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On Previdi’s delooping conjecture
for K-theory

Sho Saito

We prove a modified version of Previdi’s conjecture stating that the Waldhausen
space (K-theory space) of an exact category is delooped by the Waldhausen
space (K-theory space) of Beilinson’s category of generalized Tate vector spaces.
Our modified version states the delooping with nonconnective K-theory spectra,
extending and almost including Previdi’s original statement. As a consequence
we obtain that the negative K-groups of an exact category are given by the 0th
K-groups of the idempotent-completed iterated Beilinson categories, extending a
theorem of Drinfeld that the first negative K-group of a ring is isomorphic to the
0th K-group of the exact category of Tate modules.

1. Introduction

In his Ph.D. thesis, Previdi [2010] developed a categorical generalization of Kapra-
nov’s work [2001] on dimensional and determinantal theories for Tate vector spaces
over a field. His main results are formulated in terms of algebraic K-theory, and
he observes a certain relation between the K-groups Ki .A/ and KiC1. lim

 !
A/ for

i D 0; 1, where A is an exact category and lim
 !

A is an associated exact category
introduced by Beilinson [1987]. (See Section 2 below.) Previdi concluded the
thesis with the following conjecture, which would include all the higher analogues
of that relation:

Conjecture 1.1 [Previdi 2010, 5.1.7]. Write S.A/ for the geometric realization of
the simplicial category iS�.A/ given by Waldhausen’s S�-construction [1985], the
homotopy groups of whose loop space are the algebraic K-theory groups of the
exact category A. If A is partially abelian, i.e., if it and its opposite have pullbacks
of admissible monomorphisms with common target, then S.A/ is delooped by
S. lim
 !

A/. In particular, for such A there is an isomorphism between Ki .A/ and
KiC1. lim

 !
A/ for every i � 0.

In this article we prove the following modified version of the conjecture:
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2 Sho Saito

Theorem 1.2. Let K.A/ be the nonconnective K-theory spectrum of the exact
category A, whose i-th homotopy group is the i-th K-group of A if i > 0, the 0th
K-group of the idempotent-completion of A if i D 0, and the .�i/-th negative K-
group of A if i < 0. (See [Schlichting 2006].) Then there is a homotopy equivalence
of spectra K.A/ �!� �K. lim

 !
A/.

Note that no assumption on A is necessary. We also remark that Theorem 1.2
includes almost all of the essential part of Conjecture 1.1. Indeed, there results
an isomorphism Ki .A/ �!� KiC1. lim

 !
A/ for any A and for every i � 1. If A

is idempotent-complete (this is the case for most of the typical examples, such
as the category P.R/ of finitely generated projective modules over a ring R, the
category of vector bundles on a scheme, or any abelian category) this holds also for
i D 0. Theorem 1.2 moreover says that the i -th negative K-group K�i .A/, i > 0, is
isomorphic to the 0th K-group of the idempotent-completion of the i -times iterated
Beilinson category lim

 !

iA.

Applications to the study of generalized Tate vector spaces. Previdi’s work has its
background in the study of generalized Tate vector spaces. Recall that a Tate vector
space over a discrete field k is a topological k-vector space of the form P ˚Q�,
where P and Q are discrete spaces and .�/� denotes the topological dual. There is
a canonical equivalence of the Beilinson category lim

 !
Vect0 k of the exact category

Vect0 k of finite-dimensional k-vector spaces, with the category of Tate k-vector
spaces of countable type, i.e., Tate vector spaces of the form P ˚Q� with P and
Q discrete of countable dimensions. (See [Previdi 2011, 7.4].)

There are two generalizations of this notion, one of which due to Arkhipov
and Kremnizer [2010] is the notion of an n-Tate vector space as an object of
the n-times iterated Beilinson category lim

 !

nVect0 k, n � 1. The other one, due
to Drinfeld [2006], replaces the field k with a general commutative ring R to
get the notion of a Tate R-module. (We assume commutativity for simplicity,
although Drinfeld’s definition makes sense for noncommutative rings.) More
precisely, Drinfeld defined an elementary Tate R-module to be a topological R-
module of the form P ˚Q�, where P and Q are discrete projective R-modules,
and a Tate R-module to be a direct summand of an elementary Tate R-module.
Drinfeld [2006, Theorem 3.6(iii)] showed that the first negative K-group K�1.R/
of the ring R is isomorphic to the 0th K-group of the exact category of Tate R-
modules. A very important theorem on Tate R-modules, due to [Drinfeld 2006,
Theorems 3.4, 3.7], is that they are Nisnevich-locally elementary, so that the presheaf
of first negative K-groups on the Nisnevich site of SpecR becomes trivial after
Nisnevich-sheafification.

The former of the two generalizations is obtained purely formally by iterating
the Beilinson construction, whereas the latter is based on nontrivial facts in ring
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theory. In fact, these two generalizations can be combined together. The equivalence
of lim
 !

Vect0 k with Tate k-vector spaces of countable type can be generalized to
show that lim

 !
P.R/ is very close to the category of elementary Tate R-modules.

(More precisely, lim
 !

P.R/ is equivalent to the category of topological R-modules
isomorphic to extensions of P and Q�, where P and Q are discrete R-modules
obtained as the inductive limits of systems

P1 ,! P2 ,! P3 ,! � � � and Q1 ,!Q2 ,!Q3 ,! � � �

This in particular shows that the idempotent-completion of lim
 !

P.R/ is very close
to the category of Tate R-modules. Most objects of the latter category which
one usually deals with can be considered as objects of the former, and vice versa.
In this sense, we regard the idempotent-completion of lim

 !
P.R/ as a categorical

substitute for Drinfeld’s category of TateR-modules. It is thus plausible to define an
n-Tate R-module, n� 1, as an object of the idempotent-completion of lim

 !

nP.R/.
Theorem 1.2 then can be regarded as a generalization of Theorem 3.6(iii) of [Drinfeld
2006], as it says that the n-th negative K-group K�n.R/ is isomorphic to the 0th
K-group of n-Tate R-modules.

We also briefly discuss here a consequence of Theorem 1.2 on 1-Tate modules.
Denote by K the sheaf of group-like E1-spaces on the Nisnevich site of SpecR,
that sends an étale R-algebra S to the space �1K.S/. We describe how our
Theorem 1.2, together with Drinfeld’s theorem on the Nisnevich-local vanishing of
K�1, provides a purely formal way to associate to a 1-Tate R-module M a K-torsor
with a canonical action of the sheaf of groups of automorphisms of M . We note
that this construction was essentially explained by Drinfeld [2006, Section 5.5],
who attributes it to Beilinson.

Firstly, Theorem 1.2 shows that, in the 1-topos of sheaves of spaces on the
Nisnevich site of SpecR, the sheaf S 7!�1K. lim

 !
P.S// is an object whose loop-

space object is K. It is obviously a pointed object. In addition, Drinfeld’s theorem
on the Nisnevich-local vanishing of K�1 tells that this object is connected, i.e.,
S 7!�1K. lim

 !
P.S// is the classifying-space object for the1-group object K.

Then by general theory a K-torsor corresponds to a map from the terminal object
to the sheaf S 7!�1K. lim

 !
P.S//, i.e., to a point of the space �1K. lim

 !
P.R//.

Thus the 1-Tate R-module M , as an object of the idempotent-completion of
lim
 !

P.R/, defines such a torsor. The sheaf of groups of automorphisms of M acts
on it since, in general, for any idempotent-complete exact category A and an object
A of A, the classifying space of AutAA admits a natural, canonical mapping to
�S.A/D�1K.A/ which sends the base point to the point of�S.A/D�1K.A/
defined by the object A. (This is the composition of the map B AutAA! BiA
with the first structure map BiA!�S.A/ of Waldhausen’s connective algebraic
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K-theory spectrum of A, where iA is the category of isomorphisms of A, and B
indicates the classifying space of a category.)

Organization and conventions. In Section 2 we recall the definition and properties
of the Beilinson category lim

 !
A, following [Beilinson 1987] and [Previdi 2011].

We recall the notions of ind- and pro-objects, introduce the categories IndaN A and
ProaN A, and discuss their relation to lim

 !
A. All statements in this section are either

results of [Beilinson 1987] and [Previdi 2011] or their immediate consequences.
Section 3 begins by recalling Schlichting’s results [2004], which provide a

powerful tool for constructing a homotopy fibration sequence of nonconnective
K-theory spectra. We prove Theorem 1.2 according to the following strategy: We
construct, using Schlichting’s method, two homotopy fibration sequences which fit
into the commutative diagram

K.A/ ����! K.IndaN A/ ����! K.IndaN A=A/??y ??y ??y
K.ProaN A/ ����! K. lim

 !
A/ ����! K. lim

 !
A=ProaN A/

as the horizontal sequences. We then go on to show that the third vertical map is an
equivalence, and that in the left-hand square the upper-right and lower-left corners
are contractible, so that the stated homotopy equivalence is obtained. (We remark
that the upper horizontal homotopy fibration sequence and its consequence that
K.A/ is delooped by K.IndaN A=A/ are Schlichting’s results [2004]. Our delooping
is a combination of his delooping with its dual.)

We follow the notation adopted in [Previdi 2010; 2011]. For instance, we write
IndaN A for what is denoted by FA in [Schlichting 2004], and Funa.…;A/ instead
of the notation A…a used in [Beilinson 1987]. We write zA for the idempotent-
completion of A. By saying a functor A ,! U between exact categories is an
embedding of exact categories, we mean that it is a fully faithful exact functor
whose essential image is closed under extensions in U and such that a short sequence
in A is exact if and only if its image in U is exact.

2. Beilinson’s category lim
 !

A

2A. ind- and pro-objects in a category. We first recall some generalities on ind-
and pro-objects. For any category C, the category Ind C (resp. Pro C) of ind-objects
(resp. pro-objects) in C is defined to have as objects functors X WJ ! C with domain
J small and filtering (resp. X W I op! C with I small and filtering). The ind-object
X W J ! C (resp. pro-object X W I op ! C) defines a functor Cop ! .sets/, C 7!
lim
��!j2J

HomC.C;Xj / (resp. C! .sets/, C 7! lim
��!i2I

HomC.Xi ; C /). A morphism
X ! Y of ind-objects (resp. pro-objects) is a natural transformation between the
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functors Cop! .sets/ (resp. C! .sets/) associated to X and Y . Equivalently, the
sets of morphisms of ind- and pro-objects can be defined to be the projective-
inductive limits HomInd C.X ;Y/D lim

 ��j
lim
��!l

HomC.Xj ;Yl/ and HomPro C.X ;Y/D
lim
 ��k

lim
��!i

HomC.Xi ;Yk/, respectively.
If X and Y have a common index category, a natural transformation X ! Y

between the functors X and Y defines a map between the ind- or pro-objects X
and Y . Conversely, every map of ind- or pro-objects X ! Y can be “straightified”
to a natural transformation, in the sense that there is a commutative diagram in
Ind C or Pro C

X ����! Y

�

??y �

??y
zX ����! zY

with the vertical maps isomorphisms, zX and zY having a common index category,
and zX ! zY coming from a natural transformation. (See [Artin and Mazur 1969,
Appendix] for details.)

If C is an exact category, the categories Ind C and Pro C possess exact structures.
A pair of composable morphisms in Ind C or Pro C is a short exact sequence if it can
be straightified to a sequence of natural transformations which is levelwise exact
in C [Previdi 2011, 4.15, 4.16]. In this article we are mainly concerned with the
full subcategories Inda C and Proa C of admissible ind- and pro-objects introduced
in [Previdi 2011, 5.6]: An ind-object X W J ! C (resp. pro-object X W I op ! C)
is admissible if for every map j ! j 0 in J (resp. i ! i 0 in I ) the morphism
Xj ,!Xj 0 is an admissible monomorphism in C (resp. Xi �Xi 0 is an admissible
epimorphism). These subcategories are extension-closed in the exact categories
Ind C and Pro C, respectively, so they have induced exact structures. Since an object
C of C can be considered as an admissible ind- or pro-object which takes the
constant value C (one can use any small and filtering category as the category of
indices), there are embeddings of exact categories C ,! Inda C and C ,! Proa C.

We write IndaN C and ProaN C for the full, extension-closed subcategories of Inda C
and Proa C consisting of admissible ind- and pro-objects, respectively, indexed
by the filtering category of natural numbers. (There is precisely one morphism
j ! k if j � k 2 N.) The object C of C defines an object C D C D C D � � �
in IndaN C or ProaN C. Note that the resulting embedding C ,! IndaN C ,! Inda C
(resp. C ,!ProaN C ,!Proa C) is naturally isomorphic to the embedding C ,! Inda C
(resp. C ,! Proa C) mentioned above.

2B. Definition of lim
 !

A. Let A be an exact category. We write … for the ordered
set f.i; j / 2 Z � Z j i � j g, where .i; j / � .i 0; j 0/ if i � i 0 and j � j 0. A
functor X W …! A, where … is viewed as a filtering category, is admissible if
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for every triple i � j � k, the sequence Xi;j ,! Xi;k � Xj;k is a short exact
sequence in A. We denote by Funa.…;A/ the exact category of admissible functors
X W …! A and natural transformations, where a short sequence X ! Y ! Z

of natural transformations of admissible functors is a short exact sequence in
Funa.…;A/ if Xi;j ,! Yi;j �Zi;j is a short exact sequence in A for every i � j .
A bicofinal map � WZ!Z (� is said to be bicofinal if it is nondecreasing and satisfies
limi!˙1 �.i/D˙1) induces a cofinal functor z� W…!…, .i; j / 7! .�.i/; �.j //.
If � and  W Z ! Z are bicofinal maps such that �.i/ �  .i/ for all i , and
if X W … ! A is an admissible functor, then there is a natural transformation
uX;�; WX ı z�!X ı z .

Definition 2.1 [Beilinson 1987, A.3]. The category lim
 !

A is defined to be the
localization of Funa.…;A/ by the morphisms uX;�; , where X W …! A is in
Funa.…;A/ and � �  W Z! Z are bicofinal.

If X W…! A is an admissible functor, we have for each j 2 Z an admissible
pro-object X�;j W fi 2Z j i � j g!A, i 7!Xi;j , in A. We get in turn an admissible
ind-object Z! ProaA, j 7!X�;j , in ProaA. Thus the admissible functor X can be
viewed as an object of the iterated Ind-Pro category Inda ProaA. If � � W Z! Z

are bicofinal, the map uX;�; defines an isomorphism between the ind-pro-objects
X ı z� and X ı z . We get a functor lim

 !
A! Inda ProaA. In view of the following

theorem, we regard lim
 !

A as an exact subcategory of Inda ProaA.

Theorem 2.2 [Previdi 2011, 5.8, 6.1]. The functor lim
 !

A! Inda ProaA is fully
faithful. Moreover, the image is closed under extensions in Inda ProaA. In particu-
lar, lim

 !
A has an exact structure in which a sequence in lim

 !
A is exact if and only

if its image in Inda ProaA is exact.

By [Previdi 2011, 6.3], there are embeddings IndaN A ,! lim
 !

A and ProaN A ,!
lim
 !

A of exact categories, respectively sendingX1 ,!X2 ,!X3 ,!� � � 2 ob IndaN A
to the object in lim

 !
A determined by Xi;j D X0;j D Xj for i � 0 < j , and

sending X1 � X2 � X3 � � � � 2 ob ProaN A to the object in lim
 !

A determined
by Xi;j DXi;1 DX�iC1 for i � 0 < j .

We refer to [Previdi 2011] for detailed discussion of ind/pro-objects in exact
categories.

3. Proof of Theorem 1.2

We prove the theorem using the s-filtering localization sequence constructed by
Schlichting [2004].

Let A ,! U be an embedding of exact categories. Following [Schlichting 2004],
we define a map in U to be a weak isomorphism with respect to A ,! U if it is
either an admissible monomorphism that admits a cokernel in the essential image
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of A ,! U or an admissible epimorphism that admits a kernel in the essential image
of A ,! U . In particular, for every A 2 obA, the maps 0! A and A! 0 are
weak isomorphisms. The localization of U by weak isomorphisms with respect
to A is denoted by U=A. Recall, from [Schlichting 2004], that the embedding
A ,! U of exact categories is a left s-filtering if the following conditions are
satisfied:

(1) If A� U is an admissible epimorphism in U with A 2 obA, then U 2 obA.

(2) If U ,!A is an admissible monomorphism in U with A2 obA, then U 2 obA.

(3) Every map A! U in U with A 2 obA factors through an object B 2 obA
such that B ,! U is an admissible monomorphism in U .

(4) If U � A is an admissible epimorphism in U with A 2 obA, then there is an
admissible monomorphism B ,! U with B 2 obA such that the composition
B � A is an admissible epimorphism in A.

(Here obA denotes by slight abuse of notation the collection of objects of U
contained in the essential image of A ,! U .) A right s-filtering embedding is
defined by dualizing the conditions above.

We use the following theorem, due to [Schlichting 2004, 1.16, 1.20, 2.10], as
the main technical tool for the proof:

Theorem 3.1. If A ,!U is left or right s-filtering, then the localization U=A has an
exact structure in which a short sequence is exact if and only if it is isomorphic to the
image of a short exact sequence in U . Moreover, the sequence of exact categories
A ! U ! U=A induces a homotopy fibration K.A/ ! K.U/ ! K.U=A/ of
nonconnective K-theory spectra.

Remark. Theorem 2.10 of [Schlichting 2004], which constructs this homotopy
fibration sequence, is stated there under the assumption that A is idempotent-
complete. But the theorem holds for general A in view of Lemma 1.20 of [loc. cit.],
which assures, whenever A ,! U is left or right s-filtering, the existence of an
extension-closed full subcategory zUA of zU such that U is cofinally contained in zUA,
the induced embedding zA ,! zU factors through a left or right s-filtering embedding
zA ,! zUA, and U=A�!� zUA= zA is an equivalence of exact categories. The homotopy

fibration sequence K. zA/ ! K.zUA/ ! K.zUA= zA/ is equivalent to the sequence
K.A/! K.U/! K.U=A/, since a cofinal embedding of exact categories induces
an equivalence of nonconnective K-theory spectra.

Lemma 3.2. For any exact category A, the embedding A,! IndaA is left s-filtering.

Proof. We start by checking condition (3) for being left s-filtering. LetX be an object
of A and Y an admissible ind-object in A indexed by a small filtering category J .
A morphism f W X ! Y in IndaA is an element of lim

��!j2J
HomA.X; Yj /, i.e., is
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represented as the class of a map fj0
WX!Yj0

in A for some j0 2J . The canonical
map Yj0

,! Y is an admissible monomorphism because the diagram j0=J ! A,
j 7! Yj =Yj0

, serves as its cokernel, where j0=J is the under-category of j0. We
get a factorization

f WX
fj0
��! Yj0

,! Y;

as desired.
Condition (1) follows from (3). Indeed, an admissible epimorphismX �Y with

X in A factors through some Z in A such that Z ,! Y is an admissible monomor-
phism. The composition X � Y � Y=Z is 0, but since this composition is also an
admissible epimorphism, Y=Z must be 0. This forces Y to be essentially constant.

To prove (4), let Y � X be an admissible epimorphism in IndaA with X in
A, whose kernel we denote by Z. The short exact sequence 0! Z ,! Y �
X ! 0 is isomorphic to a straight exact sequence 0 ! Z0 ,! Y 0 � X 0 !

0, where Z0, Y 0, and X 0 are all indexed by the same small filtering category
J and are respectively isomorphic to Z, Y , and X . The isomorphism X 0 �!�

X is a compatible collection of morphisms gj W X 0j ! X in A, j 2 J , such
that there is a morphism h W X ! X 0j0

for some j0 2 J such that gj0
ı h D

idX and h ı gj0
is equivalent to idX 0j0

in lim
��!j2J

HomA.X
0
j0
; X 0j /. Since X 0 is an

admissible ind-object, this implies that h ıgj0
D idX 0j0

, i.e., gj0
is an isomorphism.

(Note also that the gj are isomorphisms for all j 2 j0=J .) The map Y 0j0
,!

Y 0 �!� Y is an admissible monomorphism, as noted above, and its composition
with Y � X equals the composition Y 0j0

� X 0j0
�!�
gj0

X , which is an admissible
epimorphism in A.

Finally, if Y ,! X is an admissible monomorphism with X in A, its cokernel
Z is in A by condition (1). Let 0! Y 0 ,! X 0 � Z0! 0 be a straightification
of the exact sequence 0! Y ,!X �Z! 0, whose common indices we denote
by J . Then an argument similar to above shows that there is a j0 2 J such that
X 0j and Z0j are isomorphic to X and Z, respectively, for every j 2 j0=J . It follows
that Y 0j is essentially constant above j0, and we conclude that Y is contained in the
essential image of A, verifying condition (2). �

We remark that, given a composable pair of embeddings of exact categories
A ,! V and V ,! U , if their composition is naturally isomorphic to a left s-
filtering embedding A ,! U then A ,! V is also left s-filtering. This in par-
ticular implies that the embeddings A ,! IndaN A and ProaN A ,! lim

 !
A are left

s-filtering. Hence by Theorem 3.1 we get two homotopy fibration sequences
of nonconnective K-theory spectra K.A/ ! K.IndaN A/ ! K.IndaN A=A/ and
K.ProaN A/! K. lim

 !
A/! K. lim

 !
A=ProaN A/. We compare these sequences to

obtain Theorem 1.2.

Lemma 3.3. There is an equivalence IndaN A=A �!� lim
 !

A=ProaN A.
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Proof. We have a commutative diagram

A ����! IndaN A??y ??y
ProaN A ����! lim

 !
A

whence there results a functor F W IndaN A=A! lim
 !

A=ProaN A.
To construct a quasi-inverse, first we note that the functor Funa.…;A/! IndaN A,

.Xi;j /i�j 7!X0;1 ,!X0;2 ,!� � � , induces a functor zG W lim
 !

A! IndaN A=A. Indeed,
if �� WZ!Z are bicofinal, the map uX;�; WXı z�!Xı z in Funa.…;A/ is sent
to the map X�.0/;�.�/!X .0/; .�/, which factors as X�.0/;�.�/ ,!X�.0/; .�/ �
X .0/; .�/. The map X�.0/;�.�/ ,!X�.0/; .�/ is an isomorphism in IndaN A, since
it consists of natural isomorphisms

lim
��!j

HomA.A;X�.0/;�.j // �!
� lim
��!j

HomA.A;X�.0/; .j //; A 2 obA;

as � and  are bicofinal. We also see that X�.0/; .�/ � X .0/; .�/ is a weak
isomorphism in IndaN A with respect to A, since it has constant kernel X�.0/; .0/D
X�.0/; .0/ D � � � . The functor zG thus defined takes weak isomorphisms in lim

 !
A

with respect to ProaN A to weak isomorphisms in IndaN A with respect to A, since
if X 2 ob lim

 !
A is in the image of ProaN A, then its 0th row is constant: X0;1 D

X0;1 D � � � , i.e., zG.X/ is in the image of A. Hence zG factors through a functor
G W lim
 !

A=ProaN A! IndaN A=A.
We haveGıF D idInda

N A=A by definition. On the other hand, ifX D .Xi;j /i�j 2
ob lim
 !

A, then F ıG.X/ is the object zX of lim
 !

A determined by zX i;j D zX0;j D
X0;j , i � 0 < j . Define an admissible epimorphism fX WX � zX in Funa.…;A/
(hence in lim

 !
A) by

.fX /i;j D

8<:
Xi;j DXi;j for 0� i � j;
Xi;j �X0;j for i � 0 < j;
Xi;j � 0 for i � j � 0:

The kernel coincides with the image of 0�X�1;0 �X�2;0 �X�3;0 � � � � 2

ob ProaN A in lim
 !

A. Hence fX is a weak isomorphism in lim
 !

A with respect to
ProaN A. Thus we get an isomorphism f W id lim

 !
A=Proa

N A �!
� F ıG, to conclude that

G is a quasi-inverse to F . �

This means that in the commutative diagram of nonconnective K-theory spectra

K.A/ ����! K.IndaN A/ ����! K.IndaN A=A/??y ??y ??y
K.ProaN A/ ����! K. lim

 !
A/ ����! K. lim

 !
A=ProaN A/
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the third vertical map is an equivalence. Since the two horizontal sequences are
homotopy fibrations, it follows that the square

K.A/ ����! K.IndaN A/??y ??y
K.ProaN A/ ����! K. lim

 !
A/

is homotopy-cartesian, i.e., K.A/�!� holim.K.ProaNA/!K. lim
 !

A/ K.IndaNA//
is an equivalence. We finally note:

Lemma 3.4. There are canonical contractions for the nonconnective K-theory
spectra K.IndaN A/ and K.ProaN A/.

Proof. The contraction for K.IndaN A/ comes from the canonical flasque structure
on IndaN A (i.e., an endofunctor whose direct sum with the identity functor is
naturally isomorphic to itself), given as follows. Let X D .Xj /j�1 2 ob IndaN A
be an N-indexed admissible ind-object in A, whose structure maps we denote by
�D�j;j 0 WXj ,!Xj 0 , j � j 0. Write T .X/2ob IndaN A for the admissible ind-object

0 �!X1
.�;0/
���!X2˚X1

.�˚�;0/
�����!X3˚X2˚X1

.�˚�˚�;0/
�������! � � � :

A morphism f 2HomInda
N A.Y;X/D lim

 ��j
lim
��!l

HomA.Yj ; Xl/with j -th component
represented by fj W Yj !Xl.j / defines a morphism T .f / W T .Y /! T .X/ whose
j -th component is the class of the composition

Yj�1˚ � � �˚Y1
fj�1˚���˚f1

���������!Xl.j�1/˚ � � �˚Xl.1/
�˚���˚�
�����!XkCj�1˚ � � �˚XkC1 ,! T .X/kCj ;

where k is chosen to be sufficiently large. The endofunctor T thus defined is
a flasque structure on IndaN A since .X ˚ T .X//j

D
�! T .X/jC1 give a natural

isomorphism of ind-objects.
The contraction for K.ProaN A/ follows from the contraction for K.IndaN.�// via

the identification ProaN AD .IndaN Aop/op and the general equivalence K.Bop/ �!�

K.B/. �

We now obtain the desired homotopy equivalence K.A/D holim.K.ProaN A/!
K. lim
 !

A/ K.IndaN A// �!� holim.�! K. lim
 !

A/ �/D�K. lim
 !

A/, and the
proof of Theorem 1.2 is complete.
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Surpassing the ratios conjecture in the
1-level density of Dirichlet L-functions

Daniel Fiorilli and Steven J. Miller

We study the 1-level density of low-lying zeros of Dirichlet L-functions in the
family of all characters modulo q, with Q=2< q �Q. For test functions whose
Fourier transform is supported in .�3

2
; 3

2
/, we calculate this quantity beyond the

square root cancellation expansion arising from the L-function ratios conjecture
of Conrey, Farmer and Zirnbauer. We discover the existence of a new lower-order
term which is not predicted by this powerful conjecture. This is the first family
where the 1-level density is determined well enough to see a term which is not
predicted by the ratios conjecture, and proves that the exponent of the error term
Q�1=2C� in the ratios conjecture is best possible. We also give more precise
results when the support of the Fourier transform of the test function is restricted
to the interval Œ�1; 1�. Finally we show how natural conjectures on the distribution
of primes in arithmetic progressions allow one to extend the support. The most
powerful conjecture is Montgomery’s, which implies that the ratios conjecture’s
prediction holds for any finite support up to an error Q�1=2C� .
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1. Introduction

In this paper we study the 1-level density of Dirichlet L-functions with modulus q.
The goal is to compute this statistic for large support and small error terms, providing
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a test of the predictions of the lower order and error terms in the L-function ratios
conjecture. In this introduction we assume the reader is familiar with low-lying
zeros of families of L-functions and the ratios conjecture, and briefly describe our
results. For completeness we provide a brief review of the subject in Section 2A,
and state our results in full in Section 2B to Section 2D.

We let � 2 L1.R/ be an even real function such that y� is C 2 and has compact
support. Denoting by �� D

1
2
C i
� the nontrivial zeros of L.s; �/ (i.e., those

satisfying 0 < <.��/ < 1) and choosing Q a scaling parameter close to q, the
1-level density is1

D1Iq.�/ WD
1

�.q/

X
�mod q

X

�

�

�

�

log Q

2�

�
: (1-1)

Throughout this paper, a sum over � mod q always means a sum over all char-
acters, including the principal character. If we assume GRH then the 
� are real.
As �.y/D c. O�/.y/ is defined for complex values of y, it makes sense to consider
(1-1) for complex 
�, in case GRH is false (in other words, GRH is only needed to
interpret the 1-level density as a spacing statistic arising from an ordered sequence
of real numbers, allowing for a spectral interpretation). We also study the average
of (1-1) over the moduli Q=2< q �Q, which is easier to understand in general:

D1IQ=2;Q.�/ WD
1

Q=2

X
Q=2<q�Q

D1Iq.�/: (1-2)

The powerful ratios conjecture of Conrey, Farmer and Zirnbauer [Conrey et al. 2008;
Conrey et al. 2005b] yields a formula for D1IQ=2;Q.�/, which is believed to hold
up to an error of O�.Q

�1=2C�/. While there have been several papers [Conrey and
Snaith 2007; 2008; David et al. 2013; Goes et al. 2010; Huynh et al. 2011; Miller
2008; 2009b; Miller and Montague 2011] showing agreement between various
statistics involving L-functions and the ratios conjecture’s predictions, evidence
for this precise exponent in the error term is limited; the reason this exponent was
chosen is the “philosophy of square root cancellation”. While some of the families
studied have 1-level densities that agree beyond square root cancellation, it is always
for small support (supp.y�/� .�1; 1/). Further, in no family studied were nonzero
lower order terms beyond square root cancellation isolated in the 1-level density.

The motivation of this paper was to resolve these issues. As the ratios conjecture
is used in a variety of problems, it is important to test its predictions in the greatest
possible window. Our key findings are the following.

1Since y� is C 2, we have �.�/� ��2 for large �; hence the sum over the zeros is absolutely
convergent. While most of the literature uses � as the test function, since we will use Euler’s totient
function extensively we use �.
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� We uncover new, nonzero lower-order terms in the 1-level density for our
families of Dirichlet characters. These terms are beyond what the ratios
conjecture can predict, and suggest the possibility that a refinement may be
possible and needed.

� We show (unconditionally) that the natural limit of accuracy of the L-function
ratios conjecture is �.Q�1=2Co.1//. Thus the error term cannot be improved
for a general family of L-functions, though of course its veracity for all families
is still open.

The existence of lower-order terms beyond the ratios conjecture’s prediction in
statistics of L-functions is not without precedent. Indeed such terms have been
isolated in the second moment of jL.1

2
; �/j by Heath-Brown [1981], and for a more

general shifted sum by Conrey [2007].
Before stating our main result, we give the ratios conjecture’s prediction. This

prediction is done for a slightly different family in [Goes et al. 2010], but it is trivial
to convert from their formulation to the one below (we discuss the conversion in
Section 2B).

Conjecture 1.1 (ratios conjecture). The 1-level density D
1Iq
.�/ (from (1-1) with

scaling parameter QD q) equals

y�.0/

�
1�

log.8�e
 /

log q
�

1

log q

X
pjq

log p

p� 1

�
C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt CO�

�
q�1=2C�

�
: (1-3)

The 1-level density D1IQ=2;Q.�/ (from rescaling2 (1-3)) equals

y�.0/

�
1�

log.4�e
 /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�

C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt CO�

�
Q�1=2C�

�
: (1-4)

Surprisingly, our techniques are capable of not only verifying this prediction, but
we are able to determine the 1-level density beyond what even the ratios conjecture
predicts. In Theorem 1.2 we obtain a new (arithmetical) term of order Q�1=2= log Q,
which is not predicted by the ratios conjecture.

