ) such that

Trop(DX + div( f j ))= D j .

Proof. Let x and y be points in X (K ) specializing to v1 and wg, respectively. Since
DX has rank r , there is a rational function f j ∈ L(DX ) such that DX + div( f j )

contains x with coefficient at least j and y with coefficient at least r − j . Then
Trop(DX + div( f j )) is an effective divisor and contains v1 and wg with coefficient
at least j and r − j , respectively. By Proposition 6.3, Trop(DX + div( f j ) must be
equal to D j . �
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Similarly, there is a basis {g0, . . . , gg−d+r−1} for L(K X − DX ) such that

Trop(K X − DX + div(gk))= Ek .

We proceed to study the piecewise linear functions

φ j = trop( f j ) and ψk = trop(gk).

Note that D+ div(φ j )= D j and E + div(ψk)= Ek , and this determines each φ j

and ψk up to an additive constant.

Theorem 6.6. The set of g piecewise linear functions {φ j + ψk} jk is tropically
independent.

Proof. Suppose that {φ j + ψk} jk is tropically dependent. Then there exist real
numbers b jk such that the minimum

θ =min
j,k
{φ j +ψk + b jk}

occurs at least twice at every point in 0. Note that D+ E + div(θ) is an effective
canonical divisor, since R(D+ E) is a tropical module and D and E are adjoint.

We claim that D+ E + div θ contains a point in each γi . Choose j0 and k0 such
that i appears in the j0-th column and k0-th row of the tableau corresponding to D.
Then Corollary 6.4 says that D+ E + div(φ j +ψk + b jk) contains a point in γi for
( j, k) 6= ( j0, k0). Also, since the minimum of {φ j +ψk + b jk} occurs at least twice
at every point of 0, we have

θ = min
( j,k) 6=( j0,k0)

{φ j +ψk + b jk}.

Therefore, by Proposition 3.5, the divisor D+ E + div(θ) contains a point in γi , as
claimed.

We have shown that D+E+div(θ) is an effective canonical divisor that contains
a point in each of γ1, . . . , γg. But this is impossible, by Lemma 4.4. �

7. Proof of Theorem 1.1

As in the previous two sections, let X be a smooth projective curve of genus g over
K with skeleton 0. Since skeletons are invariant under base change with respect to
extensions of algebraically closed valued fields, we can and do assume that K is
spherically complete.

Remark 7.1. Spherical completeness is equivalent to completeness for discretely
valued fields, but stronger in general. We use spherical completeness only in the
proof of Lemma 7.2, to ensure that normed K -vector spaces have orthogonal bases.
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Figure 3. The skeleton 0V .

Let DX be an effective divisor on X . We must show that the multiplication map

µ : L(DX )⊗L(K X − DX )→ L(DX )

is injective. This is trivial if L(K X−DX ) is zero, so we assume there is an effective
divisor EX equivalent to K X − DX . We may also assume v1 and wg are type-2
points, and choose type-2 points w0 and vg+1 in the connected components of
X an
\0 with boundary points v1 and wg, respectively. Then

V = {v1, . . . , vg+1, w0, . . . , wg}

is a semistable vertex set, with skeleton 0V ⊃ 0 as shown in Figure 3.
Let XV be the semistable model of X associated to V , with X i the component

of the special fiber XV corresponding to vi , and xi ∈ X i the node corresponding to
the edge ei = [wi−1, vi ], for 1≤ i ≤ g+ 1.

Recall that the reduction of f in κ(X i )
∗ is the residue of a f with respect to the

valuation valvi on K (X), where a ∈ K ∗ is chosen such that valvi (a f )= 0 [Amini
and Baker 2014]. This reduction is defined only up to multiplication by elements
of κ∗, but its order of vanishing at xi is independent of all choices. Similarly, if
f0, . . . , fr are rational functions in K (X)∗, then the κ-span of their reductions in
κ(X i ) is independent of all choices. In particular, it makes sense to talk about
whether these reductions are linearly independent.

Lemma 7.2. Let DX be a divisor of rank r on X. For each 1 ≤ i ≤ g, there is a
basis f0, . . . , fr for L(D) such that

(1) the reductions of f0, . . . , fr in κ(X i ) have distinct orders of vanishing at xi ,
and

(2) the reductions of f0, . . . , fr in κ(X i+1) are linearly independent.

Proof. We consider L(DX ) as a normed vector space over K , with respect to the
norms | |i and | |i+1 whose logarithms are − val(vi ) and − val(vi+1), respectively,
and use the basic properties of nonarchimedean normed vector spaces developed in
[Bosch et al. 1984, Chapter 2]. Since K is spherically complete, the vector space
L(DX ) is K -cartesian [Bosch et al. 1984, 2.4.4.2], and since vi and vi+1 are type-2
points, the image of L(DX ) under each of these norms is equal to the image of
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K under its given norm. Therefore, L(DX ) is strictly K -cartesian [Bosch et al.
1984, 2.5.1.2], which means that all of its subspaces have orthonormal bases. So,
first choose an orthonormal basis for L(DX ) with respect to | |i . The reductions
of these basis elements are linearly independent [Bosch et al. 1984, 2.5.1.3], so
we can take suitable combinations with coefficients in R∗ to ensure that they have
distinct orders of vanishing at xi .

Let f0, . . . , fr be a basis for L(DX ) whose reductions in κ(X i ) have strictly
decreasing order of vanishing at xi . Then, for each j , we can replace f j by a suitable
linear combination of f0, . . . , f j that is orthogonal to the span of f0, . . . , f j−1 with
respect to | |i+1. This does not change the order of vanishing at xi of the reduction
in κ(X i ), but ensures that the reductions in κ(X i+1) are linearly independent. �

This lemma, closely analogous to [Eisenbud and Harris 1983, Lemma 1.2], will
be especially useful in combination with the following identity relating orders of
vanishing of reductions of rational functions to the slopes of their tropicalizations.
For any piecewise linear function ψ on 0V , we write si (ψ) for the incoming slope
of ψ at vi along ei . Suppose ψ = trop( f ) for some rational function f in K (X)∗.
Then Thuillier’s nonarchimedean analytic Poincaré–Lelong formula [Thuillier 2005;
Baker et al. 2011] says that si (trop( f )) is the order of vanishing at xi of the reduction
of f in κ(X i ).

Fix a basis f0, . . . , fr for L(DX ) whose reductions in κ(X i ) have distinct orders
of vanishing at xi and whose reductions at X i+1 are linearly independent. Let
a0, . . . , ar be constants in K . Define

ψ = trop(a0 f0+ · · ·+ ar fr ),

ψ ′ =min{trop( f0)+ val(a0), . . . , trop( fr )+ val(ar )}.

Note that ψ(v) ≥ ψ ′(v) for all v, with equality when v is equal to vi or vi+1.
This is because the reductions of the a j f j in both κ(X i ) and κ(X i+1) are linearly
independent.

Proposition 7.3. The piecewise linear functions ψ and ψ ′ are equal on some
nonempty interval (v, vi )⊂ ei .

Proof. The two functions ψ and ψ ′ agree at any point v where the minimum
of {trop( f0)(v)+ val(a0), . . . , trop( fr )(v)+ val(ar )} occurs only once. By con-
struction, the reductions of f0, . . . , fr in κ(X i ) have distinct orders of vanishing
at xi , so the Poincaré–Lelong formula says that trop( f0), . . . , trop( fr ) have distinct
incoming slopes at vi along ei . It follows that the minimum occurs only once on
some open interval (v, vi ), and ψ and ψ ′ agree on this interval. �

The final ingredient in our proof of Theorem 1.1 is the following proposition
relating slopes along bridges to shapes of divisors in a linear series on 0V :
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Proposition 7.4. Let D be an effective divisor of degree at most 2g − 2 on 0V ,
and let ψ0, . . . , ψr ∈ R(D) be piecewise linear functions with distinct incoming
slopes at vi along ei , for some 1 ≤ i ≤ g. Then at most one of the divisors
D+ div(ψ0), . . . , D+ div(ψr ) contains no point in γi .

Proof. Let 0′ be the union of the i-th loop together with a small closed subsegment of
[v, vi ]⊂ [wi−1, vi ] along whichψ0, . . . , ψr all have constant slope. We may choose
v sufficiently close to vi so that D contains no points in [v, vi ). Let D′ = D|0′ and
ψ ′j =ψ j |0′ . Note that the coefficient of v in div(ψ ′j ) is −si (ψ j ), and D′+div(ψ ′j )
agrees with D + div(ψ j ) on γi . We now show that at most one of the divisors
D′+ div(ψ ′j ) contains no point in γi .

Suppose D′+ div(ψ ′j ) and D′+ div(ψ ′k) both contain no point in γi . Then both
of these divisors are supported at v and wi . Subtracting one from the other, we find
an equivalence of divisors

(si (ψ j )− si (ψk))v ∼ (si (ψ j )− si (ψk))wi

on 0′. Note that si (ψ j ) is bounded above by the sum of the coefficients of D at
points to the left of vi and bounded below by minus the sum of its coefficients at vi

and to the right. Similarly, −si (ψk) is bounded above by the sum of the coefficients
of D at vi and to the right, and bounded below by minus the sum of its coefficients at
points to the left of vi . Therefore, |si (ψ j )− si (ψk)| is bounded by the degree of D.
The equivalence above then implies that `i/mi is a ratio of two positive integers
whose sum is less than or equal to the degree of D, contradicting the genericity
hypothesis on the edge lengths. �

Proof of Theorem 1.1. Suppose the multiplication map

µ : L(DX )⊗L(EX )→ L(K X )

has nonzero kernel. For 1≤ i ≤ g, let { f i
0 , . . . , f i

r } be a basis for L(DX ) consisting
of rational functions whose reductions in κ(X i ) have distinct orders of vanishing
at xi and whose reductions in κ(X i+1) are linearly independent. Similarly, let
{gi

0, . . . , gi
g−d+r−1} be a basis for L(EX ) consisting of rational functions satisfying

the same conditions.
Fix an element in the kernel of µ. Then, for each i , we can express this element

uniquely as a sum of elementary tensors∑
j,k

ai
j,k f i

j ⊗ gi
k .

Define a piecewise linear function

θi =min
j,k
{trop( f i

j )+ trop(gi
k)+ val(ai

j,k)},

and note that the minimum must occur at least twice at every point in 0V .



Shapes of divisors and a proof of the Gieseker–Petri theorem 2063

Replacing { f i
0 , . . . , f i

r } by {a f i
0 , . . . , a f i

r } for some a ∈ K ∗, we may assume
that θi (vi+1)= θi+1(vi+1) for 1≤ i < g, and proceed by patching these piecewise
linear functions together.

Let θ be the unique continuous piecewise linear function on 0V that agrees with
θi between vi and vi+1 for 1 ≤ i ≤ g. A priori, it is not clear whether θ is in the
tropical linear series R(D+ E), where

D = Trop(DX ) and E = Trop(EX ).

Nevertheless, we claim not only that D + E + div(θ) is effective but also that
it contains a point in γi , for 1 ≤ i ≤ g. (Note that θ may or may not be the
tropicalization of a rational function in L(DX + EX ).)

First we show that D+ E + div(θ) is effective. In the open subgraph between
vi and vi+1, the divisor D + E + div(θ) agrees with D + E + div(θi ), which is
effective because R(D+ E) is a tropical module that contains trop( f i

j )+ trop(gi
k)

for all j and k. It remains to check that the coefficient of vi is nonnegative. Since
D+ E + div(θi ) is effective, it will suffice to show

si (θi−1)≥ si (θi ).

We prove this by changing coordinates in two steps, first replacing the basis { f i
j } j

with { f i−1
j } j and then replacing the basis {gi

k}k with {gi−1
k }k .

Fix k, write ∑
j

ai
j,k f i

j =
∑

j

b j,k f i−1
j ,

and define
θ ′ =min

j,k
{trop( f i−1

j )+ trop(gi
j )+ val(b j,k)}.

Note that

min
j
{trop( f i−1

j )(vi )+ val(b j,k)} =min
j
{trop( f i

j )(vi )+ val(ai
j,k)},

since the reductions of both { f i
j } j and { f i−1

j } j in κ(X i ) are linearly independent.
By adding the constant gi

k(vi ) and taking the minimum over all k, we see that

θ ′(vi )= θ(vi ).

We now examine the slopes si (θ) and si (θ
′). At any point v on the edge between

wi−1 and vi , we have

trop
(∑

j

b j,k f i−1
j

)
(v)≥min

j
{trop(b j,k)+ trop( f i−1

j )}(v).

Since this inequality holds with equality at vi , it follows that
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si

(
trop

(∑
j

b j,k f i−1
j

))
≤ si

(
min

j
{trop(b j,k)+ trop( f i−1

j )}

)
.

Now Proposition 7.3 tells us that, on some nonempty interval (v, vi )⊂ ei ,

trop
(∑

j

b j,k f i−1
j

)
=min

j
{trop(ai

j,k)+ trop( f i
j )}.

Taking the minimum over all k with min
j
{trop(ai

j,k)+trop( f i
j )}(vi )+trop(gi

k)(vi )=

θ(vi ), we see that
si (θi )≤ si (θ

′).

A similar argument, fixing j and replacing the basis {gi
k} with {gi−1

k }, shows
that si (θ

′)≤ si (θi−1), as required. This proves that D+ E + div(θ) is effective. It
remains to show that D+ E + div(θ) contains a point in each cell γ1, . . . , γg.

We now show that D+E+div(θ) contains a point in γi . By Proposition 7.4, there
is at most one index j such that D+div(trop( f i

j )) contains no point in γi . Similarly,
there is at most one index k such that E+div(trop(gi

k)) contains no point in γi . Call
these indices j0 and k0, respectively, if they exist. Note that, for ( j, k) 6= ( j0, k0),
the divisor D+ E + div(trop( f i

j ))+ div(trop(gi
k)) contains a point in γi .

The minimum of the piecewise linear functions trop( f i
j )+div(trop(gi

k))+val(ai
j,k)

occurs at least twice at every point, by hypothesis. Thus

θi = min
( j,k) 6=( j0,k0)

{
trop( f i

j )+ div(trop(gi
k))+ val(ai

j,k)
}
.

Then Proposition 3.5 says that D + E + div(θi ) contains a point in γi . Now,
D + E + div(θ) agrees with D + E + div(θi ) on γi \ {vi }. Furthermore, since
si (θi ) ≤ si (θi−1), the coefficient of vi in D+ E + div(θ) is greater than or equal
to the coefficient of vi in D + E + div(θi ). It follows that D + E + div(θ) also
contains a point in γi , as claimed.

Pushing forward the divisor D+E+div(θ) under the natural contraction 0V→0

gives an effective canonical divisor that contains a point in each cell γ1, . . . , γg.
But this is impossible, by Lemma 4.4. �
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We prove distribution estimates for primes in arithmetic progressions to large
smooth squarefree moduli, with respect to congruence classes obeying Chinese
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1. Introduction

In May 2013, Y. Zhang [2014] proved the existence of infinitely many pairs of
primes with bounded gaps. In particular, he showed that there exists at least one
h ≥ 2 such that the set

{p prime : p+ h is prime}

is infinite. (In fact, he showed this for some even h between 2 and 7×107, although
the precise value of h could not be extracted from his method.)

Zhang’s work started from the method of Goldston, Pintz and Yıldırım [Goldston
et al. 2009], who had earlier proved the bounded gap property, conditionally on
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distribution estimates concerning primes in arithmetic progressions to large moduli,
i.e., beyond the reach of the Bombieri–Vinogradov theorem.

Based on work of Fouvry and Iwaniec [1985; 1980; 1983; 1992] and Bombieri,
Friedlander and Iwaniec [Bombieri et al. 1986; 1987; 1989], distribution estimates
going beyond the Bombieri–Vinogradov range for arithmetic functions such as
the von Mangoldt function were already known. However, they involved restric-
tions concerning the residue classes which were incompatible with the method of
Goldston, Pintz and Yıldırım.

Zhang’s resolution of this difficulty proceeded in two stages. First, he isolated a
weaker distribution estimate that sufficed to obtain the bounded gap property (still
involving the crucial feature of going beyond the range accessible to the Bombieri–
Vinogradov technique), where (roughly speaking) only smooth (i.e, friable) moduli
were involved and the residue classes had to obey strong multiplicative constraints
(the possibility of such a weakening had been already noticed by Motohashi and Pintz
[2008]). Secondly, and more significantly, Zhang then proved such a distribution
estimate.

This revolutionary achievement led to a flurry of activity. In particular, the
POLYMATH8 project was initiated by T. Tao with the goal first of understanding,
and then of improving and streamlining, where possible, the argument of Zhang.
This was highly successful, and through the efforts of a number of people, reached
a conclusion in October 2013, when the first version of this paper [Polymath 2014a]
established the bounded gap property in the form

lim inf(pn+1− pn)≤ 4680,

where pn denotes the n-th prime number.
However, at that time, J. Maynard [2013] obtained another conceptual break-

through, by showing how a modification of the structure and of the main-term
analysis of the method of Goldston, Pintz and Yıldırım was able to establish not
just the bounded gap property using only the Bombieri–Vinogradov theorem (in
fact the bound

lim inf(pn+1− pn)≤ 600

obtained was significantly better than the one obtained by POLYMATH8), but also
the bounds

lim inf(pn+k − pn) <+∞

for any fixed k ≥ 1 (in a quantitative way), something which was out of reach of
the earlier methods, even for k = 2. (Similar results were obtained independently
in unpublished work of Tao.)
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Because of this development, a part of the POLYMATH8 paper became essentially
obsolete. Nevertheless, the distribution estimate for primes in arithmetic progres-
sions are not superseded by the new method, and they have considerable interest
for analytic number theory. Indeed, it is the best known result concerning primes in
arithmetic progressions to large moduli without fixing the residue class. (When the
class is fixed, the best results remain those of Bombieri, Friedlander and Iwaniec
[Bombieri et al. 1986], improving on those of [Fouvry and Iwaniec 1983].) The
results here are also needed to obtain the best known bounds on lim inf(pn+k − pn)

for large values of k; see [Polymath 2014b].
The present version of the work of POLYMATH8 therefore contains only the

statement and proof of these estimates. We note however that some of the earlier
version is incorporated in our subsequent paper [Polymath 2014b], which builds
on Maynard’s method to further improve many bounds concerning gaps between
primes, both conditional and unconditional. Furthermore, the original version of this
paper, and the history of its elaboration, remain available online [Polymath 2014a].

Our main theorem is:

Theorem 1.1. Let θ = 1
2 +

7
300 . Let ε > 0 and A ≥ 1 be fixed real numbers. For

all primes p, let ap be a fixed invertible residue class modulo p, and for q ≥ 1
squarefree, denote by aq the unique invertible residue class modulo q such that
aq ≡ ap modulo all primes p dividing q.

There exists δ > 0, depending only on ε, such that for x ≥ 1, we have∑
q≤xθ−ε

qxδ-smooth, squarefree

∣∣∣∣ψ(x; q, aq)−
x

ϕ(q)

∣∣∣∣� x
(log x)A ,

where the implied constant depends only on A, ε and δ, and in particular is
independent of the residue classes (ap).

In this statement, we have, as usual, defined

ψ(x; q, a)=
∑
n≤x

n=a (q)

3(n),

where 3 is the von Mangoldt function. Zhang [2014] established a weaker form
of Theorem 1.1, with θ = 1

2 +
1

584 , and with the aq required to be roots of a
polynomial P of the form P(n) :=

∏
1≤ j≤k; j 6=i (n+ h j − hi ) for a fixed admissible

tuple (h1, . . . , hk) and i = 1, . . . , k.
In fact, we will prove a number of variants of this bound. These involve either

weaker restrictions on the moduli (“dense-divisibility”, instead of smoothness,
which may be useful in some applications), or smaller values of θ > 1

2 , but with
significantly simpler proofs. In particular, although the full strength of Theorem 1.1
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depends in crucial ways on applications of Deligne’s deepest form of the Riemann
hypothesis over finite fields, we show that, for a smaller value of θ > 1

2 , it is possible
to obtain the same estimate by means of Weil’s theory of exponential sums in one
variable over finite fields.

The outline of this paper is as follows: in the next section, we briefly outline
the strategy, starting from the work of Bombieri, Fouvry, Friedlander, and Iwaniec
(in chronological order, [Fouvry and Iwaniec 1980; 1983; Friedlander and Iwaniec
1985; Bombieri et al. 1986; 1987; 1989; Fouvry and Iwaniec 1992]), and explain
Zhang’s innovations. These involve different types of estimates of bilinear or
trilinear nature, which we present in turn. All involve estimates for exponential
sums over finite fields. We therefore survey the relevant theory, separating that part
depending only on one-variable character sums of Weil type (Section 4), and the
much deeper one which depends on Deligne’s form of the Riemann hypothesis
(Section 6). In both cases, we present the formalism in sometimes greater generality
than strictly needed, as these results are of independent interest and might be useful
for other applications.

1A. Overview of proof. We begin with a brief and informal overview of the meth-
ods used in this paper.

Important work of Fouvry and Iwaniec [1980; 1983] and of Bombieri, Friedlander
and Iwaniec [Bombieri et al. 1986; 1987; 1989] had succeeded, in some cases, in
establishing distribution results similar to Theorem 1.1, in fact with θ as large as
1
2 +

1
14 , but with the restriction that the residue classes ap are obtained by reduction

modulo p of a fixed integer a ≥ 1.
Following the techniques of Bombieri, Fouvry, Friedlander and Iwaniec, Zhang

used the Heath-Brown identity [1982] to reduce the proof of (his version of)
Theorem 1.1 to the verification of three families of estimates, which he called
“Type I”, “Type II”, and “Type III”. These estimates were then reduced to exponential
sum estimates, using techniques such as Linnik’s dispersion method, completion
of sums, and Weyl differencing. Ultimately, the exponential sum estimates were
established by applications of the Riemann hypothesis over finite fields, in analogy
with all previous works of this type. The final part of Zhang’s argument is closely
related to the study of the distribution of the ternary divisor function in arithmetic
progressions by Friedlander and Iwaniec [1985], and indeed the final exponential
sum estimate that Zhang uses already appears in their work (this estimate was
proved by Birch and Bombieri in [Friedlander and Iwaniec 1985, Appendix]). An
important point is that by using techniques that are closer to those of [Fouvry and
Iwaniec 1980], Zhang avoids using the spectral theory of automorphic forms, which
is a key ingredient in [Fouvry and Iwaniec 1983] and [Bombieri et al. 1986], and
one of the sources of the limitation to a fixed residue in these works.
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Our proof of Theorem 1.1 follows the same general strategy as Zhang’s, with
improvements and refinements.

First, we apply the Heath-Brown identity [1982] in Section 3, with little change
compared with Zhang’s argument, reducing to the “bilinear” (Types I/II) and “tri-
linear” (Type III) estimates.

For the Type I and Type II estimates, we follow the arguments of Zhang to reduce
to the task of bounding incomplete exponential sums similar to∑

N<n≤2N

e
(

c1n̄+ c2n+ l
q

)
,

(where e(z)= e2iπ z , and x̄ denotes the inverse of x modulo q) for various parameters
N , c1, c2, l, q . We obtain significant improvements of Zhang’s numerology at this
stage, by exploiting the smooth (or at least densely divisible) nature of q , using the q-
van der Corput A-process of [Heath-Brown 1978] and [Graham and Ringrose 1990],
combined with the Riemann hypothesis for curves over finite fields. Additional
gains are obtained by optimizing the parametrizations of sums prior to application
of the Cauchy–Schwarz inequality. In our strongest Type I estimate, we also exploit
additional averaging over the modulus by means of higher-dimensional exponential
sum estimates, which now do depend on the deep results of Deligne. We refer to
Sections 4, 5 and 8 for details of these parts of the arguments.

Finally, for the Type III sums, Zhang’s delicate argument [2014] adapts and im-
proves the work of Friedlander and Iwaniec [1985] on the ternary divisor function in
arithmetic progressions. As we said, it ultimately relies on a three-variable exponen-
tial sum estimate that was proved by Birch and Bombieri in [Friedlander and Iwaniec
1985, Appendix]. Here, we proceed slightly differently, inspired by the streamlined
approach of Fouvry, Kowalski, and Michel [Fouvry et al. 2014b]. Namely, in
Section 7 we show how our task can be reduced to obtaining certain correlation
bounds on hyper-Kloosterman sums. These bounds are established in Section 6, by
fully exploiting the formalism of “trace functions” over finite fields (which relies on
Deligne’s second, more general proof of the Riemann hypothesis over finite fields
[1980]). The very general techniques presented in Section 6 are also used in the proof
of the strongest Type I estimate in Section 8, and we present them in considerable
detail in order to make them more accessible to analytic number theorists.

1B. Basic notation. We use |E | to denote the cardinality of a finite set E , and
1E to denote the indicator function of a set E ; thus 1E(n) = 1 when n ∈ E and
1E(n)= 0 otherwise.

All sums and products will be over the natural numbers N := {1, 2, 3, . . . } unless
otherwise specified, with the exceptions of sums and products over the variable p,
which will be understood to be over primes.
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The following important asymptotic notation will be in use throughout most of
the paper; when it is not (as in Section 6), we will mention this explicitly.

Definition 1.2 (asymptotic notation). We use x to denote a large real parameter,
which one should think of as going off to infinity; in particular, we will implicitly
assume that it is larger than any specified fixed constant. Some mathematical
objects will be independent of x and referred to as fixed; but unless otherwise
specified we allow all mathematical objects under consideration to depend on x (or
to vary within a range that depends on x , e.g., the summation parameter n in the
sum

∑
x≤n≤2x f (n)). If X and Y are two quantities depending on x , we say that

X = O(Y ) or X � Y if one has |X | ≤ CY for some fixed C (which we refer to as
the implied constant), and X = o(Y ) if one has |X | ≤ c(x)Y for some function c(x)
of x (and of any fixed parameters present) that goes to zero as x→∞ (for each
choice of fixed parameters). We use X ≺≺ Y to denote the estimate |X | ≤ xo(1)Y ,
X � Y to denote the estimate Y � X � Y , and X ≈ Y to denote the estimate
Y ≺≺ X ≺≺ Y . Finally, we say that a quantity n is of polynomial size if one has
n = O(x O(1)).

If asymptotic notation such as O( ) or ≺≺ appears on the left-hand side of a
statement, this means that the assertion holds true for any specific interpretation of
that notation. For instance, the assertion

∑
n=O(N ) |α(n)| ≺≺ N means that for each

fixed constant C > 0, one has
∑
|n|≤C N |α(n)| ≺≺ N .

If q and a are integers, we write a | q if a divides q .
If q is a natural number and a ∈ Z, we use a (q) to denote the congruence class

a (q) := {a+ nq : n ∈ Z},

and we denote by Z/qZ the ring of all such congruence classes. The notation
b= a (q) is synonymous to b ∈ a (q). We use (a, q) to denote the greatest common
divisor of a and q , and [a, q] to denote the least common multiple.1 More generally,
we let (q1, . . . , qk) denote the greatest simultaneous common divisor of q1, . . . , qk .
We note in particular that (0, q)= q for any natural number q . Note that a 7→ (a, q)
is periodic with period q, and so we may also define (a, q) for a ∈ Z/qZ without
ambiguity. We also let

(Z/qZ)× := {a (q) : (a, q)= 1}

denote the primitive congruence classes of Z/qZ. More generally, for any commu-
tative ring R (with unity) we use R× to denote the multiplicative group of units. If
a ∈ (Z/qZ)×, we use a to denote the inverse of a in Z/qZ.

1When a, b are real numbers, we will also need to use (a, b) and [a, b] to denote the open and
closed intervals respectively with endpoints a, b. Unfortunately, this notation conflicts with the
notation given above, but it should be clear from the context which notation is in use. Similarly for the
notation a for a ∈ Z/qZ, and the notation z to denote the complex conjugate of a complex number z.
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For any real number x , we write e(x) := e2π i x . We set eq(a) := e(a/q)= e2π ia/q

(see also the conventions concerning this additive character in Section 4A).
We use the following standard arithmetic functions:

(i) ϕ(q) := |(Z/qZ)×| denotes the Euler totient function of q.

(ii) τ(q) :=
∑

d|q 1 denotes the divisor function of q .

(iii) 3(q) denotes the von Mangoldt function of q, thus 3(q) = log p if q is a
power of a prime p and 3(q)= 0 otherwise.

(iv) θ(q) is defined to be equal to log q when q is a prime and to be 0 otherwise.

(v) µ(q) denotes the Möbius function of q , thus µ(q)= (−1)k if q is the product
of k distinct primes for some k ≥ 0 and µ(q)= 0 otherwise.

(vi) �(q) denotes the number of prime factors of q (counting multiplicity).

The Dirichlet convolution α?β :N→C of two arithmetic functions α, β :N→C

is defined in the usual fashion as

α ? β(n) :=
∑
d|n

α(d)β
(n

d

)
=

∑
ab=n

α(a)β(b).

Many of the key ideas in Zhang’s work (as well as in the present article) concern
the uniform distribution of arithmetic functions in arithmetic progressions. For
any function α : N→ C with finite support (that is, α is nonzero only on a finite
set) and any primitive congruence class a (q), we define the (signed) discrepancy
1(α; a (q)) to be the quantity

1(α; a (q)) :=
∑

n=a (q)

α(n)−
1

ϕ(q)

∑
(n,q)=1

α(n). (1-1)

There are some additional concepts and terminology that will be used in multiple
sections of this paper. These are listed in Table 1.

We will often use the following simple estimates for the divisor function τ and
its powers.

Lemma 1.3 (crude bounds on τ ).

(i) (divisor bound) One has
τ(d)≺≺ 1 (1-2)

whenever d is of polynomial size. In particular, d has o(log x) distinct prime
factors.

(ii) One has ∑
d≤y

τC(d)� y logO(1) x (1-3)

for any fixed C > 0 and any y > 1 of polynomial size.
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$ level of distribution Section 2
δ smoothness/dense divisibility parameter Section 2
i multiplicity of dense divisibility Definition 2.1
σ Type I/III boundary parameter Definition 2.6

MPZ(i)[$, δ] MPZ conjecture for densely divisible moduli Claim 2.3
Type(i)I [$, δ, σ ] Type I estimate Definition 2.6

Type(i)II [$, δ] Type II estimate Definition 2.6
Type(i)III [$, δ, σ ] Type III estimate Definition 2.6

SI squarefree products of primes in I Definition 2.2
PI product of all primes in I Definition 2.2

D(i)(y) i-tuply y-densely divisible integers Definition 2.1
FTq( f ) normalized Fourier transform of f (4-11)

coefficient sequence at scale N Definition 2.5
Siegel–Walfisz theorem Definition 2.5
(shifted) smooth sequence at scale N Definition 2.5

Table 1. Notation and terminology.

(iii) More generally, one has∑
d≤y

d=a (q)

τC(d)�
y
q
τ O(1)(q) logO(1) x + xo(1) (1-4)

for any fixed C > 0, any residue class a (q) (not necessarily primitive), and
any y > 1 of polynomial size.

Proof. For the divisor bound (1-2), see for example [Montgomery and Vaughan 2007,
Theorem 2.11]. For the bound (1-3), see Corollary 2.15 of the same book. Finally, to
prove the bound (1-4), observe using (1-2) that we may factor out any common factor
of a and q , so that a (q) is primitive. Next, we may assume that q ≤ y, since the case
q> y is trivial by (1-2). The claim now follows from the Brun–Titchmarsh inequality
for multiplicative functions (see [Shiu 1980] or [Barban and Vehov 1969]). �

Note that we have similar bounds for the higher divisor functions

τk(n) :=
∑

d1,...,dk : d1···dk=n

1

for any fixed k ≥ 2, thanks to the crude upper bound τk(n)≤ τ(n)k−1.
The following elementary consequence of the divisor bound will also be useful:
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Lemma 1.4. Let q ≥ 1 be an integer. Then for any K ≥ 1 we have∑
1≤k≤K

(k, q)≤ K τ(q).

In particular, if q is of polynomial size, then we have∑
a∈Z/qZ

(a, q)≺≺ q,

and we also have ∑
|k|≤K

(k, q)� K qε + q

for any fixed ε > 0 and arbitrary q (not necessarily of polynomial size).

Proof. We have
(k, q)≤

∑
d|(q,k)

d

and hence ∑
1≤k≤K

(k, q)≤
∑
d|q

∑
1≤k≤K

d|k

d ≤ K τ(q). �

2. Preliminaries

2A. Statements of results. In this section we will give the most general statements
that we prove, and in particular define the concept of “dense divisibility”, which
weakens the smoothness requirement of Theorem 1.1.

Definition 2.1 (multiple dense divisibility). Let y ≥ 1. For each natural number
i ≥ 0, we define a notion of i -tuply y-dense divisibility recursively as follows:

(i) Every natural number n is 0-tuply y-densely divisible.

(ii) If i ≥ 1 and n is a natural number, we say that n is i-tuply y-densely divisible
if, whenever j, k ≥ 0 are natural numbers with j + k = i − 1, and 1≤ R ≤ yn,
one can find a factorization

n = qr with y−1 R ≤ r ≤ R (2-1)

such that q is j-tuply y-densely divisible and r is k-tuply y-densely divisible.

We let D(i)(y) denote the set of i-tuply y-densely divisible numbers. We abbreviate
“1-tuply densely divisible” as “densely divisible”, “2-tuply densely divisible” as
“doubly densely divisible”, and so forth; we also abbreviate D(1)(y) as D(y), and
since we will often consider squarefree densely divisible integers with prime factors
in an interval I , we will set

D
( j)
I (y)= SI ∩D( j)(y). (2-2)
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A number of basic properties of this notion will be proved at the beginning
of Section 2C, but the intent is that we want to have integers which can always
be factored, in such a way that we can control the location of the divisors. For
instance, the following fact is quite easy to check: any y-smooth integer is also
i-tuply y-densely divisible, for any i ≥ 0 (see Lemma 2.10(iii) for details).

Definition 2.2. For any set I ⊂ R (possibly depending on x), let SI denote the
set of all squarefree natural numbers whose prime factors lie in I . If I is also a
bounded set (with the bound allowed to depend on x), we let PI denote the product
of all the primes in I ; thus in this case SI is the set of divisors of PI .

For every fixed 0<$ < 1
4 and 0< δ < 1

4 +$ and every natural number i , we
let MPZ(i)[$, δ] denote the following claim:

Claim 2.3 (modified Motohashi–Pintz–Zhang estimate, MPZ(i)[$, δ]). Let I ⊂ R

be a bounded set, which may vary with x , and let Q≺≺ x1/2+2$ . If a is an integer
coprime to PI and A ≥ 1 is fixed, then∑

q≤Q
q∈D(i)

I (x
δ)

|1(31[x,2x]; a (q))| � x log−A x . (2-3)

We will prove the following cases of these estimates:

Theorem 2.4 (Motohashi–Pintz–Zhang-type estimates).

(i) We have MPZ(4)[$, δ] for any fixed $, δ > 0 such that 600$ + 180δ < 7.

(ii) We can prove MPZ(2)[$, δ] for any fixed $, δ > 0 such that 168$ + 48δ < 1,
without invoking any of Deligne’s results [1974; 1980] on the Riemann hypoth-
esis over finite fields.

The statement MPZ(i)[$, δ] is easier to establish as i increases. If true for some
i ≥ 1, it implies that ∑

q≤x1/2+2$−ε

q xδ-smooth, squarefree

|1(31[x,2x]; a (q))| � x log−A x

for any A ≥ 1 and ε > 0. Using a dyadic decomposition and the Chinese remainder
theorem, this shows that Theorem 2.4(i) implies Theorem 1.1.

2B. Bilinear and trilinear estimates. As explained, we will reduce Theorem 2.4
to bilinear or trilinear estimates. In order to state these precisely, we introduction
some further notation.
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Definition 2.5 (coefficient sequences). A coefficient sequence is a finitely supported
sequence α : N→ R (which may depend on x) that obeys the bounds

|α(n)| � τ O(1)(n) logO(1)(x) (2-4)

for all n (recall that τ is the divisor function).

(i) A coefficient sequence α is said to be located at scale N for some N ≥ 1 if it
is supported on an interval of the form [cN ,C N ] for some 1� c < C � 1.

(ii) A coefficient sequence α located at scale N for some N ≥ 1 is said to obey
the Siegel–Walfisz theorem, or to have the Siegel–Walfisz property, if one has

|1(α1( ·,r)=1; a (q))| � τ(qr)O(1)N log−A x (2-5)

for any q, r ≥ 1, any fixed A, and any primitive residue class a (q).

(iii) A coefficient sequence α is said to be shifted smooth at scale N for some
N ≥ 1 if it has the form α(n) = ψ((n − x0)/N ) for some smooth function
ψ :R→C supported on an interval [c,C] for some fixed 0< c<C and some
real number x0, with ψ obeying the derivative bounds

|ψ ( j)(x)| � logO(1) x (2-6)

for all fixed j ≥ 0, where the implied constant may depend on j , and where
ψ ( j) denotes the j -th derivative of ψ . If we can take x0 = 0, we call α smooth
at scale N ; note that such sequences are also located at scale N .

Note that for a coefficient sequence α at scale N , an integer q ≥ 1 and a primitive
residue class a (q), we have the trivial estimate

1(α; a (q))�
N
ϕ(q)

(log x)O(1). (2-7)

In particular, we see that the Siegel–Walfisz property amounts to a requirement that
the sequence α be uniformly equidistributed in arithmetic progressions to moduli
q � (log x)A for any A. In the most important arithmetic cases, it is established
using methods from the classical theory of L-functions.

Definition 2.6 (Type I, II, III estimates). Let 0 < $ < 1
4 , 0 < δ < 1

4 +$ , and
0< σ < 1

2 be fixed quantities, and let i ≥ 1 be a fixed natural number. We let I be
an arbitrary bounded subset of R and define PI =

∏
p∈I p as before. Let a (PI ) be

a primitive congruence class.

(i) We say that Type(i)I [$, δ, σ ] holds if, for any I and a (PI ) as above, any
quantities M, N � 1 with

M N � x (2-8)



2078 D. H. J. Polymath

and
x1/2−σ

≺≺ N ≺≺ x1/2−2$−c (2-9)

for some fixed c > 0, any Q≺≺ x1/2+2$ , and any coefficient sequences α, β
located at scales M, N respectively, with β having the Siegel–Walfisz property,
we have ∑

q≤Q
q∈D(i)

I (x
δ)

|1(α ? β; a (q))| � x log−A x (2-10)

for any fixed A > 0. (Recall the definition (2-2) of the set D(i)
I (x

δ).)

(ii) We say that Type(i)II [$, δ] holds if, for any I and a (PI ) as above, any quantities
M, N � 1 obeying (2-8) and

x1/2−2$−c
≺≺ N ≺≺ x1/2 (2-11)

for some sufficiently small fixed c > 0, any Q≺≺ x1/2+2$ , and any coefficient
sequences α, β located at scales M, N respectively, with β having the Siegel–
Walfisz property, we have (2-10) for any fixed A > 0.

(iii) We say that Type(i)III [$, δ, σ ] holds if, for any I and a (PI ) as above, for any
quantities M, N1, N2, N3� 1 which satisfy the conditions

M N1 N2 N3 � x,

N1 N2, N1 N3, N2 N3 �� x1/2+σ , (2-12)

x2σ
≺≺ N1, N2, N3≺≺ x1/2−σ , (2-13)

for any coefficient sequences α,ψ1, ψ2, ψ3 located at scales M , N1, N2, N3, re-
spectively, with ψ1, ψ2, ψ3 smooth, and finally for any Q≺≺ x1/2+2$ , we have∑

q≤Q
q∈D(i)

I (x
δ)

|1(α ?ψ1 ?ψ2 ?ψ3; a (q))| � x log−A x (2-14)

for any fixed A > 0.

Roughly speaking, Type I estimates control the distribution of Dirichlet convo-
lutions α ? β where α, β are rough coefficient sequences at moderately different
scales, Type II estimates control the distribution of Dirichlet convolutions α ? β
where α, β are rough coefficient sequences at almost the same scale, and Type III
estimates control the distribution of Dirichlet convolutions α ?ψ1 ?ψ2 ?ψ3 where
ψ1, ψ2, ψ3 are smooth and α is rough but supported at a fairly small scale.

In Section 3, we will use the Heath-Brown identity to reduce MPZ(i)[$, δ] to a
combination of Type(i)I [$, δ, σ ], Type(i)II [$, δ], and Type(i)III [$, δ, σ ]:
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Lemma 2.7 (combinatorial lemma). Let i ≥ 1 be a fixed integer, and let 0<$ < 1
4 ,

0 < δ < 1
4 +$ , and 1

10 < σ < 1
2 be fixed quantities with σ > 2$ , such that

the estimates Type(i)I [$, δ, σ ], Type(i)II [$, δ], and Type(i)III [$, δ, σ ] all hold. Then
MPZ(i)[$, δ] holds.

Furthermore, if σ > 1
6 , then the hypothesis Type(i)III [$, δ, σ ] may be omitted.

As stated earlier, this lemma is a simple consequence of the Heath-Brown identity,
a dyadic decomposition (or more precisely, a finer-than-dyadic decomposition),
some standard analytic number theory estimates (in particular, the Siegel–Walfisz
theorem) and some elementary combinatorial arguments.

In [Zhang 2014], the claims TypeI[$, δ, σ ], TypeII[$, δ], TypeIII[$, δ, σ ] are
(implicitly) proven with $ = δ = 1

1168 and σ = 1
8 − 8$ . In fact, if one optimizes

the numerology in his arguments, one can derive TypeI[$, δ, σ ] whenever 44$ +
12δ + 8σ < 1, TypeII[$, δ] whenever 116$ + 20δ < 1, and TypeIII[$, δ, σ ]

whenever σ > 3
26 +

32
13$ +

2
13δ (see [Pintz 2013] for details). We will obtain the

following improvements to these estimates, where the dependency with respect
to σ is particularly important:

Theorem 2.8 (new Type I, II, III estimates). Let $, δ, σ > 0 be fixed quantities.

(i) If 54$ + 15δ+ 5σ < 1, then Type(1)I [$, δ, σ ] holds.

(ii) If 56$ + 16δ+ 4σ < 1, then Type(2)I [$, δ, σ ] holds.

(iii) If 160
3 $ + 16δ + 34

9 σ < 1 and 64$ + 18δ + 2σ < 1, then Type(4)I [$, δ, σ ]

holds.

(iv) If 68$ + 14δ < 1, then Type(1)II [$, δ] holds.

(v) If σ > 1
18 +

28
9 $ +

2
9δ and $ < 1

12 , then Type(1)III [$, δ, σ ] holds.

The proofs of the claims in (iii) and (v) require Deligne’s work on the Riemann
hypothesis over finite fields, but the claims in (i), (ii) and (iv) do not.

In proving these estimates, we will rely on the following general “bilinear” form
of the Bombieri–Vinogradov theorem (the principle of which is due to Gallagher
[1968] and Motohashi [1976]).

Theorem 2.9 (Bombieri–Vinogradov theorem). Let N ,M�1 be such that N M� x
and N ≥ xε for some fixed ε > 0. Let α, β be coefficient sequences at scales M, N
respectively such that β has the Siegel–Walfisz property. Then for any fixed A > 0
there exists a fixed B > 0 such that∑

q≤x1/2 log−B x

sup
a∈(Z/qZ)×

|1(α ? β; a (q))| � x log−A x .
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See [Bombieri et al. 1986, Theorem 0] for the proof. Besides the assumption of
the Siegel–Walfisz property, the other main ingredient used to establish Theorem 2.9
is the large sieve inequality for Dirichlet characters, from which the critical limitation
to moduli less than x1/2 arises.

The Type I and Type II estimates in Theorem 2.8 will be proven in Section 5,
with the exception of the more difficult Type I estimate (iii), which is proven in
Section 8. The Type III estimate is established in Section 7. In practice, the estimate
in Theorem 2.8(i) gives inferior results to that in Theorem 2.8(ii), but we include it
here because it has a slightly simpler proof.

The proofs of these estimates involve essentially all the methods that have been
developed or exploited for the study of the distribution of arithmetic functions
in arithmetic progressions to large moduli, for instance the dispersion method,
completion of sums, the Weyl differencing technique, and the q-van der Corput A
process. All rely ultimately on some estimates of (incomplete) exponential sums over
finite fields, either one-dimensional or higher-dimensional. These final estimates are
derived from forms of the Riemann hypothesis over finite fields, either in the (easier)
form due to Weil [1948], or in the much more general form due to Deligne [1980].

2C. Properties of dense divisibility. We present the most important properties of
the notion of multiple dense divisibility, as defined in Definition 2.1. Roughly
speaking, dense divisibility is a weaker form of smoothness which guarantees
a plentiful supply of divisors of the given number in any reasonable range, and
multiple dense divisibility is a hereditary version of this property which also partially
extends to some factors of the original number.

Lemma 2.10 (properties of dense divisibility). Let i ≥ 0 and y ≥ 1.

(0) If n is i-tuply y-densely divisible, and y1 ≥ y, then n is i-tuply y1-densely
divisible. Furthermore, if 0≤ j ≤ i , then n is j-tuply y-densely divisible.

(i) If n is i-tuply y-densely divisible, and m is a divisor of n, then m is i-tuply
y(n/m)-densely divisible. Similarly, if l is a multiple of n, then l is i-tuply
y(l/n)-densely divisible.

(ii) If m, n are y-densely divisible, then [m, n] is also y-densely divisible.

(iii) Any y-smooth number is i-tuply y-densely divisible.

(iv) If n is z-smooth and squarefree for some z ≥ y, and∏
p|n
p≤y

p ≥
zi

y
, (2-15)

then n is i-tuply y-densely divisible.
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Proof. We abbreviate “i-tuply y-densely divisible” in this proof by the shorthand
“(i, y)-d.d.”

The monotony properties of (0) are immediate from the definition.
Before we prove the other properties, we make the following remark: in checking

that an integer n is (i, y)-d.d., it suffices to consider parameters R with 1≤ R ≤ n
when looking for factorizations of the form (2-1): indeed, if n < R ≤ yn, the
factorization n = qr with r = n and q = 1 satisfies the condition y−1 R ≤ r ≤ R,
and r = n is ( j, y)-d.d. (or q = 1 is (k, y)-d.d.) whenever j + k = i − 1. We will
use this reduction in (i), (ii), (iii), (iv) below.

We prove the first part of (i) by induction on i . For i = 0, the statement is obvious
since every integer is (0, y)-d.d. for every y ≥ 1. Now assume the property holds
for j -tuply dense divisibility for j < i , let n be (i, y)-d.d., and let m | n be a divisor
of n. We proceed to prove that m is (i, ym1)-d.d.

We write n = mm1. Let R be such that 1≤ R ≤ m, and let j , k ≥ 0 be integers
with j + k = i − 1. Since R ≤ n, and n is (i, y)-d.d., there exists by definition a
factorization n = qr , where q is ( j, y)-d.d., r is (k, y)-d.d., and y/R ≤ r ≤ y. Now
we write m1 = n1n′1, where n1 = (r,m1) is the gcd of r and m1. We have then a
factorization m = q1r1, where

q1 =
q
n′1
, r1 =

r
n1
,

and we check that this factorization satisfies the condition required for checking
that m is (i, ym1)-d.d. First, we have

R
ym1
≤

r
m1
≤

r
n1
= r1 ≤ R,

so the divisor r1 is well-located. Next, by induction applied to the divisor r1 = r/n1

of the (k, y)-d.d. integer r , this integer is (k, yn1)-d.d., and hence by (0), it is
also (k, ym1)-d.d. Similarly, q1 is ( j, yn′1)-d.d., and hence also ( j, ym1)-d.d. This
finishes the proof that m is (i, ym1)-d.d.

The second part of (i) is similar and left to the reader.
To prove (ii), recall that y-densely divisible means (1, y)-densely divisible. We

may assume that m ≤ n. Let a= [m, n]n−1. Now let R be such that 1≤ R ≤ [m, n].
If R ≤ n, then a factorization n = qr with Ry−1

≤ r ≤ R, which exists since n is
y-d.d., gives the factorization [m, n] = aqr , which has the well-located divisor r .
If n < R ≤ [m, n], we get

1≤
n
a
≤

R
a
≤ n,

and therefore there exists a factorization n = qr with R(ay)−1
≤ r ≤ Ra−1. Then

[m, n] = q(ar) with Ry−1
≤ ar ≤ R. Thus we see that [m, n] is y-d.d.
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We now prove (iii) by induction on i . The case i = 0 is again obvious, so we
assume that (iii) holds for j-tuply dense divisibility for j < i . Let n be a y-smooth
integer, let j , k ≥ 0 satisfy j + k = i − 1, and let 1≤ R ≤ n be given. Let r be the
largest divisor of n which is ≤ R, and let q = n/r . Since all prime divisors of n
are ≤ y, we have

Ry−1
≤ r ≤ R,

and furthermore both q and r are y-smooth. By the induction hypothesis, q is
( j, y)-d.d. and r is (k, y)-d.d., hence it follows that n is (i, y)-d.d.

We now turn to (iv). The claim is again obvious for i = 0. Assume then that
i = 1. Let R be such that 1≤ R ≤ n. Let

s1 =
∏
p|n
p≤y

p, r1 =
∏
p|n

p>y

p.

Assume first that r1 ≤ R. Since n/r1 = s1 is y-smooth, it is 1-d.d., and since
1 ≤ Rr−1

1 ≤ s1, we can factor s1 into q2r2 with R(r1 y)−1
≤ r2 ≤ Rr−1

1 . Then
n = q2(r1r2) with

Ry−1
≤ r1r2 ≤ R.

So assume that r1 > R. Since n and hence r1 are z-smooth, we can factor r1 into
r2q2 with Rz−1

≤ r2≤ R. Let r3 be the smallest divisor of s1 such that r3r2≥ Ry−1,
which exists because s1r2 ≥ zy−1r2 ≥ Ry−1 by the assumption (2-15). Since s1

is y-smooth, we have r3r2 ≤ R (since otherwise we must have r3 6= 1, hence r3 is
divisible by a prime p≤ y, and r3 p−1 is a smaller divisor with the required property
r3 p−1r2 > Ry−1, contradicting the minimality of r3). Therefore n = q(r3r2) with

R
y
≤ r3r2 ≤ R,

as desired.
Finally we consider the i > 1 case. We assume, by induction, that (iv) holds for

integers j < i . Let j, k ≥ 0 be such that j + k = i − 1. By assumption, using the
notation r1, s1 as above, we have

s1 ≥ zi y−1
= z j
· zk
·

z
y
.

We can therefore write s1 = n1n2n3, where

z j y−1
≤ n1 ≤ z j ,

zk y−1
≤ n2 ≤ zk,

(2-16)
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and thus

n3 ≥
z
y
.

Now we divide into several cases in order to find a suitable factorization of n.
Suppose first that n1 ≤ R ≤ n/n2. Then

1≤
R
n1
≤

n
n1n2

and the integer n/(n1n2)= r1n3 satisfies the assumptions of (iv) for i = 1. Thus,
by the previous case, we can find a factorization r1n3 = q ′r ′ with y−1(R/n1) ≤

r ′ ≤ R/n1. We set r = n1r ′ and q = n2q ′, and observe that by (2-16), r and q
satisfy the assumption of (iv) for i = j and i = k respectively. By induction, the
factorization n = qr has the required property.

Next, we assume that R< n1. Since n1 is y-smooth, we can find a divisor r of n1

such that y−1 R ≤ r ≤ R. Then q = n/r is a multiple of n2, and therefore it satisfies∏
p|q
p≤y

p ≥ n2 ≥ zk y−1.

By induction, it follows that q is (k, y)-d.d. Since r is y-smooth, q is also ( j, y)-d.d.
by (iii), and hence the factorization n = qr is suitable in this case.

Finally, suppose that R > n/n2, i.e., that n R−1 < n2. We then find a factor q of
the y-smooth integer n2 such that n(Ry)−1

≤ q ≤ n R−1. Then the complementary
factor r = n/q is a multiple of n1, and therefore it satisfies∏

p|r
p≤y

p ≥ z j y−1,

so that r is ( j, y)-d.d. by induction, and since q is also ( j, y)-d.d. by (iii), we also
have the required factorization in this case. �

3. Applying the Heath-Brown identity

The goal of this and the next sections is to prove the assumption MPZ(i)[$, δ]
(Claim 2.3) for as wide a range of $ and δ as possible, following the outline in
Section 1A. The first step, which we implement in this section, is the proof of
Lemma 2.7. We follow standard arguments, particularly those in [Zhang 2014].
The main tool is the Heath-Brown identity, which is combined with a purely
combinatorial result about finite sets of nonnegative numbers. We begin with the
latter statement:
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Lemma 3.1. Let 1
10 < σ <

1
2 , and let t1, . . . , tn be nonnegative real numbers such

that t1+ · · ·+ tn = 1. Then at least one of the following three statements holds:

(Type 0) There is a ti with ti ≥ 1
2 + σ .

(Type I/II) There is a partition {1, . . . , n} = S ∪ T such that

1
2 − σ <

∑
i∈S

ti ≤
∑
i∈T

ti < 1
2 + σ.

(Type III) There exist distinct i, j, k with 2σ ≤ ti ≤ t j ≤ tk ≤ 1
2 − σ and

ti + t j , ti + tk, t j + tk ≥ 1
2 + σ. (3-1)

Furthermore, if σ > 1
6 , then the Type III alternative cannot occur.

Proof. We dispense with the final claim first: if σ > 1
6 , then 2σ > 1

2 −σ , and so the
inequalities 2σ ≤ ti ≤ t j ≤ tk ≤ 1

2 − σ of the Type III alternative are inconsistent.
Now we prove the main claim. Let σ and (t1, . . . , tn) be as in the statement. We

assume that the Type 0 and Type I/II statements are false, and will deduce that the
Type III statement holds.

From the failure of the Type 0 conclusion, we know that

ti < 1
2 + σ (3-2)

for all i = 1, . . . , n. From the failure of the Type I/II conclusion, we also know
that, for any S ⊂ {1, . . . , n}, we have∑

i∈S

ti /∈
( 1

2 − σ,
1
2 + σ

)
,

since otherwise we would obtain the conclusion of Type I/II by taking T to be the
complement of S, possibly after swapping the roles of S and T .

We say that a set S⊂ {1, . . . , n} is large if
∑

i∈S ti ≥ 1
2+σ , and that it is small if∑

i∈S ti ≤ 1
2−σ . Thus, the previous observation shows that every set S⊂{1, . . . , n}

is either large or small, and also (from (3-2)) that singletons are small, as is the
empty set. Also, it is immediate that the complement of a large set is small, and
that the converse holds (since t1+ · · ·+ tn = 1).

Further, we say that an element i ∈ {1, . . . , n} is powerful if there exists a small
set S ⊂ {1, . . . , n}\{i} such that S ∪ {i} is large, i.e., if i can be used to turn a
small set into a large set. Then we say that an element i is powerless if it is not
powerful. Thus, adding or removing a powerless element from a set S cannot alter
its smallness or largeness, and in particular, the union of a small set and a set of
powerless elements is small.

We claim that there exist exactly three powerful elements. First, there must be
at least two, because if P is the set of powerless elements, then it is small, and
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hence its complement is large, and thus contains at least two elements, which are
powerful. But picking one of these powerful i , the set {i}∪P is small, and therefore
its complement also has at least two elements, which together with i are three
powerful elements.

Now, we observe that if i is powerful, then ti ≥ 2σ , since the gap between a
large sum

∑
j∈S∪{i} t j and a small sum

∑
j∈S t j is at least 2σ . In particular, if i 6= j

are two powerful numbers, then

ti + t j ≥ 4σ > 1
2 − σ,

where the second inequality holds because of the assumption σ > 1
10 . Thus the set

{i, j} is not small, and is therefore large. But then if {i, j, k, l} was a set of four
powerful elements, it would follow that

1= t1+ · · ·+ tn ≥ (ti + t j )+ (tk + tl)≥ 2
( 1

2 + σ
)
> 1,

a contradiction.
Let therefore i , j , k be the three powerful elements. We may order them so that

ti ≤ t j ≤ tk . We have

2σ ≤ ti ≤ t j ≤ tk ≤ 1
2 − σ

by (3-2) and the previous argument, which also shows that {i, j}, {i, k} and { j, k}
are large, which is (3-1). �

Remark 3.2. For 1
10 < σ ≤

1
6 , the Type III case can indeed occur, as can be seen

by considering the examples (t1, t2, t3)=
(
2σ, 1

2 − σ,
1
2 − σ

)
. The lemma may be

extended to the range 1
14 < σ <

1
2 , but at the cost of adding two additional cases

(corresponding to the case of four or five powerful elements respectively):

(Type IV) There exist distinct i, j, k, l with 2σ ≤ ti ≤ t j ≤ tk ≤ tl ≤ 1
2 − σ and

ti + tl ≥ 1
2 + σ .

(Type V) There exist distinct i, j, k, l,m with 2σ ≤ ti ≤ t j ≤ tk ≤ tl ≤ tm ≤ 1
2 −σ

and ti + t j + tk ≥ 1
2 + σ .

We leave the verification of this extension to the reader. Again, for 1
14 < σ ≤

1
10 ,

the Type IV and Type V cases can indeed occur, as can be seen by consider-
ing the examples (t1, t2, t3, t4) =

(
2σ, 2σ, 1

2 − 3σ, 1
2 − σ

)
and (t1, t2, t3, t4, t5) =

(2σ, 2σ, 2σ, 2σ, 1− 8σ). With this extension, it is possible to extend Lemma 2.7
to the regime 1

14 < σ <
1
2 , but at the cost of requiring additional “Type IV” and

“Type V” estimates as hypotheses. Unfortunately, while the methods in this paper
do seem to be able to establish some Type IV estimates, they do not seem to give
enough Type V estimates to make it profitable to try to take σ below 1

10 .
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To apply Lemma 3.1 to distribution theorems concerning the von Mangoldt func-
tion 3, we recall the Heath-Brown identity (see [Heath-Brown 1982] or [Iwaniec
and Kowalski 2004, Proposition 13.3]).

Lemma 3.3 (Heath-Brown identity). For any K ≥ 1, we have the identity

3=

K∑
j=1

(−1) j−1
(K

j

)
µ
? j
≤ ? 1?( j−1) ? L (3-3)

on the interval [x, 2x], where 1 is the constant function 1(n) := 1, L is the logarithm
function L(n) := log n, µ≤ is the truncated Möbius function

µ≤(n) := µ(n)1n≤(2x)1/K ,

and where we denote by f ? j
= f ? · · · ? f the j-fold Dirichlet convolution of an

arithmetic function f , i.e.,

f ? j (n) :=
∑
· · ·

∑
a1···a j=n

f (a1) · · · f (a j ).

Proof. Write µ=µ≤+µ>, where µ>(n) :=µ(n)1n>(2x)1/K . Clearly the convolution

µ?K
> ? 1?K−1 ? L

vanishes on [1, 2x]. Expanding out µ> = µ−µ≤ and using the binomial formula,
we conclude that

0=
K∑

j=0

(−1) j
(K

j

)
µ?(K− j) ?µ

? j
≤ ? 1?(K−1) ? L (3-4)

on [x, 2x]. Since Dirichlet convolution is associative, the standard identities 3=
µ? L and δ = µ? 1 (where the Kronecker delta function δ(n) := 1n=1 is the unit
for Dirichlet convolution) show that the j = 0 term of (3-4) is

µ?K ? 1?(K−1) ? L = µ? L =3.

For all the other terms, we can use commutativity of Dirichlet convolution and
(again) µ? 1= δ to write

µ?K− j ?µ
? j
≤ ? 1?K−1 ? L = µ? j

≤ ? 1?( j−1) ? L ,

so that we get (3-3). �
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We will now prove Lemma 2.7, which the reader is invited to review. Let
i,$, δ, σ satisfy the hypotheses of that lemma, and let A0 > 0 be fixed. By the
definition of MPZ(i)($, δ), which is the conclusion of the lemma, it suffices to
show that for any Q ≺≺ x1/2+2$ , any bounded set I ⊂ (0,+∞) and any residue
class a (PI ), we have∑

q∈Q

|1(31[x,2x]; a (q))| � x log−A0+O(1) x, (3-5)

where
Q := {q ≤ Q : q ∈ D(i)

I (x
δ)} (3-6)

(recalling the definition (2-2)) and the O(1) term in the exponent is independent
of A0.

Let K be any fixed integer with

1
K
< 2σ (3-7)

(e.g., one can take K = 10). We apply Lemma 3.3 with this value of K . By the
triangle inequality, it suffices to show that∑

q∈Q

|1((µ
? j
≤ ? 1? j−1 ? L)1[x,2x]; a (q))| � x log−A0/2+O(1) x (3-8)

for each 1≤ j ≤ K , which we now fix.
The next step is a finer-than-dyadic decomposition (a standard idea going back at

least to [Fouvry 1984] and [Fouvry and Iwaniec 1983]). We define2 :=1+log−A0 x .
Let ψ : R→ R be a smooth function supported on [−2,2] that is equal to 1 on
[−1, 1] and obeys the derivative estimates

|ψ (m)(x)| � logm A0 x

for x ∈ R and any fixed m ≥ 0, where the implied constant depends only on m. We
then have a smooth partition of unity

1=
∑
N∈D

ψN (n)

indexed by the multiplicative semigroup

D := {2m
: m ∈ N∪ {0}}

for any natural number n, where

ψN (n) := ψ
( n

N

)
−ψ

(
2n
N

)
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is supported in [2−1 N ,2N ]. We thus have decompositions

1=
∑
N∈D

ψN , µ≤ =
∑
N∈D

ψNµ≤, L =
∑
N∈D

ψN L .

For 1≤ j ≤ K , we have

(µ
? j
≤ ? 1?( j−1) ? L)1[x,2x]

=

∑
· · ·

∑
N1,...,N2 j∈D

{(ψN1µ≤)?· · ·?(ψN jµ≤)?ψN j+1 ?· · ·?ψN2 j−1 ?ψN2 j L}1[x,2x]

=

∑
· · ·

∑
N1,...,N2 j∈D

log(N2 j ){(ψN1µ≤)?· · ·?(ψN jµ≤)?ψN j+1 ?· · ·?ψN2 j−1 ?ψ
′

N2 j
}1[x,2x],

where ψ ′N := ψN (L/ log N ) is a simple variant of ψN .
For each N1, . . . , N2 j , the summand in this formula vanishes unless

N1, . . . , N j � x1/K (3-9)

and
x
22K ≤ N1 · · · N2 j ≤ 2x22K .

In particular, it vanishes unless

x
(

1− O
(

1
logA0 x

))
≤ N1 · · · N2 j ≤ 2x

(
1+ O

(
1

logA0 x

))
. (3-10)

We conclude that there are at most

� log2 j (A0+1) x (3-11)

tuples (N1, . . . , N2 j ) ∈D2 j for which the summand is nonzero. Let E be the set of
these tuples. We then consider the arithmetic function

α=
∑
· · ·

∑
(N1,...,N2 j )∈E

log(N2 j ){(ψN1µ≤)?· · ·?(ψN jµ≤)?ψN j+1 ?· · ·?ψN2 j−1 ?ψ
′

N2 j
}

− (µ
? j
≤ ? 1? j−1 ? L)1[x,2x]. (3-12)

Note that the cutoff 1[x,2x] is only placed on the second term in the definition of α,
and is not present in the first term.

By the previous remarks, this arithmetic function is supported on

[x(1− O(log−A0 x)), x] ∪ [2x, 2x(1+ O(log−A0 x))],

and using the divisor bound and trivial estimates, it satisfies

α(n)� τ(n)O(1)(log n)O(1),
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where the exponents are bounded independently of A0. In particular, we deduce
from Lemma 1.3 that

1(α; a (q))� x log−A0+O(1) x

for all q ≥ 1. Using the estimate (3-11) for the number of summands in E, we see
that, in order to prove (3-8), it suffices to show that∑

q∈Q

|1(α1 ? · · · ? α2 j ; a (q))| � x log−A x (3-13)

for A > 0 arbitrary, where each αi is an arithmetic function of the form ψNiµ≤,
ψNi or ψ ′Ni

, where (N1, . . . , N2 j ) satisfies (3-9) and (3-10).
We now establish some basic properties of the arithmetic functions αk that may

arise. For a subset S ⊂ {1, . . . , 2 j}, we will denote by

αS := F
k∈S
αk

the convolution of the αk for k ∈ S.

Lemma 3.4. Let 1≤ k ≤ 2 j and S ⊂ {1, . . . , 2 j}. The following facts hold:

(i) Each αk is a coefficient sequence located at scale Nk , and more generally, the
convolution αS is a coefficient sequence located at scale

∏
k∈S Nk .