2 To rescale we multiply (1-3) by log q= log Q, replace qt=2 � q�t=2 with Qt=2 �Q�t=2 and
average over Q=2< q �Q. The term log q averages to log QC log 2�1CO.log Q=Q/, explaining
the “additional” term .log 2� 1/= log Q. Moreover the average of

P
pjq

log p
p�1

over this range is easily
shown to be

P
p

1
p.p�1/

CO.log Q=Q/.
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Theorem 1.2. Assume GRH. If the Fourier transform of the test function � is
supported in .�3

2
; 3

2
/, then D1Iq=2;Q.�/ equals

y�.0/

�
1�

log.4�e
 /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�
C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt C

Q�1=2

log Q
S�.Q/; (1-5)

where

S�.Q/ D C1y�.1/CC2

y�0.1/

log Q
CO

�� log log Q

log Q

�2�
; (1-6)

with

C1 WD .2�
p

2/ �
�

1

2

�Y
p

�
1C

1

.p� 1/p1=2

�
;

C2 WD C1

 p
2C 4

3
�

�
�0

�
.
1

2
/�

X
p

log p

.p� 1/p1=2C 1

�!
: (1-7)

We can give a more precise formula for the term S�.Q/: see Remark 2.5. While
Theorem 1.2 is conditional on GRH, in Theorem 2.1 we prove a more precise
and unconditional result for test functions � whose Fourier transform has support
contained in Œ�1; 1�.

The first two terms in (1-5) agree with the ratios conjecture’s prediction. As for
the term Q�1=2S�.Q/= log Q, its presence confirms that the error term Q�1=2Co.1/

in the ratios conjecture is best possible, and suggests more generally that the 1-level
density of a family ought to contain a (possibly oscillating) arithmetical term of order
Q�1=2Co.1/, a statement which should be tested in other families. Interestingly
this new term contains the factors y�.1/ and y�0.1/, and is zero when y� is supported
in .�1; 1/. In this case we give a more precise estimate for the 1-level density in
Theorem 2.1, in which a lower-order term of order Q�=2�1Co.1/ appears, where
� D sup.supp y�/. This term is a genuine lower-order term, and shows that for such
test functions the ratios conjecture’s prediction is not best possible. We thus show
that a transition happens when � is near 1. Indeed looking at the difference between
the 1-level density and the ratios conjecture’s prediction, that is defining

EQ.�/ WDD1IQ=2;Q.�/�y�.0/

�
1�

log.4�e
 /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�

�

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt; (1-8)
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our results imply that3 EQ.�/DQ��.�/Co.1/, where

�.�/D

��
2
� 1 if � � 1;

�
1
2

if 1� � < 3
2
:

(1-9)

We conjecture that �.�/ should equal�1
2

for all � �1, and that our new lower-order
term Q�1=2S�.Q/= log Q should persist in this extended range.

Conjecture 1.3. Theorem 1.2 holds for test functions � whose Fourier transform
has arbitrarily large finite support � .

In Figure 1, the solid curve represents our results (Theorems 1.2 and 2.1), and the
dashed line represents Conjecture 1.3; note the resemblance between this graph and
the one appearing in Montgomery’s pair correlation conjecture [Montgomery 1973].
We prove in Theorem 2.13 that Montgomery’s conjecture on primes in arithmetic
progressions implies that �.�/� �1

2
for all � � 1.

0:5 1 1:5 2 2:5
�.�/

�1

�0:5

�

Figure 1. The graph of �.�/.

We believe that this phenomenon is universal and should also happen in different
families, in the sense that we believe that the ratios conjecture’s prediction should
be best possible for � � 1, and should not be for � < 1. For example, in [Miller
2009b] it is shown that if the Fourier transform of the involved test function is
supported in .�1; 1/, then the ratios conjecture’s prediction is not best possible and
one can improve the remainder term; however, in this region of limited support
there are no new, nonzero lower order terms unpredicted by the ratios conjecture.
These results confirm the exceptional nature of the transition point � D 1, as is
the case in Montgomery’s pair correlation conjecture [1973]. Indeed if this last
conjecture were known to hold beyond the point ˛ D 1, then this would imply the
nonexistence of Landau–Siegel zeros [Conrey and Iwaniec 2002].

Our plan of attack is to use the explicit formula to turn the 1-level density into
an average of the various terms appearing in this formula. The bulk of the work
is devoted to carefully estimating the contribution of the prime sum, which when
summing over � mod q becomes a sum over primes in the residue class 1 mod q,

3For � > 1, this holds for test functions � for which either y�.1/¤ 0 or y�0.1/¤ 0 (see Theorem 1.2);
see Theorem 2.1 if � � 1. If y�.u/ vanishes in a small interval around uD 1, then Theorem 2.6 gives
the correct answer.



18 Daniel Fiorilli and Steven J. Miller

averaged over q �Q. Accordingly, the proof of Theorem 1.2 is based on ideas in
[Fiorilli 2012], which improve on results of Fouvry [1985], Bombieri, Friedlander
and Iwaniec [Bombieri et al. 1986], Friedlander and Granville [1992] and Fried-
lander, Granville, Hildebrandt and Maier [Friedlander et al. 1991]. Theorem 1.1
of [Fiorilli 2012] cannot be applied directly here, since this estimate is only valid
when looking at primes up to x modulo q with q �Q, where Q is not too close
to x. Additional estimates are needed, including a careful analysis of the range
x1�� <Q� x, which required a combination of divisor switching techniques and
precise estimates on the mean value of smoothed sums of the reciprocal of Euler’s
totient function. Additionally, in our analysis of the 1-level density after using the
explicit formula and executing the sum over the family we obtain a sum over primes
in the arithmetic progressions 1 mod q; this is one of the cases where one obtains
an asymptotic in [Fiorilli 2012, Theorem 1.1], which explains the occurrence of the
lower-order term Q�1=2S�.Q/= log Q in Theorem 1.2.

The paper is organized as follows. In Section 2A we review previous results
on low-lying zeros in families of L-functions and describe the motivation for the
ratios conjecture. See for example [Goes et al. 2010; Miller 2009b] for a detailed
description of how to apply the ratios conjecture to predict the 1-level density. We
describe our unconditional results in Section 2B, and then improve our results
in Section 2C by assuming GRH. In previous families there often is a natural
barrier, and extending the support is related to standard conjectures (for example,
in [Iwaniec et al. 2000] the authors show how cancellation in exponential sums
involving square roots of primes leads to larger support for families of cuspidal
newforms). A similar phenomenon surfaces here, where in Section 2D we show that
increasing the support beyond .�2; 2/ is related to conjectures on the distribution of
primes in residue classes. We analyze the increase in support provided by various
conjectures. These range from a conjecture on the variance of primes in the residue
classes, which allow us to reach .�4; 4/, to Montgomery’s conjecture for a fixed
residue, which gives us any finite support. The next sections contain the details of
the proof; we state the explicit formula and prove some needed sums in Section 3,
and then prove our theorems in the remaining sections.

2. Background and new results

2A. Background and previous results. Assuming GRH, the nontrivial zeros of
any nice L-function lie on the critical line, and therefore it is possible to investigate
statistics of its normalized zeros. These zeros are fundamental in many problems,
ranging from the distribution of primes in congruence classes to the class number
[Conrey and Iwaniec 2002; Goldfeld 1976; Gross and Zagier 1986; Rubinstein
and Sarnak 1994]. Numerical and theoretical evidence [Hejhal 1994; Montgomery
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1973; Odlyzko 1987; 2001; Rudnick and Sarnak 1996] support a universality in
behavior of zeros of an individual automorphic L-function high above the central
point, specifically that they are well-modeled by ensembles of random matrices
(see [Firk and Miller 2009; Hayes 2003] for histories of the emergence of random
matrix theory in number theory). The story is different for the low-lying zeros,
the zeros near the central point. A convenient way to study these zeros is via the
1-level density, which we now describe. Let � 2 L1.R/ be an even real function
whose Fourier transform

y�.y/ D

Z 1
�1

�.x/e�2�ixy dx (2-1)

is C 2 and has compact support. Let FN be a (finite) family of L-functions satisfying
GRH.4 The 1-level density associated to FN is defined by

D1IFN
.�/ D

1

jFN j

X
g2FN

X
j

�

�
log cg

2�

 .j/g

�
; (2-2)

where 1
2
Ci


.j/
g runs through the nontrivial zeros of L.s;g/. Here cg is the “analytic

conductor” of g, and gives the natural scale for the low zeros. As � decays, only
low-lying zeros (i.e., zeros within a distance 1= log cg of the central point s D 1

2
)

contribute significantly. Thus the 1-level density can help identify the symmetry
type of the family. To evaluate (2-2), one applies the explicit formula, converting
sums over zeros to sums over primes.

Based in part on the function field analysis where G.F/ is the monodromy group
associated to the family F, Katz and Sarnak conjectured that for each reasonable
irreducible family of L-functions there is an associated symmetry group G.F/

(one of the following five: unitary U, symplectic USp, orthogonal O, SO.even/,
SO.odd/), and that the distribution of critical zeros near 1

2
mirrors the distribution of

eigenvalues near 1. The five groups have distinguishable 1-level densities. To date,
for suitably restricted test functions the statistics of zeros of many natural families
of L-functions have been shown to agree with statistics of eigenvalues of matrices
from the classical compact groups, including Dirichlet L-functions, elliptic curves,
cuspidal newforms, Maass forms, number field L-functions, and symmetric powers
of GL2 automorphic representations [Alpoge and Miller 2014; Alpoge et al. 2014;
Dueñez and Miller 2006; Fouvry and Iwaniec 2003; Gao 2005; Güloğlu 2005;
Hughes and Miller 2007; Hughes and Rudnick 2003; Iwaniec et al. 2000; Katz and
Sarnak 1999a; 1999b; Miller 2004; Miller and Peckner 2012; Ricotta and Royer
2011; Royer 2001; Rubinstein 2001; Shin and Templier 2012; Yang 2009; Young

4 We often do not need GRH for the analysis, but only to interpret the results. If the GRH is
true, the zeros lie on the critical line and can be ordered, which suggests the possibility of a spectral
interpretation.
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2006], to name a few, as well as nonsimple families formed by Rankin–Selberg
convolution [Dueñez and Miller 2009].

In addition to predicting the main term (see for example [Conrey 2001; Katz
and Sarnak 1999a; 1999b; Keating and Snaith 2000a; 2000b; 2003]), techniques
from random matrix theory have led to models that capture the lower order terms
in their full arithmetic glory for many families of L-functions (see for example the
moment conjectures in [Conrey et al. 2005a] or the hybrid model in [Gonek et al.
2007]). Since the main terms agree with either unitary, symplectic or orthogonal
symmetry, it is only in the lower order terms that we can break this universality and
see the arithmetic of the family enter. These are therefore natural and important
objects to study, and can be isolated in many families [Huynh et al. 2009; Miller
2009a; Young 2005]. We thus require a theory that is capable of making detailed
predictions. Recently the L-function ratios conjecture [Conrey et al. 2008; 2005b]
has had great success in determining lower order terms. Though a proof of the
ratios conjecture for arbitrary support is well beyond the reach of current methods,
it is an indispensable tool in current investigations as it allows us to easily write
down the predicted answer to a remarkable level of precision, which we try to prove
in as great a generality as possible.

To study the 1-level density, it suffices to obtain good estimates for

RFN
.˛; 
 / WD

1

jFN j

X
g2FN

L.1
2
C˛;g/

L.1
2
C 
 ;g/

: (2-3)

(In the current paper, the parameter Q plays the role of jFN j.) Asymptotic formulas
for RFN

.˛; 
 / have been conjectured for a variety of families FN (see [Conrey
et al. 2008; Conrey and Snaith 2007; 2008; Goes et al. 2010; Huynh et al. 2011;
Miller 2008; 2009b; Miller and Montague 2011]) and are believed to hold up to
errors of size jFN j

�1=2C� for any � > 0. The evidence for the correctness of this
error term is limited to test functions with small support (frequently significantly
less than .�1; 1/), though in such regimes many of the above papers verify this
prediction. Many of the steps in the ratios conjecture’s recipe lead to the addition or
omission of terms as large as those being considered, and thus there was uncertainty
as to whether or not the resulting predictions should be accurate to square root
cancellation. The results of the current paper can be seen as a confirmation that this
is the right error term for the final predicted answer, at least in this family. Further,
the novelty in our results resides in the fact that we are able to go beyond square root
cancellation and we find a smaller term which is unpredicted by the ratios conjecture
(see Theorem 1.2). For a precise explanation on how to derive the ratios conjecture’s
prediction in our family, we refer the reader to [Goes et al. 2010], and also recom-
mend [Conrey and Snaith 2007] for an accessible overview of the ratios conjecture.
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2B. Unconditional results. We now describe our unconditional results. We remind
the reader that � is a real even function such that y� is C 2 and has compact support.

Theorem 2.1. Suppose that the Fourier transform of the test function � is supported
on the interval Œ�1; 1�, so � D sup.supp y�/ � 1. There exists an absolute positive
constant c (coming from the Prime Number Theorem) such that the 1-level density
D

1Iq
.�/ (from (1-1) with scaling parameter QD q) equals

y�.0/

�
1� i

log.8�e
 /

log q
�

1

log q

X
pjq

log p

p� 1

�

C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt �

2

�.q/

Z 1

0

qu=2

�
y�.u/

2
�
y�0.u/

log q

�
du

�
2

log q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
y�

�
log pe

log q

�
C O

�
q�=2�1

ec
p
� log q

�
: (2-4)

Remark 2.2. The average over Q=2 < q �Q of the fourth term in (2-4) can be
shown to be O.Q�1/, and is therefore negligible when considering D1IQ=2;Q.�/

(see (3-16)). However, the term involving the second integral in (2-4) is of size
q�=2�1�o.1/, and thus constitutes a genuine lower-order term, smaller than the error
term in (1-3) predicted using the ratios conjecture.

Theorems 1.2 and 2.1 should be compared to the main result of Goes, Jackson,
Miller, Montague, Ninsuwan, Peckner and Pham [Goes et al. 2010], where they
show one can extend the support of y� to Œ�2; 2� and still get the main term, as well
as the lower order terms down to a power savings. They only consider q prime, and
thus the sum over primes p dividing q below in Theorem 2.3 is absorbed by their
error term. We briefly discuss how one can easily extend their results to the case of
general q. First note that L.s; �/ and L.s; ��/ have the same zeros in the critical
strip if �� is the primitive character of conductor q� inducing the nonprincipal
character � of conductor q. We now have log q�, which can be converted to a sum
over primes p dividing q by the same arguments as in the proof of Proposition 3.1.
The rest of the expansion follows from expanding the digamma function � 0=� in
the integral in [Goes et al. 2010, Theorem 1.3] and then standard algebra (along the
lines of the computations in Section 3). We use [Montgomery and Vaughan 2007,
Lemma 12.14], which in our notation says that for a; b > 0 we haveZ 1
�1

� 0.a˙ ib�/

�.a˙ ib�/
�.t/ dt

D
� 0.a/

�.a/
y�.0/C

2�

b

Z 1
0

exp.�2�ax=b/

1� exp.�2�x=b/

�
y�.0/� y�.�x/

�
dx; (2-5)
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and the identity

� 0.1
4
/

�.1
4
/
C
� 0.3

4
/

�.3
4
/
D �2
 � 6 log 2; (2-6)

with 
 the Euler–Mascheroni constant. We then extend to q 2 .Q=2;Q� by rescaling
the zeros by log Q and not log q and summing over the family; recall the technical
issues involved in the rescaling are discussed in Footnote 2.

Theorem 2.3 (Goes, Jackson, Miller, Montague, Ninsuwan, Peckner, Pham [Goes
et al. 2010]). If 1< � � 2, then the 1-level density D

1Iq
.�/ (from (1-1) with scaling

parameter QD q) equals

y�.0/

�
1�

log.8�e
 /

log q
�

1

log q

X
pjq

log p

p� 1

�
C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt

CO

�
log log q

log q
q�=2�1

�
; (2-7)

and this agrees with the ratios conjecture.

Remark 2.4. Goes et al. [2010] actually proved (2-7) for any � � 2, with the
additional error term O.q�1=2C�/. We preferred not to include the case � � 1, as
Theorem 2.1 is more precise in this range.

2C. Results under GRH. We first mention a more precise version of Theorem 1.2.

Remark 2.5. If in addition to the hypotheses of Theorem 1.2 we assume that the
Fourier transform of the test function � is KC 1 times continuously differentiable,
then we can give a more precise expression for the term S�.Q/ appearing in (1-5):

S�.Q/ D

KX
iD0

ai.�/

.log Q/i
CO�;K

�
1

.log Q/KC1��

�
; (2-8)

where the ai.�/ are constants depending (linearly) on the Taylor coefficients of y�.t/
at t D 1. In fact, S�.Q/ is a truncated linear functional, which composed with the
Fourier transform operator is supported on f1g (in the sense of distributions).

Our next result is an extension of Theorem 1.2, in the case where y�.u/ vanishes
in a small interval to the right of uD 1.

Theorem 2.6. Assume GRH.

(1) If y� is supported in .�3
2
;�1���[ Œ�1; 1�[ Œ1C�; 3

2
/ for some � > 0, then for

any � > 0 the average 1-level density D
1IQ=2;Q

.�/ equals
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y�.0/

�
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1C log.4�e
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X
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log p

p.p� 1/
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Z 1
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y�.0/� y�.t/

Qt=2�Q�t=2
dt

�
4 log 2

Q
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�.6/

Z 1

0

Qu=2

�
y�.u/

2
�
y�0.u/

log Q

�
du

�

Z 4=3

1C�

�
.u� 1/ log QCC6

�
Q�u=2

�
y�.u/

2
�
y�0.u/

log Q

�
du

C O�
�
Q�1=2��C�

CQ�2=3 log QCQ��2 log Q
�
; (2-9)

with C6 WD log.�=2/C 1C 
 C
P

p
log p

p.p�1/
.

(For � � 4
3

, unless y�.x/ has some mass near xD � for some 1<�< 4�2� ,
the fourth term in (2-9) goes in the error term, and hence (2-9) reduces to
(2-10). However, if 1< � < 4

3
, it is always a genuine lower-order term.)

(2) If f is supported in .�2;�a�[ Œ�1; 1�[ Œa; 2/ for some 1 � a < 2 (if aD 1,
we have the full interval .�2; 2/), then D

1IQ=2;Q
.�/ equals

y�.0/

�
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1C log.4�e
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log Q
�

1

log Q

X
p

log p

p.p� 1/

�

C
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y�.0/� y�.t/

Qt=2�Q�t=2
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�
4 log 2

Q

�.2/�.3/

�.6/

Z 1

0

Qu=2

�
y�.u/

2
�
y�0.u/

log Q

�
du

CO
�
Q�a=2

CQ��2 log Q
�
: (2-10)

Unless a> 1 and � < 3
2

, the third term of (2-10) goes in the error term.

2D. Results beyond GRH. As the GRH is insufficient to compute the 1-level den-
sity for test functions supported beyond Œ�2; 2�, we explore the consequences of
other standard conjectures in number theory involving the distribution of primes
among residue classes. Before stating these conjectures, we first set the notation.
Let

 .x/ WD
X
n�x

ƒ.n/;  .x; q; a/ WD
X
n�x

n�a mod q

ƒ.n/;

E.x; q; a/ WD  .x; q; a/�
 .x/

�.q/
: (2-11)
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If we assume GRH, we have

 .x/D xCO
�
x1=2.log x/2

�
; E.x; q; a/DO

�
x1=2.log x/2

�
: (2-12)

Our first result uses GRH and the following de-averaging hypothesis, which
depends on a parameter ı 2 Œ0; 1�.

Hypothesis 2.7. We haveX
Q
2
<q�Q

ˇ̌̌̌
 .xI q; 1/�

 .x/

�.q/

ˇ̌̌̌2
�Qı�1

X
Q
2
<q�Q

X
1�a�q
.a;q/D1

ˇ̌̌̌
 .xI q; a/�

 .x/

�.q/

ˇ̌̌̌2
: (2-13)

This hypothesis is trivially true for ı D 1, and while it is unlikely to be true
for ı D 0, it is reasonable to expect it to hold for any ı > 0. What we need is
some control over biases of primes congruent to 1 mod q; Hypothesis 2.7 can be
interpreted as bounding the average of j .xI q; 1/� .x/=�.q/j2 in terms of the
average variance.5

Under these hypotheses, we show how to extend the support to a wider but still
limited range.

Theorem 2.8. Assume GRH and Hypothesis 2.7 for some ı 2 .0; 1/. The average
1-level density D

1IQ=2;Q
.y�/ equals

y�.0/

�
1�

1C log.4�e
 /

log Q
�

1

log Q

X
p

log p

p.p� 1/

�
C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt

C O
�
Q.ı�1/=2.log Q/3=2CQ.�C2ı/=4�1.log Q/1=3

�
; (2-14)

which is asymptotic to y�.0/ provided the support of y� is contained in .�4C2ı; 4�2ı/.

The proof of Theorem 2.8 is given in Section 6. It uses a result of Goldston
and Vaughan [1997], which is an improvement of results of Barban, Davenport,
Halberstam, Hooley, Montgomery and others.

Remark 2.9. In Theorem 2.8 we study the weighted 1-level density

D1IQ=2;Q.�/ WD
X

Q=2<q�Q

1

�.q/

X
�mod q

X

�

�

�

�

log Q

2�

�
; (2-15)

which is technically easier to study than the unweighted version

D
unweighted
1IQ=2;Q

.�/ WD
1

9=�2.Q=2/2

X
Q=2<q�Q

X
�mod q

X

�

�

�

�

log Q

2�

�
: (2-16)

5Note that we only need this de-averaging hypothesis for the special residue class aD 1.
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This is similar to many other families of L-functions, such as cuspidal newforms
[Iwaniec et al. 2000; Miller and Montague 2011] and Maass forms [Alpoge et al.
2014; Alpoge and Miller 2014], where the introduction of weights (arising from
the Petersson and Kuznetsov trace formulas) facilitates evaluating the arithmetical
terms.

Finally, we show how we can determine the 1-level density for arbitrary finite
support, under a hypothesis of Montgomery [1970].

Hypothesis 2.10 (Montgomery). For any a; q such that .a; q/D 1 and q � x, we
have

 .xI q; a/�
 .x/

�.q/
�� x�

�
x

q

�1=2
: (2-17)

It is by gaining some savings in q in the error E.x; q; a/ that we can increase
the support for families of Dirichlet L-functions. The following weaker version of
Montgomery’s conjecture, which depends on a parameter � 2 .0; 1

2
�, also suffices

to increase the support beyond Œ�2; 2�.

Hypothesis 2.11. For any a; q such that .a; q/D 1 and q � x, we have

 .xI q; 1/�
 .x/

�.q/
��

x1=2C�

q�
: (2-18)

Hypothesis 2.12. Fix � > 0. We have for x� � q �
p

x thatX
n�x

n�1 mod q

ƒ.n/
�
1�

n

x

�
�

1

�.q/

X
n�x

ƒ.n/
�
1�

n

x

�
D o

�
x1=2

�
: (2-19)

Note that this is a weighted version of  .xI q; 1/� .x/=�.q/; that is, we added
the weight

�
1� n=x

�
. The reason for this is that it makes the count smoother, and

this makes it easier to analyze in general since the Mellin transform of g.y/ WD 1�y

in the interval Œ0; 1� is decaying faster in vertical strips than that of g.y/� 1.
Amongst the last three hypotheses, Hypothesis 2.12 is the weakest, but it is still

sufficient to derive the asymptotic in the 1-level density for test functions with
arbitrary large support.

Theorem 2.13. Suppose that the Fourier transform of � has arbitrarily large (but
compact) support.

(1) If we assume Hypothesis 2.12, the 1-level density D
1Iq
.�/ equals y�.0/C o.1/,

agreeing with the scaling limit of unitary matrices.
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(2) If we assume Hypothesis 2.11 for some 0< � � 1
2

, then D
1Iq
.�/ equals

y�.0/

�
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log.8�e
 /

log q
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1

log q
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pjq

log p

p� 1

�
C
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y�.0/� y�.t/

qt=2� q�t=2
dt

CO�
�
q��C�

�
: (2-20)

Remark 2.14. Under GRH, the left-hand side of (2-19) is O.x1=2 log q/. Therefore,
if we win by more than a logarithm over GRH, then we have the expected asymptotic
for the 1-level density for y� of arbitrarily large finite support.

Interestingly, if we assume Montgomery’s conjecture (Hypothesis 2.10), then
we can take � D 1

2
in (2-20), and doing so we end up precisely with the ratios

conjecture’s prediction; see (1-3).

We derive the explicit formula for the families of Dirichlet characters in Section 3,
as well as some useful estimates for some of the resulting sums. We give the
unconditional results in Section 4, Theorems 2.1 and 2.3. The proofs of Theorems
1.2 and 2.6 are conditional on GRH, and use results in [Friedlander and Granville
1992] and [Fiorilli 2012]; we give them in Section 5. We conclude with an analysis
of the consequences of the hypotheses on the distribution of primes in residue
classes, using the de-averaging hypothesis to prove Theorem 2.8 in Section 6 and
Montgomery’s hypothesis to prove Theorem 2.13 in Section 7.

3. The explicit formula and needed sums

Our starting point for investigating the behavior of low-lying zeros is the explicit
formula, which relates sums over zeros to sums over primes. We follow the
derivation in [Montgomery and Vaughan 2007] (see also [Iwaniec et al. 2000;
Rudnick and Sarnak 1996] and [Davenport 1980; Iwaniec and Kowalski 2004] for
all needed results about Dirichlet L-functions). We first derive the expansion for
Dirichlet characters with fixed conductor q, and then extend to q 2 .Q=2;Q�. We
conclude with some technical estimates that will be of use in proving Theorem 1.2.
Here and throughout, we will set f WD y�. Note that � is real and even, and thus so
is the case for f , and moreover we have yf D �.

3A. The explicit formula for fixed q.

Proposition 3.1 (explicit formula for the family of Dirichlet characters modulo q).
Let f be an even, twice differentiable test function with compact support. Denote
the nontrivial zeros of L.s; �/ by

�� D
1
2
C i
�:
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Then the 1-level density D
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. yf / equals
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Proof. We start with Weil’s explicit formula for L.s; �/, with � mod q a nonprinci-
pal character (we add the contribution from the principal character later). We can
replace L.s; �/ by L.s; ��/ (where �� is the primitive character of conductor q�

inducing �), since these have the same nontrivial zeros. Taking

F.x/ WD
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log Q
f

�
2�x

log Q

�
in Theorem 12.13 of [Montgomery and Vaughan 2007] (whose conditions are
satisfied by our restrictions on f ), we find
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log Q

��
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where a.�/D 0 for the half of the characters with �.�1/D 1 and 1 for the half with
�.�1/D�1. Making the substitution t D 2�x=log Q in the integral and summing
over �¤ �0, we find
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To get (3-3) from (3-2) we added zero by writing ��.n/ as
�
��.n/��.n/

�
C�.n/.

Summing �.n/ over all � mod q gives �.q/ if n� 1 mod q and 0 otherwise; as our
sum omits the principal character, the sum of �.n/ over the nonprincipal characters
yields the sum on the third line above. We also replaced .�.q/� 1/=2 by �.q/=2
in the first term, hence the O.1/.

We use [Fiorilli and Martin 2013, Proposition 3.3] for the first term (which
involves the sum over the conductor of the inducing character). We then use the
duplication formula of the digamma function  .z/D � 0.z/=�.z/ to simplify the
next two terms, namely  .1

4
/C .3

4
/. As  .1

2
/D�
 � 2 ln 2 (Equation 6.3.3 of

[Abramowitz and Stegun 1972]) and  .2z/D 1
2
 .z/C 1

2
 .zC 1

2
/C ln 2 (Equation

6.3.8, [ibid.]), setting zD 1
4

yields  .1
4
/C .3

4
/D�2
 �6 ln 2. We keep the next

two terms as they are, and then apply [Fiorilli and Martin 2013, Proposition 3.4]
(with r D 1) for the last term, obtaining that it equals
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log Q
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log Q
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� X
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��
: (3-4)

Writing n D pe, this term is zero unless p j q. If p j q, then it is zero unless
pe � 1 mod q=p� , where � � 1 is the largest � such that p� j q. Therefore this
term equals

�
2

log Q
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X
p�kq

pe�1 mod q=p�

e;��1

ƒ.pe/

�.p�/pe=2
f

�
log pe

log Q

�
: (3-5)

Combining this with some elementary algebra yields
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Finally, since the nontrivial zeros of L.s; �0/ coincide with those of �.s/, the
difference between the left-hand side of (3-1) and that of (3-6) is

1

�.q/

X


�

yf

�

�

log Q

2�

�
�

1

�.q/
(3-7)

(since f is twice continuously differentiable, yf .y/�1=y2), completing the proof.6

�

3B. The averaged explicit formula for q 2 .Q=2 ; Q�. We now average the ex-
plicit formula for D

1Iq
. yf / (Proposition 3.1) over q 2 .Q=2;Q�. We concentrate

on deriving useful expansions, which we then analyze in later sections when we
determine the allowable support.

Proposition 3.2 (explicit formula for the averaged family of Dirichlet characters
modulo q). The averaged 1-level density, D

1IQ=2;Q
. yf /, equals

1

Q=2

X
Q=2<q�Q

D1Iq.
yf /

D
f .0/

log Q

�
log Q� 1� 
 � log.4�/�

X
p

log p

p.p� 1/

�
C

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt

C
2

Q=2

X
Q=2<q�Q

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du

CO
�

1

Q

�
: (3-8)

6While the explicit formula for �.s/ has a term arising from its pole at s D 1, that term does not
matter here as it is insignificant upon division by the family’s size.
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Setting

 2.xI q; a/ WD
X
n�x

n�a mod q

ƒ.n/
�
1�

n

x

�
;  2.x/ WD

X
n�x

ƒ.n/
�
1�

n

x

�
; (3-9)

the last integral in (3-8) may be replaced with

�2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log Q
C

f 00.u/

.log Q/2

�
 2.Q

uI q; 1/� 2.Q
u/=�.q/

Qu=2
du: (3-10)

Proof. The main term in the expansion of D
1Iq
. yf / from Proposition 3.1 is

T1.q/ WD
f .0/

log Q

�
log q� log.8�e
 /�

X
pjq

log p

p� 1

�
: (3-11)

Using the antiderivative of log x is x log x � x, one easily finds its average over
Q=2< q �Q is

1

Q=2

X
Q<q�2Q

T1.q/

D
f .0/

log Q

�
log Q� 1� 
 � log.4�/�

X
p

log p

p.p� 1/

�
CO

�
1

Q

�
: (3-12)

We now turn to the lower-order term

T2.q/ WD �
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�
: (3-13)

Before determining its average behavior, we note that its size can vary greatly with
q. It is very small for prime q (so � D 1 and p D q in the sum), since

T2.q/ �
1

log Q

X
e�1

log q

�.q/qe=2
�

1

.q� 1/.q1=2� 1/
I (3-14)

however, it can be as large as C=.
p

q log Q/ for other values of q (such as q D

2.2e � 1/). This is, more or less, as large as it can get, since for general q we have

T2.q/ �
1

log Q

X
p�kq
e;��1

pe�Q�

log p

�.p�/.q=p�/1=2
�

.log q/1=2

q1=2 log log q
: (3-15)
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On average, however, T2.q/ is very small:

1

Q=2

X
Q=2<q�Q

T2.q/ �
1

Q

X
Q=2<q�Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

p�Ce=2

�
1

Q

X
p�

�;e�1

log p

p�Ce=2

X
q�Q
p� jq

q

p�
jpe�1

1�
1

Q

X
p�

�;e�1

log p

p�Ce=2
�.pe

� 1/

��
1

Q

X
p�

�;e�1

log p

p�C.1��/e=2
�

1

Q

X
p

log p

p3=2��=2
�

1

Q
: (3-16)

While we will not rewrite the next lower order term, it is instructive to determine
its size. Set

T3.q/ WD

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt: (3-17)

Letting t D 2�x= log Q, we find

T3.q/ D
2�

log Q

Z 1
0

f .0/�f .2�x=log Q/

2 sinh.�x/
dx: (3-18)

Since f is twice differentiable with compact support, jf .0/�f .x/j � jxj, thus

T3.q/ �
2�

log Q

Z 1
0

x

2 sinh.�x/
dx D

�

4 log Q
: (3-19)

As Z 1
0

xk dx

sinh.�x/
D

2kC1� 1

2k�kC1
�.kC 1/�.kC 1/; (3-20)

if f has a Taylor series of order KC 1 we have

T3.q/ D

KX
kD1

.2kC1� 1/�.kC 1/f .k/.0/

logkC1 Q
CO

�
1

logKC1 Q

�
: (3-21)

If the Taylor coefficients of f decay very fast, we can even make our bounds
uniform and get an error term smaller than a negative power of Q.

The remaining term from Proposition 3.1 is the most important, and controls
the allowable support. The arithmetic lives here, as this term involves primes in
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arithmetic progressions. It is

T4.q/ WD �
2

log Q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log Q

�

D �
2

log Q

Z 1
1

t�1=2f

�
log t

log Q

�
d

�
 .t I q; 1/�

 .t/

�.q/

�

D
2

log Q

Z 1
1

1
2
f
� log t

log Q

�
�

1
log Q

f 0
� log t

log Q

�
t3=2

�
 .t I q; 1/�

 .t/

�.q/

�
dt: (3-22)

The claim in the proposition follows by changing variables by setting t D Qu;
specifically, the final integral is

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (3-23)

We give an alternative expansion for the final integral. This expansion in-
volves a smoothed sum of ƒ.n/, which will be technically easier to analyze when
we turn to determining the allowable support under Montgomery’s hypothesis
(Theorem 2.13(1)). Recall

 2.xI q; a/ WD
X
n�x

n�a mod q

ƒ.n/
�
1�

n

x

�
;  2.x/ WD

X
n�x

ƒ.n/
�
1�

n

x

�
; (3-24)

We integrate by parts in (3-22). SinceZ x

1

�
 .t I q; 1/�

 .t/

�.q/

�
dt

D

Z x

1

� X
n�t

n�1 mod q

ƒ.n/�
1

�.q/

X
n�t

ƒ.n/

�
dt

D

X
n�x

n�1 mod q

ƒ.n/

Z x

n

dt �
1

�.q/

X
n�x

ƒ.n/

Z x

n

dt

D x

� X
n�x

n�1 mod q

ƒ.n/
�
1�

n

x

�
�

1

�.q/

X
n�x

ƒ.n/
�
1�

n

x

��
; (3-25)

we find

T4.q/ D �2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log Q
C

f 00.u/

.log Q/2

�
 2.Q

uI q; 1/� 2.Q
u/=�.q/

Qu=2
du;

(3-26)

completing the proof. �
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Remark 3.3. It will be convenient later that in the averaged case  and  2 are
both evaluated at .QuI q; 1/ and not .quI q; 1/; this is because we are rescaling
all L-function zeros by the same quantity (a global rescaling instead of a local
rescaling).

3C. Technical estimates. In the proof of Theorem 2.6, we need the following
estimation of a weighted sum of the reciprocal of the totient function.

Lemma 3.4. Let � be Euler’s totient function. We haveX
r�R

1

�.r/

�
R1=2

C
r

R1=2
� 2r1=2

�
DD1R1=2 log RCD2R1=2

CD3CO

�
log R

R1=2

�
; (3-27)

where

D1 WD
�.2/�.3/

�.6/
; D2 WD D1

�

 � 3�

X
p

log p

p2�pC 1

�
;

D3 WD �2�
�
i 1

2
i
�
i
Y
p

�
i1C

1

.p� 1/p1=2

�
: (3-28)

More generally, if P .u/ WD
Pd

iD0 aiu
i is a polynomial of degree d and of norm

kPk WD max
i
jai j; (3-29)

thenX
r�R

1

�.r/

Z 1

log r

log R

P .u/

�
Ru=2

�
r

Ru=2

�
du

D E1 log R

Z 1

�1

Ru=2uP .u/ duCE2

Z 1

�1

Ru=2P .u/ du

C

dC1X
jD1

Fj .P /

.log R/j
COd

�
R�1=2

kPk
�
; (3-30)

where

E1 WD
�.2/�.3/

�.6/
; E2 WD E1

�

 � 1�

X
p

log p

p2�pC 1

�
; (3-31)

and the Fj .P / are constants depending on P which can be computed explicitly.
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For example,

F1.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

� dX
iD0

.�1/iP .i/.1/

F2.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�

�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1

� dX
iD1

.�1/iP .i/.1/: (3-32)

Finally, X
r�R

1

�.r/

Z 1

log.r=2/

log.R=2/

P .u/

�
.R=2/u=2�

r

2.R=2/u=2

�
du

D E1 log.R=2/
Z 1

�1

.R=2/u=2uP .u/ du

C .E2CE1 log 2/

Z 1

�1

.R=2/u=2P .u/ du

C

dC1X
jD1

F
.2/
j .P /

.log.R=2//j
COd

�
R�1=2

kPk
�
; (3-33)

where the first two constants are given by

F
.2/
1
.P / WD

F1.P /
p

2

F
.2/
2
.P / WD �2

p
2�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�
�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1
C log 2

� dX
iD1

.�1/iP .i/.1/: (3-34)

Remark 3.5. It is possible to improve the estimates in (3-27), (3-30) and (3-33)
to ones with an error term of O�;d .R

�5=4C�kPk/; however, this is not needed for
our purposes.

Proof. By Mellin inversion, for c � 2 the left-hand side of (3-27) equals

1

2� i

Z
<.s/Dc

Z.s/

�
RsC1=2

s
C

RsC1=2

sC 1
� 2

RsC1=2

sC 1
2

�
ds

D
1

2� i

Z
<.s/Dc

Z.s/
RsC1=2

2s.sC 1
2
/.sC 1/

ds; (3-35)
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where

Z.s/ WD
X
n�1

1

ns�.n/
: (3-36)

Taking Euler products,

Z.s/ D �.sC 1/�.sC 2/Z2.s/; (3-37)

where

Z2.s/ WD
Y
p

�
1C

1

p.p� 1/

�
1

psC1
�

1

p2sC2

��
; (3-38)

which converges for <.s/ > �3
2

. We shift the contour of integration to the left to
the line <.s/ D �3=2C �. By a standard residue calculation, we get that (3-35)
equals

D1R1=2 log RCD2R1=2
CD3CD4

log R

R1=2
C

D
5

R1=2

C
1

2� i

Z
<.s/D� 3

2
C�

Z.s/
RsC1=2

2s.sC 1=2/.sC 1/
ds (3-39)

for some constants D
4

and D
5
. The proof now follows from standard bounds on

the zeta function, which show that this integral is �� R�1C�. See the proof of
[Fiorilli 2012, Lemma 6.9] for more details.

We now move to (3-30). The Mellin transform in this case is (for <.s/ > 0)

˛.s/ WD

Z R

0

r s�1

Z 1

log r

log R

P .u/

�
Ru=2

�
r

Ru=2

�
du dr

D

Z 1

�1

P .u/

Z Ru

0

r s�1

�
Ru=2

�
r

Ru=2

�
dr du

D

Z 1

�1

P .u/
Ru.sC1=2/

s.sC 1/
du; (3-40)

which is now defined for <.s/ >�1
2

. To meromorphically extend ˛.s/ to the whole
complex plane, we integrate by parts n times:

˛.s/ D
RsC1=2

s.sC 1/

nX
iD0

.�1/iP .i/.1/

.sC 1=2/iC1.log R/iC1
; (3-41)

which is a meromorphic function with poles at the points s D 0;�1
2
;�1. The

integral we need to compute is

1

2� i

Z
<.s/D1

Z.s/˛.s/ ds: (3-42)
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We remark that

˛.�3
2
C �C i t/ ��;d

R�1C�

t3
kPk; (3-43)

hence the proof is similar as in the previous case, since by shifting the contour of
integration to the left, we have

1

2� i

Z
<.s/D1

Z.s/˛.s/ ds D ACO�;d
�
R�1C�

kPk
�
; (3-44)

where A is the sum of the residues of Z.s/˛.s/ for �3
2
C � �<.s/� 2. Note that

if ˇ.s/ WD s.sC 1/˛.s/, then

ˇ.0/ D

Z 1

�1

Ru=2P .u/ du; ˇ0.0/ D log R

Z 1

�1

Ru=2uP .u/ du; (3-45)

so the residue at s D 0 equals

�.2/�.3/

�.6/
ˇ.0/

�
ˇ0

ˇ
.0/C 
 � 1�

X
p

log p

p2�pC 1

�
: (3-46)

For the pole at s D�1
2

, we need to use the analytic continuation of ˛.s/ provided
in (3-41), which shows that this residue equals

nC1X
jD1

Fj .P /

.log R/j
; (3-47)

where the Fj .P / are constants depending on P which can be computed explicitly.
For example,

F1.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

� dX
iD0

.�1/iP .i/.1/

F2.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�
�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1

� dX
iD1

.�1/iP .i/.1/: (3-48)

Moreover, Fi.P /�d kPk for all i .
At s D�1, we have a double pole with residue

R�1=2
nC1X
jD0

Gj .P /

.log R/j
; (3-49)

for some constants Gj .P /�d kPk, hence the proof of (3-30) is complete.
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For the proof of (3-33), we proceed in the same way, noting that the Mellin
transform is

˛2.s/ D
2s

s.sC 1/

Z 1

�1

P .u/.R=2/u.sC1=2/ du; (3-50)

which completes the proof of Lemma 3.4. �

4. Unconditional results (Theorems 2.1 and 2.3)

Using the expansion for the 1-level density D
1;q
. yf / and the averaged 1-level density

D
1IQ=2;Q

. yf / from Propositions 3.1 and 3.2, we prove our unconditional results.

Proof of Theorem 2.1. We start from Proposition 3.1. The only term of (3-1) we
need to understand is the last one (the “prime sum”), which is given by

T4.q/ WD 2

Z 1

0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (4-1)

(We used that the support of f is contained in Œ�1; 1� and we made the substitution
t D qu.) However, since there are no integers congruent to 1 mod q in the interval
Œ2; qu� when u� 1 (this is also true when qu is replaced by Qu, with Q=2< q�Q),
the .quI q; 1/ term equals zero. By the Prime Number Theorem there is an absolute,
computable constant c > 0 such that

T4.q/ D �2

Z 1

0

�
f .u/

2
�
f 0.u/

log q

�
 .qu/

qu=2�.q/
du

D �
2

�.q/

Z 1

0

qu=2

�
f .u/

2
�
f 0.u/

log q

�
du

CO

�
1

�.q/

Z �

0

qu=2

ec
p

u log q
du

�
; (4-2)

and the error term is

�
q�=4

�.q/

Z �=2

0

e�c
p

u log q duC
e�c
p
.�=2/ log q

�.q/

Z �

�=2

qu=2 du �
q�=2�1

ec0
p
� log q

(4-3)

for q large enough (in terms of � ), completing the proof. �

Proof of Theorem 2.3. Starting again from (3-1), we have from (3-15)

�
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�
�

.log q/1=2

q1=2 log log q
I (4-4)
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hence this goes in the error term and the only term we need to worry about is the
last one.

As our support exceeds Œ�1; 1�, the  .quI q; 1/ no longer trivially vanishes, and
the last term is

T4.q/ D 2

Z 2

0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (4-5)

In the proof of Theorem 2.1 above we showed that the contribution from the integral
where 0� u� 1 is O.q�1=2/.

For any fixed � >0, trivial bounds for the region 1�u�1C� yield a contribution
that is

�

Z 1C�

1

.u log q/qu=2�1 du � q�1=2C�: (4-6)

We use the Brun–Titchmarsh Theorem (see [Montgomery and Vaughan 1973])
for the region where 1C � � u� 2, which asserts that for q < x,

�.xI q; a/ �
2x

�.q/ log.x=q/
: (4-7)

We first bound the contribution from prime powers as follows. First there are at
most 2e!.q/ residue classes b mod q such that be � 1 mod q, and so using that
!.q/� log q= log log q we computeX

e�2

X
p�x1=e

pe�1 mod q

log p�
X

2�e� 2
�

e!.q/ max
b mod q

 X
p�x1=e

p�b mod q

log p

!
C

X
2
�
�e�2 log x

X
p�x1=e

log p

�

X
2�e� 2

�

e!.q/
�
1C

x1=e

q

�
log xC

X
2
�
�e�2 log x

x1=e

�

�
2

�

�!.q/C1
�

1C
x1=2

q

�
log xCx�=2 log x

�� x�
�
1C

x1=2

q

�
; (4-8)

provided q is large enough in terms of �.
Thus, for 1C � � u� 2, we have

 .qu
I q; 1/ ��

qu�1 log.qu/ log log q

.u� 1/ log q
C q�C qu=2�1C�

�� qu�1 log log q;

(4-9)
which bounds the integral from 1C � to � by

�

Z �

1C�

qu=2�1 log log q du �
log log q

log q
q�=2�1; (4-10)
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completing the proof. �

5. Results under GRH (Theorems 1.2 and 2.6)

In this section we assume GRH (but none of the stronger results about the distri-
bution of primes among residue classes) and prove Theorems 1.2 and 2.6. The
main ingredient in the proofs are the results of [Fouvry 1985; Bombieri et al.
1986; Friedlander and Granville 1992; Fiorilli 2012]. The following is the needed
conditional version.

Theorem 5.1. Assume GRH. Fix an integer a¤0 and �>0. For M DM.x/�x1=4,
we haveX

x
2M

<q� x
M

.q;a/D1

�
 .xI q; a/�ƒ.a/�

 .x/

�.q/

�

D
�.a/

a

x

2M
�0.a;M /COa;�

�
x

M 3=2��
C
p

xM.log x/2
�
; (5-1)

where

�0.a;M / WD

8̂<̂
:
�

1
2

log M � 1
2
C6 if aD˙1

�
1
2

log p if aD˙pe

0 otherwise,

(5-2)

with

C6 WD log� C 1C 
 C
X
p

log p

p.p� 1/
: (5-3)

Proof. See [Fiorilli 2012, Remark 1.5]. Note that the restriction M Do.x1=4= log x/

is required for the error term to be negligible compared to the main term, but it can
be changed to M � x1=4. �

We now proceed to prove Theorems 1.2 and 2.6. Note that by the averaged
1-level density (Proposition 3.2), the proof is completed by analyzing the average
of T4.q/:

1

Q=2

X
Q=2<q�Q

T4.q/

D 2

Z �

0

�
f .u/

2
�
f 0.u/

log Q

�
1

Q=2

X
Q=2<q�Q

 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (5-4)

We break the integral into regions and bound each separately. Going through
the proof of Theorem 2.1 and applying GRH, we see that the contribution to the
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integral from u 2 Œ0; 1� equals

�
4 log 2

Q

�.2/�.3/

�.6/

Z 1

0

Qu=2

�
f .u/

2
�
f 0.u/

log Q

�
duCO

�
log2 Q

Q

�
: (5-5)

We now analyze the three cases of the theorem, corresponding to different support
restrictions for our test function.

Proof of Theorem 2.6 (2). To prove (2-10), we need to understand the part of the
integral in (5-4) with a � u � 2. Arguing as in [Friedlander and Granville 1992]
(see also the proof of [Fiorilli 2012, Proposition 6.1]), we have, for x1=2 �Q� x,

X
Q=2<q�Q

�
 .xI q; 1/�

 .x/

�.q/

�
� Q .log.x=Q/C 1/C

x3=2.log x/2

Q
: (5-6)

The basic idea to obtain this last estimate is to writeX
Q=2<q�Q

 .xI q; 1/D
X
n�x

n�1Dqr
Q=2<q�Q

ƒ.n/;

and to turn this into a sum over r � 2.x� 1/=Q of the function

 .xI r; 1/� .rQ=2C 1I r; 1/:

One then applies GRH and estimates the resulting sum over r using estimates on
the summatory function of 1=�.r/. Applying (5-6), the part of the integral in (5-4)
with a� u� 2 is

�

Z �

a

�
Q�u=2.log.Qu�1/C 1/CQu�2.log.Qu//2

�
du

� Q�a=2
CQ��2 log Q;

(5-7)

�

Proof of Theorem 2.6 (1). We need to study the part of the integral in (5-4) with
1C� � u� 3

2
. We first see that by (5-7), the part of the integral with 4

3
� u� 3

2
is

� Q�2=3
CQ��2 log Q: (5-8)

We turn to the part of the integral with 1C � � u� 4
3

. We have by Theorem 5.1
(setting x WDQu and M WDQu�1) that it is
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D 2

Z 4=3

1C�

�
f .u/

2
�
f 0.u/

log Q

�
Q�u=2

�
�

1
2

log.Qu�1/� 1
2
C6

CO�
�
Q

1�u
2
.1��/

CQ
3
2

u�2.log Qu/2
��

du

D �

Z 4=3

1C�

�
.u� 1/ log QCC6

�
Q�u=2

�
f .u/

2
�
f 0.u/

log Q

�
du

CO�

�
Q�1=2��.1��/

log Q
CQ�2=3 log Q

�
I (5-9)

hence (2-9) holds. �

Proof of Theorem 1.2. We now turn to (1-5), with f supported in .�3
2
; 3

2
/. Set

� WD
A log log Q

log Q
;

with A� 1 a constant. As the big-O constant in (5-9) is independent of �, we may
use (5-9) to estimate the contribution to (5-4) from u 2 Œ1C �; 4=3�. This part of
the integral contributes

�

Z 4=3

1C�

�
.u� 1/ log QCC6

�
Q�u=2

�
f .u/

2
�
f 0.u/

log Q

�
du

CO�

�
Q�1=2

.log Q/A.1��/C1

�
�

Q�1=2

.log Q/A=2
: (5-10)

The part of the integral with 4
3
� u � 3

2
was already shown to be � Q�2=3 C

Q��2 log Q, and hence is absorbed into the error term since � < 3
2

.
We now come to the heart of the argument, the part of the integral where

1 � u � 1C �. Since f 2 C 2.R/, we have that in our range of u, the function
g.u/ WD 1

2
f .u/�f 0.u/=log Q satisfies

g.u/ D
f .1/

2
C
f 0.1/

2
.u� 1/CO

�
.u� 1/2

�
�
f 0.1/

log Q
CO

�
u� 1

log Q

�
D P .u� 1/CO

�
.log log Q/2

.log Q/2

�
; (5-11)

where

P .u/ WD
f .1/

2
�
f 0.1/

log Q
C
f 0.1/

2
u:

At this point, if f were C K .R/, we could take its Taylor expansion and get an error
of

O�;A
�
.log log Q/K=.log Q/K

�
:



42 Daniel Fiorilli and Steven J. Miller

We cannot apply Theorem 5.1 directly since the error term is not got enough
for moderate values of M . Instead, we argue as in the proof of [Fiorilli 2012,
Proposition 6.1]. Slightly modifying the proof and using GRH, we get

X
Q=2<q�Q

�
 .xI q; a/�

 .x/

�.q/

�

D x

�
�C1�

X
r<x�1

Q

1

�.r/

�
1�

r

x=Q

�
C

X
r<x�1

Q=2

1

�.r/

�
1�

r

2x=Q

��

CO�

�
x3=2C�=2

Q

�
; (5-12)

with

C1 WD
�.2/�.3/

�.6/
log 2: (5-13)

(We used that
P

Q=2<q�Q D
P

Q=2<q�x �
P

Q<q�x , as in the proof of [Fiorilli
2013, Theorem 4.1*].) The contribution of the error term in (5-12) to the part of
the integral in (5-4) with 1� u� 1C � is (remember � log QDA log log Q)

�

Z 1C�

1

1

Q=2

Q3u=2C�u=2=Q

Qu=2
du �� Q�1C�: (5-14)

Therefore, all that remains to complete the proof of Theorem 1.2 it to estimate
the contribution to (5-4) from u 2 Œ1; 1C ��. Using [Fiorilli 2012, Lemma 5.9] to
bound the error in replacing g.u/ with P .u� 1/, we find

2

Z 1C�

1

g.u/
Qu=2

Q=2

�
�C1�

X
r<Qu�1

Q

1

�.r/

�
1�

r

Qu�1

�
C

X
r<Qu�1

Q=2

1

�.r/

�
1�

r

2Qu�1

��
du

D 4

Z 1C�

1

P .u� 1/Qu=2�1�
�C1�

X
r�Qu�1

Q

1

�.r/

�
1�

r

Qu�1

�
C

X
r�Qu�1

Q=2

1

�.r/

�
1�

r

2Qu�1

��
du

CO

�
Q�1=2.log log Q/2

.log Q/3

�
I (5-15)

we changed r < � � � to r � � � � in the sums above, which gives a negligible error
term.
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Setting R WDQ� � 1=Q, we compute that

Z 1C�

1

P .u� 1/Q
u
2
�1

X
r�Qu�1

Q

1

�.r/

�
1�

r

Qu�1

�
du

D
1

Q

X
r�Q�� 1

Q

1

�.r/

Z 1C�

1C
log.rCQ�1/

log Q

P .u� 1/

�
Qu=2

�
r

Qu=2�1

�
du

D
1

Q

X
r�R

1

�.r/

Z 1C�

1C�
log r

log R

P .u� 1/

�
Qu=2

�
r

Qu=2�1

�
duCO�

�
Q�3=2C�

�
;

the error term coming from the fact that we replaced log.r C Q�1/ by log r .
Performing two changes of variables, we obtain that this is

D Q�1=2
X
r�R

1

�.r/

Z �

�
log r

log R

P .u/

�
Qu=2

�
r

Qu=2

�
duCO�

�
Q�3=2C�

�
D Q�1=2

X
r�R

1

�.r/

Z 1

log r

log R

�P .�v/

�
Rv=2

�
r

Rv=2

�
dvCO�

�
Q�3=2C�

�
: (5-16)

Let

F1 WD �4�.1
2
/
Y
p

�
1C

1

.p� 1/p1=2

�
;

F2 WD F1

�
�0

�
.1

2
/�

X
p

log p

.p� 1/p1=2C 1

�
: (5-17)

By Lemma 3.4, we find that (5-16) equals

�

Q1=2

�
E1 log R

Z 1

�1

Ru=2vP .�v/ dvCE2

Z 1

�1

Rv=2P .�v/ dv

CF1

P .�/� �P 0.�/

log R
CF2

��P 0.�/

.log R/2
CO

�
R�1=2

��

D Q�1=2

�
E1 log Q

Z �

�1

Qu=2uP .u/ duCE2

Z �

�1

Qu=2P .u/ du

CF1

f .1/
2
�
f 0.1/
log Q

log Q
�F2

f 0.1/

2.log Q/2
CO

�
R�1=2

��
: (5-18)
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We obtain in an analogous way with R WD 2Q� � 2=Q that

Z 1C�

1

P .u� 1/Qu=2�1
X

r�2 Qu�1
Q

1

�.r/

�
1�

r

2Qu�1

�
du

D Q�1=2
X
r�R

1

�.r/

Z 1

log.r=2/

log.R=2/

�P .�v/

�
.R=2/v=2�

r

2.R=2/v=2

�
dv

CO�
�
Q�3=2C�

�
; (5-19)

which by Lemma 3.4 is

D
�

Q1=2

�
E1 log.R=2/

Z 1

�1

.R=2/v=2vP .�v/ dv

C .E2CE1 log 2/

Z 1

�1

.R=2/v=2P .�v/ dv

C

nX
jD1

F
.2/
j

.log.R=2//j
CO

�
R�1=2

��

D Q�1=2

�
E1 log Q

Z �

�1

Qu=2uP .u/ du

C .E2CE1 log 2/

Z �

�1

Qu=2P .u/ dvC
F1
p

2

f .1/
2
�
f 0.1/
log Q

log Q

�
F2CF1 log 2

p
2

f 0.1/

2.log Q/2
CO

�
R�1=2

��
: (5-20)

We now substitute (5-18) and (5-20) in (5-15), to get that (5-15) is (notice the
remarkable cancellations)

D �4C1

Z 1C�

1

P .u�1/Qu=2�1 duC4E1 log 2Q�1=2

Z �

�1

Qu=2P .u/ du

C 4Q�1=2

�
�F1

f .1/
2
�
f 0.1/
log Q

log Q
CF2

f 0.1/

2.log Q/2

C
F1
p

2

f .1/
2
�
f 0.1/
log Q

log Q
�

F2CF1 log 2
p

2

f 0.1/

2.log Q/2

�

CO

�
Q�1=2 .log log Q/2

.log Q/3
C

Q�
1
2

.log Q/A=2

�
; (5-21)
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which by (3-31) and (5-13) is

D 4 log 2
�.2/�.3/

�.6/

Z 1

�1

P .u� 1/Qu=2�1 du

C .2�
p

2/Q�1=2

�
�F1

f .1/

log Q
C

�
F2�

p
2C4

3
F1

�
f 0.1/

.log Q/2

�
CO

�
Q�1=2 .log log Q/2

.log Q/3
C

Q�1=2

.log Q/A=2

�
: (5-22)

But, yet another cancellation is coming: we haveZ 1

�1

P .u� 1/Qu=2�1 du

D

Z 1

�1

g.u/Qu=2�1 duCO

�
Q�1=2 .log log Q/2

.log Q/3

�
; (5-23)

and so by (5-5) this term cancels (up to the error term O.Q�1/) with the part of
the integral of T4.Q/ with u� 1 (which is coming from a totally different part of
the problem, where there are no primes in arithmetic progressions involved)!

Combining all the terms,

1

Q=2

X
Q=2<q�Q

T4.Q/

D .2�
p

2/Q�1=2

�
�F1

f .1/

log Q
C

�
F2�

p
2C4

3
F1

�
f 0.1/

.log Q/2

�
CO

�
Q�1=2

.log Q/A=2
CQ�1=2 .log log Q/2

.log Q/3

�
: (5-24)

The proof is completed by taking AD 6. �

6. Results under de-averaging hypothesis (Theorem 2.8)

In this section we assume the de-averaging hypothesis (Hypothesis 2.7), which
relates the variance in the distribution of primes congruent to 1 to the average
variance over all residue classes. Explicitly, we assume (2-13) holds for some
ı 2 .0; 1�, and show how this allows us to compute the main term in the averaged
1-level density, D

1IQ=2;Q
. yf /, for test functions f supported in Œ�4C 2ı; 4� 2ı�.

(Remember that this hypothesis is trivially true for ı D 1, and expected to hold for
any ı > 0.)

Proof of Theorem 2.8. Starting from (3-23), we have

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (6-1)
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Feeding this into Proposition 3.2, we are left with determining

1

Q=2

X
Q=2<q�Q

T4.q/

D
1

Q=2

Z �

0

�
f .u/

2
�
f 0.u/

log Q

�
Q�u=2

X
Q=2<q�Q

�
 .Qu

I q; 1/�
 .Qu/

�.q/

�
du: (6-2)

We have already seen in the proof of Theorem 2.1 that the part of the integral in
(6-2) with 0� u� 1 is O.Q�1=2/. For the part where u� 1, the Cauchy–Schwarz
inequality shows that its contribution to the integral in (6-2) is

�
1

Q=2

Z �

1

Q�u=2

ˇ̌̌̌
ˇ X
Q=2<q�Q

�
 .Qu

I q; 1/�
 .Qu/

�.q/

�2
ˇ̌̌̌
ˇ
1=2 ˇ̌̌̌

ˇ X
Q=2<q�Q

12

ˇ̌̌̌
ˇ
1=2

du:

(6-3)
Now, by Hypothesis 2.7, this is

�
1

Q=2

Z �

1

Q�u=2Q.ı�1/=2

�

� X
Q=2<q�Q

X
1�a�q
.a;q/D1

�
 .Qu

I q; a/�
 .Qu/

�.q/

�2 �1=2

Q1=2 du: (6-4)

We now use a result in [Goldston and Vaughan 1997], which states that under GRH
we have for 1�Q� x that

X
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

DQx log Q�cxQCO�
�
Q2.x=Q/1=4C�Cx3=2.log 2x/5=2.log log 3x/2

�
; (6-5)

where

c WD 
 C log 2� C 1C
X
p

log p

p.p� 1/
:

We now split the range of integration into the two subintervals 1 � u � 2

and 2 � u � � . In the first range, we have, for � > 0 small enough, uC 1 �

max.7
4
C

1
4
uC �.u� 1/; 3

2
u/, so (6-5) implies that

X
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

� Qx.log x/3 (6-6)
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(which, up to x� , follows from the original result in [Hooley 1975]), so we get that
the part of (6-4) with 1� u� 2 is

� Qı=2�1

Z 2

1

Q�u=2Q.uC1/=2.log Q/3=2 du � Q.ı�1/=2.log Q/3=2; (6-7)

which is o.1/ if ı < 1.
We now examine the second interval, that is 2 � u � � . In this range, (6-5)

becomesX
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

� x3=2.log x/5=2.log log x/2 (6-8)

(which, up to a factor of x�, follows from Hooley’s original result). We thus get
that the part of (6-4) with 2� u� � is

�
Qı=2

Q=2

Z �

2

Q�u=2Q3u=4.u log Q/5=4 log log.Qu/ du

� Q.�C2ı/=4�1.log Q/1=4 log log Q: (6-9)

If � < 4� 2ı then the above is o.1/, completing the proof. �

7. Results under Montgomery’s hypothesis (Theorem 2.13)

We continue our investigations beyond the GRH, and assume a smoothed version of
Montgomery’s hypothesis, Hypothesis 2.12. Interestingly, this assumption allows
us to compute the main term of the 1-level density, D

1Iq
. yf /, for test functions of

arbitrarily large (but finite) support. While similar results have been previously
observed [Miller and Sarnak 2003], we include a proof both for completeness and
because these observations are not in the literature.

Proof of Theorem 2.13. As we are fixing the modulus, we take Q WD q. By the
explicit formula from Proposition 3.1, we have

D1Iq.
yf / D

f .0/

log q

�
log q� log.8�e
 /�

X
pjq

log p

p� 1

�

C

Z 1
0

f .0/�f .t/

qt=2� q�t=2
dt

�
2

log q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log q

�
CO

�
1

�.q/

�
: (7-1)

Let � WD sup.suppf / <1. We proved in Section 4 that the only terms that are
not O.1= log q/ are the leading term f .0/ and possibly the prime sum, which we
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now study. We have

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (7-2)

In the proof of Theorem 2.1 we determined that the part of the integral with
0� u� 1 is O.q�1=2/. From the proof of Theorem 2.3, the part with 1� u� 2 is
O.log log q=log q/.

Proof of (1). For the rest of the integral, we use Hypothesis 2.12. Note that u� 2,
so xD qu � q2 with u� � , hence we can replace ox!1 by oq!1. An integration
by parts gives that the rest of the integral is

D 0�

�
f .2/

2
�
f 0.2/

log q

�
 2.q

2I q; 1/� 2.q
2/=�.q/

q

� 2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log q
C

f 00.u/

.log q/2

�
 2.q

uI q; 1/� 2.q
u/=�.q/

qu=2
du

D
o.q/

q
C

Z �

2

�
jf .u/jC jf 0.u/jC jf 00.u/j

�o.qu=2/

qu=2
duD o.1/; (7-3)

proving the claim. Note that we are using the smoothed version of the prime sum.

Proof of (2). We already know that the part of the integral with 0�u�1 is�q�1=2.
Taking � WD �0=� in Hypothesis 2.11, the rest of the integral is O

�R �
1 q�u�� du

�
,

which is O
�
q�
0��
�

and thus negligible if we may take � > 0. �
Remark 7.1. Depending on our assumptions about the size of the error term in the
distribution of primes in residue classes, we may allow � to grow with Q at various
explicit rates.
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Eisenstein Hecke algebras
and conjectures in Iwasawa theory

Preston Wake

We formulate a weak Gorenstein property for the Eisenstein component of the
p-adic Hecke algebra associated to modular forms. We show that this weak
Gorenstein property holds if and only if a weak form of Sharifi’s conjecture and a
weak form of Greenberg’s conjecture hold.

1. Introduction

In this paper, we study the relationship between the Iwasawa theory of cyclotomic
fields and certain ring-theoretic properties of the Hecke algebra acting on modular
forms. This continues work started in our previous paper [Wake 2013].

The philosophy of our work is that simplicity of the Iwasawa theory should
correspond to simplicity of Hecke algebras. This philosophy comes from remarkable
conjectures formulated by Sharifi [2011].

In [Wake 2013], we showed, under some assumptions, that if the Hecke algebra
for modular forms is Gorenstein, then the plus part of the corresponding ideal class
group is zero. In particular, we gave an example to show that this Hecke algebra is
not always Gorenstein.

Since the Hecke algebra is not always Gorenstein, it is natural to ask if there is a
weaker ring-theoretic property that we can expect the Hecke algebra to have. In
the present work, we formulate such a weaker property based on whether certain
localizations of the Hecke algebra are Gorenstein. In a vague sense, we think of
this condition as something like “the obstructions to Gorenstein-ness are finite”.

We show that this weak Gorenstein property holds if and only if a weak form
of Sharifi’s conjecture and a weak form of Greenberg’s conjecture both hold. In
particular, the weak Gorenstein property holds in every known example.