(ii) If Nk � x2σ , then αk is smooth at scale Nk .

(iii) If Nk � xε for some fixed ε > 0, then αk satisfies the Siegel–Walfisz property.
More generally, αS satisfies the Siegel–Walfisz property if

∏
k∈S Nk � xε for

some fixed ε > 0.

(iv) N1 · · · N2 j � x.

Proof. The first part of (i) is clear from construction. For the second part of (i), we
use the easily verified fact that if α, β are coefficient sequences located at scales
N ,M respectively, then α ? β is a coefficient sequence located at scale N M .

For (ii), we observe that since 2σ > K−1, the condition Nk � x2σ can only
occur for k > j in view of (3-9), so that αk takes the form ψNk or ψ ′Nk

, and the
smoothness then follows directly from the definitions.

For (iii), the Siegel–Walfisz property for αk when k ≤ j follows from the Siegel–
Walfisz theorem for the Möbius function and for Dirichlet characters (see, e.g.,
[Siebert 1971, Satz 4] or [Iwaniec and Kowalski 2004, Theorem 5.29]), using
summation by parts to handle the smooth cutoff, and we omit the details. For
k > j , αk is smooth, and the Siegel–Walfisz property for αk follows from the
Poisson summation formula (and the rapid decay of the Fourier transform of
smooth, compactly supported functions; compare with the arguments at the end of
this section for the Type 0 case).
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To handle the general case, it therefore suffices to check that if α, β are coefficient
sequences located at scales N ,M , respectively, with xε� M � xC for some fixed
ε,C > 0, and β satisfies the Siegel–Walfisz property, then so does α ? β. This is
again relatively standard, but we give the proof for completeness.

By Definition 2.5, our task is to show that

|1((α ? β)1( ·,q)=1; a (r))| � τ(qr)O(1)N log−A x

for any q, r ≥ 1, any fixed A, and any primitive residue class a (r). We replace
α, β by their restriction to integers coprime to qr (without indicating this in the
notation), which allows us to remove the constraint 1(n,q)=1. We may also assume
that r = O(logA+O(1) x), since the desired estimate follows from the trivial estimate
(2-7) for the discrepancy otherwise.

For any integer n, we have∑
n=a (r)

(α ? β)(n)=
∑

b∈(Z/rZ)×

( ∑
d=b (r)

α(d)
)( ∑

m=b̄a (r)

β(m)
)

and∑
n

(α ? β)(n)=
(∑

d

α(d)
)(∑

m

β(m)
)
=

∑
b∈(Z/rZ)×

( ∑
d=b (r)

α(d)
)(∑

m

β(m)
)

so that

|1(α ? β, a (r))| ≤
∑

b∈(Z/rZ)×

∣∣∣∣ ∑
d=b (r)

α(d)
∣∣∣∣|1(β; b̄a (r))|.

From (1-4) (and Definition 2.5), we have∑
d=b (r)

α(d)� N
r
τ(r)O(1) logO(1) x + N o(1)

for any b (r), and since β has the Siegel–Walfisz property, we have

|1(β; b̄a (r))| � τ(r)O(1)M log−B x

for any b (r) and any fixed B > 0. Thus

|1(α ? β, a (r))| � τ(r)O(1)ϕ(r)
(N

r
+ N o(1)

)
M log−B+O(1) x

� τ(r)O(1)M N log−B+O(1) x,

by the assumption concerning the size of r .
Finally, claim (iv) follows from (3-10). �
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We now conclude this section by showing how the assumptions Type(i)I [$, δ, σ ],
Type(i)II [$, δ] and Type(i)III [$, δ, σ ] of Lemma 2.7 imply the estimates (3-13).

Let therefore (α1, . . . , α2 j ) be given satisfying the condition after (3-13). By
Lemma 3.4(iv), we can write Nk� x tk for k=1, . . . , 2 j , where the tk are nonnegative
reals (not necessarily fixed) that sum to 1. By Lemma 3.1, the ti satisfy one of the
three conclusions (Type 0), (Type I/II), (Type III) of that lemma. We deal with each
in turn. The first case can be dealt with directly, while the others require one of the
assumptions of Lemma 2.7, and we begin with these.

Suppose that we are in the Type I/II case, with the partition {1, . . . , 2 j} = S ∪ T
given by the combinatorial lemma. We have

α1 ? · · · ? α2 j = αS ? αT .

By Lemma 3.4, αS, αT are coefficient sequences located at scales NS, NT respec-
tively, where

NS NT � x,

and (by (iii)) αS and αT satisfy the Siegel–Walfisz property. By Lemma 3.1, we
also have

x1/2−σ
� NS � NT � x1/2+σ .

Thus, directly from Definition 2.6 and (3-6), the required estimate (3-13) follows
either from the hypothesis Type(i)I [$, δ, σ ] (if one has NS ≤ x1/2−2$−c for some
sufficiently small fixed c > 0) or from Type(i)II [$, δ] (if NS > x1/2−2$−c, for the
same value of c).

Similarly, in the Type III case, comparing Lemmas 3.4 and 3.1 with Definition 2.6
and (3-6) shows that (3-8) is a direct translation of Type(i)III [$, δ, σ ].

It remains to prove (3-8) in the Type 0 case, and we can do this directly. In this
case, there exists some k ∈ {1, . . . , 2 j} such that tk ≥ 1

2 + σ > 2σ . Intuitively, this
means that αk is smooth (by Lemma 3.4(ii)) and has a long support, so that it is
very well-distributed in arithmetic progressions to relatively large moduli, and we
can just treat the remaining α j trivially.

Precisely, we write

α1 ? · · · ? α2 j = αk ? αS,

where S = {1, . . . , 2 j}\{k}. By Lemma 3.4, αk is a coefficient sequence which is
smooth at a scale Nk � x1/2+σ , and αS is a coefficient sequence which is located
at a scale NS with Nk NS � x . We argue as in Lemma 3.4(iii): we have

1(αk ? αS; a (q))=
∑

m∈(Z/qZ)×

∑
`=m (q)

αS(`)1(αk; m̄a (q)),
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and since ∑
m

|αS(m)| ≺≺ NS

(by (1-3) and Definition 2.5), we get∑
q∈Q

|1(α1 ? · · · ? α2 j ; a (q))| ≺≺ NS

∑
q≤Q

sup
b∈(Z/qZ)×

|1(αk; b (q))|. (3-14)

Since αk is smooth at scale Nk , we can write

αk(n)= ψ(n/Nk)

for some smooth function ψ : R→ R supported on an interval of size� 1 which
satisfies the estimates

|ψ ( j)(t)| ≺≺ 1

for all t and all fixed j ≥ 0. By the Poisson summation formula, we have∑
n=b (q)

αk(n)=
Nk

q

∑
m∈Z

eq(mb)ψ̂
(

m Nk

q

)
=

Nk

q
ψ̂(0)+

Nk

q

∑
m 6=0

eq(mb)ψ̂
(

m Nk

q

)
for q ≥ 1 and b (q), where

ψ̂(s) :=
∫

R

ψ(t)e(−ts) dt

is the Fourier transform of ψ . From the smoothness and support of ψ , we get the
bound ∣∣∣∣ψ̂(m Nk

q

)∣∣∣∣≺≺ (m Nk

q

)−2

for m 6= 0 and q ≤ Q, and thus we derive that∑
n=b (q)

αk(n)=
Nk

q
ψ̂(0)+ O

(
Nk

q
(Nk/q)−2

)
.

Since by definition

1(αk; b (q))=
∑

n=b (q)

αk(n)−
1

ϕ(q)

∑
c∈(Z/qZ)×

∑
n=c (q)

αk(n),

we get

|1(αk; b (q))| ≺≺
Nk

q
(Nk/q)−2.
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Therefore, from (3-14), we have∑
q∈Q

|1(α1 ? · · · ? α2 j ; a (q))| ≺≺ NS Nk

(
Q
Nk

)2

� x1−2σ+4$ ,

and since σ > 2$ (by assumption in Lemma 2.7), this implies (3-13), which
concludes the proof of Lemma 2.7.

Remark 3.5. In the case σ > 1
6 , one can replace the Heath-Brown identity of

Lemma 3.3 with other decompositions of the von Mangoldt function 3, and in
particular with the well-known Vaughan identity [1977]

3≥ = µ< ? L −µ< ?3< ? 1+µ≥ ?3≥ ? 1,

where
3≥(n) :=3(n)1n≥V , 3<(n) :=3(n)1n<V , (3-15)

µ≥(n) := µ(n)1n≥U , µ<(n) := µ(n)1n<U , (3-16)

where U, V > 1 are arbitrary parameters. Setting U = V = x1/3, we then see that
to show (3-5), it suffices to establish the bounds∑

q∈Q

|1((µ< ? L)1[x,2x]; a (q))| � x log−A0/2+O(1) x, (3-17)

∑
q∈Q

|1((µ< ?3< ? 1)1[x,2x]; a (q))| � x log−A0/2+O(1) x, (3-18)

∑
q∈Q

|1((µ≥ ?3≥ ? 1)1[x,2x]; a (q))| � x log−A0/2+O(1) x . (3-19)

To prove (3-17), we may perform dyadic decomposition on µ< and L , much as in
the previous arguments. The components of L which give a nontrivial contribution
to (3-17) will be located at scales � x2/3. One can then use the results of the
Type 0 analysis above. In order to prove (3-19), we similarly decompose the
µ≥,3≥, and 1 factors and observe that the resulting components of µ≥ and 3≥ ? 1
that give a nontrivial contribution to (3-19) will be located at scales M, N with
x1/3
�M, N� x2/3 and M N � x , and one can then argue using Type I and Type II

estimates as before since σ > 1
6 . Finally, for (3-18), we decompose µ< ?3< and 1

into components at scales M, N , respectively, with M � x2/3 and M N � x , so
N � x1/3. If N � x2/3, then the Type 0 analysis applies again, and otherwise we
may use the Type I and Type II estimates with σ > 1

6 .

Remark 3.6. An inspection of the arguments shows that the interval [x, 2x]
used in Lemma 2.7 may be replaced by a more general interval [x1, x2] for any
x ≤ x1 ≤ x2 ≤ 2x , leading to a slight generalization of the conclusion MPZ(i)[$, δ].
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By telescoping series, one may then generalize the intervals [x1, x2] further, to the
range 1≤ x1 ≤ x2 ≤ 2x .

In the next sections, we will turn our attention to the task of proving distribution
estimates of Type I, II and III. All three turn out to be intimately related to estimates
for exponential sums over Z/qZ, either “complete” sums over all of Z/qZ or
“incomplete” sums over suitable subsets, such as reductions modulo q of intervals
or arithmetic progressions (this link goes back to the earliest works in proving
distribution estimates beyond the range of the large sieve). In the next section, we
consider the basic theory of the simplest of those sums, where the essential results
go back to Weil’s theory of exponential sums in one variable over finite fields.
These are enough to handle basic Type I and II estimates, which we consider next.
On the other hand, for Type III estimates and the most refined Type I estimates,
we require the much deeper results and insights of Deligne’s second proof of the
Riemann hypothesis for algebraic varieties over finite fields.

4. One-dimensional exponential sums

The results of this section are very general and are applicable to many problems in
analytic number theory. Since the account we provide might well be useful as a
general reference beyond the applications to the main results of this paper, we will
not use the asymptotic convention of Definition 1.2, but provide explicit estimates
that can easily be quoted in other contexts. (In particular, we will sometimes
introduce variables named x in our notation.)

4A. Preliminaries. We begin by setting up some notation and conventions. We
recall from Section 1B that we defined eq(a)= e2iπa/q for a ∈ Z and q ≥ 1. This
is a group homomorphism Z→ C×, and since qZ⊂ ker eq , it naturally induces a
homomorphism, which we also denote by eq , from Z/qZ to C×. In fact, for any
multiple qr of q , we can also view eq as a homomorphism Z/qrZ→ C×.

It is convenient for us (and compatible with the more algebraic theory for
multivariable exponential sums discussed in Section 6) to extend further eq to
the projective line P1(Z/qZ) by extending it by zero to the point(s) at infinity.
Precisely, recall that P1(Z/qZ) is the quotient of

Xq = {(a, b) ∈ (Z/qZ)2 : a and b have no common factor}

(where a common factor of a and b is a prime p | q such that a and b are zero
modulo p) by the equivalence relation

(a, b)= (ax, bx)
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for all x ∈ (Z/qZ)×. We identify Z/qZ with a subset of P1(Z/qZ) by sending x
to the class of (x, 1). We note that

|P1(Z/qZ)| = q
∏
p|q

(
1+ 1

p

)
,

and that a point (a, b) ∈ P1(Z/qZ) belongs to Z/qZ if and only if b ∈ (Z/qZ)×,
in which case (a, b)= (ab−1, 1).

Thus, we can extend eq to P1(Z/qZ) by defining

eq((a, b))= eq(ab−1)

if b ∈ (Z/qZ)×, and eq((a, b))= 0 otherwise.
We have well-defined reduction maps P1(Z/qrZ)→ P1(Z/qZ) for all integers

r ≥ 1, as well as P1(Q)→ P1(Z/qZ), and we can therefore also naturally define
eq(x) for x ∈ P1(Z/qrZ) or for x ∈ P1(Q) (for the map P1(Q)→ P1(Z/qZ), we
use the fact that any x ∈ P1(Q) is the class of (a, b) where a and b are coprime
integers, so that (a (q), b (q)) ∈ Xq ).

We will use these extensions especially in the following context: let P, Q ∈Z[X ]
be polynomials, with Q 6= 0, and consider the rational function f = P/Q ∈Q(X).
This defines a map P1(Q)→ P1(Q), and then, by reduction modulo q , a map

f (q) : P1(Z/qZ)→ P1(Z/qZ).

We can therefore consider the function x 7→ eq( f (x)) for x ∈ Z/qZ. If x ∈ Z is
such that Q(x) is coprime to q, then this is just eq(P(x)Q(x)). If Q(x) is not
coprime to q, on the other hand, one must be a bit careful. If q is prime, then
one should write f (q) = P1/Q1 with P1, Q1 ∈ (Z/qZ)[X ] coprime, and then
eq( f (x))= eq(P1(x)Q1(x)) if Q1(x) 6= 0, while eq( f (x))= 0 otherwise. If q is
squarefree, one combines the prime components according to the Chinese remainder
theorem, as we will recall later.

Example 4.1. Let P = X , Q= X+3 and q = 3, and set f := P/Q. Then, although
P (q) and Q (q) both take the value 0 at x = 0 ∈ Z/qZ, we have eq( f (0))= 1.

In rare cases (in particular the proof of Proposition 8.4 in Section 8D) we will
use one more convention: quantities

ep

(a
b

)
may arise, where a and b are integers that depend on other parameters, and with b
allowed to be divisible by p. However, this will only happen when the formula is
to be interpreted as

ep

(a
b

)
= ψ

(1
b

)
= ψ(∞),
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whereψ(x)=ep(ax) defines an additive character of Fp. Thus we use the convention

ep

(a
b

)
=

{
0 if a 6= 0 (p), b = 0 (p),
1 if a = 0 (p), b = 0 (p),

since in the second case we are evaluating the trivial character at∞.

4B. Complete exponential sums over a finite field. As is well-known since early
works of Davenport and Hasse in particular, the Riemann hypothesis for curves over
finite fields (proved by Weil [1948]) implies bounds with “square root cancellation”
for one-dimensional exponential sums over finite fields. A special case is the
following general bound:

Lemma 4.2 (one-variable exponential sums with additive characters). Let P, Q ∈
Z[X ] be polynomials over Z in one indeterminate X. Let p be a prime number such
that Q (p) ∈ Fp[X ] is nonzero and such that there is no identity of the form

P
Q
(p)= g p

− g+ c (4-1)

in Fp(X) for some rational function g = g(X) ∈ Fp(X) and some c ∈ Fp. Then
we have ∣∣∣∣∑

x∈Fp

ep

(
P(x)
Q(x)

)∣∣∣∣�√p, (4-2)

where the implicit constant depends only on max(deg P, deg Q), and this depen-
dency is linear.

Note that, by our definitions, we have∑
x∈Fp

ep

(
P(x)
Q(x)

)
=

∑
x∈Fp

Q1(x) 6=0

ep(P1(x)Q1(x)),

where P/Q (p)= P1/Q1 with P1, Q1 ∈ Fp[X ] coprime polynomials.
As key examples of Lemma 4.2, we record Weil’s bound for Kloosterman sums,

namely, ∣∣∣∣∑
x∈Fp

ep

(
ax +

b
x

)∣∣∣∣�√p (4-3)

when a, b ∈ Fp are not both zero, as well as the variant∣∣∣∣∑
x∈Fp

ep

(
ax + b

x
+

c
x+l
+

d
x+m

+
e

x+l+m

)∣∣∣∣�√p (4-4)
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for a, b, c, d, e, l,m ∈ Fp with b, c, d, e, l,m, l +m nonzero. In fact, these two
estimates are almost the only two cases of Lemma 4.2 that are needed in our
arguments. In both cases, one can determine a suitable implied constant, e.g., the
Kloosterman sum in (4-3) has modulus at most 2

√
p.

We note also that the case (4-1) must be excluded, since g p(x)− g(x)+ c = c
for all x ∈ Fp, and therefore the corresponding character sum has size equal to p.

Proof. This estimate follows from the Riemann hypothesis for the algebraic curve
C over Fp defined by the Artin–Schreier equation

y p
− y = P(x)/Q(x).

This was first explicitly stated by Perel′muter [1969], although this was undoubtedly
known to Weil; an elementary proof based on Stepanov’s method may also be found
in [Cochrane and Pinner 2006]. A full proof for all curves, using a minimal amount
of the theory of algebraic curves, is found in [Bombieri 1974]. �

Remark 4.3. For our purpose of establishing some nontrivial Type I and Type II
estimates for a given choice of σ (and in particular for σ slightly above 1

6 ) and for
sufficiently small $, δ, it is not necessary to have the full square root cancellation
in (4-2), and any power savings of the form p1−c for some fixed absolute constant
c> 0 would suffice (with the same dependency on P and Q); indeed, assuming such
a power savings, one obtains a nontrivial bound on the relevant short exponential
sums arising in these estimates once one invokes the q-van der Corput method a
sufficient number of times (depending on c and σ ), by an appropriate modification
of Proposition 4.12 below. The Type I and Type II estimates established in later
sections need such a power savings to overcome a variety of inefficiencies in the
remainder of the argument, but all of these losses are of the form O(x O($+δ))

(with the most serious loss coming from the use of completion of sums, which
worsens the trivial bound by a factor of about H , where H is defined in (5-25)). The
power savings of p−c will be attenuated by a number of applications of the Cauchy–
Schwarz inequality (each use of which, roughly speaking, halves the exponent c
in the power savings); however, this inequality is only used a bounded number
of times, and so any power savings in (4-2) will still lead to enough Type I and
Type II estimates to obtain a nontrivial equidistribution estimate for sufficiently
small $, δ if one is willing to use the q-van der Corput method a sufficiently large
number of times. (In fact, even just Type II estimates alone are sufficient for this
task; see Remark 5.11.)

Such a power saving in (4-2) (with c = 1
4 ) was obtained for the Kloosterman

sum (4-3) by Kloosterman [1927] using an elementary dilation argument (see also
[Mordell 1932] for a generalization), but this argument does not appear to be
available for estimates such as (4-4).
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In order to prove parts (i), (ii) and (iv) of Theorem 2.8, we need to extend the
bounds of Lemma 4.2 in two ways: to sums over Z/qZ for q squarefree instead of
prime, and to incomplete sums over suitable subsets of Z/qZ (the other two parts
of the theorem also require exponential sum estimates, but these require the much
deeper work of Deligne [1980], and will be considered in Section 6).

4C. Complete exponential sums to squarefree moduli. To extend Lemma 4.2 to
squarefree moduli, we first need some preliminaries. We begin with a version of
the Chinese remainder theorem.

Lemma 4.4 (Chinese remainder theorem). If q1, q2 are coprime natural numbers,
then for any integer a, or indeed for any a ∈ P1(Q), we have

eq1q2(a)= eq1

(
a
q2

)
eq2

(
a
q1

)
. (4-5)

More generally, if q1, . . . , qk are pairwise coprime natural numbers, then for any
integer a or any a ∈ P1(Q), we have

eq1···qk (a)=
k∏

i=1

eqi

(
a∏

j 6=i q j

)
.

Proof. It suffices to prove the former claim for a ∈P1(Q), as the latter then follows
by induction.

If a maps to a point at infinity in P1(Z/q1q2Z), then it must map to a point at
infinity in P1(Z/q1Z) or P1(Z/q2Z), so that both sides of (4-5) are zero.

So we can assume that a∈Z/q1q2Z. Let q1, q2 be integers such that q1q1=1 (q2)

and q2q2 = 1 (q1), respectively. Then we have q1q1+ q2q2 = 1 (q1q2), and hence

eq1q2(a)= eq1q2(a(q1q1+ q2q2 ))= eq1q2(q1q1a)eq1q2(q2q2a).

Since eq1q2(q1q1a)= eq2(a/q1) and eq1q2(q2q2a)= eq1(a/q2), the claim follows. �

If q ∈ Z is an integer, we say that q divides f , and write q | f , if q divides f in
Z[X ]. We denote by (q, f ) the largest factor of q that divides f (i.e., the positive
generator of the ideal of Z consisting of integers dividing f ). Thus for instance
(q, 0)= q . We also write f (q) ∈ (Z/qZ)[X ] for the reduction of f modulo q.

We need the following algebraic lemma, which can be viewed as a version of (a
special case of) the fundamental theorem of calculus:

Lemma 4.5. Let f = P/Q ∈ Q(X) with P, Q ∈ Z[X ] coprime, and let q be a
natural number such that Q (p) is a nonzero polynomial for all primes p | q
(automatic if Q is monic).

(i) If q | f ′ and all prime factors of q are sufficiently large depending on the
degrees of P and Q, then there exists c ∈ Z/qZ such that q | f − c.
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(ii) If q is squarefree, if Q (p) has degree deg(Q) for all p | q and2 deg(P) <
deg(Q), and if all prime factors of q are sufficiently large depending on the
degrees of P and Q, then (q, f ′) divides (q, f ). In particular, if (q, f ) = 1
then (q, f ′)= 1.

Proof. We first prove (i). By the Chinese remainder theorem, we may assume that
q = p j is the power of a prime. Write f ′ = P1/Q1, where P1 and Q1 ∈ Z[X ]
are coprime. By definition, the condition q | f ′ implies that P1(x)= 0 (q) for all
x ∈ Z/qZ. On the other hand, since Q1 (p) is nonzero in Z/pZ[X ], the rational
function f ′ (q) is well-defined at all x ∈ Z/qZ except at most deg(Q) zeros of Q1,
and takes the value 0 at all these ≥ q−deg(Q) values. If q is large enough in terms
of deg(P) and deg(Q), this implies that f ′ (q)= 0 ∈ Z/qZ[X ], and therefore that
f (q)= c for some c ∈ Z/qZ, i.e., that q | f − c.

Now we prove (ii). If a prime p divides (q, f ′), then by (i) there exists c ∈Z/pZ

such that p | f − c. If p - (q, f ), we must have c 6= 0. But then p | P − cQ, where
P − cQ (p) ∈ Z/pZ[X ] is (by assumption) a polynomial of degree deg(Q) ≥ 1.
For p > deg(Q), this is a contradiction, so that p | (q, f ). �

We use this to give an estimate for complete exponential sums, which combines
the bounds for Ramanujan sums with those from the Riemann hypothesis for curves.

Proposition 4.6 (Ramanujan–Weil bounds). Let q be a squarefree natural number,
and let f = P/Q ∈ Q(X), where P, Q ∈ Z[X ] are coprime polynomials with Q
nonzero modulo p for every p | q (for instance, with Q monic). Then we have∣∣∣∣ ∑

n∈Z/qZ

eq( f (n))
∣∣∣∣≤ C�(q)q1/2 ( f ′, q)

( f ′′, q)1/2

for some constant C ≥ 1 depending only on deg(P) and deg(Q).

Example 4.7. (1) Let f (X) := b/X for some integer b. We get, after changing the
summation variable, a slightly weaker version of the familiar Ramanujan sum bound∣∣∣∣ ∑

n∈Z/qZ

e(bn)1(n,q)=1

∣∣∣∣≤ (b, q) (4-6)

since (q, f ′)= (b, q) and (q, f ′′)= c(b, q) in this case for some c = 1, 2.

(2) More generally, let f := a/X + bX for some integers a, b. We get a weaker
form of Weil’s bound for Kloosterman sums:∣∣∣∣ ∑

n∈Z/qZ

eq(an+ bn)1(n,q)=1

∣∣∣∣≤ 2�(q)q1/2 (a, b, q)
(a, q)1/2

,

which generalizes (4-3).

2We adopt the convention deg(0)=−∞.
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Proof. By Lemma 4.4, we can factor the sum as a product of exponential sums over
the prime divisors of q:∑

n∈Z/qZ

eq( f (n))=
∏
p|q

∑
n∈Z/pZ

ep

(
f (n)
(q/p)

)
.

Since, for each p | q, the constant q/p is an invertible element in Z/pZ, we see
that it suffices to prove the estimates∑

n∈Z/pZ

ep( f (n))� p when p | f ′ (which implies p | f ′′), (4-7)

∑
n∈Z/pZ

ep( f (n))� 1 when p | f ′′ but p - f ′, (4-8)

∑
n∈Z/pZ

ep( f (n))�
√

p otherwise, (4-9)

where the implied constants, in all three cases, depend only on deg(P) and deg(Q).
Thus we may always assume that p | q is large enough in terms of deg(P) and
deg(Q), since otherwise the result is trivial.

The first bound is clear, with implied constant equal to 1. For (4-8), since p | f ′′,
we conclude from Lemma 4.5 (since p is large enough) that there exists c ∈ Z/pZ

such that p | f ′ − c. Since p - f ′, we see that c must be nonzero. Then, since
f ′−c= ( f−ct)′, another application of Lemma 4.5 shows that there exists d ∈Z/pZ

such that p | f −ct−d . This implies that f (n)= cn+d (p) whenever n is not a pole
of f (p). The denominator Q of f (which is nonzero modulo p by assumption)
has at most deg(Q) zeroes, and therefore we see that ep( f (n)) = ep(cn+ d) for
all but ≤ deg(Q) values of n ∈ Z/pZ. Thus (by orthogonality of characters) we get∣∣∣∣ ∑

n∈Z/pZ

ep( f (n))
∣∣∣∣= ∣∣∣∣ ∑

n∈Z/pZ

ep( f (n))−
∑

n∈Z/pZ

ep(cn+ d)
∣∣∣∣≤ deg(Q).

Now we prove (4-9). This estimate follows immediately from Lemma 4.2, except
if the reduction f̃ ∈ Fp(X) of f modulo p satisfies an identity

f̃ = g p
− g+ c (4-10)

for some g ∈ Fp(X) and c ∈ Fp. We claim that if p is large enough, this can only
happen if p | f ′, which contradicts the assumption of (4-9) and therefore concludes
the proof.

To prove the claim, we just observe that if (4-10) holds, then any pole of g would
be a pole of f̃ of order p, and thus g must be a polynomial if p is large enough.
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But then (4-10) implies that f̃ − c either vanishes or has degree at least p. If p is
large enough, the latter conclusion is not possible, and thus p | f ′. �

We also need a variant of Proposition 4.6, which is a slight refinement of an
estimate appearing in the proof of [Zhang 2014, Proposition 11]:

Lemma 4.8. Let d1, d2 be squarefree integers, so that [d1, d2] is squarefree, and let
c1, c2, l1, l2 be integers. Then there exists C ≥ 1 such that∣∣∣∣ ∑

n∈Z/[d1,d2]Z

ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)∣∣∣∣≤ C�([d1,d2])(c1, δ1)(c2, δ2)(d1, d2),

where δi := di/(d1, d2) for i = 1, 2.

Proof. As in the proof of Proposition 4.6, we may apply Lemma 4.4 to reduce to
the case where [d1, d2] = p is a prime number. The bound is then trivial if (c1, δ1),
(c2, δ2), or (d1, d2) is equal to p, so we may assume without loss of generality that
d1 = p, d2 = 1, and that c1 is coprime to p. We then need to prove that∑

n∈Z/pZ

ep

(
c1

n+ l

)
� 1,

but this is clear since after the change of variable m = c1/(n+ l) this sum is just a
Ramanujan sum. �

4D. Incomplete exponential sums. The bounds in the previous section control
“complete” additive exponential sums in one variable in Z/qZ, by which we mean
sums where the variable n ranges over all of Z/qZ. For our applications, as well as
for many others, one needs also to have good estimates for “incomplete” versions
of the sums, in which the variable n ranges over an interval, or more generally
over the integers weighted by a coefficient sequence which is (shifted) smooth at
some scale N .

The most basic technique to obtain such estimates is the method of completion of
sums, also called the Pólya–Vinogradov method. In essence, this is an elementary
application of discrete Fourier analysis, but the importance of the results cannot
be overestimated.

We begin with some facts about the discrete Fourier transform. Given a function

f : Z/qZ→ C,

we define its normalized Fourier transform FTq( f ) to be the function on Z/qZ

given by

FTq( f )(h) :=
1

q1/2

∑
x∈Z/qZ

f (x)eq(hx). (4-11)



2102 D. H. J. Polymath

The normalization factor 1/q1/2 is convenient because the resulting Fourier trans-
form operator is then unitary with respect to the inner product

〈 f, g〉 :=
∑

x∈Z/qZ

f (x)g(x)

on the space of functions Z/qZ→ C. In other words, the Plancherel formula∑
x∈Z/qZ

f (x)g(x)=
∑

h∈Z/qZ

FTq( f )(h)FTq(g)(h)

holds for any functions f , g : Z/qZ→ C. Furthermore, by the orthogonality of
additive characters, we have the discrete Fourier inversion formula

FTq(FTq( f ))(x)= f (−x)

for all x ∈ Z/qZ.

Lemma 4.9 (completion of sums). Let M ≥ 1 be a real number and let ψM be a
function on R defined by

ψM(x)= ψ
(

x − x0

M

)
,

where x0 ∈ R and ψ is a smooth function supported on [c,C] satisfying

|ψ ( j)(x)| � logO(1) M

for all fixed j ≥ 0, where the implied constant may depend on j . Let q ≥ 1 be an
integer, and let

M ′ :=
∑
m≥1

ψM(m)� M(log M)O(1).

We have:

(i) If f : Z/qZ→ C is a function, then∣∣∣∣∑
m

ψM(m) f (m)−
M ′

q

∑
m∈Z/qZ

f (m)
∣∣∣∣

� q1/2(log M)O(1) sup
h∈Z/qZ\{0}

|FTq( f )(h)|. (4-12)

In particular, if M � q(log M)O(1), then∣∣∣∣∑
m

ψM(m) f (m)
∣∣∣∣� q1/2(log M)O(1)

‖FTq( f )‖`∞(Z/qZ). (4-13)
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We also have the variant∣∣∣∣∑
m

ψM(m) f (m)−
M ′

q

∑
m∈Z/qZ

f (m)
∣∣∣∣

� (log M)O(1) M
q1/2

∑
0<|h|≤q M−1+ε

|FTq( f )(h)| +M−A
∑

m∈Z/qZ

| f (m)| (4-14)

for any fixed A> 0 and ε > 0, where the implied constant depends on ε and A.

(ii) If I is a finite index set, and for each i ∈ I , ci is a complex number and ai (q)
is a residue class, then for each fixed A > 0 and ε > 0, one has∣∣∣∣∑

i∈I

ci

∑
m

ψM(m)1m=ai (q)−
M ′

q

∑
i∈I

ci

∣∣∣∣
� (log M)O(1) M

q

∑
0<|h|≤q M−1+ε

∣∣∣∣∑
i∈I

ci eq(ai h)
∣∣∣∣+M−A

∑
i∈I

|ci |, (4-15)

where the implied constant depends on ε and A.

Remark 4.10. One could relax the derivative bounds on ψ to |ψ ( j)(x)| � Mε j for
various small fixed ε j > 0, at the cost of similarly worsening the various powers of
log M in the conclusion of the lemma to small powers of M , and assuming the ε j

small enough depending on ε and A; however this variant of the lemma is a little
tricky to state, and we will not have use for it here.

Proof. Define the function

ψM,q(x)=
∑
n∈Z

ψM(x + qn).

This is a smooth q-periodic function on R. By periodization and the Plancherel
formula, we have∑

m

ψM(m) f (m)=
∑

x∈Z/qZ

f (x)ψM,q(x)

=

∑
h∈Z/qZ

FTq( f )(h)FTq(ψM,q)(−h). (4-16)

The contribution of the frequency h = 0 is given by

FTq( f )(0)FTq(ψM,q)(0)=
1
q

∑
m∈Z/qZ

f (m)
∑

m∈Z/qZ

ψM,q(m)=
M ′

q

∑
m∈Z/qZ

f (m).
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We now consider the contribution of the nonzero frequencies. For h ∈ Z/qZ, the
definition of ψM,q leads to

q1/2 FTq(ψM,q)(−h)=9
(h

q

)
,

where the function 9 is defined on R/Z by

9(y) :=
∑

m

ψM(m)e(−my).

This is a smooth function 9 : R/Z→ C. We then have∣∣∣∣ ∑
h∈Z/qZ\{0}

FTq( f )(h)FTq(ψM,q)(−h)
∣∣∣∣

≤ sup
h∈Z/qZ\{0}

|FTq( f )(h)|q−1/2
∑

−q/2<h≤q/2
h 6=0

∣∣∣9(h
q

)∣∣∣.
Applying the Poisson summation formula and the definitionψM(x)=ψ((x−x0)/M),
we have

9(y)= M
∑
n∈Z

ψ̂(M(n+ y))e(−(n+ y)x0),

where

ψ̂(s)=
∫

R

ψ(t)e(−st) dt.

By repeated integrations by parts, the assumption on the size of the derivatives of ψ
gives the bounds

|ψ̂(s)| � (log M)O(1)(1+ |s|)−A

for any fixed A ≥ 0, and therefore

|9(y)| � M(log M)O(1)(1+ |y|M)−A (4-17)

for any fixed A ≥ 0 and any − 1
2 < y ≤ 1

2 . Taking, e.g., A = 2, we get

∑
−q/2<h≤q/2

h 6=0

∣∣∣9(h
q

)∣∣∣� (log M)O(1)
∑

1≤h≤q/2

M
(1+ |h|M/q)2

� q(log M)O(1),

and therefore we obtain (4-12). From this, (4-13) follows immediately.
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We now turn to (4-14). Fix A > 0 and ε > 0. Arguing as above, we have∣∣∣∣∑
m

ψM(m) f (m)−
M ′

q

∑
m∈Z/qZ

f (m)
∣∣∣∣

≤
1

q1/2

∑
−q/2<h≤q/2

h 6=0

∣∣∣9(h
q

)∣∣∣|FTq( f )(h)|

� (log M)O(1) M
q1/2

∑
0<|h|≤q M−1+ε

|FTq( f )(h)|

+ (log M)O(1)
∑

n∈Z/qZ

| f (n)|
∑

|h|>q M−1+ε

M
q(1+ |h|M/q)A .

Changing A to a large value, we conclude that∣∣∣∣∑
m

ψM(m) f (m)−
M ′

q

∑
m∈Z/qZ

f (m)
∣∣∣∣

� Mq−1/2(log M)O(1)
∑

0<|h|≤q M−1+ε

|FTq( f )(h)| +M−A
∑

n∈Z/qZ

| f (n)|,

as claimed.
Finally, claim (ii) follows immediately from (4-14) by setting

f (m) :=
∑
i∈I

ai=m (q)

ci , so that FTq( f )(h)=
1
√

q

∑
i∈I

ci eq(ai h). �

Remark 4.11. In Section 7, we will use a slightly refined version, where the
coefficients 9(h/q) above are not estimated trivially.

By combining this lemma with Proposition 4.6, we can obtain nontrivial bounds
for incomplete exponential sums of the form∑

n

ψN (n)eq( f (n))

for various moduli q , which are roughly of the shape∑
n

ψN (n)eq( f (n))� q1/2+ε

when N� q . A number of bounds of this type were used by Zhang [2014] to obtain
his Type I and Type II estimates. However, it turns out that we can improve this
bound for certain regimes of q, N when the modulus q is smooth, or at least densely
divisible, by using the “q-van der Corput A-process” of [Heath-Brown 1978] and
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[Graham and Ringrose 1990]. This method was introduced to handle incomplete
multiplicative character sums, but it is also applicable to incomplete additive charac-
ter sums. It turns out that these improved estimates lead to significant improvements
in the Type I and Type II numerology over that obtained in [Zhang 2014].

Here is the basic estimate on incomplete one-dimensional exponential sums that
we will need for the Type I and Type II estimates. Essentially the same bounds
were obtained in [Heath-Brown 2001, Theorem 2].

Proposition 4.12 (incomplete additive character sums). Let q be a squarefree
integer, and let f = P/Q ∈Q(X) with P , Q ∈ Z[X ], such that the degree of Q (p)
is equal to deg(Q) for all p | q. Assume that deg(P) < deg(Q). Set q1 := q/( f, q).
Let further N ≥ 1 be given with N� q O(1) and let ψN be a function on R defined by

ψN (x)= ψ
(

x − x0

N

)
,

where x0 ∈ R and ψ is a smooth function with compact support satisfying

|ψ ( j)(x)| � logO(1) N

for all fixed j ≥ 0, where the implied constant may depend on j .

(i) (Polyá–Vinogradov + Ramanujan–Weil) We have the bound∑
n

ψN (n)eq( f (n))� qε
(

q1/2
1 +

N
q1

1N≥q1

∣∣∣∣ ∑
n∈Z/q1Z

eq1( f (n)/( f, q))
∣∣∣∣) (4-18)

for any ε > 0. In particular, lifting the Z/q1Z sum to a Z/qZ sum, we have∑
n

ψN (n)eq( f (n))� qε
(

q1/2
+

N
q

∣∣∣∣ ∑
n∈Z/qZ

eq( f (n))
∣∣∣∣). (4-19)

(ii) (one van der Corput + Ramanujan–Weil) If q = rs, then we have the additional
bound∑

n

ψN (n)eq( f (n))

� qε
((

N 1/2r1/2
1 +N 1/2s1/4

1

)
+

N
q1

1N≥q1

∣∣∣∣ ∑
n∈Z/q1Z

eq1( f (n)/( f, q))
∣∣∣∣) (4-20)

for any ε > 0, where r1 := (r, q1) and s1 := (s, q1). In particular, we have∑
n

ψN (n)eq( f (n))�qε
((

N 1/2r1/2
+N 1/2s1/4)

+
N
q

∣∣∣∣ ∑
n∈Z/qZ

eq( f (n))
∣∣∣∣). (4-21)

In all cases, the implied constants depend on ε, deg(P), deg(Q) and the implied
constants in the estimates for the derivatives of ψ .
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Remark 4.13. The estimates obtained by completion of sums are usually inefficient
in the regime M = o(q), and they become trivial for M� q1/2. For instance, when
f is bounded in magnitude by 1, the trivial bound for the right-hand side of (4-13)
is q, whereas the trivial bound for the left-hand side is of size about M , which
means that one needs a cancellation at least by a factor q/M in the right-hand side
to even recover the trivial bound. This becomes a prohibitive restriction if this
factor is larger than

√
M . In this paper, this inefficiency is a major source of loss

in our final exponents (the other main source being our frequent reliance on the
Cauchy–Schwarz inequality, as each invocation of this inequality tends to halve
all gains in exponents arising from application of the Riemann hypothesis over
finite fields). It would thus be of considerable interest to find stronger estimates for
incomplete exponential sums. But the only different (general) method we are aware
of is the recent “sliding sum method” of Fouvry, Kowalski and Michel [Fouvry
et al. 2013c], which however only improves on the completion technique when
M is very close to q1/2, and does not give stronger bounds than Lemma 4.9 and
Proposition 4.12 in most ranges of interest. (Note however that uniformity of
estimates is often even more crucial to obtaining good results, and for this purpose,
the completion techniques are indeed quite efficient.)

Proof. We begin with some technical reductions. First of all, we may assume that q
has no prime factor smaller than any fixed B depending on deg(P) and deg(Q), as
the general case then follows by factoring out a bounded factor from q and splitting
the summation over n into a bounded number of pieces.

Second, we also observe that, in all cases, we may replace f by f/( f, q) and q
by q1 and (in the case when q = rs) r by r1 and s by s1, since if we write q = q1q2

we have

eq( f (n))= eq1

(
P(n)

q2 Q(n)

)
.

Thus we can reduce to a situation where ( f, q)= 1, so q = q1, r = r1 and s = s1. In
this case, the condition deg(P) < deg(Q) implies also that ( f ′, q)= ( f ′′, q)= 1 by
Lemma 4.5(ii), provided q has no prime factor less than some constant depending
on deg(P) and deg(Q), which we may assume to be the case, as we have seen.

We now establish (4-18). We apply (4-14), and put the “main term” with h = 0
in the right-hand side, to get

∑
n

ψN (n)eq( f (n))�
N 1+ε

q

∑
|h|≤q N−1+ε

∣∣∣∣ ∑
n∈Z/qZ

eq( f (n)+ hn)
∣∣∣∣+ 1

for ε > 0 arbitrarily small (by selecting A large enough in (4-14) using the assump-
tion N � q O(1)).
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If N < q , Proposition 4.6 applied for all h gives∑
n

ψN (n)eq( f (n))�
N 1+ε

q1/2

∑
0≤|h|≤q N−1+ε

( f ′+ h, q).

Since ( f ′′, q)= 1, we also have ( f ′+ h, q)= 1, and therefore∑
n

ψN (n)eq( f (n))� q1/2 N 2ε,

which implies (4-18). If N ≥ q, on the other hand, we only apply Proposition 4.6
for h 6= 0, and we get in the same way∑

n

ψN (n)eq( f (n))�
N 1+ε

q

∣∣∣∣ ∑
n∈Z/qZ

eq( f (n))
∣∣∣∣+ q1/2 N 2ε,

which is again (4-18).
Consider now (4-20). We may assume that N ≤ s, since otherwise the claim

follows simply from (4-18), and we may similarly assume that r ≤ N , since
otherwise we can use the trivial bound∑

n

ψN (n)eq( f (n))� N (log N )O(1)
� r1/2 N 1/2(log N )O(1).

Let K := bN/rc. Using translation invariance, we can write

∑
n

ψN (n)eq( f (n))=
1
K

∑
n

K∑
k=1

ψN (n+ kr)eq( f (n+ kr)).

Since q = rs, we have

eq( f (n+ kr))= er (s f (n))es(r f (n+ kr))

by Lemma 4.4 (and periodicity), and hence we obtain∣∣∣∣∑
n

ψN (n)eq( f (n))
∣∣∣∣≤ 1

K

∑
n

∣∣∣∣ K∑
k=1

ψN (n+ kr)es(r f (n+ kr))
∣∣∣∣

�
N 1/2

K

(∑
n

∣∣∣∣ K∑
k=1

ψN (n+ kr)es(r f (n+ kr))
∣∣∣∣2)1/2

,

where the factor N 1/2 arises because the summand is (as a function of n) supported
on an interval of length O(N ). Expanding the square, we obtain∣∣∣∣∑

n

ψN (n)eq( f (n))
∣∣∣∣2� N

K 2

∑
1≤k,l≤K

A(k, l), (4-22)
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where

A(k, l)=
∑

n

ψN (n+ kr)ψN (n+ lr) es
(
r( f (n+ kr)− f (n+ lr))

)
.

We have

A(k, k)=
∑

n

|ψN (n+ kr)|2� N (log N )O(1).

and therefore ∑
1≤k≤K

|A(k, k)| � K N (log N )O(1). (4-23)

It remains to handle the off-diagonal terms. For each k 6= l, we have

f (n+ kr)− f (n+ lr)
r

= g(n),

where g = P1/Q1 ∈Q(X) with integral polynomials

P1(X)= P(X + kr)Q(X + lr)− Q(X + kr)P(X + lr),

Q1(X)= r Q(X + kr)Q(X + lr).

Note that P1 and Q1 satisfy the assumptions of (4-18) with respect to the modulus s
(although they might not be coprime).

We now claim that (provided all prime factors of q are large enough) we have

(s, g′) | (s, k− l) and (s, g) | (s, k− l).

Indeed, since deg(P)< deg(Q) and the degree of the reduction of Q modulo primes
dividing q is constant, it is enough to show that (s, g) | (s, k− l) by Lemma 4.5(ii).
So suppose that a prime p divides (s, g). Then, by a change of variable, we have

p |
(
s, f (X + (k− l)r)− f (X)

)
.

By induction, we thus have

p |
(
s, f (X + i(k− l)r)− f (X)

)
for any integer i . If p - k−l, then (k−l)r generates Z/pZ as an additive group, and
we conclude that p | (s, f (X+a)− f (X)) for all a ∈Z/pZ. This implies that f (p)
is constant where it is defined. But since deg(P) < deg(Q) holds modulo p, for p
large enough in terms of deg(Q), this would imply that p | f (as in Lemma 4.5(ii)),
contradicting the assumption (s, f )= 1. Thus we have p | k− l, and we conclude
that (s, g) | (s, k− l), and then (s, g′) | (s, k− l), as claimed.
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By (4-18) and Proposition 4.6, we have

A(k, l)� qε
(

s1/2
+

N
s

1N≥s/(s,k−l)

∣∣∣∣ ∑
n∈Z/sZ

es(g(n))
∣∣∣∣)

� qε
(

s1/2
+

N
s1/2 (s, k− l)1/2 1N≥s/(s,k−l)

)
.

Summing over k and l, we have∑∑
1≤k 6=l≤K

|A(k, l)|�qεK 2s1/2
+qεNs−1/2

∑
1≤k 6=l≤K

(s, k−l)1/2 1N≥s/(s,k−l). (4-24)

We use the simple bound

1N≥s/(s,k−l) ≤
√
(s, k− l)

√
N
s

to estimate the last sum as follows:

Ns−1/2
∑

1≤k 6=l≤K

(s, k− l)1/2 1N≥s/(s,k−l) ≤
N 3/2

s

∑
1≤k 6=l≤K

(s, k− l)

� N 3/2s−1
× K 2qε� K 2s1/2qε,

using Lemma 1.4 and the bound N < s. We combine this with (4-23) and (4-24) in
the bound (4-22) to obtain∣∣∣∣∑

n

ψN (n)eq( f (n))
∣∣∣∣2� qε

N
K 2 (K N (log N )O(1)

+ K 2s1/2)� qε(Nr + Ns1/2),

from which (4-20) follows. �

Remark 4.14. (1) Assuming that ( f, q) = 1, the first bound (4-18) is nontrivial
(i.e., better than O(N )) as long as N is a bit larger than q1/2. As for (4-20), we see
that in the regime where the factorization q = rs satisfies r ≈ q1/3

≈ s1/2, the bound
is nontrivial in the significantly wider range where N is a bit larger than q1/3.

(2) The procedure can also be generalized with similar results to more general
q-periodic functions than n 7→ eq( f (n)), and this will be important for the most
advanced Type I estimates (see Section 6J.1).

Remark 4.15. One can iterate the above argument and show that∣∣∣∣∑
n

ψN (n)eq( f (n))
∣∣∣∣

� qε
( l−1∑

i=1

N 1−1/2i
r̃1/2i

i + N 1−1/2l−1
r̃1/2l

l +
N
q1

1N≥q1

∣∣∣∣ ∑
n∈Z/q1Z

eq1( f (n)/( f, q))
∣∣∣∣)
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for any fixed l ≥ 1 and any factorization q = r1 · · · rl with r̃i = (ri , q1); see [Graham
and Ringrose 1990; Heath-Brown 2001]. However, we have found in practice
that taking l to be 3 or higher (corresponding to two or more applications of the
q-van der Corput A-process) ends up being counterproductive, mainly because
the power of q that one can save over the trivial bound decays exponentially in l.
However, it is possible that some other variation of the arguments (for instance,
taking advantage of the Parseval identity, which would be a q-analogue of the van
der Corput B-process) may give further improvements.

In our particular application, we only need a special case of Proposition 6.20. This
is a strengthening of [Zhang 2014, Lemma 11], and it shows how an assumption of
dense divisibility of a modulus may be exploited in estimates for exponential sums.

Corollary 4.16. Let N ≥ 1 and let ψN be a function on R defined by

ψN (x)= ψ
(

x − x0

N

)
,

where x0 ∈ R and ψ is a smooth function with compact support satisfying

|ψ ( j)(x)| � logO(1) N

for all fixed j ≥ 0, where the implied constant may depend on j .
Let d1, d2 be squarefree integers, not necessarily coprime. Let c1, c2, l1, l2 be

integers. Let y≥ 1 be a real number, and suppose that [d1, d2] is y-densely divisible.
Let d be a divisor of [d1, d2] and let a (d) be any residue class.

If N ≤ [d1, d2]
O(1), then we have∣∣∣∣ ∑

n=a (d)

ψN (n)ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)∣∣∣∣
� [d1, d2]

ε

(
d−1/2 N 1/2

[d1, d2]
1/6 y1/6

+ d−1 (c1, δ
′

1)

δ′1

(c2, δ
′

2)

δ′2
N
)

for any ε > 0, where δi := di/(d1, d2) and δ′i := δi/(d, δi ) for i = 1, 2. We also have
the variant bound∣∣∣∣ ∑
n=a (d)

ψN (n)ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)∣∣∣∣
� [d1, d2]

ε

(
d−1/2

[d1, d2]
1/2
+ d−1 (c1, δ

′

1)

δ′1

(c2, δ
′

2)

δ′2
N
)
.

In both cases the implied constant depends on ε.
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Proof. Set q = [d1, d2]. We first consider the case d = 1, so that the congruence
condition n = a (d) is vacuous. Since R = y1/3q1/3

≤ yq, the dense divisibility
hypothesis implies that there exists a factorization q = rs for some integers r , s
such that

y−2/3q1/3
≤ r ≤ y1/3q1/3

and

y−1/3q2/3
≤ s ≤ y2/3q2/3.

Note now that, by the Chinese remainder theorem (as in Lemma 4.4), we can write

ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)
= eq( f (n))

for a rational function f = P/Q ∈Q(X) satisfying the assumptions of Proposition
4.12 (in particular deg(P) < deg(Q)). The first bound follows immediately from
Proposition 4.12(ii), combined with the complete sum estimate∣∣∣∣ ∑

n∈Z/[d1,d2]Z

ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)∣∣∣∣� qε(c1, δ1)(c2, δ2)(d1, d2)

of Lemma 4.8. The second bound similarly follows from Proposition 4.12(i).
Now we consider the case when d > 1. Making the substitution n = n′d + a

and applying the previous argument (with N replaced by N/d, and with suitable
modifications to x0 and f ), we reduce to showing that∣∣∣∣ ∑

n∈Z/[d1,d2]Z
n=a (d)

ed1

(
c1

n+ l1

)
ed2

(
c2

n+ l2

)∣∣∣∣� qε(c1, δ
′

1)(c2, δ
′

2)(d
′

1, d ′2),

where d ′i := di/(d, di ) for i = 1, 2 (note that d(d ′1, d ′2)/[d1, d2] = 1/(δ′1δ
′

2)). How-
ever, this again follows from Lemma 4.8 after making the change of variables
n = n′d + a. �

5. Type I and Type II estimates

Using the estimates of the previous section, we can now prove the Type I and Type II
results of Theorem 2.8, with the exception of part (iii) of that theorem, for which
we only make a preliminary reduction for now. The rest of the proof of that part,
which depends on the concepts and results of Section 6, will be found in Section 8.

We recall the statements (see Definition 2.6):
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Theorem 5.1 (new Type I and Type II estimates). Let$, δ, σ >0 be fixed quantities,
let I be a bounded subset of R, let i ≥1 be fixed, let a (PI ) be a primitive congruence
class, and let M, N � 1 be quantities with

M N � x (5-1)

and
x1/2−σ

≺≺ N ≺≺ x1/2. (5-2)

Let α, β be coefficient sequences located at scales M, N respectively, with β satis-
fying the Siegel–Walfisz property. Then we have the estimate∑

d∈D(i)
I (x

δ)

d≺≺ x1/2+2$

|1(α ? β; a (d))| � x log−A x (5-3)

for any fixed A > 0, provided that one of the following hypotheses holds:

(i) i = 1, 54$ + 15δ+ 5σ < 1, and N ≺≺ x1/2−2$−c for some fixed c > 0.

(ii) i = 2, 56$ + 16δ+ 4σ < 1, and N ≺≺ x1/2−2$−c for some fixed c > 0.

(iii) i = 4, 160
3 $ + 16δ + 34

9 σ < 1, 64$ + 18δ + 2σ < 1, and N ≺≺ x1/2−2$−c

for some fixed c > 0.

(iv) i = 1, 68$ + 14δ < 1, and N �� x1/2−2$−c for some sufficiently small fixed
c > 0.

The proof of case (iii) uses the general form of the Riemann hypothesis over finite
fields [Deligne 1980], but the proofs of (i), (ii), (iv) only need the Riemann hypothesis
for curves over finite fields.

Before we begin the rigorous proof of Theorem 5.1, we give an informal sketch
of our strategy of proof for these estimates, which is closely modeled on the
arguments of [Zhang 2014]. The basic idea is to reduce the estimate (5-3) to a
certain exponential sum estimate, of the type found in Corollary 4.16 (and, for
the estimate (iii), in Corollary 6.24 of the next section). The main tools for these
reductions are completion of sums (Lemma 4.9), the triangle inequality, and many
techniques related to the Cauchy–Schwarz inequality (viewed in a broad sense), for
instance, Vinogradov’s bilinear form method, the q-van der Corput A-process, the
method of Weyl differencing, and the dispersion method of Linnik.

5A. Bilinear form estimates. We begin with a short discussion of typical instances
of applications of the Cauchy–Schwarz inequality (some examples already appeared
in previous sections). We want to estimate a sum∑

s∈S

cs
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of (typically) complex numbers cs indexed by some finite set S of large size.
Suppose we can parametrize S (possibly with repetition) by a nontrivial product
set A× B, i.e., by a product where neither factor is too small, or otherwise prove
an inequality ∣∣∣∣∑

s∈S

cs

∣∣∣∣≤ ∣∣∣∣∑
a∈A

∑
b∈B

αaβbka,b

∣∣∣∣
for certain coefficients αa , βb and ka,b. The crucial insight is that one can often derive
nontrivial estimates for an expression of this type with little knowledge of the coef-
ficients αa , βb by exploiting the bilinear structure and studying the coefficients ka,b.

Precisely, one can apply the Cauchy–Schwarz inequality to bound the right side by(∑
a∈A

|αa|
2
)1/2(∑

a∈A

∣∣∣∣∑
b∈B

βbka,b

∣∣∣∣2)1/2

.

The first factor in the above expression is usually easy to estimate, and the second
factor can be expanded as∣∣∣∣ ∑

b,b′∈B

βbβb′C(b, b′)
∣∣∣∣1/2, C(b, b′)=

∑
a∈A

ka,bka,b′ .

One can then distinguish between the diagonal contribution defined by b = b′ and
the off-diagonal contribution where b 6= b′. The contribution of the former is∑

b∈B

∑
a∈A

|βb|
2
|ka,b|

2

which is (usually) not small, since there cannot be cancellation between these
nonnegative terms. It may however be estimated satisfactorily, provided B is large
enough for the diagonal {(b, b) : b ∈ B} to be a “small” subset of the square B× B.
(In practice, there might be a larger subset of B× B than the diagonal where the
coefficient C(b, b′) is not small, and that is then incorporated in the diagonal; in
this paper, where b and b′ are integers, it is the size of a greatest common divisor
(b− b′, q) that will dictate which terms can be considered diagonal.)

On the other hand, the individual off-diagonal terms C(b, b′) can be expected
to exhibit cancellation that makes them individually small. In order for the sum
over b 6= b′ to remain of manageable size, one needs B to remain not too large. In
order to balance the two contributions, it turns out to be extremely useful to have a
flexible family of parametrizations (a, b) 7→ s of S by product sets A× B, so that
one can find a parametrization for which the set B is close to the optimum size
arising from various estimates of the diagonal and nondiagonal parts. This idea
of flexibility is a key idea at least since Iwaniec’s discovery [1980] of the bilinear
form of the error term in the linear sieve.
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One of the key ideas in [Zhang 2014] is that if one is summing over smooth
moduli, then such a flexible range of factorizations exists; to put it another way, the
restriction to smooth moduli is essentially a “well-factorable” weight in the sense
of Iwaniec. In this paper, we isolated the key property of smooth moduli needed for
such arguments, namely, the property of dense divisibility. The general strategy is
thus to keep exploiting the smoothness or dense divisibility of the moduli to split the
sums over such moduli into a “well-factorable” form to which the Cauchy–Schwarz
inequality may be profitably applied. (Such a strategy was already used to optimize
the use of the q-van der Corput A-process in Corollary 4.16.)

5B. Sketch of proofs. We now give a more detailed, but still very informal, sketch
of the proof of Theorem 5.1, omitting some steps and some terms for sake of
exposition (e.g., smooth cutoffs are not mentioned). For simplicity we will pretend
that the quantities $, δ are negligible, although the quantity σ will still be of a
significant size (note from Lemma 2.7 that we will eventually need to take σ to be
at least 1/10). The first step is to exploit the dense divisibility of the modulus d to
factor it as d = qr , with q, r located at certain scales Q, R which we will specify
later; with $ negligible, we expect Q R to be approximately equal to x1/2 but a bit
larger. Our task is then to obtain a nontrivial bound on the quantity∑

q�Q

∑
r�R

|1(α ? β; a (qr))|,

or equivalently to obtain a nontrivial bound on∑
q�Q

∑
r�R

cq,r1(α ? β; a (qr))

for an arbitrary bounded sequence cq,r . We suppress here, and later, some additional
information on the moduli q, r , e.g., that they are squarefree and coprime, to
simplify this informal exposition. For similar reasons, we are being vague on what a
“nontrivial bound” means, but roughly speaking, it should improve upon the “trivial
bound” by a factor of log−A x , where A is very large (or arbitrarily large).

If we insert the definition (1-1), and denote generically by EMT the contribution
of the second term in that definition (which is the “expected main term”), we see
that we need a nontrivial bound on the quantity∑

q�Q

∑
r�R

cq,r

∑
n=a (qr)

α ? β(n)−EMT.

For simplicity, we will handle the r averaging trivially, and thus seek to control
the sum ∑

q�Q

cq,r

∑
n=a (qr)

α ? β(n)−EMT
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for a single r � R. We rearrange this as∑
m�M

α(m)
∑
q�Q

cq,r

∑
n�N

nm=a (qr)

β(n)−EMT.

Note that for fixed m coprime with q, the number of pairs (q, n) with q � Q,
n � N , and nm = a (qr) is expected to be about (QN )/(Q R)= N/R. Thus, if we
choose R to be a little bit less than N , e.g., R = x−εN , then the number of pairs
(q, n) associated to a given value of m is expected to be nontrivial. This opens up
the possibility of using the dispersion method of [Linnik 1963], as the diagonal
contribution in that method is expected to be negligible. Accordingly, we apply
Cauchy–Schwarz in the variable m, eliminating the rough coefficient sequence α,
and end up with the task of controlling an expression of the shape∑

m�M

∣∣∣∣∑
q�Q

cq,r

∑
n�N

nm=a (qr)

β(n)−EMT
∣∣∣∣2.

Opening the square as sketched above, this is equal to∑
q1,q2�Q

cq1,r cq2,r

∑∑
n1,n2�N

β(n1)β(n2)

( ∑
m�M

n1m=a (q1r)
n2m=a (q2r)

1−EMT
)
.

Note that, since a (qr) is a primitive residue class, the constraints n1m = a (q1r)
and n2m = a (q2r) imply n1 = n2 (r). Thus we can write n2 = n1 + `r for
some `= O(N/R), which will be rather small (compare with the method of Weyl
differencing).

For simplicity, we consider only3 the case `= 0 here. We are thus led to the task
of controlling sums such as∑

q1,q2�Q

cq1,r cq2,r

∑
n�N

β(n)β(n)
( ∑

m�M
nm=a (q1r)
nm=a (q2r)

1−EMT
)
. (5-4)

It turns out (using a technical trick of Zhang which we will describe below) that
we can ensure that the moduli q1, q2 appearing here are usually coprime, in the
sense that the contribution of the noncoprime pairs q1, q2 are negligible. Assuming
this, we can use the Chinese remainder theorem to combine the two constraints
nm= a (q1r), nm= a (q2r) into a single constraint nm= a (q1q2r) on m. Now, we

3Actually, for technical reasons, in the rigorous argument we will dispose of the `= 0 contribution
by a different method, so the discussion here should be viewed as an oversimplification.
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note that if R is slightly less than N , then (since M N is close to x , and Q R is close
to x1/2) the modulus q1q2r is comparable to M . This means that the inner sum∑

m�M
nm=a (q1q2r)

1−EMT

is essentially a complete sum, and can therefore be very efficiently handled by
Lemma 4.9. This transforms (5-4) into expressions such as∑

0<|h|≤H

ch

∑
q1,q2�Q

cq1,r cq2,r

∑
n�N

β(n)β(n)eq1q2r

(ah
n

)
,

where H ≈ Q2 R/M is a fairly small quantity and the coefficients ch are bounded.
At this point, the contribution of the zero frequency h = 0 has canceled out with
the expected main term EMT (up to negligible error).

This expression involves the essentially unknown (but bounded) coefficients cq1,r ,
cq2,r , β(n), and, as before, we cannot do much more than eliminate them using the
Cauchy–Schwarz inequality. This can be done in several ways here, depending
on which variables are taken “outside” of the Cauchy–Schwarz inequality. For
instance, if we take n to eliminate the β(n)β(n) term, we are led, after expanding
the square and exchanging the sum in the second factor of the Cauchy–Schwarz
inequality, to expressions such as∑

0<|h1|,|h2|≤H

∑∑
q1,q2,s1,s2�Q

∣∣∣∣∑
n�N

eq1q2r

(
ah1

n

)
es1s2r

(
−

ah2

n

)∣∣∣∣.
The sum over n has length N close to the modulus [q1q2r, s1s2r ] ≈ Q4 R, and
therefore can be estimated nontrivially using Corollary 4.16. As we will see, this
arrangement of the Cauchy–Schwarz inequality is sufficient to establish the Type II
estimate (iv).

The Type I estimates are obtained by a slightly different application of Cauchy–
Schwarz. Indeed, note for instance that as the parameter σ (which occurs in the
Type I condition, but not in Type II) gets larger, the length N in the sum may
become smaller in comparison to the modulus q1q2s1s2r in the exponential sum∑

n�N

eq1q2r

(
ah1

n

)
es1s2r

(
−

ah2

n

)
,

and this necessitates more advanced exponential sum estimates to recover nontrivial
cancellation. Here, the q-van der Corput A-method enlarges the range of parameters
for which we can prove that such a cancellation occurs. This is one of the main
reasons why our Type I estimates improve on those in [Zhang 2014]. (The other main
reason is that we will adjust the Cauchy–Schwarz inequality to lower the modulus
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in the exponential sum to be significantly smaller than q1q2s1s2r � Q4 R, while still
keeping both the diagonal and off-diagonal components of the Cauchy–Schwarz
estimate under control.)

5C. Reduction to exponential sums. We now turn to the details of the above
strategy. We begin with preliminary manipulations (mostly following [Zhang
2014]) to reduce the estimate (5-3) to a certain exponential sum estimate. This
reduction can be done simultaneously in the four cases (i), (ii), (iii), (iv), but the
verification of the exponential sum estimate requires a different argument in each
of the four cases.

In the remainder of this section$, δ, σ, I, i, a,M, N , α, β are as in Theorem 5.1.
First of all, since β satisfies the Siegel–Walfisz property, the Bombieri–Vinogradov
theorem (Theorem 2.9) implies∑

d≤x1/2 log−B x

|1(α ? β; a (d))| � x log−A x (5-5)

for any fixed A> 0 and some B depending on A. From this and dyadic decomposi-
tion, we conclude that to prove (5-3), it suffices to establish the estimate∑

d∈D(i)
I (x

δ)∩[D,2D]

|1(α ? β; a (d))| � x log−A x

for any fixed A > 0 and for all D such that

x1/2
≺≺ D≺≺ x1/2+2$ (5-6)

(recall that this means x1/2
� xo(1)D and D� x1/2+2$+o(1) for any ε > 0).