We make a few remarks before stating our results more precisely.

Notation. In order to state our results more precisely, we introduce some notation,
coinciding with that of [Wake 2013].

MSC2010: primary 11R23; secondary 11F33.
Keywords: Iwasawa theory, Hecke algebra, Gorenstein, Eisenstein, Sharifi’s conjecture, Greenberg

conjecture.
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Let p ≥ 5 be a prime, and let N be an integer such that p - ϕ(N ) and p - N .
Let θ : (Z/N pZ)× → Q

×

p be an even character and let χ = ω−1θ , where ω :
(Z/N pZ)×→ (Z/pZ)×→ Z×p denotes the Teichmüller character. We assume that
θ satisfies the same conditions as in [Fukaya and Kato 2012] — namely that (1) θ
is primitive, (2) if χ |(Z/pZ)× = 1, then χ |(Z/NZ)×(p) 6= 1, and (3) if N = 1, then
θ 6= ω2.

A subscript θ or χ will denote the eigenspace for that character for the (Z/N pZ)×-
action (see Section 1C).

Let 3=Zp[[Z
×

p,N ]]θ be the Iwasawa algebra, where Z×p,N =Z×p ×(Z/NZ)×. Let
m3 be the maximal ideal of 3.

Let H (resp. h) be the θ -Eisenstein component of the Hecke algebra for 3-adic
modular forms (resp. cusp forms). Let I (resp. I ) be the Eisenstein ideal of H
(resp. h), and let IH ⊃ I be the preimage of I in H. Let H be the cohomology
group on which h acts (see Section 3A).

Let Q∞=Q(ζN p∞); let M be the maximal abelian p-extension of Q∞ unramified
outside N p, and let L be the maximal abelian p-extension of Q∞ unramified
everywhere. Let X= Gal(M/Q∞) and X = Gal(L/Q∞).

1A. Statement of results.

1A1. Weakly Gorenstein Hecke algebras. We define what it means for the Hecke
algebras h and H to be weakly Gorenstein. In the case of h, the definition comes
from a condition that appears in work of Fukaya and Kato [2012, Section 7.2.10]
on Sharifi’s conjecture, and is related to a condition that appears in [Sharifi 2007].

Definition 1.1. We say that h is weakly Gorenstein if hp is Gorenstein for every
prime ideal p ∈ Spec(h) of height 1 such that I ⊂ p.

We say that H is weakly Gorenstein if Hp is Gorenstein for every prime ideal
p ∈ Spec(H) of height 1 such that IH ⊂ p.

In general, neither the algebra h nor the algebra H is Gorenstein. However, we
conjecture that they are both weakly Gorenstein:

Conjecture 1.2. The Hecke algebras h and H are weakly Gorenstein.

1A2. Relation to ideal class groups. These ring-theoretic properties of Hecke
algebras are related to ideal class groups via Sharifi’s conjecture [2011]. Sharifi has
constructed a map

ϒ : Xχ (1)→ H−/I H−

which he conjectures to be an isomorphism.
A weaker conjecture is that ϒ is a pseudoisomorphism — recall that a morphism

of 3-modules is called a pseudoisomorphism if its kernel and cokernel are both
finite. If ϒ is a pseudoisomorphism, then h is weakly Gorenstein if and only Xχ
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is pseudocyclic (see Section 5A below). We have the following analogous result
for H. In the statement of the theorem, ξχ is a characteristic power series for Xχ (1)
as a 3-module.

Theorem 1.3. Consider the following conditions:

(1) H is weakly Gorenstein.

(2) coker(ϒ) is finite.

(3) Xθ/ξχ Xθ is finite.

Condition (1) holds if and only if conditions (2) and (3) both hold.

Remark 1.4. Note that if Xχ = 0, then all three conditions hold trivially. Indeed,
if Xχ = 0, then H=3, the domain and codomain of ϒ are 0, and ξχ is a unit (see
[Wake 2013, Remark 1.3]).

Remark 1.5. The conditions (2) and (3) are conjectured to hold in general (see
Section 1B). In particular, they hold in all known examples.

Remark 1.6. Condition (2) is equivalent to the condition that ϒ is an injective
pseudoisomorphism (see Proposition 7.4).

Remark 1.7. Condition (3) is strange: ξχ is the opposite of the usual p-adic zeta
function that is related to Xθ . That is, Xθ is annihilated by ξχ−1 , and not (at least
not for any obvious reason) by ξχ .

The proof of Theorem 1.3 will be given in Section 7.

1A3. Strong and weak versions of Sharifi’s conjecture. One consequence of Shar-
ifi’s conjecture is that Xχ (1) ∼= H−/I H− as 3-modules. Since Xχ has no p-
torsion, this would imply that H−/I H− has no p-torsion, which Sharifi [2011,
Remark, p. 51] explicitly conjectured.

A theorem of Ohta implies that if H is Gorenstein, then Xχ (1) ∼= H−/I H−

(see Theorem 5.11 below). Moreover, Ohta also proves that H is Gorenstein
under a certain hypothesis ([Ohta 2007, Theorem I], for example). Sharifi [2011,
Proposition 4.10] used this as evidence for his conjecture.

Since it is now known that H is not always Gorenstein [Wake 2013, Corollary 1.4],
one may wonder if Sharifi’s conjecture should be weakened to the statement “ϒ is
a pseudoisomorphism” (see Conjecture 4.2 below). Fukaya and Kato [2012] have
partial results on this version of the conjecture. When neither h nor H is Gorenstein,
we know of no evidence for Sharifi’s conjecture that ϒ is an isomorphism (and not
just a pseudoisomorphism); we hope that our next result can be used to provide
evidence. This result concerns a module H−/I H̃−DM. As explained in Section 5,
H−/I H̃−DM measures how much the ring H is “not Gorenstein”.
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For a finitely generated 3-module M , let

dm3(M)= dim3/m3(M/m3M).

Note that dm3(M) is the minimal number of generators of M as a 3-module.

Theorem 1.8. Assume that Xθ 6= 0 and that h is weakly Gorenstein. Then we have

dm3(H
−/I H̃−DM)≥ dm3(Xχ ),

with equality if and only if ϒ is an isomorphism.
If , in addition, #(Xθ )= #(3/m3), then ϒ is an isomorphism if and only if

#(H−/I H̃−DM)= #(3/m3)dm3(Xχ ).

This theorem may be used to provide evidence for Sharifi’s conjecture that
ϒ is an isomorphism in two ways. The first way is philosophical: although the
ring H is not always Gorenstein, we may like to believe that H is “as close to being
Gorenstein as possible”. This translates to the belief that H−/I H̃−DM is as small as
possible; the theorem says that H−/I H̃−DM is smallest when ϒ is an isomorphism.

The second way is a method for providing computational evidence: Theorem 1.8
may allow one to compute examples where ϒ is an isomorphism but where H

is not Gorenstein. We now outline a scheme for doing this. First, one finds an
imaginary quadratic field with noncyclic p-class group; this provides a character χ
of order 2 such that Xθ 6= 0 and such that H is not Gorenstein (see [Wake 2013,
Corollary 1.4]). However, h will be weakly Gorenstein by Lemma 5.8 below (or
else we have found a counterexample to a famous conjecture!). The assumptions
for Theorem 1.8 are then satisfied. Then, if one can compute H−/I H̃−DM and Xχ
sufficiently well, one can verify that dm3(H

−/I H̃−DM)= dm3(Xχ ).
The proof of Theorem 1.8 will be given in Section 8.

1B. Relation to known results and conjectures. Our results are related to previous
results and conjectures of various authors, including Fukaya and Kato, Greenberg,
Ohta, Sharifi, Skinner and Wiles and the present author. In the main text, we try
to survey these results and conjectures. However, since this is an area with many
conjectures, and many of the results are about the interrelation of the conjectures
or proofs of special cases of the conjectures, the reader may find it difficult to see
what is known, what is unknown, and what exactly is conjectured.

In this section, we try to write down the conjectures and results in a compact but
clear fashion. This involves creating an unorthodox naming convention, which we
hope will aid in understanding the connections between the statements. The reader
may wish to skip this section, and use it as a reference when reading the main text.
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1B1. Naming convention. We use C(Y) to denote a conjecture about Y, Q(Y) to
denote a question about Y (a statement that is not conjectured to be true or false),
and A(Y) to denote an assumption about Y (a statement that is known to be false in
general).

Numbered statement are listed in increasing order of logical strength. For exam-
ple, Q(Y II) is a questionable statement about Y that implies C(Y I), a conjectural
statement about Y.

1B2. Finiteness conditions. We consider the following statements about finiteness
and cyclicity of class groups:

C(Fin I): Xθ/ξχ Xθ is finite.
C(Fin II): Xθ is finite.

A(Fin III): Xθ = 0.
A(Fin IV): Xθ = 0.
C(Cyc I): Xθ ⊗Zp Qp is cyclic as a 3⊗Zp Qp-module.

A(Cyc II): Xθ is cyclic as a 3-module.
C(Cyc’ I): Xχ ⊗Zp Qp is cyclic as a Zp[[Z

×

p,N ]]χ ⊗Zp Qp-module.
A(Cyc’ II): Xχ is cyclic as a Zp[[Z

×

p,N ]]χ -module.

There are implications A(Fin III) =⇒ A(Cyc II) and C(Fin II) =⇒ C(Cyc I). In the
case N = 1, A(Fin III) is actually a conjecture, known as the Kummer–Vandiver
conjecture. The conjectures C(Fin II), C(Cyc I) and C(Cyc’ I) are due to Greenberg
[2001, Conjecture 3.5]. Note that there is no relation between the conjectures
C(Cyc’ I) and C(Cyc I) for our fixed choices of χ and θ (the modules are not
adjoint — see Proposition 2.2).

As far as we know, the conjecture C(Fin I) has never been considered before.

1B3. Gorenstein conditions. We consider the following statements about Hecke
algebras:

C(h I): h is weakly Gorenstein.
A(h II): h is Gorenstein.
C(H I): H is weakly Gorenstein.

A(H II): H is Gorenstein.

The fact that h is not always Gorenstein is can be deduced from results of Ohta
(following ideas of Kurihara [1993] and Harder and Pink [1992], who considered the
case N = 1). Ohta ([2007, Corollary 4.2.13], for example) proved the implication
A(h II) =⇒ A(Cyc’ II).

The fact that H is not always Gorenstein is [Wake 2013, Corollary 1.4]. The
weakly Gorenstein conjectures are ours (although this paper shows that they are the
consequence of conjectures by other authors).
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1B4. Conjectures of Sharifi type. We consider the following versions of Sharifi’s
conjecture. They concern maps $ and ϒ that were defined by Sharifi.

C(ϒ I): coker(ϒ) is finite.
C(ϒ II): ϒ is an isomorphism.
C(S. I): The maps ϒ and $ are pseudoisomorphisms.

C(S. II): The maps ϒ and $ are inverse isomorphisms modulo torsion.
C(S. III): The maps ϒ and $ are inverse isomorphisms.

Note that C(S. I) implies C(ϒ I), and C(S. III) is equivalent to C(S. II) + C(ϒ II).
See [Sharifi 2011, Conjectures 4.12, 5.2 and 5.4] for the original statements of the

conjecture and [Fukaya and Kato 2012, Section 7.1] for some modified statements.

1B5. A question about zeta functions. We consider the following statement about
p-adic zeta functions, which appears in [Fukaya and Kato 2012]:

Q(ξ ): The factorization of ξχ in 3 has no prime element occurring with
multiplicity > 1.

This statement holds in every known example (see [Greenberg 2001, p. 12]). It is
the author’s impression that this statement is believed to hold in general, but that
there is not enough evidence to call it a conjecture.

1B6. Relations between the conditions. Fukaya and Kato have recently made
progress towards Sharifi’s conjecture. They showed the implications C(h I) =⇒
C(S. I) and Q(ξ )=⇒C(S. II) [2012, Theorem 7.2.6]. They also show that if Q(ξ ) and
at least one of A(h II) or A(H II) hold, then C(S. III) holds [2012, Corollary 7.2.7].
Moreover, it can be shown that, if C(ϒ I), then C(Cyc’ I) is equivalent to C(h I)
(cf. Section 5.1 below). Therefore, their results imply that C(h I) is equivalent to
C(S. I) + C(Cyc’ I).

Sharifi [2011, Proposition 4.10], using [Ohta 2003], has shown that A(H II) =⇒
C(ϒ II). As far as we know, there are no results on C(S. III) when neither A(h II)
nor A(H II) hold.

Ohta [2003] has also shown that A(Fin IV) =⇒ A(H II). Similar results were
obtained by Skinner and Wiles [1997] by a different method.

In our previous work [Wake 2013], we showed that C(ϒ II) and A(Fin III) to-
gether imply A(H II), and moreover that if Xχ 6= 0, then A(H II) implies A(Fin III).

The main result of this paper is that C(H I) is equivalent to C(ϒ I)+C(Fin I).

1C. Conventions. If φ :G→Q
×

p is a character of a group G, we let Zp[φ] denote
the Zp-algebra generated by the values of φ, on which G acts through φ. If M is a
Zp[G]-module, denote by Mφ the φ-eigenspace:

Mφ = M ⊗Zp[G] Zp[φ].
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For a field K , let G K = Gal(K/K ) be the absolute Galois group. For a GQ-
module M , let M+ and M− denote the eigenspaces of complex conjugation.

We fix a system of primitive N pr -th roots of unity (ζN pr ) with the property that
ζ

p
N pr+1 = ζN pr .

2. Conjectures in Iwasawa theory

2A. Iwasawa theory of cyclotomic fields. We review some important results from
the classical Iwasawa theory of cyclotomic fields. Nice references for this material
include [Greenberg 2001], [Greither 1992], and [Washington 1997].

2A1. Class groups and Galois groups. The main object of study is the inverse
limit of the p-power torsion part of the ideal class group Cl(Q(ζN pr )). By class
field theory, there is an isomorphism

X ∼= lim
←−−

Cl(Q(ζN pr )){p},

where, as in the introduction, X = Gal(L/Q∞) with L the maximal abelian
pro-p-extension of Q∞ unramified everywhere, and where (−){p} denotes the
p-Sylow subgroup.

A closely related object is X= Gal(M/Q∞), where M is the maximal abelian
pro-p-extension of Q∞ unramified outside N p. We will explain the relation between
X and X below.

2A2. Iwasawa algebra. The natural action of Gal(Q(ζN pr )/Q) on Cl(Q(ζN pr )){p}
makes X a module over the group ring lim

←−−
Zp[Gal(Q(ζN pr )/Q)].

We fix a choice of isomorphism Gal(Q(ζN pr )/Q)∼= (Z/N pr Z)×, and this induces
an isomorphism lim

←−−
Zp[Gal(Q(ζN pr )/Q)] ∼= Zp[[Z

×

p,N ]], where we define Z×p,N =

Z×p × (Z/NZ)×. Note that the surjection Z×p,N → (Z/N pZ)× splits canonically.
We use this to identify Z×p,N with 0× (Z/N pZ)×, where 0 is the torsion-free part
of Z×p,N (note that 0 ∼= Zp).

The ring Zp[[Z
×

p,N ]] is, in general, a product of rings. To simplify things, we con-
sider only a particular eigenspace for the action of the torsion subgroup (Z/N pZ)×

of Z×p,N . We define 3= Zp[[Z
×

p,N ]]θ . There are isomorphisms 3∼= O[[0]] ∼= O[[T ]],
where O is the Zp-algebra generated by the values of θ . Note that O is the valuation
ring of a finite extension of Qp, and so 3 is a noetherian regular local ring of
dimension 2 with finite residue field.

2A3. The operators τ and ι. We introduce two operations ι and τ on the rings
Zp[[Z

×

p,N ]] and3, and related functors M 7→M# and M 7→M(r). This is a technical
part, and the reader may wish to ignore any instance of these on a first reading.

Let ι : Zp[[Z
×

p,N ]]→Zp[[Z
×

p,N ]] by the involution given by c 7→ c−1 on Z×p,N . Let
τ : Zp[[Z

×

p,N ]] → Zp[[Z
×

p,N ]] be the morphism induced by [c] 7→ c̄[c] for c ∈ Z×p,N ,
where [c] ∈ Zp[[Z

×

p,N ]] is the group element and where c̄ ∈ Z×p is the projection of c.
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Note that ι and τ do not commute, but ιτ = τ−1ι. In particular, τ r ι is an involution
for any r ∈ Z.

For a Zp[[Z
×

p,N ]]-module M , we let M# (resp. M(r)) be the same abelian group,
with Zp[[Z

×

p,N ]]-action changed by ι (resp. τ r ). Note that the functors M 7→ M#

and M 7→ M(r) are exact.

2A4. p-adic zeta functions and characteristic ideals. We define ξχ−1, ξχ ∈3 to be
generators of the principal ideals Char3(X#

χ−1(1)) and Char3(Xχ (1)) respectively
(see the Appendix for a review of characteristic ideals).

The Iwasawa main conjecture (now a theorem of Mazur and Wiles [1984]) states
that (a certain choice of) ξχ−1 and ξχ can be constructed by p-adically interpolating
values of Dirichlet L-functions.

Remark 2.1. In [Wake 2013], we viewed Xχ and Xχ−1 as 3-modules via the
isomorphisms

τ : Zp[[Z
×

p,N ]]χ −→
∼ 3, ιτ : Zp[[Z

×

p,N ]]χ−1 −→∼ 3.

We learned from the referee that this is an unusual choice of notation, and so we
have adopted the above convention, which we learned is more standard.

The element ξ of [Wake 2013] is the ξχ of this paper. However, the element
denoted ξχ−1 in that paper would be denoted ιτ ξχ−1 in this paper. We hope this
doesn’t cause confusion.

2A5. Adjoints. For a finitely generated 3-module M , let Ei (M) = Exti3(M,3).
These are called the (generalized) Iwasawa adjoints of M .

This theory is important to us because of the following fact, which is well-known
to experts.

Proposition 2.2. The Zp[[Z
×

p,N ]]-modules Xχ−1 and Xθ are both torsion and have
no nonzero finite submodule, and we have

Xθ ∼= E1(Xχ−1(−1)).

In particular, we have Char3(Xθ )= (ξχ−1) as ideals in 3.

Proof. The first sentence is explained in [Wake 2013, Corollary 4.4]. The second
sentence follows from the fact that for any finitely generated, torsion 3-module M ,
there is a pseudoisomorphism E1(M)→ M# [Neukirch et al. 2008, Proposition
5.5.13, p. 319]. Since Char3(−) is a pseudoisomorphism invariant, we have

Char3
(
E1(Xχ−1(−1))

)
= Char3

(
(Xχ−1(−1))#

)
= Char3

(
X#
χ−1(1)

)
= (ξχ−1),

and so the second sentence follows from the first. �
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2A6. Exact sequence. There is an exact sequence

3/ξχ−1 −→ Xθ −→ Xθ −→ 0, (2-3)

coming from class field theory and Coleman power series (see, e.g., [Wake 2013,
Sections 3 and 5]). From Proposition 2.2 and the fact that 3/ξχ−1 has no finite
submodule, we can see that Xθ is finite (resp. zero) if and only if the leftmost arrow
in (2-3) is injective (resp. an isomorphism).

2B. Finiteness and cyclicity of class groups. We discuss some statements of finite-
ness and cyclicity of ideal class groups.

2B1. Kummer–Vandiver conjecture. We first consider the case N = 1.

Conjecture 2.4 (Kummer–Vandiver). Assume N = 1. Then X+ = 0.

Lemma 2.5. Assume N = 1. If Conjecture 2.4 is true, then Xθ and Xχ−1 are cyclic.

Proof. If Xθ = 0, we see from (2-3) that Xθ is cyclic. We wish to show that Xχ−1 is
cyclic. It is enough to show that Xχ−1(−1) is cyclic, and we claim that this follows
from the fact that Xθ is cyclic by Proposition 2.2 and standard arguments from
[Neukirch et al. 2008]. Indeed, we have isomorphisms

Xχ−1(−1)∼= E1(E1(Xχ−1(−1))
)
∼= E1(Xθ )

coming from [Neukirch et al. 2008, Proposition 5.5.8(iv), p. 316] and Proposition 2.2,
respectively. So it is enough to show that E1(Xθ ) is cyclic whenever Xθ is. But
this is clear from [Neukirch et al. 2008, Proposition 5.5.3(iv), p. 313], which says
that the projective dimension of Xθ is 1; if Xθ is generated by one element, then
there is exactly one relation, and the dual of the resulting presentation gives a cyclic
presentation of E1(Xθ ). �

2B2. Greenberg’s conjecture. For general N > 1, there are examples where Xχ
is not cyclic, and so X+ is not always zero. However, it may still be true that
X+ is finite:

Conjecture 2.6 [Greenberg 2001, Conjecture 3.4]. The module X+ is finite.

The following lemma may be proved in the same manner as Lemma 2.5:

Lemma 2.7. The following are equivalent:

(1) Xθ is finite.

(2) The map 3/ξχ−1 ⊗Zp Qp → Xθ ⊗Zp Qp induced by the map in (2-3) is an
isomorphism.
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3. Hecke algebras and modular forms

In this section, we introduce Hecke algebras for modular forms to the story.

3A. Hecke algebras and Eisenstein ideals. We introduce the objects from the
theory of modular forms that we will need. See [Wake 2014] for a more detailed
treatment of this theory.

3A1. Modular curves and Hecke operators. Let Y1(N pr )/Q be the moduli space
for pairs (E, P), where E/Q is an elliptic curve and P ∈ E is a point of order N pr .
Let X1(N pr )/Q be the compactification of Y1(N pr ) obtained by adding cusps.

There is an action of (Z/N pr Z)× on Y1(N pr ), where a ∈ (Z/N pr Z)× acts by
a(E, P)= (E, a P). This is called the action of diamond operators 〈a〉. There are
also Hecke correspondences T ∗(n) on Y1(N pr ) and X1(N pr ). We consider these
as endomorphisms of the cohomology.

We define the Hecke algebra of Y1(N pr ) to be the algebra generated by the T ∗(n)
for all integers n and the 〈a〉 for all a ∈ (Z/N pr Z)×. We define the Eisenstein ideal
to be the ideal of the Hecke algebra generated by 1− T ∗(l) for all primes l | N p
and by 1− T ∗(l)+ l〈l〉−1 for all primes l - N p.

3A2. Ordinary cohomology. Let

H ′ = lim
←−−

H 1(X1(N pr ),Zp)
ord
θ

and
H̃ ′ = lim

←−−
H 1(Y 1(N pr ),Zp)

ord
θ ,

where the superscript “ord” denotes the ordinary part for the dual Hecke operator
T ∗(p), and the subscript refers to the eigenspace for the diamond operators.

3A3. Eisenstein parts. Let h′ and H′ be the algebras of dual Hecke operators acting
on H ′ and H̃ ′, respectively. Let I and I be the Eisenstein ideals of h′ and H′. Let
H denote the Eisenstein component H=H′m, the localization at the unique maximal
ideal m containing I. We can define the Eisenstein component h of h′ analogously.
Let H̃ = H̃ ′⊗H′ H and H = H ′⊗h′ h be the Eisenstein components.

There is a natural surjection H� h by restriction. Let IH ⊂ H be the kernel of
the composite map H� h� h/I . Note that I ( IH.

3B. Properties of the Hecke modules. We first recall some properties of the Hecke
modules H̃ and H and Hecke algebras H and h. See [Fukaya and Kato 2012,
Section 6] for a simple and self-contained exposition of this.

3B1. Control theorem. There are natural maps 3 → h and 3 → H given by
diamond operators. It is a theorem of Hida that these maps are finite and flat. In
particular, h and H are noetherian local rings of dimension 2 with (the same) finite
residue field.
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Let h∨ (resp. H∨) denote the h-module (resp. H-module) Hom3(h,3) (resp.
Hom3(H,3)). We will call these the dualizing modules for the respective algebras.

3B2. Eichler–Shimura isomorphisms. Ohta ([2007, Section 4.2], for example) has
proven theorems on the Hecke module structure of H̃ and H . See [Wake 2014] for
a different approach. The main result we need is the following, which appears in
this form in [Fukaya and Kato 2012, Section 6.3]:

Theorem 3.1. There are isomorphisms of Hecke-modules H+ ∼= h, H− ∼= h∨ and
H̃− ∼= H∨.

3B3. Boundary at the cusps. The cokernel of the natural map H→ H̃ is described
as the boundary at cusps. Ohta [2003, Theorem 1.5.5] has shown that the module
of cusps is free of rank one as a 3-module. That is, there is an exact sequence of
H-modules

0−→ H −→ H̃ −→3−→ 0.

Moreover, there is a canonical element {0,∞} ∈ H̃ that gives a generator of H̃/H .
This is proven in [Sharifi 2011, Lemma 4.8], following [Ohta 2003, Theorem 2.3.6]
(cf. [Fukaya and Kato 2012, Section 6.2.5]).

3B4. Relation between Hecke and Iwasawa algebras. The following is a conse-
quence of the Iwasawa main conjecture. See [Fukaya et al. 2014, Section 2.5.3] for
a nice explanation.

Proposition 3.2. The natural inclusions 3→ H and 3→ h induce isomorphisms

3−→∼ H/I and 3/ξχ −→
∼ h/I.

3B5. Drinfeld–Manin modification. Let H̃DM = H̃ ⊗H h. By the previous two
paragraphs, there is an exact sequence of h-modules

0−→ H −→ H̃DM −→3/ξχ −→ 0.

By abuse of notation, we let {0,∞} ∈ H̃DM be the image of {0,∞} ∈ H̃ .

4. Sharifi’s conjecture

In this section, we will discuss some remarkable conjectures that were formulated
by Sharifi [2011]. Sharifi gave a conjectural construction of a map

$ : H−/I H−→ Xχ (1),

and constructed a map
ϒ : Xχ (1)→ H−/I H−.

Conjecture 4.1 (Sharifi). The maps ϒ and $ are inverse isomorphisms.



64 Preston Wake

We refer to [Sharifi 2011] and [Fukaya and Kato 2012] for the original con-
structions, and [Fukaya et al. 2014] for a nice survey of the known results. There
is also the following weaker version, which appears as [Fukaya and Kato 2012,
Conjecture 7.1.2]. It allows for the possibility that the p-torsion part (tor) of
H−/I H− is nonzero (note that Conjecture 4.1 implies that (tor) = 0, and that
Sharifi [2011, Remark, p. 51] specifically notes this).

Conjecture 4.2. The maps ϒ and $ are inverses up to torsion. That is, ϒ ◦$ is
the identity map on (H−/I H−)/(tor) and $ ◦ϒ is the identity map on Xχ (1).

The following is [Fukaya and Kato 2012, Theorem 7.2.6(2)]. This result is not
needed in the remainder of the paper, except to say that Conjecture 4.2 holds in
every known example.

Theorem 4.3. If ξχ has no multiple roots, then Conjecture 4.2 is true. In particular,
if ξχ has no multiple roots and H−/I H− has no nonzero finite submodule, then
Conjecture 4.1 is true.

The paper [Fukaya and Kato 2012] also has results on Sharifi’s conjecture when
H−/I H− ⊗Zp Qp is generated by one element. This is related to Gorenstein
conditions on Hecke algebras, the subject of the next section.

5. Gorenstein Hecke algebras

In this section we discuss to what extent the Hecke algebras h and H are Gorenstein.
The relevant characterization of being Gorenstein is the following:

Definition 5.1. Let k be a regular local ring, and let k→ R be a finite, flat ring
homomorphism. Then R is Gorenstein if Homk(R, k) is a free R-module of rank 1.

This definition is seen to be equivalent to the usual one from homological algebra,
but is more useful for our purposes. In our applications we will take k = 3 and
R = h, H or their localizations. Asking whether h or H is Gorenstein is the same as
asking whether h∨ or H∨ is free of rank 1. This is relevant in light of Theorem 3.1.

5A. Conditions on h. We consider under what conditions h is Gorenstein or
weakly Gorenstein.

5A1. Gorenstein. The following lemma is explained in [Fukaya and Kato 2012,
Section 7.2.12]:

Lemma 5.2. The following are equivalent:

(1) h is Gorenstein.

(2) H−/I H− is cyclic as an h-module.

(3) H−/I H− is a free h/I -module of rank 1.
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Proof. This follows from the fact that H− ∼= h∨, that h∨ is a faithful h-module, and
Nakayama’s lemma. �

One may ask whether h is always Gorenstein. The following result is based on
ideas of Kurihara [1993] and Harder and Pink [1992], who proved it in the case
N = 1. The result in this form was proven by Ohta.

Theorem 5.3. Suppose that h is Gorenstein. Then Xχ (1) is cyclic as a 3-module.

Proof. This is proven, for example, in [Ohta 2007, Corollary 4.2.13], where it is
the implication “(ii) =⇒ (i)”. Note that the proof of “(ii) =⇒ (i)” given there does
not require the assumption that H is Gorenstein. �

As remarked in Section 2B2, there are examples where Xχ is not cyclic and
therefore where h is not Gorenstein. One could also ask if the converse holds.

Lemma 5.4. Suppose that H−/I H− ∼= Xχ (1). Then h is Gorenstein if and only if
Xχ (1) is cyclic as a 3-module.

Proof. This follows from Lemma 5.2. �

In particular, we have the following:

Corollary 5.5. Assume N = 1, and assume Sharifi’s conjecture (Conjecture 4.1)
and the Kummer–Vandiver theorem (Conjecture 2.4). Then h is Gorenstein.

5A2. Weakly Gorenstein. We recall that h is said to be weakly Gorenstein if hp
is Gorenstein for every prime ideal p ∈ Spec(h) of height 1 such that I ⊂ p. This
definition is relevant in light of the following lemma:

Lemma 5.6 [Fukaya and Kato 2012, Section 7.2.10]. The following are equivalent:

(1) h is weakly Gorenstein.

(2) (H−/I H−)⊗Zp Qp is cyclic as an h/I ⊗Zp Qp-module.

(3) (H−/I H−)⊗Zp Qp is a free h/I ⊗Zp Qp-module of rank 1.

The following result on Sharifi’s conjecture assumes that h is weakly Gorenstein:

Theorem 5.7 [Fukaya and Kato 2012, Theorem 7.2.8(1)]. Assume that h is weakly
Gorenstein. Then ϒ : Xχ (1)→ (H−/I H−)/(tor) and $ : (H−/I H−)/(tor)→
Xχ (1) are isomorphisms.

Their work also implies the following result on the converse:

Lemma 5.8. Assume that coker(ϒ) is finite and that Xχ (1)⊗Zp Qp is cyclic. Then
h is weakly Gorenstein.

Proof. If coker(ϒ) is finite, then ϒ : Xχ (1)⊗Zp Qp → (H−/I H−)⊗Zp Qp is
surjective, so this follows from Lemma 5.6. �
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Since this lemma applies whenever Conjecture 4.2 and Conjecture 2.6 hold, we
should conjecture that h is always weakly Gorenstein:

Conjecture 5.9. The ring h is weakly Gorenstein.

5B. Conditions on H. We consider under what conditions H is Gorenstein or
weakly Gorenstein.

5B1. Gorenstein. Recall that H̃−DM/H− ∼= h/I . In particular, the natural inclusion
I H̃−DM ⊂ H̃−DM lands in H−. The following proposition is proven in [Wake 2013].
It can also be proven along the same lines as the proof of Proposition 5.13.

Proposition 5.10. The following are equivalent:

(1) H is Gorenstein.

(2) H̃−DM is a free h-module of rank 1.

(3) I H̃−DM = H−.

It was proven by Ohta [2007, Theorem I] that H is Gorenstein if Xθ = 0. Similar
results were obtained earlier by Skinner and Wiles [1997].

The following theorem illustrates the importance of the condition that H is
Gorenstein. It was first proven by Sharifi, following [Ohta 2003].

Theorem 5.11. Suppose that H is Gorenstein. Then ϒ is an isomorphism.

Proof. This is proven in [Sharifi 2011, Proposition 4.10], where the assumption
“p - B1,θ−1” is not needed in the proof — all that is needed is the weaker assumption
that H is Gorenstein. �

Sharifi used this as evidence for his conjecture. However, it is not true that H is
always Gorenstein; the following is the main result of [Wake 2013]:

Theorem 5.12. If H is Gorenstein, then either Xθ = 0 or Xχ = 0. Moreover, there
are examples where Xθ 6= 0 and Xχ 6= 0, and so H is not always Gorenstein.

5B2. Weakly Gorenstein. Recall that H is said to be weakly Gorenstein if Hp is
Gorenstein for every prime ideal p ∈ Spec(H) such that IH ⊂ p.

Proposition 5.13. Let P⊂ Spec(H) be the set of height 1 prime ideals p such that
IH ⊂ p. The following are equivalent:

(1) H−/I H̃−DM is finite.

(2) As a module over h⊗Zp Qp, H̃−DM/I H̃−DM⊗Zp Qp is generated by {0,∞}.

(3) For any p ∈ P, (H̃−)p is generated by {0,∞}.

(4) For any p ∈ P, (H̃−)p is generated by 1 element.

(5) For any p ∈ P, (H̃−)p is free of rank 1 as an Hp-module.

(6) H is weakly Gorenstein.
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Proof. (1)=⇒ (2): Follows from taking ⊗Zp Qp in the exact sequence

0→ H−/I H̃−DM→ H̃−DM/I H̃−DM→ H̃−DM/H−→ 0.

(2)=⇒ (3): Since H/IH −→∼ h/I , we have that

H̃−DM/I H̃−DM
∼= H̃−DM⊗h h/I ∼= H̃−⊗HH/IH.

For any p∈P, we have that p is invertible in Hp, so (H̃−DM/I H̃−DM)p= (H̃
−/IH H̃−)p

is generated by {0,∞}. By Nakayama’s lemma, we have (3).

(3)=⇒ (4): Clear.

(4) =⇒ (5): By Theorem 3.1, (H̃−)p is a dualizing module for Hp, and so it is
faithful. Then, if it is generated by 1 element, it is free.

(5)⇐⇒ (6): Since (H̃−)p is a dualizing module for Hp, this is clear.

(5) =⇒ (1): Note that H−/I H̃−DM is a H/IH-module. To show (1), it suffices (by
Lemma A.1) to show that H−/I H̃−DM is not supported on any nonmaximal prime
ideals of H/IH. Since the nonmaximal prime ideals of H/IH are exactly the images
under H�H/IH of elements of P, it is enough to show that SuppH(H

−/I H̃−DM)∩P

is empty.
Let p ∈ P. By (5) we see that (H̃−/IH H̃−)p is free of rank 1 as an (H/IH)p-

module. But, since H/IH−→∼ h/I , (H̃−DM/H−)p is also free of rank 1 as an (H/IH)p-
module. Then the natural surjective map

(H̃−DM/I H̃−DM)p = (H̃
−/IH H̃−)p � (H̃−DM/H−)p

must be an isomorphism. This implies that the kernel (H−/I H̃−DM)p is zero. �

6. Pairing with cyclotomic units

In this section, we recall some results from [Wake 2013] that will be used in
the proof of Theorem 1.3.

6A. The Kummer pairing. As in [Wake 2013, Section 3.2], we will make use of
a pairing between X and global units. Let E denote the pro-p part of the closure of
the global units in lim

←−−
(Z[ζN pr ]⊗Zp)

×.
There is a pairing of Zp[[Z

×

p,N ]]-modules

[ , ]Kum : E ×X#(1)→ Zp[[Z
×

p,N ]].

It is essentially defined as the “3-adic version” of the pairing

Zp[ζN pr ]
×
×X→ µpr , (u, σ ) 7→

σ(u1/pr
)

u1/pr .

We refer to [Wake 2013, Section 3.2] for the detailed definition.
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6A1. The map ν. The Kummer pairing gives a homomorphism of 3-modules
Eθ → Hom(Xχ−1,3#(1)). There is a special element 1 − ζ ∈ Eθ , namely, the
image of (1− ζN pr )r ∈ lim

←−−
(Z[ζN pr ]

×
⊗Zp).

We define ν to be the image of 1 − ζ under the Kummer pairing. So

Xχ−1
ν
−→3#(1)

is a morphism of Zp[[Z
×

p,N ]]χ−1-modules.
The importance of ν comes from the following lemma, which relates ν to X+:

Lemma 6.1. There exists a natural commutative diagram of Zp[[Z
×

p,N ]]-modules
with exact rows:

0 // Uχ−1(−1) //

o

��

Xχ−1(−1) //

ν(−1)
��

Xχ−1(−1) // 0

0 // 3# // 3# // 3#/ιξχ−1 // 0

Let ν : Xχ−1(−1)→3#/ιξχ−1 be the induced map, and let C denote coker(ν). Then
we have an equality of characteristic ideals

Char3(Xθ )= Char3(C#).

Proof. The existence of the commutative diagram is from [Wake 2013, Lemma 4.5]
(note that the element denoted by ξχ−1 in that work would be denoted ιτ ξχ−1 here).

Let C = coker(ν). By [Wake 2013, Proposition 4.8(1) and Lemma 4.6], there is
an exact sequence

0−→ E1(C)−→3/ξχ−1 −→ Xθ −→ Xθ −→ 0.

Since Char3(Xθ )= (ξχ−1), we have Char3(E1(C))= Char3(Xθ ). We claim that
Char3(E1(C))=Char3(C#). This follows from [Neukirch et al. 2008, Proposition
5.5.13, p. 319], as in the proof of Proposition 2.2 above. �

6A2. The map ν ′. Let ν ′ : Xχ−1 → (3/ξχ )
#(1) be the composite

Xχ−1
ν
−→3#(1)→3#(1)/ιτξχ3#(1)= (3/ξχ )#(1).

Lemma 6.2. We have that coker(ν ′) is finite if and only if Xθ/ξχ Xθ is finite. More-
over, coker(ν ′)= 0 if and only if Xχ = 0 or Xθ = 0.

Proof. Let C = coker(ν). From Lemma 6.1, we see that C ∼= coker(ν(−1)). We
see from the definition of ν ′ that

coker(ν ′)∼= C(1)/τ−1ιξχC(1)= (C/ιξχC)(1).

Note that since (C/ιξχC)# ∼= C#/ξχC#, we have that coker(ν ′) is finite if and only
if C#/ξχC# is finite.
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Recall from Lemma 6.1 that Char3(C#)= Char3(Xθ ). We apply Lemma A.4
to the case M =3/ξχ , N = C#, and N ′ = Xθ to get that C#/ξχC# is finite if and
only if Xθ/ξχ Xθ is finite. This completes the proof of the first statement.

For the second statement, notice that if Xχ = 0, then ξχ is a unit, so coker(ν ′)= 0.
If Xχ 6= 0, then ξχ is not a unit and, by Nakayama’s lemma, coker(ν ′)= 0 if and
only if C = 0. It remains to prove that C = 0 if and only if Xθ = 0, and this
follows from [Wake 2013]. Indeed, if Xθ = 0, then [Wake 2013, Proposition 4.8(2)]
implies that C = 0. Conversely, if C = 0, then [Wake 2013, Proposition 4.8(1),
Corollary 4.7] together imply that Xθ is finite, and then we can apply [Wake 2013,
Proposition 4.8(2)] to conclude that Xθ = 0. �

6B. The map ν as an extension class. Fukaya and Kato [2012, Section 9.6] gave
an interpretation of ν as an extension class. We review this here, and refer to [Wake
2013, Section 2.3] for more details.

There is an exact sequence

0−→ H+/I H+ −→ H̃DM/K −→ H̃DM/H −→ 0, (6-3)

where K is the kernel of the natural map H→ H+/I H+ (and so K ∼= H−⊕ I H+ as
h-modules). It can be shown that H → H+/I H+ respects the GQ-action ([Sharifi
2011]; cf. [Fukaya and Kato 2012, Proposition 6.3.2]), and so (6-3) is an extension
of H̃DM/H by H+/I H+ as h[GQ]-modules. By considering this extension as a
Galois cocycle, we obtain a homomorphism of Zp[[Z

×

p,N ]]χ−1-modules

2 : Xχ−1 → (3/ξχ )
#(1).

By [Fukaya and Kato 2012, Theorem 9.6.3], we have:

Theorem 6.4 [Wake 2013, Proposition 3.4]. We have ν ′ =2.

7. Relationship between the Hecke and Iwasawa sides

The goal of this section is to complete the proof of Theorem 1.3.

7A. The key diagram. First we consider a commutative diagram coming from the
maps of Section 6. Let ν ′′ = (ν ′)#(1) : X#

χ−1(1)→ 3/ξχ , so that ν ′′ is a map of
3-modules. Then we have the diagram of 3-modules

X#
χ−1(1)⊗3 Xχ (1)

ν′′⊗1 //

8

��

3/ξχ ⊗3 Xχ (1)

ϒ

��
H−/I H− H−/I H−
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where 8 = 2#(1) ⊗ ϒ . It is commutative by Theorem 6.4. This is a slight
reformulation of the diagram (∗) in [Wake 2013, Section 1.3]. We record the result
of applying the Snake Lemma to this diagram as a lemma:

Lemma 7.1. There is an exact sequence

ker(8)−→ ker(ϒ)−→ coker(ν ′′)⊗3 Xχ (1)−→ coker(8)−→ coker(ϒ)−→ 0.

7A1. Some lemmas.

Lemma 7.2. We have coker(8)= H−/I H̃−DM.

Proof. This is a slight reformulation of [Wake 2013, Proposition 2.2], which states
that the image of 8 is I {0,∞}. Since {0,∞} generates H̃−DM/H−, we see that the
images of I {0,∞} and I H̃−DM in H−/I H− are the same. �

Lemma 7.3. We have that coker(ν ′′)⊗3 Xχ (1) is finite if and only if Xθ/ξχ Xθ
is finite.

Proof. Let C ′′ = coker(ν ′′). Since ν ′′ = (ν ′)#(1), it is clear that C ′′ is finite if and
only if coker(ν ′) is finite. By Lemma 6.2 it suffices to show that C ′′⊗3 Xχ (1) is
finite if and only if C ′′ is finite.

Now apply Lemma A.3 to M = C ′′ and N = Xχ (1) to get that C ′′⊗3 Xχ (1) is
finite if and only if C ′′/Char3(Xχ (1))C ′′ is finite. However, Char3(Xχ (1))= (ξχ ),
which annihilates C ′′. So C ′′ = C ′′/Char3(Xχ (1))C ′′ and the lemma follows. �

Proposition 7.4. Suppose that coker(ϒ) is finite. Then ϒ is injective.

Proof. It is well-known (see [Fukaya and Kato 2012, Section 7.1.3]) that

Fitt3(H−/I H−)⊂ (ξχ ).

We apply Lemma A.7 to the case M = Xχ (1), N = H−/I H− and f =ϒ . It says
that if coker(ϒ) is finite, then ker(ϒ) is finite. But Xχ (1) has no finite submodule,
so the result follows. �

7A2. The proof of Theorem 1.3. We can now prove Theorem 1.3, which we restate
here for convenience.

Theorem 1.3. Both coker(ϒ) and Xθ/ξχ Xθ are finite if and only if H is weakly
Gorenstein.

Proof. First assume that coker(ϒ) and Xθ/ξχ Xθ are finite. By Lemma 7.3 we
have that coker(ν ′′)⊗3 Xχ (1) is finite. By Lemma 7.1, we see that coker(8) is
finite. By Lemma 7.2, H−/I H̃−DM is finite. By Proposition 5.13, we have that H is
weakly Gorenstein.

Now assume that H is weakly Gorenstein. Then, as above, coker(8) is finite. By
Lemma 7.1, we see that coker(ϒ) is finite. By Proposition 7.4, we see that ker(ϒ)=
0. Again using Lemma 7.1 we see that coker(ν ′′)⊗3 Xχ (1) ⊂ coker(8), and so
coker(ν ′′)⊗3 Xχ (1) is finite. By Lemma 7.3, we have that Xθ/ξχ Xθ is finite. �
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8. Application to Sharifi’s conjecture

For a finitely generated 3-module M , let

dm3(M)= dim3/m3(M/m3M).

Note that, by Nakayama’s lemma, dm3(M) is the minimal number of generators
of M . In particular, dm3(M)= 0 if and only if M = 0.

We can now prove Theorem 1.8, which we restate here for convenience:

Theorem 1.8. Assume that Xθ 6= 0 and that h is weakly Gorenstein.
Then we have

dm3(H
−/I H̃−DM)≥ dm3(Xχ (1)),

with equality if and only if ϒ is an isomorphism.
If , in addition, #(Xθ )= #(3/m3), then ϒ is an isomorphism if and only if

#(H−/I H̃−DM)= #(3/m3)dm3(Xχ (1)).

Proof. By Theorem 5.7, we have that coker(ϒ) is finite. By Proposition 7.4, we
have ker(ϒ)= 0. By Lemma 7.1, we have an exact sequence

0−→ coker(ν ′′)⊗3 Xχ (1)−→ coker(8)−→ coker(ϒ)−→ 0.

Theorem 5.7 implies that coker(ϒ)−→∼ (tor)→ coker(8) gives a spitting of this
sequence. This gives us an isomorphism

H−/I H̃−DM = coker(8)∼= (coker(ν ′′)⊗3 Xχ (1))⊕ coker(ϒ),

and so

dm3(H
−/I H̃−DM)= dm3(coker(ν ′′)⊗3 Xχ (1))+ dm3(coker(ϒ))

= dm3(coker(ν ′′))dm3(Xχ (1))+ dm3(coker(ϒ)).

We claim that in fact

dm3(H
−/I H̃−DM)= dm3(Xχ (1))+ dm3(coker(ϒ)),

from which the first statement of the theorem follows.
To prove the claim, note that it is clear if dm3(Xχ (1)) = 0. Now assume

dm3(Xχ (1)) 6= 0. Then we claim that dm3(coker(ν ′′))= 1. Indeed, since coker(ν ′′)
is cyclic it suffices to show coker(ν ′′) 6= 0. But since Xχ (1) 6= 0, Lemma 6.2 implies
that coker(ν ′′) 6= 0 if and only if Xθ 6= 0, which we are assuming. This completes
the proof of the claim and of the first statement.
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For the second statement, notice that the assumption can only occur if Xθ ∼=
3/m3. By [Wake 2013, Proposition 4.8], this implies that coker(ν)# ∼=3/m3. As
in Lemma 6.2, where we computed coker(ν ′) in terms of coker(ν), we compute

coker(ν ′′)∼= coker(ν)#/ξχ coker(ν)#,

so

coker(ν ′′)∼=
{
3/m3 if Xχ (1) 6= 0,
0 if Xχ (1)= 0.

In either case,
coker(ν ′′)⊗3 Xχ (1)∼= (3/m3)dm3 (Xχ (1)),

and the statement follows from the established isomorphism

H−/I H̃−DM
∼= (coker(ν ′′)⊗3 Xχ (1))⊕ coker(ϒ). �

Appendix: some commutative algebra

We review some lemmas from commutative algebra that are used in the body
of the paper. The results of this appendix are well-known; we include them for
completeness.

Finite modules. We begin with a review of some generalities about finite modules
(meaning modules of finite cardinality). Let (A,m) be a noetherian local ring, and
assume that the residue field A/m is finite. For an A-module M , we use the notation
SuppA(M) for the set {p ∈ Spec(A) |Mp 6= 0}.

Lemma A.1. Let M be a finitely generated A-module. The following are equivalent:

(1) mn M = 0 for some n.

(2) M is finite.

(3) M is an Artinian A-module.

(4) SuppA(M)⊂ {m}.

Proof. For (4)=⇒ (1), since M is finitely generated, it is enough to prove the case
where M ∼= A/I for an ideal I . By (4) we have that Spec(A/I )⊂ {m}. This implies
that A/I is Artinian, which implies that mn(A/I )= 0 for some n. The implications
(1)=⇒ (2)=⇒ (3)=⇒ (1)=⇒ (4) are clear. �

Corollary A.2. Suppose M and N are finitely generated A-modules. Then M⊗A N
is finite if and only if SuppA(N )∩SuppA(M)⊂ {m}.

Proof. This is clear from Lemma A.1, since

SuppA(M ⊗A N )= SuppA(N )∩SuppA(M). �
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3-modules. Let 3 be a noetherian regular local ring of dimension 2 with finite
residue field. For example, let 3= O[[T ]], where O is the valuation ring of a finite
extension of Qp.

Characteristic ideals. For a finitely generated torsion 3-module M , define the
characteristic ideal of M to be

Char3(M)=
∏
p

plp(M),

where p ranges over all height-1 primes of 3 and lp(M) is the length of Mp as a
3p-module. Note that lp(M) > 0 if and only if p ∈ Supp3(M).

It follows from the definition that Char3 is multiplicative on exact sequences
and that Char3(M) is a principal ideal. By Lemma A.1, Char3(M) = 3 if and
only if 3/Char3(M) is finite if and only if M is finite. We have the following
consequence of Corollary A.2:

Lemma A.3. Let N and M be finitely generated 3-modules and suppose that N is
torsion. Then M ⊗3 N is finite if and only if M/Char3(N )M is finite.

Proof. This is clear from Corollary A.2, as Supp3(N )= Supp3(3/Char3(N )). �

In the body of the paper, we often use Lemma A.3 in the following form:

Lemma A.4. Let N , N ′, and M be finitely generated 3-modules, and suppose that
N and N ′ are torsion and that Char3(N )= Char3(N ′). Then M ⊗3 N is finite if
and only if M ⊗3 N ′ is finite.

Fitting ideals. Let R be a commutative, noetherian ring. For a finitely generated
R-module M , we define FittR(M)⊂ R, the Fitting ideal of M , as follows. Let

Rm A
−−→ Rn

−→ M −→ 0

be a presentation of M . Then FittR(M) is defined to be the R-module generated
by all the (n, n)-minors of the matrix A. This does not depend on the choice of
resolution (see [Mazur and Wiles 1984, Appendix]).

The following lemma is a result of the independence of resolution:

Lemma A.5. If φ : R→ R′ is a ring homomorphism and M is an R-module, then

FittR′(M ⊗R R′)⊂ R′

is the ideal generated by φ(FittR(M)).

We consider the case R =3. The following relation to Char3 is a well-known:

Lemma A.6. If M is finitely generated and torsion, then Char3(M) is the unique
principal ideal such that Fitt3(M)⊂ Char3(M) and Char3(M)/Fitt3(M) is finite.
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Proof. Using Lemma A.5, we see that for any prime p of 3,

Fitt3p(Mp)= Fitt3(M)p.

Using that 3p is a DVR for a height-1 prime p, we have Fitt3p(Mp)= plp(M) by the
structure theorem for modules over a PID. We have then Fitt3(M)p = Char3(M)p
for all p of height 1. Lemma A.1 then implies that Char3(M)/Fitt3(M) is finite.

For uniqueness, suppose Fitt3(M)⊂ ( f ) has finite quotient. Then Fitt3(M)p =
( f )p for each height-1 prime p. This determines the prime factorization of f . �

Using this relation, we can deduce the following:

Lemma A.7. Let M and N be two finitely generated torsion 3-modules. Assume
that Fitt3(N )⊂ Char3(M). If a morphism f : M→ N has finite cokernel, then it
has finite kernel.

Proof. Indeed, if f has finite cokernel, then

Char3(M)= Char3(ker( f ))Char3(N ), and so Char3(M)⊂ Char3(N ).

Since Char3(N )/Fitt3(N ) is finite, this implies that Char3(M)/Fitt3(N ) is finite.
By Lemma A.6, this implies that Char3(N ) = Char3(M). The result follows by
multiplicativity of characteristic ideals. �
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The notion of adequate subgroups was introduced by Jack Thorne. It is a weaken-
ing of the notion of big subgroups used in generalizations of the Taylor–Wiles
method for proving the automorphy of certain Galois representations. Using this
idea, Thorne was able to strengthen many automorphy lifting theorems. It was
shown by Guralnick, Herzig, Taylor, and Thorne that if the dimension is small
compared to the characteristic, then all absolutely irreducible representations
are adequate. Here we extend that result by showing that, in almost all cases,
absolutely irreducible kG-modules in characteristic p whose irreducible G+-
summands have dimension less than p (where G+ denotes the subgroup of G
generated by all p-elements of G) are adequate.

1. Introduction 78
2. Linear groups of low degree 81
3. Weak adequacy for SL2(Fp) 85
4. Weak adequacy for Chevalley groups 89
5. Weak adequacy in cross-characteristic 98
6. Weak adequacy for special linear groups 114
7. Extensions and self-extensions, I: Generalities 127
8. Indecomposable representations of SL2(q) 131
9. Finite groups with indecomposable modules of small dimension 133
10. Extensions and self-extensions, II 140
References 144

Guralnick was partially supported by NSF DMS-1001962, DMS-1302886, and the Simons Foundation
Fellowship 224965. He also thanks the Institute for Advanced Study for its support. Herzig was
partially supported by a Sloan Fellowship and an NSERC grant. Tiep was partially supported by
NSF DMS-1201374 and the Simons Foundation Fellowship 305247. We thank the referee for careful
reading of the paper, and Frank Lübeck and Klaus Lux for help with several computations.
MSC2010: primary 20C20; secondary 11F80.
Keywords: Artin–Wedderburn theorem, irreducible representations, automorphic representations,

Galois representations, adequate representations.

77

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2015.9-1
http://dx.doi.org/10.2140/ant.2015.9.77


78 Robert Guralnick, Florian Herzig and Pham Huu Tiep

1. Introduction

Throughout the paper, let k be a field of characteristic p and let V be a finite-
dimensional vector space over k. Let ρ : G→ GL(V ) be an absolutely irreducible
representation. Thorne [2012] called (G, V ) adequate if the following conditions
hold (we rephrase the conditions slightly by combining two of the properties
into one):

(i) p does not divide dim V .

(ii) Ext1G(V, V )= 0.

(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

We remark that recently Thorne has shown that one can relax condition (i) above
(see [Thorne 2015, Corollary 7.3] and [Guralnick et al. 2014, §1]).

If G is a finite group of order prime to p, then it is well known that (G, V ) is
adequate. In this case, condition (iii) is often referred to as Burnside’s lemma. It is
a trivial consequence of the Artin–Wedderburn theorem. Also, (G, V ) is adequate
if G is a connected algebraic group over k = k̄ and V is a rational irreducible
kG-module; see [Guralnick 2012a, Theorem 1.2].

The adequacy conditions are a generalization to higher dimension of the con-
ditions used by Wiles and Taylor in studying the automorphic lifts of certain
2-dimensional Galois representations, and they are a weakening of the previously
introduced bigness condition [Clozel et al. 2008]. Thorne [2012] strengthened
the existing automorphy lifting theorems for n-dimensional Galois representations
assuming the weaker adequacy hypotheses. We refer the reader to [Thorne 2012]
for more references and details.

The following theorem was proved in [Guralnick et al. 2012, Theorem 9]:

Theorem 1.1. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated
by the p-elements of G. If dim W ≤ (p− 3)/2 for an absolutely irreducible kG+-
submodule W of V , then (G, V ) is adequate.

The example G = SL2(p) with V irreducible of dimension (p−1)/2 shows that
the previous theorem is the best possible. However, the counterexamples are rare.
Our first goal is to prove a similar theorem under the assumption that dim W < p.
We show that almost always (G, V ) is adequate; see Corollary 1.4. Indeed, we show
that the spanning condition always holds under the weaker hypothesis. We show
that there are only a handful of examples where Ext1G(V, V ) 6= 0. See Theorems 1.2
and 1.3 for more precise statements.

Theorem 1.1 was crucial in several recent applications of automorphy lifting
theorems, such as [Barnet-Lamb et al. 2014; Calegari 2012; Dieulefait 2014]. In fact,
the main two technical hypotheses in the most recent automorphy lifting theorems
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are potential diagonalizability (a condition in p-adic Hodge theory) and adequacy
of the residual image [Dieulefait and Gee 2012]. Since some important applications
of automorphy lifting theorems [Breuil et al. 2001; Khare and Wintenberger 2009;
Dieulefait 2014] require working with primes p that are small relative to the
dimension of the Galois representation, we expect that our results will be useful
in obtaining further arithmetic applications of automorphy lifting theorems. (Note
that adequacy of 2-dimensional linear groups has been analyzed in Appendix A of
[Barnet-Lamb et al. 2013].)

An outgrowth of our results leads us to prove an analogue of [Guralnick 1999]
and answer a question of Serre on complete reducibility of finite subgroups of
orthogonal and symplectic groups of small degree. This is done in the sequel
[Guralnick et al. 2014], where we essentially classify indecomposable modules in
characteristic p of dimension less than 2p− 2. We also extend adequacy results to
the case of linear groups of degree p and generalize the asymptotic result [Guralnick
2012a, Theorem 1.2] to disconnected algebraic groups G (with p - [G :G0

]), allowing
at the same time that p divides the dimension of the G-module.

Note that if the kernel of ρ has order prime to p, then there is no harm in
passing to the quotient. So we will generally assume that either ρ is faithful or
more generally has kernel of order prime to p. Also, note that the dimensions of
cohomology groups and the dimension of the span of the semisimple elements in
G in End(V ) do not change under extension of scalars. Hence, most of the time
we will work over an algebraically closed field k.

Following [Guralnick 2012b], we say that the representation ρ : G→ GL(V ),
or the pair (G, V ), is weakly adequate if End(V ) is spanned by the elements ρ(g)
with ρ(g) semisimple.

Our main results are the following:

Theorem 1.2. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated
by the p-elements of G. If p > dim W for an irreducible kG+-submodule W of V,
then (G, V ) is weakly adequate.

Theorem 1.3. Let k = k be a field of characteristic p and G a finite group. Let V
be an irreducible faithful kG-module. Let G+ denote the subgroup generated by the
p-elements of G. Suppose that p > d := dim W for an irreducible kG+-submodule
W of V , and let H < GL(W ) be induced by the action of G+ on W . Then one of
the following holds:

(a) p is a Fermat prime, d = p− 1, G+ is solvable (and so G is p-solvable), and
H/Op′(H)= C p.

(b) H 1(G, k)= 0. Furthermore, either Ext1G(V, V )= 0, or one of the following
holds:
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(i) H = PSL2(p) or SL2(p), and d = (p± 1)/2.
(ii) H = SL2(p)× SL2(pa) (modulo a central subgroup), d = p − 1, and

W is a tensor product of a (p− 1)/2-dimensional SL2(p)-module and a
2-dimensional SL2(pa)-module.

(iii) p = (q + 1)/2, d = p− 1, and H ∼= SL2(q).
(iv) p = 2 f

+ 1 is a Fermat prime, d = p− 2, and H ∼= SL2(2 f ).
(v) (H, p, d)= (3A6, 5, 3) and (2A7, 7, 4).

(vi) (H, p, d)= (SL2(3a), 3, 2) and a ≥ 2.

Theorems 1.2 and 1.3 immediately imply:

Corollary 1.4. Let k be a field of characteristic p and G a finite group. Let V
be an absolutely irreducible faithful kG-module, and let G+ denote the subgroup
generated by the p-elements of G. Suppose that the dimension of any irreducible
kG+-submodule in V is less than p. Let W be an irreducible kG+-submodule of
V ⊗k k. Then (G, V ) is adequate, unless the group H < GL(W ) induced by the
action of G+ on W is as described in one of the exceptional cases (a), (b)(i)–(vi)
listed in Theorem 1.3.

Corollary 1.5. Let k be a field of characteristic p and G a finite group. Let V
be an absolutely irreducible faithful kG-module, and let G+ denote the subgroup
generated by the p-elements of G. Suppose that the dimension d of any irreducible
kG+-submodule in V is less than p−3. Let W be an irreducible kG+-submodule of
V⊗k k. Then (G, V ) is adequate, unless d= (p±1)/2 and the group H <PGL(W )

induced by the action of G+ on W is PSL2(p).

One should emphasize that, in all the aforementioned results, the dimension
bound dim W < p is imposed only on an irreducible G+-summand of V . In
general, G/G+ can be an arbitrary p′-group, and likewise, dim V/ dim W can be
arbitrarily large. So a major portion of the proofs, especially for Theorem 1.2, is
spent establishing the results under these more general hypotheses.

This paper is organized as follows. In Section 2, based on results of [Blau and
Zhang 1993], we describe the structure of (non-p-solvable) finite linear groups
G < GL(V ) such that the dimension of irreducible G+-summands in V is less
than p; see Theorem 2.4. Sections 3 and 4 are devoted to establish weak adequacy
for Chevalley groups in characteristic p. In Sections 5 and 6, we prove adequacy for
the remaining families of finite groups occurring in Theorem 2.4 and complete the
proof of Theorem 1.2. In Section 7, we collect various facts concerning extensions
and self-extensions of simple modules. The main result of Section 8, Proposition 8.2,
classifies self-dual indecomposable SL2(q)-modules for p | q. In Section 9, we
describe the structure of finite groups G possessing a reducible indecomposable
module of dimension ≤ 2p− 3 (Proposition 9.7). Theorem 1.3 and Corollary 1.4
are proved in Section 10.
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Notation. If V is a kG-module and X ≤ G is a subgroup, then VX denotes the
restriction of V to X . The containments X ⊂ Y (for sets) and X < Y (for groups)
are strict. Fix a prime p and an algebraically closed field k of characteristic p. Then
for any finite group G, IBrp(G) is the set of isomorphism classes of irreducible
kG-representations (or their Brauer characters, depending on the context), dp(G)
denotes the smallest degree of the nontrivial ϕ ∈ IBrp(G), and B0(G) denotes the
principal p-block of G. Sometimes we use 1 to denote the principal representation.
Op(G) is the largest normal p-subgroup of G, O p(G) is the smallest normal
subgroup N of G subject to G/N being a p-group, and similarly for Op′(G) and
O p′(G) = G+. Furthermore, the Fitting subgroup F(G) is the largest nilpotent
normal subgroup of G, and E(G) is the product of all subnormal quasisimple
subgroups of G, so that F∗(G)= F(G)E(G) is the generalized Fitting subgroup
of G. Given a finite-dimensional kG-representation 8 : G→ GL(V ), we denote
by M the k-span

〈8(g) :8(g) semisimple〉k .

If M is a finite-length module over a ring R, then define soci (M) by soc0(M)= 0
and soc j (M)/ soc j−1(M)= soc(M/ soc j−1(M)). If M = soc j (M) with j minimal,
we say that j is the socle length of M .

2. Linear groups of low degree

First we describe the structure of absolutely irreducible non-p-solvable linear groups
of low degree, relying on the main result of [Blau and Zhang 1993]:

Theorem 2.1. Let W be a faithful, absolutely irreducible k H-module for a finite
group H with O p′(H)= H. Suppose that 1< dim W < p. Then one of the following
cases holds, where P ∈ Sylp(H):

(a) p is a Fermat prime, |P| = p, H = Op′(H)P is solvable, dim W = p− 1, and
Op′(H) is absolutely irreducible on W .

(b) |P| = p, dim W = p− 1, and one of the following conditions holds:

(b1) (H, p) = (SUn(q), (qn
+ 1)/(q + 1)), (Sp2n(q), (q

n
+ 1)/2), (2A7, 5),

(3J3, 19), or (2Ru, 29).

(b2) p = 7 and H = 61 ·PSL3(4), 61 ·PSU4(3), 2J2, 3A7, or 6A7.

(b3) p = 11 and H = M11, 2M12, or 2M22.

(b4) p = 13 and H = 6 · Suz or 2G2(4).

(c) |P| = p, dim W = p− 2, and (H, p)= (PSLn(q), (qn
− 1)/(q − 1)), (Ap, p),

(3A6, 5), (3A7, 5), (M11, 11), or (M23, 23).

(d) (H, p, dim W )= (2A7, 7, 4), (J1, 11, 7).
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(e) Extraspecial case: |P| = p = 2n
+ 1 ≥ 5, dim W = 2n , Op′(H) = R Z(H),

R = [P, R]Z(R)∈ Syl2(Op′(H)), [P, R] is an extraspecial 2-group of order 21+2n ,
and V[P,R] is absolutely irreducible. Furthermore, S := H/Op′(H) is simple
nonabelian, and either S = Sp2a(2

b)′ or �−2a(2
b)′ with ab = n or S = PSL2(17)

and p = 17.

(f) Lie(p) case: H/Z(H) is a direct product of simple groups of Lie type in charac-
teristic p.

Furthermore, in the cases (b)–(d), H is quasisimple with Z(H) a p′-group.