We now fix one such D. In the spirit of [Zhang 2014], we first restrict d to
moduli which do not have too many small prime factors. Precisely, let

D0 := exp(log1/3 x), (5-7)

and let E(D) be the set of d ∈ [D, 2D] such that∏
p|d

p≤D0

p > exp(log2/3 x). (5-8)

We have (compare [Fouvry 1985, Lemme 4]):

Lemma 5.2. For any fixed A > 0, and D obeying (5-6), we have

|E(D)| � D log−A x .



New equidistribution estimates of Zhang type 2119

Proof. If d ≥ 1 satisfies (5-8), then∏
p|d

p≤D0

p > exp(log2/3 x)= Dlog1/3 x
0 .

In particular, d has at least log1/3 x prime factors, and therefore

τ(d)≥ 2log1/3 x .

On the other hand, we have∑
D≤d≤2D
τ(d)≥κ

1≤
1
κ

∑
D≤d≤2D

τ(d)�
D
κ

log x

for any κ > 0 by the standard bound∑
D≤d≤2D

τ(d)� D log x

(see (1-3)), and the result follows. �

This allows us to dispose of these exceptional moduli:

Corollary 5.3. We have∑
d∈D(i)

I (x
δ)

d∈E(D)

|1(α ? β; a (d))| � x log−A x

for any fixed A > 0.

Proof. From (1-4) we derive the trivial bound

|1(α ? β; a (d))| � x D−1τ(d)O(1) logO(1) x,

for every d � D, and hence the Cauchy–Schwarz inequality gives∑
d∈D(i)

I (x
δ)

d∈E(D)

|1(α ? β; a (d))| � |E(D)|1/2x D−1 logO(1) x
( ∑

d∈E(D)

τ(d)O(1)
)1/2

� x log−A x

by Lemma 5.2 and (1-3). �

It therefore suffices to show that∑
d∈D(i)

I (x
δ)

d∈[D,2D]\E(D)

|1(α ? β; a (d))| � x log−A x (5-9)

for any fixed A > 0.
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Let ε>0 be a small fixed quantity to be chosen later. From (5-2) and (5-6) we have

1≤ x−3εN ≤ D

for x large enough. Let j ≥ 0 and k ≥ 0 be fixed integers such that

i − 1= j + k. (5-10)

Then any integer d ∈D(i)
I (x

δ) can by definition (see Definition 2.1) be factored as
d = qr , where q ∈ D

( j)
I (xδ), r ∈ D(k)

I (x
δ), and

x−3ε−δN ≤ r ≤ x−3εN .

Remark 5.4. The reason that r is taken to be slightly less than N is to ensure that
a diagonal term is manageable when the time comes to apply the Cauchy–Schwarz
inequality. The factor of 3 in the exponent is merely technical, and should be
ignored on a first reading (ε will eventually be set to be very small, so the constants
in front of ε will ultimately be irrelevant).

Let d ∈ [D, 2D]\E(D), so that

s =
∏
p|d

p≤D0

p ≺≺ 1.

Then replacing q by q/(q, s) and r by r(q, s), we obtain a factorization d = qr
where q has no prime factor ≤ D0 and

x−3ε−δN ≺≺ r ≺≺ x−3εN . (5-11)

By Lemma 2.10(0), (i), we have

q ∈ D( j)(sxδ)= D( j)(xδ+o(1)), r ∈ D(k)(sxδ)= D(k)(xδ+o(1)).

In particular, q ∈D
( j)
J (x

δ+o(1)), where J := I ∩ (D0,+∞). As i ≥ 1, we also have
qr = d ∈ DI (xδ)= D(1)

I (x
δ).

Remark 5.5. The reason for removing all the small prime factors from q will
become clearer later, when the Cauchy–Schwarz inequality is invoked to replace
the single parameter q with two parameters q1, q2 in the same range. By excluding
the small primes from q1, q2, this will ensure that q1 and q2 will almost always be
coprime, which will make things much simpler.
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The next step is to perform dyadic decompositions of the range of the q and r vari-
ables, which (in view of (5-1)) reduces the proof of (5-9) to the proof of the estimates∑∑

q∈D
( j)
J (xδ+o(1))∩[Q,2Q]

r∈D(k)
I (xδ+o(1))∩[R,2R]

qr∈DI (xδ)

|1(α ? β; a (qr))| � M N log−A x

for any fixed A > 0 and any Q, R obeying the conditions

x−3ε−δN ≺≺ R ≺≺ x−3εN , (5-12)

x1/2
≺≺ Q R≺≺ x1/2+2$ . (5-13)

We note that these inequalities also imply that

N Q≺≺ x1/2+2$+δ+3ε. (5-14)

For future reference we also claim the bound

RQ2
� x . (5-15)

In cases (i)–(iii) of Theorem 5.1, we have σ + 4$ + δ < 1
2 (with plenty of room

to spare), and (5-15) then easily follows from (5-12), (5-13), and (5-2). For case (i),
we have 6$ + δ < 1

2 , and we may argue as before, but with (5-2) replaced by the
bound N � x1/2−2$−c.

Let Q, R be as above. We will abbreviate∑
q

Aq =
∑

q∈D
( j)
J (xδ+o(1))∩[Q,2Q]

Aq (5-16)

and ∑
r

Ar =
∑

r∈D(k)
I (xδ+o(1))∩[R,2R]

Ar (5-17)

for any summands Aq , Ar .
We now split the discrepancy by writing

1(α ? β; a (qr))=11(α ? β; a (qr))+12(α ? β; a (qr)),

where

11(α ? β; a (qr)) :=
∑

n=a (qr)

(α ? β)(n)−
1

ϕ(q)

∑
(n,q)=1
n=a (r)

(α ? β)(n),

12(α ? β; a (qr)) :=
1

ϕ(q)

∑
(n,q)=1
n=a (r)

(α ? β)(n)−
1

ϕ(qr)

∑
(n,qr)=1

(α ? β)(n).
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The second term can be dealt with immediately:

Lemma 5.6. We have∑∑
q,r :qr∈DI (xδ)

|12(α ? β; a (qr))| � N M log−A x

for any fixed A > 0.

Proof. Since r ≤ 2R� x1/2+o(1)−3ε, the Bombieri–Vinogradov theorem (Theorem
2.9), applied for each q to αq ? βq , where αq = α1(n,q)=1, βq = 1(n,q)=1, gives∑

R≤r≤2R
qr∈DI (xδ)

∣∣∣∣ ∑
(n,q)=1
n=a (r)

(α ? β)(n)−
1
ϕ(r)

∑
(n,qr)=1

(α ? β)(n)
∣∣∣∣� N M log−A x,

since βq inherits the Siegel–Walfisz property from β. Dividing by ϕ(q) and summing
over q ≤ 2Q, we get the result using the standard estimate∑

q

1
ϕ(q)

� log x . �

To deal with 11, it is convenient to define

10(α ? β; a, b1, b2)=
∑

n=a (r)
n=b1 (q)

(α ? β)(n) −
∑

n=a (r)
n=b2 (q)

(α ? β)(n)

for all integers a, b1, b2 coprime to PI . Indeed, we have∑∑
q,r

qr∈DI (xδ)

|11(α ? β; a (qr))| ≤
1

ϕ(PI )

∑
b (PI )
(b,PI )=1

∑∑
q,r

qr∈DI (xδ)

|10(α ? β; a, a, b)|

by the triangle inequality and the Chinese remainder theorem. Hence it is enough
to prove that ∑∑

q,r
qr∈DI (xδ)

|10(α ? β; a, b1, b2)| � N M log−A x (5-18)

for all a, b1, b2 coprime to PI , and this will be our goal. The advantage of this
step is that the two terms in 10 behave symmetrically, in contrast to those in 11

(or 1), and this will simplify the presentation of the dispersion method: in the
notation of [Bombieri et al. 1986; Linnik 1963; Zhang 2014], one only needs to
control S1, and one avoids dealing explicitly with S2 or S3. This is mostly an
expository simplification, however, since the estimation of S1 is always the most
difficult part in applications of the dispersion method.
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The fact that r ≤ R is slightly less than N ensures that the constraint n = a (r)
leaves room for nontrivial averaging of the variable n, and allows us to profitably
use the dispersion method of Linnik. We begin by writing∑∑

q,r
qr∈DI (xδ)

|10(α?β;a,b1,b2)|=
∑∑

q,r
qr∈DI (xδ)

cq,r

( ∑
n=a (r)
n=b1 (q)

(α?β)(n)−
∑

n=a (r)
n=b2 (q)

(α?β)(n)
)
,

where cq,r are complex numbers of modulus 1. Expanding the Dirichlet convolution
and exchanging the sums, we obtain∑∑

q,r
qr∈DI (xδ)

|10(α ? β; a, b1, b2)|

=

∑
r

∑
m

α(m)
(∑∑

mn=a (r)
qr∈DI (xδ)

cq,rβ(n)(1mn=b1 (q)− 1mn=b2 (q))

)
.

By the Cauchy–Schwarz inequality applied to the r and m sums, (2-4), (2-6) and
Lemma 1.3, we have∑∑

q,r
qr∈DI (xδ)

|10(α ? β; a, b1, b2)| ≤ R1/2 M1/2(log x)O(1)

×

(∑
r

∑
m

ψM(m)
∣∣∣∣∑∑

mn=a (r)
qr∈DI (xδ)

cq,rβ(n)(1mn=b1 (q)− 1mn=b2 (q))

∣∣∣∣2)1/2

for any smooth coefficient sequence ψM at scale M such that ψM(m)≥ 1 for m in
the support of β. This means in particular that it is enough to prove the estimate

∑
r

∑
m

ψM(m)
∣∣∣∣∑∑

mn=a (r)
qr∈DI (xδ)

cq,rβ(n)(1mn=b1 (q)− 1mn=b2 (q))

∣∣∣∣2
� N 2 M R−1 log−A x (5-19)

for any fixed A > 0, where ψM is a smooth coefficient sequence at scale M .
Let 6 denote the left-hand side of (5-19). Expanding the square, we find

6 =6(b1, b1)−6(b1, b2)−6(b2, b1)+6(b2, b2), (5-20)

where

6(b1, b2)

:=

∑
r

∑
m

ψM(m)
∑
· · ·

∑
q1,q2,n1,n2

mn1=mn2=a (r)
q1r,q2r∈DI (xδ)

cq1,r cq2,rβ(n1)β(n2)1mn1=b1 (q1)1mn2=b2 (q2)
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for any integers b1 and b2 coprime to PI (where the variables q1 and q2 are subject
to the constraint (5-16)). We will prove that

6(b1, b2)= X + O(N 2 M R−1 log−A x) (5-21)

for all b1 and b2, where the main term X is independent of b1 and b2. From (5-20),
the desired conclusion (5-19) then follows.

Since a is coprime to qr , so are the variables n1 and n2 in the sum. In particular,
they satisfy the congruence n1 = n2 (r). We write n2 = n1+ `r in the sum, rename
n1 as n, and therefore obtain

6(b1, b2)=
∑

r

∑
`

∑∑
q1,q2

q1r,q2r∈DI (xδ)

(
cq1,r cq2,r

∑
n

β(n)β(n+ `r)

×

∑
m

ψM(m)1mn=b1 (q1)1m(n+`r)=b2 (q2)1mn=a (r)

)
after some rearranging (remembering that (n, q1r)= (n+ `r, q2r)= 1). Note that
the sum over ` is restricted to a range 0≤ |`| � L := N R−1.

We will now complete the sum in m (which is long since M is just a bit smaller
than the modulus [q1, q2]r ≤ Q2 R) using Lemma 4.9(ii), but first we handle sepa-
rately the diagonal case n1=n2, i.e., `=0. This contribution, say T (b1, b2), satisfies

|T (b1,b2)| ≤
∑

r

∑∑
q1,q2

q1r,q2r∈DI (xδ)

∑
n

|β(n)|2
∑

m

ψM(m)1mn=b1 (q1)1mn=b2 (q2)1mn=a (r)

≺≺

∑
r�R

∑∑
q1,q2�Q

∑
s�x

τ(s)1s=b1 (q1)1s=b2 (q2)1s=a (r)

≺≺

∑
r�R

∑∑
q1,q2�Q

x
r [q1,q2]

≺≺ x � N 2 M R−1 log−A x

(since RQ2
� x (from (5-15)) and R≺≺ x−3εN ).

Now we consider the contributions where ` 6= 0. First, since n and n+ `r are
coprime to q1r and q2r respectively, we have

1mn=b1 (q1)1m(n+`r)=b2 (q2)1mn=a (r) = 1m=γ ([q1,q2]r) (5-22)

for some residue class γ ([q1, q2]r) (which depends on b1, b2, `, n and a). We
will denote (q1, q2) by q0, and observe that since q1, q2 have no prime factor less
than D0, we have either q0 = 1 or q0 ≥ D0. (The first case gives the principal
contribution, and the reader may wish to assume that q0 = 1 in a first reading.) The
sum over n is further restricted by the congruence

b1

n
=

b2

n+ `r
(q0), (5-23)
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and we will use
C(n) := 1b1/n=(b2)/n+`r (q0) (5-24)

to denote the characteristic function of this condition (taking care of the fact that it
depends on other parameters). Observe that, since q0 is coprime to rb1, this is the
characteristic function of a union of at most (b1−b2, q0, `rb1)≤ (q0, `) congruence
classes modulo q0.

By applying Lemma 4.9(ii) to each choice of q1, q2, r, ` (where I is the range of
the remaining parameter n) and summing, we derive

6(b1, b2)=60(b1, b2)+61(b1, b2)+ O(M N 2 R−1 log−A x),

where

60(b1, b2)

:=

(∑
m

ψM(m)
)∑

r

r−1
∑
6̀=0

∑∑
q1,q2

q1r,q2r∈DI (xδ)

cq1,r cq2,r

[q1, q2]

∑
n

β(n)β(n+ `r)C(n)

and
61(b1, b2)� 1+ xε6̂1(b1, b2)

with

6̂1(b1,b2)

:=

∑
r

∑
`6=0

∑∑
q1,q2

q1r,q2r∈DI (xδ)

cq1,r cq2,r
1
H

∑
1≤|h|≤H

∣∣∣∣∑
n

β(n)β(n+`r)C(n)e[q1,q2]r (γ h)
∣∣∣∣,

where
H := xε[q1, q2]r M−1

� xεQ2 RM−1. (5-25)

We caution that H depends on q1 and q2, so one has to take some care if one is to
interchange the h and q1, q2 summations.

Remark 5.7. Before going further, note that H is rather small, since M and R are
close to x1/2 and ε > 0 will be very small: precisely, we have

H � H0 := xε× (Q R)2× N
R
×

1
N M

,

and using (5-12), (5-13) and (5-1), we see that

x4ε
≺≺ H0≺≺ x4$+ε(N/R)≺≺ x4$+δ+4ε. (5-26)

As we will be using small values of $, δ, ε, one should thus think of H as being
quite small compared to x .
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We can deal immediately with 60(b1, b2). We distinguish between the contri-
butions of q1 and q2 which are coprime, and the remainder. The first is indepen-
dent of b1 and b2 (since these parameters are only involved in the factor C(n)=
1b1/n=b2/(n+`r) (q0), which is then always 1) and it will be the main term X ; thus

X :=
(∑

m

ψM(m)
)∑

r

r−1
∑
6̀=0

∑∑
q1,q2

q1r,q2r∈DI (xδ)
(q1,q2)=1

cq1,r cq2,r

[q1, q2]

∑
n

β(n)β(n+ `r).

The remaining contribution to 60(b1, b2), say 6′0(b1, b2), is

�
M(log x)O(1)

R

∑
r�R

∑
|`|�L

∑
16=q0�Q

q0∈SJ

1
q0

∑∑
q1,q2�Q/q0

1
q1q2

∑
n

(τ (n)τ (n+`r))O(1)C(n).

We rearrange to sum over ` first (remember that C(n) depends on ` also). Since
rb1 is coprime with q0, the condition b1/n = b2/(n + `r) (q0) is a congruence
condition modulo q0 for `, and therefore∑
|`|�L

τ(n+`r)O(1)1b1/n=b2/(n+`r) (q0)�

(
1+ L

q0

)
logO(1) x =

(
1+ N

q0 R

)
logO(1) x

by Lemma 1.3. Since all q0 6= 1 in the sum satisfy D0 ≤ q0� Q, we get

6′0(b1, b2)�
M N (log x)O(1)

R

∑
r�R

∑
D0≤q0�Q

1
q0

(
1+ N

q0 R

) ∑∑
q1,q2�Q/q0

1
q1q2

� M N logO(1) x
∑

D0≤q0�Q

1
q0

(
1+ N

q0 R

)
� M N logO(1) x + 1

D0

M N 2

R
logO(1) x

� M N 2 R−1 log−A x,

since R� x−3εN and D0� logA x for all A > 0.
Hence we have shown that

6(b1, b2)= X + O(xε|6̂1(b1, b2)|)+ O(M N 2 R−1 log−A x). (5-27)

From the definition, and in particular the localization of r and the value of H , we have

|6̂1(b1,b2)| ≤
∑

r

∑
`6=0

∑∑
q1,q2

q1r,q2r∈DI (xδ)

1
H

∑
0<|h|≤H

∣∣∣∣∑
n

C(n)β(n)β(n+`r)e[q1,q2]r (γ h)
∣∣∣∣

� x−ε
M

RQ2

∑
1≤|`|�L

∑
q0�Q

q0
∑

r

ϒ`,r (b1,b2;q0), (5-28)
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where q0 is again (q1, q2) and

ϒ`,r (b1, b2; q0) :=∑∑
q1,q2�Q/q0
(q1,q2)=1

(
1q0q1,q0q2∈D

( j)
I (xδ+o(1))

q0q1r,q0q2r∈DI (xδ)

×

∑
1≤|h|�

xεRQ2

q0 M

∣∣∑
n

C(n)β(n)β(n+ `r)8`(h, n, r, q0, q1, q2)
∣∣). (5-29)

The latter expression involves the phase function8`, which we define for parameters
p= (h, n, r, q0, q1, q2) by

8`( p) := er

(
ah

nq0q1q2

)
eq0q1

(
b1h
nrq2

)
eq2

(
b2h

(n+ `r)rq0q1

)
. (5-30)

Here we have spelled out and split, using (5-22) and the Chinese remainder theorem,
the congruence class of γ modulo [q1, q2]r , and changed variables so that q1 is
q0q1, q2 is q0q2 (hence [q1, q2]r becomes q0q1q2r). Moreover, the r summation
must be interpreted using (5-17). It will be important for later purposes to remark
that we also have

6̂1(b1, b2)= 0

unless
xεQ2 R
q0 M

� 1, (5-31)

since otherwise the sum over h is empty.
Gathering these estimates, we obtain the following general reduction statement,

where we pick a suitable value of ( j, k) in each of the four cases of Theorem 5.1:

Theorem 5.8 (exponential sum estimates). Let $, δ, σ > 0 be fixed quantities,
let I be a bounded subset of R, let j , k ≥ 0 be fixed, let a (PI ), b1 (PI ), b2 (PI )

be primitive congruence classes, and let M, N � 1 be quantities satisfying the
conditions (5-1) and (5-2). Let ε > 0 be a sufficiently small fixed quantity, and let
Q, R be quantities obeying (5-12), (5-13). Let ` be an integer with 1≤ |`| � N/R,
and let β be a coefficient sequence located at scale N.

Further, let 8`( p) be the phase function defined by (5-30) for parameters p=
(h, n, r, q0, q1, q2), let C(n) be the cutoff (5-24) and let ϒ`,r (b1, b2; q0) be defined
in terms of β,8,C by (5-29). Then we have∑

r

ϒ`,r (b1, b2; q0)≺≺ x−εQ2 RN (q0, `)q−2
0 (5-32)

for all q0 ∈ SI , where the sum over r is over r ∈ D(k)
I (x

δ+o(1))∩ [R, 2R], provided
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that one of the following hypotheses is satisfied:

(i) ( j, k)= (0, 0), 54$ +15δ+5σ < 1, and N ≺≺ x1/2−2$−c for some fixed c> 0.

(ii) ( j, k)= (1, 0), 56$ +16δ+4σ < 1, and N ≺≺ x1/2−2$−c for some fixed c> 0.

(iii) ( j, k)= (1, 2), 160
3 $+16δ+ 34

9 σ <1, 64$+18δ+2σ <1, and N≺≺ x1/2−2$−c

for some fixed c > 0.

(iv) ( j, k)= (0, 0), 68$+14δ < 1, and N �� x1/2−2$−c for some sufficiently small
fixed c > 0.

The proof of the estimate (iii) requires Deligne’s form of the Riemann hypothesis for
algebraic varieties over finite fields, but the proofs of (i), (ii), (iv) do not.

Indeed, inserting this bound in (5-28) we obtain

xε|6̂(b1, b2)| ≺≺ x−εM N
∑

q0�Q

1
q0

∑
1≤|`|�N R−1

(q0, `)≺≺ x−εM N 2 R−1

(by Lemma 1.4, crucially using the fact that we have previously removed the `= 0
contribution), and hence using (5-27), we derive the goal (5-21).

Remark 5.9. As before, one should consider the q0 = 1 case as the main case,
so that the technical factors of q0, (`, q0), and C(n) should be ignored at a first
reading; in practice, we will usually (though not always) end up discarding several
powers of q0 in the denominator in the final bounds for the q0 > 1 case. The
trivial bound for ϒ`,r (b1, b2; q0) is about (Q/q0)

2 N H , with H = xεRQ2 M−1q−1
0 .

Thus one needs to gain about H over the trivial bound. As observed previ-
ously, H is quite small, and even a modestly nontrivial exponential sum estimate
can suffice for this purpose (after using Cauchy–Schwarz to eliminate factors
such as β(n)β(n+ `r)).

It remains to establish Theorem 5.8 in the four cases indicated. We will do this
for (i), (ii), (iv) below, and defer the proof of (iii) to Section 8. In all four cases, one
uses the Cauchy–Schwarz inequality to eliminate nonsmooth factors such as β(n)
and β(n+ `r), and reduces matters to incomplete exponential sum estimates. In
the cases (i), (ii), (iv) treated below, the one-dimensional exponential sum estimates
from Section 4D suffice; for the final case (iii), a multidimensional exponential
sum estimate is involved, and we will prove it using Deligne’s formalism of the
Riemann hypothesis over finite fields, which we survey in Section 6.

5D. Proof of Type II estimate. We begin with the proof of Theorem 5.8(iv), which
is the simplest of the four estimates to prove. We fix notation and hypotheses as in
this statement.
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To prove (5-32), we will not exploit any averaging in the variable r , and, more
precisely, we will show that

ϒ`,r (b1, b2; q0)≺≺ x−εQ2 N (q0, `)q−2
0 (5-33)

for each q0 ≥ 1, r � R and `� N/R. We abbreviate ϒ = ϒ`,r (b1, b2; q0) in the
remainder of this section, and set

H = xεRQ2 M−1q−1
0 .

By (5-29), we can then write

ϒ =
∑∑

q1,q2�Q/q0
(q1,q2)=1

∑
1≤|h|≤H

ch,q1,q2

∑
n

C(n)β(n)β(n+`r)8`(h,n,r,q0,q1,q2) (5-34)

for some coefficients ch,q1,q2 with modulus at most 1. We then exchange the order
of summation to move the sum over n (and the terms C(n)β(n)β(n+ `r)) outside.
Since C(n) is the characteristic function of at most (q0, `) congruence classes
modulo q0 (as observed after (5-23)), we have∑

n

C(n)|β(n)|2|β(n+ `r)|2≺≺ N
(q0, `)

q0
(5-35)

by Lemma 1.3 (and the Cauchy–Schwarz inequality), using the fact that Q ≤ N .
By another application of the Cauchy–Schwarz inequality, and after inserting

(by positivity) a suitable coefficient sequence ψN (n), smooth at scale N and ≥ 1
for n in the support of β(n)β(n+ `r), we obtain the bound

|ϒ |2≺≺ N
(q0, `)

q0

∑
n

ψN (n)C(n)
∣∣∣∣ ∑∑
q1,q2�Q/q0
(q1,q2)=1

∑
1≤|h|≤H

ch,q1,q28`(h, n, r, q0, q1, q2)

∣∣∣∣2

≺≺ N
(q0, `)

q0

∑
· · ·

∑
q1,q2,s1,s2�Q/q0
(q1,q2)=(s1,s2)=1

∑∑
1≤h1,h2≤|H |

|S`,r (h1, h2, q1, q2, s1, s2)|,

where the exponential sum S`,r = S`,r (h1, h2, q1, q2, s1, s2) is given by

S`,r :=
∑

n

C(n)ψN (n)8`(h1, n, r, q0, q1, q2)8`(h2, n, r, q0, s1, s2). (5-36)

We will prove the following estimate for this exponential sum (compare with
[Zhang 2014, (12.5)]):
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Proposition 5.10. For any

p= (h1, h2, q1, q2, s1, s2)

with (q0q1q2s1s2, r)= 1, any ` 6= 0 and r as above with

q0qi , q0si � Q, r � R,

we have

|S`,r ( p)| ≺≺ (q0, `)

(
q−2

0 Q2 R1/2
+

N
q0 R

(h1s1s2− h2q1q2, r)
)
.

Assuming this, we obtain

|ϒ |2≺≺N
(
(q0,`)

q0

)2 ∑
·· ·

∑
q1,q2,s1,s2�Q/q0
(q1,q2)=(s1,s2)=1

∑∑
1≤h1,h2≤|H |

(
1
q0

Q2 R1/2
+

N
R
(h1s1s2−h2q1q2,r)

)

(since S`,r = 0 unless (q0q1q2s1s2, r)= 1, by the definition (5-30) and the definition
of eq in Section 4).

Making the change of variables 1 = h1s1s2− h2q1q2, and noting that each 1
has at most τ3(1) = |{(a, b, c) : abc = 1}| representations in terms of h2, q1, q2

for each fixed h1, s1, s2, we have∑
· · ·

∑
q1,q2,s1,s2�Q/q0
(q1,q2)=(s1,s2)=1

∑∑
1≤h1,h2≤|H |

(h1s1s2− h2q1q2, r)

≤

∑
|1|�H(Q/q0)2

(1, r)
∑
· · ·

∑
h1,s1,s2

τ3(h1s1s2−1)

≺≺ H
(

Q
q0

)2 ∑
0≤|1|�H(Q/q0)2

(1, r)

≺≺ H
(

Q
q0

)2(H Q2

q2
0
+ R

)
by Lemma 1.3 (bounding τ3 ≤ τ

2) and Lemma 1.4. Therefore we obtain

|ϒ |2≺≺ N
(q0, `)

2

q2
0

{
H 2 Q2 R1/2

q0

(
Q
q0

)4

+
H 2 N

R

(
Q
q0

)4

+ N H
(

Q
q0

)2}
≺≺

N 2 Q4(q0, `)
2

q4
0

{
H 2 Q2 R1/2

N
+

H 2

R
+

H
Q2

}
≺≺

N 2 Q4(q0, `)
2

q4
0

{
x2ε Q6 R5/2

M2 N
+ x2ε RQ4

M2 +
xεR
M

}
, (5-37)
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where we have discarded some powers of q0 ≥ 1 in the denominator to reach the
second and third lines. We now observe that

Q6 R5/2

M2 N
�
(N Q)(Q R)5

x2 R5/2 ≺≺
x1+12$+δ+3ε

R5/2 ≺≺
x1+12$+7δ/2+21ε/2

N 5/2 ,

Q4 R
M2 �

N 2 RQ4

x2 =
(Q R)(N Q)3

x2 N
≺≺

x8$+3δ+9ε

N
,

R
M
�

N R
x
≺≺ x−1−3εN 2

≺≺ x−3ε,

by (5-13) and (5-14) and the bound N ≺≺ M . Under the Type II assumption that
N �� x1/2−2$−c for a small enough c > 0 and that ε > 0 is small enough, we see
that (5-37) implies (5-33) provided $ and δ satisfy{

1+ 12$ + 7δ
2 <

5
2

( 1
2 − 2$

)
,

8$ + 3δ < 1
2 − 2$,

⇐⇒

{
68$ + 14δ < 1,
20$ + 6δ < 1,

both of which are, indeed, consequences of the hypotheses of Theorem 5.8(iv)
(the first implies the second because $ > 0 so δ < 1

14 ).
To finish this treatment of the Type II sums, it remains to prove the proposition.

Proof of Proposition 5.10. For fixed (r, `, q0, a, b1, b2) we can use (5-30) to express
the phase 8` in the form

8`(h, n, r, q0, q1, q2)= e(1)r

(
h

q1q2n

)
e(2)q0q1

(
h

nq2

)
e(3)q2

(
h

(n+ τ)q0q1

)
,

where e(i)d denotes various nontrivial additive characters modulo d which may
depend on (r, `, q0, a, b1, b2) and τ = `r .

We set 81(n)=8`(h1, n, r, q0, q1, q2) and 82(n)=8`(h2, n, r, q0, s1, s2), and
thus we have

81(n)82(n)= e(1)r

(
h1

q1q2n
−

h2

s1s2n

)
e(2)q0q1

(
h1

nq2

)
e(2)q0s1

(
−

h2

ns2

)
× e(3)q2

(
h1

(n+ τ)q0q1

)
e(3)s2

(
−

h2

(n+ τ)q0s1

)
, (5-38)

and this can be written

81(n)82(n)= e(4)d1

(
c1

n

)
e(5)d2

(
c2

n+ τ

)
for some c1 and c2, where

d1 := rq0[q1, s1], d2 := [q2, s2].
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Now, since C(n) is the characteristic function of≤ (q0, `) residue classes modulo
q0, we deduce that

|S`,r |=
∣∣∣∣∑

n

C(n)ψN (n)81(n)82(n)
∣∣∣∣≤(q0, `) max

t∈Z/q0Z

∣∣∣∣ ∑
n=t (q0)

ψN (n)81(n)82(n)
∣∣∣∣,

and by the second part of Corollary 4.16, we derive

|S`,r | ≺≺ (q0, `)

(
[d1, d2]

1/2

q1/2
0

+
N
q0

(c1, δ
′

1)

δ′1

(c2, δ
′

2)

δ′2

)

≺≺ (q0, `)

(
R1/2

(
Q
q0

)2

+
N
q0

(c1, δ
′

1)

δ′1

)
,

where δi = di/(d1, d2) and δ′i = δi/(q0, δi ), since

[d1, d2] ≤ rq0q1q2s1s2� q0 R
(

Q
q0

)4

,
(c2, δ

′

2)

δ′2
≤ 1.

Finally, we have
(c1, δ

′

1)

δ′1
=

∏
p|δ1

p-c1,q0

p ≤
(c1, r)

r

(since r | δ1 and (r, q0)= 1). But a prime p dividing r divides c1 precisely when the
r -component of (5-38) is constant, which happens exactly when p | h1s1s2−h2q1q2,
so that

S`,r ≺≺ (q0, `)R1/2
(

Q
q0

)2

+
(q0, `)N

q0 R
(r, h1s1s2− h2q1q2). �

Remark 5.11. By replacing the lower bound N �� x1/2−2$−c with the lower bound
N ��x1/2−σ , the above argument also yields the estimate Type(1)I [$, δ, σ ]whenever
48$ + 14δ+ 10σ < 1. However, as this constraint does not allow σ to exceed 1

10 ,
one cannot use this estimate as a substitute for Theorem 2.8(ii) or Theorem 2.8(iii).
If one uses the first estimate of Corollary 4.16 in place of the second, one can
instead obtain Type(1)I [$, δ, σ ] for the range 56$ + 16δ + 6σ < 1, which now
does permit σ to exceed 1

10 , and thus gives some version of Zhang’s theorem after
combining with a Type III estimate. However, σ still does not exceed 1

6 , and so
one cannot dispense with the Type III component of the argument entirely with
this Type I estimate. By using a second application of q-van der Corput, though
(i.e., using the l = 3 case of Proposition 4.12 rather than the l = 2 case), it is
possible to raise σ above 1

6 , assuming sufficient amounts of dense divisibility; we
leave the details to the interested reader. Thus it is in fact possible to obtain a
nontrivial equidistribution estimate of the form MPZ[$, δ] using only the Type II
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argument, if one is willing to use a sufficient number of applications of q-van der
Corput, and using any nontrivial power savings on complete exponential sums as
input. However, the Cauchy–Schwarz arguments used here are not as efficient in
the Type I setting as the Cauchy–Schwarz arguments in the sections below, and so
these estimates do not supersede their Type I counterparts.

5E. Proof of first Type I estimate. We will establish Theorem 5.8(i), which is the
easiest of the Type I estimates to prove. The strategy follows closely that of the
previous section. The changes, roughly speaking, are that the Cauchy–Schwarz
argument is slightly modified (so that only the q2 variable is duplicated, rather than
both q1 and q2) and that we use an exponential sum estimate based on the first part
of Corollary 4.16 instead of the second.

As before, we will establish the bound (5-33) for each individual r . We abbreviate
again ϒ = ϒ`,r (b1, b2; q0) and set

H = xεRQ2 M−1q−1
0 .

We begin with the formula (5-34) for ϒ , move the q1 and n sums outside, apply
the Cauchy–Schwarz inequality (and insert a suitable smooth coefficient sequence
ψN (n) at scale N to the n sum), so that we get

|ϒ |2 ≤ ϒ1ϒ2

with
ϒ1 :=

∑
q1�Q/q0

∑
n

C(n)|β(n)|2|β(n+ `r)|2≺≺
N Q(q0, `)

q2
0

(as in (5-35)), and

ϒ2 :=
∑

n

ψN (n)C(n)
∑

q1�Q/q0

∣∣∣∣ ∑
q2�Q/q0
(q1,q2)=1

∑
1≤|h|≤H

ch,q1,q28`(h, n, r, q0, q1, q2)

∣∣∣∣2

=

∑
q1�Q/q0

∑∑
q2,s2�Q/q0

(q1,q2)=(q1,s2)=1

∑∑
1≤h1,h2≤|H |

ch1,q1,q2ch2,q1,s2 S`,r (h1, h2, q1, q2, q1, s2),

where S`,r is the same sum (5-36) as before and the variables (q1, q2, s2) are
restricted by the condition q0q1r, q0q2r, q0s2r ∈DI (xδ) (recall the definition (5-29)).

We will prove the following bound:

Proposition 5.12. For any

p= (h1, h2, q1, q2, q1, s2)

with (q0q1q2s2, r)= 1 and for any ` 6= 0 and r as above with

q0qir, q0s2r ∈ DI (xδ) and q0qi � Q, q0s2� Q, r � R,
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we have

|S`,r ( p)| ≺≺ q1/6
0 N 1/2xδ/6(Q3 R)1/6+ R−1 N (h1s2− h2q2, r).

We first conclude assuming this estimate: arguing as in the previous section to
sum the greatest common divisors (h1s2− h2q2, r), we obtain

ϒ2≺≺

(
Q
q0

)3

H 2
{

q1/6
0 N 1/2(Q3 R)1/6xδ/6+

N
R

}
+ H N

(
Q
q0

)2

,

and therefore

|ϒ |2≺≺
N Q(q0, `)

q2
0

{
q1/6

0

(
Q
q0

)3

H 2 N 1/2(Q3 R)1/6xδ/6+
(

Q
q0

)3 H 2N
R
+H N

(
Q
q0

)2}
≺≺

N 2 Q4(q0, `)
2

q4
0

{
H 2 Q1/2 R1/6xδ/6

N 1/2 +
H 2

R
+

H
Q

}
,

where we once again discard some powers of q0 ≥ 1 from the denominator. Using
again (5-13) and (5-14) and N ≺≺ M , we find that

H 2 Q1/2 R1/6xδ/6

N 1/2 ≺≺ xδ/6+2ε R13/6 Q9/2

M2 N 1/2 ≺≺ x−2+δ/6+2ε N 3/2(Q R)9/2

R7/3

≺≺
x1/4+9$+5δ/2+9ε

N 5/6 ,

H 2

R
≺≺

x8$+3δ+11ε

N
,

H
Q
≤ xε

RQ
M
≺≺

x1/2+2$+ε

M
≺≺ x−c+ε,

and using the assumption N �� x1/2−σ from (5-2), we will derive (5-33) if c = 3ε,
ε > 0 is small enough, and{1

4 + 9$ + 5 δ2 <
5
6

( 1
2 − σ

)
,

8$ + 3δ < 1
2 − σ,

⇐⇒

{
54$ + 15δ+ 5σ < 1,
16$ + 6δ+ 2σ < 1.

For $ , δ, σ > 0, the first condition implies the second (as its coefficients are larger).
Since the first condition is the assumption of Theorem 5.8(i), we are then done.

We now prove the exponential sum estimate.

Proof of Proposition 5.12. We set

81(n)=8`(h1, n, r, q0, q1, q2), 82(n)=8`(h2, n, r, q0, q1, s2),

as in the proof of Proposition 5.10, and we write

81(n)82(n)= e(4)d1

(
c1

n

)
e(5)d2

(
c2

n+ τ

)
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for some c1 and c2, where

d1 := rq0q1, d2 := [q2, s2].

Since rq0q1, rq0q2 and rq0s2 are xδ-densely divisible, Lemma 2.10(ii) implies
that the least common multiple [d1, d2] = [rq0q1, rq0q2, rq0s2] is also xδ-densely
divisible.

Splitting again the factor C(n) into residue classes modulo q0, and applying the
first part of Corollary 4.16 to each residue class, we obtain

|S`,r | ≺≺ (q0, `)

(
N 1/2

q1/2
0

[d1, d2]
1/6xδ/6+

N
q0

(c1, δ
′

1)

δ1

(c2, δ
′

2)

δ′2

)
,

where δi=di/(d1, d2) and δ′i=δi/(q0, δi ). Again, as in the proof of Proposition 5.10,
we conclude by observing that [d1, d2] ≤ Q3 R/q0 and (c2, δ

′

2)/δ
′

2 ≤ 1, while

(c1, δ
′

1)

δ′1
≤
(c1, r)

r
,

and inspection of the r -component of 81(n)82(n) using (5-30) shows that a prime
p | r divides c1 if and only if p | h1s2− h2q2. �

5F. Proof of second Type I estimate. We finish this section with the proof of
Theorem 5.8(ii). The idea is very similar to the previous Type I estimate, the main
difference being that since q1 (and q2) is densely divisible in this case, we can split
the sum over q1 to obtain a better balance of the factors in the Cauchy–Schwarz
inequality.

As before, we will prove the bound (5-33) for individual r , and we abbreviate
ϒ = ϒ`,r (b1, b2; q0) and set

H = xεRQ2 M−1q−1
0 .

We may assume that H ≥ 1, since otherwise the bound is trivial. We note that q0q1

is, by assumption, xδ+o(1)-densely divisible, and therefore by Lemma 2.10(i) q1 is
y-densely divisible with y = q0xδ+o(1). Furthermore we have

x−2εQ/H �� xc−3ε

by (5-13) and M �� x1/2+2$+c, and

x−2εQ/H ≺≺ q1 y = q1q0xδ+o(1)

since q1q0 � Q and H ≥ 1. Thus (assuming c > 3ε) we have the factorization

q1 = u1v1,
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where u1, v1 are squarefree with

q−1
0 x−δ−2εQ/H ≺≺ u1≺≺ x−2εQ/H,

q−1
0 x2εH ≺≺ v1≺≺ xδ+2εH

(either from dense divisibility if x−2εQ/H≺≺q1, or taking u1=q1,v1=1 otherwise).
Define ϒU,V to be∑

1≤|h|≤H

∑
u1�U

∑
v1�V

∑
q2�Q/q0

(u1v1,q0q2)=1

∣∣∣∣∑
n

C(n)β(n)β(n+ `r)8`(h, n, r, q0, u1v1, q2)

∣∣∣∣,
where u1, v1 are understood to be squarefree.

By dyadic decomposition of the sum over q1 = u1v1 in ϒ , it is enough to
prove that

ϒU,V ≺≺ x−ε(q0, `)Q2 Nq−2
0 (5-39)

whenever

q−1
0 x−δ−2εQ/H ≺≺U ≺≺ x−2εQ/H, (5-40)

q−1
0 x2εH ≺≺ V ≺≺ xδ+2εH, (5-41)

U V � Q/q0. (5-42)

We replace the modulus by complex numbers ch,u1,v1,q2 of modulus at most 1,
move the sum over n, u1 and q2 outside and apply the Cauchy–Schwarz inequality
as in the previous sections to obtain

|ϒU,V |
2
≤ ϒ1ϒ2,

with

ϒ1 :=
∑∑

u1�U
q2�Q/q0

∑
n

C(n)|β(n)|2|β(n+ `r)|2≺≺ (q0, `)
N QU

q2
0

as in (5-35) and

ϒ2 :=
∑∑

u1�U
q2�Q/q0

∑
n

ψN (n)C(n)
∣∣∣∣ ∑
v1�V ;(u1v1,q0q2)=1

∑
1≤|h|≤H

(
ch,u1,v1,q2

×8`(h, n, r, q0, u1v1, q2)
)∣∣∣∣2

=

∑∑
u1�U

q2�Q/q0

∑∑
v1,v2�V ;(u1v1v2,q0q2)=1

∑∑
1≤|h1|,|h2|≤H

(
ch1,u1,v1,q2ch2,u1,v2,q2

× T`,r (h1, h2, u1, v1, v2, q2, q0)
)
,
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where the exponential sum T`,r is a variant of S`,r given by

T`,r :=
∑

n

C(n)ψN (n)8`(h1, n, r, q0, u1v1, q2)8`(h2, n, r, q0, u1v2, q2). (5-43)

The analogue of Propositions 5.10 and 5.12 is:

Proposition 5.13. For any

p= (h1, h2, u1, v1, v2, q2, q0)

with (u1v1v2, q0q2)= (q0, q2)= 1, any ` 6= 0 and r as above, we have

|T`,r ( p)| ≺≺ (q0, `)

(
q−1/2

0 N 1/2xδ/3+ε/3(RH Q2)1/6+
N

q0 R
(h1v2− h2v1, r)

)
.

Assuming this, we derive as before that

ϒ2≺≺ (q0, `)H 2U V 2
(

Q
q0

){
N 1/2(RH Q2)1/6xδ/3+ε/3+

N
R

}
+ H NU V

(
Q
q2

0

)
,

and then

|ϒU,V |
2

≺≺ (q0, `)
2 N QU

q0

{
H 2 Q3 N 1/2(H Q2 R)1/6xδ/3+ε/3

Uq3
0

+
H 2 N Q3

U Rq3
0

+ H N
(

Q2

q3
0

)}
≺≺ (q0, `)

2 N 2 Q4

q4
0

{
H 13/6 Q1/3 R1/6xδ/3+ε/3

N 1/2 +
H 2

R
+

H
V q0

}
since U V � Q/q0, where we have again discarded a factor of q0 in the first line.
Using again (5-13), (5-14) and (5-41), we find that

H 13/6 Q1/3 R1/6xδ/3+ε/3

N 1/2 ≺≺ xδ+5ε/2 R7/3 Q14/3

N 1/2 M13/6 ≺≺ x1/6+28$/3+δ/3+5ε/2 N 5/3

R7/3

≺≺
x28$/3+8δ/3+1/6+19ε/2

N 2/3 ,

H 2

R
≺≺

x8$+3δ+11ε

N
,

H
V q0
≺≺ x−2ε,

and therefore (5-39) holds for sufficiently small ε provided{ 28$
3 +

8δ
3 +

1
6 <

2
3

( 1
2 − σ

)
,

8$ + 3δ < 1
2 − σ,

⇐⇒

{
56$ + 16δ+ 4σ < 1,
16$ + 6δ+ 2σ < 1.

Again the first condition implies the second, and the proof is completed. �
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Proof of Proposition 5.13. We proceed as in the previous cases. Setting

81(n) :=8`(h1, n, r, q0, u1v1, q2), 82(n) :=8`(h2, n, r, q0, u1v2, q2)

for brevity, we may write

81(n)82(n)= e(4)d1

(
c1

n

)
e(5)d2

(
c2

n+ τ

)
by (5-30) for some c1 and c2 and τ , where

d1 := rq0u1[v1, v2], d2 := q2.

Since rq0u1v1, rq0u1v2 and rq0q2 are xδ-densely divisible, Lemma 2.10(ii) implies
that their gcd [d1, d2] is also xδ-densely divisible.

Splitting again the factor C(n) into residue classes modulo q0, and applying the
first part of Corollary 4.16 to each residue class, we obtain

|T`,r | ≺≺ (q0, `)

(
N 1/2

q1/2
0

[d1, d2]
1/6xδ/6+

N
q0

(c1, δ
′

1)

δ′1

(c2, δ
′

2)

δ′2

)
,

where δi = di/(d1, d2) and δ′i = δi/(q0, δi ). We conclude as before by observing that

[d1, d2] � Q RU V 2
≺≺ xδ+2ε H Q2 R

q0
,

by (5-41) and (5-42), that (c2, δ2)/δ2 ≤ 1 and that (c1, δ)/δ1 ≤ (c1, r)/r , where
inspection of the r -component of 81(n)82(n) using (5-30) shows that a prime p | r
divides c1 if and only if p | h1v2− h2v1. �

6. Trace functions and multidimensional exponential sum estimates

In this section (as in Section 4), we do not use the standard asymptotic convention
(Definition 1.2), since we discuss general ideas that are of interest independently of
the goal of bounding gaps between primes.

We will discuss some of the machinery and formalism of `-adic sheaves F on
curves4 and their associated Frobenius trace functions tF. This will allow us to
state and then apply the deep theorems of Deligne’s general form of the Riemann
hypothesis over finite fields for such sheaves. We will use these theorems to
establish certain estimates for multivariable exponential sums which go beyond the
one-dimensional estimates obtainable from Lemma 4.2 (specifically, the estimates
we need are stated in Corollary 6.24 and Corollary 6.26).

4In our applications, the only curves U we deal with are obtained by removing a finite number of
points from the projective line P1.
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The point is that these Frobenius trace functions significantly generalize the
rational phase functions x 7→ ep(P(x)/Q(x)) which appear in Lemma 4.2. They
include more general functions, such as the hyper-Kloosterman sums

x 7→
(−1)m−1

p
m−1

2

∑
· · ·

∑
y1,...,ym∈Fp
y1···ym=x

ep(y1+ · · ·+ ym),

and satisfy a very flexible formalism. In particular, the class of Frobenius trace
functions is (essentially) closed under basic operations such as pointwise addition
and multiplication, complex conjugation, change of variable (pullback), and the
normalized Fourier transform. Using these closure properties allows us to build a
rich class of useful trace functions from just a small set of basic trace functions. In
fact, the sheaves we actually use in this paper are ultimately obtained from only
two sheaves: the Artin–Schreier sheaf and the third hyper-Kloosterman sheaf.5

However, we have chosen to discuss more general sheaves in this section in order
to present the sheaf-theoretic framework in a more natural fashion.

Because exponential sums depending on a parameter are often themselves trace
functions, one can recast many multidimensional exponential sums (e.g.,∑

x1,...,xn∈Fp

ep( f (x1, . . . , xn))

for some rational function f ∈ Fp(X1, . . . , Xn)) in terms of one-dimensional sums
of Frobenius trace functions. As a very rough first approximation, [Deligne 1980]
implies that the square root cancellation exhibited in Lemma 4.2 is also present
for these more general sums of Frobenius trace functions, as long as certain degen-
erate cases are avoided. Therefore, at least in principle, this implies square root
cancellation for many multidimensional exponential sums.

In practice, this is often not entirely straightforward, as we will explain. One
particular issue is that the bounds provided by Deligne’s theorems depend on a
certain measure of complexity of the `-adic sheaf defining the trace function, which
is known as the conductor of a sheaf. In estimates for sums of trace functions,
this conductor plays the same role that the degrees of the polynomials f, g play in
Lemma 4.2. We will therefore have to expend some effort to control the conductors
of various sheaves before we can extract usable estimates from Deligne’s results.

This section is not self-contained, and assumes a certain amount of prior formal
knowledge of the terminology of `-adic cohomology on curves. For readers who
are not familiar with this material, we would recommend as references such surveys

5One can even reduce the number of generating sheaves to one, because the sheaf-theoretic Fourier
transform, combined with pullback via the inversion map x 7→ 1/x , may be used to iteratively build
the hyper-Kloosterman sheaves from the Artin–Schreier sheaf.
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as [Iwaniec and Kowalski 2004, §11.11; Kowalski 2010; Fouvry et al. 2014c], and
some of the books and papers of Katz, in particular [1980; 2001; 1988], as well
as Deligne’s own account [SGA 1977, Sommes trigonométriques]. We would like
to stress that if the main results of the theory are assumed and the construction
of some main objects (e.g., the Artin–Schreier and hyper-Kloosterman sheaves)
is accepted, working with `-adic sheaves essentially amounts to studying certain
finite-dimensional continuous representations of the Galois group of the field Fp(X)
of rational functions over Fp.

Alternatively, for the purposes of establishing only the bounds on (incomplete)
multivariable exponential sums used in the proofs of the main theorems of this paper
(namely the bounds in Corollary 6.24 and Corollary 6.26), it is possible to ignore
all references to sheaves, if one accepts the estimates on complete multidimensional
exponential sums in Proposition 6.11 and Theorem 6.17 as “black boxes”; the
estimates on incomplete exponential sums will be deduced from these results via
completion of sums and the q-van der Corput A-process.

6A. `-adic sheaves on the projective line. For p a prime, we fix an algebraic
closure Fp of Fp and denote by k ⊂ Fp = k a finite extension of Fp. Its cardinality is
usually denoted |k| = p[k:Fp] = pdeg(k)

= q. For us, the Frobenius element relative
to k means systematically the geometric Frobenius Frk , which is the inverse in
Gal(k/k) of the arithmetic Frobenius, x 7→ xq on k.

We denote by K = Fp(t) the function field of the projective line P1
Fp

and by
K ⊃ Fp some separable closure; let η = Spec(K ) be the corresponding geometric
generic point.

We fix another prime ` 6= p, and we denote by ι :Q` ↪→ C an algebraic closure
of the field Q` of `-adic numbers, together with an embedding into the complex
numbers. By an `-adic sheaf F on a noetherian scheme X (in practice, a curve),
we always mean a constructible sheaf of finite-dimensional Q`-vector spaces with
respect to the étale topology on X , and we recall that the category of `-adic sheaves
is abelian.

We will be especially interested in the case X = P1
k (the projective line) and we

will use the following notation for the translation, dilation, and fractional linear
maps from P1 to itself:

[+l] : x 7→ x + l,

[×a] : x 7→ ax,

γ : x 7→ γ · x =
ax + b
cx + d

for γ =
(

a b
c d

)
∈ GL2(Fp).

We will often transform a sheaf F on P1
k by applying pullback by one of the above

maps, and we denote these pullback sheaves by [+l]∗F, [×a]∗F and γ ∗F.
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6A.1. Galois representations. The category of `-adic sheaves on P1
k admits a

relatively concrete description in terms of representations of the Galois group
Gal(K/k.K ). We recall some important features of it here, and we refer to [Katz
1980, 4.4] for a complete presentation.

For j : U ↪→ P1
k some nonempty open subset defined over k, we denote by

π1(U ) and π g
1 (U ) the arithmetic and geometric fundamental groups of U , which

may be defined as the quotients of Gal(K/k.K ) and Gal(K/k.K ), respectively, by
the smallest closed normal subgroup containing all the inertia subgroups above
the closed points of U . We have then a commutative diagram of short exact
sequences of groups

1 Gal(K/k.K ) Gal(K/k.K ) Gal(k/k) 1

1 π
g
1 (U ) π1(U ) Gal(k/k) 1

= (6-1)

Given an `-adic sheaf F on P1
k , there exists some nonempty (hence dense, in the

Zariski topology) open set j :U ↪→ P1
k such that the pullback j∗F (the restriction

of F to U ) is lisse, or in other words, for which j∗F “is” a finite-dimensional
continuous representation ρF of Gal(K/k.K ) factoring through π1(U )

ρF : Gal(K/k.K )� π1(U )→ GL(Fη),

where the geometric generic stalk Fη of F is a finite-dimensional Q`-vector space.
Its dimension is the (generic) rank of F and is denoted rk(F). There is a maximal
(with respect to inclusion) open subset on which F is lisse, which will be denoted
by UF.

We will freely apply the terminology of representations to `-adic sheaves. The
properties of ρF as a representation of the arithmetic Galois group Gal(K/k.K )
(or of the arithmetic fundamental group π1(U )) will be qualified as “arithmetic”,
while the properties of its restriction ρg

F to the geometric Galois group Gal(K/k.K )
(or the geometric fundamental group π g

1 (U )) will be qualified as “geometric”. For
instance, we will say that F is arithmetically irreducible (resp. geometrically irre-
ducible) or arithmetically isotypic (resp. geometrically isotypic) if the corresponding
arithmetic representation ρF (resp. the geometric representation ρg

F) is.
We will be mostly interested in the geometric properties of a sheaf; therefore

we will usually omit the adjective “geometric” in our statements, so that “isotypic”
will mean “geometrically isotypic”. We will always spell out explicitly when an
arithmetic property is intended, so that no confusion can arise.
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6A.2. Middle-extension sheaves. An `-adic sheaf is a called a middle-extension
sheaf if, for some (and in fact, for any) nonempty open subset j : U ↪→ P1

k such
that j∗F is lisse, we have an arithmetic isomorphism

F' j∗ j∗F,

or equivalently if, for every x ∈P1(k), the specialization maps (see [Katz 1980, 4.4])

sx : Fx → FIx
η

are isomorphisms, where Ix is the inertia subgroup at x . Given an `-adic sheaf, its
associated middle-extension is the sheaf

Fme
= j∗ j∗F

for some nonempty open subset j :U ↪→ P1
k on which F is lisse. This sheaf is a

middle-extension sheaf, and is (up to arithmetic isomorphism) the unique middle-
extension sheaf whose restriction to U is arithmetically isomorphic to that of F.
In particular, Fme does not depend on the choice of U .

6B. The trace function of a sheaf. Let F be an `-adic sheaf on the projective line
over Fp. For each finite extension k/Fp, F defines a complex valued function

x 7→ tF(x; k)

on k ∪ {∞} = P1(k), which is called the Frobenius trace function, or just trace
function, associated with F and k. It is defined by

P1(k) 3 x 7→ tF(x; k) := ι(Tr(Frx,k |Fx)).

Here x : Spec(k)→P1
k denotes a geometric point above x , and Fx is the stalk of F

at that point, which is a finite-dimensional Q`-vector space on which Gal(k/k) acts
linearly, and Frx,k denotes the geometric Frobenius of that Galois group. The trace
of the action of this operator is independent of the choice of x .

If k = Fp, which is the case of importance for the applications in this paper, we
will write tF(x; p) or simply tF(x) instead of tF(x; Fp).

If x ∈UF(k), the quantity tF(x; k) is simply the trace of the geometric Frobenius
conjugacy class of a place of K above x acting through the associated representation
Fη, i.e., the value (under ι) of the character of the representation at this conjugacy
class:

tF(x; k)= ι(Tr(Frx,k |Fη)).

If F is a middle-extension sheaf one has more generally

tF(x; k)= ι(Tr(Frx,k |F
Ix
η )).
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For any sheaf F, the trace function of F restricted to UF(k) coincides with the
restriction of the trace function of Fme.

6B.1. Purity and admissibility. The following notion was introduced in [Deligne
1980].

Definition 6.1 (purity). For i ∈ Z, an `-adic sheaf on P1
Fp

is generically pure
(or pure, for short) of weight i if, for any k/Fp and any x ∈UF(k), the eigenvalues
of Frx,k acting on Fη are Q-algebraic numbers whose Galois conjugates have
complex absolute value equal to q i/2

= |k|i/2.

Remark 6.2. Deligne proved (see [1980, (1.8.9)]) that if F is a generically pure
middle-extension sheaf of weight i , then for any k/Fp and any x ∈ P1(k), the
eigenvalues of Frx,k acting on FIx

η are Q-algebraic numbers whose Galois conjugates
have complex absolute value ≤ q i/2.

In particular, if F is a middle-extension sheaf which is generically pure of
weight i , then we get

|tF(x; k)| =
∣∣ι(Tr

(
Frx |F

Ix
η

))∣∣≤ rk(F)q i/2 (6-2)

for any x ∈ P1(k).

We can now describe the class of sheaves and trace functions that we will
work with.

Definition 6.3 (admissible sheaves). Let k be a finite extension of Fp. An admissible
sheaf over k is a middle-extension sheaf on P1

k which is pointwise pure of weight 0.
An admissible trace function over k is a function k→ C which is equal to the trace
function of some admissible sheaf restricted to k ⊂ P1(k).

Remark 6.4. The weight-0 condition may be viewed as a normalization to ensure
that admissible trace functions typically have magnitude comparable to 1. Sheaves
which are pure of some other weight can be studied by reducing to the 0 case by
the simple device of Tate twists. However, we will not need to do this, as we will
be working exclusively with sheaves which are pure of weight 0.

6B.2. Conductor. Let F be a middle-extension sheaf on P1
k . The conductor of F

is defined as

cond(F) := rk(F)+ |(P1
−UF)(k)| +

∑
x∈(P1−UF)(k)

swanx(F),

where swanx(F) denotes the Swan conductor of the representation ρF at x , a non-
negative integer measuring the “wild ramification” of ρF at x (see, e.g., [Katz 1988,
Definition 1.6] for the precise definition of the Swan conductor). If swanx(F)= 0,
one says that F is tamely ramified at x , and otherwise that it is wildly ramified.
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The invariant cond(F) is a nonnegative integer (positive if F 6=0), and it measures
the complexity of the sheaf F and of its trace function tF. For instance, if F is
admissible, so that it is also pure of weight 0, then we deduce from (6-2) that

|tF(x; k)| ≤ rk(F)≤ cond(F) (6-3)

for any x ∈ k.

6B.3. Dual and tensor Product. Given admissible sheaves F and G on P1
k , their ten-

sor product, denoted by F⊗G, is by definition the middle-extension sheaf associated
to the tensor product representation ρF⊗ρG (computed over the intersection of UF

and UG, which is still a dense open set of P1
k). Note that this sheaf may be different

from the tensor product of F and G as constructible sheaves (similarly to the fact
that the product of two primitive Dirichlet characters is not necessarily primitive).

Similarly, the dual of F, denoted F̌, is defined as the middle extension sheaf
associated to the contragredient representation ρ̌F.

We have
UF ∩UG ⊂UF⊗G, UF̌ =UF.

It is not obvious, but true, that tensor products and duals of admissible sheaves
are admissible. We then have

tF⊗G(x; k)= tF(x; k)tG(x; k), tF̌(x; k)= tF(x; k) (6-4)

for x ∈UF(k)∩UG(k) and x ∈P1(k), respectively. In particular, the product of two
admissible trace functions tF and tG coincides with an admissible trace function
outside a set of at most cond(F)+ cond(G) elements, and the complex conjugate
of an admissible trace function is again an admissible trace function.

We also have
cond(F̌)= cond(F) (6-5)

(which is easy to check from the definition of Swan conductors) and

cond(F⊗G)� rk(F) rk(G) cond(F) cond(G)≤ cond(F)2 cond(G)2, (6-6)

where the implied constant is absolute (which is also relatively elementary; see
[Fouvry et al. 2014a, Proposition 8.2(2)] or [Fouvry et al. 2013b, Lemma 4.8]).

6C. Irreducible components and isotypic decomposition. Let k be a finite field,
let F be an admissible sheaf over P1

k , and consider U =UF and the corresponding
open immersion j : U ↪→ P1

k . A fundamental result of Deligne [1980, (3.4.1)]
proves that ρF is then geometrically semisimple. Thus there exist lisse sheaves G

on U × k, irreducible and pairwise nonisomorphic, and integers n(G)≥ 1, such that

j∗F'
⊕

G

Gn(G)
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as an isomorphism of lisse sheaves on U × k (the G might not be defined over k).
Extending with j∗ to P1

k
, we obtain a decomposition

F'
⊕

G

j∗Gn(G),

where each j∗G is a middle-extension sheaf over k. We call the sheaves j∗G the
geometrically irreducible components of F.

Over the open set UF, we can define the arithmetic semisimplification ρss
F as

the direct sum of the Jordan–Hölder arithmetically irreducible components of the
representation ρF. Each arithmetically irreducible component is either geometri-
cally isotypic or induced from a proper finite index subgroup of π1(UF). If an
arithmetically irreducible component π is induced, it follows that the trace function
of the middle-extension sheaf corresponding to π vanishes identically. Thus, if
we denote by Iso(F) the set of middle-extensions associated to the geometrically
isotypic components of ρss

F , we obtain the identity

tF =
∑

G∈Iso(F)

tG (6-7)

(indeed, these two functions coincide on UF and are both trace functions of middle-
extension sheaves), where each summand is admissible. For these facts, we refer to
[Katz 1980, §4.4, §4.5] and [Fouvry et al. 2014a, Proposition 8.3].

6D. Deligne’s main theorem and quasiorthogonality. The generalizations of com-
plete exponential sums over finite fields that we consider are sums

S(F; k)=
∑
x∈k

tF(x; k)

for any admissible sheaf F over P1
k . By (6-3), we have the trivial bound

|S(F; k)| ≤ cond(F)|k| = cond(F)q.

Deligne’s main theorem [1980, Théorème 1] provides strong nontrivial estimates
for such sums, at least when p is large compared to cond(F).

Theorem 6.5 (sums of trace functions). Let F be an admissible sheaf on P1
k , where

|k| = q and U =UF. We have

S(F; k)= q Tr
(
Frk |(Fη)π g

1 (U )
)
+ O(cond(F)2q1/2),

where (Fη)π g
1 (U )

denotes the π g
1 (UF)-coinvariant space6 of ρF, on which Gal(k/k)

acts canonically, and where the implied constant is effective and absolute.

6Recall that the coinvariant space of a representation of a group G is the largest quotient on which
the group G acts trivially.
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Proof. Using (6-3), we have

S(F; k)=
∑

x∈U (k)

tF(x; k)+ O(cond(F)2),

where the implied constant is at most 1. The Grothendieck–Lefschetz trace formula
(see, e.g., [Katz 1988, Chapter 3]) gives

SF(U, k)=
2∑

i=0

(−1)i Tr(Frk |H i
c (U ⊗k k,F)),

where H i
c (U ⊗k k,F) is the i-th compactly supported étale cohomology group of

the base change of U to k with coefficients in F, on which the global Frobenius
automorphism Frk acts.

Since U is affine and F is lisse on U , it is known that H 0
c (U ⊗k k,F)= 0. For

i = 1, Deligne’s main theorem shows that, because F is of weight 0, all eigenvalues
of Frk acting on H 1

c (U ×k k,F) are algebraic numbers with complex absolute
value ≤ |k|1/2, so that

|Tr(Frk |H 1
c (U ⊗k k,F))| ≤ dim(H 1

c (U ⊗k k,F))q1/2.

Using the Euler–Poincaré formula and the definition of the conductor, one easily
obtains

dim(H 1
c (U ⊗k k,F))� cond(F)2

with an absolute implied constant (see, e.g., [Katz 1988, Chapter 2] or [Fouvry et al.
2013a, Theorem 2.4]).

Finally for i = 2, it follows from Poincaré duality that H 2
c (U ⊗k k,F) is

isomorphic to the Tate-twisted space of π g
1 (U )-coinvariants of Fη (see, e.g., [Katz

1988, Chapter 2]), and hence the contribution of this term is the main term in
the formula. �

6D.1. Correlation and quasiorthogonality of trace functions. An important appli-
cation of the above formula arises when estimating the correlation between the trace
functions tF and tG associated to two admissible sheaves F,G, i.e., when computing
the sum associated to the tensor product sheaf F⊗ Ǧ. We define the correlation sum

C(F,G; k) :=
∑
x∈k

tF(x; k)tG(x; k).

From (6-3) we have the trivial bound

|CF,G(k)| ≤ cond(F) cond(G)q.

The Riemann hypothesis allows us improve this bound when F,G are “disjoint”:
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Corollary 6.6 (square root cancellation). Let F,G be two admissible sheaves on
P1

k for a finite field k. If F and G have no irreducible constituent in common, then
we have

|C(F,G; k)| � (cond(F) cond(G))4q1/2,

where the implied constant is absolute. In particular, if in addition cond(F) and
cond(G) are bounded by a fixed constant, then

|C(F,G; k)| � q1/2.

Proof. We have
tF⊗Ǧ(x; k)= tF(x; k)tG(x; k)

for x ∈UF(k)∩UG(k) and

|tF⊗Ǧ(x; k)|, |tF(x; k)tG(x; k)| ≤ cond(F) cond(G).

Thus the previous proposition applied to the sheaf F⊗ Ǧ gives

C(F,G; k)= S(F⊗ Ǧ; k)+ O
(
(cond(F)+ cond(G)) cond(F) cond(G)

)
= q Tr

(
Frk |((F⊗ Ǧ)η)π g

1 (U )
)
+ O((cond(F) cond(G))4q1/2)

using (6-5) and (6-6). We conclude by observing that, by Schur’s Lemma and
the geometric semisimplicity of admissible sheaves (proved by Deligne [1980,
(3.4.1)]), our disjointness assumption on F and G implies that the coinvariant space
vanishes. �

6E. The Artin–Schreier sheaf. We will now start discussing specific important ad-
missible sheaves. Let p be a prime and let ψ : (Fp,+)→C× be a nontrivial additive
character. For any finite extension k of Fp, we then have an additive character

ψk :

{
k→ C×,

x 7→ ψ(Trk/Fp(x)),

where Trk/Fp is the trace map from k to Fp.
One shows (see [Katz 1988, Chapter 4; SGA 1977, §1.4; Iwaniec and Kowalski

2004, pp. 302–303]) that there exists an admissible sheaf Lψ , called the Artin–
Schreier sheaf associated to ψ , with the following properties:

• The sheaf Lψ has rank 1, hence is automatically geometrically irreducible,
and it is geometrically nontrivial.

• The sheaf Lψ is lisse on A1
Fp

, and wildly ramified at∞ with swan∞(Lψ)= 1,
so that in particular cond(Lψ)= 3, independently of p and of the nontrivial
additive character ψ .
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• The trace function is given by the formula

tLψ
(x; k)= ψk(x)

for every finite extension k/Fp and every x ∈ A1(k)= k, and

tLψ
(∞; k)= 0.

Let f ∈ Fp(X) be a rational function not of the shape g p
− g+ c for g ∈ Fp(X),

c ∈ Fp (for instance whose zeros or poles have order prime to p). Then f defines
a morphism f : P1

Fp
→ P1

Fp
, and we denote by Lψ( f ) the pull-back sheaf f ∗Lψ ,

which we call the Artin–Schreier sheaf associated to f and ψ . Then Lψ( f ) has the
following properties:

• It has rank 1, hence is geometrically irreducible, and it is geometrically non-
trivial (because f is not of the form g p

− g + c for some other function g,
by assumption).

• It is lisse outside the poles of f , and wildly ramified at each pole with Swan
conductor equal to the order of the pole, so that if the denominator of f has
degree d (coprime to p) we have cond(Lψ( f )) = 1+ e+ d, where e is the
number of distinct poles of f .

• It has trace function given by the formula

tLψ( f )(x; k)= ψ
(
trk/Fp( f (x))

)
for any finite extension k/Fp and any x ∈ P1(k) which is not a pole of f , and
tLψ( f )(x; k)= 0 if x is a pole of f .

In particular, from Theorem 6.5, we thus obtain the estimate∣∣∣∣∑
x∈Fp

ψ( f (x))
∣∣∣∣� deg( f )2 p1/2

for such f , which is a slightly weaker form of the Weil bound from Lemma 4.2.
Note that this weakening, which is immaterial in our applications, is only due to
the general formulation of Theorem 6.5, which did not attempt to obtain the best
possible estimate for specific situations.

6F. The `-adic Fourier transform. Let p be a prime, k/Fp a finite extension and
ψ a nontrivial additive character of k. For a finite extension k/Fp and a function
x 7→ t (x) defined on k, we define the normalized Fourier transform FTψ t (x) by
the formula

FTψ t (x) := −
1

q1/2

∑
y∈k

t (y)ψ(xy)
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(which is similar to (4-11) except for the sign). It is a very deep fact that, when
applied to trace functions, this construction has a sheaf-theoretic incarnation. This
was defined by Deligne and studied extensively by Laumon [1987] and Katz [1988].
However, a restriction on the admissible sheaves is necessary, in view of the
following obstruction: if t (x)= ψ(bx) for some b ∈ k, then its Fourier transform
is a Dirac-type function

FTψ(t)(x)=−q1/2δ−b(x)=
{
−q1/2 if x =−b,
0 otherwise.

But this cannot in general be an admissible trace function with bounded conductor
as this would violate (6-2) at x =−b if q is large enough. We make the following
definition, as in [Katz 1988]:

Definition 6.7 (admissible Fourier sheaves). An admissible sheaf over P1
k is a

Fourier sheaf if its geometrically irreducible components are neither trivial nor
Artin–Schreier sheaves Lψ for some nontrivial additive character ψ .

Theorem 6.8 (sheaf-theoretic Fourier transform). Let p be a prime and k/Fp a
finite extension, and let ψ be a nontrivial additive character of k. Let F be an
admissible `-adic Fourier sheaf on P1

k . There exists an `-adic sheaf

G= FTψ(F),

called the Fourier transform of F, which is also an admissible `-adic Fourier sheaf ,
with the property that for any finite extension k ′/k, we have

tG( · ; k ′)= FTψk′
tF( · ; k);

in particular

tG(x; k)=−
1
√
|k|

∑
y∈k

tF(y; k)ψ(xy).

Moreover, the following additional assertions hold:

• The sheaf G is geometrically irreducible, or geometrically isotypic, if and only
if F is.

• The Fourier transform is (almost) involutive, in the sense that we have a
canonical arithmetic isomorphism

FTψG' [×(−1)]∗F, (6-8)

where [×(−1)]∗ denotes the pull-back by the map x 7→ −x.

• We have
cond(G)≤ 10 cond(F)2. (6-9)
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Proof. These claims are established for instance in [Katz 1988, Chapter 8], with the
exception of (6-9), which is proved in [Fouvry et al. 2014a, Proposition 8.2(1)]. �

6G. Kloosterman sheaves. Given a prime p ≥ 3, a nontrivial additive character
ψ of Fp and an integer m ≥ 1, the m-th hyper-Kloosterman sums are defined by
the formula

Klm(x; k) :=
1

q
m−1

2

∑
y1,...,ym∈k
y1···ym=x

ψk(y1+ · · ·+ ym) (6-10)

for any finite extension k/Fp and any x ∈ k. Thus, we have for instance Kl1(x; k)=
ψk(x), while Kl2 is essentially a classical Kloosterman sum.

The following deep result shows that, as functions of x , these sums are trace
functions of admissible sheaves.

Proposition 6.9 (Deligne; Katz). There exists an admissible Fourier sheaf K`m

such that, for any k/Fp and any x ∈ k×, we have

tK`m (x; k)= (−1)m−1 Klm(x; k).

Furthermore:

• K`m is lisse on Gm = P1
− {0,∞}; if m ≥ 2, it is tamely ramified at 0, and

for m = 1 it is lisse at 0; for all m ≥ 1, it is wildly ramified at∞ with Swan
conductor 1.

• K`m is of rank m, and is geometrically irreducible.

• If p is odd, then the Zariski closure of the image ρK`m (π
g
1 (Gm)), which is

called the geometric monodromy group of K`m , is isomorphic to SLm if m is
odd, and to Spm if m is even.

It follows that cond(K`m)=m+3 for all m ≥ 2 and all p, and that cond(K`1)= 3.

Proof. All these results can be found in [Katz 1988]; more precisely, the first two
points are part of Theorem 4.1.1 in [Katz 1988] and the last is part of Theorem 11.1
in the same reference. �

Remark 6.10. In particular, for x 6= 0, we get the estimate

|Klm(x; k)| ≤ m,

first proved by Deligne. Note that this exhibits square-root cancellation in the
(m− 1)-variable character sum defining Kl(x; k). For x = 0, it is elementary that

Klm(0; k)= (−1)m−1q−(m−1)/2.

We have the following bounds for hyper-Kloosterman sums, where the case
m = 3 is the important one for this paper:
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Proposition 6.11 (estimates for hyper-Kloosterman sums). Let m ≥ 2 be an integer
and ψ ′ an additive character of Fp, which may be trivial. We have∣∣∣∣∑

x∈F×p

Klm(x; p)ψ ′(x)
∣∣∣∣� p1/2. (6-11)

Further, let a ∈ F×p . If either a 6= 1 or ψ ′ is nontrivial, we have∣∣∣∣∑
x∈F×p

Klm(x; p)Klm(ax; p)ψ ′(x)
∣∣∣∣� p1/2. (6-12)

In these bounds, the implied constants depend only, and at most polynomially, on m.

Proof. The first bound (6-11) follows directly from Corollary 6.6 and (6-6) be-
cause K`m is, for m ≥ 2, geometrically irreducible of rank > 1, and therefore not
geometrically isomorphic to the rank-1 Artin–Schreier sheaf Lψ ′ .

For the proof of (6-12), we use the identity7

Klm(x)=
1

p1/2

∑
y∈F×p

Klm−1(y−1)ψ(xy)=−FTψ([y−1
]
∗Klm−1)(x),

which is valid for all x ∈ Fp (including x = 0). If we let b ∈ Fp be such that
ψ ′(x)= ψ(bx) for all x , then by the Plancherel formula, we deduce∑

x∈Fp

Klm(x; p)Klm(ax; p)ψ ′(x)=
∑

y∈Fp\{0,−b}

Klm−1(y−1)Klm−1(a(y+ b)−1)

=

∑
y∈Fp,

y 6=0,−1/b

Klm−1(y; p)Klm−1(γ · y; p),

where

γ :=

(
a 0
b 1

)
.

We are in the situation of Corollary 6.6, with both sheaves K`m−1 and γ ∗K`m−1

admissible and geometrically irreducible. If m ≥ 3, K`m−1 is tamely ramified at 0
and wildly ramified at∞, and γ ∗K`m−1 is therefore tame at γ−1(0) and wild at
γ−1(∞), so that a geometric isomorphism K`m−1 ' γ

∗K`m−1 can only occur if
γ (0)= 0 and γ (∞)=∞, or in other words if b= 0. If b= 0, we have γ ∗K`m−1=

[×a]∗K`m−1 which is known to be geometrically isomorphic to K`m−1 if and only
if a = 1, by [Katz 1988, Proposition 4.1.5]. Thus (6-12) follows from Corollary 6.6
for m ≥ 3, using (6-6) and the formulas cond(K`m−1)= cond(γ ∗K`m−1)= m+ 3.

7One could use this identity to recursively build the hyper-Kloosterman sheaf from the Artin–
Schreier sheaf, Theorem 6.8, and pullback via the map x 7→ 1/x , if desired.
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The case m = 2 is easy since the sum above is then simply∑
y∈Fp,

y 6=0,−1/b

ψ(y− ay/(by+ 1)),

where the rational function f (y) = y − ay/(by + 1) is constant if and only if
a = 1, b = 0, so that we can use Lemma 4.2 in this case. �

Remark 6.12. A similar result was proved by Michel [1998, Corollaire 2.9] using a
different method. That method requires more information (the knowledge of the geo-
metric monodromy group of K`m) but gives more general estimates. The case m= 3
is (somewhat implicitly) the result used in [Friedlander and Iwaniec 1985], which is
proved by Birch and Bombieri in the Appendix to the same paper (with in fact two
proofs, which are rather different and somewhat more ad hoc than the argument pre-
sented here). This same estimate is used by Zhang [2014] to control Type III sums.

6H. The van der Corput method for trace functions. Let t = tF be the trace
function associated to an admissible sheaf F. In the spirit of Proposition 4.12,
the q-van der Corput method, when applied to incomplete sums of t , followed by
completion of sums, produces expressions of the form∑

x∈Fp

t (x)t (x + l)ψ(hx)

for (h, l)∈Fp×F×p and for some additive character ψ . We seek sufficient conditions
that ensure square-root cancellation in the above sum, for any l 6= 0 and any h.

Observe that if
t (x)= ψ(ax2

+ bx),

then the sum is sometimes of size p. Precisely, this happens if and only if h = 2al.
As we shall see, this phenomenon is essentially the only obstruction to square-root
cancellation.

Definition 6.13 (no polynomial phase). For a finite field k and d ≥ 0, we say
that an admissible sheaf F over P1

k has no polynomial phase of degree ≤ d if no
geometrically irreducible component of F is geometrically isomorphic to a sheaf
of the form Lψ(P(x)) where P(X) ∈ Fp[X ] is a polynomial of degree ≤ d.

Thus, for instance, an admissible sheaf is Fourier if and only if it has no polyno-
mial phase of degree ≤ 1.

Remark 6.14. An obvious sufficient condition for F not to contain any polynomial
phase (of any degree) is that each geometrically irreducible component of F be irre-
ducible of rank ≥ 2, for instance if F itself is geometrically irreducible of rank ≥ 2.
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The following inverse theorem is a variant of an argument of Fouvry, Kowalski
and Michel [Fouvry et al. 2013a, Lemma 5.4].

Theorem 6.15. Let d ≥ 1 be an integer, and let p be a prime such that p > d. Let
F be an isotypic admissible sheaf over P1

Fp
with no polynomial phase of degree ≤ d.

Then either cond(F) ≥ p + 1, or for any l ∈ F×p the sheaf F⊗ [+l]∗F̌ contains
no polynomial phase of degree ≤ d − 1.

In all cases, for any l ∈ F×p and any P(X) ∈ Fp[X ] of degree d − 1, we have∣∣∣∣∑
x∈Fp

tF(x + l)tF(x)ψ(P(x))
∣∣∣∣� p1/2, (6-13)

where the implied constant depends, at most polynomially, on cond(F) and on d.
Furthermore, this estimate holds also if l = 0 and P(x)= hx with h 6= 0.

Proof. First suppose that l 6= 0. Observe that if cond(F)≥ p+ 1, the bound (6-13)
follows from the trivial bound

|tF(x + l)tF(x)ψ(P(x))| ≤ rk(F)2 ≤ cond(F)2,

and that if the sheaf [+l]∗F⊗ F̌ contains no polynomial phase of degree ≤ d − 1,
then the bound is a consequence of Corollary 6.6.

We now prove that one of these two properties holds. We assume that [+l]∗F⊗F̌

contains a polynomial phase of degree≤d−1, and will deduce that cond(F)≥ p+1.
Since F is isotypic, the assumption implies that there is a geometric isomorphism

[+l]∗F' F⊗Lψ(P(x))

for some polynomial P(X) ∈ Fp[X ] of degree ≤ d − 1. Then, considering the
geometric irreducible component G of F (which is a sheaf on P1

Fp
) we also have

[+l]∗G' G⊗Lψ(P(x)). (6-14)

If G is ramified at some point x ∈ A1(k), then since Lψ(P(x)) is lisse on A1(k), we
conclude by iterating (6-14) that G is ramified at x, x+ l, x+2l, . . . , x+ (p−1)l,
which implies that cond(F)≥ cond(G)≥ p+ rk(G). Thus there remains to handle
the case when G is lisse outside ∞. It then follows from [Fouvry et al. 2013a,
Lemma 5.4(2)] that either cond(G) ≥ rk(G)+ p, in which case cond(F) ≥ p+ 1
again, or that G is isomorphic (over Fp) to a sheaf of the form Lψ(Q(x)) for some
polynomial of degree ≤ d . Since G is a geometrically irreducible component of F,
this contradicts the assumption on F.
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Finally, consider the case where l = 0 and P(x) = hx with h 6= 0. Using
Corollary 6.6 and (6-6), the result holds for a given h ∈ F×p unless the geometrically
irreducible component G of F satisfies

G' G⊗Lψ(hx).

Since d ≥ 1, F is a Fourier sheaf, and hence so are G and G⊗Lψ(hx). Taking the
Fourier transform of both sides of this isomorphism, we easily obtain

[+h]∗FTψG' FTψG,

and it follows from [Fouvry et al. 2013a, Lemma 5.4(2)] again that cond(FTψG)≥

p+ 1. Using the Fourier inversion formula (6-8) and (6-9), we derive

cond(F)≥ cond(G)� p1/2,

so that the bound (6-13) also holds trivially in this case. �

Remark 6.16. For later use, we observe that the property of having no polynomial
phase of degree ≤ 2 of an admissible sheaf F is invariant under the following
transformations:

• Twists by an Artin–Schreier sheaf associated to a polynomial phase of degree
≤ 2, i.e., F 7→ F⊗Lψ(ax2+bx).

• Dilations and translations: F 7→ [×a]∗F and F 7→ [+b]∗F, where a ∈ F×p
and b ∈ Fp.

• Fourier transforms, if F is Fourier: F 7→ FTψF. Indeed, the Fourier transform
of a sheaf Lψ(P(x)) with deg(P)= 2 is geometrically isomorphic to Lψ(Q(x))

for some polynomial Q of degree 2.

6I. Study of some specific exponential sums. We now apply the theory above
to some specific multidimensional exponential sums which appear in the refined
treatment of the Type I sums in Section 8. For parameters (a, b, c, d, e) ∈ Fp, with
a 6= c, we consider the rational function

f (X, Y ) :=
1

(Y + aX + b)(Y + cX + d)
+ eY ∈ Fp(X, Y ).

For a fixed nontrivial additive character ψ of Fp and for any x ∈ Fp, we define the
character sum

K f (x; p) := −
1

p1/2

∑
y∈Fp

(y+ax+b)(y+cx+d) 6=0

ψ( f (x, y)). (6-15)
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For any x ∈ Fp, the specialized rational function f (x, Y ) ∈ Fp(Y ) is nonconstant
(it has poles in A1

Fp
), and therefore by Lemma 4.2 (or Theorem 6.5) we have

|K f (x; p)| ≤ 4. (6-16)

We will prove the following additional properties of the sums K f (x; p):

Theorem 6.17. For a prime p and parameters (a, b, c, d, e) ∈ F5
p with a 6= c, the

function x 7→ K f (x; p) on Fp is the trace function of an admissible geometrically
irreducible sheaf F whose conductor is bounded by a constant independent of p.
Furthermore, F contains no polynomial phase of degree ≤ 2.

In particular, we have ∣∣∣∣∑
x∈Fp

K f (x; p)ψ(hx)
∣∣∣∣� p1/2 (6-17)

for all h ∈ Fp and ∣∣∣∣∑
x∈Fp

K f (x; p)K f (x + l; p)ψ(hx)
∣∣∣∣� p1/2 (6-18)

for any (h, l) ∈ F2
p −{(0, 0)}, where the implied constants are absolute.

Proof. Note that the estimates (6-17) and (6-18) follow from the first assertion
(see Theorem 6.15).

We first normalize most of the parameters: we have

K f (x; p)=−
ψ(−eax − eb)

p1/2

∑
z∈Fp

ψ

(
ez+

1
z(z+ (c− a)x + d − b)

)
,

and by Remark 6.16, this means that we may assume that c = d = 0, a 6= 0.
Furthermore, we have then

K f (x; p)= K f̃ (ax + b; p),

where f̃ is the rational function f with parameters (1, 0, 0, 0, e). Again by
Remark 6.16, we are reduced to the special case f = f̃ , i.e., to the sum

K f (x; p)=−
1

p1/2

∑
y∈Fp

(y+x)y 6=0

ψ

(
1

(y+ x)y
+ ey

)
.

We will prove that the Fourier transform of K f is the trace function of a geomet-
rically irreducible Fourier sheaf with bounded conductor and no polynomial phase
of degree ≤ 2. By the Fourier inversion formula (6-8) and (6-9), and the invariance
of the property of not containing a polynomial phase of degree ≤ 2 under Fourier
transform (Remark 6.16 again), this will imply the result for K f .
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For z ∈ Fp, we have

FTψ(K f )(z)=
1
p

∑∑
y+x,y 6=0

ψ

(
1

(y+ x)y
+ ey+ zx

)
.

If z 6= 0, the change of variables

y1 :=
1

(y+ x)y
, y2 := z(y+ x)

is a bijection

{(x, y) ∈ Fp× Fp : y(x + y) 6= 0} → {(y1, y2) ∈ F×p × F×p }

(with inverse y = z/(y1 y2) and x = y2/z− z/(y1 y2)) which satisfies

1
(y+ x)y

+ ey+ zx = y1+
ez

y1 y2
+ y2−

z2

y1 y2
= y1+ y2+

z(e− z)
y1 y2

for y(x + y) 6= 0. Thus

FTψ(K f )(z)=
1
p

∑∑
y1,y2∈F×p

ψ

(
y1+ y2+

z(e− z)
y1 y2

)
= Kl3(z(e− z); p)

for z(e− z) 6= 0.
Similar calculations reveal that this identity also holds when z=0 and z= e (treat-

ing the doubly degenerate case z= e= 0 separately), i.e., both sides are equal to 1/p
in these cases. This means that FTψ(K f ) is the trace function of the pullback sheaf

G f := ϕ
∗K`3,

where ϕ is the quadratic map ϕ : z 7→ z(e− z).
The sheaf G f has bounded conductor (it has rank 3 and is lisse on U =

P1
Fp
− {0, e,∞}, with wild ramification at ∞ only, where the Swan conductor

can be estimated using [Katz 1988, 1.13.1], for p ≥ 3). We also claim that G f is
geometrically irreducible. Indeed, it suffices to check that π g

1 (U ) acts irreducibly
on the underlying vector space of ρK`3 . But since z 7→ z(e− z) is a nonconstant
morphism P1

Fp
→ P1

Fp
, π g

1 (U ) acts by a finite-index subgroup of the action of
π

g
1 (Gm) on K`3. Since the image of π g

1 (Gm) is Zariski-dense in SL3 (as recalled
in Proposition 6.9), which is a connected algebraic group, it follows that the image
of π g

1 (U ) is also Zariski-dense in SL3, proving the irreducibility.
Since G f is geometrically irreducible of rank 3 > 1, it does not contain any

polynomial phase (see Remark 6.14), concluding the proof. �
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Remark 6.18. Another natural strategy for proving this theorem would be to start
with the observation that the function x 7→ K f (x; k) is the trace function of the
constructible `-adic sheaf

K f = R1π1,!Lψ( f )(1/2), Lψ( f ) = f ∗Lψ ,

where π1 : A
2
Fp
→ A1

Fp
is the projection on the first coordinate and R1π1,! denotes

the operation of higher-direct image with compact support associated to that map
(and

( 1
2

)
is a Tate twist). This is known to be mixed of weights ≤ 0 by [Deligne

1980], and it follows from the general results8 of Fouvry, Kowalski and Michel
in [Fouvry et al. 2013b] that the conductor of this sheaf is absolutely bounded
as p varies. To fully implement this approach, it would still remain to prove that
the weight-0 part of K f is geometrically irreducible with no polynomial phase of
degree ≤ 2. Although such arguments might be necessary in more advanced cases,
the direct approach we have taken is simpler here.

Remark 6.19. In the remainder of this paper, we will only use the bounds (6-17)
and (6-18) from Theorem 6.17. These bounds can also be expressed in terms of the
Fourier transform FTψ(K f ) of K f , since they are equivalent to

|FTψ(K f )(h)| � p1/2

and ∣∣∣∣∑
x∈Fp

FTψ(K f )(x + h)FTψ(K f )(x)ψ(−lx)
∣∣∣∣� p1/2,

respectively. As such, we see that it is in fact enough to show that FTψ(K f ), rather
than K f , is the trace function of a geometrically irreducible admissible sheaf with
bounded conductor and no quadratic phase component. Thus, in principle, we could
avoid any use of Theorem 6.8 in our arguments (provided that we took the existence
of the Kloosterman sheaves for granted). However, from a conceptual point of view,
the fact that K f has a good trace function interpretation is more important than
the corresponding fact for FTψ (for instance, the iterated van der Corput bounds in
Remark 6.23 rely on the former fact rather than the latter).

6J. Incomplete sums of trace functions. In this section, we extend the discussion
of Section 4 to general admissible trace functions. More precisely, given a squarefree
integer q , we say that a q-periodic arithmetic function

t : Z→ Z/qZ→ C

8Which were partly motivated by the current paper.
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is an admissible trace function if we have

t (x)=
∏
p|q

t (x; p) (6-19)

for all x , where, for each prime p | q , x 7→ t (x; p) is the composition of reduction
modulo p and the trace function associated to an admissible sheaf Fp on P1

Fp
.

An example is the case discussed in Section 4: for a rational function f (X)=
P(X)/Q(X) ∈ Q(X) with P, Q ∈ Z[X ] and a squarefree integer q such that
Q (q) 6= 0, we can write

eq( f (x))= eq

(
P(x)
Q(x)

)
=

∏
p|q

ep(qp f (x)), where qp = q/p

(by Lemma 4.4). In that case, we take

Fp = Lψ( f ), where ψ(x)= ep(qpx).

Another example is given by the Kloosterman sums defined for q squarefree and
x ∈ Z by

Klm(x; q)=
1

qm−1/2

∑
x1,...,xm∈Z/qZ

x1···xm=x

eq(x1+ · · ·+ xm), (6-20)

for which we have

Klm(x; q)=
∏
p|q

Klm(qp
m x; p)=

∏
p|q

([×qp
m
]
∗Klm( · ; p))(x),

and hence

Klm(x; q)= (−1)(m−1)�(q)t (x),

where

t (x)=
∏
p|q

(−1)m−1tFp(x; p) with Fp = [×qp
m
]
∗K`m

is an admissible trace function modulo q.
Given a tuple of admissible sheaves F = (Fp)p|q , we define the conductor

cond(F) by

cond(F)=
∏
p|q

cond(Fp).

Thus, for the examples above, the conductor is bounded by C�(q) for some
constant C depending only on f or m, respectively. This will be a general feature
in applications.
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6J.1. A generalization of Proposition 4.12. Thanks to the square root cancellation
for complete sums of trace functions provided by Corollary 6.6, we may extend
Proposition 4.12 to general admissible trace functions to squarefree moduli.

Proposition 6.20 (incomplete sum of trace function). Let q be a squarefree natural
number of polynomial size and let t ( · ; q) : Z→ C be an admissible trace function
modulo q associated to admissible sheaves F= (Fp)p|q .

Let further N ≥ 1 be given with N � q O(1) and let ψN be a function on R

defined by

ψN (x)= ψ
(

x − x0

N

)
,

where x0 ∈ R and ψ is a smooth function with compact support satisfying

|ψ ( j)(x)| � logO(1) N

for all fixed j ≥ 0, where the implied constant may depend on j .

(i) (Pólya–Vinogradov + Deligne) Assume that for every p | q the sheaf Fp has
no polynomial phase of degree ≤ 1. Then we have∣∣∣∣∑

n

ψN (n)t (n; q)
∣∣∣∣� q1/2+ε

(
1+ N

q

)
(6-21)

for any ε > 0.

(ii) (one van der Corput + Deligne) Assume that for every p | q the sheaf Fp has
no polynomial phase of degree ≤ 2. Then, for any factorization q = rs and
N ≤ q , we have∣∣∣∣∑

n

ψN (n)t (n; q)
∣∣∣∣� qε(N 1/2r1/2

+ N 1/2s1/4). (6-22)

In all cases the implied constants depend on ε, cond(F) and the implied constants
in the estimates for the derivatives of ψ .

Remark 6.21. In the context of Proposition 4.12, where t (n; q)= eq(P(n)/Q(n)),
the assumptions deg P < deg Q and deg(Q (p))= deg(Q) (for all p | q) ensure that
the sheaves Lep(qp P(x)/Q(x)) do not contain any polynomial phase of any degree.

Remark 6.22. For future reference, we observe that in the proof of (6-22) below
we will not use any of the properties of the functions x 7→ t (x; p) for p | r for a
given factorization q = rs, except for their boundedness.
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Proof. For each p | q , the trace function tFp decomposes by (6-7) into a sum of at
most rk(Fp)≤ cond(Fp)≤ cond(F) trace functions of isotypic admissible sheaves,
and therefore n 7→ t (n; q) decomposes into a sum of at most Cω(q) functions, each
of which is an admissible trace function modulo q associated to isotypic admissible
sheaves. Moreover, if no Fp contains a polynomial phase of degree ≤ d, then
all isotypic components share this property (in particular, since d ≥ 1 for both
statements, each component is also a Fourier sheaf). Thus we may assume without
loss of generality that each Fp is isotypic.

We start with the proof of (6-21). By (4-12), we have∣∣∣∣∑
n

ψN (n)t (n; q)
∣∣∣∣� q1/2+ε

(
1+ |N

′
|

q

)
sup

h∈Z/qZ

|FTq(t (h; q))|

� q1/2+ε
(

1+ N
q

)
sup

h∈Z/qZ

|FTq(t (h; q))|

for any ε > 0, where N ′ =
∑

n ψN (n). By Lemma 4.4, (6-19) and the definition of
the Fourier transform, we have

FTq(t ( · ; q))(h)=
∏
p|q

FTp(t ( · ; p))(qph).

Since t ( · ; p)= tFp is the trace function of a Fourier sheaf, we have

|FTp(t ( · ; p))(qph)| ≤ 10 cond(Fp)
2
≤ 10 cond(F)2

for all h by (6-9) (or Corollary 6.6 applied to the sheaves Fp and Lep(−qp x)).
Combining these bounds, we obtain (6-21).

The proof of (6-22) follows closely that of (4-20). It is sufficient to prove this
bound in the case r ≤ s. We may also assume that r ≤ N ≤ s, since, otherwise, the
result follows either from the trivial bound or (6-21). Then, denoting K := bN/rc,
we write

∑
n

ψN (n)t (n; q)=
1
K

∑
n

K∑
k=1

ψN (n+ kr)t (n+ kr; q).

Since q = rs, we have

t (n+ kr; q)= t (n; r)t (n+ kr; s),

where

t (n; r)=
∏
p|r

t (n; p), t (n; s)=
∏
p|s

t (n; p)
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are admissible trace functions modulo r and s, respectively. Hence∣∣∣∣∑
n

ψN (n)t (n; q)
∣∣∣∣� 1

K

∑
n

∣∣∣∣ K∑
k=1

ψN (n+ kr)t (n+ kr; s)
∣∣∣∣

�
N 1/2

K

(∑
n

∣∣∣∣ K∑
k=1

ψN (n+ kr)t (n+ kr; s)
∣∣∣∣2)1/2

�
N 1/2

K

( ∑
1≤k,l≤K

A(k, l)
)1/2

,

where

A(k, l)=
∑

n

ψN (n+ kr)ψN (n+ lr)t (n+ kr; s)t (n+ lr; s).

The diagonal contribution satisfies∑
1≤k≤K

A(k, k)� qεK N

for any ε > 0, where the implied constant depends on cond(F).
Instead of applying (6-21) for the off-diagonal terms, it is slightly easier to

just apply (4-12). For given k 6= l, since kr, lr � N , the sequence 9N (n) =
ψN (n+ kr)ψN (n+ lr) satisfies the assumptions of (4-12). Setting

w(n; s)= t (n+ kr; s)t (n+ lr; s),

we obtain

|A(k, l)| =
∣∣∣∣∑

n

9N (n)w(n; s)
∣∣∣∣� qεs1/2 sup

h∈Z/sZ

|FTs(w( · ; s))(h)|

by (4-12) (since N ≤ s). We have

FTs(w( · ; s))(h)=
∏
p|s

FTp(w( · ; p))(sph)

with sp = s/p. For p | k− l, we use the trivial bound

|FTp(w( · ; p))(sph)| � p1/2,

and for p - k− l, we have

FTp(w( · ; p))(sph)=
1

p1/2

∑
x∈Fp

t (x + kr; p)t (x + lr; p)ep(sphx)� 1

by the change of variable x 7→ x + kq1 and (6-13), which holds for Fp by our as-
sumptions. In all cases, the implied constant depends only on cond(Fp). Therefore
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we have
A(k, l)� (k− l, s)1/2qεs1/2,

and summing over k 6= l, we derive∣∣∣∣∑
n

ψN (n)eq( f (n))
∣∣∣∣� qεN 1/2

K

(
K N + s1/2

∑
1≤k 6=l≤K

(k− l, s)1/2
)1/2

�
qεN 1/2

K
(K 1/2 N 1/2

+ s1/4K ),

which gives the desired conclusion (6-22). �

Remark 6.23. Similarly to Remark 4.15, one can iterate the above argument and
conclude that for any l ≥ 1 and any factorization q = q1 · · · ql∣∣∣∣∑

n

ψN (n)t (n; q)
∣∣∣∣� qε

(( l−1∑
i=1

N 1−1/2i
q1/2i

i

)
+ N 1−1/2l−1

q1/2l

l

)
,

assuming that N < q and the Fp do not contain any polynomial phase of degree ≤ l.

Specializing Proposition 6.20 to the functions in Theorem 6.17, we conclude:

Corollary 6.24. Let q ≥ 1 be a squarefree integer and let K ( · ; q) be given by

K (x; q) :=
1

q1/2

∑
y∈Z/qZ

eq( f (x, y)),

where

f (x, y)=
1

(y+ ax + b)(y+ cx + d)
+ ey

and a, b, c, d, e are integers with (a− c, q)= 1. Let further N ≥ 1 be given with
N � q O(1) and let ψN be a function on R defined by

ψN (x)= ψ
(

x − x0

N

)
,

where x0 ∈ R and ψ is a smooth function with compact support satisfying

|ψ ( j)(x)| � logO(1) N

for all fixed j ≥ 0, where the implied constant may depend on j .
Then we have ∣∣∣∣∑

n

ψN (n)K (n; q)
∣∣∣∣� q1/2+ε

(
1+ N

q

)
(6-23)

for any ε > 0.
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Furthermore, for any factorization q = rs and N ≤ q, we have the additional
bound ∣∣∣∣∑

n

ψN (n)K (n; q)
∣∣∣∣� qε(N 1/2r1/2

+ N 1/2s1/4). (6-24)

Indeed, it follows from Theorem 6.17 and the assumption (a − c, q) = 1 that
K f ( · ; q) is an admissible trace function modulo q associated to sheaves which do
not contain any polynomial phase of degree ≤ 2.

6J.2. Correlations of hyper-Kloosterman sums of composite moduli. Finally, we
extend Proposition 6.11 to composite moduli:

Lemma 6.25 (correlation of hyper-Kloosterman sums). Let s, r1, r2 be square-
free integers with (s, r1) = (s, r2) = 1. Let a1 ∈ (Z/r1s)×, a2 ∈ (Z/r2s)×, and
n ∈ Z/([r1, r2]s)Z. Then we have∑
h∈(Z/s[r1,r2]Z)×

Kl3(a1h; r1s)Kl3(a2h; r2s)e[r1,r2]s(nh)

� (s[r1, r2])
εs1/2
[r1, r2]

1/2(a2− a1, n, r1, r2)
1/2(a2r3

1 − a1r3
2 , n, s)1/2

for any ε > 0, where the implied constant depends only on ε.

Proof. Let S be the sum to estimate. From Lemma 4.4, we get

Kl3(ai h; ri s)= Kl3(ai s̄3h; ri )Kl3(airi
3h; s)

for i = 1, 2, as well as

e[r1,r2]s(nh)= e[r1,r2](s̄nh)es([r1, r2]nh),

and therefore S = S1S2 with

S1 =
∑

h∈(Z/[r1,r2]Z)×

Kl3(a1s̄3h; r1)Kl3(a2s̄3h; r2)e[r1,r2](s̄nh),

S2 =
∑

h∈(Z/sZ)×

Kl3(a1r1
3h; s)Kl3(a2r2

3h; s)es([r1, r2]nh).

Splitting further the summands as products over the primes dividing [r1, r2] and s,
respectively, we see that it is enough to prove the estimate∣∣∣∣ ∑

h∈(Z/pZ)×

Kl3(b1h; d1)Kl3(b2h; d2)ep(mh)
∣∣∣∣� p1/2(b1−b2,m, d1, d2)

1/2 (6-25)

for p prime and integers d1, d2≥1 such that [d1, d2]= p is prime, and all m ∈Z/pZ,
and b1, b2 ∈ (Z/pZ)×.
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We now split into cases. First suppose that d2 = 1, so that d1 = p. Then we have
Kl3(b2h; d2)= 1, and the left-hand side of (6-25) simplifies to∑

h∈(Z/pZ)×

Kl3(b1h; p)ep(mh)� p1/2

by the first part of Proposition 6.11. Similarly, we obtain (6-25) if d1 = 1.
If d1 = d2 = p and b1− b2 = m = 0 (p), then the claim follows from the bound
|Kl3(h; p)| � 1 (see Remark 6.10).

Finally, if d1 = d2 = p and b1 − b2 6= 0 (p) or m 6= 0 (p), then (6-25) is a
consequence of the second part of Proposition 6.11. �

Finally, from this result, we obtain the following corollary:

Corollary 6.26 (correlation of hyper-Kloosterman sums, II). Let s, r1, r2 be square-
free integers with (s, r1) = (s, r2) = 1. Let a1 ∈ (Z/r1s)×, a2 ∈ (Z/r2s)×. Let
further H ≥ 1 be given with H � (s[r1, r2])

O(1) and let ψH be a function on R

defined by

ψH (x)= ψ
(

x − x0

H

)
,

where x0 ∈ R and ψ is a smooth function with compact support satisfying

|ψ ( j)(x)| � logO(1) H

for all fixed j ≥ 0, where the implied constant may depend on j . Then we have∣∣∣∣ ∑
(h,s[r1,r2])=1

9H (h)Kl3(a1h; r1s)Kl3(a2h; r2s)
∣∣∣∣

� (s[r1, r2])
ε

(
H

[r1, r2]s
+ 1
)

s1/2
[r1, r2]

1/2(a2− a1, r1, r2)
1/2(a2r3

1 − a1r3
2 , s)1/2

for any ε > 0 and any integer n.

This exponential sum estimate will be the main estimate used for controlling
Type III sums in Section 7.

Proof. This follows almost directly from Lemma 6.25 and the completion of sums
in Lemma 4.9, except that we must incorporate the restriction (h, s[r1, r2]) = 1.
We do this using Möbius inversion: the sum S to estimate is equal to∑

δ|s[r1,r2]

µ(δ)t1(δ)S1(δ),
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where t1(δ) satisfies |t1(δ)| ≤ δ−2, because Kl3(0; p)= p−1 for any prime p, and

S1(δ)=
∑
δ|h

9H (h)Kl3(α1h; r1s/(δ, r1s))Kl3(α2h; r2s/(δ, r2s))

=

∑
h

9H/δ(h)Kl3(δα1h; r1s/(δ, r1s))Kl3(δα2h; r2s/(δ, r2s))

for some αi ∈ (Z/ri s/(δ, ri s)Z)×. By Lemma 6.25 and Lemma 4.9, we have

S1(δ)

� (s[r1,r2])
ε

(
H

δs[r1,r2]
+1
)(

s[r1,r2]

δ

)1/2

(a2−a1,r1,r2)
1/2(a2r3

1−a1r3
2 ,s)

1/2

(the gcd factors for S1(δ) are divisors of those for δ= 1). Summing over δ | s[r1, r2]

then gives the result. �

6J.3. The Katz Sato–Tate law over short intervals. In this section, which is in-
dependent of the rest of this paper, we give a sample application of the van der
Corput method to Katz’s equidistribution law for the angles of the Kloosterman
sums Kl2(n; q).

Given a squarefree integer q ≥ 1 with ω(q) ≥ 1 prime factors, we define the
Kloosterman angle θ(n; q) ∈ [0, π] by the formula

2ω(q) cos(θ(n; q))= Kl2(n; q).

As a consequence of the determination of the geometric monodromy group of the
Kloosterman sheaf K`2, Katz [1988] proved (among other things) a result which
can be phrased as follows:

Theorem 6.27 (Katz’s Sato–Tate equidistribution law). As p→∞, the set of angles

{θ(n; p) : 1≤ n ≤ p} ⊂ [0, π]

becomes equidistributed on [0, π] with respect to the Sato–Tate measure µST

with density
2
π

sin2(θ) dθ,

i.e., for any continuous function f : [0, π] → C, we have∫
f (x) dµST (x)= lim

p→+∞

1
p−1

∑
1≤n≤p

f (θ(n; p)).

By the Pólya–Vinogradov method one can reduce the length of the interval [1, p]:
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Proposition 6.28. For any ε > 0, the set of angles

{θ(n; p) : 1≤ n ≤ p1/2+ε
} ⊂ [0, π]

becomes equidistributed on [0, π] with respect to the Sato–Tate measure µST as
p→+∞.

(In fact, using the “sliding sum method” [Fouvry et al. 2013c], one can reduce
the range to 1≤ n ≤ p1/29(p) for any increasing function 9 with 9(p)→+∞).

As we show here, as a very special example of application of the van der Corput
method, we can prove a version of Katz’s Sato–Tate law for Kloosterman sums of
composite moduli over shorter ranges:

Theorem 6.29. Let q denote integers of the form q = rs where r , s are two distinct
primes satisfying

s1/2
≤ r ≤ 2s1/2.

For any ε > 0, the set of pairs of angles

{(θ(ns2
; r), θ(nr2

; s)) : 1≤ n ≤ q1/3+ε
} ⊂ [0, π]2

becomes equidistributed on [0, π]2 with respect to the product measure µST ×µST

as q→+∞ among such integers.
Consequently the set

{θ(n; q) : 1≤ n ≤ q1/3+ε
} ⊂ [0, π]

becomes equidistributed on [0, π] with respect to the measure µST,2 obtained as the
pushforward of the measure µST ×µST by the map (θ, θ ′) 7→ acos(cos θ cos θ ′).

Proof. The continuous functions

symk,k′(θ, θ
′) := symk(θ) symk′(θ

′)=
sin((k+ 1)θ)

sin θ
sin((k+ 1)θ ′)

sin θ ′

for (k, k ′) ∈ N≥0−{(0, 0)} generate a dense subspace of the space of continuous
functions on [0, π]2 with mean 0 with respect to µST ×µST . Thus, by the classical
Weyl criterion, it is enough to prove that∑

1≤n≤q1/3+ε

symk(θ(s
2n; r)) symk′(θ(r

2n; s))= o(q1/3+ε).

By a partition of unity, it is sufficient to prove that∑
n

9
( n

N

)
symk(θ(s

2n; r)) symk′(θ(r
2n; s))�k,k′ q1/3+9ε/10 (6-26)
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for any N ≤ q1/3+ε log q and any smooth function 9 as above, where the subscript
in�k,k′ indicates that the implied constant is allowed to depend on k, k ′. For any
fixed (k, k ′), the function

x 7→ symk′(θ(r
2x; s))

is a trace function modulo s, namely, the trace function associated to the lisse sheaf
obtained by composing the representation corresponding to the rank-2 pullback of
the Kloosterman sheaf [×r2

]
∗K`2 with the k-th symmetric power representation

symk′ :GL2→GLk′+1. By [Katz 1988], this sheaf symk′ K`2 is nontrivial if k ′ ≥ 1,
and geometrically irreducible of rank k ′+ 1> 1. Therefore, if k ′ ≥ 1, the van der
Corput method (6-22) (see also Remark 6.22) gives∑

n

9N (n) symk(θ(s
2n; r)) symk′(θ(r

2n; s))� N 1/2q1/6
�k,k′ q1/3+9ε/10.

Indeed, symk′ K`2, being geometrically irreducible of rank > 1, does not contain
any quadratic phase.

If k ′ = 0 (so that the function modulo s is the constant function 1), then we have
k ≥ 1 and symk K`2 is geometrically irreducible of rank > 1. Therefore it does not
contain any linear phase, and by the Pólya–Vinogradov method (6-21), we obtain∑

n

9N (n) symk(θ(s
2n; r)) symk′(θ(r

2n; s))� r1/2+η(1+ N/r)�η q1/6+η+ε

for any η > 0. �

7. The Type III estimate

In this section we establish Theorem 2.8(v). Let us recall the statement:

Theorem 7.1 (new Type III estimates). Let $, δ, σ > 0 be fixed quantities, let I be
a bounded subset of R, let i ≥ 1 be fixed, let a (PI ) be a primitive congruence class,
and let M , N1, N2, N3� 1 be quantities with

M N1 N2 N3 � x, (7-1)

N1 N2, N1 N3, N2 N3 �� x1/2+σ , (7-2)

x2σ
≺≺ N1, N2, N3≺≺ x1/2−σ . (7-3)

Let α, ψ1, ψ2, ψ3 be smooth coefficient sequences located at scales M , N1, N2, N3,
respectively. Then we have the estimate∑

d∈DI (xδ)
d≺≺ x1/2+2$

|1(α ?ψ1 ?ψ2 ?ψ3; a (d))| � x log−A x
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for any fixed A > 0, provided that

$ < 1
12 , σ > 1

18 +
28
9 $ +

2
9δ. (7-4)

Our proof of this theorem is inspired in part by the recent work of Fouvry,
Kowalski and Michel [Fouvry et al. 2014b], in which the value of the exponent of
distribution of the ternary divisor function τ3(n) in arithmetic progressions to large
(prime) moduli is improved from the earlier results of [Fouvry and Iwaniec 1992]
and [Heath-Brown 1986]. Our presentation is also more streamlined. The present
argument moreover exploits the existence of an averaging over divisible moduli to
derive further improvements to the exponent.

7A. Sketch of proofs. Before we give the rigorous argument, let us first sketch the
solution of the model problem (in the spirit of Section 5B) of obtaining a nontrivial
estimate for ∑

q�Q

|1(ψ1 ?ψ2 ?ψ3, a (q))| (7-5)

for Q slightly larger than x1/2 in logarithmic scale (i.e., out of reach of the Bombieri–
Vinogradov theorem). Here ψ1, ψ2, ψ3 are smooth coefficient sequences at scales
N1, N2, N3, respectively, with N1 N2 N3 � x and N1, N2, N3 ≺≺

√
x , and q is

implicitly restricted to suitably smooth or densely divisible moduli (we do not
make this precise to simplify the exposition). The trivial bound for this sum is
� logO(1) x , and we wish to improve it at least by a factor log−A x for arbitrary
fixed A > 0.

This problem is equivalent to estimating∑
q�Q

cq1(ψ1 ?ψ2 ?ψ3, a (q))

when cq is an arbitrary bounded sequence. As in Section 5B, we write EMT for
unspecified main terms, and we wish to control the expression∑

q�Q

cq

∑
n=a (q)

ψ1 ?ψ2 ?ψ3(n)−EMT

to accuracy better than x . After expanding the convolution and completing the
sums, this sum can be transformed to a sum roughly of the form

1
H

∑∑∑
1≤|hi |�Hi

∑
q�Q

cq

∑∑∑
n1,n2,n3∈Z/qZ
n1n2n3=a (q)

eq(h1n1+ h2n2+ h3n3),
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where Hi := Q/Ni and H := H1 H2 H3 � Q3/x , the main term having canceled out
with the zero frequencies. As we are taking Q close to x1/2, H is thus close to x1/2

as well. Ignoring the degenerate cases when h1, h2, h3 share a common factor with
q , we see from (6-20) that∑∑∑

n1,n2,n3∈Z/qZ
n1n2n3=a (q)

eq(h1n1+ h2n2+ h3n3)= q Kl3(ah1h2h3; q),

so we are now dealing essentially with the sum of hyper-Kloosterman sums

Q
H

∑∑∑
1≤|hi |�Hi

∑
q�Q

cq Kl3(ah1h2h3; q)=
Q
H

∑
1≤|h|�H

τ̃3(h)
∑
q�Q

cq Kl3(ah; q),

where

τ̃3(h) :=
∑∑∑

1≤|hi |�Hi
h1h2h3=h

1

is a variant of the divisor function τ3.
A direct application of the deep Deligne bound

|Kl3(ah; q)| ≺≺ 1 (7-6)

for hyper-Kloosterman sums (see Remark 6.10) gives the trivial bound≺≺ Q2, which
just fails to give the desired result, so the issue is to find some extra cancellation in
the phases of the hyper-Kloosterman sums.

One can apply immediately the Cauchy–Schwarz inequality to eliminate the
weight τ̃3(h), but it turns out to be more efficient to first use the assumption that q
is restricted to densely divisible moduli and to factor q into rs where r � R, s � S,
in which R and S are well-chosen in order to balance the diagonal and off-diagonal
components resulting from the Cauchy–Schwarz inequality (it turns out that the
optimal choices here will be R, S ≈ x1/4).

Applying this factorization, and arguing for each s separately, we are led to
expressions of the form

Q
H

∑
1≤|h|�H

τ̃3(h)
∑
r�R

crs Kl3(ah; rs),

where we must improve on the bound≺≺Q R coming from (7-6) for any given s � S.
If we then apply the Cauchy–Schwarz inequality to the sum over h, we get
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Q
H

∑
1≤|h|�H

τ̃3(h)
∑
r�R

crs Kl3(ah; rs)

≺≺
Q

H 1/2

( ∑
1≤|h|�H

∣∣∣∣∑
r�R

crs Kl3(ah; rs)
∣∣∣∣2)1/2

≺≺
Q

H 1/2

(∑∑
r1,r2�R

∑
1≤|h|�H

Kl3(ah; r1s)Kl3(ah; r2s)
)1/2

.

The inner sum over h is now essentially of the type considered by Corollary 6.26,
and this result gives an adequate bound. Indeed, the contribution of the diagonal
terms r1 = r2 is≺≺ RH (using (7-6)) and the contribution of each nondiagonal sum
(assuming we are in the model case where r1, r2 are coprime, and the other greatest
common divisors appearing in Corollary 6.26 are negligible) is∑

1≤|h|�H

Kl3(ah; r1s)Kl3(ah; r1s)≺≺ (r1r2s)1/2≺≺ RS1/2

by Corollary 6.26, leading to a total estimate of size

≺≺
Q

H 1/2 (R
1/2 H 1/2

+ R3/2S1/4).

If R= S≈ x1/4, this is very comfortably better than what we want, and this strongly
suggests that we can take Q quite a bit larger than x1/2.

Remark 7.2. It is instructive to run the same analysis for the fourth-order sum∑
q�Q

|1(ψ1 ?ψ2 ?ψ3 ?ψ4, a (q))|,

where ψ1, ψ2, ψ3, ψ4 are smooth at scales N1, N2, N3, N4 with N1 · · · N4 � x and
N1, . . . , N4 ≺≺ x1/2

≈ Q. This is a model for the “Type IV” sums mentioned in
Remark 3.2, and is clearly related to the exponent of distribution for the divisor
function τ4.

The quantity H is now of the form H ≈ Q4/x ≈ x , and one now has to estimate
the sum ∑

1≤|h|�H

τ̃4(h)
∑
q�Q

cq Kl4(ah; q)

to accuracy better than H x/Q3/2
≈ x5/4. If we apply the Cauchy–Schwarz inequality

in the same manner after exploiting a factorization q = rs with r � R, s � S and
RS � Q ≈ x1/2, we end up having to control∑∑

r1,r2�R

∣∣∣∣ ∑
1≤|h|�H

Kl4(ah; r1s)Kl4(ah; r2s)
∣∣∣∣
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with accuracy better than (x5/4/S)2/H ≈ x3/2/S2. The diagonal contribution r1=r2

is≺≺ RH ≈ x3/2/S, and the off-diagonal contribution is ≈ R2(R2S)1/2≈ x3/2/S5/2.
However, even with the optimal splitting S ≈ 1, R ≈ Q, one cannot make both
of these terms much smaller than the target accuracy of x3/2/S2. Thus the above
argument does not improve upon the Bombieri–Vinogradov inequality for Type IV
sums. (It is known, due to Linnik, that the exponent of distribution for τ4 is at least
1
2 , in the stronger sense that the asymptotic formula holds for all moduli ≤ x1/2−ε

for ε > 0.) The situation is even worse, as the reader will check, for the Type V
sums, in that one now cannot even recover Bombieri–Vinogradov with this method.

We will give the rigorous proof of Theorem 2.8(v) in the next two sections, by
first performing the reduction to exponential sums, and then concluding the proof.

7B. Reduction to exponential sums. By Theorem 2.9 (the general version of the
Bombieri–Vinogradov theorem) we have∑

q≤x1/2 log−B(A) x

|1(α ?ψ1 ?ψ2 ?ψ3)| � x log−A x

for some B(A)≥ 0. We may therefore restrict our attention to moduli q in the range
x1/2/ logB x ≤ q ≺≺ x1/2+2$ .

We also write N = N1 N2 N3. From (7-2) and (7-3), we deduce that

x3/4+3σ/2
≺≺ (N1 N2)

1/2(N1 N3)
1/2(N2 N3)

1/2
= N ≺≺ x3/2−3σ . (7-7)

It is convenient to restrict q to a finer-than-dyadic interval I(Q) in order to
separate variables later using Taylor expansions. More precisely, for a small fixed
ε > 0 and some fixed c ≥ 1, we denote by I= I(Q) a finer-than-dyadic interval of
the type

I(Q) := {q : Q(1− cx−ε)≤ q ≤ Q(1+ cx−ε)},

(assuming, as always, that x is large, so that cx−ε is less than, say, 1
2 ), and abbreviate∑

q

Aq =
∑

q∈DI (xδ)
q∈I(Q)

Aq

for given expression any Aq .
Theorem 7.1 will clearly follow if we prove that, for ε > 0 sufficiently small,

we have ∑
q

|1(α ?ψ1 ?ψ2 ?ψ3; a (q))| ≺≺ x−2εM N (7-8)

for all Q such that
x1/2
≺≺ Q≺≺ x1/2+2$ . (7-9)
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We fix Q as above and denote by 6(Q; a) the left-hand side of (7-8). We have

6(Q; a)=
∑

q

cq1(α ?ψ1 ?ψ2 ?ψ3; a (q))

for some sequence cq with |cq | = 1. We will prove that, for any a (q), we have∑
q

cq

∑
n=a (q)

(α ?ψ1 ?ψ2 ?ψ3)(n)= X + O(x−2ε+o(1)M N ) (7-10)

for some X that is independent of a (but that can depend on all other quantities,
such as cq , α, or ψ1, ψ2, ψ3). Then (7-8) follows by averaging over all a coprime
to PI (as in the reduction to (5-18) in Section 5).

The left-hand side of (7-10), say 61(Q; a), is equal to

61(Q; a)

=

∑
q

cq

∑
(m,q)=1

α(m)
∑∑∑

n1,n2,n3

ψ1(n1)ψ2(n2)ψ3(n3)1mn1n2n3=a (q). (7-11)

The next step is a variant of the completion of sums technique from Lemma 4.9.
In that lemma, the Fourier coefficients of the cutoff functions were estimated
individually using the fast decay of the Fourier transforms. In our current context,
we want to keep track to some extent of their dependence on the variable q . Since
we have restricted q to a rather short interval, we can separate the variables fairly
easily using a Taylor expansion.

Note first that for i = 1, 2, 3, one has

Ni ≺≺ x1/2−σ
≺≺ x−σ Q,

so in particular ψi is supported in (−q/2, q/2] if x is large enough. By discrete
Fourier inversion, we have

ψi (x)=
1
q

∑
−q/2<h≤q/2

9i

(h
q

)
e
(hx

q

)
, (7-12)

where
9i (y)=

∑
n

ψi (n)e(−ny)

is the analogue of the function 9 in the proof of Lemma 4.9. As in that lemma,
using the smoothness of ψi , Poisson summation, and integration by parts, we derive
the bound

|9i (y)| ≺≺ Ni (1+ Ni |y|)−C

for any fixed C ≥ 0 and any − 1
2 ≤ y ≤ 1

2 (see (4-17)). More generally, we obtain

|9
( j)
i (y)| ≺≺ N 1+ j

i (1+ Ni |y|)−C
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for any fixed C ≥ 0, any j ≥ 0 and any −1
2 ≤ y ≤ 1

2 .
Denoting Hi := Q/Ni �� xσ , we thus have

9
( j)
i

(h
q

)
� x−100

(say) for xε/2 Hi < |h| ≤ q/2 and all fixed j . On the other hand, for |h| ≤ xε/2 Hi

and q ∈ I, a Taylor expansion using the definition of I and Hi gives

1
q
9i

(h
q

)
=

1
q

J∑
j=0

1
j !
9
( j)
i (h/Q)η j

+ O(N 2+J
i |η|J+1)

for any fixed J , where α is the q-dependent quantity

η :=
h
q
−

h
Q
=

h(Q− q)
q Q

� x−ε
h
Q
� x−ε/2

1
Ni
.

Thus we obtain

1
q
9i

(
h
q

)
=

1
q

J∑
j=0

1
j !
9
( j)
i

(
h
Q

)(
h
Q

) j(q − Q
q

) j

+ O(x−(J+1)ε/2 Ni ).

Taking J large enough, depending on ε > 0 but still fixed, this gives an expansion

1
q
9i

(
h
q

)
= 1|h|<xε/2 Hi

1
Hi

J∑
j=0

ci ( j, h)
Q
q

(
q − Q

q

) j

+ O(x−100), (7-13)

with coefficients that satisfy

ci ( j, h)=
1
j !
9
( j)
i

(
h
Q

)(
h
Q

) j Hi

Q
� 1,

as well as (
Q
q

)(
q − Q

q

) j

� 1.

Let
H := H1 H2 H3 = Q3/N . (7-14)

Inserting (7-13) for i = 1, 2, 3 into (7-12) and the definition (7-11) of 61(Q; a),
we see that 61(Q; a) can be expressed (up to errors of O(x−100)) as a sum of a
bounded number (depending on ε) of expressions, each of the form

62(Q;a)

=
1
H

∑
q

ηq

∑
(m,q)=1

α(m)
∑

h

c(h)
∑

n∈(Z/qZ)3

eq(h1n1+h2n2+h3n3)1mn1n2n3=a (q),
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where ηq is a bounded sequence supported on I∩DI (xδ), h := (h1, h2, h3) and c(h)
are bounded coefficients supported on |hi | ≤ xε/2 Hi , and n denotes (n1, n2, n3).
Our task is now to show that

62(Q; a)= X2+ O(x−2ε+o(1)M N )

for some quantity X2 that can depend on quantities such as ηq , α, c, H , but which
is independent of a.

We use F(h, a; q) to denote the hyper-Kloosterman type sum

F(h, a; q) := 1
q

∑
n∈((Z/qZ)×)3

eq(h1n1+ h2n2+ h3n3)1n1n2n3=a (q) (7-15)

for h= (h1, h2, h3)∈ (Z/qZ)3 and a ∈ (Z/qZ)× (note that the constraint n1n2n3=

a (q) forces n1, n2, n3 to be coprime to q), so that

62(Q; a)=
Q
H

∑
q

η′q

∑
(m,q)=1

α(m)
∑

h

c(h)F(h, am; q),

where η′q := (q/Q)ηq is a slight variant of ηq .
We next observe that F(h, am; q) is independent of a if h1h2h3 = 0 (as can be

seen by a change of variable). Thus the contribution X2 to the sum from tuples h
with h1h2h3 = 0 is independent of a. The combination of these terms X2 in the
decomposition of 61(Q; a) in terms of instances of 62(Q; a) is the quantity X
in (7-10). We denote by 6′2(Q; a) the remaining contribution. Our task is now to
show that

6′2(Q, a)≺≺ x−2εM N . (7-16)

We must handle possible common factors of q and h1h2h3 for h1h2h3 6= 0 (the
reader may skip the necessary technical details and read on while assuming that
q is always coprime to each of the hi , so that all the b-factors appearing below
become equal to 1).

For i = 1, 2, 3, we write
hi = bi li ,

where (li , q) = 1 and bi | q∞ (i.e., bi is the product of all the primes in hi , with
multiplicity, that also divide q). We also write

b :=
∏

p|b1b2b3

p = (h1h2h3, q), (7-17)

so that we have a factorization q = bd , where d ∈DI (bxδ) by Lemma 2.10(i), since
q is xδ-densely divisible.
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By Lemma 4.4, we have

F(h, am; q)= F(d̄h, am; b)F(b̄h, am; d),

where b̄h := (b̄h1, b̄h2, b̄h3). By an easy change of variable, the second factor
satisfies

F(b̄h, am; d)= Kl3(ah1h2h3mb3; d)= Kl3

(
ab1b2b3

b3

l1l2l3

m
; d
)
.

We observe that the residue class ab1b2b3mb3 (d) is invertible.
Setting b := (b1, b2, b3), l := (l1, l2, l3), we can thus write

6′2(Q; a)=
Q
H

∑
b

∑
l

c(b, l)
∑

d∈DI (bxδ)
(d,bl1l2l3)=1

η′bd

∑
(m,bd)=1

(
α(m)F(d̄h, am; b)

×Kl3

(
ab1b2b3

b3

l1l2l3

m
; d
))
,

where b is defined as in (7-17), c(b, l) := c(b1l1, b2l2, b3l3), and the sum over li is
now over the range

0< |li | ≤
xε/2 Hi

bi
. (7-18)

To control the remaining factor of F , we have the following estimate, where
we denote by n[ the largest squarefree divisor of an integer n ≥ 1 (the squarefree
radical of n). Note that b = (b1b2b3)

[.

Lemma 7.3. Let the notation and hypotheses be as above.

(1) We have

|F(dh, am; b)| ≤
b[1b[2b[3

b2 .

(2) The sum F(dh, am; b) is independent of d and m.

Proof. By further applications of Lemma 4.4 it suffices for (1) to show that

|F(c, a; p)| ≤
(c1, p)(c2, p)(c3, p)

p2

whenever p is prime, c = (c1, c2, c3) ∈ (Z/pZ)3, with c1c2c3 = 0 (p), and
a ∈ (Z/pZ)×. Without loss of generality we may assume that c3 = 0 (p), and then

F(c, a; p)= 1
p

∑∑
n1,n2∈(Z/pZ)×

ep(c1n1+ c2n2),

from which the result follows by direct computation of Ramanujan sums (see, e.g.,
[Iwaniec and Kowalski 2004, (3.5)]). Similarly, we see that the value of F(c, a; p)
only depends on which ci are divisible by p and which are not, and this gives (2). �
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This lemma leads to the estimate

|6′2(Q; a)|

�
Q
H

∑
b

b[1b[2b[3
b2

∑
l

∣∣∣∣ ∑
d∈DI (bxδ)
(bl1l2l3,d)=1

η′bd

∑
(m,bd)=1

α(m)Kl3

(
ab1b2b3l1l2l3

b3m
; d
)∣∣∣∣

�
Q
H

∑
b

b[1b[2b[3
b2 T (b), (7-19)

with

T (b) :=
∑

0<|`|≤x3ε/2 H/b1b2b3

τ3(`)

∣∣∣∣ ∑
d∈b−1DI (bxδ)∩I

(b`,d)=1

η′bd

∑
(m,bd)=1

α(m)Kl3

(
a`b1b2b3

b3m
;d
)∣∣∣∣;

following [Heath-Brown 1986] (particularly the arguments on p. 42), we have
collected common values of `= l1l2l3, and also replaced the bounded coefficients
η′bd , supported on I, with their absolute values. This is the desired reduction of
Type III estimates to exponential sums.

7C. End of the proof. We now focus on estimating T (b). First of all, we may
assume that

Q
b
� 1, x3ε/2 H

b1b2b3
� 1, (7-20)

since otherwise T (b)= 0.
Let y = bxδ and let S be a parameter such that

1≤ S ≤ y
Q
2b
=

xδQ
2
. (7-21)

The moduli d in the definition of T (b) are y-densely divisible and we have 1≤ S≤dy
(for x sufficiently large), so that there exists a factorization d = rs with

y−1S ≤ s ≤ S,
Q
bS
� r �

yQ
bS
,

and (r, s)= 1 (if d < S ≤ dy, we take s = d and r = 1).
Thus we may write

T (b)�
∑

y−1 S≤s≤S
(b`,s)=1

∑
0<|`|≤Hb

τ3(`)

∣∣∣∣ ∑
r∈SI

Q
bS�r� yQ

bS
(b`s,r)=1

η′b,r,s

∑
(m,brs)=1

α(m)Kl3

(
a`b1b2b3

b3m
;rs

)∣∣∣∣,
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where η′b,r,s is some bounded sequence and

Hb :=
x3ε/2 H
b1b2b3

.

We apply the Cauchy–Schwarz inequality to the sum over s and l. As usual, we
may insert a smooth coefficient sequence ψHb at scale Hb, equal to 1 on [−Hb, Hb],
and derive

|T (b)|2 ≤ T1T2,

where

T1 :=
∑

y−1 S≤s≤S

1
s

∑
0<|`|≤Hb

τ3(`)
2
≺≺ Hb

(by Equation (1-2)) and

T2 :=
∑

y−1 S≤s≤S

∑
`

sψHb(`)

∣∣∣∣ ∑
r∈SI

Q
bS�r� yQ

bS
(b`,rs)=(r,s)=1

η′b,r,s

∑
(m,brs)=1

α(m)Kl3

(
a`b1b2b3

b3m
;rs

)∣∣∣∣2.

We expand the square and find

|T2| ≤
∑

y−1 S≤s≤S

s
∑∑

r1,r2

∑∑
m1,m2

|α(m1)||α(m2)||U (r1, r2, s,m1,m2)|,

where we have omitted the summation conditions

ri ∈ SI ;
Q
bS
� ri �

yQ
bS
; (b`, ri s)= (ri , s)= (mi , bri s)= 1 for i = 1, 2

on r1, r2 and m1, m2 for brevity, and where

U (r1,r2,s,m1,m2) :=
∑

`:(`,r1r2s)=1

ψHb(`)Kl3

(
a`b1b2b3

b3m1
;r1s

)
Kl3

(
a`b1b2b3

b3m2
; r2s

)

is exactly the type of sum considered in Corollary 6.26 (recall that ab1b2b3 is
coprime to r1r2s).