Proof. We apply Theorem A of [Blau and Zhang 1993] and arrive at one of the
possibilities (a)–(j) listed there. Note that possibility (j) is restated as our case (f),
and possibilities (f)–(i) do not occur since H is absolutely irreducible. Possibility
(a) does not arise either since dim W > 1, and possibility (b) is restated as our
case (a). Next, in the case of possibility (c), either we are back to our case (a), or
else we are in case (e), where the simplicity of S follows from the assumption that
H = O p′(H). (Also, S ��+2a(2

b) since |S|p = |P| = p.)
In the remaining cases (d), (e), and (g) of [Blau and Zhang 1993, Theorem A],

we have that H/Z(H) = S is a simple nonabelian group, and Z(H) is a cyclic
p′-group by Schur’s lemma. Hence, H (∞) is a perfect normal subgroup of p′-index
in H = O p′(H). It follows that H = H (∞) and so it is quasisimple. Also, the
possibilities for (S, dim W, p) are listed. Using

• [Guralnick and Tiep 1999] if S = PSLn(q),

• [Guralnick et al. 2002] if S = PSUn(q) or PSp2n(q),

• [Guralnick and Tiep 2005, Lemma 6.1] if S = Ap and p ≥ 17, and

• [Jansen et al. 1995] for the other simple groups,

we arrive at cases (b)–(d). �

Next we prove some technical lemmas in the spirit of [Blau and Zhang 1993,
Lemma 3.10].

Lemma 2.2. Let G be a finite group with normal subgroups K1 and K2 such that
K1 ∩ K2 ≤ Op′(G). For any finite group X , let X denote X/Op′(X). Suppose that
G/K1 ∼=

∏
i∈I Mi and G/K2 ∼=

∏
j∈J N j are direct products of simple nonabelian

groups. Then there are some sets I ′ ⊆ I and J ′ ⊆ J such that

G ∼=
∏
i∈I ′

Mi ×
∏
j∈J ′

N j .

Proof. For i = 1, 2, let Ki ≤ Hi CG be such that Hi/Ki = Op′(G/Ki ). Then

G/H1 ∼=
∏
i∈I

Mi , G/H2 ∼=
∏
j∈J

N j .
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By [Blau and Zhang 1993, Lemma 3.9], there are sets I ′ ⊆ I and J ′ ⊆ J such that

G/(H1 ∩ H2)∼=
∏
i∈I ′

Mi ×
∏
j∈J ′

N j .

It remains to show that H1∩H2= Op′(G). Certainly, H1∩H2≥ Op′(G). Conversely,

(H1 ∩ K2)/(K1 ∩ K2) ↪→ H1/K1, (H1 ∩ H2)/(H1 ∩ K2) ↪→ H2/K2,

and K1 ∩ K2 ≤ Op′(G). It follows that H1 ∩ H2 is a p′-group. �

Lemma 2.3. Let G be a finite group with a faithful kG-module V . Suppose that
V =W1⊕· · ·⊕Wt is a direct sum of kG-submodules, and let Hi ≤GL(Wi ) be the
linear group induced by the action of G on Wi . Suppose that Si := Hi/Op′(Hi ) is a
simple nonabelian group for each i . Then there is a subset J ⊆{1, 2, . . . , t} such that

G/Op′(G)∼=
∏
j∈J

S j .

In particular, if Op′(Hi )= 1 for all i , then G ∼=
∏

j∈J S j .

Proof. We proceed by induction on t . The induction base t = 1 is obvious. For
the induction step, let Ki denote the kernel of the action of G on Wi , so that
Hi = G/Ki . The faithfulness of V implies that

⋂t
i=1 Ki = 1. Adopt the bar

notation X of Lemma 2.2. By the assumption, G/K1 ∼= S1. Next, observe that
L :=

⋂t
i=2 Ki is the kernel of the action of G on V ′ := W2 ⊕ · · · ⊕Wt , and the

action of G/L on Wi induces Hi for all i ≥ 2. Applying the induction hypothesis
to G/L acting on V ′, we see that G/L ∼=

∏
j∈J ′ S j for some J ′ ⊆ {2, 3, . . . , t}.

Also, K1 ∩ L = 1. Hence we can apply Lemma 2.2 to get G ∼=
∏

j∈J S j for some
J ⊆ {1, 2, 3, . . . , t}.

Finally, if Op′(Hi )=1 for all i , then the action of Op′(G) on Wi induces a normal
p′-subgroup of Hi for all i , whence Op′(G)≤

⋂t
i=1 Ki = 1, and we are done. �

Theorem 2.4. Let V be a finite-dimensional vector space over an algebraically
closed field k of characteristic p and G < GL(V ) a finite irreducible subgroup.
Suppose that an irreducible G+-submodule W of V has dimension < p and G+ is
not solvable. Then G+ is perfect and has no composition factor isomorphic to C p;
in particular, H 1(G, k)= 0. Furthermore, if H is the image of G+ in GL(W ), then
one of the following statements holds:

(i) One of the cases (b)–(d) of Theorem 2.1 holds for H , and G+/Z(G+) =
S1× · · ·× Sn ∼= Sn is a direct product of n copies of the simple nonabelian group
S = H/Z(H). Here, G permutes these n direct factors S1, . . . , Sn transitively.
Furthermore, G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple groups L i ,
each being a central cover of S, and the action of G+ on each irreducible G+-
submodule Wi of W induces a quasisimple subgroup of GL(Wi ). Finally, if H is
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the full covering group of S or if H = S, then

G+ = L1× L2× · · ·× Ln ∼= H n.

(ii) Case (e) of Theorem 2.1 holds for H. Furthermore, Op′(G+) is irreducible on
any irreducible G+-submodule Wi of V , and G+/Op′(G+)∼= Sm is a direct product
of m ≥ 1 copies of the simple nonabelian group S listed in case (e) of Theorem 2.1.

(iii) Case (f) of Theorem 2.1 holds for H , and G+= L1∗· · ·∗Ln is a central product
of quasisimple groups L i of Lie type in characteristic p with Z(L i ) a p′-group.

Proof. (a) By Clifford’s theorem, VG+ ∼= e
∑t

i=1 Wi for some e, t ≥ 1, and
{W1, . . . ,Wt } is a full set of representatives of isomorphism classes of G-conjugates
of W ∼=W1. Let 8i : G+→ GL(Wi ) denote the corresponding representation, and
let Ki :=Ker(8i ), so that G+/Ki ∼= H for all i , where we denote by H the subgroup
of GL(W ) induced by the action of G+ on W . The faithfulness of the action of G
on V implies that

⋂t
i=1 Ki = 1. In particular, G+ injects into

∏t
i=1(G

+/Ki )∼= H t .
Hence case (a) of Theorem 2.1 is impossible since G+ is not solvable. In case
(f) of Theorem 2.1, an argument similar to the proof of Lemma 2.3 shows that
G+/Z(G+) = S1 × · · · × Sn is a direct product of simple groups Si of Lie type
in characteristic p. Since G+ = O p′(G+) and Op(G+) ≤ Op(G) = 1, it then
follows that G+ equals L1 ∗ · · · ∗ Ln , a central product of quasisimple groups L i

of Lie type in characteristic p with Z(L i ) a p′-group (just take L i to be a perfect
inverse image of Si in G+), i.e., (iii) holds. In the remaining cases (b)–(e) of
Theorem 2.1, H/Op′(H)∼= S, where S is a nonabelian simple group described in
Theorem 2.1(b)–(e). By Lemma 2.3, G+/Op′(G+)∼= Sn , a direct product of n ≥ 1
copies of S. Thus in all cases, G+ has no composition factor isomorphic to C p

and Z(G+)≤ Op′(G+). Furthermore, G+ = (G+)(∞)Op′(G+) and so (G+)(∞) is
a normal subgroup of p′-index in G+ = O p′(G+), whence G+ is perfect. Thus the
first claim of Theorem 2.4 holds in all cases.

(b) Suppose next that we are in the cases (b)–(d) of Theorem 2.1. Then H is qua-
sisimple and Z(H) is a p′-group; in particular, Op′(H)= Z(H) and H/Z(H)= S.
Note that 8i (Op′(G+)) is a normal p′-subgroup of Hi = 8i (G+) ∼= H , whence
8i (Op′(G+)) ≤ Z(Hi ). Thus, for any z ∈ Op′(G+) and any g ∈ G+, [z, g] acts
trivially on each Wi and so [z, g] ∈

⋂t
i=1 Ki = 1, i.e., z ∈ Z(G+). We have shown

that Op′(G+)= Z(G+)=: Z .
Now we can write G+/Z = S1× · · · × Sn with Si ∼= S. Let Mi denote the full

inverse image of Si in G+ and let L i := M (∞)
i . Then Mi = L i Z , L i/(L i ∩ Z) ∼=

Mi/Z ∼= S, and so L i is quasisimple and a central cover of S. Next, for i 6= j we
have [L i , L j ] ≤ Z and so, since L i is perfect,

[L i , L j ] = [[L i , L i ], L j ] = 1
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by the three subgroups lemma. It follows that M := L1L2 · · · Ln is a central product
of the L i . But G+ = M Z and G+ is perfect, so G+ = M .

The remaining claims in (i) are obvious if t = 1, so we will now assume that
t > 1. First we show that G acts transitively on {S1, . . . , Sn}. Relabeling the
Wi suitably we may assume that K1 Z/Z ≥

∏
i 6=1 Si and K2 Z/Z ≥

∏
i 6=2 Si . But

G+/K j =8 j (G+) is quasisimple, so in fact K j Z/Z =
∏

i 6= j Si for j = 1, 2. By
Clifford’s theorem, W2 = W g

1 for some g ∈ G. Now g sends K1 to K2, and so
it sends S1 to S2, as desired. If furthermore H = S, then Op′(H) = 1, whence
G+ = S1 × · · · × Sn ∼= H n by Lemma 2.3. Consider the opposite situation: H
is the full covering group of S. Again relabeling the Wi suitably and arguing as
above, we may assume that K1 Z/Z =

∏
i 6=1 Si . In this case, K1 Z ≥ L i for i ≥ 2,

whence L i = [L i , L i ] ≤ [K1 Z , K1 Z ] ≤ K1 and K1 ≥ L2L3 · · · Ln . It also follows
that G+ = K1L1 and so L1/(K1 ∩ L1) ∼= G+/K1 ∼= H . Recall that L1 is perfect
and L1/(L1 ∩ Z) ∼= S, i.e., L1 is a central extension of the simple group S. But
H is the full covering group of S, so |L1| ≤ |H |. It follows that L1 ∩ K1 = 1 and
L1 ∼= H ; in particular, L1∩

∏
j 6=1 L j = 1. Similarly, L i ∼= H and L i ∩

∏
j 6=i L j = 1

for all i . Thus G+ = L1× · · ·× Ln ∼= H n .

(c) Assume now that we are in case (e) of Theorem 2.1. Then Pi :=8i (Op′(G+))
is again a normal p′-subgroup of Hi , and so Pi ≤ Op′(Hi ). On the other hand,
Hi/Pi is a quotient of G+/Op′(G+)∼= Sn , whence all composition factors of Hi/Pi

are isomorphic to S. Since Hi/Op′(Hi ) ∼= S, we conclude that Pi = Op′(Hi ); in
particular, Op′(G+) is irreducible on Wi . �

3. Weak adequacy for SL2(Fp)

Proposition 3.1. Any nontrivial irreducible representation V of SL2(Fp) over Fp is
weakly adequate except when dim V = p and p ≤ 3.

Remark 3.2. When p ≤ 3 the p′-elements of SL2(Fp) generate a normal subgroup
of index p. If moreover dim V = p then this subgroup does not act irreducibly;
hence V cannot be weakly adequate.

The rest of the section is devoted to proving Proposition 3.1. Note that p > 2. In
the following we write V = L(a) with 0 < a ≤ p− 1. If a ≤ (p− 3)/2 then the
argument of [Guralnick et al. 2012, Theorem 9] applies. (Let T⊂ SL2 denote the
diagonal maximal torus. Then distinct weights of T/Fp

on L(a) restrict distinctly to
T(Fp), and End V is semisimple by [Serre 1994] with p-restricted highest weights.)
We will assume from now on that a ≥ (p− 1)/2.

Lemma 3.3. Suppose that (p− 1)/2≤ a ≤ p− 1. Then

headSL2(L(a)⊗ L(a))∼=
(p−1)/2⊕

i=0

L(2i).
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Moreover, if a 6= p−1, headSL2(Fp)(L(a)⊗L(a))=headSL2(L(a)⊗L(a)), whereas if
a = p− 1,

headSL2(Fp)(L(a)⊗ L(a))∼=
(p−1)/2⊕

i=0

L(2i)⊕ L(p− 1).

Proof. By [Doty and Henke 2005, Lemmas 1.1, 1.3], we see that for SL2,

L(a)⊗ L(a)∼=
p−2−a⊕

i=0

L(2i)⊕
(p−3)/2⊕

i=p−1−a

T (2p− 2− 2i)⊕ L(p− 1), (3-1)

where the tilting module T (2p− 2− r) for 0≤ r ≤ p− 2 is uniserial of the form
(L(r) | L(2p−2− r) | L(r)). This proves the first part of the lemma. As is pointed
out in Lemma 1.1 of [Doty and Henke 2005], T (2p−2−r)∼=Q(r) for 0≤ r ≤ p−2,
which implies that T (2p−2−r)|SL2(Fp) is projective. See also [Jantzen 2003, §2.7].

Noting that L(2p− 2− r)|SL2(Fp)
∼= L(p− 1− r)⊕ L(p− 3− r) and using that

L(p− 1) is the only irreducible projective SL2(Fp)-module, it follows that

T (2p− 2− r)|SL2(Fp)
∼=

{
U (r) if 0< r ≤ p− 2,
U (0)⊕ L(p− 1) if r = 0,

(3-2)

where U (i) denotes the projective cover of L(i). The claim follows. �

In the following, we will think of V ∼= L(a) as the space of homogeneous
polynomials in X, Y of degree a.

Lemma 3.4. (End V )U ∼=
a⊕

k=0
Fp · (X (∂/∂Y ))k , where U=

( 1 ∗
1

)
⊂ SL2.

Proof. The torus T=
(
∗

∗

)
⊂ SL2 acts on (End V )U, and, for λ ∈ X (T),

HomT(λ, (End V )U)∼= HomSL2(V (λ),End V ). (3-3)

So it follows from (3-1) that dim(End V )U = a + 1. (Namely, λ = 0, 2, . . . , 2a
each work once.) A simple calculation shows that X (∂/∂Y ) is U-invariant; hence,
so are (X (∂/∂Y ))k , (0≤ k ≤ a), which are clearly nonzero. Since (X (∂/∂Y ))k has
weight 2k, they are linearly independent. �

By Lemma 3.4 and (3-1), for 0 ≤ k ≤ a, the SL2-representation generated by
(X (∂/∂Y ))k is V (2k)⊂ End(V ).

Lemma 3.5. The weight-0 subspace in V (2k)⊂ End V is the line spanned by

1k :=

k∑
i=0

(−1)k−i
(k

i

)2
X i Y k−i

(
∂

∂X

)i( ∂
∂Y

)k−i
(0≤ k ≤ a).
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Proof. We compute the weight-0 part of
( 1
−1 1

)
· (X (∂/∂Y ))k . Take f ∈ Fp[X, Y ]

homogeneous of degree a. Under
( 1
−1 1

)
· (X (∂/∂Y ))k the element f is sent to((

1
−1 1

)
·

(
X ∂

∂Y

)k
)

f (X + Y, Y )

=

(
1
−1 1

)[
X k

k∑
i=0

(k
i

)((
∂

∂X

)i( ∂
∂Y

)k−i
f
)
(X + Y, Y )

]

= (X − Y )k
k∑

i=0

(k
i

)(
∂

∂X

)i( ∂
∂Y

)k−i
f.

The weight-0 part is the part that does not change the monomial degree, so it is 1k .
Finally, note that 1k 6= 0 as 1k(Xa) 6= 0. �

Now suppose that 0≤ k≤ (p−1)/2. By the SL2-invariant trace pairing on End V ,
the element 1k ∈ socSL2(End V ) induces an element δk ∈ (headSL2(End V ))∗ that
is zero on all irreducible constituents of headSL2(End V ) except for L(2k). Let
π` ∈ End V (0≤ `≤ a) denote the projection X i Y a−i

7→ δi`X i Y a−i .

Lemma 3.6. If 0≤k≤ (p−1)/2, then δk(π`) is a polynomial in ` of degree exactly k.

Proof. Note that δk(π`) = tr(π` ◦1k) is the eigenvalue of 1k on X`Y a−`, and
hence equals

k∑
i=0

(−1)k−i
(k

i

)2
`(`− 1) · · · (`− i + 1)(a− `)(a− `− 1) · · · (a− `− k+ i + 1).

This is a polynomial in ` of degree at most k. The coefficient of `k is
∑k

i=0
(k

i

)2
=(2k

k

)
6≡ 0 (mod p), as k < p/2. �

Let us denote this polynomial by pk(z) ∈ Fp[z].

Proof of Proposition 3.1. Recall that (p − 1)/2 ≤ a ≤ p − 1. Let M denote
the span of the image of the p′-elements in End V , and let M denote the image
of M in headSL2(Fp)(End V ). Since M is SL2(Fp)-stable, it suffices to show that
M = headSL2(Fp)(End V ).

(a) Suppose that a < p− 1. By Lemma 3.3, headSL2(Fp)(End V )∼=
⊕(p−1)/2

i=0 L(2i).
Suppose that M does not contain L(2k) for some 0 ≤ k ≤ (p − 1)/2. Then δk

annihilates the image of all p′-elements. The images of the diagonal elements of
SL2(Fp) in End(V ) span the subspace with basis

πi

(
a−

p− 3
2
≤ i ≤

p− 3
2

)
πi +πi+ p−1

2

(
0≤ i ≤ a−

p− 1
2

)
.
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Hence

pk(i)= 0
(

a−
p− 3

2
≤ i ≤

p− 3
2

)
,

pk(i)+ pk

(
i +

p− 1
2

)
= 0

(
0≤ i ≤ a−

p− 1
2

)
.

(3-4)

Now repeat the same argument with a nonsplit Cartan subgroup. After a linear
change of variables (X, Y ) 7→ (X ′, Y ′) over Fp2 , this subgroup acts as{(

x
x p

)
: x ∈ F×p2, x p+1

= 1
}
.

In this new basis of V we have corresponding elements 1′k , δ′k , π ′`. However, pk is
unchanged, as it is given by the explicit formula in the proof of Lemma 3.6. We
thus get

pk(i)= 0
(

a−
p− 1

2
≤ i ≤

p− 1
2

)
,

pk(i)+ pk

(
i +

p+ 1
2

)
= 0

(
0≤ i ≤ a−

p+ 1
2

)
.

(3-5)

From (3-4) and (3-5) we get that pk(`)= 0 for all 0≤ `≤ a. This contradicts the
fact that deg pk = k ≤ (p− 1)/2≤ a.

(b) Suppose that a = p − 1, so that p ≥ 5 by our assumption. By Lemma 3.3,
headSL2(Fp)(End V )∼=

⊕(p−1)/2
i=0 L(2i)⊕ L(p− 1).

(b1) Suppose that M does not contain L(2k) for some k ≤ (p− 3)/2. Then δk and
δ′k annihilate the image of all p′-elements, so by an argument analogous to the one
in (a) we get

pk(i)+ pk

(
i +

p− 1
2

)
= 0

(
0< i <

p− 1
2

)
,

pk(0)+ pk

(
p− 1

2

)
+ pk(p− 1)= 0;

(3-6)

pk(i)+ pk

(
i +

p+ 1
2

)
= 0

(
0≤ i ≤

p− 3
2

)
,

pk

(
p− 1

2

)
= 0.

(3-7)

Then pk(z+ 1)− pk(z) is a polynomial of degree k− 1< (p− 1)/2 with zeroes at
z=0, 1, . . . , (p−5)/2 and z= (p+1)/2, (p+3)/2, . . . , p−2. As p−3≥ (p−1)/2,
it follows that pk(z+1)≡ pk(z); hence by (3-7) we get pk(`)=0 for all 0≤`≤ p−1,
contradicting the fact that pk has degree 0≤ k < p.
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(b2) Suppose that M does not contain L(p− 1)⊕2. Note first that the second copy
of L(p− 1)⊂ End(V ) is contained in the Weyl module V (2p− 2) ↪→ T (2p− 2).
Using (3-2) we have V (2p−2)|SL2(Fp)

∼= L(p−1)⊕M , where 0→ L(0)→ M→
L(p−3)→ 0 is nonsplit. It follows using (3-3) that V (2p−2)U(Fp) = V (2p−2)U

(both are two-dimensional). Hence there is a U(Fp)-fixed vector in the second copy
of L(p−1) of the form v := (X (∂/∂Y ))p−1

+c for some c∈ Fp. We first compute c.
Note that if V is an SL2(Fp)-representation over Fp and v 6= 0 is fixed by the Borel
subgroup B :=

(
∗ ∗

∗

)
⊂ SL2(Fp), then v generates the p-dimensional irreducible

representation of SL2(Fp) if and only if∑
SL2(Fp)/(

∗ ∗

∗
)

gv = 0 ⇐⇒

∑
u∈Fp

(
1
−u 1

)
v+

(
−1

1

)
v = 0.

As in Lemma 3.5,(
1
−u 1

)
·

(
X ∂

∂Y

)p−1
= (X − uY )p−1

p−1∑
i=0

(−u)i
(
∂

∂X

)i( ∂
∂Y

)p−1−i
;

hence ∑
u∈Fp

(
1
−u 1

)
·

[(
X ∂

∂Y

)p−1
+ c

]
=−

[
1p−1+ Y p−1

·

(
∂

∂X

)p−1]
.

Since (
−1

1

)
·

[(
X ∂

∂Y

)p−1
+ c

]
=

(
Y ∂

∂X

)p−1
+ c,

we deduce that c =−1.
Consider the annihilator M⊥ ⊂ socSL2(Fp)(End V ) of M under the trace pairing.

By assumption, N := M⊥ ∩ L(p− 1)⊕2
6= 0. Let ψ ∈ N B

− {0}, so that by the
previous paragraph we can write ψ = λ(X (∂/∂Y ))(p−1)/2

+µ
(
(X (∂/∂Y ))p−1

−1
)

for some (λ, µ) ∈ F2
p − {0}. As ψ ∈ M⊥, we get by a simple calculation that

0= tr
((
α
α−1

)
◦ψ

)
=−µ for any α ∈ F×p −{±1} 6=∅. Thus we may assume that

ψ = (X (∂/∂Y ))(p−1)/2. As the SL2(Fp)-subrepresentation of End(V ) generated by
ψ is the unique SL2-subrepresentation L(p−1)⊂ End(V ), we see that N contains
1k and 1′k for k = (p−1)/2, so δk and δ′k annihilate M . Now the argument of (b1)
gives a contradiction. �

4. Weak adequacy for Chevalley groups

Lemma 4.1. Suppose (X,8, X∨,8∨) is a reduced based root datum with 8
irreducible.
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(a) If 8 is not of type A1, then

2α∨0 ≤
∑
α∈8+

α∨,

where α∨0 is the highest coroot.

(b) If 8 is not of type A1, A2, A3, or B2, then

4β∨0 ≤
∑
α∈8+

α∨,

where β∨0 is the highest short coroot.

Proof. (a) Let {αi : i = 1, . . . , r} denote the simple roots. Then 〈α∨0 , αi 〉 ≥ 0
for all i and 〈α∨0 , α j 〉 > 0 for some j . Since α∨0 6= α

∨

j (as 8 is not of type A1),
β∨ := α∨0 −α

∨

j ∈8
∨. Since α∨0 = α

∨

j +β
∨ it follows that β∨ > 0. Also, α∨j 6= β

∨,
as 8 is reduced. Hence

2α∨0 = α
∨

0 +α
∨

j +β
∨
≤

∑
α∈8+

α∨.

(b) We pass to the dual root system to simplify notation. We want to show that

4β0 ≤
∑
α∈8+

α,

where β0 is the highest short root. It suffices to express β0 as sum of positive roots
in three nontrivial ways that do not overlap (similarly as in the proof of (a)). If 8 is
not simply laced, we only need two nontrivial ways because we can also use that
β0 < α0, where α0 is the highest root.

In the following we use Bourbaki notation:

• Type An−1 (n ≥ 5):

β0 = ε1− εn = (ε1− εi )+ (εi − εn) (1< i < n).

• Type Bn (n ≥ 3):

β0 = ε1 = (ε1− εi )+ εi (1< i ≤ n).

If n = 3, we also use β0 < α0 = ε1+ ε2.

• Type Cn (n ≥ 3):

β0 = ε1+ ε2 = (ε1− εi )+ (ε2+ εi )= (ε1+ εi )+ (ε2− εi ) (2< i ≤ n).

If n = 3, we also use β0 < α0 = 2ε1.
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• Type Dn (n ≥ 4):

β0 = ε1+ ε2 = (ε1− εi )+ (ε2+ εi )= (ε1+ εi )+ (ε2− εi ) (2< i ≤ n).

• Type E6:

β0 =
1
2(ε1+ ε2+ ε3+ ε4+ ε5− ε6− ε7+ ε8).

Note that β0− (εi + ε j ) and εi + ε j are positive (1≤ i < j ≤ 5).

• Type E7:

β0= ε8−ε7=
1
2

(
ε8−ε7+ε6+

5∑
i=1

(−1)v(i)εi

)
+

1
2

(
ε8−ε7−ε6−

5∑
i=1

(−1)v(i)εi

)
,

where
∑5

i=1 v(i) is odd.

• Type E8:

β0 = ε7+ ε8 = (−εi + ε7)+ (εi + ε8) (1≤ i < 7).

• Type F4:

β0 = ε1 = (ε1− εi )+ εi (1< i ≤ 4).

• Type G2:

β0 = 2α1+α2 = α1+ (α1+α2)β0 < 3α1+α2β0 < α0 = 3α1+ 2α2. �

We now prove variants of several results in [Guralnick et al. 2012].

Lemma 4.2. Suppose that G is a connected, simply connected, semisimple algebraic
group over Fp and 2 : G→ GL(V ) a semisimple finite-dimensional representation.
Let G>B> T denote a Borel subgroup and a maximal torus, and suppose that

for any irreducible component V ′ of V and for any two distinct weights
µ1, µ2 of T on V ′, we have µ1−µ2 /∈ pX (T).

(4-1)

Then there exist connected, simply connected, semisimple algebraic subgroups
I and J of G such that G = I× J, 2(J) = 1, and 2 induces a central isogeny
of I onto its image, which is a semisimple algebraic group. Moreover, assumption
(4-1) holds if for all irreducible constituents V ′ of V the highest weight of V ′ is
p-restricted and either

(i) dim V ′ < p, or

(ii) dim V ′ ≤ p and either p 6= 2 or G has no SL2-factor.
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Proof. Write V =
⊕

Vi with Vi irreducible and G=
∏

s∈S Gs with each Gs almost
simple. The last sentence of the proof of Lemma 4 in [Guralnick et al. 2012] together
with (4-1) show that the conclusion of that lemma holds for 2i : G→ GL(Vi ) for
all i . Hence there exists Si ⊂ S such that ker2i =

∏
s∈Si

Gs × Zi , where Zi is
a central subgroup of

∏
s /∈Si

Gs (maybe nonreduced). Then ker2 =
⋂

ker2i =∏
s∈
⋂

Si
Gs × Z , where Z is a central subgroup of

∏
s /∈
⋂

Si
Gs . So we can take I=∏

s /∈
⋂

Si
Gs and J=

∏
s∈
⋂

Si
Gs .

To prove the last part, we may suppose that V is irreducible. So V ∼=
⊗

s∈S Vs ,
where Vs is an irreducible Gs-representation. It is easy to see that if (4-1) fails, then
it fails for Gs→GL(Vs) for some s ∈ S, so we may assume that G is almost simple.

(a) First suppose that G ∼= SL2. The highest weight of V is
( x

x−1

)
7→ xa , for

some 0 ≤ a ≤ p− 1, and a 6= p− 1 if p = 2. Therefore the weights of ad V are( x
x−1

)
7→ xb, where b ∈ {−2a,−2a + 2, . . . , 2a − 2, 2a}. It follows that (4-1)

holds because b ≡ 0 (mod p) implies that b = 0.

(b) Next suppose that G�SL2. Let λ denote the highest weight of V ; it is p-restricted
by assumption. By Lemma 4.1(a) and Jantzen’s inequality [1997, Lemma 1.2] we get

|〈µ, β∨〉| ≤ 〈λ, α∨0 〉 ≤
1
2

〈
λ,
∑
α>0

α∨

〉
< 1

2 dim V ≤
p
2

for all weights µ of V and all roots β. Hence |〈µ1−µ2, β
∨
〉| < p for all root β

and all weights µi of V , so (4-1) holds. �

Lemma 4.3. Suppose that G≤
∏

GL(Wi ) is a connected reductive group over Fp,
where for all i the representation Wi is irreducible with p-restricted highest weight
and has dimension ≤ p. Let T be a maximal torus and U the unipotent radical of a
Borel subgroup of G that contains T. Let V =

⊕
Wi .

(i) The maps exp and log induce inverse isomorphisms of varieties between
Lie U≤ End(V ) and U≤ GL(V ).

(ii) For any positive root α we have exp(Lie Uα)=Uα.

(iii) The map exp : Lie U→U depends only on G and U, but not on V , Wi , or the
representation G ↪→ GL(V ).

(iv) If θ is an automorphism of G that preserves T and U, then we have a
commutative diagram

Lie U
dθ
//

exp
��

Lie U

exp
��

U
θ

// U
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Proof. The proof is the same as that of [Guralnick et al. 2012, Lemma 5], where
there was an extra assumption on the µi . The assumption on the weights µi is only
used to prove that Xα,n acts trivially on V =

⊕
Wi for all n ≥ p. Fix any i . It is

enough to show that Xα,n acts trivially on Wi for all n ≥ p. So it is enough to show
that Wi cannot have two weights λ and λ+ nα (α ∈ 8, n ≥ p). As dim Wi ≤ p,
it follows from [Jantzen 1997] that the weights of Wi are the same as those of
the irreducible characteristic-0 representation of the same highest weight. But
in characteristic 0 it is known that if λ and λ+ nα are weights of an irreducible
representation, then so are λ, λ + α, λ + 2α, . . . , λ + nα, so dim Wi > n ≥ p,
contradicting the assumption. �

Proposition 4.4. Let p > 3 be prime. Suppose that V is a finite-dimensional
vector space over Fp and that G ≤ GL(V ) is a finite subgroup that acts semisimply
on V . Let G+ ≤ G be the subgroup generated by p-elements of G. Then V is a
semisimple G+-module. Let d ≥ 1 be the maximal dimension of an irreducible
G+-submodule of V . Suppose that p > d and that G+ is a central product of
quasisimple Chevalley groups in characteristic p. Then there exists an algebraic
group G over Fp and a semisimple representation 2 : G/Fp

→ GL(V ) with the
following properties:

(i) The connected component G0 is semisimple simply connected.

(ii) G∼= G0o H , where H is a finite group of order prime to p.

(iii) 2(G(Fp))= G.

(iv) ker(2)∩G0(Fp) is central in G0(Fp).

Moreover, any highest weight of G0
/Fp

on V is p-restricted. Also, G does not have
any composition factor of order p.

Proof. The proof is essentially identical to the proof of [Guralnick et al. 2012,
Proposition 7]. We do not get 〈λ, α∨〉 < (p− 1)/2 in Step 2, but this was only
used to apply Lemmas 4 and 5 in [Guralnick et al. 2012]. By Lemmas 4.2 and 4.3
above one can bypass this assumption, as we now explain. Both times Lemma 4
in [Guralnick et al. 2012] is applied, condition (ii) in Lemma 4.2 holds. In Step 4
we can apply Lemma 4.3 instead of Lemma 5 in [Guralnick et al. 2012] because
I acts irreducibly on Wi and its highest weight is p-restricted (as I→ I is a
central isogeny). Similarly we can avoid Lemma 5 in [Guralnick et al. 2012] in
Step 5, noting that the highest weights of V ′ are Galois-conjugate to the highest
weights of V and recalling that ψ/Fp

is a central isogeny onto its image. Finally,
note that (iv) follows by construction. �
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Theorem 4.5. Suppose that p > 3, V is a finite-dimensional vector space over Fp,
and G ≤ GL(V ) is a finite subgroup that acts irreducibly on V . Let G+ ≤ G be
the subgroup generated by p-elements of G. Let d ≥ 1 be the maximal dimension
of an irreducible G+-submodule of V . Suppose that p > d and that G+ is a
central product of quasisimple Chevalley groups in characteristic p. Then the set of
p′-elements of G spans ad V as an Fp-vector space.