We first consider the “diagonal terms”, which here mean the cases where

ab1b2b3

b3m1
r3

2 −
ab1b2b3

b3m2
r3

1 =
ab1b2b3

b3m1m2
(m2r3

2 −m1r3
1 )= 0.
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Using the Deligne bound |Kl3(x; d)| ≺≺ 1 when (d, x) = 1 (Remark 6.10), this
contribution T ′2 satisfies the bound

T ′2 ≺≺ Hb
∑∑

r1,r2

∑
y−1 S≤s≤S

s
∑∑

m1,m2
m1r3

1=m2r3
2

|α(m1)α(m2)|

≺≺ HbM
∑

Q/(bS)�r1�yQ/(bS)

(
Q

br1

)2

since each pair (r1,m1) determines≺≺ 1 pairs (r2,m2), and since s is, for each r1,
constrained to be � Q/(br1) by the condition r1s � Q/b. Summing, we obtain

T ′2 ≺≺
HbM QS

b
. (7-22)

We now turn to the off-diagonal case m1r3
1 − m2r3

2 6= 0. By Corollary 6.26,
we have

U (r1, r2, s,m1,m2)

≺≺

(
Hb

[r1, r2]s
+ 1

)
(s[r1, r2])

1/2(r1, r2,m2−m1)
1/2(m1r3

1 −m2r3
2 , s)1/2

in this case. We now sum these bounds to estimate the nondiagonal contribution
T ′′2 to T2. This is a straightforward, if a bit lengthy, computation, and we state the
result first:

Lemma 7.4. We have

T ′′2 ≺≺
M2 Q2

b2

(
Hbb1/2

Q1/2

(
bS
Q

)1/2

+
Q1/2

b1/2

(
xδQ

S

)1/2)
.

We first finish the proof of the Type III estimate using this. We first derive

T2 = T ′2 + T ′′2 ≺≺
M Q HbS

b
+

M2 QS1/2 Hb

b
+

y1/2 M2 Q3

b3S1/2 .

We select the parameter S now, by optimizing it to minimize the sum of the first
and last terms, subject to the constraint S ≤ (yQ)/(2b). Precisely, let

S =min
((

Q
b

)4/3 y1/3 M2/3

H 2/3
b

,
yQ
2b

)
.

This satisfies (7-21) if x is large enough: we have S ≤ (yQ)/(2b) by construction,
while S≥ 1 (for x large enough) follows either from (yQ)/(2b)� y/2 (see (7-20)),
or from(

Q
b

)4 yM2

H 2
b
=
(b1b2b3)

2

b2

(M N )2xδ−3ε

bQ2 � x2+δ−3εQ−3
� x1/2+δ−6$−3ε

� xε
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if ε > 0 is small enough (using b� Q and $ < 1
12 ).

This value of S leads to

|T (b)|2≺≺ Hb

(
y1/3 H 1/3

b M5/3 Q7/3

b7/3 +
y1/6 H 2/3

b M7/3 Q5/3

b5/3 +M2
(

Q
b

)5/2)
(where the third term only arises if S = (yQ)/(2b)), which gives

T (b)≺≺
x5ε/4

(b1b2b3)1/2b
(xδ/6 H 2/3 M5/6 Q7/6

+ xδ/12 H 5/6 M7/6 Q5/6
+ H 1/2 M Q5/4)

using the definition of Hb and the bound bi ≥1 (to uniformize the three denominators
involving b and b).

We will shortly establish the following elementary fact:

Lemma 7.5. The unsigned series

∑∑∑
b1,b2,b3≥1

b[1b[2b[3
(b1b2b3)1/2b3

converges to a finite value.

Now from (7-19) and this lemma, we get

6′2(Q; a)≺≺
x5ε/4 Q

H
(xδ/6 H 2/3 M5/6 Q7/6

+ xδ/12 H 5/6 M7/6 Q5/6
+ H 1/2 M Q5/4).

We now show that this implies (7-16) under suitable conditions on δ, $ and σ .
Indeed, we have

x5ε/4 Q
H

(xδ/6 H 2/3 M5/6 Q7/6
+ xδ/12 H 5/6 M7/6 Q5/6

+ H 1/2 M Q5/4)

≺≺ M N (E1+ E2+ E3),

where

E1 :=
x5ε/4+δ/6 Q13/6

H 1/3 M1/6 N
=

x5ε/4+δ/6−1/6 Q7/6

N 1/2 ≺≺ Q7/6x5ε/4+δ/6−3σ/4−13/24,

E2 :=
x5ε/4+δ/12 Q11/6 M7/6

H 1/6 M N
=

x5ε/4+δ/12+1/6 Q4/3

N
≺≺ Q4/3x5ε/4+δ/12−3σ/2−7/12,

E3 :=
x5ε/4 Q9/4

H 1/2 N
=

x5ε/4 Q3/4

N 1/2 ≺≺ Q3/4x5ε/4−3/8−3σ/4,

using the definition (7-14) of H and the lower bound (7-7) for N . Using Q ≺≺
x1/2+2$ , we see that we will have E1+ E2+ E3≺≺ x−2ε for some small positive
ε > 0 provided
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7
6

( 1
2 + 2$

)
+

δ
6 −

3σ
4 −

13
24 < 0,

4
3

( 1
2 + 2$

)
+

δ
12 −

3σ
2 −

7
12 < 0,

3
4

( 1
2 + 2$

)
−

3σ
4 −

3
8 < 0,

⇐⇒


σ > 28

9 $ +
2
9δ+

1
18 ,

σ > 16
9 $ +

1
18δ+

1
18 ,

σ > 2$.

However, the first condition implies the second and third. Thus we deduce Theorem
7.1, provided that we prove the two lemmas above, which we will now do.

Proof of Lemma 7.4. We will relax somewhat the conditions on r1, r2 and s. We
recall first that

Q
bS
� r1, r2�

yQ
bS
=

xδQ
S
.

Furthermore, the summation conditions imply r1s � Q/b� r2s, and in particular r1

and r2 also satisfy r1� r2. In addition, as above, we have s� Q/(br1) for a given r1.
Using this last property to fix the size of s, we have

T ′′2 ≺≺
Q
b

∑∑
Q
bS�r1�r2�

yQ
bS

1
r1

(
Hb(br1)

1/2

(Q[r1, r2])1/2
+
(Q[r1, r2])

1/2

(br1)1/2

)
∑∑
m1,m2�M

r3
1 m1 6=r3

2 m2

(r1, r2,m1−m2)
1/2

∑
s�Q/(br1)

(r3
1 m1− r3

2 m2, s)1/2.

By Lemma 1.4, the inner sum is≺≺ Q/(br1) for all (r1, r2,m1,m2), and similarly,
we get ∑∑

m1,m2�M

(r1, r2,m1−m2)
1/2
≺≺ M2

+M(r1, r2)
1/2,

so that

T ′′2 ≺≺
(

Q
b

)2 ∑∑
Q
bS�r1�r2�

yQ
bS

1
r2

1
(M2
+M(r1,r2)

1/2)

(
Hb(br1)

1/2

(Q[r1, r2])1/2
+
(Q[r1, r2])

1/2

(br1)1/2

)
.

We set r = (r1, r2) and write ri = r ti , and thus obtain

T ′′2 ≺≺
(

Q
b

)2 ∑
r� yQ

bS

M2
+ r1/2 M

r2

∑∑
Q

rbS�t1�t2�
yQ
rbS

1
t2
1

(
Hbb1/2

(Qt2)1/2
+
(Qt2)1/2

b1/2

)

≺≺

(
Q
b

)2 ∑
r� yQ

bS

M2
+ r1/2 M

r2

∑
Q

rbS�t2�
yQ
rbS

(
Hbb1/2

Q1/2t3/2
2

+
Q1/2

b1/2t1/2
2

)

≺≺

(
M Q

b

)2(Hbb1/2

Q1/2

(
Q
bS

)−1/2

+
Q1/2

b1/2

(
yQ
bS

)1/2)
,

as claimed. (Note that it was important to keep track of the condition r1 � r2.) �



New equidistribution estimates of Zhang type 2181

Proof of Lemma 7.5. If we write ti := b[i , bi = ti ui , then we have ti | b, ui | t∞i and

b[1b[2b[3
(b1b2b3)1/2b3 =

1
b3

3∏
i=1

t1/2
i

u1/2
i

,

and thus we can bound the required series by∑
b≥1

1
b3

(∑
t |b

t1/2
∑
u|t∞

1
u1/2

)3

.

Using Euler products, we have∑
u|t∞

1
u1/2 ≤ τ(t)

O(1)

and thus ∑
t |b

t1/2
∑
u|t∞

1
u1/2 ≤ τ(b)

O(1)b1/2,

and the claim now follows from another Euler product computation. �

8. An improved Type I estimate

In this final section, we prove the remaining Type I estimate from Section 5, namely
Theorem 5.1(iii). In Section 5C, we reduced this estimate to the exponential sum
estimate of Theorem 5.8(iii).

8A. First reduction. The reader is invited to review the definition and notation of
Theorem 5.8. We consider the sum

ϒ :=
∑

r

ϒ`,r (b1, b2; q0)

of (5-32) for each 1≤|`|� N/R, whereϒ`,r was defined in (5-30) and the sum over
r is restricted to r ∈ D(2)

I (x
δ+o(1))∩ [R, 2R] (the property that r is doubly densely

divisible being part of the assumptions of 5.8(iii)). Our task is to show the bound

ϒ ≺≺ x−εQ2 RN (q0, `)q−2
0

under the hypotheses of Theorem 5.8(iii).
In contrast to the Type I and II estimates of Section 5 (but similarly to the Type III

estimate), we will exploit here the average over r , and hence the treatment will
combine some features of all the methods used before.

As before, we set
H := xεRQ2 M−1q−1

0 . (8-1)
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We recall that, from (5-31), we have H� 1. We begin as in Section 5F by exploiting
the xδ-dense divisibility of q0q1, which implies the xδq0-dense divisibility of q1 by
Lemma 2.10(i). Thus we reduce by dyadic decomposition to the proof of∑

r

ϒU,V ≺≺ x−ε(q0, `)RQ2 Nq−2
0 (8-2)

(which corresponds to (5-39) with the average over r preserved), where

ϒU,V :=∑
1≤|h|≤H

∑
u1�U

∑
v1�V

∑
q2�Q/q0

(u1v1,q0q2)=1

∣∣∣∣∑
n

C(n)β(n)β(n+ `r)8`(h, n, r, q0, u1v1, q2)

∣∣∣∣
as in Section 5F, whenever

q−1
0 x−δ−2εQ/H ≺≺U ≺≺ x−2εQ/H, (8-3)

q−1
0 x2εH ≺≺ V ≺≺ xδ+2εH, (8-4)

U V � Q/q0 (8-5)

(which are identical to the constraints (5-40), (5-41) and (5-42)), and whenever the
parameters ($, δ, σ ) satisfy the conditions of Theorem 5.8(iii). As before, u1, v1

are understood to be squarefree.
We replace again the modulus by complex numbers cr,h,u1,v1,q2 of modulus ≤ 1,

which we may assume to be supported on parameters (r, h, u1, v1, q2) with

(u1v1, q2)= 1

and with

q0u1v1r, q0q2r squarefree.

(These numbers cr,h,u1,v1,q2 are unrelated to the exponent c in Theorem 5.1.) We
then move the sums over r , n, u1 and q2 outside and apply the Cauchy–Schwarz
inequality as in the previous sections to obtain∣∣∣∣∑

r

ϒU,V

∣∣∣∣2 ≤ ϒ1ϒ2

with

ϒ1 :=
∑

r

∑∑
u1�U

q2�Q/q0

∑
n

C(n)|β(n)|2|β(n+ `r)|2≺≺ (q0, `)
N Q RU

q2
0
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(again as in (5-35)) and

ϒ2 :=
∑

r

∑∑
u1�U

q2�Q/q0

∑
n

ψN (n)C(n)
∣∣∣∣∑
v1�V

∑
1≤|h|≤H

ch,r,u1,v1,q28`(h,n,r,q0,u1v1,q2)

∣∣∣∣2

=

∑
r

∑∑
u1�U

q2�Q/q0

∑∑
v1,v2�V

∑∑
1≤|h1|,|h2|≤H

(
ch1,r,u1,v1,q2ch2,r,u1,v2,q2

×T`,r (h1,h2,u1,v1,v2,q2)
)
,

where T`,r is defined by (5-43) and ψN is a smooth coefficient sequence at scale N .
The analysis of ϒ2 will now diverge from Section 5F. In our setting, the modulus

r is doubly xδ+o(1)-densely divisible. As in the previous section, we will exploit
this divisibility to split the average and apply the Cauchy–Schwarz inequality a
second time.

Let D be a parameter such that

1≺≺ D≺≺ xδR, (8-6)

which will be chosen and optimized later. By definition (see Definition 2.1) of doubly
densely divisible integers, for each r , there exists a factorization r = dr1 where

x−δD≺≺ d ≺≺ D

and where r1 is xδ+o(1)-densely divisible (and (d, r1) = 1, since r is squarefree).
As before, in the case D ≥ R one can simply take d = r and r1 = 1.

We consider the sums

ϒ3 :=
∑
d�1

(d,r1)=1

∑∑
1≤|h1|,|h2|≤H

∑∑
v1,v2�V

(v1v2,dr1q0u1q2)=1

|T`,dr1(h1, h2, u1, v1, v2, q2)|,

with d understood to be squarefree, for all 1 such that

max(1, x−δD)≺≺1≺≺ D (8-7)

and all (r1, u1, q2) such that

r1 � R/1, u1 �U, q2 � Q/q0, (8-8)

and such that r1q0u1q2 is squarefree and the integers r1, q0u1v1, q0u1v2 and q0q2

are xδ+o(1)-densely divisible.
For a suitable choice of D, we will establish the bound

ϒ3≺≺ (q0, `)x−2ε1N V 2q0 (8-9)
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for all such sums. It then follows by dyadic subdivision of the variable d and by
trivial summation over r1, u1 and q2 that

ϒ2≺≺ (q0, `)x−2εN V 2q0
RU Q

q0
= (q0, `)x−2εN RU V 2 Q,

and hence that ∣∣∣∣∑
r

ϒU,V

∣∣∣∣2≺≺ (q0, `)
2x−2εN 2 R2

(
Q
q0

)4

,

which gives the desired result.
We first write ϒ3 = ϒ

′

3 + ϒ
′′

3 , where ϒ ′3 is the diagonal contribution deter-
mined by h1v2 = h2v1. The number of quadruples (h1, v1, h2, v2) satisfying this
condition is ≺≺ H V by the divisor bound, and therefore a trivial bound ≺≺ N for
T`,r (h1, h2, u1, v1, v2, q2) gives

ϒ ′3≺≺1H N V ≺≺ (q0, `)x−2ε1N V 2q0

by (8-4). We now write

ϒ ′′3 =
∑∑

(h1,v1,h2,v2)
h1v2 6=h2v1

ϒ4(h1, v1, h2, v2),

where h1, v1, h2, v2 obey the same constraints as in the definition of ϒ3, and

ϒ4(h1, v1, h2, v2) :=
∑
d�1

(d,r1)=1

|T`,dr1(h1, h2, u1, v1, v2, q2)|.

We will shortly establish the following key estimate:

Proposition 8.1. If ε > 0 is small enough, then we have

ϒ4(h1, v1, h2, v2)≺≺ (q0, `)x−2ε1N H−2q0 (h1v2− h2v1, q0q2r1u1[v1, v2]),

if we take

D := x−5ε N
H 4 (8-10)

and if {160
3 $ + 16δ+ 34

9 σ < 1,
64$ + 18δ+ 2σ < 1.

(8-11)

Assuming this proposition, we obtain

ϒ ′′3 ≺≺ (q0, `)x−2ε1N V 2q0,

and hence (8-9), by the following lemma, which will be proved later:
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Lemma 8.2. We have∑∑
(h1,v1,h2,v2)
h1v2 6=h2v1

(h1v2− h2v1, q0q2r1u1[v1, v2])≺≺ H 2V 2.

8B. Reduction of Proposition 8.1 to exponential sums. We now consider a specific
choice of parameters r1, u1, q2 and (h1, v1, h2, v2), so that ϒ4 =ϒ4(h1, v1, h2, v2)

is a sum with two variables which we write as

ϒ4 =
∑
d�1

∣∣∣∣∑
n

ψN (n)C(n)9(d, n)
∣∣∣∣,

where C(n) restricts n to the congruence (5-23) and

9(d, n) :=8`(h1, n, dr1, q0, u1v1, q2)8`(h2, n, dr1, q0, u1v2, q2). (8-12)

We define D by (8-10), and we first check that this satisfies the constraints (8-6).
Indeed, we first have

D = x−5ε N
H 4 =

x−9εq4
0 N M4

Q8 R4 �� x−9ε−16$ R4

N 3 �� x1/2−σ−16$−4δ−21ε

by (5-2) and (5-12). Under the condition (8-11), this gives D �� 1 if ε > 0 is taken
small enough.

Moreover, since H � 1, we have

D = x−5ε N
H 4 ≺≺ x−5εN ≺≺ x−2ε+δR ≤ xδR.

We apply the van der Corput technique with respect to the modulus d . Let

L := x−ε
⌊N
1

⌋
. (8-13)

Note that from (8-6) and (5-12), it follows that L �� x−εN R−1
≥ 1 for x sufficiently

large.
For any l with 1≤ l ≤ L , we have∑

n

ψN (n)C(n)9(d, n)=
∑

n

ψN (n+ dl)C(n+ dl)9(d, n+ dl),

and therefore

|ϒ4| ≤
1
L

∑
d�1

∑
n�N

∣∣∣∣ L∑
l=1

ψN (n+ dl)C(n+ dl)9(d, n+ dl)
∣∣∣∣.



2186 D. H. J. Polymath

By the Cauchy–Schwarz inequality, for some smooth coefficient sequence ψ1 at
scale 1, we have

|ϒ4|
2
≤

N1
L2 |ϒ5|, (8-14)

where

ϒ5 :=
∑
d�1

ψ1(d)
∑

n

∣∣∣∣ L∑
l=1

ψN (n+ dl)C(n+ dl)9(d, n+ dl)
∣∣∣∣2.

Lemma 8.3. Let

m = q0r1u1[v1, v2]q2.

There exist residue classes α (m) and β (m), independent of n and l, such that for
all n and l we have

9(d, n+ dl)= ξ(n, d)em

(
α

d(n+ (β + l)d)

)
,

where |ξ(n, d)| ≤ 1. Moreover we have (α,m)= (h1v2− h2v1,m).

Proof. From the definitions (8-12) and (5-30), if 9(d, n) does not vanish identically,
then we have

9(d, n+ dl)

= edr1

(
a(h1− h2)

(n+ dl)q0u1v1q2

)
eq0u1v1

(
b1h1

(n+ dl)dr1q2

)
eq0u1v2

(
−

b1h2

(n+ dl)dr1q2

)
× eq2

(
b2h1

(n+ dl + d`r1)dr1q0u1v1

)
eq2

(
−

b2h2

(n+ dl + d`r1)dr1q0u1v2

)
.

By the Chinese remainder theorem, the first factor splits into a phase ed( · · · ) that
is independent of l, and an expression involving er1 , which, when combined with
the other four factors by another application of the Chinese remainder theorem,
becomes an expression of the type

em

(
α

d(n+ ld +βd)

)
for some residue classes α and β modulo m which are independent of l. Further-
more (α,m) is the product of primes p dividing m such that the product of these
four factors is trivial, which (since (q2, q0u1[v1, v2]) = 1) occurs exactly when
p | h2v1− h1v2 (recall that b1 and b2 are invertible residue classes). �
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Using this lemma, and the notation introduced there, it follows that∣∣∣∣ L∑
l=1

ψN (n+ dl)C(n+ dl)9(d, n+ dl)
∣∣∣∣2

≤

∑
1≤l1,l2≤L

ψN (n+ dl1)ψN (n+ dl2)C(n+ dl1)C(n+ dl2)

em

(
α

d(n+βd + l1d)

)
em

(
−

α

d(n+βd + l2d)

)
=

∑
1≤l1,l2≤L

ψN (n+ dl1)ψN (n+ dl2)em

(
α(l2− l1)

(n+βd + l1d)(n+βd + l2d)

)
,

and therefore, after shifting n by dl1, writing l := l2 − l1, and splitting n, d into
residue classes modulo q0, that

ϒ5 ≤
∑

n0,d0∈Z/q0Z

C(n0)ϒ5(n0, d0),

where

ϒ5(n0, d0) :=
∑∑
|l|≤L−1
1≤l1≤L

∣∣∣∣∣ ∑
d=d0 (q0)

ψ1(d)
∑

n=n0 (q0)

ψN (n)ψN (n+ dl)

× em

(
αl

(n+βd)(n+ (β + l)d)

)∣∣∣∣∣. (8-15)

Note that m is squarefree. Also, as m is the least common multiple of the xδ+o(1)-
densely divisible quantities r1, q0u1v1, q0u1v2, and q0q2, Lemma 2.10(ii) implies
that m is also xδ+o(1)-densely divisible.

The contribution of l = 0 to ϒ5(n0, d0) is trivially

�
N L1

q2
0
, (8-16)

and this gives a contribution of size

≺≺
√
(q0, `)

N1
√

q0L

to ϒ4, as can be seen by summing over the q0(q0, `) permitted residue classes
(n0 (q0), d0 (q0)). Using (8-10), we have

1≺≺ D = x−5ε N
H 4 ,

and we see from (8-13) that this contribution is certainly

≺≺ (q0, `)x−2ε1N H−2q0,
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and hence suitable for Proposition 8.1.
Let ϒ ′5(n0, d0) and ϒ ′5 denote the remaining contributions to ϒ5(n0, d0) and ϒ5,

respectively. It will now suffice to show that

N1
L2 |ϒ

′

5| ≺≺
(
(q0, `)x−2ε1N H−2q0 (h1v2− h2v1, q0q2r1u1[v1, v2])

)2
. (8-17)

We have

ϒ ′5(n0, d0)=
∑∑

1≤|l|≤L−1
1≤l1≤L

|ϒ6(n0, d0)|, (8-18)

where

ϒ6(n0,d0)

:=

∑
d=d0 (q0)

ψ1(d)
∑

n=n0 (q0)

ψN (n)ψN (n+dl)em

(
αl

(n+βd)(n+(β+l)d)

)
. (8-19)

For given l 6= 0 and l1, the sum ϒ6(n0, d0) over n and d in (8-15) is essentially
an incomplete sum in two variables of the type treated in Corollary 6.24. However,
before we can apply this result, we must separate the variables n and d inψN (n+dl).
As in the previous section, we can do this here using a Taylor expansion.

Let J ≥ 1 be an integer. Performing a Taylor expansion to order J , we have

ψN (n+ dl)= ψ
(

n+ dl
N

)
=

J∑
j=0

(
d
1

) j 1
j !

(
1l
N

) j

ψ ( j)
(

n
N

)
+ O(x−εJ ),

since dl�1L� x−εN by (8-13). We can absorb the factor (d/1) j into ψ1, and
after taking J large enough depending on ε, we see that we can express ϒ6(n0, d0)

as a sum of finitely many sums

ϒ ′6(n0, d0)=
∑

d=d0(q0)

ψ1(d)
∑

n=n1 (q0)

ψ ′N (n)em

(
αl

(n+βd)(n+ (β + l)d)

)

for some residue classes n1 (q0), where ψ1 and ψ ′N are coefficient sequences
smooth at scales 1 and N respectively, possibly different from the previous ones.

We will prove in Section 8D the following exponential sum estimate, using the
machinery from Section 6:

Proposition 8.4. Let m be a y-densely divisible squarefree integer of polynomial
size for some y≥1, let1, N>0 be of polynomial size, and let α, β, γ1, γ2, l∈Z/mZ.
Let ψ1, ψ ′N be shifted smooth sequences at scale 1 and N respectively. Then for
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any divisor q0 of m and for all residue classes d0 (q0) and n0 (q0), we have∣∣∣∣ ∑
d=d0 (q0)

∑
n=n0 (q0)

ψ1(d)ψ ′N (n)em

(
αl

(n+βd + γ1)(n+ (β + l)d + γ2)

)∣∣∣∣
≺≺ (αl,m)

(
N

q0m1/2 +m1/2
)(

1+
(
1

q0

)1/2

m1/6 y1/6
+

(
1

q0

)
m−1/2

)
. (8-20)

We also have the bound∣∣∣∣ ∑
d=d0 (q0)

∑
n=n0 (q0)

ψ1(d)ψ ′N (n)em

(
αl

(n+βd + γ1)(n+ (β + l)d + γ2)

)∣∣∣∣
≺≺ (αl,m)

(
N

q0m1/2 +m1/2
)(

m1/2
+

(
1

q0

)
m−1/2

)
. (8-21)

Remark 8.5. Suppose q0 = 1 for simplicity. In practice, the dominant term on
the right-hand side of (8-21) will be (αl,m)m1/211/2m1/6 y1/6, which in certain
regimes improves upon the bound of ((αl,m)−1/2m1/2)1 that is obtained by com-
pleting the sums in the variable n only without exploiting any additional cancellation
in the variable d.

Note that if the phase

αl
(n+βd + γ1)(n+ (β + l)d + γ2)

was of the form f (d)+ g(n) for some nonconstant rational functions f and g, then
the two-dimensional sum would factor into the product of two one-dimensional sums,
and then the estimates we claim would basically follow from the one-dimensional
bounds in Proposition 4.12. However, no such splitting is available, and so we are
forced to use the genuinely multidimensional theory arising from Deligne’s proof
of the Riemann hypothesis over finite fields.

Applying Proposition 8.4, we have

ϒ ′6(n0, d0)≺≺ (αl,m)
(

m1/2
+

N/q0

m1/2

)(
1+ (1/q0)

1/2m1/6xδ/6+
1/q0

m1/2

)
,

as well as

ϒ ′6(n0, d0)≺≺ (αl,m)
(

m1/2
+

N/q0

m1/2

)(
m1/2
+
1/q0

m1/2

)
.

Distinguishing the cases N/q0 ≤ m and N/q0 > m, and summing over the finitely
many cases of ϒ ′6(n0, d0) that give ϒ6(n0, d0), we see that

ϒ6(n0,d0)

≺≺ (αl,m)
{

m1/2
(

1+
(
1

q0

)1/2

m1/6xδ/6+
1/q0

m1/2

)
+

N/q0

m1/2

(
m1/2
+
1/q0

m1/2

)}
.
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Note that (αl,m)≤ (α,m)(l,m) and hence, summing over l and l1 in (8-18) (using
Lemma 1.4), we get

ϒ ′5(n0, d0)≺≺ (α,m)L2
{

m1/2
+

(
1

q0

)1/2

m2/3xδ/6+
1

q0
+

N
q0
+

N1
q2

0 m

}
.

Next, summing over the ≤ (q0, `)q0 residue classes (n0, d0) allowed by the congru-
ence restriction (5-23), we get

ϒ ′5≺≺ (q0, `)(α,m)L2
{

q0m1/2
+ (q01)

1/2m2/3xδ/6+1+ N +
N1
q0m

}
,

and finally, by inserting some additional factors of q0 and (q0, `), we derive

N1
L2 |ϒ

′

5| ≺≺ (q0, `)(α,m)N1
{

q0m1/2
+ (q01)

1/2m2/3xδ/6+1+ N +
N1
q0m

}
≺≺ (q0, `)

2(α,m)2q0 N1
{
11/2m2/3xδ/6+1+ N +

N1
m

}
.

In fact, since 1≺≺ D≺≺ N , we see that

N1
L2 |ϒ

′

5| ≺≺ (q0, `)
2(α,m)2q0 N1

{
11/2m2/3xδ/6+ N +

N1
m

}
.

We have m = q0r1u1[v1, v2]q2 (see Lemma 8.3) and therefore (using (8-5) and
(8-4)) we can bound m from above and below by

m� q0×
R
1
×U × V 2

×
Q
q0
�

Q2 RV
1
≺≺ xδ+2ε Q2 RH

1
and

m �� q0×
R
1
×U × V ×

Q
q0
�

Q2 R
q01

,

which leads to

N1
L2 |ϒ

′

5| ≺≺ (q0, `)
2(α,m)2q2

0 N1
{

x5δ/6+4ε/3 (Q
2 RH)2/3

11/6 + N +
N12

Q2 R

}
= (q0, `)

2(α,m)2q2
0
(N1)2

H 4

{
x5δ/6+2ε H 4(Q2 RH)2/3

N17/6 +
H 4

1
+

H 41

Q2 R

}
up to admissible errors. Since

1−1
≺≺

xδ

D
= xδ+5ε H 4

N
, 1≺≺ D = x−5ε N

H 4 ,

this leads to
N1
L2 |ϒ

′

5|

≺≺ (q0, `)
2(α,m)2q2

0
(N1)2

H 4

{
x2δ+8ε H 28/3 Q4/3 R2/3

N 13/6 +
xδ+5εH 8

N
+

x−5εN
Q2 R

}
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up to admissible errors. From the assumptions (5-2) and (5-13), we have

N ≺≺ x1/2
≺≺ Q R,

and thus
x−5εN
Q2 R

≺≺ x−5εQ−1
≺≺ x−5ε.

On the other hand, from the value of H (see (8-1)) we get

x2δ+8ε H 28/3 Q4/3 R2/3

N 13/6 ≺≺ x2δ+18ε R10 Q20

M28/3 N 13/6 ≺≺ x−28/3+2δ+18εR10 Q20 N 43/6,

xδ+5εH 8

N
≺≺ xδ+13ε R8 Q16

N M8 ≺≺ x−8+δ+13εN 7 Q16 R8.

Using the other conditions x1/2
≺≺ Q R≺≺ x1/2+2$ and

R �� x−3ε−δN , N �� x1/2−σ ,

these quantities are in turn bounded respectively by

x2δ+8ε H 28/3 Q4/3 R2/3

N 13/6 ≤ x2/3+2δ+40$+18ε N 43/6

R10 � x2/3+12δ+40$−17/6(1/2−σ)+48ε,

xδ+5εH 8

N
≤ xδ+32$+13ε N 7

R8 � x9δ+32$+37ε−(1/2−σ).

Thus, by taking ε > 0 small enough, we obtain (8-17) (and hence Proposition 8.1)
provided{ 2

3 + 12δ+ 40$ − 17
6

( 1
2 − σ

)
< 0,

9δ+ 32$ −
( 1

2 − σ
)
< 0,

⇐⇒

{160
3 $ + 16δ+ 34

9 σ < 1,
64$ + 18δ+ 2σ < 1.

These are exactly the conditions claimed in Proposition 8.1.

8C. Proof of Lemma 8.2. This is a bit more complicated than the corresponding
lemmas in Sections 5D–5F because the quantity m = q0q2r1u1[v1, v2] depends also
on v1 and v2.

We let w := q0q2r1u1, so m =w[v1, v2] and w is independent of (h1, h2, v1, v2)

and coprime with [v1, v2].
Since (w, [v1, v2])= 1, we have

(h1v2− h2v1, w[v1, v2])=
∑

d|h1v2−h2v1
d|w[v1,v2]

ϕ(d)≤
∑
d|w

d
∑

e|[v1,v2]
de|h1v2−h2v1

e,
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and therefore∑∑
(h1,v1,h2,v2)
h1v2 6=h2v1

(h1v2− h2v1, q0q2r1u1[v1, v2])≤
∑∑

(h1,v1,h2,v2)
h1v2 6=h2v1

∑
d|w

d
∑

e|[v1,v2]
de|h1v2−h2v1

e

≤

∑
d|w

d
∑

(d,e)=1
e�V 2

e squarefree

e
∑

([v1,v2],w)=1
de|h1v2−h2v1

e|[v1,v2]
h1v2 6=h2v1

1.

The variable d is unrelated to the modulus d appearing previously in this section.
Let d, e be integers occurring in the outer sums, and (h1, h2, v1, v2) satisfying

the other summation conditions. Then e is squarefree, and since e | [v1, v2] and
e | h1v2−h2v1, any prime dividing e must divide one of (v1, v2), (h1, v1) or (h2, v2)

(if it does not divide both v1 and v2, it is coprime to one of them, and h1v2−h2v1=

0 (p) gives one of the other divisibilities). Thus if we factor e = e1e2e3, where

e1 :=
∏
p|e
p|v1
p-v2

p, e2 :=
∏
p|e
p-v1
p|v2

p, e3 :=
∏
p|e

p|(v1,v2)

p,

then these are coprime and we have

e1 | h1, e2 | h2, e1e3 | v1, e2e3 | v2.

We write

h1 = e1λ1, h2 = e2λ2, v1 = e1e3ν1, v2 = e2e3ν2.

Then we get

h1v2− h2v1 = e(λ1ν2− λ2ν1),

and since de | h1v2− h2v1, it follows that d | λ1ν2− λ2ν1.
Now fix some e� V 2. For each choice of factorization e = e1e2e3, the num-

ber of pairs (λ1ν2, λ2ν1) that can be associated to this factorization as above for
some quadruple (h1, h2, v1, v2) is � (H V/e)2/d, since each product λ1ν2, λ2ν1

is � H V/e, and d divides the difference. By the divisor bound, this gives
≺≺ (H V )2/de2 for the number of quadruples (h1, h2, v1, v2). Summing over d | w
and e, we get a total bound

≺≺ (H V )2τ(w)
∑

e�V 2

e−1
≺≺ H 2V 2,

as desired.
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8D. Proof of Proposition 8.4. It remains to establish Proposition 8.4. We begin
with the special case when e = 1 and (αl,m)= 1. For simplicity, we set

f (n, d)=
αl

(n+βd + γ1)(n+ (β + l)d + γ2)
.

By completion of the sum over n (see Lemma 4.9(i)), we have∑
d

∑
n

ψ1(d)ψN (n)em( f (n, d))

≺≺

(
N
m
+ 1

)
sup

h∈Z/mZ

∣∣∣∣∑
d

ψ1(d)
∑

n∈Z/mZ

em( f (n, d)+ hn)
∣∣∣∣

=

(
N
√

m
+
√

m
)

sup
h∈Z/mZ

∣∣∣∣∑
d

ψ1(d)Kh(d;m)
∣∣∣∣,

where, for each h ∈ Z/mZ, we define

Kh(d;m) :=
1
√

m

∑
n∈Z/mZ

em( f (n, d)+ hn).

By the first part of Corollary 6.24 (i.e., (6-23)), we get∣∣∣∣∑
d

ψ1(d)Kh(d;m)
∣∣∣∣≺≺ m1/2

+1m−1/2, (8-22)

and this combined with (8-22) implies the second bound (8-21) (in the case
e = 1, (αl,m) = 1, that is). Furthermore, it also implies the first bound (8-20)
for 1> m2/3 y−1/3.

In addition, from the Chinese remainder theorem (Lemma 4.4) and (6-16), we
deduce the pointwise bound

|Kh(d,m)| ≺≺ 1 (8-23)

which implies the trivial bound∣∣∣∣∑
d

ψ1(d)Kh(d;m)
∣∣∣∣≺≺ 1+1,

which gives (8-20) for 1≤ m1/3 y1/3. Thus we can assume that

m1/3 y1/3
≤1≤ m2/3 y−1/3

≤ m.

We can then use the y-dense divisibility of m to factor m into m1m2, where

y−2/3m1/3
≤ m1 ≤ y1/3m1/3,

y−1/3m2/3
≤ m2 ≤ y2/3m2/3.
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Now the second part of Corollary 6.24 (i.e., (6-24)) gives∣∣∣∣∑
d

ψ1(d)Kh(d;m)
∣∣∣∣≺≺11/2m1/2

1 +1
1/2m1/4

2 ≺≺1
1/2m1/6 y1/6,

which together with (8-22) gives (8-20).
This finishes the proof of Proposition 8.4 for the special case e=1 and (αl,m)=1.

The extension to a divisor e | m is done exactly as in the proof of Corollary 4.16
in Section 4.

We now reduce to the case (αl,m)= 1. Let

m′ := m/(αl,m),

y′ := y(αl,m),

α′ := α/(αl,m)=
α/(α,m)

(αl,m)/(α,m)
,

where one computes the reciprocal of (αl,m)/(α,m) inside Z/m′Z, so that α′

is viewed as an element of Z/m′Z. The integer m′ is y′-densely divisible by
Lemma 2.10(ii), and it is also squarefree and of polynomial size. We have (a′l,m′)=
1, and furthermore∑

d

∑
n

ψ1(d)ψN (n)em( f (n, d))

=

∑
d

∑
n

ψ1(d)ψN (n)em′( f ′(n, d))
∏

p|(αl,m)

(1− 1p|(n+βd+γ1)(n+(β+l)d+γ2)),

where

f ′(n, d)=
α′l

(n+βd + γ1)(n+ (β + l)d + γ2)

(here we use the convention explained at the end of Section 4A that leads to
ep(αx)= 1 if p is prime, α = 0 (p) and x =+∞∈ P1(Z/pZ)).

Set
g(n, d)= (n+βd + γ1)(n+ (β + l)d + γ2).

Then, expanding the product (as in inclusion-exclusion), we get∑
d

∑
n

ψ1(d)ψN (n)em( f (n,d))=
∑

δ|(αl,m)

µ(δ)
∑∑

d,n
δ|g(n,d)

ψ1(d)ψN (n)em′( f ′(n,d))

(this usage of δ is unrelated to prior usages of δ in this section). Splitting the sum
over n and d in residue classes modulo δ, this sum is then equal to∑

δ|(αl,m)

µ(δ)
∑∑

(d0,n0)∈(Z/δZ)
2

g(n0,d0)=0 (δ)

∑
n=n0 (n)

∑
d=d0 (δ)

ψ1(d)ψN (n)em′( f ′(n, d)).
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For each choice of (n0, d0), we can apply the previously proved case of Proposition
8.4 to deduce that∑
n=n0 (n)

∑
d=d0 (δ)

ψ1(d)ψN (n)em′( f ′(n, d))

≺≺

(
√

m′+
N

δ
√

m′

)(
1+

11/2

δ1/2 (m
′y′)1/6+

1

δ
√

m′

)
and∑

n=n0 (n)

∑
d=d0 (δ)

ψ1(d)ψN (n)em′( f ′(n, d))≺≺
(
√

m′+
N

δ
√

m′

)(
√

m′+
1

δ
√

m′

)
.

Moreover, by the Chinese remainder theorem, there are≺≺ δ solutions (n0, d0) ∈

(Z/δZ)2 of g(n0, d0)= 0 (δ), and therefore we find∑
d

∑
n

ψ1(d)ψN (n)em( f (n, d))

≺≺

∑
δ|(αl,m)

δ

(
√

m′+
N

δ
√

m′

)(
1+

11/2

δ1/2 (m
′y′)1/6+

1

δ
√

m′

)
and∑

d

∑
n

ψ1(d)ψN (n)em( f (n, d))≺≺
∑

δ|(αl,m)

δ

(
√

m′+
N

δ
√

m′

)(
√

m′+
1

δ
√

m′

)
.

It is now elementary to check that these give the bounds of Proposition 8.4 (note
that m′y′ = my).
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Relations between Dieudonné displays
and crystalline Dieudonné theory

Eike Lau

We discuss the relation between crystalline Dieudonné theory and Dieudonné
displays of p-divisible groups. The theory of Dieudonné displays is extended
to the prime 2 without restriction, which implies that the classification of finite
locally free group schemes by Breuil–Kisin modules holds for the prime 2 as well.
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Introduction

Formal p-divisible groups G over a p-adically complete ring R are classified by
Zink’s nilpotent displays [Zink 2002; Lau 2008]. These are projective modules
over the ring of Witt vectors W.R/ equipped with a filtration and with certain
Frobenius-linear operators. A central point of the theory is a description of the
Dieudonné crystal of G in terms of the nilpotent display associated to G.

Arbitrary p-divisible groups over R can be classified by displays only when R
is a perfect ring. In certain cases, there is the following refinement.

Assume that R is a local Artin ring with perfect residue field k of characteristic p
and with maximal ideal NR. Then W.R/ has a unique subring W.R/, here called
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the Zink ring of R, which is stable under the Frobenius and which sits in an
exact sequence

0 �! yW .NR/ �!W.R/ �!W.k/ �! 0;

where yW means Witt vectors with only finitely many nonzero components. Let
us call R odd if p > 2 or if p annihilates R. The Verschiebung homomorphism v

of W.R/, which appears in the definition of displays, stabilises the subring W.R/

if and only if R is odd. In this case, Zink [2001a] defines Dieudonné displays
over R as displays with W.R/ in place of W.R/, and shows that they classify all
p-divisible groups over R.

The restriction for p D 2 can be avoided with a small trick: The ring W.R/ is
always stable under the modified Verschiebung v.x/D v.u0x/, where u0 2W.R/
is the unit defined by the relation v.u0/D p� Œp�. This allows to define Dieudonné
displays without assuming that R is odd. It turns out that the Zink ring and
Dieudonné displays can be defined for the following class of rings R, which we
call admissible: the order of nilpotence of nilpotent elements of R is bounded, and
Rred is a perfect ring of characteristic p.

Theorem A. For each admissible ring R there is a functor

ˆR W .p-divisible groups over R/! .Dieudonné displays over R/;

which is an equivalence of exact categories.

The equivalence easily extends to projective limits of admissible rings, which
includes complete local rings with perfect residue field. If R is perfect, the theorem
says that p-divisible groups over R are equivalent to Dieudonné modules. This is a
result of Gabber, which is used in the proof. We repeat that for Artin rings (which
is certainly the case of interest for most applications1), Theorem A is known when
R is odd; in this case, ˆR is the inverse of the functor BT of [Zink 2001a] and
[Lau 2009]. But the present construction of the functor ˆR based on the crystalline
Dieudonné module is new, and also gives the following second result.

Let D.G/ denote the covariant Dieudonné crystal of a p-divisible group G.
Following [Zink 2001b], to a Dieudonné display P over an admissible ring R one
can associate a crystal in locally free modules D.P/.

Theorem B. For a p-divisible group G over an admissible ring R with associated
Dieudonné display P DˆR.G/, there is a natural isomorphism

D.G/Š D.P/:

1In subsequent work, Dieudonné displays over a larger class of base rings will be used to study
the image of the crystalline Dieudonné functor over l.c.i. schemes.



Relations between Dieudonné displays and crystalline Dieudonné theory 2203

This compatibility was not known before and can be useful in applications; see
for example [Viehmann and Wedhorn 2013]. Our proofs of Theorems A and B are
closely related. The main point is to construct the functor ˆR and variants of it.
Let IR be the kernel of the natural homomorphism W.R/!R.

First, if R is an odd admissible ring, the ideal IR carries natural divided powers.
Thus the crystalline Dieudonné module of a p-divisible group over R can be
evaluated at W.R/, which gives a filtered F -V -module over W.R/. We show that
this construction can be extended to a functor ˆR as in Theorem A. This is not
evident because a filtered F -V -module does not in general determine a Dieudonné
display. But the construction of ˆR can be reduced to the case where R is a
universal deformation ring; then the Dieudonné display is determined uniquely
because p is not a zero divisor in W.R/.

Next, for a divided power extension of admissible rings S !R, one can define
Dieudonné displays relative to S !R, called triples in the work of Zink. They are
modules over an extension W.S=R/ of W.S/. If R is odd and the divided powers
are compatible with the canonical divided powers of p, then the evaluation of the
crystalline Dieudonné module at the divided power extension W.S=R/!R can
be extended to a functor

ˆS=R W .p-divisible groups over R/! .Dieudonné displays for S=R/:

Again, this is not evident; the proof comes down to the fact that p is not a zero
divisor in the Zink ring of the divided power envelope of the diagonal of the universal
deformation space of a p-divisible group. Once the functors ˆS=R are known to
exist, Theorems A and B for odd admissible rings are straightforward consequences.

Now let R be an admissible ring which is not odd, so p D 2. In this case, the
preceding constructions do not apply directly because the ideal IR does not in
general carry divided powers. This changes when W.R/ is replaced by the slightly
larger v-stabilised Zink ring WC.R/DW.R/Œv.1/�. With an obvious definition of
v-stabilised Dieudonné displays, we get a functor

ˆCR W .2-divisible groups over R/! .v-stabilised Dieudonné displays over R/;

which is, however, not an equivalence. In order to construct a functor ˆR as in
Theorem A, we have to descend from WC.R/ to W.R/. This can be reduced to
the minimal case where 2NR D 0. Then the ideal IR carries exceptional divided
powers, which allows us to evaluate the crystalline Dieudonné module at W.R/. In
order to get the functor ˆR, we need some lift towards characteristic zero, which
is provided by the fact that the exceptional divided powers exist on IR=.v.Œ4�// as
soon as 4NR D 0. Once ˆR is known to exist in general, Theorems A and B follow
again quite formally.
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Breuil–Kisin modules. Now let R be a complete regular local ring with perfect
residue field k of characteristic p. Theorem A implies that the classification of
p-divisible groups over R by Breuil windows derived in [Vasiu and Zink 2010] and
[Lau 2010] for odd p holds for pD2 as well. Let us recall what this means: We write
RDS=ES, where S is a power series ring over W.k/ and where E has constant
term p; we also have to choose an appropriate Frobenius lift � on S. A Breuil win-
dow is a free S-moduleQ equipped with an S-linear map � WQ!Q.�/ whose cok-
ernel is annihilated by E; this is equivalent to the notion of a Breuil–Kisin module.
As usual, one also gets a classification of finite locally free p-group schemes over R.

In the case of discrete valuation rings this completes the proof of a conjecture of
Breuil [1998], which was proved in [Kisin 2006] if p is odd, and in [Kisin 2009]
for connected p-divisible groups if p D 2. Shortly after the first version of this
article was posted, independent proofs of Breuil’s conjecture by W. Kim [2012]
and T. Liu [2013] appeared online.

Assume that R has characteristic zero, and let S be the p-adic completion of the
divided power envelope of the ideal ES �S. As a consequence of Theorem B,
we show that for a p-divisible group over R the value of its crystalline Dieudonné
module at S coincides with the base change of its Breuil window under � WS! S .

The functor BT. The original proof of Theorem A for odd local Artin rings in
[Zink 2001a] depends on the construction of a functor BT from Dieudonné displays
to p-divisible groups, which is a combination of the functor BT from nilpotent
displays to formal p-divisible groups and a calculation of extensions. A modified
construction of this functor is given in [Lau 2009]. Once the definition of Dieudonné
displays for nonodd local Artin rings is available, all these arguments can be carried
over almost literally to give an alternative proof of Theorem A in that case. In
the present approach this construction serves only as an explicit description of the
inverse of the functor ˆR; this is used in [Lau 2012].

All rings are commutative with a unit unless the contrary is stated. For a p-
divisible group G, we denote by D.G/ the covariant Dieudonné crystal.

1. The Zink ring

In this section we study the Zink ring W.R/, which was introduced in [Zink 2001a]
under the notation yW .R/, and variants of W.R/ in the presence of divided powers,
following [Zink 2001b]. The definitions are stated in more generality, allowing
arbitrary perfect rings instead of perfect fields. The modified Verschiebung v for
p D 2 is new.

1A. Preliminaries. We fix a prime p. A commutative ring without unitN is called
bounded nilpotent if there is a number n such that xnD 0 for every x 2N . We will
consider the following type of base rings.
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Definition 1.1. A ring R is called admissible if its nilradical NR is bounded nilpo-
tent and if Rred DR=NR is a perfect ring of characteristic p.

Local Artin rings with perfect residue field are admissible. The ring OCp
=p is

not admissible. We will also consider projective limits of admissible rings:

Definition 1.2. An admissible topological ring is a complete and separated topo-
logical ring R with linear topology such that the ideal NR of topologically nilpotent
elements is open, the ring Rred DR=NR is perfect of characteristic p, and for each
open ideal N of R contained in NR, the quotient NR=N is bounded nilpotent. Thus
R is the projective limit of the admissible rings R=N .

Examples of admissible topological rings include complete local rings with
perfect residue field. Admissible topological rings in which NR is not topologically
nilpotent arise from divided power envelopes; see Lemma 1.13.

Notation 1.3. For a commutative, not necessarily unitary ring A, let W.A/ be
the ring of p-typical Witt vectors of A. We write f and v for the Frobenius and
Verschiebung of W.A/. Let IA D v.W.A//, let wi W W.A/! A be given by the
i-th Witt polynomial, and let yW .A/ be the group of all elements of W.A/ with
nilpotent coefficients which are almost all zero.

Let us recall two well-known facts:

Lemma 1.4. Let A be a perfect ring of characteristic p and let B be a ring with
a bounded nilpotent ideal J � B . Every ring homomorphism A! B=J lifts to a
unique ring homomorphism W.A/! B .

Proof. See [Grothendieck 1974, Chapitre IV, Proposition 4.3]; the ideal J there is
assumed nilpotent, but the proof applies here as well. �

Lemma 1.5 [Zink 2001b, Lemma 2.2]. Let N be a nonunitary ring which is
bounded nilpotent and annihilated by a power of p. Then W.N/ is bounded
nilpotent and annihilated by a power of p. �

1B. The Zink ring. LetR be an admissible ring. By Lemma 1.4, the exact sequence

0 �!W.NR/ �!W.R/ �!W.Rred/ �! 0

has a unique ring homomorphism section s W W.Rred/ ! W.R/, which is f -
equivariant by its uniqueness. Let

W.R/D sW.Rred/˚ yW .NR/:

Since yW .NR/ is an f -stable ideal ofW.R/, the group W.R/ is an f -stable subring
of W.R/, which we call the Zink ring of R.
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Lemma 1.6. The ring W.R/ is stable under the Verschiebung homomorphism
v W W.R/ ! W.R/ if and only if p � 3 or pR D 0. In this case we have an
exact sequence

0 �!W.R/
v
��!W.R/

w0
���!R �! 0:

Proof. See [Zink 2001a, Lemma 2]. For some r � 0, the ring R0 D Z=prZ is a
subring of R, and we have W.R0/DW.R0/\W.R/. The calculation in [loc. cit.]
shows that the element v.1/ 2W.R0/ lies in W.R0/ if and only if p � 3 or r D 1.
For a 2W.Rred/ we have v.s.f .a///D v.f .s.a///D v.1/s.a/. Since yW .NR/ is
stable under v and since f is surjective on W.Rred/, the first assertion of the lemma
follows. The sequence is an extension of

0 �!W.Rred/
v
��!W.Rred/ �!Rred �! 0

and
0 �! yW .NR/

v
��! yW .NR/ �!NR �! 0;

which are both exact. �
With a slight modification the exception at the prime 2 can be removed. The ele-

ment p�Œp� ofW.Zp/ lies in the image of v because it maps to zero in Zp . Moreover,
v�1.p� Œp�/ maps to 1 in W.Fp/, so this element is a unit in W.Zp/. We define

u0 D

�
v�1.2� Œ2�/ if p D 2,
1 if p � 3.

The image of u0 in W.R/ is also denoted by u0. For x 2W.R/, let

v.x/D v.u0x/:

One could also take u0 D v�1.p � Œp�/ for all p, which would allow us to state
some results more uniformly, but for odd p this would be overcomplicated.

Lemma 1.7. The ring W.R/ is stable under v W W.R/! W.R/, and there is an
exact sequence

0 �!W.R/
v
��!W.R/

w0
���!R �! 0:

Proof. By Lemma 1.6, we can assume that p D 2. For a 2 W.Rred/, we have
v.s.f .a/// D v.u0f .s.a/// D v.u0/s.a/ D .2 � Œ2�/s.a/, which lies in W.R/.
Since yW .NR/ is stable under v and since f is surjective on W.Rred/, it follows
that W.R/ is stable under v. The sequence is an extension of

0 �!W.Rred/
v
��!W.Rred/ �!Rred �! 0

and
0 �! yW .NR/

v
��! yW .NR/ �!NR �! 0:

They are exact because in both cases vD v ıu0, where u0 acts bijectively. �
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1C. The enlarged Zink ring. Let us recall the logarithm of the Witt ring. For a
divided power extension of rings .B!R; ı/ with kernel b�B , the ı-divided Witt
polynomials define an isomorphism of W.B/-modules

Log WW.b/Š bN;

where x 2 W.B/ acts on bN by Œb0; b1; : : : � 7! Œw0.x/b0; w1.x/b1; : : : �. The
Frobenius and Verschiebung of W.b/ act on bN by

f .Œb0; b1; : : : �/D Œpb1; pb2; : : : �; v.Œb0; b1; : : : �/D Œ0; b0; b1; : : : �:

Moreover, Log induces an injective map yW .b/! b.N/, which is bijective when
the divided powers ı are nilpotent; see [Zink 2002, (149)] and the subsequent
discussion. In general, let

zW .b/D Log�1.b.N//:

This is an f -stable and v-stable ideal of W.B/ containing yW .b/.
Assume now that .B!R; ı/ is a divided power extension of admissible rings

(it suffices to assume that R is admissible and that p is nilpotent in B , because then
b is bounded nilpotent due to the divided powers, so B is admissible as well). Let

W.B; ı/DW.B/C zW .b/:

This is an f -stable subring of W.B/, which we call the enlarged Zink ring of B
with respect to the divided power ideal .b; ı/. We also write W.B=R/ for W.B; ı/.
If the divided powers ı are nilpotent then W.B; ı/DW.B/. We have the following
analogues of Lemmas 1.7 and 1.6:

Lemma 1.8. The ring W.B; ı/ is stable under v WW.R/!W.R/, and there is an
exact sequence

0 �!W.B; ı/
v
��!W.B; ı/

w0
���! B �! 0:

Proof. The ring W.B; ı/ is stable under v, because W.B/ and zW .b/ are; see
Lemma 1.7. We have W.B; ı/= zW .b/DW.R/. Thus, the exact sequence follows
from the exactness of 0 �! zW .b/

v
��! zW.b/ �! b �! 0 together with the exact

sequence of Lemma 1.7. �

Lemma 1.9. The ring W.B; ı/ is stable under v W W.R/! W.R/ if p � 3, or if
p 2 b and the divided powers ı on b induce the canonical divided powers on pB .
In this case we have an exact sequence

0 �!W.B; ı/
v
��!W.B; ı/

w0
���! B �! 0:
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Proof. If p � 3 then W.B; ı/ is stable under v because W.B/ and zW .b/ are stable
under v; see Lemma 1.6. Assume that p 2b and that ı induces the canonical divided
powers on pB . Let � Dp�v.1/2W.B/. This element lies inW.pB/�W.b/ and
satisfies Log.�/D Œp; 0; 0; : : : �. Thus � 2 zW .b/, which implies that v.1/2W.B; ı/.
Using this, the proof of Lemma 1.6 shows that W.B; ı/ is stable under v. The exact
sequence follows as usual. �

1D. The v-stabilised Zink ring. Assume that p D 2. For an admissible ring R,
let 
 be the canonical divided powers on the ideal 2R. We denote the associated
enlarged Zink ring by

WC.R/DW.R; 
/DW.R/C zW .2R/�W.R/:

The kernel of the projection WC.R/! W.Rred/ will be denoted yW C.NR/. In
view of the following lemma, we call WC.R/ the v-stabilised Zink ring.

Lemma 1.10. Let p D 2. We have

WC.R/DW.R/CW.R/v.1/:

The ring WC.R/ is equal to W.R/ if and only if 2R D 0. The W.R/-module
WC.R/=W.R/ is an Rred-module generated by v.1/.

Proof. By Lemma 1.9, we have v.1/ 2 WC.R/. Clearly 2R D 0 implies that
WC.R/DW.R/. In general, we consider the filtration

W.2NR/�W.2R/�W.R/

and the graded modules for the induced filtrations on W.R/ and WC.R/. First, the
restriction of the divided powers 
 to the ideal 2NR is nilpotent, which implies that

WC.R/\W.2NR/D zW .2NR/D yW .2NR/DW.R/\W.2NR/:

Next we have WC.R=2R/DW.R=2R/, or equivalently

WC.R/=WC.R/\W.2R/DW.R/=W.R/\W.2R/:

Let cD 2R=2NR. By the preceding remarks, we have an isomorphism

WC.R/=W.R/Š zW .c/= yW .c/:

This is an R=NR-module. Assume that 2R¤ 0, which implies that c¤ 0. For some
ideal NR� b�R, multiplication by 2 induces an isomorphism R=bŠ c. Modulo 2,
the divided Witt polynomials are Qwi .x/ � 
2.xi�1/C xi , so the isomorphism
Log WW.c/! cN takes the form

Log.2a0; 2a1; : : : /D 2Œa0; a20C a1; a
2
1C a2; a

2
2C a3; : : : �;
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with ai 2R=b. It follows that zW .c/= yW .c/ can be identified with the direct limit of
the Frobenius homomorphism R=b!R=b! � � � , which is isomorphic to R=

p
b.

Under this identification, the element � D 2� v.1/ of zW .c/ maps to 1 in R=
p
b,

because we have Log.�/D Œ2; 0; : : : �. Hence WC.R/=W.R/ is generated by v.1/,
with annihilator

p
b. �

Assume again that p D 2. Let .B ! R; ı/ be a divided power extension of
admissible rings with kernel b � B such that ı is compatible with the canonical
divided powers 
 on 2B . Let ıC be the divided powers on bCD bC2B that extend
ı and 
 . In this case, we write

WC.B; ı/DW.B; ıC/DW.B/C zW .bC/:

Clearly W.B; ı/�WC.B; ı/�WC.B/. If the divided powers on bC=2B induced
by ı are nilpotent, then WC.B; ı/DWC.B/.

1E. Passing to the limit. The preceding considerations carry over to the topological
case as follows. For an admissible topological ring R, let

W.R/D lim
 �
N

W.R=N/;

the limit taken over all open idealsN of R withN �NR. Then Lemmas 1.6 and 1.7
hold for admissible topological rings. The enlarged Zink ring can be defined for
topological divided power extensions in the following sense.

Definition 1.11. Let B and R be admissible topological rings. A topological
divided power extension is a surjective ring homomorphism B!R whose kernel b
is equipped with divided powers ı such that b is closed in B , the topology of R
is the quotient topology of B=b, and the linear topology of B is induced by open
ideals N for which N \ b is stable under ı. Let ı=N be the divided powers on
N=N \b induced by ı. We say that ı is topologically compatible with the canonical
divided powers of p if the topology of B is induced by open ideals N such that
ı=N is defined and compatible with the canonical divided powers of p.

Remark 1.12. The existence of divided powers on b implies that b � NB . If B
is a noetherian complete local ring, then every ideal b of B is closed; moreover,
if b is given, for each n there is an open ideal N � mnB such that b\N is stable
under arbitrary divided powers ı on b. Indeed, by Artin–Rees there is an l with
mnBb�mlB \ b; then take N DmnBbCmlB , which implies that b\N DmnBb.

Given a topological divided power extension of admissible topological rings
.B!R; ı/ with kernel b� B , we define

W.B; ı/D lim
 �
N

W.B=N; ı=N /;
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where N runs through the open ideals of B contained in NB such that N \ b is
stable under ı. Lemmas 1.8 and 1.9 hold in the topological case.

Assume that p D 2. Then for an admissible topological ring, we put

WC.R/D lim
 �
N

WC.R=N/;

the limit taken over all open ideals N of R contained in NR. If .B ! R; ı/ is
a topological divided power extension of admissible topological rings which is
topologically compatible with the canonical divided powers of 2, we can define

WC.B; ı/D lim
 �
N

WC.B=N; ı=N /;

where N runs through the open ideals of B contained in NB such that ı=N is
defined and compatible with the canonical divided powers of 2.

The following example of admissible topological rings is used in Section 3:

Lemma 1.13. Let R be a ring which is I -adically complete for an ideal I � R
such that K DR=I is a perfect ring of characteristic p. Assume that I D J CpR
for an ideal J �R such that R=J n has no p-torsion for each n. For a projective
R-module t of finite type, we consider the complete symmetric algebra

RŒŒt ��D
Y
n�0

SymnR.t/:

Let .a� S; ı/ be the divided power envelope of the ideal tRŒŒt ���RŒŒt ��, and let yS
be the I -adic completion of S . Then:

(i) yS !R is naturally a topological divided power extension of admissible topo-
logical rings which is topologically compatible with the canonical divided
powers of p.

(ii) yS has no p-torsion.

Proof. Let RnDR=.pnRCJ n/ and SnD S˝RRn. We have S DR˚a and thus
Sn DRn˚ Nan with Nan D a˝R Rn; moreover, the ideal Nan carries divided powers
ın induced by ı; see [Berthelot 1974, Chapitre I, Proposition 1.7.1]. In particular,
Sn is admissible. Since yS!R is the projective limit over n of Sn!Rn, to prove
(i) it suffices to show that ın is compatible with the canonical divided powers of p.
Now, SpecR! SpecRŒŒt �� is a regular immersion by Lemma A.3, and thus S is
flat over R by Proposition A.1. Since R has no p-torsion the same holds for S ,
so the divided powers on a extend canonically to the ideal bD aCpS . We have
S=b D R=pR. The assumptions imply that TorR1 .R=J

n; R=pR/ is zero. Hence
there is an exact sequence

0 �! b=J nb �! S=J nS �!R=.pRCJ n/ �! 0;
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which in turn gives an exact sequence

0 �! .b=J nb/=pn.S=J nS/ �! S=.J nS CpnS/ �!R=.pRCJ n/ �! 0:

In both sequences the kernels carry divided powers which extend the canonical
divided powers of p, since the ideals J nb of S and pn.S=J nS/ of S=J nS are
stable under the given divided powers. Thus the divided powers ın on Nan are
compatible with the canonical divided powers of p, which proves (i).

Let Sn D S=J nS , and let ySn be its p-adic completion. Since S is flat over
R and since R=J n has no p-torsion, Sn and ySn have no p-torsion. Using that
yS D lim
 �n

ySn, it follows that yS has no p-torsion, which proves (ii). �

1F. Completeness. For an admissible ring R, the Zink ring W.R/ is p-adically
complete. Indeed, W.Rred/ is p-adically complete, and yW .NR/ is annihilated by a
power of p because this holds forW.NR/ by Lemma 1.5. The following topological
variant of this fact seems to be less obvious:

Proposition 1.14. Let R be an I -adically complete ring such that the ideal I is
finitely generated and K DR=I is a perfect ring of characteristic p. Then the ring
W.R/ is p-adically complete. If pD 2, the ring WC.R/ is p-adically complete too.

This is similar to [Zink 2002, Proposition 3], which says that W.R/ is p-adically
complete if this holds for R.

Proof. The ringW.R/ is p-adically separated, because this holds for eachW.R=In/.
Thus W.R/ is p-adically separated too. Let S DW.K/ŒŒt1; : : : ; tr ��, and let S!R

be a homomorphism which maps t1; : : : ; tr to a set of generators of I=I 2. Then
S!R is surjective, and so is W.S/!W.R/. Since W.R/ is p-adically separated,
in order to show that W.R/ is p-adically complete we may assume that R D S .
Consider the ideals JnDpnW.R/CW.In/ ofW.R/ and JnDW.R/\Jn of W.R/.
Then

W.R/=Jn DWn.K/˚W.I=I
n/; W.R/=Jn DWn.K/˚ yW .I=I

n/:

It follows thatW.R/ and W.R/ are complete and separated for the linear topologies
generated by the ideals Jn and Jn, respectively; moreover, W.R/ is closed inW.R/.
The ring W.R/ is also complete and separated for the linear topology generated
by the ideals J 0n;m D Ker.W.R/!Wm.R=I

n//. The J -topology is finer than the
J 0-topology because J2n � J 0n;n.

We claim that for each r � 1 the ideal prW.R/ of W.R/ is closed in the J 0-
topology. This is a variant of [Zink 2002, Lemma 6] with essentially the same proof.
First, for s� 1, an element xD .x0; : : : ; xm/ ofWmC1.R/ satisfies xi 2 I s for all i
if and only if wi .x/ 2 I iCs for all i ; see the proof of [Zink 2002, Lemma 4]. Then
the proof of Lemma 5 in that work shows that an element x 2Wm.R/ is divisible
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by pr if and only if for each s the image Nx 2Wm.R=I s/ is divisible by pr . Using
this, the claim follows from the proof of [Zink 2002, Lemma 6].

Thus prW.R/ is closed in the finer J -topology as well. Assume that we have
pW.R/ D pW.R/ \W.R/. Then prW.R/ is closed in the J-topology, which
implies that W.R/ is p-adically complete; see [Zink 2002, Lemma 7]. Thus for
p � 3, the proof is completed by Lemma 1.15 below. For pD 2 the same reasoning
shows that WC.R/ is p-adically complete. Now WC.R/=W.R/ is isomorphic to
K as abelian groups by the proof of Lemma 1.10. We get exact sequences

0 �!K �!W.R/=2nW.R/ �!WC.R/=2nWC.R/ �!K �! 0;

where the transition maps from nC1 to n are zero on the left-handK and the identity
on the right-hand K. It follows that W.R/ is p-adically complete as well. �
Lemma 1.15. For a perfect ring K of characteristic p, let RDW.K/ŒŒt1; : : : ; tr ��,
with the .p; t1; : : : ; tr/-adic topology. If p � 3 then

pW.R/\W.R/D pW.R/:

If p D 2 then
2W.R/\WC.R/D 2WC.R/:

Proof. Assume p D 2. Let I be the kernel of R! K and let NI D I=pR. The
filtration 0�W.pR/�W.I/�W.R/ induces a filtration of W.R/ with successive
quotients zW .pR/ WD lim

 �n
zW .pR=InpR/ and yW . NI / WD lim

 �n
yW . NI= NIn/ andW.K/.

To prove the lemma it suffices to show that

pW. NI /\ yW . NI /D p yW . NI /

and
pW.pR/\ zW .pR/D p zW .pR/:

The first equality holds since multiplication byp onW. NI / is given by .a0;a1; : : : / 7!
.0; a

p
0 ; a

p
1 ; : : : /, and for a 2 NI with ap 2 NIpn we have a 2 NIn. The second equality

holds because the isomorphism Log WW.pR/Š .pR/N induces an isomorphism
between zW .pR/ and the group of all sequences in .pR/N that converge to zero
I -adically. The proof for p � 3 is similar. �

1G. Divided powers. In Section 3, we will use that the augmentation ideals of the
Zink ring and its variants carry natural divided powers, with some exception when
p D 2; see also Section 4A.

Let us first recall the canonical divided powers on the Witt ring. If R is a Z.p/-
algebra, then W.R/ is a Z.p/-algebra as well, and the ideal IR carries divided
powers 
 which are determined by .p� 1/Š
p.v.x//D pp�2v.xp/. Assume that
.B!R; ı/ is a divided power extension of Z.p/-algebras with kernel b� B . Let
IB=R be the kernel of W.B/! R. If i W b! W.b/ is defined by Log.i.b// D
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Œb; 0; 0; : : : �, we have IB=R D IB ˚ i.b/, and the divided powers 
 on IB extend
to divided powers 
 0 D 
 ˚ ı on IB=R such that 
 0n.i.b//D i.ın.b// for b 2 b. If
p 2 b and if ı extends the canonical divided powers of p, then 
 ˚ ı extends the
canonical divided powers of p, and f preserves 
˚ı. This is clear when B has no
p-torsion; the general case follows because .B!R/ can be written as the quotient
of a divided power extension .B 0!R0/, where B 0 is the divided power algebra of
a free module over a polynomial ring R00 over Z.p/, and R0 DR00=pR00.

These facts extend to the Zink ring as follows:

Lemma 1.16. Let I�W be one of the following:

(i) ID IR and WDW.R/ for an admissible ring R with p � 3.

(ii) ID ICR and WDWC.R/ for an admissible ring R with p D 2.

Then the divided powers 
 on IR induce divided powers on I.

Proof. Since W is a Z.p/-algebra, it suffices to show that I is stable under the map

p W IR! IR, which is true because ID v.W/ by Lemmas 1.6 and 1.9. �

Lemma 1.17. Let .B ! R; ı/ be a divided power extension of admissible rings
with kernel b�B , and let IB=R be the kernel of W.B; ı/!R. Assume that p � 3;
or that p D 2 and p 2 b and ı extends the canonical divided powers of p. Then
the divided powers 
 ˚ ı on IB=R induce divided powers on IB=R. If p 2 b and
if ı extends the canonical divided powers of p, then the divided powers on IB=R
induced by 
 ˚ ı extend the canonical divided powers of p and are preserved by f .

Proof. Let I0B be the kernel of W.B=R/!B . Then IB=R D I0B˚ i.b/, and we have
I0BDv.W.B=R// by Lemma 1.9. Thus I0B is stable under 
 , and IB=R is stable under

˚ı. The second assertion follows from the corresponding fact for the Witt ring. �

2. Dieudonné displays

In this section, Dieudonné displays and a number of variants related to divided power
extensions are defined. We use the formalism of frames and windows introduced in
[Lau 2010]. First of all, let us recall a well-known fact:

Lemma 2.1. Let A be a commutative, not necessarily unitary ring. For x 2W.A/
we have f .x/� xp modulo pW.A/. Similarly, for x 2 yW .A/ we have f .x/� xp

modulo p yW .A/.

Proof. For x 2 W.R/ write x D Œx0�C v.y/ with x0 2 R and y 2 W.R/. Then
f .x/ � Œx

p
0 � � x

p modulo pW.R/ because f v D p and v.y/p D pp�1v.yp/.
The same calculation applies with yW in place of W . �
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2A. Frames and windows. We recall the notion of frames and windows from [Lau
2010], with some additions. A preframe is a quintuple

F D .S; I; R; �; �1/

where S and R D S=I are rings, where � W S ! S is a ring endomorphism with
�.a/ � ap modulo pS , and where �1 W I ! S is a �-linear map of S-modules
whose image generates S as an S-module. Then there is a unique element � 2 S
with �.a/D ��1.a/ for a 2 I . The preframe F is called a frame if

I CpS � Rad.S/:

If, in addition, all projective R-modules of finite type can be lifted to projective S
modules, then F is called a lifting frame.

A homomorphism of preframes or frames ˛ W F! F 0 is a ring homomorphism
˛ W S! S 0 with ˛.I /� I 0 such that � 0˛D ˛� and � 01˛D u �˛�1 for a unit u 2 S 0,
which is then determined by ˛. It also follows that ˛.�/D u� 0. We say that ˛ is a
u-homomorphism of preframes or frames. If uD 1 then ˛ is called strict.

Now let F be a frame. An F-window is a quadruple

P D .P;Q;F; F1/

where P is a projective S-module of finite type with a submodule Q such that
there exists a decomposition of S -modules P DL˚T with QDL˚IT , called a
normal decomposition, and where F W P ! P and F1 WQ! P are � -linear maps
of S -modules with

F1.ax/D �1.a/F.x/

for a 2 I and x 2 P ; we also assume that F1.Q/ generates P as an S-module.
Then F.x/ D �F1.x/ for x 2Q. If F is a lifting frame, every pair .P;Q/ such
that P is a projective S-module of finite type and P=Q is a projective R-module
admits a normal decomposition. In general, for given .P;Q/ together with a normal
decomposition P DL˚T , giving � -linear maps .F; F1/ which make an F-window
P is equivalent to giving a � -linear isomorphism

‰ W L˚T ! P

defined by F1 on L and by F on T . The triple .L; T;‰/ is called a normal
representation of P.

A frame homomorphism ˛ W F ! F 0 induces a base change functor ˛� from
F-windows to F 0-windows. In terms of normal representations, it is given by

.L; T;‰/ 7! .S 0˝S L; S
0
˝S T;‰

0/

with ‰0.s0˝ l/D u� 0.s0/˝‰.l/ and ‰0.s0˝ t /D � 0.s0/˝‰.t/.
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A frame homomorphism ˛ W F! F 0 is called crystalline if the functor ˛� is an
equivalence of categories. For reference, we recall [Lau 2010, Theorem 3.2]:

Theorem 2.2. Let ˛ W F ! F 0 be a homomorphism of frames which induces an
isomorphismRŠR0 and a surjection S!S 0 with kernel a. We assume that there is
a finite filtration of ideals aD a0� � � � � anD 0 with �1.ai /� ai and �.ai /� aiC1,
that �1 is elementwise nilpotent on each ai=aiC1, and that all projective S 0-modules
of finite type lift to projective S -modules of finite type. Then ˛ is crystalline. �

Let us recall the operator V ] of a window. For an S-module M we write
M .�/ D S ˝�;S M . A filtered F -V -module over F is a quadruple

.P;Q;F ]; V ]/

where P is a projective S -module of finite type, Q is a submodule of P such that
P=Q is projective over R, and F ] W P .�/! P and V ] W P ! P .�/ are S-linear
maps with F ]V ] D � and V ]F ] D � .

Lemma 2.3. There is a natural functor from F-windows to filtered F -V -modules
over F , which is fully faithful if � is not a zero divisor in S .

Proof. The functor is .P;Q;F; F1/ 7! .P;Q;F ]; V ]/, whereF ] is the linearisation
of F , and V ] is the unique S-linear map such that V ].F1.x//D 1˝ x for x 2Q.
Clearly this determines V ] if it exists. In terms of a normal representation .L; T;‰/
of P, thus P D L˚ T , one can define V ] D .1˚ �/.‰]/.�1/. The required
relation F ]V ] D � on P is equivalent to F ]V ]F1 D �F1 on Q, which is clear
since �F1 D F . The required relation V ]F ] D � on P .�/ holds if and only if
it holds after multiplication with �1.a/ for all a 2 I . For x 2 P we calculate
�1.a/V

]F ].1˝ x/D V ]F1.ax/D �.a/˝ x D ��1.a/.1˝ x/.
Assume that � is not a zero divisor in S . It suffices to show that the forgetful

functors from windows to triples .P;Q;F / and from filteredF -V -modules to triples
.P;Q;F ]/ are fully faithful. In the first case this holds because �F1 D F . In the
second case, for an endomorphism ˛ ofP with ˛F ]DF ]˛.�/ we calculate V ]˛�D
V ]˛F ]V ] D V ]F ]˛.�/V ] D �˛.�/V ], which implies that V ]˛ D ˛.�/V ]. �

Finally, we recall the duality formalism. Let F denote the F-window .S; I; �; �1/.
A bilinear form between F-windows

ˇ WP �P 0! F

is an S -bilinear map ˇ WP �P 0!S such that ˇ.Q�Q0/� I and ˇ.F1x; F 01x
0/D

�1.ˇ.x; x
0// for x 2Q and x0 2Q0. For each P , the functor P 0 7!Bil.P�P 0;F/

is represented by an F-window Pt , called the dual of P . The tautological bilinear
form P �Pt ! S is a perfect bilinear map P �P t ! S . There is a bijection
between normal representations P D L˚ T and P t D Lt ˚ T t determined by
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hL;Lt i D 0D hT; T t i. The associated operators ‰ W P ! P and ‰t W P t ! P t

are related by h‰x;‰tx0i D �hx; x0i.
There is also an obvious duality of filtered F -V -modules over F : the dual of

MD .P;Q;F ]; V ]/ is Mt D .P �;Q0; V ]�; F ]�/, where P �DHomS .P; S/ and
Q0 is the submodule of all y in P � with y.Q/� I . It is easy to see that the functor
in Lemma 2.3 preserves duality.

2B. Frames associated to the Witt ring. For an arbitrary ring R let f1 W IR !
W.R/ be the inverse of the Verschiebung v. Then

WR D .W.R/; IR; R; f; f1/

is a preframe with � Dp. If R is p-adically complete, WR is a lifting frame because
W.R/ is IR-adically complete by [Zink 2002, Proposition 3], and windows over
WR are displays over R.

For a divided power extension of rings .B!R; ı/ with kernel b 2 B , one can
define a preframe

WB=R D .W.B/; IB=R; R; f; Qf1/

with IB=RD IBCW.b/ such that Qf1 W IB=R!W.B/ is the unique extension of f1
whose restriction toW.b/ is given by Œa0; a1; a2; : : : � 7! Œa1; a2; : : : � in logarithmic
coordinates; see Section 1C. The projection WB !WR factors into strict preframe
homomorphisms WB !WB=R!WR.

As a special case, assume that R is a perfect ring of characteristic p. Then f is
an automorphism of W.R/, and IR D pW.R/. Let us define a Dieudonné module
over R to be a triple .P; F; V / where P is a projective W.R/-module of finite type
equipped with an f -linear endomorphism F and an f �1-linear endomorphism V

such that FV D p, or, equivalently, VF D p.

Lemma 2.4. Displays over a perfect ring R are equivalent to Dieudonné modules
over R.

Proof. To a display .P;Q;F; F1/ we associate the Dieudonné module .P; F; V /,
where the linearisation of V W P ! P is the operator V ] defined in Lemma 2.3.
Then VF1 W Q! P is the inclusion. Here F1 is surjective since f is bijective.
Thus Q D V.P /, and the functor is fully faithful; see Lemma 2.3. It remains to
show that for every Dieudonné module .P; F; V / the R-module M D P=V.P / is
projective. For p 2 SpecR let `M .p/ be the dimension of the fibre of M at p. Let
N D P=F.P /. Then `M C `N D `P=pP as functions on SpecR. Since M and
N are of finite type and since P=pP is projective, the functions `M and `N are
upper semicontinuous, and `P=pP is locally constant. It follows that `M is locally
constant, which implies that M is projective because R is reduced. �
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2C. Dieudonné frames. For an admissible ring R in the sense of Definition 1.1,
let IR be the kernel of w0 WW.R/!R, and let f1 W IR!W.R/ be the inverse of v,
which is well-defined by Lemma 1.7. If p is odd, then vD v and f1 D f1.

Lemma 2.5. The quintuple

DR D .WR; IR; R; f; f1/

is a lifting frame.

We call DR the Dieudonné frame associated to R.

Proof. In order that DR is a preframe we need that f .a/ � ap modulo pW.R/

for a 2W.R/, which follows from Lemma 2.1 applied to W.Rred/ and to yW .NR/.
Since yW .NR/ is a nilideal by Lemma 1.5 and since the quotient W.R/= yW .NR/D
W.Rred/ is p-adically complete with pW.Rred/D IRred , the kernel of W.R/!Rred

lies in the radical of W.R/, and projective Rred-modules of finite type lift to
projective W.R/-modules of finite type. It follows that DR is a lifting frame. �

The inclusion W.R/! W.R/ is a u0-homomorphism of frames DR ! WR.
Thus for DR we have � D p if p is odd and � D 2u0 D 2� Œ4� if p D 2.

Definition 2.6. A Dieudonné display over R is a window over DR.

Thus a Dieudonné display is a quadruple P D .P;Q;F; F1/ where P is a
projective W.R/-module of finite type with a filtration IRP �Q � P such that
P=Q is a projective R-module, F W P ! P and F1 WQ! P are f -linear maps
with F1.ax/D f1.a/F.x/ for a 2 IR and x 2P , and F1.Q/ generates P . We write

Lie.P/D P=Q:

The height of P is the rank of the W.R/-module P , and the dimension of P is
the rank of the R-module Lie.P/, both viewed as locally constant functions on
SpecR. As in the case of general frames, we also denote by DR the Dieudonné
display .W.R/; IR; f; f1/ over R.

2D. Relative Dieudonné frames. Let .B ! R; ı/ be a divided power extension
of admissible rings with kernel b� B . Let W.B=R/DW.B; ı/ as in Section 1C
and let IB=R be the kernel of the projection W.B=R/!R; thus

IB=R D IB C zW .b/:

Lemma 2.7. There is a unique extension of f1 W IB !W.B/ to an f -linear map
Qf1 W IB=R!W.B=R/ of W.B=R/-modules such that the restriction of Qf1 to zW .b/
is given by

Qf1.Œa0; a1; a2; : : : �/D Œw0.u
�1
0 /a1; w1.u

�1
0 /a2; : : : � (2-1)
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in logarithmic coordinates. The quintuple

DB=R D DB=R;ı D .W.B=R/; IB=R; R; f; Qf1/

is a lifting frame.

Proof. Clearly Qf1 is determined by (2-1). Let I0B be the kernel of W.B=R/! B .
By Lemma 1.8, the inverse of v is an f -linear map f01 W I0B ! W.B=R/ which
extends f1. In logarithmic coordinates, the restriction of v to W.b/ is given by
Œa0; a1; : : : � 7! Œ0; w0.u0/a0; w1.u0/a1; : : : �. Thus f01 extends to the desired Qf1.
As in the proof of Lemma 2.5, the kernel of W.B=R/!Rred lies in the radical of
W.B=R/, and projective Rred-modules of finite type lift to W.B=R/. �

We call DB=R the relative Dieudonné frame associated to the divided power
extension .B=R; ı/, and DB=R-windows are called Dieudonné displays for B=R.
There are natural strict frame homomorphisms

DB �! DB=R �! DR:

If the divided powers ı are nilpotent, then W.B/DW.B=R/.

Proposition 2.8. The frame homomorphism DB=R! DR is crystalline.

Proof. This follows from Theorem 2.2. Indeed, let a denote the kernel of the
surjective homomorphism W.B=R/!W.R/; thus aD zW .b/Š b.N/. The endo-
morphism Qf1 of a is elementwise nilpotent by (2-1). The required filtration of a
can be taken to be ai D p

ia; this is a finite filtration by Lemma 1.5. We have
Qf1.ai /D ai by (2-1), and f .ai /D aiC1 because the endomorphism f of a is given
by Œa0; a1; : : : � 7! Œpa1; pa2; : : : � in logarithmic coordinates. �

2E. v-stabilised Dieudonné frames. Assume that p D 2. The preceding construc-
tions can be repeated with WC and v in place of W and v. More precisely, for an
admissible ringR, let ICR be the kernel of WC.R/!R and let f1 W ICR!WC.R/ be
the inverse of v, which is well-defined by Lemma 1.9. The v-stabilised Dieudonné
frame associated to R is defined as

DCR D .W
C.R/; ICR ; R; f; f1/:

This is a lifting frame by the proof of Lemma 2.5. The inclusion W.R/!WC.R/

is a u0-homomorphism of frames DR ! DCR , which is invertible if and only if
2RD 0. Windows over DCR are called v-stabilised Dieudonné displays over R.

Assume again that p D 2, and let .B!R; ı/ be a divided power extension of
admissible rings with kernel b� B which is compatible with the canonical divided
powers of 2. Let IC

B=R
be the kernel of the natural map WC

B=R
!R; thus

IC
B=R
D ICB C

zW .b/:
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There is a unique extension of f1 W ICB !WC.B/ to an f -linear map of WC.B=R/-
modules Qf1 W IC

B=R
! WC.B=R/ such that its restriction to zW .b/ is given by

Œa0; a1; a2; : : : � 7! Œa1; a2; : : : � in logarithmic coordinates, and the quintuple

DC
B=R
D .WC.B=R/; IC

B=R
; R; f; Qf1/

is a lifting frame. This follows from the proof of Lemma 2.7. We have a u0-
homomorphism of frames DB=R!DC

B=R
, which is invertible if and only if 2RD 0,

and strict frame homomorphisms

DCB �! DC
B=R
�! DCR :

If the divided powers induced by ı on .bC 2B/=2B are nilpotent, then WC.B/ is
equal to WC.B=R/.

Corollary 2.9. The frame homomorphism DC
B=R
! DCR is crystalline.

Proof. This follows from the proof of Proposition 2.8. �

2F. The crystals associated to Dieudonné displays. Let R be an admissible ring.
We denote the category of divided power extensions .SpecA! SpecB; ı/, where
A is an R-algebra which is an admissible ring, and where p is nilpotent in B , by
Crisadm.R/. Then the kernel of B!A is bounded nilpotent, so B is an admissible
ring as well.

Let P be a Dieudonné display over R. For .SpecA! SpecB; ı/ in Crisadm.R/,
we denote the base change of P to A by PA and the unique Dieudonné display for
B=A which lifts PA by

PB=A D .PB=A;QB=A; F; F1/I

see Proposition 2.8. A homomorphism of divided power extensions of admissible
rings ˛ W .B!A; ı/! .B 0!A0; ı0/ induces a frame homomorphism D˛ WDB=A!

DB 0=A0 , and we have a natural isomorphism

.D˛/�.PB=A/ŠPB 0=A0 :

In more sophisticated terms, this can be expressed as follows: The frames DB=A
form a presheaf of frames D�� on Crisadm.R/, and Proposition 2.8 implies that the
category of Dieudonné displays over R is equivalent to the category of crystals in
D��-windows on Crisadm.R/. Then PB=A is the value in .SpecA! SpecB; ı/ of
the crystal associated to P.

For a Dieudonné display P D .P;Q;F; F1/ over R, we define the Witt crystal
K.P/ on Crisadm.R/ by

K.P/B=A D PB=A:
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This is a projective W.B=A/-module of finite type. The Dieudonné crystal D.P/

on Crisadm.R/ is defined by

D.P/B=A D PB=A˝W.B=A/B:

This is a projective B-module of finite type. The Hodge filtration of P is the
submodule

Q=IRP � P=IRP D D.P/R=R:

Corollary 2.10. Let .B!R; ı/ be a nilpotent divided power extension of admissi-
ble rings. The category of Dieudonné displays over B is equivalent to the category
of Dieudonné displays P over R together with a lift of the Hodge filtration of P to
a direct summand of D.P/B=R.

Proof. If the divided powers are nilpotent, then W.B=R/ D W.B/, and lifts of
windows under the frame homomorphism DB!DB=R are in bijection with lifts of
the Hodge filtration. �

The preceding definitions have a v-stabilised variant. Let Crisadm.R=Zp/ be the
full subcategory of Crisadm.R/ where the divided powers are compatible with the
canonical divided powers of p. Assume now that pD2, and let PC be a v-stabilised
Dieudonné display over R, i.e., a window over DCR . For .SpecA! SpecB; ı/ in
Crisadm.R=Z2/ we denote by PCA the base change of PC to DCA and by

PC
B=A
D .PC

B=A
;QC

B=A
; F; F1/

the unique lift of PCA to a DC
B=A

-window, which exists by Corollary 2.9. The v-
stabilised Witt crystal KC.PC/ and the v-stabilised Dieudonné crystal DC.PC/

on Crisadm.R=Z2/ are defined by KC.PC/B=A D P
C

B=A
and

DC.PC/B=A D P
C

B=A
˝WC.B=A/B:

Corollary 2.11. Assume that p D 2. Let .B!R; ı/ be a divided power extension
of admissible rings which is compatible with the canonical divided powers of 2 such
that the divided powers induced by ı on the kernel of B=2B!R=2R are nilpotent.
Then the category of v-stabilised Dieudonné displays over B is equivalent to the
category of v-stabilised Dieudonné displays PCover R together with a lift of the
Hodge filtration of PC to a direct summand of DC.PC/B=R.

Proof. This is analogous to Corollary 2.10, using that WC.B=R/DWC.B/ under
the given assumptions on ı; see the end of Section 1D. �

Lemma 2.12. Let P be a Dieudonné display over an admissible ringR with pD 2,
and let PC be its base change to DCR . Then D.PC/ is naturally isomorphic to the
restriction of D.P/ to Crisadm.R=Z2/.
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Proof. For each .SpecA! SpecB; ı/ in Crisadm.R=Z2/, the DC
B=A

-window PC
B=A

is the base change of PB=A by the frame homomorphism DB=A! DC
B=A

by its
uniqueness. The lemma follows easily. �
Remark 2.13. Lemma 2.12 does not imply that the infinitesimal deformations of
P and of PC coincide: Let B be an admissible ring with 4B D 0 and 2B ¤ 0 and
let RDB=2B . The ideal 2B carries the canonical divided powers 
 and the trivial
divided powers ı. Corollary 2.10 applies to .B ! R; ı/ but not to .B ! R; 
/,
while Corollary 2.11 and Lemma 2.12 apply to .B!R; 
/ but not to .B!R; ı/.

2G. Passing to the limit. The preceding considerations extend easily to the case
of admissible topological rings with a countable base of topology. Let us begin with
a standard lemma. For a ring A, let V.A/ be the category of projective A-modules
of finite type.

Lemma 2.14. Let A D lim
 �n2N

An be an inverse limit of rings such that the tran-
sition maps �n W An ! An�1 are surjective with Ker.�n/ � Rad.An/. Then the
natural functor � W V.A/! lim

 �n
V.An/ is an equivalence.

Proof. Since for P 2V.A/ we have P D lim
 �n

.P˝AAn/, the functor � is fully faith-
ful. For a system of Pn 2V.An/ with isomorphisms Pn˝AAn�1ŠPn�1, we have
to show that the A-module P D lim

 �n
Pn lies in V.A/. Choose a surjective homo-

morphism q1 WA
r
1!P1 and lift this to a compatible system of homomorphisms qn W

Arn!Pn. All the qn are surjective by Nakayama’s Lemma. Let Sn be the set of lin-
ear sections of qn. Since Sn carries a simply transitive action of Hom.Pn;Ker.qn//,
the reduction maps Sn! Sn�1 are surjective. Thus the limit map q W Ar ! P has
a section, and we have P 2 V.A/. This proves that � is an equivalence. �

For a ring A, let BT.A/ be the category of p-divisible groups over A.

Lemma 2.15. For an inverse limit A D lim
 �n

An as in Lemma 2.14, the natural
functor � W BT.A/! lim

 �n
BT.An/ is an equivalence.

Proof. See [Messing 1972, Chapter II, Lemma 4.16]. The functor � of Lemma 2.14
preserves tensor products, and a complex P!P 0!P 00!0 in V.A/ is exact if and
only if its reduction to A1 is exact. As in [Messing 1972, Chapter II, Lemma 4.16]
it follows that � is an equivalence. �

For an admissible topological ring R, let DR D lim
 �N

DR=N , where N runs
through the open ideals of R contained in NR. As before, DR-windows are called
Dieudonné displays over R.

Lemma 2.16. If R is an admissible topological ring with a countable base of
topology, then Dieudonné displays (or p-divisible groups) over R are equivalent to
compatible systems of Dieudonné displays (or p-divisible groups) over R=N for
each open ideal N contained in NR.
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Proof. One can write RD lim
 �n2N

Rn for a surjective system of admissible rings Rn
with Rred D .Rn/red for each n. Then the case of p-divisible groups follows from
Lemma 2.15, and the case of Dieudonné displays follows from Lemma 2.14 applied
to R and to W.R/D lim

 �n
W.Rn/; here the successive kernels are nilideals due to

Lemma 1.5. See [Lau 2010, Lemma 2.1]. �

3. From p-divisible groups to Dieudonné displays

In this section we define a functor from p-divisible groups over odd admissible
rings to Dieudonné displays. In the nonodd case there is a v-stabilised version of
this functor, which will serve as a first step towards the true functor in the next
section. We begin with some preparation.

3A. Finiteness over admissible rings. We show that the categories of p-divisible
groups or Dieudonné displays over an admissible ring R are the direct limit of
the corresponding categories over the finitely generated W.Rred/-subalgebras of R,
with fully faithful transition maps.

Proposition 3.1. Every Dieudonné display over an admissible ring R is defined
over a finitely generatedW.Rred/-subalgebra of R. For an injective homomorphism
of admissible rings R! S such that Rred! Sred is bijective, the base change of
Dieudonné displays from R to S is fully faithful.

Proof. For a ring A, let V.A/ be the category of projective A-modules of finite type.
Since the ring W.R/ is the filtered union of W.R0/, where R0 runs through the
finitely generated W.Rred/-subalgebras of R, the category V.W.R// is equivalent
to the direct limit over R0 of V.W.R0//. Since a Dieudonné display over R can be
given by L; T 2 V.W.R// together with an f -linear automorphism ‰ of L˚T ,
the first assertion of the proposition follows. Similarly, every homomorphism
of Dieudonné displays over R is defined over some finitely generated R0. Thus
for the second assertion we may assume that Nr

S D 0. Let S D S=Nr�1
S and

RDR=R\Nr�1
S . Let R00 � S be the inverse image of R� S . By induction on r ,

the base change of Dieudonné displays from R to S is fully faithful. It follows that
the base change from R00 to S is fully faithful as well. By Corollary 2.10, using
trivial divided powers, Dieudonné displays over R or over R00 are equivalent to
Dieudonné displays over R together with a lift of the Hodge filtration to R or to
R00, respectively. Since R! R00 is injective, it follows that the base change of
Dieudonné displays from R to R00 is fully faithful. �

For the case of p-divisible groups we first recall some standard facts.

Lemma 3.2. Let B ! A be a surjective ring homomorphism with kernel I such
that pI D 0 and xp D 0 for all x 2 I . For an affine flat group scheme H over B ,
the kernel of H.B/!H.A/ is annihilated by p.
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Proof. Let B0DB=pB and H0DH˝B B0. The abelian group B0˚I becomes a
ring with multiplication .a˚i/.a0˚i 0/Daa0˚.ai 0Ca0iCi i 0/, and one can identify
B �A B with B �B0

.B0˚ I /. Since the evaluation of affine schemes commutes
with fibred products of rings, we obtain an isomorphism of abelian groups

Ker.H.B/!H.A//Š Ker.H0.B0˚ I /!H0.B0//:

The right-hand side lies in the kernel of the Frobenius FH0
of H0, which lies in

H0Œp� since VH0
ıFH0

D p by [SGA 1970, VIIA 4.3]. This proves the lemma. �

Lemma 3.3. Let B ! A be a surjective ring homomorphism with kernel I such
that p is nilpotent in B and I is a nilideal. For a p-divisible group G over B , the
homomorphism G.B/!G.A/ is surjective.

Proof. For a given x 2 Gn.A/, since Gn is finitely presented there is a finitely
generated ideal I 0 � I such that x lifts to an element x0 2Gn.B=I 0/. Now we can
use that G is formally smooth by [Messing 1972, Chapter II, Theorem 3.3.13]. �

Lemma 3.4. Let B ! A be a surjective ring homomorphism whose kernel is
bounded nilpotent and such that p is nilpotent in B . Then there is a number r such
that for two p-divisible groups G and H over B , the reduction homomorphism
Hom.G;H/! Hom.GA;HA/ is injective with kernel annihilated by pr .

Proof. This is an easy consequence of Lemmas 3.2 and 3.3; see the proof of [Katz
1981, Lemma 1.1.3]. �

Proposition 3.5. Every p-divisible group over an admissible ring R is defined over
a finitely generated W.Rred/-subalgebra of R. For an injective homomorphism
of admissible rings R! S such that Rred! Sred is bijective, the base change of
p-divisible groups from R to S is fully faithful.

Proof. For a p-divisible group G over R, let G0 DG˝R Rred. Using Lemma 3.4,
we chose r such that for two p-divisible groups G and H over R, the cokernel of
Hom.G;H/!Hom.G0;H0/ is annihilated by pr . Now let G be given, let G00 be
a lift of G0 to W.Rred/ and let G0DG00˝W.Rred/R. There are homomorphisms ' W
G0!G and  WG!G0 which each lift the multiplication pr WG0!G0. Thus ' 
and  ' are multiplication by p2r . We obtain an isomorphism G ŠG0=KG , where
KG �G

0 is a finite locally free group scheme annihilated by p2r ; see Lemma 3.6
below. In particularKG is finitely presented, and the first assertion of the proposition
follows. To prove the second assertion, we consider two p-divisible groupsG andH
over R and a homomorphism '0 WG0!H0 over RredD Sred. There is a unique lift
of pr'0 to a homomorphism  WG!H , and there is a lift of '0 to R if  vanishes
on GŒpr �. Since R! S is injective, this holds if and only if the scalar extension
 S vanishes onGS Œpr �, which is equivalent to the existence of a lift of '0 to S . �
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Lemma 3.6. Let ' W G!H and  WH ! G be homomorphisms of p-divisible
groups over a scheme S with ' D pn and  ' D pn. Then Ker.'/ and Ker. /
are finite locally free group schemes.

Proof. Clearly Ker.'/ and Ker. / are finite group schemes of finite presentation.
Thus we may assume that S D SpecR for a local ring R with residue field k. Let
Ker. / D SpecA and Gn D SpecB . Choose elements a1; : : : ; apr 2 A which
map to a k-basis of Ak , so they generate A as an R-module. We have a surjective
homomorphism of fppf sheaves ' WGn! Ker. /. It follows that Bk is a locally
free Ak-module of some rank ps , thus a free Ak-module since Ak is finite. Choose
b1; : : : ; bps 2 B which map to an Ak-basis of Bk . The elements aibj 2 B map to
a k-basis of Bk . Since B is a free R-module they form an R-basis of B . It follows
that A is free over R with basis ai . �

3B. Deformation rings. Let ƒ ! K be a surjective ring homomorphism with
finitely generated kernel I �ƒ such that ƒ is I -adically complete. The ring K is
not assumed to be a field. Let Nilƒ=K be the category of ƒ-algebras A together
with a homomorphism of ƒ-algebras A!K with nilpotent kernel. We consider
covariant functors

F W Nilƒ=K ! .sets/

with the following properties (cf. [Schlessinger 1968]):

(3-1) The set F.K/ has precisely one element.

(3-2) For a surjective homomorphism A1 ! A in Nilƒ=K , the induced map
F.A1/! F.A/ is surjective.

(3-3) For each pair of homomorphisms A1! A A2 in Nilƒ=K such that one
of them is surjective, the natural map F.A1 �AA2/! F.A1/�F.A/ F.A2/

is bijective. Then for each K-module N the set F.K ˚N/ is naturally a
K-module. In particular, tF D F.KŒ"�/ is a K-module, which is called the
tangent space of F .

(3-4) For eachK-moduleN the natural homomorphism ofK-modules tF ˝KN!
F.K˚N/ is bijective.

(3-5) The K-module tF is finitely presented.

The first three conditions imply that the functor N 7!F.K˚N/ preserves exact se-
quences ofK-modules. Thus (3-4) is automatic if N is finitely presented. Moreover
(3-1)–(3-4) imply that the K-module tF is flat, so (3-5) implies that tF is projective.

Proposition 3.7. Assume that F satisfies (3-1)–(3-5). Then F is prorepresented by
a complete ƒ-algebra B . Let Qt be a projective ƒ-module of finite type which lifts
tF . Then B is isomorphic to the complete symmetric algebra ƒŒŒQt���, where the �

means the dual. This is a power series ring over ƒ if tF is a free K-module.
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Proof. The K-module tF is projective as explained above. Thus Qt exists. Let
B D ƒŒŒQt��� and let B D K ˚ t�F . We have an obvious projection B ! B . Let
� 2 F.B/D tF ˝ t

�
F D End.tF / correspond to the identity of tF and let � 2 F.B/

be a lift of � . We claim that the induced homomorphism of functors � W B! F is
bijective. Note that the functor B satisfies (3-1)–(3-5). By induction it suffices to
show that if A! A is a surjection in Nilƒ=K whose kernel N is a K-module of
square zero and ifB.A/!F.A/ is bijective, thenB.A/!F.A/ is bijective as well.
We have a natural isomorphism A�AAŠA�K .K˚N/. It follows that the fibres
of B.A/! B.A/ and the fibres of F.A/! F.A/ are principal homogeneous sets
under the K-modules B.K˚N/ and F.K˚N/, respectively. The homomorphism
tB ! tF induced by � is bijective by construction, so B.K˚N/! F.K˚N/ is
bijective, and the proposition follows. �

Corollary 3.8. A homomorphism of functors which satisfy (3-1)–(3-5) is an isomor-
phism if and only if it induces an isomorphism on the tangent spaces. �

Remark 3.9. Let ƒ0!K 0 be another pair as above and let g Wƒ0!ƒ be a ring
homomorphism which induces a homomorphism Ng WK 0!K. For given functors F
on Nilƒ=K and F 0 on Nilƒ0=K0 , a homomorphism h WF !F 0 over g is a compatible
system of maps

h.A/ W F.A/! F 0.A�K K
0/

forA in Nilƒ=K ; hereA�KK 0 is naturally an object of Nilƒ0=K0 . If F and F 0 satisfy
(3-1)–(3-5) and if B and B 0 are the complete algebras which prorepresent F and F 0,
respectively, then h corresponds to a homomorphism B 0! B compatible with g
and Ng. If h.A/ is bijective for all A, the induced homomorphism B 0 y̋ƒ0ƒ! B is
an isomorphism.

Definition 3.10. Assume that p is nilpotent inKDƒ=I as above. For a p-divisible
group G over K let

DefG W Nilƒ=K ! .sets/

be the deformation functor ofG. This means that DefG.A/ is the set of isomorphism
classes of p-divisible groupsG0 overA together with an isomorphismG0˝AKŠG.
Let tG D Lie.G_/˝K Lie.G/.

Proposition 3.11. The functor DefG is prorepresented by a complete ƒ-algebra B .
Explicitly, if Qt is a projective ƒ-module which lifts tG , then B is isomorphic to the
complete symmetric algebra ƒŒŒQt���.

We note that Lemma 2.15 gives a universal p-divisible group over B .

Proof. The functor DefG satisfies (3-1)–(3-5) with tangent space tG because for
a surjective homomorphism A0 ! A in Nilƒ=K whose kernel N is a K-module
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of square zero and for H 2 DefG.A/, the set of lifts of H to A0 is a principally
homogeneous set under the K-module tG ˝K N by [Messing 1972]. �
Remark 3.12. Let g W ƒ0! ƒ over Ng W K 0! K be as in Remark 3.9, such that
p is nilpotent in K 0. Let G over K be the base change of a p-divisible group G0

over K 0. For A in Nilƒ=K we have a natural map

DefG0.A�K K
0/! DefG.A/:

This map is bijective, and its inverse is a homomorphism DefG! DefG0 over g in
the sense of Remark 3.9. If B and B 0 prorepresent DefG and DefG0 , respectively,
we get an isomorphism B 0 y̋ƒ0ƒŠ B .

Definition 3.13. Assume that K D ƒ=I is an admissible ring. For a Dieudonné
display P D .P;Q;F; F1/ over K, we denote by

DefP W Nilƒ=K ! .sets/

the deformation functor of P. Let tP D Hom.Q=IKP;P=Q/.

We are mainly interested in the case where K is perfect and ƒDW.K/. Then
Dieudonné displays over K are displays because W.K/DW.K/.

Proposition 3.14. The functor DefP is prorepresented by a complete ƒ-algebra B .
Explicitly, if Qt is a projective ƒ-module which lifts tP , then B is isomorphic to the
complete symmetric algebra ƒŒŒQt���.

We note that Lemma 2.16 gives a universal Dieudonné display over B .

Proof. The functor DefP satisfies (3-1)–(3-5) with tangent space tP because for
a surjective homomorphism A0 ! A in Nilƒ=K whose kernel N is a K-module
of square zero and for P 0 2 DefP.A/, the set of lifts of P 0 to A0 is a principally
homogeneous set under the K-module tP ˝K N by Corollary 2.10. �
Remark 3.15. Let g Wƒ0!ƒ over Ng WK 0!K be as in Remark 3.9, such that K
and K 0 are admissible rings. Assume that P is the base change of a Dieudonné
display P 0 over K 0. If B and B 0 represent DefP and DefP0 , respectively, then
B 0 y̋ƒ0ƒŠ B . This is analogous to Remark 3.12.

3C. Crystals and frames. Let F D .S; I; R; �; �1/ be a frame as in Section 2A,
such that S and R are p-adically complete, S has no p-torsion, I carries divided
powers, and � D p�1 on I . Thus .S; �/ is a frame for each R=pnR in the sense
of [Zink 2001b]. By a well-known construction, the crystalline Dieudonné functor
allows us to associate to a p-divisible group over R an F-window; this is explained
in the proof of [Zink 2001b, Theorem 1.6] for the Dieudonné crystal of a nilpotent
display, and in [Kisin 2006; 2009] for p-divisible groups.

The construction goes as follows. First, one can define a filtered F -V -module;
here it is not necessary to assume that S has no p-torsion.
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Construction 3.16. Let F D .S; I; R; �; �1/ be a frame such that S and R are
p-adically complete, I is equipped with divided powers ı which are compatible
with the canonical divided powers of p, and � D p�1 on I . Let ı0 be the divided
powers on I 0D I CpS which extend ı and the canonical divided powers of p. We
assume that � preserves ı0, which is automatic if S has no p-torsion. Then one can
define a functor

ˆo W .p-divisible groups over R/! .filtered F -V -modules over F/;

G 7! .P;Q;F ]; V ]/

as follows. Let R0 D R=pR and let �0 be its Frobenius endomorphism. For a
given p-divisible group G over R put P D D.G/S=R D D.G0/S=R0

; where D.G/

is the covariant2 Dieudonné crystal of G, and let Q be the kernel of the natural
map P ! Lie.G/. Since � preserves ı0, there is a natural isomorphism

P .�/ Š D.��0G0/S=R0
:

Thus we can define V ] WP !P .�/ to be induced by the Frobenius F WG0! ��0G0
and F ] W P .�/! P to be induced by the Verschiebung V W ��0G0!G0.

In the second step one associates F1.

Proposition 3.17. Let F be a frame as in the beginning of Section 3C. For a p-
divisible group G over R let ˆo.G/D .P;Q;F ]; V ]/ be the filtered F -V -module
over F given by Construction 3.16. There is a unique F1 W Q ! P such that
.P;Q;F; F1/ is an F-window, and it gives back V ] by the functor of Lemma 2.3.

Proof. We have functors .P;Q;F; F1/ 7! .P;Q;F ]; V ]/ 7! .P;Q;F ]/, which
are fully faithful; see Lemma 2.3. Thus we have to show that F.Q/ lies in pP
so that F1 D p�1F is well-defined, that F1.Q/ generates P , and that the pair
.P;Q/ admits a normal decomposition. Since R and S are p-adically complete
and since the kernel of S=pS !R=pR is a nilideal due to its divided powers, all
projective R-modules of finite type lift to S . Thus a normal decomposition exists.
The existence of F1 and the surjectivity of its linearisation are proved in [Kisin
2006, Lemma A.2] if S is local with perfect residue field, but the proof can be
easily adapted to the general case. To prove surjectivity, for each maximal ideal of
S , which necessarily comes from a maximal ideal m of R, we choose an embedding
of R=m into a perfect field k. There is a ring homomorphism ˛ W S!W.k/ which
lifts R! k such that f ˛D ˛� ; it can be constructed as S!W.S/!W.k/. Then
˛ is a homomorphism of frames F!Wk , and the assertion is reduced to the case
of Wk , which is classical. �

2 This differs from the notation of [Berthelot et al. 1982], where D.G/ is contravariant. One can
switch between the covariant and contravariant crystals by passing to the dual of G or of D.G/, which
amount to the same thing by the crystalline duality theorem [Berthelot et al. 1982, 5.3].
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Remark 3.18. The surjectivity of F1 in the proof of Proposition 3.17 can also
be deduced from the crystalline duality theorem. Let P D L˚ T be a normal
decomposition and let ‰ WP !P be given by F1 on L and by F on T . We have to
show that the linearisation ‰] WP .�/!P is an isomorphism. Let .P 0;Q0; F 0; F 01/
be the quadruple associated to the Cartier dual G_. The duality theorem gives a
perfect pairing P �P 0! S such that hF.x/; F 0.x0/i D p�hx; x0i. It follows that
hF.x/; F 01.x

0/i D �hx; x0i and hF1.x/; F 0.x0/i D �hx; x0i whenever this makes
sense. The unique decomposition P 0 D L0˚ T 0 with hL;L0i D 0D hT; T 0i is a
normal decomposition of P 0, and the dual of the associated ‰0] is an inverse of ‰].

3D. The Dieudonné display associated to a p-divisible group. For an admissible
ring R with p � 3, we consider the Dieudonné frame DR defined in Lemma 2.5.
The ring W.R/ is p-adically complete by the remark preceding Proposition 1.14.
By Lemma 1.17 the ideal IR carries natural divided powers compatible with the
canonical divided powers of p, and the induced divided powers on the kernel
of W.R/ ! R=pR are preserved by the Frobenius. Thus Construction 3.16
gives a functor

ˆoR W .p-divisible groups over R/! .filtered F -V -modules over DR/

which is compatible with base change in R.

Theorem 3.19. For each admissible ring R with p � 3, there is a unique functor

ˆR W .p-divisible groups over R/! .Dieudonné displays over R/

which is compatible with base change in R such that the filtered F -V -module
over DR associated to ˆR.G/ is equal to ˆoR.G/. In particular there is a natural
isomorphism Lie.G/Š Lie.ˆR.G//.

Proof. Clearly ˆoR.G/ D .P;Q;F
]; V ]/ is functorial in R and G. We have to

show that there is a unique operator F1 WQ! P which is functorial in R and G
such that ˆR.G/D .P;Q;F; F1/ is a Dieudonné display over R.

Let K D Rred and ƒ D W.K/. Let G D G ˝R K and let B be the complete
ƒ-algebra which prorepresents the functor DefG on Nilƒ=K ; see Proposition 3.11.
Let G be the universal deformation of G over B . If I denotes the kernel of B!K,
we can define

ˆoB.G /D lim
 �
n

ˆoB=In.G ˝B B=I
n/:

On the other hand, the ring W.B/ is p-adically complete by Proposition 1.14.
Therefore we can also define ˆoB.G / be a direct application of Construction 3.16,
and this agrees with the limit definition. The ring W.B/ has no p-torsion because
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B has no p-torsion. Thus by Proposition 3.17 there is a unique operator F1 which
makes ˆoB.G / into a Dieudonné display ˆB.G / over B .

By Proposition 3.5 there is a unique homomorphism B ! R of augmented
algebras such that G D G ˝B R as deformations of G. Necessarily we define
ˆR.G/ as the base change of ˆB.G / under B ! R. It remains to show that
ˆR.G/ is functorial in R and G.

Assume that G is the base change of a p-divisible group G0 over R0 under a
homomorphism of admissible rings R0 ! R. Let K 0, ƒ0, G0, B 0, G 0 have the
obvious meaning. We have a natural homomorphism of W.K 0/-algebras B 0! B

together with an isomorphism G 0˝B 0 B Š G ; see Remark 3.12. By the uniqueness
of F1 over B , we see that ˆB.G / coincides with the base change of ˆB 0.G 0/. It
follows that ˆR.G/ is the base change of ˆR0.G0/.

Assume that u WG!G1 is a homomorphism of p-divisible groups over R. Let
G1, B1, G1 have the obvious meaning. We have to show that ˆoR.u/ commutes
with F1. We may assume that u is an isomorphism because otherwise one can
pass to the automorphism

�
1
u
0
1

�
of G˚G1. This reasoning uses that the natural

isomorphismˆoR.G˚G1/Dˆ
o
R.G/˚ˆ

o
R.G1/ preserves the operators F1 defined

on the three modules, which follows from the uniqueness of F1 over the ring which
prorepresents DefG �DefG1

. An isomorphism u WG!G1 induces an isomorphism
Nu WG ŠG1, which gives an isomorphism B Š B1 together with an isomorphism
Qu W G ˝B B1 Š G1 that lifts Nu. By the uniqueness of F1 over B1 it follows that
ˆoB1

. Qu/ preserves F1. Since u is the base change of Qu by the homomorphism
B1!R defined by G1, it follows that ˆoR.u/ preserves F1 as well. �

In order to analyse the action of the functorsˆR on infinitesimal deformations, we
need the following extension of Theorem 3.19. Let .R0!R; ı/ be a divided power
extension of admissible rings with p � 3 which is compatible with the canonical
divided powers of p. Again, the ring W.R0=R/ is p-adically complete, and IR0=R

carries natural divided powers compatible with the canonical divided powers of p
such that f preserves their extension to the kernel of W.R0=R/! R=pR. Thus
Construction 3.16 gives a functor

ˆoR0=R W .p-divisible groups over R/! .filtered F -V -modules over DR0=R/

which is compatible with base change in the triple .R0!R; ı/.

Theorem 3.20. Assume that p� 3. For each divided power extension of admissible
rings .R0! R; ı/ compatible with the canonical divided powers of p, there is a
unique functor

ˆR0=R W .p-divisible groups over R/! .Dieudonné displays for R0=R/
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which is compatible with base change in the triple .R0!R; ı/ such that the filtered
F -V -module over DR0=R associated to ˆR0=R.G/ is equal to ˆo

R0=R
.G/.

Proof. For a given p-divisible group G over R we choose a lift to a p-divisible
group G0 over R0, which exists by [Illusie 1985, Théorème 4.4]. The Dieudonné
display ˆR0.G0/ is well-defined by Theorem 3.19, and necessarily ˆR0=R.G/ is
defined as the base change of ˆR0.G0/ by the frame homomorphism DR0!DR0=R.
We have to show that the operator F1 on ˆo

R0=R
.G/ defined in this way does not

depend on the choice of G0. If this is proved it follows easily that ˆR0=R.G/

is functorial in G and in .R0!R; ı/; here, instead of arbitrary homomorphisms of
p-divisible groups, it suffices to treat isomorphisms.

Let K, ƒ, G, B , G be as in the proof of Theorem 3.19. We have an isomorphism
B ŠƒŒŒt �� for a finitely generated projective ƒ-module t . Let C D B y̋ƒB . The
automorphism � D

�
1
0
1
1

�
of t ˚ t defines an isomorphism

C DƒŒŒt ˚ t ��
�
��!ƒŒŒt ˚ t ��D BŒŒtB ��

under which the multiplication homomorphism � W C ! B corresponds to the
augmentation BŒŒtB ��! B defined by tB 7! 0. Let I be the kernel of B!K, let
S be the divided power envelope of the ideal tBBŒŒtB ��� BŒŒtB ��, and let C 0 be the
I -adic completion of S . By Lemma 1.13, � extends to a divided power extension
of admissible topological rings �0 WC 0!B which is topologically compatible with
the canonical divided powers of p.3

Assume that G1 and G2 are two lifts of G to p-divisible groups over R0. Let G1
and G2 be the p-divisible groups over C which are the base change of G by the
two natural homomorphisms B ! C . By Proposition 3.5 there are well-defined
homomorphisms N̨ W B ! R and ˛ W C ! R0 such that G D G ˝B; N̨ R and
Gi D Gi˝C;˛R

0 as deformations of G. We have the commutative diagram of rings

C //

˛

((

�
##

C 0
˛0

//

�0

��

R0

��

B
N̨

// R

where ˛0 is constructed as follows. There is a unique homomorphism ˛00 W S !R0

which extends ˛ and which commutes with the divided powers on the kernel of
S ! B and of R0! R. Each of the two homomorphisms B ! C ! R0 factors
over B=In for some n. Thus ˛00 induces a homomorphism S=InS ! R0, which

3The construction of C 0 seems to depend on choosing one of the two natural maps B! C , but
actually it is independent of the choice as the I -adic topologies defined on S by these two maps
coincide.
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gives the required ˛0. We obtain the following commutative diagram of frames,
where � is given by C ! C 0, and �0 is given by the identity of R0:

DC
�
//

˛

��

DC 0=B

˛0

��

DR0
�0
// DR0=R

We have to show that the isomorphism of filtered F -V -modules over DR0=R

�0�.ˆ
o
R0.G1//Šˆ

o
R0=R.G/Š �

0
�.ˆ

o
R0.G2// (3-6)

commutes with the operator F1 defined on the outer terms by the functor ˆR0 . The
construction of ˆo can be extended to topological divided power extensions of
admissible topological rings by passing to the projective limit. Then (3-6) arises by
˛0� from the natural isomorphism of filtered F -V -modules over DC 0=B

��.ˆ
o
C .G1//Šˆ

o
C 0=B.G /Š ��.ˆ

o
C .G2//: (3-7)

Since ˛� preserves F1 it suffices to show that (3-7) commutes with the operators
F1 defined on the outer terms by the functor ˆC . This follows from the relation
pF1 D F because W.C 0=B/ has no p-torsion by Lemma 1.13. �

Corollary 3.21. Assume that p � 3. For a p-divisible group G over an admis-
sible ring R with associated Dieudonné display P D ˆR.G/, there is a natural
isomorphism of crystals on Crisadm.R=Zp/

D.G/Š D.P/

which is compatible with the natural isomorphism Lie.G/Š Lie.P/.

The category Crisadm and the crystal D.P/ were defined in Section 2F.

Proof. Let .R0 ! R; 
/ be a divided power extension of admissible rings with
p � 3 compatible with the canonical divided powers of p. The Dieudonné display
ˆR0=R.G/ given by Theorem 3.20 is the unique lift of P under the crystalline
frame homomorphism DR0=R!DR. By the construction of the underlying filtered
F -V -module ˆo

R0=R
.G/ and by the definition of the crystal K.P/ in Section 2F

we obtain a natural isomorphism of W.R0=R/-modules

D.G/W.R0/=R Š K.P/R0=R:

The tensor product with the projection W.R0=R/ ! R0, which is a homomor-
phism of divided power extensions of R, gives a natural isomorphism of R0-
modules D.G/R0=RŠD.P/R0=R which is compatible with the natural isomorphism
Lie.G/Š Lie.P/. �
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Now Theorem B for odd primes can be deduced quite formally:

Corollary 3.22. Assume that p � 3. For a p-divisible group G over an admis-
sible ring R with associated Dieudonné display P D ˆR.G/, there is a natural
isomorphism of crystals on Crisadm.R/

D.G/Š D.P/

which is compatible with the natural isomorphism Lie.G/Š Lie.P/.

Here the covariant Dieudonné crystal D.G/ can be defined for divided power
extensions that are not necessarily compatible with the canonical divided powers ofp
by [Mazur and Messing 1974, Chapter II §9]; see also [Berthelot et al. 1982, §1.4].

Proof. Let D0.G/D D.ˆR.G//. Consider a divided power extension R0! R of
admissible rings which need not be compatible with the canonical divided powers
of p. We claim that for two lifts G1 and G2 of G to R0 the following diagram of
natural isomorphisms commutes:

D.G2/R0=R0

�

��

D.G/R0=R
�

oo
�
// D.G1/R0=R0

�

��

D0.G2/R0=R0
�
// D0.G/R0=R D0.G1/R0=R0

�
oo

(3-8)

This gives a well-defined isomorphism ˛.G/ WD.G/R0=RŠD0.G/R0=R. It is easy
to see that ˛.G/ is compatible with the natural isomorphism Lie.G/ŠLie.P/, that
˛.G/ is functorial in the divided power extension R0!R and that ˛.G˚H/D
˛.G/˚ ˛.H/. In order to show that ˛ is functorial in G it suffices to consider
isomorphisms. So let u WG!H be an isomorphism of p-divisible groups over R.
We can choose liftsG1 ofG andH1 ofH to R0 such that u extends to Qu WG1!H1.
Then the following diagram shows that ˛ commutes with u:

D.G/R0=R
�
//

D.u/

��

D.G1/R0=R0
�
//

D. Qu/

��

D0.G1/R0=R0
�
//

D0. Qu/

��

D0.G/R0=R

D0.u/

��

D.H/R0=R
�
// D.H1/R0=R0

�
// D0.H1/R0=R0

�
// D0.H/R0=R

It remains to show that (3-8) commutes. Let K;ƒ;G;B be as in the proof of
Theorem 3.19. Let C D B y̋ƒB and C 0 be as in the proof of Theorem 3.20 so
that the multiplication homomorphism � W C ! B extends to a topological divided
power extension �0 W C 0! B of admissible topological rings without p-torsion
which is topologically compatible with the canonical divided powers of p. We
have homomorphisms B ! R defined by G and C ! R0 defined by .G1; G2/,
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which extend to a homomorphism of divided power extensions from .C 0! B/ to
.R0!R/. Thus (3-8) is the base change of a similar diagram for .C 0!B/, which
commutes by Corollary 3.21. �

3E. A v-stabilised variant. Let R be an admissible ring with p D 2. The v-
stabilised Zink ring WC.R/ considered in Section 1D and in Section 2E is 2-adically
complete, and its ideal ICR carries natural divided powers which are compatible with
the canonical divided powers of 2. The proof of Theorem 3.19 with WC in place
of W shows the following:

Proposition 3.23. For each admissible ring R with p D 2 there is a unique functor

ˆCR W .2-divisible groups over R/! .DCR -windows/

which is compatible with base change in R such that the filtered F -V -module over
DCR associated to ˆCR.G/ is given by Construction 3.16. �

Corollary 3.24. For each admissible ring R with p D 2 and 2R D 0 there is a
unique functor

ˆR W .2-divisible groups over R/! .Dieudonné displays over R/

which is compatible with base change in R such that the filtered F -V -module over
DR associated to ˆR.G/ is given by Construction 3.16.

Proof. Proposition 3.23 gives the functors ˆR since DCR D DR when 2RD 0. The
uniqueness follows as in the proof of Theorem 3.19, using B=2B instead of B . �

Let .R0! R; ı/ be a divided power extension of admissible rings with p D 2
which is compatible with the canonical divided powers of 2. The ring WC.R0=R/

is 2-adically complete, and its ideal IC
R0=R

carries natural divided powers compatible
with the canonical divided powers of 2. The proof of Theorem 3.20 with WC in
place of W gives the following:

Proposition 3.25. For each divided power extension of admissible rings .R0!R; ı/
with p D 2 such that ı is compatible with the canonical divided powers of 2 there
is a unique functor

ˆC
R0=R

W .2-divisible groups over R/! .DC
R0=R

-windows/

which is functorial in the triple .R0!R; ı/ such that the filtered F -V -module over
DC
R0=R

associated to ˆC
R0=R

.G/ is given by Construction 3.16. �

The proof of Corollary 3.21 then shows the following:
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Corollary 3.26. Assume that p D 2. For a 2-divisible group G over an admissible
ring R with associated v-stabilised Dieudonné display PC D ˆCR.G/ there is a
natural isomorphism of crystals on Crisadm.R=Z2/

D.G/Š DC.PC/

which is compatible with the natural isomorphism Lie.G/Š Lie.PC/. �

There is no analogue of Corollary 3.22 for ˆCR because DC.PC/ is only a
crystal on Crisadm.R=Z2/ and not on Crisadm.R/, but see Corollary 4.10.

4. From 2-divisible groups to Dieudonné displays

In this section we construct a functorˆR from p-divisible groups over an admissible
ring R with p D 2 to Dieudonné displays. When 2R D 0, this has been done in
the previous section, and the extension to all R is unique, as will be shown in the
end of this section. The construction relies on the following definition of divided
powers on the ideal IR �W.R/ when 4RD 0.

4A. Divided powers on Zink rings. We note that for a Z.2/-algebra B and an ideal
b� B , divided powers on b are equivalent to a map 
 W b! b such that


.xy/D x2
.y/ for x 2 B and y 2 b, (4-1)


.xCy/D 
.x/C xyC 
.y/ for x; y 2 b. (4-2)

Here (4-1) and (4-2) also give 2
.x/D x2 for x 2 b, since we can calculate

4
.x/D 
.2x/D 
.xC x/D 2
.x/C x2:

For an admissible ring R with p D 2, the canonical divided powers on the ideal
IR � W.R/ defined by 
.v.a// D v.a2/ induce divided powers on IR �W.R/

only if 2RD 0; see Section 1G. Using v instead of v we get a little further.

Proposition 4.1. For an admissible ring R with p D 2 we consider the map


 W IR! IR; 
.v.a//D v.a2/:

If 4R D 0, then 
 defines divided powers on IR which are compatible with the
canonical divided powers of 2, and the corresponding extension of 
 to IRC2W.R/

is stable under the Frobenius f of W.R/.
If 8R D 0, let U � W.R/ be the set of all Witt vectors of the form v.Œx�/ D

.0; x; 0; : : :/ with x 2 4R. This is an ideal. Let zS D W.R/=U . Then 
 induces
divided powers on the ideal IR=U of zS , which can naturally be extended to divided
powers on IR=U C 2 zS that commute with the endomorphism � on zS induced by f ,
and the extended divided powers stabilise the ideal 2 zS .
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Proof. We will only consider the case 8RD 0 and show that the extended divided
powers satisfy 
.2/D 2� Œ4�. Then the case 4RD 0 follows.

Since 4R is an ideal of square zero, we have yW .4R/ D .4R/.N/ as W.R/-
modules, where W.R/ acts on the i -th component of the right-hand side by the i -th
Witt polynomial wi , and f annihilates yW .4R/. Thus U is an ideal of W.R/, and
f induces � W zS ! zS . Let us show that 
 factors over a map IR=U ! IR. Indeed,
for a 2W.R/ and x 2 4R we have


.v.a/C v.Œx�//D 
.v.a/C v.Œx�//D v..aC Œx�/2/D v.a2/D 
.v.a//I

here v.Œx�/D v.Œx�/ because u0 maps to 1 in W.F2/ and thus u0Œx�D Œx�. Let us
verify axiom (4-1) for the map 
 W IR! IR. For a; b 2W.R/ we have


.av.b//D 
.v.f .a/b//D v.f .a2/b2/D a2v.b2/D a2
.v.b//:

Consider now axiom (4-2). For a; b 2W.R/ we calculate


.v.a/C v.b//D v..aC b/2/D 
.v.a//C v.2ab/C 
.v.b//

so that v.2ab/ has to be related with v.a/v.b/, which is

v.a/v.b/D v.u0a/v.u0b/D v.2u
2
0ab/D v.2u0ab/:

Since 2u0 D 2� Œ4�, we get

v.2ab/� v.a/v.b/D v.Œ4�ab/D v.Œ4a0b0�/ 2 U:

Thus (4-2) holds for 
 W IR=U ! IR=U , and 
 defines divided powers on this ideal.
We want to extend these to divided powers on the ideal

zI D IR=U C 2 zS D IR=U C yW .2R/=U:

Let
bD f.2a0; 4a1; 0; : : : / j ai 2Rg � yW .2R/:

This is an ideal of W.R/ with IR \ bD U , and we have

zI D IR=U ˚ b=U:

Thus the extension of 
 to zI corresponds to giving arbitrary divided powers on
b=U Š 2R. We take 
.Œ2a�/D Œ�2a2� for a 2R. Using v.1/D 2� Œ2� we obtain


.2/D 
.Œ2�C v.1//D Œ�2�C v.1/D Œ�2�C 2� Œ2�D 2� Œ4�

in zS , as announced. Let us show that 
� D �
 on zI : for a 2W.R/, we have


�.v.a//D 
..2� Œ4�/a/D 
.2� Œ4�/a2 D 
.2/a2

D .2� Œ4�/a2 D �.v.a2//D �
.v.a//:



2236 Eike Lau

Finally we have Œ4�D 2Œ2� in b=U , which implies that 
.2/ 2 2 zS . This finishes the
proof of Proposition 4.1. �

Remark 4.2. The proof shows that the extension of 
 is uniquely determined by
the condition that it commutes with � . By choosing 
.Œ2a�/ D Œ2a2�, we get an
extension with 
.2/D 2 but which does not commute with � .

Let R be an admissible ring with 4R D 0. Proposition 4.1 implies that its
Dieudonné frame DR satisfies the hypotheses of Construction 3.16 so that we
obtain a functor

ˆoR W .2-divisible groups over R/! .filtered F -V -modules over DR/:

However, we cannot argue as in Theorem 3.19 in order to get a DR-window, because
the divided powers on IR do not exist for universal deformation rings, and thus
Proposition 3.17 cannot be applied directly. The following modification will be
sufficient for our purpose.

4B. A frame lift. Assume we are given a strict frame homomorphism

F 0 D .S 0; I 0; R0; � 0; � 01/
�
��! F D .S; I; R; �; �1/

such that both � W S 0 ! S and I 0 ! I are surjective, and an ideal U � Ker.�/
which is stable under � 0. Let

zS D S 0=U; J D Ker.�/=U; zI D Ker. zS !R/I

thus S D zS=J and RD zS= zI . Let Q� W zS! zS be the homomorphism induced by � 0,
let � 0 2 S 0 be the element defined by the relation � 0D � 0� 01 on I 0, and let Q� 2 zS and
� 2 S be its images. We assume that F satisfies the conditions of Construction 3.16;
i.e., S and R are p-adically complete, I carries divided powers compatible with
the canonical divided powers of p and with � , and � D p. Then Construction 3.16
gives a functor

ˆo W .p-divisible groups over R/! .filtered F -V -modules over F/:

We also assume that the following conditions are satisfied.

(4-3) We have Q�.J /D 0 and J D fx 2 zS j px D 0g.

(4-4) We have Q� D p Qu for a unit Qu 2 zS .

(4-5) The ideal zICp zS is equipped with divided powers which lift the given divided
powers on I CpS , which commute with Q� , and which stabilise the ideal p zS .

(4-6) There is an ideal a � S with �.a/ � a � RadS such that the ring S=a has
no p-torsion.
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If S has no p-torsion one can take F 0 D F and all axioms are clear. The following
extends Proposition 3.17. Note that the prime p is arbitrary here.

Proposition 4.3. In this situation there is a well-defined functor

ˆ W .p-divisible groups over R/! .F-windows/

such that forˆo.G/D .P;Q;F ]; V ]/ the filtered F -V -module associated toˆ.G/
is equal to .P;Q;F ]; uV ]/, where u 2 S is the image of Qu 2 zS .

Proof. Conditions (4-3) and (4-4) imply that multiplication by Q� on zS induces
an injective map Q� W S ! zS with image Q� zS D p zS . Moreover Q� induces a homo-
morphism Q� W S ! zS that lifts � . The relation � 0� 01 D �

0 on I 0 gives Q� ı �1 D Q�
as maps I ! zS .