Remark 4.6. Theorem 4.5 generalizes [Guralnick et al. 2012, Theorem 9]. We take
the opportunity to point out a small gap in the last paragraph of the proof of that
theorem. In the notation there, it is implicitly assumed that (i) r(T (Fl))⊂ r(H), so
that the span of r(H) equals the span of r(T (Fl)H), and (ii) H normalizes the pair
(B, T ). Both assumptions are satisfied provided that when we apply [Guralnick
et al. 2012, Proposition 7] in the proof of Theorem 9 there, we take r , G =G0oH ,
B, T , . . . as constructed in the proof of that proposition.

Proof. Without loss of generality d > 1. Let 2: G/Fp
→ GL(V ) be as in

Proposition 4.4. Then V =
⊕

Wi , where Wi is an irreducible G0
/Fp

-subrepresentation
with p-restricted highest weight. Write G0

/Fp

∼= G1× · · ·×Gr , where Gi is almost
simple over Fp. Let G0 >B>T denote a Borel subgroup and a maximal torus, and
let 8 denote the roots of G0

/Fp
with respect to T/Fp

.

(a) We consider the case where one of the Wi (equivalently any) is tensor-decom-
posable as a G0

/Fp
-representation. Note that Wi ∼= X i1� · · ·� X ir , where X i j is an ir-

reducible G j -representation with p-restricted highest weight. Since dim X i j ≤ p−1,
its highest weight lies in the lowest alcove [Jantzen 1997; Serre 1994]; hence X i j is
tensor-indecomposable (as the highest weight is in the lowest alcove, we are reduced
to the characteristic-0 case, where this is well known). Hence our assumption
implies that X i j � 1 for at least two values of j . Hence dim X i j ≤ (p− 1)/2 for
all i, j . Therefore X∗ik ⊗ X jk is a semisimple Gk-representation by [Serre 1994],
so End V is a semisimple G0

/Fp
-representation. Moreover, all its highest weights are

p-restricted: this follows exactly as in Step 2 of the proof of [Guralnick et al. 2012,
Proposition 7] (use that dim X i j ≤ (p− 1)/2). Hence any G0(Fp)-submodule of
End V is a G0(Fp)-submodule.

Furthermore, arguing as in Step 2 of the proof of [Guralnick et al. 2012, Propo-
sition 7] for each Gk , we deduce that for all weights µ of the maximal torus T/Fp

on V we have |〈µ, α∨〉| < (p − 1)/2 for all α ∈ 8. We conclude as in the last
paragraph of the proof of [Guralnick et al. 2012, Theorem 9].

(b) We consider the case when G0
/Fp

has no factors of type A1, A2, A3, or B2.
We claim |〈µ, α∨〉| < (p− 1)/4 for all weights µ of T/Fp

on V and for all short
coroots α∨ ∈8∨. It suffices to show that 〈λ, β∨0 〉<(p−1)/4 for all highest weights
λ of T/Fp

on V and all highest short coroots β∨0 (one for each component of G0
/Fp

).
So it is enough to show that if G′ is an almost simple, simply connected group over
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Fp, not of type A1, A2, A3, or B2, then 〈λ, β∨0 〉 < (p − 1)/4 for all p-restricted
weights λ of G′ such that dim L(λ) < p, where β∨0 is the highest short coroot of
G′. But this follows from Lemma 4.1(b) and Jantzen’s inequality, and this proves
the claim.

Since the short coroots span X∗
(
T/Fp

)
⊗Q over Q, Lemma 3 of [Guralnick

et al. 2012] plus the claim show that distinct weights of T/Fp
on End V (and V )

remain distinct on T(Fp). Then [Guralnick 2012a, Lemma 1.1] shows that any
G0(Fp)-subrepresentation of End V is G0(Fp)-stable, so we can conclude as in the
last paragraph of the proof of Theorem 9 in [Guralnick et al. 2012].

(c) If neither (a) nor (b) apply, then the Wi are tensor-indecomposable; in particular,
the almost simple factors of G0

/Fp
are pairwise isomorphic. (Write G0 ∼=

∏
Hi ,

where the subgroups Hi are almost simple over Fp. Note that, for each i , G0(Fp)

acts irreducibly on Wi with all but one H j (Fp) acting trivially. As G(Fp) is ir-
reducible on V and, by Proposition 4.4(iv), the subgroups Hi (Fp) are pairwise
isomorphic and, as p > 3, so are the Hi .) Hence G0

/Fp

∼= SLn
2 , SLn

3 , SLn
4 , or Spn

4 for
some n ≥ 1.

(d) We consider the case where G0
/Fp

∼= SLn
3 , SLn

4 , or Spn
4 . We claim that for all

weights µ of T/Fp
on V and for all α ∈8,

|〈µ, α∨〉|< 1
2(p− 1). (4-2)

To see this, note that |〈µ, α∨〉| ≤ 〈λ, α∨0 〉 for some highest weight λ of V and some
highest coroot α∨0 . Applying Lemma 4.1(a) to the component 8 j of 8 such that
α∨0 ∈8

∨

j and using Jantzen’s inequality, we get

〈λ, α∨0 〉 ≤
1
2

∑
8 j,+

〈λ, α∨〉< 1
2(p− 1).

By Lemma 3 in [Guralnick et al. 2012], (4-2) shows that distinct weights of T/Fp

on V remain distinct on T(Fp). As usual, it thus suffices to show that End V is a
semisimple G0

/Fp
-module with p-restricted highest weights. We can argue indepen-

dently for each factor of G0
/Fp

, so it will suffice to show that if X, Y are nontrivial
irreducible G′-representations which are conjugate by Aut(G′) (with G′ = SL3, SL4,
or Sp4) with p-restricted highest weights λ, λ′ of dimension less than p, then X⊗Y
is semisimple with p-restricted highest weights. By [Jantzen 1997; Serre 1994],
λ and λ′ lie in the lowest alcove, so ch L(λ) and ch L(λ′) are given by Weyl’s
character formula.

In the following, note that 〈λ, β∨0 〉 = 〈λ
′, β∨0 〉.
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If G′ ∼= SL4, write λ = r$1 + s$2 + t$3 (r, s, t ≥ 0), where $i is the i-th
fundamental weight. Then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)(t + 1)][(r + s+ 2)(s+ t + 2)](r + s+ t + 3)

2 · 2 · 3

≥
(r + s+ t + 1)(r + s+ t + 2)(r + s+ t + 3)

2 · 3
.

If 〈λ, β∨0 〉 = r + s+ t ≥ (p− 1)/4, then

p− 1≥
p+3

4 ·
p+7

4 ·
p+11

4

6
.

Equivalently, (p − 5)[(p + 13)2 − 292] ≤ 0, i.e., p = 5. In this case, equality
holds throughout so λ=$1 or $3. The maximal weight of X ⊗Y , namely 2$1 or
$1+$3 or 2$3, lies in the closure of the lowest alcove. Then X⊗Y is semisimple
by the linkage principle (or just [Jantzen 2003, Proposition II.4.13]) and it has
p-restricted highest weights. If 〈λ, β∨0 〉 < (p − 1)/4 the argument in (b) goes
through instead.

If G′ ∼= Sp4, write λ= r$1+ s$2 with r, s ≥ 0 (type B2). Then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)](r + s+ 2)(2r + s+ 3)

6

≥
(r + s+ 1)(r + s+ 2)(r + s+ 3)

6
.

If 〈λ, β∨0 〉 = r + s ≥ (p− 1)/4, then p = 5 as above and λ =$2. Again, X ⊗ Y
has maximal weight 2$2 lying in the closure of the lowest alcove; hence X ⊗ Y is
semisimple with p-restricted highest weights. If 〈λ, β∨0 〉< (p− 1)/4 we are done
as in (b).

If G′ ∼= SL3, write λ= r$1+ s$2 (r, s ≥ 0). If r + s ≥ (p− 1)/2, then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)](r + s+ 2)

2

≥
(r + s+ 1)(r + s+ 2)

2
≥

p+1
2 ·

p+3
2

2
.

Equivalently (p−2)2+7≤ 0, which is impossible. Hence r+s ≤ (p−3)/2, which
implies that the maximal weight of X ⊗ Y lies in the lowest alcove. So X ⊗ Y is
semisimple with p-restricted highest weights.

(e) We consider the case where G0
/Fp

∼=SLn
2 and each Wi is tensor-indecomposable as

a G0
/Fp

-representation. Here, G0(Fp)∼= SL2(Fq)
m , where [Fq : Fp] ·m = n. Also, V is

irreducible, each Wi is tensor-indecomposable, and SL2 has no outer automorphism.
It follows that V ∼=

[⊕`
i=1 Vi

]⊕k as G0
/Fp

-representations, where each Vi is of
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the form 1 � · · · � V0 � · · · � 1 (precisely one factor is V0), the Vi are pairwise
nonisomorphic, and V0 is an irreducible SL2-representation such that 1<dim V0< p
with p-restricted highest weight.

(e1) We claim that the span of the p′-elements of G0(Fp) in End V contains the
span of T(Fp) in End V .

If q > p, note from the description of Vi above that distinct weights of T/Fp
on

V remain distinct on T(Fp). Hence the span of T(Fp) in End V equals the span of
T(Fp) in End V .

If q = p, we will show that the p′-elements of G0(Fp) span the same sub-
space of End V as does all of G0(Fp). First, from Proposition 4.4(iv), we de-
duce that `= n. As the Vi are distinct and irreducible G0

/Fp
-representations, by the

Artin–Wedderburn theorem we need to show that the p′-elements in G0(Fp) span∏n
i=1 End(Vi ), or equivalently its G0(Fp)-head. (Note that the span of the p′-

elements is G0(Fp)-stable.) By Lemma 3.3, we see that the n representations
headG0(Fp)(End(Vi )) have no G0(Fp)-irreducible constituent in common except for
the trivial direct summand of scalar matrices in End(Vi ). By Proposition 3.1, the
image of the p′-elements span End(Vi ) for any i . Hence it suffices to show that the
image of the p′-elements under the map

G0(Fp) → Fn
p ,

g 7→ (tr(g|Vi ))
n
i=1

spans Fn
p. Note that as 1 < dim V0 < p, the split torus

(
∗

∗

)
< SL2(Fp) has a

nontrivial eigenvalue χ on V0 with multiplicity 1 or 2. Given 1≤ i ≤ n, there exists
an element in Fp[T(Fp)] that projects onto the 1⊗ · · · ⊗ χ ⊗ · · · ⊗ 1 eigenspace
in any T(Fp)-representation, so as p > 2 it has nonzero trace on Vi but is zero on⊕

j 6=i V j . This proves the claim.

(e2) We claim that headG0
/Fp
(End V ) = headG0(Fp)(End V ), and moreover that any

highest weight of this representation is p-restricted.
If d ≤ (p+ 1)/2, then by [Serre 1994] End V is a semisimple G0

/Fp
-module and

clearly any highest weight of End V is p-restricted. The claim follows.
If d≥ (p+3)/2, note that head is compatible with direct sums, so we can consider

each V ∗i ⊗ V j separately. If i 6= j , then V ∗i ⊗ V j is irreducible with p-restricted
highest weight. If i = j , from Lemma 3.3 we get

headSL2(V
∗

0 ⊗ V0)∼= L(0)⊕ L(2)⊕ · · ·⊕ L(p− 1).

In particular, any highest weight of headG0
/Fp
(V ∗i ⊗Vi ) is p-restricted. By Lemma 3.3,

showing

headG0
/Fp
(V ∗i ⊗ Vi )= headG0(Fp)(V

∗

i ⊗ Vi )
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is equivalent (after a Frobenius twist) to showing that

headSL2(T (2p− 2− 2 j))= headSL2(Fq )(T (2p− 2− 2 j))

for 0 ≤ j ≤ (p − 3)/2. If q = p this follows from Lemma 3.3, as d < p. This
in turn implies the statement for q > p, as any irreducible SL2-constituent of
T (2p−2−2 j) restricts irreducibly to SL2(Fq) if q > p and semisimply to SL2(Fp).
This proves the claim.

(e3) Now, let M denote the span of the images of the p′-elements of G(Fp) in
headG0(Fp)(End(V )). Note that M is a G0(Fp)-subrepresentation. To prove weak
adequacy, it suffices to show that M = headG0(Fp)(End(V )). By (e2) we have
that headG0

/Fp
(End(V ))= headG0(Fp)(End(V )) and that distinct irreducible G0

/Fp
-sub-

representations of headG0
/Fp
(End(V )) restrict to distinct irreducible G0(Fp)-represen-

tations. Hence, any G0(Fp)-subrepresentation of headG0
/Fp
(End(V )) is G0(Fp)-stable.

By (e1), we know that M contains the span of the image of T(Fp) · H . Therefore,
by Lemma 8 in [Guralnick et al. 2012], M contains the span of the image of G(Fp).
But the latter span equals headG0

/Fp
(End(V )) by the Artin–Wedderburn theorem. �

5. Weak adequacy in cross-characteristic

Recall that, given a finite-dimensional absolutely irreducible representation8 :G→
GL(V ), the pair (G, V ) is called weakly adequate if End(V ) equals

M := 〈8(g) ∈8(G) :8(g) semisimple〉k .

Assume k = k̄ has characteristic p. First, we recall:

Lemma 5.1 [Guralnick 2012b, Lemma 2.3]. If G < GL(V ) is p-solvable and
p - dim V , then (G, V ) is weakly adequate.

In general, a key tool to prove weak adequacy is provided by the following
criterion:

Lemma 5.2. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

such that

(i) {Qg
: g ∈ G} = {Qx

: x ∈ G+}, and

(ii) the Q-modules Wi are irreducible and pairwise nonisomorphic,

then NG(Q) is an irreducible subgroup of GL(V ). If , furthermore,

(iii) NG+(Q) is a p′-group,

then (G, V ) is weakly adequate.
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Proof. The condition (i) is equivalent to the equality G= N G+, where N := NG(Q).
Since G/G+ is a p′-group, this implies that N is a p′-group if NG+(Q) is a p′-
group. By the Artin–Wedderburn theorem, it therefore suffices to show that N is
irreducible on V .

Set Vi = eWi so that V =
⊕m

i=1 Vi , G1 := IG(W1)= StabG(V1) the inertia group
of the G+-module W1 in G, and N1 := N ∩G1. Then we have that G1= N1G+ and
[N : N1] = [G : G1] = t . Trivially, the condition (ii) implies that the N+-modules
Wi (1≤ i ≤ t), are irreducible and pairwise nonisomorphic, where we set N+ :=
NG+(Q). It now follows that N1= IN (W1), the inertia group of the N+-module W1

in N ; moreover, N acts transitively on {V1, . . . , Vt }, and V |N = IndN
N1
(V1|N1). By

the Clifford correspondence, it suffices to show that the N1-module V1 is irreducible.
Let 8 denote the corresponding representation of G1 on V1 and let 9 denote

the corresponding representation of G+ on W1. By [Navarro 1998, Theorem 8.14],
there is a projective representation 91 of G1 such that

91(n)=9(n), 91(xn)=91(x)91(n), 91(nx)=91(n)91(x)

for all n ∈G+ and x ∈G1. Let α denote the factor set on G1/G+ induced by91. By
[Navarro 1998, Theorem 8.16], there is an e-dimensional projective representation
2 of G1/G+ with factor set α−1 such that 8(g) =2(g)⊗91(g) for all g ∈ G1.
(Here and in what follows, we will write 2(g) instead of 2(gG+).) Since 8 is
irreducible, 2 is irreducible.

Observe that N1/N+ is canonically isomorphic to G1/G+. Restricting to N1,
we then have that 8(g) = 2(g)⊗91(g) for all g ∈ N1, 91(n) = 9(n) for all
n ∈ N+, (91)N1 is a projective representation of N1 with factor set α, and 2N1/N+

is a projective representation of N1/N+ with factor set α−1. Furthermore, 2N1/N+

is irreducible. It follows by [Navarro 1998, Theorem 8.18] that 8N1 is irreducible,
as stated. �

In certain cases we will also need the following modification of Lemma 5.2:

Lemma 5.3. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

with the following properties:

(i) {Qg
: g ∈ G} = {Qx

: x ∈ G+}.

(ii) Wi ∼= Ai ⊕ Bi as Q-modules, where all the 2t Q-modules Ai and B j are
irreducible and pairwise nonisomorphic.

If {A1, . . . , At } and {B1, . . . , Bt } are two disjoint N-orbits on IBr(Q) for N :=
NG(Q), then we have that VN ∼= A ⊕ B as N-modules, where A and B are
irreducible, AQ ∼= e

(⊕t
i=1 Ai

)
, and BQ ∼= e

(⊕t
i=1 Bi

)
. On the other hand, if

{A1, B1, . . . , At , Bt } forms a single N-orbit, then N is irreducible on V .
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Proof. Again, the condition (i) implies that G = N G+. Adopt the notation G1,
N1, N+, 8, 9, 91, α of the proof of Lemma 5.2. As shown there, there is an
irreducible e-dimensional projective representation 2 of G1/G+ with factor set
α−1 such that 8(g)=2(g)⊗91(g) for all g ∈ G1. Also, N1/N+ is canonically
isomorphic to G1/G+. According to (ii), (Wi )Q ∼= Ai ⊕ Bi , with Ai � Bi . Hence
we can decompose (Vi )Q = Ci ⊕ Di , where (Ci )Q ∼= eAi and (Di )Q ∼= eBi , and
define A :=

⊕t
i=1 Ci , B :=

⊕t
i=1 Di .

(a) First we consider the case where {A1, . . . , At } and {B1, . . . , Bt } are two disjoint
N -orbits. Then, for any x ∈ N , every composition factor of the Q-module x A is of
the form A j for some j , and every composition factor of B is of the form B j ′ for
some j ′. Hence we conclude that x A = A, and similarly x B = B. Thus A and B
are N -modules. Certainly, N permutes C1, . . . ,Ct transitively and N1 fixes C1. But
t=[N : N1]; hence N1=StabN (C1) and A= IndN

N1
(C1). Since (Ci )Q= eAi and the

Q-modules Ai are pairwise nonisomorphic, we also see that N1= IN (A1). Similarly,
N1 = IN (B1) and B = IndN

N1
(D1). Therefore, by the Clifford correspondence, it

suffices to prove that the N1-modules C1 and D1 are irreducible.
Recall the decompositions (W1)Q = A1 ⊕ B1 and 8(g) = 2(g)⊗91(g) for

all g ∈ G1. Without loss, we may assume that the representation 9 of G+ on W1

is written with respect to some basis (v1, . . . , va+b) which is the union of a basis
(v1, . . . , va) of A1 and a basis (va+1, . . . , va+b) of B1. Since8(g)=2(g)⊗91(g)
for all g ∈ G1 acting on V1, we can also choose a basis

{ui ⊗ v j : 1≤ i ≤ e, 1≤ j ≤ a+ b}

of V1 such that2(g) is written with respect to {u1, . . . , ue} and91(g) is written with
respect to {v1, . . . , va+b}. For any x ∈ N1, writing2(x)= (θi ′i ) and91(x)= (ψ j ′ j ),
we then have that

8(x)(ui ⊗ v j )=
∑
i ′, j ′

θi ′iψ j ′ j ui ′ ⊗ v j ′ .

Recall we are also assuming that the Q-modules A1 and B1 are not N -conjugate.
Therefore, 8(x) fixes each of

C1=〈ui⊗v j :1≤ i ≤ e, 1≤ j ≤a〉k, D1=〈ui⊗v j :1≤ i ≤ e, a+1≤ j ≤a+b〉k .

In particular, θi ′iψ j ′ j =0 whenever j ′>a and j ≤a. Now ifψ j ′ j 6=0 for some j ≤a
and some j ′ > a, we must have θi ′i = 0 for all i, i ′, i.e., 2(x)= 0, a contradiction.
Similarly, ψ j ′ j = 0 whenever j > a and j ′ ≤ a. Therefore, we can write

91(x)= diag(91A(x),91B(x)) (5-1)

in the chosen basis {v1, . . . , va+b}. It also follows that9(y) fixes each of A1 and B1

for all y ∈ N+, i.e., A1 and B1 are irreducible N+-modules.
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Now, 91(x)91(y)= α(x, y)91(xy) for any x, y ∈ N1. Together with (5-1) this
implies that

91A(x)91A(y)= α(x, y)91A(xy), 91B(x)91B(y)= α(x, y)91B(xy),

i.e., both 91A and 91B are projective representations of N1 with factor set α. Since
91(x) = 9(x) for all x ∈ N+ and (5-1) certainly holds for x ∈ N+, we also see
that 91A extends the representation of N+ on A1, and similarly 91B extends the
representation of N+ on B1. By [Navarro 1998, Theorem 8.18], the formulae

8A(g) :=2(g)⊗91A(g), 8B(g) :=2(g)⊗91B(g)

for g ∈ N1 define irreducible (linear) representations of N1 of dimension ea and
eb (acting on C1 and D1, respectively), and so we are done.

(b) Next we consider the case N acts transitively on {A1, . . . , Bt }. In this case,
N ◦1 := IN (A1) has index 2t in N and is contained in N1. Note that there is some
g ∈ N such that Bg

1
∼= A1 as Q-modules. Certainly, such g must belong to N1,

and also g interchanges C1 and D1. Applying the arguments of (a) to g, we see
that 91(g) interchanges A1 and B1. It follows that (91)N1 is irreducible. In turn,
this implies by [Navarro 1998, Theorem 8.18] that 8N1 is irreducible, i.e., N1 is
irreducible on V1. But [N1 : N ◦1 ]= 2 and V1=C1⊕D1 as N ◦1 -modules. Hence C1 is
an irreducible N ◦1 -module. Since N ◦1 = IN (A1) and C1 is the A1-isotypic component
for Q on V , we conclude by Clifford’s theorem that N is irreducible on V . �

Lemma 5.4. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

with the following properties:

(a) {Qg
: g ∈ G} = {Qx

: x ∈ G+}.

(b) (Wi )Q ∼= Ai ⊕ Bi1⊕ · · ·⊕ Bis , where a := dim Ai 6= dim Bil for all 1≤ i ≤ t
and all 1≤ l ≤ s, the Q-modules Ai , Bil are irreducible, and the Q-modules
Ai (1≤ i ≤ t) are pairwise nonisomorphic.

Then the following statements hold:

(i) Denoting N := NG(Q), we have that VN ∼= A⊕ B as N-modules, where A is
irreducible, AQ ∼= e

(⊕t
i=1 Ai

)
and BQ ∼= e

(⊕
i,l Bil

)
.

(ii) Assume that N is a p′-subgroup, G+ is perfect, and that, whenever i 6= j , no
G+-composition factor of W ∗i ⊗W j is trivial. If all G+-composition factors of
End(V )/M (if there are any) are trivial, then in fact M= End(V ).
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Proof. (i) follows from same proof as Lemma 5.3. For (ii), note that since G+ is
perfect it must act trivially on E/End(V ), i.e., M⊇ [End(V ),G+]. It follows that

M⊇ [E1i ,G+] (5-2)

for E1i := End(Vi ). On the other hand, Hom(Vi , V j )= [Hom(Vi , V j ),G+], and so

M⊇
⊕

1≤i 6= j≤t

Hom(Vi , V j ).

It suffices to show that M⊇ E11 (and so by symmetry M⊇ E1i for all i).
Applying the Artin–Wedderburn theorem to N , we see that

M⊃ End(A)⊇ End(C1), (5-3)

where (C1)Q ∼= eA1. Also, as in the proof of Lemma 5.3, we can write

V1 =U ⊗W1, C1 =U ⊗ A1,

such that U affords a projective representation 2 of G1/G+ ∼= N1/N+, W1 affords
a projective representation 91 of G1 that extends the representation 9 of G+ on
W1, and 8(g)=2(g)⊗91(g) for the representation 8 of G1 on V1.

Note that the subspace End(W1)
◦ consisting of all transformations with trace 0

is a G+-submodule X of codimension 1 of End(W1). Next, as a G+-module,

E11 = End(V1)∼= End(U )⊗End(W1)∼= e2 End(W1).

So we see that E+11 := End(U )⊗End(W1)
◦ is a submodule of codimension e2 in

E11, and all G+-composition factors of E11/E
+

11 are trivial. Since G+ is perfect, it
follows that E+11 ⊇ [E11,G+]. But

dim HomkG+(E11, k)= e2 dim HomkG+(End(W1), k)

= e2 dim HomkG+(W1,W1)= e2.

Hence, E+11 = [E11,G+], and so by (5-2) we have that

M⊃ E+11 = End(U )⊗End(W1)
◦.

On the other hand, by (5-3) we also have that

M⊃ End(C1)= End(U )⊗End(A1).

Obviously, End(W1)
◦
+End(A1)= End(W1) (as End(A1) contains elements with

nonzero trace). Hence we conclude that M⊇ E11, as stated. �
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We also record the following trivial observation:

Lemma 5.5. Let E be a kG-module of finite length with submodules X and M.
Suppose that N ≤ G and that the N-modules X and E/X share no common
composition factor (up to isomorphism). Suppose that the multiplicity of each
composition factor C of X is at most its multiplicity as a composition factor of M
(for instance, X is a subquotient of M). Then M ⊇ X.

Proof. The hypothesis implies that the N -modules X and E/M have no common
composition factor. On the other hand, X/(M ∩ X) ∼= (X + M)/M ⊆ E/M as
N -modules. It follows that X = M ∩ X , as stated. �

Proposition 5.6. Let (G, V ) be as in the extraspecial case (ii) of Theorem 2.4. Then
(G, V ) is weakly adequate.

Proof. Decompose VG+ = e
∑t

i=1 Wi as in Lemma 5.2. Recall by Theorem 2.4(ii)
that R := Op′(G+)CG acts irreducibly on each Wi . First we show that if i 6= j
then the R-modules Wi and W j are nonisomorphic. Assume the contrary: Wi ∼=W j

as R-modules. Then the G+-modules Wi and W j are two extensions to G+B R
of the R-module Wi . By [Navarro 1998, Corollary 8.20], W j ∼= Wi ⊗U (as G+-
modules) for some one-dimensional G+/R-module U . But G+/R is perfect by
Theorem 2.4(ii). It follows that U is the trivial module and Wi ∼=W j as G+-modules,
a contradiction.

For future use, we also show that the G+-module Wi has a unique complex lift.
Indeed, the existence of a complex lift χ of Wi was established in [Blau and Zhang
1993, Theorem B]. Suppose that χ ′ is another complex lift. Then both χ and χ ′

are extensions of α := χR , and α is irreducible since R is irreducible on Wi . Then,
again by [Navarro 1998, Corollary 8.20], χ ′ = χλ for some linear character λ of
G+/R, and so λ= 1G+/R as G+/R is perfect. Thus χ ′ = χ .

Now we write G+/R = S1 × · · · × Sn with Si ∼= S as in Theorem 2.4(ii). We
will define the subgroup Q > R of G+ with

Q/R = Q1× · · ·× Qn

as follows. If p= 17 and S= PSL2(17), then Qi is a dihedral subgroup of order 16.
If S=�−2a(2

b)′ with ab=n (and a≥ 2 as S is simple nonabelian), then Qi is chosen
to be the first parabolic subgroup (which is the normalizer of an isotropic 1-space in
the natural module F2a

2b , of index (2n
+1)(2n−b

−1)/(2b
−1)). If S = Sp4(2)

′ ∼= A6,
choose Qi ∼= 32

: 4, of order 36. If S = Sp4(2
b) with b ≥ 2, we fix a prime divisor

r of b and choose Qi ∼= Sp4(2
b/r ). For S = Sp2a(2

b) with a ≥ 3, we choose Qi to
be the first parabolic subgroup (which is the normalizer of a 1-space in the natural
module F2a

2b , of index 22n
− 1). In all cases, our choice of Qi ensures that the

p′-subgroup Qi is a maximal subgroup of Si and, moreover, that the Si -conjugacy
class of Qi is Aut(Si )-invariant. In particular, NG+(Q) = Q. Also note that any
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g ∈ G normalizes R and permutes the simple factors Si of G+/R; in fact, its action
on G+/R belongs to Aut(Sn)=Aut(S) oSn . It follows that Q satisfies conditions (i)
and (iii) of Lemma 5.2. Since Wi � W j as R-modules for i 6= j , Wi � W j as
Q-modules as well. Hence we are done by Lemma 5.2. �

Theorem 5.7. Suppose (G, V ) is as in case (i) of Theorem 2.4. Then (G, V )
is weakly adequate unless one of the following possibilities occurs for the group
H <GL(W ) induced by the action of G+ on any irreducible G+-submodule W of V :

(i) p = (qn
− 1)/(q − 1), with n ≥ 3 a prime, and H ∼= PSLn(q).

(ii) (p,H, dim W )=(5,2A7,4), (7,61·PSL3(4),6), (11,2M12,10), or (19,3J3,18).

Proof. (a) Arguing as in part (b) of the proof of Theorem 2.4 (and using its notation),
we see that for each i there is some ki such that the kernel Ki of the action of G+

on Wi contains
∏

j 6=ki
L j , and so G+ acts on Wi as Hi = Lki /(Lki ∩ Ki ). We aim

to define a subgroup Q > Z(G+) of G+ such that

Q = Q1 ∗ Q2 ∗ · · · ∗ Qn,

where Qi/Z(L i )≤ L i/Z(L i )=: Si ∼= S and Q satisfies the conditions of Lemma 5.2.
In fact, we will find Qi so that the p′-subgroup Qi/Z(L i ) is a maximal subgroup
of Si and, moreover, the Si -conjugacy class of Qi/Z(L i ) is Aut(Si )-invariant.
To this end, we first find Q1; then for each i > 1, we can fix an element gi ∈

G conjugating S1 to Si and choose Qi = Qgi
1 . Since G fixes G+ and Z(G+)

and induces a subgroup of Aut(S) o Sn while acting on G+/Z(G+) ∼= Sn , it fol-
lows that Q satisfies conditions (i) and (iii) of Lemma 5.2. Moreover, in the
cases where

G+ = L1× · · ·× Ln ∼= H n, (5-4)

then we can also write Q = Q1 × · · · × Qn , which simplifies some parts of the
arguments.

(b1) Suppose first that we are in the case (b1) of Theorem 2.1. Assume that
(H, p) = (Sp2n(q), (q

n
+ 1)/2). Here H is the full cover of S, so (5-4) holds.

Then we choose Qi to be the last parabolic subgroup of Sp2n(q) (which is the
stabilizer of a maximal totally isotropic subspace in the natural module F2n

q ). Then
Qi/Z(L i ) is a maximal p′-subgroup of Si and, moreover, the Si -conjugacy class
of Qi/Z(L i ) is Aut(Si )-invariant. By [Guralnick et al. 2002, Theorem 2.1], the
H -module W is one of the two Weil modules of dimension (qn

− 1)/2 of H ∼=
Sp2n(q). Furthermore, by [Guralnick et al. 2002, Lemma 7.2], the restrictions
of these two Weil modules of L i to Qi are irreducible and nonisomorphic. It
follows that if Wi � W j as G+-modules and Ki = K j , then Wi � W j as Q-
modules. On the other hand, if Ki 6= K j , then ki 6= k j (otherwise we would have
Ki = K j =

∏
a 6=ki

La since Lki acts faithfully on Vi ), whence Ki ∩ Q 6= K j ∩ Q
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and so Wi � W j as Q-modules. Thus condition (ii) of Lemma 5.2 holds as well,
and so we are done.

Consider the case (H, p) = (2Ru, 29). Then H is the full cover of S and so
(5-4) holds. Choose Qi to be a unique (up to L i -conjugacy) maximal subgroup
of type (2× PSU3(5)) : 2 of L i ; see [Conway et al. 1985]. Note that L i has a
unique conjugacy class 3A of elements of order 3. By using [Jansen et al. 1995]
and [Conway et al. 1985], and comparing the character values at this class 3A, we
see that L i has two irreducible p-Brauer characters ϕ1, ϕ2, of degree 28, and their
restrictions to Qi yield the same irreducible character of Qi . Now, if Ki 6= K j , then
ki 6= k j (as W is a faithful k H -module), whence Ki∩Q 6= K j∩Q and so Wi �W j as
Q-modules. Suppose that Ki = K j . By Clifford’s theorem, there is some g∈G such
that W j =W g

i as G+-modules, and so as L i -modules as well. In this case, g induces
an automorphism of L i = 2Ru. But all automorphisms of Ru are inner [Conway
et al. 1985], so Wi and W j afford the same Brauer L i -character, whence Wi ∼=W j as
G+-modules. Thus condition (ii) of Lemma 5.2 holds as well, and so we are done.