Let G be a p-divisible group over R and let ˆo.G/ be as above, i.e.,

P D D.G/S=R D D.GR0
/S=R0

with R0 D R=pR, the submodule Q � P is the kernel of P ! LieG, and F ]

and V ] are induced by the Verschiebung and Frobenius of GR0
. The proof of

[Kisin 2006, Lemma A.2] shows that F.Q/� pP . Let us recall the argument: for
S0 D S=pS , the kernel of S0!R0 is a nilideal because it carries divided powers.
By [Illusie 1985, Théorème 4.4] there is a lift GS0

of GR0
to S0, and we have

P D D.GS0
/S=S0

. Let Q1 D Ker.P ! LieGS0
/. Then Q �Q1C IP , and the

image of F applied to both summands lies in pP .
Since pJ D 0 and S is p-adically complete, so is zS . By (4-5) we can define

zP D D.G/ zS=R D D.GR0
/ zS=R0

:

Here we use the (dual of the) Dieudonné crystal of [Mazur and Messing 1974, Chap-
ter II §9], which is defined for divided power extensions that are not necessarily com-
patible with the canonical divided powers of p; see also [Berthelot et al. 1982, §1.4].
Let zQ � zP be the kernel of zP ! LieG; this is the inverse image of Q under the
projection zP ! zP=J zP D P . Again, the Verschiebung and Frobenius of GR0

induce zS-linear maps zF ] W zP .Q�/ ! zP and zV ] W zP ! zP .Q�/. Since the divided
powers stabilise the ideal p zS , the argument of [Kisin 2006, Lemma A.2] again
shows that zF . zQ/�p zP D Q� zP , where zF W zP ! zP is the Q� -linear map corresponding
to zF ]. Since Q� annihilates J , the map zF induces a map zF W P ! zP which lifts F .
Let F1 WQ! P be the composition

F1 WQ
zF
��! Q� zP

Q�
 ��
�
P;

i.e., F1 D Q��1 ı zF . We define ˆ.G/ D .P;Q;F; F1/. In order that this is an
F-window we have to verify that
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(i) for x 2 P and a 2 I we have F1.ax/D �1.a/F.x/;

(ii) the image F1.Q/ generates P .

Moreover, uV ] is the operator associated to ˆ.G/ as we have claimed if and only if

(iii) for x 2Q we have uV ].F1.x//D 1˝ x in P .�/.

The equation in (i) is equivalent to zF .ax/ D Q�.�1.a/F.x//. Since zF .ax/ D
Q�.a/ zF .x/ and Q� D Q� ı �1, this is clear. To prove (ii), it suffices to show that for
each maximal ideal m of R and perfect field extension R=m� k the vector space
zP ˝ zS k is generated by F1.Q/. Using (4-6) we get a sequence of �-equivariant

maps S ! zS=a!W. zS=a/!W.k/; the second arrow exists uniquely since zS=a
has no p-torsion and carries a Frobenius lift induced by Q� ; see [Bourbaki 1983,
IX, §1.2, Proposition 2] and the explanation following [Zink 2001b, Theorem 4].
By functoriality we are reduced to the case where F 0 D F DWk , which is classical.
Assertion (iii) is equivalent to Qu zV ]. zF .x//D Q�.1˝x/ for x 2Q, which holds since
zV ]. zF .x//D p.1˝ x/ in zP .Q�/ for all x 2 zP . �

Now we construct an example for Proposition 4.3 with p D 2. Let Ared be
a perfect ring of characteristic 2 and let A D W.Ared/ŒŒt ��, where t is a finitely
generated projective W.Ared/-module. Let mD .2; t/ be the kernel of A! Ared.
We write An D A=2nA and AnC D A=2nm. Only the rings

A2C! A1C! A1

will play a role. We consider the frames F 0 D DA2C
! F D DA1C

, i.e.,

S DW.A1C/; I D IA1C
; RD A1C;

S 0 DW.A2C/; I 0 D IA2C
; R0 D A2C:

Then � 0 D 2� Œ4� in S 0 and thus � D 2 in S . Let U � S 0 be the ideal of all Witt
vectors v.Œx�/ with x 2 4A2C, and let zS D S 0=U . As above, we write

J D Ker. zS ! S/D yW .2m=4m/=U

and
zI D Ker. zS !R/D .I 0C yW .2m=4m//=U:

Proposition 4.4. These data satisfy the axioms (4-3)–(4-6).

Proof. The divided powers required in (4-5) are given by Proposition 4.1. Since
2m=4m� A2C is an ideal of square zero, we have

J 0 WD yW .2m=4m/D .2m=4m/.N/

as W.A2C/-modules, where W.A2C/ acts on the i -th component of the right-hand
side via the i -th Witt polynomial. We have � 0.J 0/D 2J 0D 0 and J D J 0=U . Thus
Q� W zS ! zS is defined and vanishes on J , and 2J D 0.
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Lemma 4.5. Multiplication by 2 induces an isomorphism of groups

yW .2A1C/ �!
� yW .4A2C/=U:

Proof. The divided Witt polynomials for the canonical divided powers of 2 give an
isomorphism Log WW.2A/Š 2AN. The composition

W.2A/
Log
��! 2AN

�! .2A=4A/N

is given by .2a0; 2a1; : : : / 7! 2Œa0; a
2
0C a1; a

2
1C a2; : : : �, while the composition

W.4A/
Log
��! 4AN

�! .4A=8A/N

is simply .4a0; 4a1; : : : / 7! 4Œa0; a1; : : : �. It follows that the homomorphism of
the lemma is isomorphic to the homomorphism

A
.N/
red ! A

.N/
red ; .a0; a1; : : : / 7! .a0; a

2
1C a2; a

2
2C a3; : : : /:

Since Ared is perfect this map is bijective. �

Let us continue with the proof of Proposition 4.4. To verify (4-3), let x 2 zS with
2x D 0. Since W.A1/ has no 2-torsion we have x 2 yW .2A2C/=U . Lemma 4.5
implies that x 2 J , and (4-3) is proved. Let uD 1� Œ2� in W.A2C/, which is a unit.
By the proof of Lemma 4.5 we have 2uD 2� .4; 4; 0; : : : /� 2� Œ4�D � 0 modulo
U , which proves (4-4). In (4-6) we can take aD yW .2A1C/. �

4C. The Dieudonné display associated to a 2-divisible group. Let p D 2 and let
u D 1� Œ2� in W.Z2/. We begin to construct the functor ˆR in an initial case.
Recall that ˆoR was defined in the end of Section 4A when 4RD 0.

Proposition 4.6. For each admissible ring R with p D 2 and 2NR D 0 there is
a functor

ˆR W .2-divisible groups over R/! .DR-windows/

compatible with base change in R such that for ˆoR.G/ D .P;Q;F ]; V ]/ the
filtered F -V -module associated to ˆR.G/ is equal to .P;Q;F ]; uV ]/.

Proof. This is similar to the proof of Theorem 3.19. Propositions 4.3 and 4.4 give
the desired system of functors ˆR for topological admissible rings R of the type
RD A1C as above. For a p-divisible group G over an admissible ring R as in the
proposition, let ƒ D W.Rred/ and G D G˝R Rred. Let A be the ƒ-algebra that
prorepresents the functor DefG on Nilƒ=K (this A was denoted by B in Section 3),
let G over A be the universal deformation, and let G1C D G ˝AA1C. The unique
homomorphism of ƒ-algebras A! R with G D G ˝A R as deformations of G
factors over a homomorphism A1C!R, and we define ˆR.G/ as the base change
of ˆA1C

.G1C/ under this map. We have to show that the operator F1 attached to
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ˆoR.G/ in this way is functorial in G and in R. This is analogous to the proof of
Theorem 3.19, using that F1 is functorial with respect to homomorphisms of rings
of the type A1C. �

For an admissible ring R, let i W DR! DCR be the natural homomorphism.

Proposition 4.7. Let R be an admissible ring with p D 2 and 2NR D 0. For each
2-divisible group G over R there is a natural isomorphism of DCR -windows

ˆCR.G/Š i�ˆR.G/:

The functor ˆCR was defined in Proposition 3.23.

Proof. Let us write ‰R.G/D i�ˆR.G/ so that we have two functors

ˆCR ; ‰R W .2-divisible groups over R/! .DCR -windows/:

When 2RD 0, thus DR D DCR , these functors coincide by the uniqueness assertion
of Corollary 3.24. The rest is quite formal. Let R1 D R=2R. For a p-divisible
group G over R, let G1 DG˝R R1 and G DG˝R Rred. The canonical divided
powers of 2 make R! R1 into a divided power extension. By Corollaries 2.11
and 3.26, the DCR -windowsˆCR.G/ and‰R.G/ correspond to two lifts of the Hodge
filtration of G to D.G1/R=R1

. Their difference is measured by a homomorphism
of R1-modules

h0G W V.G1/! Lie.G1/˝R 2R;

where V.G/ is the kernel of D.G/R! Lie.G/. We have to show that h0G is zero
for all G. Since h0G is functorial in R we may assume that R D A1C=m

n for
some n � 2, where A is the universal deformation ring of G. Then 2R is a free
Rred-module of rank one, so h0G corresponds to an element

hG 2 Hom.V .G/;Lie.G//:

Now an injective homomorphism Rred!R0red gives an injective homomorphism of
the associated rings R!R0, while a product decomposition Rred D

Q
Ri;red gives

RD
Q
Ri . Since Rred embeds into the product of its localisations at minimal prime

ideals, we may assume that k WDRred is a field. There is a deformation G0 of G over
R0red WD kŒŒx��

per with ordinary generic fibre. Let A0 be its universal deformation
ring and let G0 over R0 D A01C=m

n be given by the universal deformation. By
functoriality it suffices to show that hG0 D 0. Again we can pass to the field
of fractions k..x//per. Thus we are left to show that hG D 0 if G is ordinary
over R D A1C=m

n, where k D Rred is a perfect field. There is a deformation
G00 of Gk over R00 WD W2.k/ which decomposes into the direct sum of its étale
and multiplicative part. Let R ! R00 be the unique homomorphism such that
G00 D G˝R R

00 as deformations of Gk . Since this does not change hG we may
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replace G by G00. Since ‰R and ˆCR both preserve direct sums we may assume that
G is étale or of multiplicative type. Then hG vanishes since Hom.V .G/;Lie.G//
is zero. �

Lemma 4.8. Let R be an admissible ring with p D 2 and let R1C DR=2NR. The
commutative diagram of frames

DR
i
//

��

DCR

��

DR1C

i
// DCR1C

is Cartesian on each component of the frames, and the associated diagram of
window categories is 2-Cartesian.

Proof. The vertical arrows are surjective, and the horizontal arrows are injective
with equal cokernel by Lemma 1.10 and its proof. Thus the diagram of frames is
Cartesian on each component. For a ring A, let V.A/ be the category of projective
A-modules of finite type. The functor

V.W.R//! V.WC.R//�V.WC.R1C//
V.W.R1C//

is fully faithful since the diagram is Cartesian, and it is essentially surjective
since V.W.R//!V.W.R1C// and V.WC.R//!V.WC.R1C// are bijective on
isomorphism classes and surjective on automorphism groups. It follows easily that
the diagram of window categories is 2-Cartesian. �

Theorem 4.9. For each admissible ring R with p D 2 there is a functor

ˆR W .2-divisible groups over R/! .DR-windows/

compatible with base change in R such that ˆR is given by Proposition 4.6 when
2NR D 0, and such that there is a natural isomorphism of DCR -windows

ˆCR.G/Š i�ˆR.G/:

Proof. This is clear from Propositions 3.23 and 4.7 and Lemma 4.8. �

Corollary 4.10. Let p D 2. For each 2-divisible group G over an admissible ring
R with associated Dieudonné display P DˆR.G/, there is a natural isomorphism
of crystals on Crisadm.R/

D.G/Š D.P/

which is compatible with the natural isomorphism Lie.G/Š Lie.P/.
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Proof. We have a natural isomorphism of crystals on Crisadm.R=Z2/

D.G/Š D.ˆCR.G//Š D.ˆR.G//

by Corollary 3.26, Theorem 4.9, and Lemma 2.12. The isomorphism of crystals on
Crisadm.R/ follows as in the proof of Corollary 3.22. �

4D. Uniqueness of the functor ˆR.

Proposition 4.11. Assume that for each admissible ring R with p D 2 we have
a functor

ˆ0R W .2-divisible groups over R/! .DR-windows/

compatible with base change in R such that ˆ0R DˆR when 2RD 0. Then there is
a natural isomorphism ˆ0R ŠˆR which is functorial in R and equal to the identity
when 2RD 0.

Proof. We first show that ˆ0R Š ˆR when 4R D 0. Let R1 D R=2R. For a
p-divisible group G over R, let G1 DG˝R R1 and let

P1 DˆR1
.G1/D .P;Q;F; F1/

be its Dieudonné display. If we take the trivial divided powers on the ideal 2R,
Corollary 2.10 implies that the difference between ˆR.G/ and ˆ0R.G/ as lifts of
P1 is measured by a homomorphism

h0G WQ=IR1
P ! P=Q˝R1

2R:

Let V.G/D Lie.G_/_. By Corollary 3.24 and by the construction of ˆoR.G/ we
can view h0G as a homomorphism

hG W V.G1/! Lie.G1/˝R1
2R:

We want to show that hG D 0. We may assume that RDA=.mnC4A/, where A is
the universal deformation ring of G˝RRred and m is the kernel of A!Rred. As in
the proof of Proposition 4.7, one reduces to the case where k DRred is a field and
G is ordinary. Assume that G is an extension 0�!�p1 �!G �!Qp=Zp �! 0.
Then V.G/ D V.Qp=Zp/ D R and Lie.G/ D Lie.�p1/ D R, so that hG 2 2R.
Thus G 7! hG defines a map g W Ext1.Qp=Zp; �p1/ ! Ga of functors on the
category of local Artin rings with residue field k and annihilated by 4. It is easy to
see that g is additive. Here Ext1. /D �p1 , and it follows that g D 0. This implies
easily that h0G D 0 when G is ordinary. Thus ˆR Šˆ0R when 4RD 0. If for some
n � 1 we know that ˆR Š ˆ0R when 2nR D 0, the same reasoning shows that
ˆR Šˆ

0
R when 2nC1RD 0, and the proposition follows. �
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5. Equivalence of categories

LetR be an admissible ring. Dieudonné displays overRred are displays, and they are
equivalent to Dieudonné modules over Rred by Lemma 2.4. Under this equivalence,
the functor ˆRred corresponds to ˆoRred

.

Proposition 5.1. For an admissible ring R the following diagram of categories is
2-Cartesian:

.p-divisible groups over R/
ˆR

//

��

.Dieudonné displays over R/

��

.p-divisible groups over Rred/
ˆRred

// .Dieudonné modules over Rred/

Proof. The categories of p-divisible groups and Dieudonné displays over R are
the direct limit of the corresponding categories over all finitely generated W.Rred/-
algebras contained in R; see Section 3A. Thus we may assume that the ideal NR
is nilpotent. If a�R is an ideal equipped with nilpotent divided powers and if the
proposition holds for R=a, then it holds for R. This follows from the comparison of
crystals in Corollaries 3.21 and 4.10, since lifts fromR=a toR of p-divisible groups
and of Dieudonné displays are both classified by lifts of the Hodge filtration by
[Messing 1972] and by Corollary 2.10. When a2D 0, we can take the trivial divided
powers on a. The result follows by induction on the order of nilpotence of NR. �

Remark 5.2. Since p-divisible groups and Dieudonné displays over a perfect ring
K have universal deformation rings which are twisted power series rings over ƒD
W.K/, in order to prove Proposition 5.1 the caseRDKŒ"� is sufficient. In particular,
for pD 2 this means that as soon as the functorsˆR defined in Corollary 3.24 when
2RD 0 are known to exist for all R, Proposition 5.1 is automatic. This reasoning
does not apply to the functorsˆCR (which also extend the functorsˆR for 2RD 0 to
all R but which are not an equivalence in general) because the deformation functors
of v-stabilised Dieudonné displays are not prorepresentable.

We have the following result of Gabber, which is classical when Rred is a field.
It is also proved in [Lau 2013, Corollary 6.5].

Theorem 5.3. The functor ˆRred is an equivalence of categories. �

Corollary 5.4. For every admissible ring R the functor ˆR is an equivalence of
exact categories.

Proof. By Theorem 5.3 and Proposition 5.1, the functor ˆR is an equivalence of
categories. A short sequence 0 �! A �! B �! C �! 0 of p-divisible groups
or of Dieudonné displays over R is exact if and only if all its scalar extensions to
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perfect fields are exact. Thus ˆR and its inverse preserve exact sequences, since
this holds over perfect fields. �

This proves Theorem A. Using Lemmas 2.15 and 2.16, we also get:

Corollary 5.5. For every admissible topological ring R with a countable base of
topology, p-divisible groups overR are equivalent to Dieudonné displays overR. �

Finally we note the following consequence of the crystalline duality theorem.
The duality of windows is recalled in the end of Section 2A.

Corollary 5.6. Let G be a p-divisible group over an admissible ring R and let G_

be its Cartier dual. There is a natural isomorphism

ˆR.G
_/ŠˆR.G/

t :

Proof. Assume first that p is odd. The crystalline duality theorem [Berthelot et al.
1982, 5.3] gives an isomorphism of filtered F -V -modules ˆoR.G

_/t Š ˆoR.G/.
Since the functor from windows to filtered F -V -modules preserves duality, the
uniqueness part of Theorem 3.19 implies that this isomorphism preserves F1, i.e., it
is an isomorphism of Dieudonné displaysˆR.G_/t ŠˆR.G/. For pD 2, using the
uniqueness part of Corollary 3.24 we similarly get an isomorphism of Dieudonné
displays ˆR.G_/t ŠˆR.G/ when 2RD 0. Then Proposition 4.11 gives such an
isomorphism for all R. �

6. Breuil–Kisin modules

We recall the main construction of [Lau 2010] without restriction on p. Let R be a
complete regular local ring with maximal ideal mR and with perfect residue field k
of characteristic p. Choose a representation RDS=ES with

SDW.k/ŒŒx1; : : : ; xr ��

such thatE is a power series with constant term p. Let J �S be the ideal generated
by x1; : : : ; xr . Choose a ring endomorphism � WS!S which lifts the Frobenius
of S=pS such that �.J / � J . Let �1 W ES!S be defined by �1.Ex/D �.x/
for x 2S. These data define a frame

B D .S; ES; R; �; �1/:

For each positive integer a, let Ra DR=maR and Sa DS=J a. We have frames

Ba D .Sa; ESa; Ra; �; �1/;

where � and �1 are induced by the corresponding operators of B.
The frames B and Ba are related with the Witt and Dieudonné frames of R

and of Ra as follows. Let ı W S! W.S/ be the unique lift of the identity of S
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such that f ı D ı� , or equivalently wnı D �n for n� 0; see [Bourbaki 1983, IX,
§1.2, Proposition 2] and the explanation following [Zink 2001b, Theorem 4]. The
composition of ı with the projection W.S/!W.R/ is a ring homomorphism

~ WS!W.R/

which lifts the projection S!R such that f ~ D ~� . The same construction gives
compatible homomorphisms

~a WSa!W.Ra/

for a � 1, which induce ~ in the projective limit. Since the element ~.E/ maps to
zero in R it lies in the image of v WW.R/!W.R/. Let

uD v�1.~.E//D f1.~.E//:

We will denote the image of u in W.Ra/ also by u.

Lemma 6.1. The element u 2W.R/ is a unit. The homomorphisms ~ and ~a are
u-homomorphisms of frames ~ WB! WR and ~a WBa!WRa

.

Proof. See [Lau 2010, Proposition 6.1]. Since W.R/!W.k/ is a local homomor-
phism, in order to show that u is a unit we can work with ~1, i.e., consider the case
where RD k and SDW.k/. Then E D p and uD 1. In order that ~ and ~a are
u-homomorphisms of frames we need that f1~ D u � ~�1. For x 2S we calculate
f1.~.Ex//D f1.~.E/~.x//D f1.~.E// �f .~.x//Du �~.�.x//Du �~.�1.Ex//,
as required. �

Let N� be the semilinear endomorphism of the free W.k/-module J=J 2 induced
by � . Since � induces the Frobenius modulo p, N� is divisible by p.

Proposition 6.2. The following conditions are equivalent:

(i) The image of ~ WS!W.R/ lies in W.R/.

(ii) The image of ı WS!W.S/ lies in W.S/.

(iii) The endomorphism p�1 N� of J=J 2 is nilpotent modulo p.

Remark 6.3. In the special case �.xi /D x
p
i the conditions of Proposition 6.2 hold.

This is easy to see directly: we have ı.xi /D Œxi �, which gives (i) and (ii), moreover
(iii) holds since N� is zero.

Proof of Proposition 6.2. For odd p the equivalence between (i) and (iii) is [Lau
2010, Proposition 9.1]; its proof shows that (i) D) (iii) D) (ii) D) (i). The proof
also applies for p D 2 if [Lau 2010, Lemma 9.2] is replaced by Lemma 6.4. �
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Lemma 6.4. For x 2 S let �.x/ D .�.x/� xp/=p. Let m be the maximal ideal
of S. For n� 0, the map � preserves mnJ and induces a �-linear endomorphism
grn.�/ of the k-module grn.J /DmnJ=mnC1J . The endomorphism gr0.�/ is equal
to p�1 N� modulo p. For n� 1, there is a surjective k-linear map

�n W grn.J /! gr0.J /

such that gr0.�/�n D �n grn.�/ and such that grn.�/ vanishes on Ker.�n/. In
particular, p�1 N� is nilpotent modulo p if and only if gr0.�/ is nilpotent, which
implies that grn.�/ is nilpotent for each n.

Proof. We have �.J / � J pCpJ � mJ and thus �.mnJ / � mnC1J . It follows
that p�.mnJ /� pS\mnC1J D pmnJ and �.mnJ /�mnJ . For x; y 2mnJ the
element �.xCy/��.x/��.y/ is a multiple of xy and thus lies in m2nC1J . Hence �
induces an additive endomorphism grn.�/ of grn.J /. It is � -linear because for a2S
and x 2mnJ the element �.ax/� �.a/�.x/D �.a/xp lies in mpnJ p �mnC1J .
Let us write �.xi /Dx

p
i Cpyi with yi 2J . We have �.xi /Dyi and p�1 N�.xi /�yi

modulo J 2. Thus gr0.�/ coincides with p�1 N� modulo p.
For each n� 0, a basis of grn.J / is given by all elements pbxc with c 2Nr and

1� jcj � nC1 and bCjcj D nC1. Let n� 1, and define �n to be the k-linear map
with �n.pnxi /Dxi and �n.pbxc/D0 if jcj>1. Then grn.�/ vanishes on Ker.�n/
because �.J /�mJ , thus �.J 2/�m2J 2, and because for x 2mnJ we have xp 2
mnC2J . The relation gr0.�/�nD�n grn.�/ holds since �.pnxi /�pn�1x

p
i Cp

nyi
modulo mnC1.J /. The last assertion of the lemma is immediate. �

Lemma 6.5. If the equivalent conditions of Proposition 6.2 hold, then ~ and ~a
are u-homomorphisms of frames

~ WB! DR; ~a WBa! DRa
;

where the unit u 2W.R/ is given by

uD v�1.~.E//D f1.~.E//:

In W.R/ we have uD u if p is odd and uD .v�1.2� Œ2�//�1u if p D 2.

Proof. The proof of Lemma 6.1 with f1 replaced by f1 shows that u is a unit of
W.R/ and that ~ and ~a are u-homomorphisms of frames as indicated. The relation
between u and u follows from the fact that DR ! WR is a u0-homomorphism,
where u0 D 1 if p is odd and v.u0/D 2� Œ2� if p D 2. �

Theorem 6.6. If the equivalent conditions of Proposition 6.2 hold, the frame homo-
morphisms ~ WB! DR and ~a WBa! DRa

are crystalline.

Proof. The proof for odd p in [Lau 2010, Theorem 9.3] works almost literally for
p D 2 as well. Let us recall the essential parts of the argument. Fix an integer
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a� 1. One can define a factorisation of the projection BaC1!Ba into strict frame
homomorphisms

BaC1
�
�! QBaC1

�
��!Ba (6-1)

such that BaC1 D .SaC1; zI ;Ra; �; Q�1/. This determines zI and Q�1 uniquely as
follows. Let J aDJ a=J aC1. We have zI DESaC1CJ

a andESaC1\J
aDpJ a.

The endomorphism N� of J a induced by � is divisible by pa, and the operator
Q�1 W zI ! SaC1 is the unique extension of �1 such that Q�1.x/ D p�1 N�.x/ for
x 2 J a. On the other hand, we consider the factorisation

DRaC1

�0

��! DRaC1=Ra

� 0

��! DRa
(6-2)

with respect to the trivial divided powers on the kernel maR=m
aC1
R . Then ~aC1 is

a u-homomorphism of frames QBaC1! DRaC1=Ra
. Indeed, the only condition to

be verified is that for x 2 J a we have

Qf1.~aC1.x//D u � ~aC1. Q�1.x// (6-3)

in the k-vector space yW .maR=m
aC1
R /. On this space u acts as the identity. Let

y D .y0; y1; : : : / in W.J a/ be defined by ynD Q�n1 .x/. Then ı.x/D y because the
Witt polynomials give wn.y/D pn Q�n1 .x/D �

n.x/D wn.ı.x// as required. Thus
~aC1.x/ is the reduction of y. Since Qf1 acts on yW .maR=m

aC1
R / by a shift to the

left, the relation (6-3) follows. We obtain compatible u-homomorphisms of frames
~� W (6-1)! (6-2). The homomorphisms � and � 0 are crystalline; see the proof of
[Lau 2010, Theorem 9.3]. Lifts of windows under � and under �0 are both classified
by lifts of the Hodge filtration from Ra to RaC1 in a compatible way. Thus if ~a
is crystalline then so is ~aC1, and Theorem 6.6 follows by induction, using that
~1 is an isomorphism. �

Following the terminology of [Vasiu and Zink 2010], a Breuil window relative
to S! R is a pair .Q; �/ where Q is a free S-module of finite rank and where
� WQ!Q.�/ is an S-linear map with cokernel annihilated by E. For such .Q; �/
there is a unique linear map  W Q.�/! Q with  � D E; the pairs .Q; / are
usually called Breuil–Kisin modules or Kisin modules. The category of B-windows
is equivalent to the category of Breuil windows relative to S!R by the assignment
.P;Q;F; F1/ 7! .Q; �/, where � is the composition of the inclusion Q! P with
the inverse of F ]1 WQ

.�/ Š P ; see [Lau 2010, Lemma 8.2].

Corollary 6.7. If the equivalent conditions of Proposition 6.2 hold, there is an
equivalence of exact categories between p-divisible groups over R and Breuil
windows relative to S!R.

Proof. This is analogous to [Lau 2010, Corollary 8.3], using Corollary 5.4. �
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Following [Vasiu and Zink 2010] again, a Breuil module relative to S! R

is a triple .M; �;  / where M is a finitely generated S-module annihilated by a
power of p and of projective dimension at most one and where � WM !M .�/

and  W M .�/ ! M are S-linear maps with � D E and  � D E. If R has
characteristic zero, such triples are equivalent to pairs .M; �/ or .M; /; see [Lau
2010, Lemma 8.6]. Again, the pairs .M; / are usually called Breuil–Kisin modules
or Kisin modules.

Corollary 6.8. If the equivalent conditions of Proposition 6.2 hold, there is an
equivalence of exact categories between commutative finite locally free group
schemes of p-power order over R and Breuil modules relative to S!R.

Proof. This is analogous to [Lau 2010, Theorem 8.5]. �

Example 6.9. Let R DW.k/ and SDW.k/ŒŒt �� with �.t/D tp. Define S! R

by t 7! p; thus E D p� t . We have ~.E/D p� Œp� and thus uD v�1.p� Œp�/.
Assume that p D 2. Then uD u0, and B! DR is a strict frame homomorphism.
This example has motivated the definition of Dieudonné displays for p D 2.

7. Breuil–Kisin modules and crystals

We keep the notation of Section 6 and assume that the equivalent conditions of
Proposition 6.2 hold. Assume that R has characteristic zero. Let S be the p-adic
completion of the divided power envelope of the ideal ES � S, and let I be
the kernel of S ! R. Since � W S! S preserves the ideal .E; p/, it extends to
� WS!S . It is easy to see that �.I /�pS , thus � WS!S is a Frobenius lift again.

Proposition 7.1. Let .Q; �/ be a Breuil window relative to S! R and let G be
the associated p-divisible group over R; see Corollary 6.7. There is a natural
isomorphism

D.G/S=R Š S ˝SQ
.�/

such that the Hodge filtration of D.G/S=R corresponds to the submodule generated
by �.Q/C IQ.�/, and the Frobenius of D.G/S=R corresponds to the �-linear
endomorphism of Q.�/ defined by x 7! 1˝��1.Ex/.

In Kisin’s theory (when R is one-dimensional) the analogous result is immediate
from the construction. To prove Proposition 7.1, we consider the frame

S D .S; I; R; �; �1/

with �1.x/ D �.x/=p for x 2 I . The inclusion S! S is a u-homomorphism
of frames � W B! S with u D �.E/=p 2 S . This element is a unit as required,
since the arrow S! R is mapped surjectively onto W.k/! k, which gives a
local homomorphism S ! W.k/ that maps u to 1. Recall that we have frames
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DR! DCR when p D 2 and let us write DCR D DR when p � 3. Then we have the
commutative diagram of frames

B
�
//

~

��

S

~S

��

DR // DCR

Indeed, since WC.R/! R is a divided power extension of p-adically complete
rings, the ring homomorphism ~ WS!WC.R/ extends to ~S WS!WC.R/, which
is a strict frame homomorphism S ! DCR . Here ~ is crystalline by Theorem 6.6.
The proof of Proposition 7.1 will use the following fact:

Theorem 7.2. The frame homomorphism ~S is crystalline.

This is a variant of the main result of [Zink 2001b]. It is easy to see that S is an
admissible topological ring in the sense of Definition 1.2 if and only if r D 1, i.e.,
if R is a discrete valuation ring. In that case, the methods of [Zink 2001b] apply
directly, but additional effort is needed to prove Theorem 7.2 in general. The proof
is postponed to the next section.

Proof of Proposition 7.1. Let P0 D .P;Q;F; F1/ be the B-window associated to
.Q; �/; thus P D Q.�/, the inclusion map Q! P is �, and F W P ! P is the
�-linear endomorphism of Q.�/ defined by x 7! 1˝��1.Ex/. By definition we
have ˆR.G/ D ~�.P0/, which implies that ˆCR.G/ D ~S���.P0/; here we use
Theorem 4.9 when pD 2. On the other hand, the frames S and DCR both satisfy the
hypotheses of the beginning of Section 3C. Thus Construction 3.16 and Proposition
3.17 applied toG give an S -window P1 with an isomorphism ~S�.P1/Šˆ

C

R.G/,
using the characterisation of ˆCR in Theorem 3.19 and Proposition 3.23. Since
the base change functor ~S� is fully faithful by Theorem 7.2, the isomorphism
~S�.P1/ Š ˆCR.G/ Š ~S���.P0/ descends to an isomorphism P1 Š ��.P0/,
which proves the proposition. �

7A. Proof of Theorem 7.2. Let us begin with a closer look on the p-adically
complete ring S . For m� 0 let Shmi � S be the closure of the S-algebra generated
by Ei=iŠ for i � pm.

Proposition 7.3. For m � 1, there is a surjective homomorphism of S-algebras
SŒŒt1; : : : ; tm��! Shmi defined by ti 7!Ep

i

=pi Š .

In particular, Shmi is a noetherian complete local ring.

Lemma 7.4. Let A be a noetherian complete local ring with a descending sequence
of ideals A� a0 � a1 � � � � . Then A! lim

 �i
A=ai is surjective.



2250 Eike Lau

Proof. Let m be the maximal ideal of A. For each r , the images of ai ! A=mr

stabilise for i !1 to an ideal Nar � A=mr . We have

lim
 �
i

A=ai D lim
 �
i;r

A=.ai Cmr/D lim
 �
r

.A=mr/=Nar :

Since the ideals Nar form a surjective system, taking the limit over r of the exact
sequences 0 �! Nar �! A=mr �! .A=mr/=Nar �! 0 proves the lemma. �

Proof of Proposition 7.3. Since the image ofEp
i

=pi Š in S=pnS is nilpotent, there is
a well-defined homomorphism �m;n WSŒŒt1; : : : ; tm��!S=pnS with ti 7!Ep

i

=pi Š .
By definition, Shmi is the projective limit over n of the image of �n;m. The
proposition follows by Lemma 7.4. �

Let K DW.k/˝Q and SQ DKŒŒx1; : : : ; xr ��. Since � WS!S preserves the
ideal J D .x1; : : : ; xr/, it extends to a homomorphism � WSQ!SQ. For r D 1
it is easy to describe S and Shmi as explicit subrings of SQ, since instead of the
divided powers of E one can take the divided powers of xe1, where e is defined by
pRDmeR. For r � 2 the situation is more complicated.

Proposition 7.5. The natural embedding S!SQ extends to an injective homo-
morphism S !SQ that commutes with � .

Thus Shmi is the image of SŒŒt1; : : : ; tm��!SQ as in Proposition 7.3.

Proof of Proposition 7.5. Recall that J D .x1; : : : ; xr/ as an ideal of S. Choose
E 0 2 J e with E �E 0 2 pS such that e is maximal; thus p 2 meR nm

eC1
R . Let us

write griE 0.S/DE 0iS=E 0iC1S, etc.

Lemma 7.6. The map of graded rings grE 0.S/! grE 0.SQ/ is injective.

Proof. It suffices to show that S=E 0S!SQ=E
0SQ is injective. The choice of E 0

implies that the image ofE 0 in the regular local rings S=pS and SQ lies in the same
power of the maximal ideals. Therefore the k-dimension of S=.pSCE 0SCJ n/
is equal to the K-dimension of SQ=.E

0SQC J
nSQ/. Since the last module is

isomorphic to S=.E 0SCJ n/˝Q, it follows that S=.E 0SCJ n/ is a free W.k/-
module and injects into SQ=.E

0SQCJ
nSQ/. Since S=E 0S and SQ=E

0SQ are
J -adically complete the lemma follows. �

Let S0 �SQ be the S-algebra generated by E 0i=iŠ for i � 1, or equivalently
by Ei=iŠ for i � 1, so S is the p-adic completion of S0. Let S0;n be the image
of S0!SQ=E

0nSQ and let zS D lim
 �n

S0;n. Each S0;n is a noetherian complete
local ring with residue field k and thus a p-adically complete ring. Since S0;n has
no p-torsion it follows that zS is p-adically complete. We obtain a homomorphism
S ! zS �SQ which extends S0 � zS �SQ.

Lemma 7.7. We have S0\p zS D pS0 inside zS .
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Proof. Let x 2 S0\p zS be given. We have to show that x lies in pS0. Assume that
x ¤ 0 and choose an expression .?/ x D

Ps
iD0 aiE

0ni=ni Š with ai 2S such that
n0 < � � �< ns . We use induction on ns �n0.

SupposeE 0 divides a0 in S. Then a0E 0n0=n0ŠDa
0
0E
0n0

0=.n00/Šwith n00Dn0C1
and a00D n

0
0a0=E

0. If s > 0 this allows us to find a new expression of x of the type
.?/with a smaller value of ns�n0, and we are done by induction. If sD0we replace
the expression .?/ by x D a00E

0n0
0=n00Š; call this a modification of the first type.

Suppose E 0 does not divide a0 in S. Lemma 7.6 implies that the image of x
in grn0

E 0.SQ/ is nonzero. In S0;n0C1 we have x D py. Choose an expression y DPn0

iD`
ciE
0i=iŠ with ci 2S such that ` is maximal. Then E 0 does not divide c` in

S, and Lemma 7.6 implies that y has nonzero image in gr`E 0.SQ/. Thus `D n0.
Using Lemma 7.6 again, it follows that the image of a0 in S=E 0S is divisible by p.
Let a0Dpb0Cb1E 0 with bi 2S and let x0Dx�pb0E 0n0=n0Š . Then x�x02pS0;
thus x0 2S0\p zS , and we have to show that x0 2pS0. If s > 0 we get an expression
of x0 of the type .?/ with a smaller value of ns �n0, and we are done by induction.
If s D 0 we replace x by x0 and take for .?/ the expression x0 D a00E

0n0
0=n00Š with

n00 D n0C 1 and a00 D n
0
0b1; call this a modification of the second type.

If s > 0 the inductive step is already finished. So we may assume that s D 0. We
successively apply modifications of the first or second type depending on whether
E 0 divides a0. After at most p steps, the new value of a0 becomes divisible by p,
and thus x lies in pS0. �

Lemma 7.7 implies that S0=pnS0! zS=pn zS is injective, so the projective limit
S! zS is injective, and thus S!SQ is injective. In order that this map commutes
with � it suffices to show that S !SQ=J

nSQ commutes with � for each n; this
is true since S0 ! SQ=J

nSQ commutes with � , and the image of this map is
p-adically complete. Thus Proposition 7.5 is proved. �

We turn to the frames associated to the rings S and Shmi.

Lemma 7.8. For m� 1 we have a subframe of S D .S; I; R; �; �1/,

Shmi D .Shmi; Ihmi; R; �; �1/:

Proof. Necessarily IhmiD I \Shmi. We have to show that � WS!S stabilises Shmi
and that �1 D p�1� W I ! S maps Ihmi into Shmi. We will show that �.S/ and
�1.I / are even contained in Sh1i. Namely, we have �.E/Dpx with x 2SŒEp=p�.
Thus �1.Ei=iŠ/D .p � i Š/�1.px/i lies in SŒEp=p�, using that 1C vp.i Š/� i for
i � 1. Since I=pnI is the kernel of S=pnS ! R=pnR, this ideal is generated
as an S-module by the elements Ei=iŠ for i � 1. Thus the image of the map
I=pnC1I ! S=pnS induced by �1 lies in the image of Sh1i, and it follows that
�1.I /� Sh1i. Since S DSC I , we get �.S/� Sh1i. �
Proposition 7.9. For m� 1 the inclusion Shmi!S is crystalline.
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Proof. This is a formal consequence of the relations �.S/� Shmi and �1.I /� Shmi
verified in the proof of Lemma 7.8.

Indeed, let PD .P;Q;F; F1/ be an S -window. Choose a normal decomposition
P D L˚ T , and let ‰ W L˚ T ! P be the �-linear isomorphism defined by
F1 on L and by F on T . Then Phmi WD Shmi‰.L˚ T / is a free Shmi-module
with S ˝Shmi

Phmi D P . Moreover, F1.Q/ � Phmi and F.P / � Phmi. Let
Qhmi D Q \ Phmi. Then Phmi=Qhmi D P=Q is a projective R-module. Let
PhmiDLhmi˚Thmi be a normal decomposition and let‰hmi WLhmi˚Thmi!Phmi
be the �-linear map defined by F1 on Lhmi and by F on Thmi. In order that
the quadruple Phmi D .Phmi;Qhmi; F; F1/ is an Shmi-window with base change
P we need that the determinant of ‰hmi is invertible. But the determinant of
‰hmi becomes invertible in S because P is a window, and Shmi! S is a local
homomorphism. Thus the base change functor from Shmi-windows to S -windows
is essentially surjective.

In order that the functor is fully faithful it suffices to show that it induces a
bijection End.Phmi/!End.P/. Clearly the map is injective. We have to show that
every h 2 End.P/ stabilises Phmi. But h.F1.Q//D F1.h.Q//� F1.Q/� Phmi,
and F1.Q/ generates Phmi as an Shmi-module. This proves the proposition. �

Proposition 7.10. Form� 1, the composition Shmi �!S
~S
���!DCR is crystalline.

This is the main step in the proof of Theorem 7.2. The proof of Proposition 7.10
is a variant of the proof of Theorem 6.6.

Proof. We choose e such that p 2 meR nm
eC1
R , and consider the index set N D

f1; 2; : : : g[feCg, ordered by the natural order of Z and e < eC<eC1. For n2N
let nC 2N be its successor. Let meCR DmeC1R CpR. For n 2N let Rn DR=mnR.
We equip the ideal mnR=m

nC
R of RnC with the trivial divided powers if n¤ eC and

with the canonical divided powers of p if nD eC; these are again trivial if p is odd.
In all cases the divided powers are compatible with the canonical divided powers
of p, and we obtain frames

DC
RnC=Rn

D .WC.RnC/; I
C

RnC=Rn
; Rn; f; Qf1/:

Let Tn be the image of Shmi
~S
���!WC.R/ �!WC.Rn/. Since ~S� D f ~S ,

the ring Tn is stable under f . Let Kn be the kernel of Tn!Rn and let zKn be the
kernel of TnC!Rn.

We claim that Qf1. zKn/� TnC.
To prove this, let Mn be the kernel of Shmi!Rn, so zKn is the image of Mn!

WC.RnC/. Since ~S� D f ~S and since f1 is f -linear it suffices to show that a set
of generators xi of the ideal Mn with images ~S .xi /D Nxi 2 zKn satisfies f1. Nxi / 2
TnC. Since mRD JR, for n¤ eC the ideal Mn is generated by Ihmi and J n, while
MeC is generated by Ihmi and J eC1 and p. We check these generators case by case.
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First, for x 2 Ihmi we have f1. Nx/ 2 TnC because Shmi ! DCRnC
is a frame

homomorphism.
Assume that n ¤ eC. The homomorphism ı W J n=J nC1 ! W.J n=J nC1/ is

given by ı.x/D .x; �1.x/; .�1/2.x/; : : : /. Indeed, applying the Witt polynomialwn
to this equation gives �n.x/Dpn.�1/n.x/, which is true. Since the divided powers
on mnR=m

nC
R are trivial, the endomorphism Qf1 of W.mnR=m

nC
R / is given by a shift

to the left. Thus the map ~S W J n=J nC1!W.mnR=m
nC
R / satisfies ~S�1 D Qf1~S ,

and we see that f1. Nx/ 2 TnC for x 2 J n.
Assume now that n D eC. Since J eC1 maps to zero in W.ReC1/, it remains

to show that Qf1.p/ 2 TnC. Now Log.p � v.1// D Œp; 0; 0; : : : �; see the proof of
Lemma 1.9. Thus Qf1.p/D f1.v.1//D 1, and the claim is proved.

We obtain frames

Tn D .Tn; Kn; Rn; f; f1/; TnC=n D .TnC; zKn; Rn; f; Qf1/;

and a commutative diagram of frames with strict homomorphisms

TnC
 0

//

�nC

��

TnC=n
� 0

//

��

Tn

�n
��

DCRnC

 
// DC

RnC=Rn

�
// DCRn

Here � is crystalline because the hypotheses of Theorem 2.2 are satisfied; see
the proof of Corollary 2.9. Since the vertical arrows are injective, it follows that � 0

satisfies the hypotheses of Theorem 2.2 as well, and thus � 0 is crystalline. Moreover,
lifts of windows under  and under  0 correspond to lifts of the Hodge filtration
fromRn toRnC in the same way. Since �1 is bijective, it follows that �n is crystalline
for each n. Consider the limit frame

T D lim
 �
n

Tn D .T;K;R; f; f1/:

The inclusion � W T ! DCR is the projective limit over n of �n and thus crystalline.
Since Shmi is noetherian by Proposition 7.3, Lemma 7.4 implies that T D lim

 �n
Tn is

the image of ~S W Shmi ! WC.R/. If ~S is injective, we get Shmi D T , so
Shmi! DCR is crystalline as required.

Since we have not proved that ~S is injective we need an extra argument. Let a be
the kernel of ~S WShmi!WC.R/ and let anDa\J nSQ for n�1; here we use that
S is a subring of SQ by Proposition 7.5. We have aD a1. The ideals an of Shmi are
stable under � , and they are also stable under �1 since Shmi=a and an=anC1 have no
p-torsion. Thus we can define frames Shmi;n D .Shmi=an; Ihmi=an; R; �; �1/. We
have Shmi;1 D T , and the projective limit over n of Shmi;n is isomorphic to Shmi
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by Lemma 7.4 and Proposition 7.5. The ideal an=anC1 is a finitely generatedW.k/-
submodule of .J n=J nC1/˝Q. Since the conditions of Proposition 6.2 are satisfied,
the endomorphism �1 of an=anC1 is p-adically nilpotent. Thus Shmi;nC1!Shmi;n
is crystalline; see the proof of [Lau 2010, Theorem 9.3]. It follows that Shmi! T

is crystalline, so Shmi! DCR is crystalline too. �
Theorem 7.2 follows from Propositions 7.9 and 7.10. �

Remark 7.11. Assume that r D 1; i.e., R is a discrete valuation ring. If pRDmeR,
the ring S is the p-adic completion of W.k/ŒŒt ��Œftem=mŠgm�1�. It is easy to see
that each quotient S=pnS is admissible, so the p-adically complete ring S is an
admissible topological ring. In particular, WC.S/ is defined. Since we assumed
that the image of ı W S ! W.S/ lies in W.S/, it follows that the image of
ı W S ! W.S/ lies in WC.S/, using that WC.S/! R is the projective limit of
the divided power extensions WC.S=pnS/!R=pnR and that each WC.S=pnS/

is p-adically complete. If p is odd this means that S is a Dieudonné frame in
the sense of [Zink 2001b, Definition 3.1], and Theorem 7.2 becomes a special
case of [Zink 2001b, Theorem 3.2]. For p D 2 the proof of [loc. cit.] works as
well. The starting point is the construction of an inverse functor of ~S�; it maps a
DCR -window P to the value of its crystal DC.P/S=R, equipped with an appropriate
S -window structure.

If r � 2, the ring S is not admissible and thus the crystal of a DCR -window can
not be evaluated at S=R. However, one can define by hand a subframe DC

S=R
of

WS=R such that DC
S=R
! DCR is crystalline. This allows us to evaluate the crystal

at S=R and to define an inverse functor of ~S� as before. The underlying ring
of DC

S=R
is defined as follows. Let Sm;n be the image of Shmi ! S=pnS and

let Im;n be the kernel of Sm;n! R=pnR. The divided Witt polynomials define
an isomorphism Log WW.I=pnI /Š .I=pnI /N, and our ring is lim

 �n
lim
�!m

of the
rings WC.S0;n/C Log�1..Im;n/hNi/. The lim

 �n
of these rings for fixed m � 1

gives a frame DC
Shmi=R

with a crystalline homomorphism to DCR . This allows us
to construct the inverse functor from DCR -windows to Shmi-windows. We leave out
the details.

8. Rigidity of p-divisible groups

In this section, we record a rigidity property of the category of p-divisible groups
that will be used in Section 9. As preparation, for a local ring R we consider the
additive category FR of commutative finite locally free p-group schemes over R.
It is known that FR is equivalent to the full subcategory of the bounded derived
category of the exact category of p-divisible groups overR formed by the complexes
of length one which are isogenies; see [Kisin 2006, (2.3.5)]. In elementary terms
this equivalence can be expressed as follows:
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Proposition 8.1. For a local ring R, let IR be the category with isogenies of
p-divisible groups over R as objects and homomorphisms of complexes modulo
homotopy as homomorphisms. The set S of quasi-isomorphisms in IR allows a
calculus of right fractions. In particular, the localised category S�1IR is additive.
It is equivalent to the additive category FR.

For completeness let us prove this directly.

Proof. Let zIR be the category with isogenies of p-divisible groups overR as objects
and homomorphisms of complexes as homomorphisms. We denote isogenies by
X D ŒX0 ! X1�. Let h0.X/ be the kernel of X0 ! X1. A homomorphism
f W X ! Y in zIR is homotopic to zero if and only if h0.f / is the zero map; the
homotopy is unique if it exists. We claim:

(?) For each homomorphism f WX ! Y in zIR, one can find a quasi-isomorphism
t WZ!X in zIR and a homomorphism g WZ! Y in zIR which is an epimorphism
in both components such that f t is homotopic to g. Namely, embed h0.X/ into
Z0 D X0 ˚ Y 0 by .1; f / and put Z1 D Z0=h0.X/. Define t and g by the
projections Z0 ! X0 and Z0 ! Y 0. There is a homotopy between f t and g
because f t D g on h0.Z/, and (?) is proved.

Next, for given homomorphisms X
f
��! Y

s
 � Y 0 in zIR, where s is a quasi-

isomorphism, one can find an isogeny X 0 with a homomorphism g WX 0! Y 0 and a
quasi-isomorphism t WX 0!X such that f t is homotopic to sg. Indeed, by (?) we
can assume that the components of f are epimorphisms. Then take X 0 DX �Y Y 0

componentwise. It follows easily that S allows a calculus of right fractions. We
have an additive functor h0 W S�1I! F . It is surjective on isomorphism classes
by a theorem of Raynaud [Berthelot et al. 1982, Théorème 3.1.1]. Let X and Y be
isogenies. The functor h0 is full, because for a given homomorphism f0 W h

0.X/!

h0.Y /, the construction in (?) allows us to represent f0 as h0.gt�1/. The functor
is faithful because if a right fraction gt�1 W X ! Y induces zero on h0 then g
induces zero on h0, and thus g is homotopic to zero. �

Let .Art/ be the category of local Artin schemes with perfect residue field of
characteristic p, and let .p-div/! .Art/ be the fibred category of p-divisible groups
over schemes in .Art/.

Lemma 8.2. Assume that u is an exact automorphism of the fibred category .p-div/
over .Art/ such that for the groupEDQp=Zp over Spec Fp there is an isomorphism
u.E/ŠE. Then u is isomorphic to the identity functor.

Proof. For each U in .Art/ we are given a functor G 7!Gu from the category of p-
divisible groups over U to itself, which preserves short exact sequences, compatible
with base change in U , such that Hom.G;H/Š Hom.Gu;Hu/. We have to show
that there is an natural isomorphismGuŠG for allG, compatible with base change
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in U . Let .p-fin/! .Art/ be the fibred category of commutative finite locally free
p-group schemes over schemes in .Art/. By Proposition 8.1, u induces an automor-
phism of .p-fin/ over .Art/. Let H 2 .p-fin/ over U 2 .Art/ be given. Assume that
pn annihilates H and Hu. For each T !U in .Art/ there is a natural isomorphism

H.T /Š HomT .Z=pnZ;HT /Š HomT .Z=pnZ;Hu
T /ŠH

u.T /;

using that .Z=pnZ/u Š Z=pnZ. Since commutative finite locally free group
schemes over U form a full subcategory of the category of abelian presheaves
on .Art/=U , we get a natural isomorphism H Š Hu, which induces a natural
isomorphism G ŠGu for all p-divisible groups G over U . �

9. The reverse functor

We fix an admissible ring R which is local of dimension zero; thus k D Rred is
a perfect field of characteristic p. In this case, one can write down an inverse of
the functor ˆR as follows. The construction appears in [Lau 2009] when p � 3 or
pRD 0 and extends to the general case with appropriate changes.

Definition 9.1. Let JR be the category of R-algebras A such that NA is bounded
nilpotent and Ared is the union of finite dimensional k-algebras.

We call a ring homomorphism A! B ind-étale if B is the filtered direct limit
of étale A-algebras.

Lemma 9.2. Every A 2 JR is admissible. The category JR is stable under tensor
products. If A ! B is an ind-étale or a quasi-finite ring homomorphism with
A 2 JR then B 2 JR.

Proof. Since a reduced finite k-algebra is étale and thus perfect, every A in JR
is admissible. Let A! B a ring homomorphism with A 2 JR. Then NAB is
bounded nilpotent, so B is lies in JR if and only if B=NAB lies in JR. For given
homomorphisms B A! C in JR we have to show that B˝AC lies in JR. By
the preceding remark, we may assume that A;B;C are reduced. Then B˝A C is
the direct limit of étale k-algebras and thus lies in JR. Let g WA!B be an ind-étale
or quasi-finite ring homomorphism with A 2 JR. In order to show that B 2 JR we
may assume that A is reduced. Then every finitely generated k-subalgebra of A is
étale. Thus each étale A-algebra is defined over an étale k-subalgebra of A. If g
is ind-étale it follows that B lies in JR. Assume that g is quasi-finite. Then B is
defined over an étale k-subalgebra of A. Since all finite k-algebras lie in JR and
since JR is stable under tensor products, it follows that B 2 JR. �

Let S D SpecR and let JS be the category of affine S-schemes SpecA with
A 2 JR. If � is either ind-étale or fpqc, we consider the �-topology on JS in
which coverings are finite families of morphisms .SpecBi ! SpecA/ such that
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the associated homomorphism A!
Q
i Bi is faithfully flat, and ind-étale if � is

ind-étale. Let zSJ ;� be the category of � -sheaves on JS .

Lemma 9.3. The presheaf of rings W on JS is an fpqc sheaf.

Proof. See [Lau 2009, Lemma 1.5]. Since the presheaf W is an fpqc sheaf, it
suffices to show that for an injective ring homomorphism A! B in JR we have
W.A/DW.B/\W.A/ in W.B/. This is easily verified using that Ared! Bred is
injective and yW .NA/D yW .NB/\W.A/ in W.NB/. �

Let P be a Dieudonné display overR. For SpecA2JS let PAD .PA;QA;F;F1/

be the base change of P to A. We define two complexes Z.P/ and Z0.P/ of
presheaves of abelian groups on JS by

Z.P/.SpecA/D ŒQA
F1�1
����! PA�; (9-1)

Z0.P/.SpecA/D ŒQA
F1�1
����! PA�˝ ŒZ! ZŒ1=p��; (9-2)

such that Z.P/ lies in degrees 0; 1 and Z0.P/ lies in degrees �1; 0; 1, so the
second tensor factor lies in degrees �1; 0.

Proposition 9.4. The components of Z0.P/ are fpqc sheaves on JS . The ind-étale
(and thus the fpqc) cohomology sheaves of Z0.P/ vanish outside degree zero, and
the cohomology sheaf in degree zero is represented by a well-defined p-divisible
group BTR.P/ over R. This defines an additive and exact functor

BTR W .Dieudonné displays over R/! .p-divisible groups over R/:

One can also express the definition of the functor BTR by the formula

BTR.P/D ŒQ
F1�1
����! P �˝L Qp=Zp

in the derived category of either ind-étale or fpqc abelian sheaves on JS .

Proof. This is essentially proved in [Lau 2009], but we recall the arguments for
completeness and because there is a small modification when pD 2. To begin with,
p-divisible groups over R form a full subcategory of the abelian presheaves on JS
because finite group schemes over R lie in JS ; see Lemma 9.2. Hence BTR is a
well-defined additive functor if the assertions on the cohomology of Z0.P/ hold.
Since an exact sequence of Dieudonné displays over R induces an exact sequence of
the associated complexes of presheaves Z0, the functor BTR is exact if it is defined.

The components of Z.P/ and Z0.P/ are fpqc sheaves on JS by Lemma 9.3.
These complexes carry two filtrations. First, a Dieudonné display is called étale
if QD P , and nilpotent if V ] is topologically nilpotent. Every Dieudonné display
over R is naturally an extension of an étale by a nilpotent Dieudonné display, which
induces exact sequences of the associated complexes Z.: : : / and Z0.: : : /. Thus we
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may assume that P is étale or nilpotent. Second, for every P we have an exact
sequence of complexes of presheaves

0 �! yZ.P/ �!Z.P/ �!Zred.P/ �! 0;

defined by Zred.P/.SpecA/DZ.P/.SpecAred/. The same holds for Z0 instead
of Z. We write yZ.P/D Œ yQ! yP �.

Assume that P is étale. Then F1 W P ! P is an f -linear isomorphism. Thus
F1 W yP ! yP is elementwise nilpotent, and the complex yZ.P/ is acyclic. It follows
that Z.P/ is quasi-isomorphic to the complex Zred.P/ D Zred, which is the
projective limit of the complexes Zred;nDZred=p

nZred. In the étale topology, each
Zred;n is a surjective homomorphism of sheaves whose kernel is a locally constant
sheaf Gn of free Z=pnZ-modules of rank equal to the rank of P . The system
.Gn/n defines an étale p-divisible group G over R, and Zred is quasi-isomorphic
to TpG D lim

 �
Gn as ind-étale sheaves. It follows that Z0.P/'Z0red.P/ is quasi-

isomorphic to the complex ŒTpG ! TpG ˝ ZŒ1=p�� in degrees �1; 0, which is
quasi-isomorphic to G in degree zero (as ind-étale sheaves).

Assume that P is nilpotent. Then the complex Zred.P/ is acyclic because its
value over SpecA is isomorphic to Œ1�V WPAred!PAred �, where V is a topologically
nilpotent f �1-linear homomorphism. ThusZ.P/ is quasi-isomorphic to yZ.P /. To
P we associate a nilpotent display by the u0-homomorphism of frames DR!WR.
By [Zink 2002, Theorem 81 and Corollary 89] there is a formal p-divisible group G
overR associated to this display such that for eachA2JR there is an exact sequence

0 �! yQ.A/
u0F1�1
�����! yP .A/ �!G.A/ �! 0I

this is the direct limit of the corresponding sequences for the finitely generated
(nilpotent) subalgebras of NA. Since u0 2 W.Zp/ maps to 1 in W.Fp/, there is
a unique c 2W.Zp/ which maps to 1 in W.Fp/ such that u0 D cf .c�1/, namely
c D u0f .u0/f

2.u0/ � � � . Multiplication by c in both components defines an iso-
morphism of complexes

Œ yQ.A/
F1�1
����! yP .A/�Š Œ yQ.A/

u0F1�1
�����! yP .A/�

It follows that Z0.P/' yZ0.P/ is quasi-isomorphic to G in degree zero. �

Remark 9.5. Recall that DRD .W.R/; IR; f; f1/ is viewed as a Dieudonné display
over R. We have BTR.DR/D �p1 by [Zink 2002, (211)].

Lemma 9.6. Let R!R0 be a homomorphism of admissible rings which are local
of dimension zero. For each Dieudonné display P over R there is a natural
isomorphism

BTR.P/R0 Š BTR0.PR0/:
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Proof. If the residue field of R0 is an algebraic extension of k, every ring in JR0 lies
in JR, and the assertion follows directly from the construction of BTR. In general,
let ER be the category of all R-algebras which are admissible rings, and let ES be
the category of affine S -schemes SpecA with A 2 ER, endowed with the ind-étale
topology. The complexes of presheaves Z.P/ and Z0.P/ on JS defined in (9-1)
and (9-2) extend to complexes of presheaves on ES defined by the same formulas.
The proof of Lemma 9.2 shows that for an ind-étale ring homomorphism A! B

with A2 ER we have B 2 ER as well. Using this, the proof of Proposition 9.4 shows
that the ind-étale cohomology sheaves of Z0.P/ on ES vanish outside degree zero,
and H 0.Z0.P// is naturally isomorphic to BTR.P/ as a sheaf on ES . Since every
ring in ER0 lies in ER, the lemma follows as in the first case. �

Proposition 9.7. The functor BTR is an equivalence of exact categories which is a
quasi-inverse of the functor ˆR.

Proof. By Section 3A we may assume that R is a local Artin ring. Since p-divisible
groups and Dieudonné displays over k have universal deformation rings which are
power series rings over W.k/, once the functor BTR is defined, in order to show
that it is an equivalence of categories it suffices to consider the cases RD k and
RD kŒ"�. In particular, if pD 2, we may assume that pRD 0, so that the results of
[Zink 2001a] and [Lau 2009] can be applied. The category CR used in [Lau 2009]
is the category of all A 2 JR such that NA is nilpotent. Since this subcategory
is stable under ind-étale extensions, it does not make a difference whether the
functor BTR is defined in terms of CR or JR. Thus BTR is an equivalence by [Lau
2009, Theorem 1.7], which relies on the equivalence proved in [Zink 2001a]. It
is easily verified that BTR.ˆR.Qp=Zp// is isomorphic to Qp=Zp . Thus BTR is a
quasi-inverse of ˆR by Lemmas 8.2 and 9.6. It is easily verified that the functors
BTR and ˆR preserve short exact sequences. �

Appendix: PD envelopes of regular immersions

This section provides a reference for the flatness of the divided power envelope of a
regular immersion, which is used in the proof of Lemma 1.13. Let us recall regular
immersions following [SGA 1971, VII]. For a ring A, a projective A-module M of
finite type, and a linear map f WM ! A, one defines the Koszul complex

K�.A; f /D Œ � � � !ƒ2M !ƒ1M ! A�

with differential given by x1^ � � �^xn 7!
P
.�1/iC1f .xi /x1^ � � � Oxi � � � ^xn. Let

I D f .M/ � A. One calls f regular if the augmentation K�.A; f /! A=I is
a quasi-isomorphism. If x1; : : : ; xr is a regular sequence in A and f W Ar ! A

is given by f .a/ D
P
aixi , then f is regular in the previous sense. For a ring

homomorphism A! A0, let f 0 WM 0! A0 be the scalar extension of f , and let
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I 0 D f 0.M 0/. If both f and f 0 are regular, then TorAi .A=I; A
0/D 0 for i � 1 and

thus I 0 D I ˝A A0. A closed immersion of schemes Y ! X is called regular if
locally in X it takes the form SpecA=I ! SpecA, where I D f .M/ for a regular
homomorphism f WM ! A.

Proposition A.1. Let S be a scheme and i W Y !X be a regular closed immersion
of flat S -schemes. Then the divided power envelope DX .Y / is flat over S .

Under additional hypotheses, this is proved in [Berthelot et al. 1982, Lemme 2.3.3].
We use the following description of the divided power polynomial algebra:

Lemma A.2. For a ring R, let A0 D RŒT1; : : : ; Tn�, and let B0 D RhT1; : : : ; Tni
be the divided power envelope of I0 D .T1; : : : ; Tn/ � A0. Then one can write
B0 D lim

�!r
M0;r as an A0-module, the direct limit taken over r 2N ordered multi-

plicatively, such that there are exact sequences of A0-modules

0 �! J0;r �!M0;r �!N0;r �! 0

with J0;r D .T r1 ; : : : ; T
r
n / and where N0;r has a finite filtration with quotients

isomorphic to A0=I0 DR.

Proof. The assertion is stable under base change in R, so we may take RDZ. Then
B0 is theA0-subalgebra ofA0˝Q generated by all Tmi =mŠ . LetM0;rDB0\r

�1A0
inside A0˝Q. Then r�1J0;r is contained in M0;r , and the quotient N0;r coincides
with the image of M0;r in .A0=J0;r/˝Q. Any maximal filtration of the latter by
monomial ideals gives the required filtration of N0;r . �
Proof of Proposition A.1. We may assume that S D SpecR, X D SpecA and
Y D SpecA=I , where I is the image of a regular map f W Ar ! A. We have
f .a/ D

P
aixi for a sequence x1; : : : ; xr in A. Let A0 D ZŒT1; : : : ; Tn� and

M0 D An0 with f0 W M0 ! A0 given by a 7!
P
aiTi . Let I0 D f0.M0/. We

consider the homomorphism A0! A defined by Ti 7! xi . Let B D DA.I / and
B0 D DA0

.I0/ be the divided power envelopes. Since f and f0 are regular, we
have I D I0˝AA0. As in [Berthelot 1974, (3.4.8)] it follows that B D B0˝A0

A.
Using Lemma A.2, we get B D lim

�!
Mr with Mr DM0;r ˝A0

A. Moreover, since
TorA0

1 .A0=I0; A/D 0, we obtain exact sequences of A-modules

0 �! Jr �!Mr �!Nr �! 0

with Jr D J0;r ˝A0
A and Nr DN0;r ˝A0

A, and we obtain filtrations of Nr with
quotients isomorphic to A=I . Similarly there are exact sequences of A-modules

0 �! Jr �! A �! A=Jr �! 0

and filtrations of A=Jr with quotients isomorphic to A=I . Since A and A=I are
flat over R, it follows that Jr and Mr and B are flat over R. �
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We will use the following example of regular immersions.

Lemma A.3. For a ring R and a projective R-module T of finite type we consider
the complete symmetric algebra ADRŒŒT ��D

Q
n�0 SymnR.T / and M D T ˝R A.

Then the homomorphism f WM ! A given by t ˝ a 7! ta is regular.

Proof. The complex K�.M; f / is the direct product over m� 0 of complexes K.m/�
with K.m/n DƒnT ˝R Symm�n.T /, using the convention Symr.T /D 0 for r < 0.
Since the complexes K.m/� are compatible with base change in R, the general case
can be reduced to the case where T is free. Then an R-basis of T is a regular
sequence in A, and the assertion follows. �
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Finiteness of unramified deformation rings
Patrick B. Allen and Frank Calegari

We prove that the universal unramified deformation ring Runr of a continuous
Galois representation ρ̄ : G F+ → GLn(k) (for a totally real field F+ and finite
field k) is finite over O = W (k) in many cases. We also prove (under similar
hypotheses) that the universal deformation ring Runiv is finite over the local
deformation ring Rloc.

Introduction

Let k be a finite field of characteristic p, and let O = W (k). Let F be a number
field, and consider a continuous absolutely irreducible Galois representation

ρ : G F → GLn(k),

where G F =Gal(F/F) for some fixed algebraic closure F of F . If (A,m) is a com-
plete local O-algebra with residue field k, then a deformation ρ of ρ to A unramified
outside a finite set of primes S consists an equivalence class of homomorphisms

ρ : G F → GLn(A)

such that the composite of ρ with the projection GLn(A)→ GLn(A/m)= GLn(k)
is ρ, and such that the extension of fields F(ker(ρ)) over F(ker(ρ)) is unramified
away from places above primes in S (see [Mazur 1997]). The nature of such
deformations is quite different depending on whether S contains the primes above p
or not. If S contains all the primes above p, we denote the universal deformation
ring by Runiv; if S contains no primes above p, we denote the corresponding
universal deformation ring by Runr. According to the Fontaine–Mazur conjecture
(see [Fontaine and Mazur 1995, Conjecture 5a]), any map Runr

→Qp gives rise to
a deformation ρ of ρ with finite image. (This form of the conjecture is known as the
unramified Fontaine–Mazur conjecture.) Boston’s strengthening of this conjecture
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[Boston 1999, Conjecture 2 and the subsequent corollary] is the claim that the
universal unramified deformation

ρunr
: G F → GLn(Runr)

has finite image. In contrast, the ring Runiv is typically of large dimension (see
§1.10 of [Mazur 1989]). A conjecture of Mazur predicts that the relative dimension
of Runiv over O is (in odd characteristic)

(1+ r2)+ (n2
− 1)[F :Q] −

∑
v|∞

dim H 0(Dv, ad0(ρ)),

where ad0(ρ) denotes (in any choice of basis) the trace zero matrices in Hom(ρ, ρ).
A choice of basis for the universal deformation makes Runiv an algebra over a local
deformation ring

Rloc
=

⊗̂
v|p

Rloc
v ,

where Rloc
v is the universal framed local deformation ring of ρ|Dv for v|p. The

Rloc-algebra structure may depend on the choice of basis, but it is canonical up
to automorphisms of Rloc. It is not true in general that Spec(Runiv)→ Spec(Rloc)

is a closed immersion, even in the minimal case where S is only divisible by
the primes dividing p. A simple example to consider is the deformation ring
of any one-dimensional representation ρ : G F → k×; the corresponding map
Spec(Runiv) → Spec(Rloc) is a closed immersion if and only if the maximal
everywhere-unramified abelian p-extension of F in which p splits completely
is trivial. It is, however, reasonable to conjecture that this map is always a finite
morphism. Indeed, one heuristic justification for the Fontaine–Mazur conjecture is
to imagine that the generic fibers of the image of Spec(Runiv) and the locus of local
crystalline representations of a fixed weight are transverse, and to infer (from a
conjectural computation of dimensions) that the intersection is finite, and hence that
there are only finitely many global crystalline representations of a fixed weight (see
pp. 191–192 of [Fontaine and Mazur 1995]); this line of thinking at least presumes
that the global-to-local map is quasifinite.

We prove the following:

Theorem 1. Let F+ be a totally real field, and let ρ : G F+→ GLn(k) be a contin-
uous absolutely irreducible representation. Suppose that:

(1) p > 2.

(2) ad0(ρ|G F+(ζp)) is absolutely irreducible and p> 2n2
−1, or, if n = 2 and ρ is

totally odd, ρ|G F+(ζp) has adequate image.

Then Runr is a finite O-algebra, and Runiv is a finite Rloc-algebra.
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The second condition holds, for example, when ρ has image containing SLn(k)
and p is greater than 2n2

− 1. The finiteness of Runiv over Rloc can be deduced
from an appropriate “R = T” theorem, since one proves that the maximal reduced
quotient of Runiv modulo an ideal of Rloc is isomorphic to a finite O-algebra T .
However, in dimension greater than 2, without a conjugate self-dual assumption, the
current R= T theorems are contingent on conjectural properties of the cohomology
of arithmetic quotients (see Part 2 of [Calegari and Geraghty 2012]).

We shall deduce from Theorem 1 the following corollaries:

Corollary 2. For any ρ satisfying the conditions of Theorem 1, Boston’s strength-
ening of the unramified Fontaine–Mazur conjecture is equivalent to the unramified
Fontaine–Mazur conjecture.

Corollary 3. Suppose that ρ :G F+→GL2(k) satisfies the conditions of Theorem 1.
Assume further that:

(1) ρ is totally odd.

(2) If p = 5 and ρ has projective image PGL2(F5), then [F+(ζ5) : F+] = 4.

Then Boston’s conjecture holds: the representation ρunr
: G F+ → GL2(Runr) has

finite image.

When n= 2, p> 2, F =Q, and ρ is totally odd and unramified at p, Runr can be
identified with the ring of Hecke operators acting on a (not necessarily torsion-free)
coherent cohomology group (see [Calegari and Geraghty 2012]).

Let Gn be the group scheme over Z that is the semidirect product

(GLn ×GL1)o {1, } = G0
n o {1, },

where  acts on GLn×GL1 by  (g, µ)−1
= (µt g−1, µ). Let ν : Gn→GL1 be the

character that sends (g, µ) to µ and  to −1. Let F be a CM field with maximal
totally real subfield F+, and let

r : G F+→ Gn(k)

be a continuous homomorphism with r−1(G0
n(k)) = G F . If (A,m) is a complete

local O-algebra with residue field k, then a deformation r of r to A unramified
outside a finite set of primes S consists of an equivalence class of homomorphisms

r : G F+→ Gn(A)

such that the composite of r with the projection Gn(A)→ Gn(A/m)= Gn(k) is r ,
and such that the extension of fields F(ker(r)) over F(ker(r)) is unramified away
from places above primes in S. We say two lifts are equivalent if they are conjugate
by an element of GLn(A) that reduces to the identity modulo m. If r is Schur
(see Definition 2.1.6 of [Clozel et al. 2008]), then this deformation problem is
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representable. By abuse of notation, we will again denote the universal deformation
ring of r by Runiv if S contains all the primes above p, and by Runr if S contains
no primes above p. This shouldn’t cause any confusion, as we shall be very
explicit regarding which deformation problem we refer to. As with the GLn-valued
theory, for each v|p in F+, there is a universal framed deformation ring R�

v which
represents the lifts of r |Dv, and a choice of lift in the equivalence class of the
universal deformation of r makes Runiv an algebra over

Rloc
=

⊗̂
v|p

Rloc
v .

We shall deduce Theorem 1 from the following result.

Theorem 4. Let F be a CM field with maximal totally real subfield F+. Let S
denote a finite set of places of F+ not containing any v|p, and let r : G F+→ Gn(k)
be a continuous homomorphism with r−1(G0

n(k))=G F and such that ν◦r(cv)=−1
for each choice of complex conjugation cv . Assume that p≥ 2(n+1), that the image
of r |G F(ζp) is adequate, and that ζp /∈ F. Let Runr be the universal deformation
ring of r unramified outside S, and let Runiv be the universal deformation ring of r
unramified outside S and all primes v|p. Then Runr is a finite O-algebra, and Runiv

is a finite Rloc-algebra.

It turns out that the proof of this theorem is almost an immediate consequence
of the finiteness results of [Thorne 2012] for ordinary deformation rings. The
only required subtlety is to understand the relationship between the local ordinary
deformation ring R4,ar

3K
constructed in [Geraghty 2010] and the unramified local

deformation ring Run.

1. Some local deformation rings

Recall k is a finite field of characteristic p, and O=W (k). Let K be a finite extension
of Qp and let G K = Gal(K/K ). Fix a continuous unramified representation

ρ : G K → GLn(k)

and let R� be its universal framed deformation ring. Let Run be the quotient of R�

corresponding to unramified lifts.

Lemma 5. The ring Run is isomorphic to a power series ring over O in n2 variables.
In particular, it is reduced and its Qp-points are Zariski dense in Spec(Run).

Proof. Fixing a choice of lift g ∈GLn(O) of ρ(Frob), it is easy to see that the lift to
O[[{xi j }1≤i, j≤n]] given by Frob 7→ g(I + (xi j )) is the universal framed deformation.

�
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Let I ab
K be the inertia subgroup of the abelianization of G K , and let I ab

K (p) be its
maximal pro-p quotient. Let 3K = O[[(I ab

K (p))
n
]] and let ψ = (ψ1, . . . , ψn) be the

universal n-tuple of characters ψi : IK →3×K . Set R�
3K
= R�

⊗̂O3K .
We briefly recall the construction of the universal ordinary deformation ring R43K

by Geraghty (see §3 of [ibid.]). Let F be the flag variety over O whose S-points, for
any O-scheme S, is the set of increasing filtrations 0= F0⊂ F1⊂· · ·⊂ Fn=On

S of On
S

by locally free submodules with rank(Fi )= i for each i = 1, . . . , n. Lemma 3.1.2
of [ibid.] shows that the subfunctor of

R�
3K
⊗O F

corresponding to pairs (ρ, {Fi }) such that

• {Fi } is stabilized by ρ, and

• the action of IK on Fi/Fi−1 is given by the pushforward of ψi ,

is represented by a closed subscheme G. He then defines R43K
as the image of

R�
3K
→ OG(G[1/p]).

Since scheme-theoretic image commutes with flat base change, R43K
[1/p] is the

scheme-theoretic image of

G[1/p] → Spec(R�
3K
[1/p]).

Since this map is proper, G[1/p] surjects onto Spec(R43K
[1/p]). Because G is of

finite type over R43K
, we deduce that any Qp-point of Spec(R43K

[1/p]) lifts to a
Qp-point of G[1/p]. This proves the following.

Lemma 6. Let x ∈ Spec(R�
3K
)(Qp), and let (ρx , ψx) denote the pushforward via x

of the universal framed deformation and n-tuple of characters of IK . Then x factors
through R43K

[1/p] if and only if there is a full flag 0= F0 ⊂ F1 ⊂ · · · ⊂ Fn =Qn
p

stabilized by ρx such that the action of IK on Fi/Fi−1 is given by ψi,x for each
i = 1, . . . , n.

If ρ is the trivial representation, then Geraghty defines a further quotient R4,ar
3K

of R43K
as follows. Let Q1, . . . , Qm be the minimal primes of 3K . For each

j = 1, . . . ,m, let G j = G⊗3K 3K /Q j . Let W j ⊂ Spec(3K /Q j ) be the closed
subscheme defined by ψr = εpψs for some 1 ≤ r < s ≤ n, and let U j be the
complement of W j . Geraghty shows (see §3.4 of [ibid.]) that there is a unique
irreducible component Gar

j of G j lying above U j . We then set Gar
=

⋃
1≤ j≤m Gar

j
and define R4,ar

3K
to be the image of

R43K
→ OGar (Gar

[1/p]).

The construction of R4,ar
3K

together with Lemma 6 yields the following.
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Lemma 7. Assume that ρ is trivial. Let x ∈ Spec(R�
3K
)(Qp), and let (ρx , ψx)

denote the pushforward via x of the universal framed deformation and n-tuple of
characters of IK . Assume that there is a full flag 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Qn

p
stabilized by ρx such that the action of IK on Fi/Fi−1 is given by ψi,x for each
i = 1, . . . , n. If ψi,x 6= εpψ j,x for any i < j , then x factors through R4,ar

3K
.

Remark 8. If [K :Qp]>
1
2 n(n−1)+1 and ρ is trivial (which, for our applications,

we could assume), then Thorne proves that R4,ar
3K
= R43K

(see Corollary 3.12 of
[Thorne 2014]).

There is a natural map 3K → Run given by modding out by the augmentation
ideal a of 3K . We thus have a natural surjection

R�
3K
→ Run.

Proposition 9. The surjection R�
3K
→ Run factors through R43K

. If ρ is trivial,
then it further factors through R4,ar

3K
.

Proof. The image of an unramified representation is the topological closure of
the image of Frobenius. Since any element of GLn(Qp) is conjugate to an upper
triangular matrix, that the image of any unramified representation into GLn(Qp)

fixes a full flag for which the action of inertia on the corresponding quotients is
trivial. It follows that the projection from R�

3K
to any Qp-point of Run factors

through R43K
by Lemma 6 and, if ρ is trivial, through R4,ar

3K
, by Lemma 7. The

result then follows from the fact that Run is reduced and its Qp-points are Zariski
dense, by Lemma 5. �

2. Proof of Theorem 4

We first prove the statement concerning Runr over O. Take a representation r as
in Theorem 4. For each v|p in F+, let F+v be the completion of F+ at v and let
3v =3F+v with 3F+v as in Section 1. Let 3=

⊗̂
v|p,O3v.

We note that, using Lemma 1.2.2 of [Barnet-Lamb et al. 2014], we are free to
make any base change disjoint from the fixed field of ker(r). After a base change,
we may assume that r is everywhere unramified, and that r |Dv is trivial for all
v|p as well as any finite set of auxiliary primes. In particular, after a suitable
base change, we may restrict ourselves to considering deformation rings which
are unipotent at some finite set of auxiliary primes v ∈ S (which corresponds to
the local deformation condition R1

ṽ
of [Thorne 2012, §8]). By Proposition 3.3.1 of

[Barnet-Lamb et al. 2014], we may assume, after a further base change, that r lifts
to a minimal crystalline ordinary modular representation (this is where we use the
assumption that p ≥ 2(n+ 1)). From Corollary 8.7 of [Thorne 2012], we deduce
that the corresponding ordinary deformation ring RS is finite over 3. If we can
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show that Runr is a quotient of RS⊗3/a, where a is the augmentation ideal of 3,
then the result follows immediately by Nakayama, since 3/a= O. By definition,
the local condition at v|p for RS is determined by the ordinary deformation ring
R4,ar
3v

. By Proposition 9, the ring Run is a quotient of R4,ar
3v

/a. Hence Runr is a
quotient of RS⊗3/a and we are done.

The finiteness of Runiv over Rloc then follows from the finiteness of Run over O

and Nakayama. Indeed, let Rsplit
= Runiv

⊗Rloc k and let r split be the specialization
of the universal deformation to Rsplit. Then r split

|Dv
∼= r |Dv for any v|p in F+, so

the quotient Runiv
→ Rsplit factors through Run

⊗O k.

3. Some corollaries

3.1. Proof of Theorem 1. Let ρ satisfy the statement of Theorem 1. Consider
ad0(ρ) restricted to a suitable quadratic CM extension F/F+. Since p - n, the
representation ad0(ρ) is a direct summand of ρc

⊗ ρ∗ = ρ⊗ ρ∗ and is conjugate
self-dual. The assumption of irreducibility together with the inequality p > 2n2

−1
imply that ad0(ρ) is adequate by Theorem A.9 of [Thorne 2012]. If n is even, then
ad0(ρ) has odd dimension and so is automatically totally odd. If n is odd, then
ad0(ρ) is orthogonal (the conjugate self-duality is realized by the trace pairing,
which is symmetric) and exactly self-dual (up to trivial twist) and so has trivial
multiplier, which means that it is also totally odd. Both uses of totally odd refer to
the properties of the multiplier character rather than the determinant of complex
conjugation, and are the exact sign conditions required for automorphy lifting
theorems for unitary groups (that is, totally odd means U -odd rather than GL-odd in
the notation of [Calegari 2010]; see also §2.1 of [Barnet-Lamb et al. 2014]). Hence
ad0(ρ)|G F extends to a homomorphism (see Lemma 2.1.1 of [Clozel et al. 2008])

r : G F+→ Gn2−1(k),

which we fix, satisfying the conditions of Theorem 4. On the other hand, any
deformation of ρ gives rise to a deformation of r in the natural way. By Yoneda’s
lemma, there is a corresponding morphism Runr(r) → Runr(ρ). It suffices to
prove this is finite. By Nakayama’s lemma, this reduces to showing that the only
deformations ρ of ρ to k-algebras such that ad0(ρ)|G F ∼= ad0(ρ)|G F are finite.
The kernel of such a deformation must be contained in the maximal abelian pro-p
extension of F(ker(ρ)) unramified outside S, which is finite by class field theory.
As in the final paragraph of the proof of Theorem 4, the finiteness of Runr implies
the finiteness of Rsplit and hence that Runiv is a finite Rloc-algebra.

If n = 2 and ρ is totally odd, we may work directly with ρ. We first use Corol-
lary 1.7 of [Taylor 2002] to conclude that ρ is potentially modular and Theorem A
of [Barnet-Lamb et al. 2013] to assume it is potentially ordinarily modular. Then,
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restricting ρ to a suitable CM field F , the proof is exactly as in the proof of
Theorem 4 (without the appeal to Proposition 3.3.1 of [Barnet-Lamb et al. 2014]).

3.2. Proof of Corollary 2. This follows immediately from Theorem 1 and the
following proposition.

Proposition 10. Let F be a number field and let ρ : G F → GLn(k) be continuous
and absolutely irreducible. Then

ρunr
: G F → GLn(Runr)

has finite image if and only if the following two properties hold:

(1) Runr is finite over O;

(2) for any minimal prime p of Runr
[1/p], the induced representation

G F → GLn(Runr
[1/p]/p)

has finite image.

Proof. If ρunr has finite image, then (2) is clearly satisfied, and (1) follows from
Théorème 2 of [Carayol 1994], which shows that Runr is generated over O by traces.

Now assume (1) and (2), and let E be the fraction field of O. Since Runr is a
finite O-algebra, the map Runr

→ Runr
[1/p] has finite kernel. Hence it suffices to

prove that the map
ρ : G F → GLn(Runr

[1/p])

has finite image, assuming (2). Since Runr is finite over O, the ring Runr
[1/p]

is a semilocal ring which is a direct sum of Artinian E-algebras A with residue
field H for some finite [H : E] <∞. In particular, the representation ρ breaks
up into a finite direct sum of representations to such groups GLn(A). If A = H ,
then assumption (2) implies that the image of such a representation is finite. If
A 6= H , then A admits a surjective map to H [ε]/ε2. In particular, there exists an
unramified deformation

ρ : G F → GLn(H [ε]/ε2).

By assumption (2) again, the corresponding residual representation with image in
GLn(H) is finite, and is given by some representation V on which G F acts through
a finite group. Moreover, ρ is then given by some nontrivial extension

0→ V →W → V → 0.

Consider the restriction of this representation to a finite extension L/F such that GL

acts trivially on V . Then the action of GL on W factors through an unramified
Zp-extension, which must be trivial by class field theory. It follows that the action
of GL on W is trivial, and hence that the extension W is trivial, a contradiction. �
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3.3. Proof of Corollary 3. By Theorem 0.2 of [Pilloni and Stroh 2013] (see also
[Kassaei 2013]), one knows the unramified Fontaine–Mazur conjecture for ρ under
the given hypothesis, hence the result follows from Corollary 2.
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Vanishing, regularity, and Fujita-type statements. All varieties we consider in
this paper are defined over an algebraically closed field of characteristic zero.
Recall to begin with the following celebrated conjecture.

Conjecture 1.1 (Fujita). If X is a smooth projective variety of dimension n, and L
is an ample line bundle on X , then ωX ⊗ L⊗l is globally generated for l ≥ n+ 1.

It is well known that Fujita’s conjecture holds in the case when L is ample and
globally generated, based on Kodaira vanishing and the theory of Castelnuovo–
Mumford regularity, and that this can be extended to the relative setting as follows:

Proposition 1.2 (Kollár). Let f : X → Y be a morphism of projective varieties,
with X smooth and Y of dimension n. If L is an ample and globally generated line
bundle on Y , then

Ri f∗ωX ⊗ L⊗n+1

is 0-regular, and therefore globally generated for all i .

Recall that a sheaf F on Y is 0-regular with respect to an ample and globally
generated line bundle L if

H i (Y,F⊗ L⊗−i )= 0 for all i > 0.

The Castelnuovo–Mumford Lemma says that every 0-regular sheaf is globally
generated (see, e.g., [Lazarsfeld 2004a, Theorem 1.8.3]); the proposition is then a
consequence of Kollár’s vanishing theorem, recalled as Theorem 2.2 below.

An extension of Fujita’s general conjecture to the relative case was formulated
by Kawamata [1982, Conjecture 1.3], and proved in dimension up to four; the
statement is that Proposition 1.2 should remain true for any L ample, at least as long
as the branch locus of the morphism f is a divisor with simple normal crossings
support (when the sheaves Ri f∗ωX are locally free [Kollár 1986]). However, at
least for i = 0, we propose the following unconditional extension of Conjecture 1.1:

Conjecture 1.3. Let f : X → Y be a morphism of smooth projective varieties,
with Y of dimension n, and let L be an ample line bundle on Y . Then, for every
k ≥ 1, the sheaf

f∗ω⊗k
X ⊗ L⊗l

is globally generated for l ≥ k(n+ 1).

Our main result in this direction is a proof of a stronger version of Conjecture 1.3
in the case of ample and globally generated line bundles, generalizing Proposition 1.2
for i = 0 to arbitrary powers.
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Theorem 1.4. Let f : X→ Y be a morphism of projective varieties, with X smooth
and Y of dimension n. If L is an ample and globally generated line bundle on Y ,
and k ≥ 1 an integer, then

f∗ω⊗k
X ⊗ L⊗l

is 0-regular, and therefore globally generated, for l ≥ k(n+ 1).

This follows in fact from a more general effective vanishing theorem for direct
images of powers of canonical bundles, which is Kollár vanishing when k = 1; see
Corollary 2.9. We also observe in Proposition 2.13 that just knowing the (klt version
of the) Fujita-type Conjecture 1.3 for k= 1 would imply a similar vanishing theorem
when L is only ample. Using related methods, we find analogous statements in the
contexts of pluriadjoint bundles and of log-canonical pairs as well. We will call a
fibration a surjective morphism whose general fiber is irreducible.

Variant 1.5. Let f : X → Y be a fibration between projective varieties, with X
smooth and Y of dimension n. Let M be a nef and f -big line bundle on X. If L is
an ample and globally generated line bundle on Y , and k ≥ 1 an integer, then

f∗(ωX ⊗M)⊗k
⊗ L⊗l

is 0-regular, and therefore globally generated, for l ≥ k(n+ 1).

Variant 1.6. Let f : X→ Y be a morphism of projective varieties, with X normal
and Y of dimension n, and consider a log-canonical R-pair (X,1) on X. Consider
a line bundle B on X such that B ∼R k(K X +1+ f ∗H) for some k ≥ 1, where H
is an ample R-Cartier R-divisor on Y . If L is an ample and globally generated line
bundle on Y , and k ≥ 1 an integer, then

f∗B⊗ L⊗l with l ≥ k(n+ 1− t)

is 0-regular, and so globally generated, where t := sup{s ∈ R | H − sL is ample}.1

All of these results are consequences of our main technical result, stated next. It
can be seen both as an effective vanishing theorem for direct images of powers, and
as a partial extension of Ambro–Fujino vanishing (recalled as Theorem 2.3 below)
to arbitrary log-canonical pairs.

Theorem 1.7. Let f : X→ Y be a morphism of projective varieties, with X normal
and Y of dimension n, and consider a log-canonical R-pair (X,1) on X. Consider
a line bundle B on X such that B ∼R k(K X +1+ f ∗H) for some k ≥ 1, where H

1This is of course a generalization of Theorem 1.4. We chose to state it separately in order to
preserve the simplicity of the main point, as will be done a few times throughout the paper.
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is an ample R-Cartier R-divisor on Y . If L is an ample and globally generated line
bundle on Y , then

H i (Y, f∗B⊗ L⊗l)= 0 for all i > 0 and l ≥ (k− 1)(n+ 1− t)− t + 1,

where t := sup{s ∈ R | H − sL is ample}.

The proof of this result relies on a variation of a method used by Viehweg in the
study of weak positivity, and on the use of the Ambro–Fujino vanishing theorem.
Shifting emphasis from weak positivity to vanishing turns out to lead to stronger
statements, as was already pointed out by Kollár [1986, §3] in the case k = 1;
his point of view, essentially based on regularity, is indeed a crucial ingredient in
the applications.

One final note in this regard is that all the vanishing theorems used in the paper
hold for higher direct images as well. At the moment we do not know, however, how
to obtain statements similar to those above for higher direct images, for instance
for Ri f∗ω⊗k

X with i > 0.

Applications. The Fujita-type statements in Theorem 1.4 and its variants turn out
to govern a number of fundamental properties of direct images of pluricanonical
and pluriadjoint bundles. Besides the vanishing statements discussed above, we
sample a few here, and refer to the main body of the paper for full statements.
To begin with, we deduce in Section 4 an effective version of Viehweg’s weak
positivity theorem for sheaves of the form f∗ω⊗k

X/Y for arbitrary k ≥ 1, just as Kollár
did in the case k = 1; we leave the rather technical statement, Theorem 4.2, for
the main text. The same method applies to pluriadjoint bundles (see Theorem 4.4)
and in this case even the noneffective weak positivity consequence stated below is
new. The case k = 1 is again due to Kollár and Viehweg; see also [Höring 2010,
Theorem 3.30] for a nice exposition.

Theorem 1.8. If f : X → Y is a fibration between smooth projective varieties,
and M is a nef and f -big line bundle on X , then f∗(ωX/Y ⊗ M)⊗k is weakly
positive for every k ≥ 1.

With this result at hand, Viehweg’s machinery for studying Iitaka’s conjecture
can be applied to deduce the adjoint bundle analogue of his result on the additivity
of the Kodaira dimension over a base of general type.

Theorem 1.9. Let f : X → Y be a fibration between smooth projective varieties,
and let M be a nef and f -big line bundle on X. We denote by F the general fiber
of f , and by MF the restriction of M to F. Then:

(i) If L is an ample line bundle on Y , and k > 0, then

κ((ωX ⊗M)⊗k
⊗ f ∗L)= κ(ωF ⊗MF )+ dim Y.
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(ii) If Y is of general type, then

κ(ωX ⊗M)= κ(ωF ⊗MF )+ dim Y.

In a different direction, the method involved in the proof of Theorem 1.4 (more
precisely Corollary 2.9) leads to a generic vanishing statement for pluricanonical
bundles. Let f : X → A be a morphism from a smooth projective variety to an
abelian variety. Hacon [2004] showed that the higher direct images Ri f∗ωX satisfy
generic vanishing, i.e., are GV-sheaves on A; see Definition 5.1. This refines the
well-known generic vanishing theorem of Green and Lazarsfeld [1987], and is
crucial in studying the birational geometry of irregular varieties. In Section 5 we
deduce the following statement, which is somewhat surprising given our previous
knowledge about the behavior of powers of ωX .

Theorem 1.10. If f : X→ A is a morphism from a smooth projective variety to an
abelian variety, then f∗ω⊗k

X is a GV-sheaf for every k ≥ 1.

We also present a self-contained proof of this theorem based on an effective result,
Proposition 5.2, which is weaker than Corollary 2.9, but has a more elementary proof
of independent interest. Theorem 1.10 leads in turn to vanishing and generation
consequences that are stronger than those for morphisms to arbitrary varieties; see
Corollary 5.4. Similar statements are given for log-canonical pairs and for adjoint
bundles in Variants 5.5 and 5.6.

2. Vanishing and freeness for direct images of pluri-log-canonical bundles

In this section we address results related to Conjecture 1.3, via vanishing theorems
for direct images of pluricanonical bundles. The most general result we prove is
for log-canonical pairs; this is of interest from a different perspective as well, as it
partially extends a vanishing theorem of Ambro and Fujino.

Motivation and background. To motivate the main technical result, recall that,
given an ample line bundle L on a smooth projective variety of dimension n,
Conjecture 1.1 implies that ωX ⊗ L⊗n+1 is a nef line bundle; this is in fact follows
unconditionally from the fundamental theorems of the minimal model program. As
a consequence, Kodaira vanishing implies that for every k ≥ 1 one has

H i (X, ω⊗k
X ⊗ L⊗k(n+1)−n)= 0 for all i > 0, (2.1)

an effective vanishing theorem for powers of ωX .
We will look for similar results for direct images. Recall first that for k = 1 there

is a well-known analogue of Kodaira vanishing, for all higher direct images.

Theorem 2.2 (Kollár vanishing [Kollár 1986, Theorem 2.1]). Let f : X→ Y be a
morphism of projective varieties, with X smooth. If L is an ample line bundle on Y ,
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then
H j (Y, Ri f∗ωX ⊗ L)= 0 for all i and all j > 0.

Moreover, of great use for the minimal model program are extensions of vanishing
and positivity theorems to the log situation, in particular to log-canonical pairs; see,
e.g., [Fujino 2011; 2014b]. For instance, Kollár’s theorem above has an extension
to this situation due to Ambro and Fujino; see, e.g., [Ambro 2003, Theorem 3.2]
and [Fujino 2011, Theorem 6.3] (where a relative version can be found as well).

Theorem 2.3 (Ambro and Fujino). Let f : X→Y be a morphism between projective
varieties, with X smooth and Y of dimension n. Let (X,1) be a log-canonical log-
smooth R-pair,2 and consider a line bundle B on X such that B ∼R K X+1+ f ∗H ,
where H is an ample R-Cartier R-divisor on Y . Then

H j (Y, Ri f∗B)= 0 for all i and all j > 0.

Just as Proposition 1.2 follows from Theorem 2.2 via the Castelnuovo–Mumford
Lemma, so Theorem 2.3 has the following consequence:

Lemma 2.4. Under the hypotheses of Theorem 2.3, consider in addition an ample
and globally generated line bundle L on Y . Then

Ri f∗B⊗ L⊗n

is 0-regular, and therefore globally generated, for all i .

Main technical result. We will now prove our main vanishing theorem, which can
be seen as an extension of both vanishing of type (2.1) for powers of canonical
bundles, for L ample and globally generated, and of Ambro–Fujino vanishing
(Theorem 2.3) to log-canonical pairs with arbitrary Cartier index.

Proof of Theorem 1.7. Step 1. We will first show that we can reduce to the case
when X is smooth, 1 has simple normal crossings support, and the image of the
adjunction morphism

f ∗ f∗B −→ B

is a line bundle. A priori the image is b⊗ B, where b is the relative base ideal of B.
We consider a birational modification

µ : X̃ −→ X

which is a common log-resolution of b and (X,1). On X̃ we can write

K X̃ −µ
∗(K X +1)= P − N ,

2This means that 1 is an effective R-divisor with simple normal crossings support, and with the
coefficient of each component at most equal to 1.
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where P and N are effective R-divisors with simple normal crossings support,
without common components, and such that P is exceptional and all coefficients
in N are at most 1. We consider the line bundle

B̃ := µ∗B⊗OX̃ (kdPe).

Note that by definition we have

B̃ ∼R k(K X̃ + N +dPe− P +µ∗ f ∗H).

Since dPe is µ-exceptional, we have µ∗ B̃ ' B for all k. Moreover,

1X̃ := N +dPe− P

is log-canonical with simple normal crossings support on X̃ .
Going back to the original notation, we can thus assume that X is smooth

and 1 has simple normal crossings support, and the image sheaf of the adjunction
morphism is of the form B⊗OX (−E) for a divisor E such that E +1 has simple
normal crossings support.

Step 2. Now since L is ample, there is a smallest integer m ≥ 0 such that
f∗B⊗ L⊗m is globally generated, and so using the adjunction morphism we have
that B⊗OX (−E)⊗ f ∗L⊗m is globally generated as well. We can then write

B⊗ f ∗L⊗m
' OX (D+ E),

where D is an irreducible smooth divisor, not contained in the support of E +1,
and such that D+ E +1 has simple normal crossings support. Rewriting this in
divisor notation, we have

k(K X +1+ f ∗H)+m f ∗L ∼R D+ E,

and hence

(k− 1)(K X +1+ f ∗H)∼R
k−1

k
D+ k−1

k
E − k−1

k
·m f ∗L . (2.5)

Note that 1 and E may have common components in their support, which may
cause trouble later on; therefore their coefficients need to be adjusted conveniently.
Let’s start by writing

1=

l∑
i=1

ai Di , ai ∈ R with 0< ai ≤ 1,

and

E =
l∑

i=1

si Di + E1, si ∈ N,

where the support of E1 and that of 1 have no common components.
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Observe now that for every effective Cartier divisor E ′ � E we have

f∗(B⊗OX (−E ′))' f∗B. (2.6)

Indeed, it is enough to have this for E itself; but this is the base locus of B relative
to f , so by construction we have

f ∗ f∗B→ B⊗OX (−E) ↪→ B,

and so the isomorphism follows by pushing forward to get the commutative diagram

f∗B f∗(B⊗OX (−E)) f∗B.

id

Define now

γi := ai +
k−1

k
· si for i = 1, . . . , l.

We claim that we can find for each i an integer bi such that

0≤ γi − bi ≤ 1 and 0≤ bi ≤ si .

This is the same as γi − 1≤ bi ≤ γi , while on the other hand, γi < 1+ si , so it is
clear that such integers exist. We define

E ′ :=
l∑

i=1

bi Di +

⌊k−1
k

E1

⌋
� E,

and for this divisor (2.6) applies.

Step 3. Using (2.5), for any integer l we can now write

B− E ′+ l f ∗L ∼R K X +1+
k−1

k
E− E ′+ k−1

k
D+ f ∗

(
H +

(
l− k−1

k
·m
)

L
)
.

We first note that the R-divisor

H ′ := H +
(

l − k−1
k
·m
)

L

on Y is ample provided l + t − ((k− 1)/k)m > 0. On the other hand, the effective
R-divisor with simple normal crossings support

1′ :=1+
k−1

k
E − E ′+ k−1

k
D

on X is log-canonical. Indeed, the only coefficients that could cause trouble are
those of the Di . Note however that these are equal to γi − bi , which are between 0
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and 1 by our choice of bi . Putting everything together, it means that on X (which
is now smooth) we have written

B− E ′+ l f ∗L ∼R K X +1
′
+ f ∗H ′,

where 1′ is log-canonical with simple normal crossings support, and H ′ is ample
on Y . The pushforward of the left-hand side is f∗B⊗ L⊗l , while for the right-hand
side we can now apply Theorem 2.3 to conclude that

H i (Y, f∗B⊗ L⊗l)= 0 for all i > 0 and l > k−1
k
·m− t. (2.7)

We therefore have that for every l > ((k− 1)/k)m− t + n the sheaf f∗B⊗ L⊗l is
0-regular, hence globally generated. Given our minimal choice of m, we conclude
that for the smallest integer l0 which is greater than ((k − 1)/k)m − t we have
m ≤ l0+ n. This implies

m ≤ l0+ n ≤ k−1
k
·m+ n+ 1− t,

which is equivalent to m ≤ k(n + 1− t), and in particular the vanishing in (2.7)
holds for

l ≥ (k− 1)(n+ 1− t)− t + 1. �

Note that the inequality m ≤ k(n+ 1− t) obtained above implies the statement
of Variant 1.6. Just as with the statement of Theorem 1.7 compared to that of
the Ambro–Fujino Theorem 2.3, one notes that, even for k = 1, Variant 1.6 is
slightly more general than the case i = 0 in Lemma 2.4. This is not surprising,
but particular to zeroth direct images, as after passing to a log-resolution of the
log-canonical pair there is no need to appeal to local vanishing for higher direct
images; the Ambro–Fujino theorem and the lemma cannot be stated in this form in
the case i > 0.

Special cases. We spell out the most important special cases of Theorem 1.7. They
are obtained by taking H = L in the statement of Theorem 1.7, so that t = 1.

Corollary 2.8. Let f : X→Y be a morphism of projective varieties, with X normal
and Y of dimension n. Consider a log-canonical pair (X,1) and an integer k > 0
such that k(K X +1) is Cartier. If L is an ample and globally generated line bundle
on Y , then

H i (Y, f∗OX (k(K X +1))⊗ L⊗l)= 0 for all i > 0 and l ≥ k(n+ 1)− n.

In particular, we have an extension of (2.1) to direct images, and of Proposition 1.2
for i = 0 to arbitrary k:
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Corollary 2.9. Let f : X→Y be a morphism of projective varieties, with X smooth
and Y of dimension n. If L is an ample and globally generated line bundle on Y ,
and k > 0 is an integer, then

H i (Y, f∗ω⊗k
X ⊗ L⊗l)= 0 for all i > 0 and l ≥ k(n+ 1)− n.

Remark. Note that if we perform the proof of Theorem 1.7 only in the “classical”
case considered in Corollary 2.9, the second step is unnecessary since 1 = 0,
while 1′ in the third step is klt. This means that one does not need to appeal to the
Ambro–Fujino vanishing theorem, but rather to the klt version of Theorem 2.2, still
due to Kollár; see for instance [Kollár 1995, Theorem 10.19].

The regularity statement in the introduction is an immediate consequence.

Proof of Theorem 1.4. We note that k(n + 1) = k(n + 1)− n + n, and apply the
vanishing statement in Corollary 2.9 by successively subtracting n powers of L . �

A rephrasing of Theorem 1.4 is a useful uniform global generation statement
involving powers of relative canonical bundles.

Corollary 2.10. Let f : X → Y be a morphism of smooth projective varieties,
with Y of dimension n. If L is an ample and globally generated line bundle on Y ,
k ≥ 1 an integer, and A := ωY ⊗ L⊗n+1, then

f∗ω⊗k
X/Y ⊗ A⊗k

is globally generated.

Question. The arguments leading to Corollary 2.9, and more generally Theorem 1.7
and its applications, do not extend to higher direct images. It is natural to ask,
however, whether the statements do hold for all Ri f∗ω⊗k

X and analogues, just as
Theorem 2.2 and Theorem 2.3 do.

Example: the main conjecture over curves. We record one case when the main
Fujita-type Conjecture 1.3 can be shown to hold, namely when the base of the
morphism has dimension one. This is not hard to check, but it uses important
special facts about vector bundles on curves.

Proposition 2.11. Let f : X → C be a morphism of smooth projective varieties,
with C a curve, and let L be an ample line bundle on C. Then, for every k ≥ 1, the
vector bundle

f∗ω⊗k
X ⊗ L⊗m

is globally generated for m ≥ 2k.
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Proof. First, note that the sheaf in question is locally free (since C is a curve). We
can rewrite it as

f∗ω⊗k
X ⊗ L⊗m

' f∗ω⊗k
X/C ⊗ω

⊗k
C ⊗ L⊗m .

Now Theorem 1 of [Kawamata 2002] says that f∗ω⊗k
X/C is a semipositive vector

bundle on C , while

degω⊗k
C ⊗ L⊗m

≥ k(2g− 2)+m deg L ≥ 2g,

with g the genus of C , as deg L > 0. The statement then follows from the following
general result. �

Lemma 2.12. Let E be a semipositive vector bundle and L a line bundle of degree
at least 2g on a smooth projective curve C of genus g. Then E ⊗ L is globally
generated.

Proof. It is enough to show that, for every p ∈ C , one has

H 1(C, E ⊗ L ⊗OC(−p))= 0,

or equivalently, by Serre duality, that there are no nontrivial homomorphisms

E −→ ωC ⊗OC(p)⊗ L−1.

But the semipositivity of E means precisely that it cannot have any quotient line
bundle of negative degree. �

Remark. For curves of genus at least 1, the argument in Proposition 2.11 shows,
in fact, that f∗ω⊗k

X ⊗ L⊗2 is always globally generated.

Relative Fujita conjecture and vanishing for ample line bundles. It is worth ob-
serving that it suffices to know Conjecture 1.3 and its variants for k = 1 in order to
obtain vanishing theorems for twists by line bundles that are assumed to be just
ample, and not necessarily globally generated. For simplicity we spell out only the
case of pluricanonical bundles, i.e., the analogue of Corollary 2.9.

Proposition 2.13. Assume that Conjecture 1.3 holds for k = 1.3 Then for any
morphism f : X → Y of smooth projective varieties with Y of dimension n, any
ample line bundle L on Y , and any integer k ≥ 2, one has

H i (Y, f∗ω⊗k
X ⊗ L⊗l)= 0 for all i > 0 and l ≥ k(n+ 1)− n.

3Or, more precisely, its klt version: if Y is smooth of dimension n, L is ample on Y , and (X,1)
is a klt pair such that B = K X +1+ α f ∗L is Cartier for some α ∈ R, then f∗B⊗ L⊗l is globally
generated for any l +α ≥ n+ 1.
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Proof. This is a corollary of the proof of Corollary 2.9. Indeed, the only time
we used that L is globally generated and not just ample was to deduce the global
generation of a sheaf of the form f∗B ⊗ L⊗l from its 0-regularity with respect
to L , where B is Q-linearly equivalent to something of the form K X +1+α f ∗L
with (X,1) klt and α ∈Q; see also the remark on page 2282. The klt version of
Conjecture 1.3 for k = 1 would then serve as a replacement. �

A natural version of Conjecture 1.3 can be stated in the log-canonical case,4

with the same effect regarding the result of Theorem 1.7, but this would take us far
beyond what is currently known.

3. Vanishing and freeness for direct images of pluriadjoint bundles

We now switch our attention to direct images of powers of line bundles of the
form ωX ⊗ M , where M is a nef and relatively big line bundle. Recall first that
Proposition 1.2 has the following analogue:

Proposition 3.1. Let f : X→ Y be a fibration between projective varieties, with X
smooth and Y of dimension n. Consider a nef and f -big line bundle M on X , and
(X,1) a klt pair with 1 an R-divisor with simple normal crossings support. If B is
a line bundle on X such that B ∼R K X +M +1+ f ∗H for some ample R-Cartier
R-divisor H on Y , then

H i (Y, f∗B)= 0 for all i > 0.

In particular, if L is an ample and globally generated line bundle on Y , then

f∗B⊗ L⊗n

is 0-regular, and therefore globally generated.

Proof. We include the well-known proof for completeness, as it is usually given in
the case 1= 0 (see, e.g., [Höring 2010, Lemma 3.28]). Note first that M + f ∗H
continues to be a nef and f -big R-divisor on X . The local version of the Kawamata–
Viehweg vanishing theorem (see [Lazarsfeld 2004b, Remarks 9.1.22 and 9.1.23])
applies then to give

Ri f∗B = 0 for all i > 0.

We conclude that it is enough to show

H i (X, B)= 0 for all i > 0.

This will follow from the global R-version of Kawamata–Viehweg vanishing as
soon as we show that M + f ∗H is in fact a big divisor. Since it is nef, it suffices

4In the absolute case, an Angehrn–Siu type statement has been obtained by Kollár [1997, Theorem
5.8] in the klt case, and further extended by Fujino [2010, Theorem 1.1] to the log-canonical setting.
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to check that (M + f ∗H)m > 0, where m = dim X . Now (M + f ∗H)m is a linear
combination with positive coefficients of terms of the form

M s
· f ∗H m−s,

which are all nonnegative. Moreover, since M is f -big, the term Mm−n
· f ∗H n is

strictly positive, which gives the conclusion. �

We now prove an analogue of Corollary 2.9 in this context. Just as with
Theorem 1.4, Variant 1.5 is its immediate consequence.

Theorem 3.2. Let f : X → Y be a fibration between projective varieties, with X
smooth and Y of dimension n. Let M be a nef and f -big line bundle on X. If L is
an ample and globally generated line bundle on Y , and k ≥ 1 an integer, then

H i (Y, f∗(ωX ⊗M)⊗k
⊗ L⊗l)= 0 for all i > 0 and l ≥ k(n+ 1)− n.

Proof. The strategy is similar to that of the proof of Theorem 1.7, so we will be brief
in some of the steps. We consider the minimal m≥0 such that f∗(ωX⊗M)⊗k

⊗L⊗m

is globally generated. Using the adjunction morphism

f ∗ f∗(ωX ⊗M)⊗k
→ (ωX ⊗M)⊗k,

after possibly blowing up, we can write

(ωX ⊗M)⊗k
⊗ f ∗L⊗m

' OX (D+ E),

with D smooth and D + E a divisor with simple normal crossings support. In
divisor notation, we obtain

K X +M ∼Q
1
k

D+ 1
k

E − m
k

f ∗L . (3.3)

For any integer l ≥ 0, using (3.3) we can then write the equivalence

k(K X +M)−
⌊k−1

k
E
⌋
+ l f ∗L

= K X +M + (k− 1)(K X +M)−
⌊k−1

k
E
⌋
+ l f ∗L

∼Q K X +M +1+
(

l − k−1
k
·m
)

f ∗L ,

where
1=

k−1
k

D+ k−1
k

E −
⌊k−1

k
E
⌋

is a boundary divisor with simple normal crossings support. Since E is the base
divisor of (ωX ⊗M)⊗k relative to f , just as in the proof of Theorem 1.7 it follows
that

f∗OX

(
k(K X +M)−

⌊k−1
k

E
⌋
+ l f ∗L

)
' f∗(ωX ⊗M)⊗k

⊗ L⊗l .
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On the other hand, on the right-hand side we can apply Proposition 3.1, to deduce that

H i (Y, f∗(ωX ⊗M)⊗k
⊗ L⊗l)= 0 for all i > 0 and l > k−1

k
·m.

We conclude that f∗(ωX⊗M)⊗k
⊗L⊗l is globally generated for l>((k−1)/k)m+n.

Since m was chosen minimal, we conclude as in Theorem 1.7 that m ≤ k(n+ 1),
and that vanishing holds for all l ≥ k(n+ 1)− n. �

Remark. Fujita’s conjecture and all similar statements have more refined numerical
versions, replacing L⊗n+1 by any ample line bundle A such that Adim V

· V >

(dim V )dim V for any subvariety V ⊆ X . Similarly, the analogues of Conjecture 1.3
and Proposition 2.13 make sense replacing ωX by ωX ⊗M as well.

4. Effective weak positivity, and additivity of adjoint Iitaka dimension

Recall the following fundamental definition (see, e.g., [Viehweg 1983, §1]):

Definition 4.1. A torsion-free coherent sheaf F on a projective variety X is weakly
positive on a nonempty open set U ⊆ X if for every ample line bundle A on X
and every a ∈ N, the sheaf S[ab]F⊗ A⊗b is generated by global sections at each
point of U for b sufficiently large. (Here S[p]F denotes the reflexive hull of the
symmetric power S pF.) As noted in [Viehweg 1983, Remark 1.3], it is not hard to
see that it is enough to check this definition for a fixed line bundle A.

Kollár [1986, §3] introduced an approach to proving the weak positivity of
sheaves of the form f∗ωX/Y based on his vanishing theorem for f∗ωX , which in
particular gives effective statements. Here we first provide a complement to Kollár’s
result, using Theorem 1.4, in order to make this approach work for all f∗ω⊗k

X/Y with
k ≥ 1. Concretely, below is the analogue of [Kollár 1986, Theorem 3.5(i)]; the
proof is very similar, and we only sketch it for convenience.

Theorem 4.2. Let f : X → Y be a surjective morphism of smooth projective
varieties, with generically reduced fibers in codimension one.5 Let L be an ample
and globally generated line bundle on Y , and A = ωY ⊗ L⊗n+1, where n = dim Y .
Then for every s ≥ 1, the sheaf

f∗(ω⊗k
X/Y )

[⊗s]
⊗ A⊗k

is globally generated over a fixed open set U containing the smooth locus of f ; here
f∗(ω⊗k

X/Y )
[⊗s] denotes the reflexive hull of f∗(ω⊗k

X/Y )
⊗s .

5This means that there exists a closed subset Z ⊂ Y of codimension at least two such that over
Y − Z the fibers of f are generically reduced. This condition is realized for instance if there is such a
Z such that over Y − Z the branch locus of f is smooth, and its preimage is a simple normal crossings
divisor; see [Kollár 1986, Lemma 3.4].
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Proof. As in [Viehweg 1983, §3] and in the proof of [Kollár 1986, Theorem 3.5],
based on Viehweg’s fiber product construction one can show that there is an open
set U ⊂ Y , whose complement Y −U has codimension at least two, over which
there exists a morphism

ϕ : f (s)
∗
(ω⊗k

X (s)/Y )−→ f∗(ω⊗k
X/Y )

[⊗s]

which is an isomorphism over the smooth locus of f . Here µ : X (s)
→ X s is a

desingularization of the unique irreducible component X s of the s-fold fiber product
of X over Y which dominates Y ; we have natural morphisms f s

: X s
→ Y and

f (s) = f s
◦µ : X (s)

→ Y . The reason one can do this for any k ≥ 1 is this: the
hypothesis on the morphism implies that X s is normal and Gorenstein over such
a U (contained in the flat locus of f ) with complement of small codimension; see
also [Höring 2010, Lemma 3.12]. In particular, for every k ≥ 1 there is a morphism

t : µ∗ω⊗k
X (s)/Y −→ ω⊗k

X s/Y

which induces ϕ.
Now, without changing the notation, we can pass to a compactification of X (s),

and the morphism ϕ extends to a morphism of sheaves on Y , since it is defined in
codimension one and the sheaf on the right is reflexive. Corollary 2.10 says that

f (s)
∗
(ω⊗k

X (s)/Y )⊗ A⊗k

is globally generated for all s and k, which implies that

f∗(ω⊗k
X/Y )

[⊗s]
⊗ A⊗k

is generated by global sections over the locus where ϕ is an isomorphism. �

Corollary 4.3 [Viehweg 1983, Theorem III]. If f : X→ Y is a surjective morphism
of smooth projective varieties, then f∗ω⊗k

X/Y is weakly positive for every k ≥ 1.

This follows in standard fashion from Theorem 4.2, by passing to semistable
reduction along the lines of [Viehweg 1983, Lemma 3.2 and Proposition 6.1]. This
was already noted by Kollár [1986, Corollary 3.7 and the preceding comments] in
the case k = 1. As mentioned above, the theorem has the advantage of producing an
effective bound, at least for sufficiently nice morphisms. We note also that Fujino
[2014a] has used the argument above in order to deduce results on the semipositivity
of direct images of pluricanonical bundles.

We now switch our attention to the context of direct images of adjoint line bundles
of the formωX⊗M , where M is a nef and f -big line bundle for a fibration f : X→Y .
Given Theorem 3.2, we are now able to use the cohomological approach to weak
positivity for higher powers of adjoint bundles as well. Concretely, Theorem 1.8
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again follows via Viehweg’s semistable reduction methods from the following
analogue of the effective Theorem 4.2.

Theorem 4.4. Let f : X → Y be a fibration between smooth projective varieties,
with generically reduced fibers in codimension one. Let M be a nef and f -big
line bundle on X , L an ample and globally generated line bundle on Y , and
A = ωY ⊗ L⊗n+1 with n = dim Y . Then

f∗((ωX/Y ⊗M)⊗k)[⊗s]
⊗ A⊗k

is globally generated over a fixed nonempty open set U for any s ≥ 1.

Proof. Using the notation in the proof of Theorem 4.2, over the same open subset
U ⊂ Y with complement of codimension at least two, one has a morphism which is
generically an isomorphism:

ϕ : f (s)
∗
((ωX (s)/Y ⊗M (s))⊗k)−→ f∗((ωX/Y ⊗M)⊗k)[⊗s]. (4.5)

Here M (s) is the line bundle on the desingularization X (s) defined inductively as

M (s)
:= p∗1 M ⊗ p∗2 M (s−1),

with p1 and p2 the projections of X (s) to X and X (s−1), respectively. The morphism
in (4.5) is obtained as a consequence of flatness and the projection formula; an
excellent detailed discussion of the case k=1, as well as of this whole circle of ideas,
can be found in [Höring 2010, §3.D], in particular Lemma 3.15 and Lemma 3.24.
The case k > 1 follows completely analogously, given the morphism t in the proof
of Theorem 4.2.

Finally, Variant 1.5 immediately gives the analogue of Corollary 2.10 for twists
by nef and relatively big line bundles, implying that f (s)∗ ((ωX (s)/Y⊗M (s))⊗k)⊗A⊗k

is globally generated for all s and k. Combined with the reflexivity of the right-hand
side, this leads to the desired conclusion. �

We conclude by noting that Corollary 4.3 has a natural extension to the setting
of log-canonical pairs; see [Campana 2004, §4], and also [Fujino 2014b, §6]. It is
an interesting and delicate problem to obtain an analogue of Theorem 4.2 in this
setting as well.

Subadditivity of Iitaka dimension for adjoint bundles. Theorem 1.8 allows us to
make use of an argument developed by Viehweg in order to provide the analogue in
the adjoint setting of [Viehweg 1983, Corollary IV] on the subadditivity of Kodaira
dimension for fibrations with base of general type.

Proof of Theorem 1.9. Note that the ≤ inequalities are consequences of the easy
addition formula; see [Mori 1987, Corollary 1.7]. The proof of the reverse inequali-
ties closely follows the ideas of Viehweg [1983] based on the use of weak positivity,
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as streamlined by Mori with the use of a result of Fujita; we include it below for
completeness. Namely, we will apply the following lemma (but not directly for the
line bundles on the left-hand side in (i) and (ii)).

Lemma 4.6 [Fujita 1977, Proposition 1; Mori 1987, Lemma 1.14]. Let f : X→ Y
be a fibration with general fiber F , and N a line bundle on X. Then there exists a
big line bundle L on Y and an integer m > 0 with f ∗L ↪→ N⊗m if and only if

κ(N )= κ(NF )+ dim Y.

To make use of this, note first that, according to [Viehweg 1983, Lemma 7.3],
there exists a smooth birational modification τ : Y ′→ Y and a resolution X ′ of
X ×Y Y ′ giving a commutative diagram

X ′ X

Y ′ Y

f ′

τ ′

f

τ

with the property that every effective divisor B on X ′ that is exceptional for f ′ lies
in the exceptional locus of τ ′. Note that in this case τ ′

∗
ω⊗k

X ′ (k B)' ω⊗k
X for every

k ≥ 0. Also, τ ′∗M is still nef and f ′-big.
Fix now an ample line bundle L on Y , and consider the big line bundle L ′ = τ ∗L

on Y ′. By Theorem 1.8 we have that for any k > 0 (which we can assume to be
such that f ′

∗
(ωX ′/Y ′ ⊗ τ

′∗M)⊗k
6= 0) there exists b > 0 such that

S[2b] f ′
∗
(ωX ′/Y ′ ⊗ τ

′∗M)⊗k
⊗ L ′⊗b

is generically globally generated. On the other hand, there exists an effective
divisor B on X ′, exceptional for f ′, such that the reflexive hull of

f ′
∗
(ωX ′/Y ′ ⊗ τ

′∗M)⊗p

is equal to

f ′
∗
(ωX ′/Y ′(B)⊗ τ ′

∗M)⊗p

for every p ≤ kb. Using the nontrivial map induced by multiplication of sections
on the fibers, we obtain that

f ′
∗
(ωX ′/Y ′(B)⊗ τ ′

∗M)⊗2kb
⊗ L ′⊗b

has a nonzero section, and hence we obtain an inclusion

f ′∗L ′⊗b
↪→ (ωX ′/Y ′(B)⊗ τ ′

∗M)⊗2kb
⊗ f ′∗L ′⊗2b

.
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According to Lemma 4.6, we obtain that

κ
(
(ωX ′/Y ′(B)⊗ τ ′

∗M)⊗k
⊗ f ′∗L ′

)
= κ(ωF ′ ⊗ (τ

′∗M)F ′)+ dim Y ′

= κ(ωF ⊗MF )+ dim Y,

where F ′ is the general fiber of f ′.
To deduce (i), note that, as we have observed that τ ′

∗
ω⊗k

X ′ (k B)' ω⊗k
X , we have

τ ′
∗

(
(ωX ′/Y ′(B)⊗ τ ′

∗M)⊗k
⊗ f ′∗L ′

)
' (ωX/Y ⊗M)⊗k

⊗ f ∗L .

To deduce (ii), since Y ′ is of general type, recall that by Kodaira’s lemma there
exists an inclusion L ′ ↪→ ω⊗r

Y ′ for some r > 0. This implies that

κ(ωX ⊗M)= κ(ωX ′(B)⊗ τ ′
∗M)≥ κ

(
(ωX ′/Y ′(B)⊗ τ ′

∗M)⊗r
⊗ f ′∗L ′

)
,

which is equal to κ(ωF ⊗MF )+ dim Y by the above. �

5. Generic vanishing for direct images of pluricanonical bundles

We concentrate now on the case of morphisms f : X→ A, where X is a smooth
projective variety and A is an abelian variety. We denote by P the normalized
Poincaré bundle on the product A×Pic0(A), and by Pα its restriction to the slice
A×{α}; this is of course just a different name for the point α ∈ Pic0(A).

Definition 5.1 [Pareschi and Popa 2011a, Definition 3.1]. A coherent sheaf F on X
is called a GV-sheaf (with respect to the given morphism f ) if it satisfies

codim{α ∈ Pic0(A) | H k(X,F⊗ f ∗Pα) 6= 0} ≥ k

for every k ≥ 0.

If f is generically finite, then by a special case of the generic vanishing theorem
of Green and Lazarsfeld [1987], ωX is a GV-sheaf. This was generalized by Hacon
[2004] to the effect that for an arbitrary f the higher direct images Ri f∗ωX are
GV-sheaves on A for all i . On the other hand, there exist simple examples showing
that even when f is generically finite, the powers ω⊗k

X with k ≥ 2 are not necessarily
GV-sheaves; see [Pareschi and Popa 2011a, Example 5.6]. Therefore Theorem 1.10
in the introduction is a quite surprising application of the methods in this paper.

Proof of Theorem 1.10. Let M be a very high power of an ample line bundle on Â,
and let ϕM : Â→ A be the isogeny induced by M . According to a criterion of
Hacon [2004, Corollary 3.1], the assertion will be proved if we manage to show
that

H i ( Â, ϕ∗M f∗ω⊗k
X ⊗M)= 0 for all i > 0.
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Equivalently, we need to show that

H i ( Â, g∗ω⊗k
X1
⊗M)= 0 for all i > 0,

where g : X1→ Â is the base change of f : X → A via ϕM . We can, however,
perform another base change µ : Â→ Â by a multiplication map of large degree,
such that µ∗M ' L⊗d , where L is an ample line bundle, which we can also assume
to be globally generated, and d is arbitrarily large. The situation is summarized in
the diagram

X2 X1 X

Â Â A

h g f

µ ϕM

It is then enough to show that

H i ( Â, h∗ω⊗k
X2
⊗ L⊗d)= 0 for all i > 0.

Note that we cannot apply Serre vanishing here, as all of our constructions depend
on the original choice of M . However, we can conclude if we know that there
exists a bound d = d(n, k), i.e., depending only on n = dim A and k, such that the
vanishing in question holds for any morphism h.

At this stage we can of course apply Corollary 2.9, which allows us to take
d ≥ k(n+ 1)− n. We stress, however, that as long as we know that such a uniform
bound for d exists, for this argument its precise shape does not matter. We therefore
choose to present below a weaker but more elementary result that does not need
vanishing theorems for Q-divisors, making the argument self-contained.

Indeed, Proposition 5.2 below shows that there exists a morphism ϕ : Z → Â
with Z smooth projective, and m ≤ n+ k, such that h∗ω⊗k

X2
⊗ L⊗m(k−1) is a direct

summand in ϕ∗ωZ . Applying Kollár vanishing (Theorem 2.2), we deduce that

H i ( Â, h∗ω⊗k
X2
⊗ L⊗d)= 0 for all i > 0 and all d ≥ (n+ k)(k− 1)+ 1,

which suffices to conclude the proof. �

Proposition 5.2. Let f : X → Y be a morphism of projective varieties, with X
smooth and Y of dimension n. Let L be an ample and globally generated line bundle
on Y , and k ≥ 1 an integer. Then there exists a smooth projective variety Z with a
morphism ϕ : Z→ Y , and an integer 0≤ m ≤ n+ k, such that f∗ω⊗k

X ⊗ L⊗m(k−1)

is a direct summand in ϕ∗ωZ .

Proof. This is closer in spirit to the arguments towards weak positivity used in
[Viehweg 1983, §5]. Note first that f∗ω⊗k

X ⊗ L⊗pk is globally generated for some
sufficiently large p. Denote by m the minimal p ≥ 0 for which this is satisfied.
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We are going to use a branched covering construction to show that m ≤ n+ k.
First, consider the adjunction morphism

f ∗ f∗ω⊗k
X −→ ω⊗k

X .

After blowing up on X , if necessary, we can assume that the image sheaf is of the
formω⊗k

X ⊗OX (−E) for a divisor E with normal crossing support. As f∗ω⊗k
X ⊗L⊗mk

is globally generated, we have that the line bundle

ω⊗k
X ⊗ f ∗L⊗mk

⊗OX (−E)

is globally generated as well. It is therefore isomorphic to OX (D), where D is an
irreducible smooth divisor, not contained in the support of E , such that D+ E still
has normal crossings. We have arranged that

(ωX ⊗ f ∗L⊗m)⊗k
' OX (D+ E),

and so we can take the associated covering of X branched along D+ E and resolve
its singularities. This gives us a generically finite morphism g : Z→ X of degree k,
and we denote ϕ = f ◦ g : Z→ Y .

Now by a well-known calculation of Esnault and Viehweg [Viehweg 1983,
Lemma 2.3], the direct image g∗ωZ contains the sheaf

ωX ⊗ (ωX ⊗ f ∗L⊗m)⊗k−1
⊗OX

(
−

⌊k−1
k
(
D+ E

)⌋)
' ω⊗k

X ⊗ f ∗L⊗m(k−1)
⊗OX

(
−

⌊k−1
k

E
⌋)

as a direct summand. If we now apply f∗, we find that

f∗
(
ω⊗k

X ⊗OX

(
−

⌊k−1
k

E
⌋))
⊗ L⊗m(k−1) (5.3)

is a direct summand of ϕ∗ωZ . At this point we observe, as in the proof of
Theorem 1.7, that, since E is the relative base locus of ω⊗k

X , we have

f∗
(
ω⊗k

X ⊗OX

(
−

⌊k−1
k

E
⌋))
' f∗ω⊗k

X .

In other words, f∗ω⊗k
X ⊗ L⊗m(k−1) is a direct summand in ϕ∗ωZ . Applying

Proposition 1.2, we deduce in turn that f∗ω⊗k
X ⊗L⊗m(k−1)+n+1 is globally generated.

By our minimal choice of m, this is only possible if

m(k− 1)+ n+ 1≥ (m− 1)k+ 1,

which is equivalent to m ≤ n+ k. �

Remark. With slightly more clever choices, the integer m in Proposition 5.2 can
be chosen to satisfy m ≤ n + 2, but the effective vanishing consequence is still
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weaker than that obtained in Corollary 2.9. Note also that one can show analogous
results in the case of log-canonical pairs and of adjoint bundles, with only small
additional technicalities.

Going back to the case when the base is an abelian variety, once we know generic
vanishing the situation is in fact much better than what we obtained for morphisms
to arbitrary varieties.

Corollary 5.4. If f : X→ A is a morphism from a smooth projective variety to an
abelian variety, for every ample line bundle L on A and every k ≥ 1 one has:

(i) f∗ω⊗k
X is a nef sheaf on A.

(ii) H i (A, f∗ω⊗k
X ⊗ L)= 0 for all i > 0.

(iii) f∗ω⊗k
X ⊗ L⊗2 is globally generated.

Proof. For (i), note that every GV-sheaf is nef by [Pareschi and Popa 2011b,
Theorem 4.1]. Part (ii) follows from the more general fact that the tensor product of
a GV-sheaf with an IT0 locally free sheaf is IT0; see [ibid., Proposition 3.1]. Finally,
(iii) follows from [Pareschi and Popa 2003, Theorem 2.4], as by (ii) f∗ω⊗k

X ⊗ L is
an M-regular sheaf on A. �

Question. It is again natural to ask whether, given a morphism f : X → A, the
higher direct images Ri f∗ω⊗k

X are GV-sheaves for all i .

The exact same method, with appropriate technical modifications, gives the
following analogues for log-canonical pairs and pluriadjoint bundles, either based
on Corollary 2.8 and Theorem 3.2, or on the analogues of Proposition 5.2; we will
not repeat the argument.

Variant 5.5. Let f : X→ A be a morphism from a normal projective variety to an
abelian variety. If (X,1) is a log-canonical pair and k ≥ 1 is any integer such that
k(K X +1) is Cartier, then f∗OX (k(K X +1)) is a GV -sheaf for every k ≥ 1.

Variant 5.6. Let f : X→ A be a fibration between a smooth projective variety and
an abelian variety, and M a nef and f -big line bundle on X. Then f∗(ωX ⊗M)⊗k

is a GV-sheaf for every k ≥ 1.
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