Next assume that (H, p)= (SUn(q), (qn
+1)/(q+1)); in particular n≥ 3 is odd.

Since H is simple, (5-4) holds. Then we choose Qi to be the last parabolic subgroup
of SUn(q) (which is the stabilizer of a maximal totally isotropic subspace in the
natural module Fn

q2). Then the p′-subgroup Qi is a maximal subgroup of Si and the
Si -conjugacy class of Qi is Aut(Si )-invariant. Next, if n ≥ 5 then by [Guralnick
et al. 2002, Theorem 2.7], PSUn(q) has a unique irreducible module over k of
dimension p− 1= (qn

− q)/(q + 1), which is again a Weil module. Furthermore,
Lemmas 12.5 and 12.6 of [Guralnick et al. 2002] show that the restriction of this
Weil module of L i to Qi is irreducible. The same conclusions hold in the case
n = 3 by Theorem 4.2 and the proof of Remark 3.3 of [Geck 1990]. It follows that
if Wi �W j as G+-modules, then Ki 6= K j , ki 6= k j (as W is a faithful k H -module),
whence Ki ∩ Q 6= K j ∩ Q and so Wi �W j as Q-modules. Thus condition (ii) of
Lemma 5.2 holds, and so we are done again.

Note that we have listed the cases (p, H)= (5, 2A7) and (19, 3J3) as possible
exceptions in (ii).

(b2) Suppose now that we are in the case (b2) of Theorem 2.1; in particular, p = 7
and dim W = 6. Assume first that S = A7. The arguments in the cases L i ∼= 3A7

and 6A7 are the same, so we assume L i ∼= 6A7. Then we choose Qi/Z(L i ) to be a
unique (up to L i -conjugacy) maximal subgroup of type A6. Restricting the faithful
reducible complex characters of degree 4 of 2A7 and 6 of 3A7 [Conway et al. 1985]
to Qi (and comparing character values at elements of order 3), we see that Qi ∼= 6A6.
Now, using [Jansen et al. 1995], one can check that L i has six irreducible p-Brauer
characters of degree 6, and their restrictions to Qi are irreducible and distinct. Now
we can argue as in the case of Sp2n(q).
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Assume now that H = 2J2, and so (5-4) holds. Choose Qi/Z(L i ) to be a unique
(up to L i -conjugacy) maximal subgroup of type 3 · PGL2(9) (see [Conway et al.
1985]). Also, using [Jansen et al. 1995], one can check that L i has two irreducible
p-Brauer characters of degree 6, and their restrictions to Qi are irreducible and
distinct. Now we can argue as in the case of Sp2n(q).

Suppose that H = 61 ·PSU4(3). We will prove weak adequacy of (G, V ) in two
steps. First, we choose Mi/Z(L i ) to be a unique (up to Si -conjugacy) maximal
subgroup of type T ∼= SU3(3) of Si (see [Conway et al. 1985]). Since T has
trivial Schur multiplier, we have that Mi ∼= Zi × T , where Zi := Z(L i ). According
to [Jansen et al. 1995], L i has two irreducible p-Brauer characters of degree 6,
which have different central characters. It follows that their restrictions to Mi are
irreducible and distinct. Setting

M := M1 ∗ · · · ∗Mn,

we conclude by Lemma 5.2 that N := NG(M) is irreducible on V ; furthermore,
N/M ∼=G/G+ is a p′-group. But note that M is not a p′-group. Now, at the second
step, we note that MCN and N+ := O p′(N )= O p′(M)∼= T n , and, moreover, each
irreducible N+-submodule in V has dimension 6. Also, recall that T = SU3(3) and
p = 7. So we are done by applying the result of the case of PSUn(q).

(b3) Consider the case (b3) of Theorem 2.1; in particular, p = 11 and dim W = 10.
Putting the possibility H = 2M12 as a possible exception in (ii), we may assume
that H = M11 or 2M22. Then we choose Qi/Z(L i ) to be a unique (up to Si -
conjugacy) maximal subgroup of type M10 ∼= A6 · 23 or PSL3(4), respectively, of
Si (see [Conway et al. 1985]). In the former case, H is simple and so (5-4) holds.
In the latter case, since H j ∼= 2M22, we see that the cyclic group Z(L i )CG+ must
act as a central subgroup of order 1 or 2 of H j on each W j . Hence the faithfulness
of G on V implies that L i ∼= 2M22. Since PSL3(4) has no nontrivial representation
of degree 10, we must have that Qi ∼= 2 ·PSL3(4) is quasisimple in this case. Now,
using [Jansen et al. 1995], one can check that L i has two irreducible p-Brauer
characters of degree 10, and their restrictions to Qi are irreducible and distinct.
Hence we can argue as in the case of Sp2n(q).

(b4) Suppose we are in the case (b4) of Theorem 2.1; in particular, p = 13 and
dim W = 12. Since H is the full cover of S, (5-4) holds. Then we may choose
Qi/Z(L i ) to be a unique (up to Si -conjugacy) maximal subgroup of type J2 : 2 or
SL3(4) : 23, respectively, of Si (see [Conway et al. 1985]). Since J2 has no nontrivial
representation of degree 12, in the former case we must have that Qi ∼= (C3×2J2)·C2,
where C3 = O3(Z(L i )) and the C2 induces an outer automorphism of J2. Also,
according to [Breuer et al.], L i has precisely two irreducible p-Brauer characters
of degree 12, which differ at the central elements of order 3. Using [Jansen et al.
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1995], we can now check that the restrictions of these two characters to Qi are
irreducible and distinct, and then finish as in the case of Sp2n(q). In the latter case
of L i = 2G2(4), since SL3(4) has no nontrivial representation of degree 12 we must
have that Qi ∼= (6 ·PSL3(4)) · 23. Now, using [Jansen et al. 1995], one can check
that L i has a unique irreducible p-Brauer character of degree 12, and its restriction
to Qi is irreducible. Hence we can argue as in the case of PSUn(q).

(c) Now we consider case (c) of Theorem 2.1; in particular, dim W = p−2. Assume
that H = Ap with p ≥ 5. Since H is simple, (5-4) holds. Choosing Qi ∼= Ap−1, we
see that the p′-subgroup Qi is a maximal subgroup of Si and that the Si -conjugacy
class of Qi is Aut(Si )-invariant. Also, using [Guralnick and Tiep 2005, Lemma 6.1]
for p ≥ 17 and [Jansen et al. 1995] for p ≤ 13, we see that H has a unique
irreducible k H -module of dimension p− 2, and the restriction of this module to
Ap−1 is irreducible. Now we can argue as in the case of PSUn(q).

Next suppose that (H, p)= (SL2(q), q+1); in particular, p is a Fermat prime and
H is simple so (5-4) holds. Choosing Qi < SL2(q) to be a Borel subgroup (of index
p), we see that Qi is a maximal p′-subgroup of Si and that the Si -conjugacy class
of Qi is Aut(Si )-invariant. Also, using [Burkhardt 1976], one can check that H
has a unique irreducible k H -module of dimension p− 2, and the restriction of this
module to Qi is irreducible. Now argue as above.

Suppose that p=5 and H =3A6 or 3A7. First we note that L i ∼=3As with s=6 or
s= 7 respectively. If not, then L i ∼= 6As , but then, since H j ∼= 3As , O2(Z(L i )) must
act trivially on all Wi , contradicting the faithfulness of G on V . Now we choose Qi

to be the normalizer of a Sylow 3-subgroup in L i , of order 108. It is straightforward
to check that NSi (Qi/Z(L i ))= Qi/Z(L i ) and that the Si -conjugacy class of Qi is
Aut(Si )-invariant. Also, using [Jansen et al. 1995], one can check that H has two
irreducible 5-Brauer characters of degree p− 2, and the restrictions of them to Qi

are irreducible and distinct. Now we can argue as in the case of Sp2n(q).
Suppose that (p, H)= (11,M11) or (23,M23). Again (5-4) holds as H is simple.

Choosing Qi to be M10 ∼= A6 · 23 (in the notation of [Conway et al. 1985]) or M22,
respectively, we have that Qi is a unique maximal subgroup of L i of the given
p′-order up to L i -conjugacy. Furthermore, L i has a unique irreducible k H -module
of dimension p− 2, and the restriction of this module to Qi is irreducible. Now
argue as in the case of PSUn(q).

(d) Finally, we consider case (d) of Theorem 2.1: (p, H) = (11, J1) or (7, 2A7).
Then we choose Qi/Z(L i ) to be a unique (up to Si -conjugacy) maximal subgroup
of type 23

: 7 : 3 or A6, respectively (see [Conway et al. 1985]). In the former
case, H is simple, and so (5-4) holds. In the latter case, note that L i is 2A7. If not,
then L i ∼= 6A7, but then, since H j ∼= 2A7, O3(Z(L i )) must act trivially on all Wi ,
contradicting the faithfulness of G on V . It then follows that Qi ∼= 2A6 (as any
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4-dimensional kA6-representation is trivial). Now, using [Jansen et al. 1995] one
can check that H has a unique irreducible p-Brauer character of given degree, and
its restriction to Qi is irreducible. Now we can argue as in the case of PSUn(q). �

Next we use Lemma 5.3 to handle three exceptions listed in Theorem 5.7:

Proposition 5.8. In the case (p, H, dim W )= (19, 3J3, 18) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. Since H is the full cover of S, we have G+ = L1×· · ·× Ln ∼= H n . Since H
acts faithfully on W , for each i there is some ki such that the kernel Ki of the action
of G+ on Wi is precisely

∏
j 6=ki

L j . We define a subgroup Q of G+ such that

Q = Q1× · · ·× Qn,

where Qi/Z(L i ) ∼= SL2(16) : 2 is a maximal subgroup of Si = L i/Z(L i ) ∼= J3.
Since SL2(16) has a trivial Schur multiplier and Z(L i ) ≤ Z(Qi ), we have that
Qi ∼= 3× (SL2(16) : 2). Furthermore, the Si -conjugacy class of Qi is Aut(Si )-
invariant. Hence Q satisfies the condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L i has exactly four irreducible 19-Brauer
characters ϕ1, ϕ2, ϕ3, ϕ4 of degree 18, and (ϕ j )Qi = α j +β j , with α j of degree 1
with kernel [Qi , Qi ], β j of degree 17, and the β j are all distinct. Now we show that
Q fulfills the condition (ii) of Lemma 5.3. Suppose that Wi �W j as G+-modules.
Then Q acts coprimely on Wi , with character α̃i + β̃i , where α̃i has degree 1 and
β̃i has degree 17. If ki 6= k j , then α̃i and α̃ j have different kernels and so are
distinct, and likewise β̃i and β̃ j are distinct. Suppose now that ki = k j . Then,
because of the condition Wi � W j , we may assume that Wi and W j both have
kernel K := L2× · · ·× Ln , and afford L1-characters ϕk and ϕl with 1≤ k 6= l ≤ 4.
Since the G-module V is irreducible, we have Wi � W j ∼= W g

i for some g ∈ G
which stabilizes K and G+/K ∼= L1 but does not induce an inner automorphism
of L1. The latter condition implies that g interchanges the two classes of elements
of order 5 and inverts the central element of order 3 of L1 [Conway et al. 1985].
The same is true for Q1. It follows that αk 6= αl , βk 6= βl , and so

α̃i 6= α̃ j , β̃i 6= β̃ j ,

as claimed.
By Lemma 5.3, V ∼= A⊕ B as a module over the p′-group N := NG(Q), where

the N -modules A and B are irreducible of dimension e and 17e, respectively. Hence,
by the Artin–Wedderburn theorem applied to N ,

M := 〈8(g) : g ∈ G, g semisimple 〉k
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contains A := End(A)⊕ End(B) = (A∗ ⊗ A)⊕ (B∗ ⊗ B) (if 8 denotes the rep-
resentation of G on V ). As in Lemma 5.3 and its proof, write A =

⊕t
i=1 Ci =

e
(⊕t

i=1 Ai
)

and B =
⊕t

i=1 Di = e
(⊕t

i=1 Bi
)

as Q-modules, where Ai affords α̃i

and Bi affords β̃i . Hence, the complement to A in End(V ) affords the Q-character

1 := e2
t∑

i, j=1

(α̃i β̃ j + β̃i α̃ j ).

In particular, all irreducible constituents of 1[Q,Q] are of degree 17. The same must
be true for the quotient End(V )/M.

As a G+-module,

End(V )=
t⊕

i, j=1

(V ∗i ⊗ V j )∼= e2
( t⊕

i, j=1

W ∗i ⊗W j

)
.

Observe that the G+-module W ∗i ⊗W j is irreducible of dimension 324 if ki 6= k j .
Assume that ki = k j , say ki = k j = 1. Using [GAP 2004] one can check that no irre-
ducible constituent of ϕkϕl for 1≤ k, l ≤ 4 can consist of only irreducible characters
of degree 17 while restricted to the subgroup SL2(16) of L1 = 3J3. It follows that
no irreducible constituent of the G+-module End(V ) can consist of only irreducible
constituents of dimension 17 while restricted to [Q, Q]. Hence M= End(V ). �

Proposition 5.9. In the case (p, H, dim W )= (11, 2M12, 10) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. As H is the full cover of S, we have that G+= L1×· · ·×Ln ∼= H n . Since H
acts faithfully on W , for each i there is some ki such that the kernel Ki of the action
of G+ on Wi is precisely

∏
j 6=ki

L j . We define a subgroup Q of G+ such that

Q = Q1× · · ·× Qn,

where Qi/Z(L i ) ∼= 21+4
+ · S3 is a maximal subgroup of Si = L i/Z(L i ) ∼= M12.

Note that the Si -conjugacy class of Qi is Aut(Si )-invariant. Hence Q satisfies
condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L i has exactly two irreducible 11-Brauer
characters ϕ1, ϕ2 of degree 10, and (ϕ j )Qi = α + β j , with α of degree 4, β j of
degree 6, and β1 6= β2. Furthermore, Zi := Z(Qi )∼= C2

2 , and

αZi = 4λ, (β j )Zi = 6µ, (5-5)

where λ and µ are the two linear characters of Zi that are faithful on Z(L i ) < Zi .
In particular,

(αβ j )Zi = 24ν (5-6)

with ν := λµ 6= 1Zi .
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Now we show that Q fulfills condition (ii) of Lemma 5.3. Suppose that Wi �W j

as G+-modules. Then Q acts on Wi , with character α̃i + β̃i , where α̃i (1)= 4 and
β̃i (1)= 6. If ki 6= k j , then α̃i and α̃ j have different kernels and so are distinct, and
likewise β̃i and β̃ j are distinct. In particular, in this case W ∗i ⊗W j is also irreducible.
Suppose now that ki = k j . Then, we may assume that Wi and W j both have kernel
K := L2×· · ·× Ln , and afford L1-characters ϕk and ϕl with 1≤ k, l ≤ 2. Since the
G-module V is irreducible, we have W j ∼=W g

i for some g ∈ G which stabilizes K ,
and G+/K ∼= L1. But ϕk is Aut(L1)-invariant [Jansen et al. 1995], whence l = k,
i.e., W j ∼=Wi , a contradiction.

By Lemma 5.3, V ∼= A⊕ B as a module over the p′-group N := NG(Q), where
the N -modules A and B are irreducible of dimensions 4e and 6e, respectively.
Hence, by the Artin–Wedderburn theorem applied to N ,

M := 〈8(g) : g ∈ G, g semisimple 〉k

contains A := End(A)⊕ End(B) = (A∗ ⊗ A)⊕ (B∗ ⊗ B) (if 8 denotes the rep-
resentation of G on V ). As in Lemma 5.3 and its proof, write A =

⊕t
i=1 Ci =

e
(⊕t

i=1 Ai
)

and B =
⊕t

i=1 Di = e
(⊕t

i=1 Bi
)

as Q-modules, where Ai affords α̃i

and Bi affords β̃i . Hence, the complement to A in End(V ) affords the Q-character

1 := e2
t∑

i, j=1

(α̃i β̃ j + β̃i α̃ j ).

Together with (5-5) and (5-6), this implies that the restriction of any irreducible con-
stituents of1 to Z(Q)= Z1×· · ·×Zn does not contain 1Z(Q). Thus Z(Q) acts fixed-
point-freely on the quotient End(V )/M. Furthermore, the Q-character of this quo-
tient does not contain β̃i β̃ j (as an irreducible constituent of degree 36) for any i 6= j .

As a G+-module,

End(V )=
t⊕

i, j=1

(V ∗i ⊗ V j )∼= e2
( t⊕

i, j=1

W ∗i ⊗W j

)
.

Now, if i 6= j then the G+-module W ∗i ⊗W j is irreducible and its Brauer character,
while restricted to Q, contains β̃i β̃ j . On the other hand, the Brauer character of
W ∗i ⊗Wi is the direct sum of 1G+ and another irreducible character of degree 99
(as one can check using [GAP 2004]), whose restriction to Z(Q) contains 1Z(Q)
(which can be seen from (5-5)). Hence we conclude that M= End(V ). �

Lemma 5.10. Let char(k)= 5 and let W be a faithful irreducible k(2S7)-module of
dimension 8, with corresponding representation2. Decompose WL=W1⊕W2 as L-
modules for L=2A7. Then there is a 5′-element z∈2S7\L and a set X⊂ L such that

(i) x and xz are 5′-elements for all x ∈ X, and

(ii) 〈2(x) : x ∈ X〉k = End(W1)⊕End(W2).
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Proof. Using [Wilson et al.] and [GAP 2004], K. Lux verified that one can find
an element h ∈ 2S7 \ L (of order 12) and a set X⊂ L satisfying condition (i) such
that 〈2(xz) : x ∈ X〉k has dimension 32. Since 2(z) ∈ GL(W ), it follows that
〈2(x) : x ∈ X〉k is a subspace of dimension 32 in End(W1)⊕End(W2). Since the
latter also has dimension 32, we are done. �

Proposition 5.11. In the case (p, H, dim W )= (5, 2A7, 4) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. (a) Recall that G+ = L1 ∗ · · · ∗ Ln , and for each i there is some ki such that
the kernel Ki of G+ contains

∏
j 6=ki

L j . By relabeling the Wi , we may assume that
k1= 1. Now, L1 acts on each W j either trivially or as the group H j ∼= 2A7. It follows
that O3(Z(L1)) acts trivially on each W j and so by faithfulness O3(Z(L1)) = 1,
yielding L1 ∼= 2A7. On the other hand, L1/(K1 ∩ L1) = H1 ∼= 2A7, whence
K1 ∩ L1 = 1, K1 =

∏
j 6=1 L j . This is true for all i , so we have shown that

G+ = L1× L2× · · ·× Ln ∼= H n.

Certainly, G permutes the n components L i , and this action is transitive by Theorem
2.4(i). Setting J1 := NG(L1), one sees that G1 = IG(W1)= StabG(V1) is contained
in J1 (as it fixes K1 =

∏
j>1 L j ). Fix a decomposition G =

⋃t
i=1 gi J1 with

g1 = 1 and L i = Lgi
1 = gi L1g−1

i , and choose a subgroup Q1 < L1 such that
Q1/Z(L1)∼= PSL2(7). Since involutions in A7 lift to elements of order 4 in L1, we
see that Q1 ∼= SL2(7). Now we define

Q = Q1× Qg2
1 × · · ·× Qgn

1 < G+.

Note that NG+(Q) = Q and so N := NG(Q) is a p′-group. Also, L1 has exactly
two irreducible 5-Brauer characters ϕ1, ϕ2 of degree 4, restricting irreducibly and
distinctly to Q1.

(b) Consider the case where ki 6= k j whenever i 6= j , i.e., J1 = G1 and t = n. We
claim that Q satisfies the conditions of Lemma 5.2. Indeed, the condition ki 6= k j

implies that the Q-modules Wi and W j are irreducible and nonisomorphic for i 6= j .
Next, for any x ∈ J1, since x fixes W1 (up to isomorphism), x fixes the character ϕ
of the L1-module W1 and so x cannot fuse the two classes 7A and 7B of elements
of order 7 in L1, whence x can induce only an inner automorphism of L1. It follows
that Qx

1 = Qt
1 for some t ∈ L1. Now we consider any g ∈ G. Then, for each i we

can find j and xi ∈ J1 such that ggi = g j xi . By the previous observation, there is
some ti ∈ L1 such that Qxi

1 = Qti
1 . Hence, setting yi = g j ti g−1

j ∈ L j , we have that

Qggi
1 = Qg j xi

1 = g j xi Q1x−1
i g−1

j = g j ti Q1t−1
i g−1

j = yi g j Q1g−1
j y−1

i = (Q
g j
1 )

yi .
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It follows that Qg
= Q y with y =

∏
i yi ∈ G+, i.e., Q fulfills condition (i) of

Lemma 5.2. Now we can conclude by Lemma 5.2 that N is irreducible on V and
so we are done.

(c) From now on we assume that, say, k1 = k2. Then W1 and W2 are nonisomorphic
modules over G+/K1= L1. So we may assume that Wi affords the L1-character ϕi

for i = 1, 2. Note that any x ∈ J1 sends W1 to another irreducible G+-module with
the same kernel K1, and so ϕx

1 ∈ {ϕ1, ϕ2}. The irreducibility of G on V implies by
Clifford’s theorem that the induced action of J1 on {ϕ1, ϕ2} is transitive, with kernel
G1. We have shown that [J1 : G1] = 2 and t = 2n. We will label gi (W1) as W2i−1

and gi (W2) as W2i . We also have that W2 ∼= W h
1 for all h ∈ J1 \G1. Comparing

the kernels and the characters of Q on Wi , we see that the Q-modules Wi are all
irreducible and pairwise nonisomorphic. Let

E1 :=

t⊕
i=1

End(Vi )=

n⊕
i=1

Ai , Ai := End(V2i−1)⊕End(V2i ),

E21 :=

n⊕
i=1

Bi , Bi := Hom(V2i−1, V2i )⊕Hom(V2i , V2i−1),

E22 :=
⊕

1≤i 6= j≤2n
{i, j}6={2a−1,2a}

Hom(Vi , V j )

so that End(V )= E1⊕E21⊕E22. Note that the G+-composition factors of E21 are
all of dimensions 6 and 10, whereas the G+-composition factors of E1 are either
trivial or of dimension 15, as one can check using [Jansen et al. 1995]. Furthermore,
the G+-composition factors of E22 are all of dimension 16. In particular, no G+-
composition factor of Hom(Wi ,W j ) is trivial when i 6= j . Similarly, whenever
i 6= j , the only common G+-composition factor shared by Ai and A j is k, and Bi

and B j share no common G+-composition factor.

(d) Here we show that Ai ⊕Bi is a subquotient of M. To this end, note that J1

acts irreducibly on V1⊕ V2. There is no loss in replacing G by the image of J1 in
End(V1⊕ V2) and V by V1⊕ V2. In doing so, we also get that n = 1, G+ = L1,
[G : G1] = 2, K1 = 1, and G1 = C ∗ L1, where C := CG(L1) is a 5′-group. So for
i = 1, 2 we can write Vi =Ui ⊗Wi as G1-modules, where Ui is an irreducible kC-
module with corresponding representation 3i . Hence for the representation 8i of
G1 on Vi , we have8i =3i⊗2i , where2i is the representation of L1 on Wi . Finally,
for the representation8 of G on V = V1⊕V2, we have8(g)= diag(81(g),82(g))
whenever g ∈ G1.

Recall the element z ∈ 2S7 and the set X⊂ L1 constructed in Lemma 5.10. Now
we fix a 5′-element h∈G\G1 such that h induces the same action on L1/Z(L1)∼=A7
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as the action of z on A7. It follows that for all elements x ∈ X and for all u ∈ C ,
ux and uxh are 5′-elements, whence M contains the subspaces

C := 〈8(ux) : u ∈ C, x ∈ X〉k, C8(h) := {v8(h) : v ∈ C}.

We also have that 22 ∼=2
h
1 =2

z
1. Setting 2(x)= diag(21(x),22(x)) for x ∈ X,

we have by the construction of X that

〈2(x) : x ∈ X〉k = End(W1)⊕End(W2).

Thus, for X ∈End(W1), we can write the element diag(X, 0) of End(W1)⊕End(W2)

as diag(X, 0)=
∑

x∈X ax2(x) for some ax ∈ k; i.e.,∑
x∈X

ax21(x)= X,
∑
x∈X

ax22(x)= 0.

On the other hand, applying the Artin–Wedderburn theorem to the representation
3i of the 5′-group C on Ui , we have that

〈3i (u) : u ∈ C〉k = End(Ui ).

In particular, any Y ∈ End(U1) can be written as Y =
∑

u∈C bu31(u) for some
bu ∈ k. It follows that the element diag(Y ⊗ X, 0) of

End(U1)⊗End(W1)∼= End(U1⊗W1)= End(V1) ↪→ End(V )

can be written as

diag
( ∑

u∈C, x∈X

buax31(u)⊗21(x),
∑

u∈C, x∈X

buax32(u)⊗22(x)
)

=

∑
u∈C, x∈X

ax bu · diag(81(ux),82(ux))=
∑

u∈C, x∈X

ax bu8(ux),

and so it belongs to C. Thus C⊇ End(V1), and similarly C⊇ End(V2). Since G1

stabilizes each of V1 and V2, we then have that

C= End(V1)⊕End(V2)=A1.

But 8(h) interchanges V1 and V2. It follows that M also contains

C8(h)= Hom(V1, V2)⊕Hom(V2, V1)=B1,

as stated.

(e) Next we show that E22 is a subquotient of M. Choose Ri ∼= 2× (7 : 3) < L i , the
normalizer of some Sylow 7-subgroup of L i . Note that NL i (Ri )= Ri and

(ϕ j )R1 = α j +β, (5-7)
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where α j , β ∈ Irr(R1) are of degree 3 and 1, respectively, and α1 6= α2. Defining

R = R1× R2× · · ·× Rn < G+,

we see that R satisfies the conditions of Lemma 5.4. Hence the subspace A =
e
(⊕t

i=1 Ai
)

defined in Lemma 5.4 (with A1 affording the R1-character α1) is
irreducible over the p′-group NG(R). By the Artin–Wedderburn theorem applied
to NG(R) acting on V = A⊕ B, M contains

End(A)⊃ D :=
⊕

1≤i 6= j≤2n
{i, j}6={2a−1,2a}

Hom(eAi , eA j ).

As noted previously, each summand Hom(Vi , V j ) in E22 is acted on trivially by∏
s 6=ki ,k j

Ls , and affords the Lki × Lk j -character ϕ ⊗ ϕ′, where ϕ, ϕ′ ∈ {ϕ1, ϕ2}.
Working modulo E1⊕E21 and using this observation and (5-7), we then see that all
irreducible constituents of the R-character of the complement to D in E22 are of the
form γ1⊗ γ2⊗ · · · ⊗ γn , where γi ∈ Irr(Ri ) and all but at most one of them have
degree 1 (and the remaining, if any, is some α j of degree 3). The same is true for
the complement to M in E22 (again modulo E1⊕E21). On the other hand, (5-7) and
the aforementioned observation imply that the R-character of the G+-composition
factor Hom(Wi ,W j ) contains an irreducible R-character of degree 9 (namely, an
Rki × Rk j -character of the form α⊗α′, with α, α′ ∈ {α1, α2}). It follows that E22

is a subquotient of M.

(f) The results of (d) and (e), together with the remarks made at the end of (c),
imply that all G+-composition factors of End(V )/M (if any) are trivial. Hence by
Lemma 5.4 we conclude that M= End(V ). �

6. Weak adequacy for special linear groups

The exception (i) in Theorem 5.7 requires much more effort to resolve. We begin
by setting up some notation. Let n ≥ 3 and let q be a prime power such that
p = (qn

− 1)/(q − 1). In particular, n is a prime, q = q f
0 for some prime q0 and

some odd f , gcd(n, q−1)= 1 and so PSLn(q)=SLn(q)=: S and Gn :=GLn(q)=
S× Z(Gn). Consider the natural module

N= Fn
q = 〈e1, . . . , en〉Fq

for Gn , and let
Q = RL = StabS(〈e2, . . . , en〉Fq ),

where R is elementary abelian of order qn−1 and L ∼= GLn−1(q). Note that Q is
a p′-group. It is well known (see [Guralnick and Tiep 1999, Theorem 1.1]) that
Gn/Z(Gn) has a unique irreducible p-Brauer character δ of degree p− 2, where
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δ(x) = ρ(x)− 2 for all p′-elements x ∈ Gn , if we denote by ρ the permutation
character of Gn acting on the set � of 1-spaces of N. Let D denote a kGn-module
affording δ.

Lemma 6.1. In the above notation, δQ = α + β, where α ∈ Irr(Q) has degree
qn−1
− 1, β ∈ Irr(Q) has degree (qn−1

− q)/(q − 1), and

αR =
∑

1R 6=λ∈Irr(R)

λ, βR = β(1)1R.

Proof. Note that all nontrivial elements in R are L-conjugate to a fixed transvection
t ∈ R, and δ(t)= ρ(t)− 2= (qn−1

− q)/(q − 1)− 1. It follows that

δR =
∑

1R 6=λ∈Irr(R)

λ+
qn−1
− q

q − 1
· 1R.

Next, Q acts doubly transitively on the 1-spaces of 〈e2, . . . , en〉Fq , with kernel con-
taining R and with character β+1Q , where β ∈ Irr(Q) of degree (qn−1

−q)/(q−1).
Hence β is an irreducible constituent of δ, and the statement follows. �

In the subsequent treatment of SLn(q), it is convenient to adopt the labeling of
irreducible CGn-modules as given in [James 1986], which uses Harish-Chandra
induction, denoted ◦. Each such module is labeled as S(s1, λ1) ◦ · · · ◦ S(sm, λm),
where si ∈ F×q has degree di (over Fq), λi is a partition of ki , and

∑m
i=1 ki di = n

[James 1986; Kleshchev and Tiep 2009]. Similarly, irreducible kGn-modules are
labeled as D(s1, λ1) ◦ · · · ◦ D(sm, λm), with some extra conditions including si

being a p′-element. For λ ` n, let χλ = S(1, λ) denote the unipotent character of
GLn(q) labeled by λ. We set the convention that χ (n−2,2)

= 0 for n = 3. Also,
note that 1Gn = χ

(n) and ρ = 1Gn +χ
(n−1,1) (see, e.g., [Guralnick and Tiep 1999,

Lemma 5.1]). We next establish the following result, which holds for arbitrary
GLn(q) with n ≥ 3 and which is interesting in its own right:

Lemma 6.2. In the above notation, we have the following decomposition of ρ2 into
irreducible constituents over Gn = GLn(q):

ρ2
= 2χ (n)+ 4χ (n−1,1)

+χ (n−2,2)
+ 2χ (n−2,12)

+

∑
a∈F×q

a2
=16=a

S(a, (12)) ◦ S(1, (n− 2))

+

∑
a∈F×q

aq−1
=16=a2

S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n− 2))

+

∑
a∈F×q

bq+1
=16=b2

S(b, (1)) ◦ S(1, (n− 2)).



116 Robert Guralnick, Florian Herzig and Pham Huu Tiep

Proof. Recall that ρ is the permutation character of Gn acting on � and also on
the diagonal {(x, x) : x ∈ �} of � × �, whereas ρ2 is the permutation char-
acter of Gn acting on � × �. Letting Hn := StabGn (〈e1〉Fq , 〈e2〉Fq ), we then
see that

ρ2
= ρ+ IndGn

Hn
(1Hn ).

Notice that IndGn
Hn
(1Hn ) is just the Harish-Chandra induction of the character

IndG2
H2
(1H2)⊗ 1Gn−2 of the Levi subgroup G2×Gn−2 of the parabolic subgroup

P := StabGn (〈e1, e2〉Fq )

of Gn , i.e.,

IndGn
Hn
(1Hn )= IndG2

H2
(1H2) ◦ 1Gn−2 . (6-1)

Consider the case of odd q. Then, according to the proof of [Navarro and Tiep
2010, Proposition 5.5],

IndG2
H2
(1H2)= S(1, (2))+ 2S(1, (12))+ S(−1, (12))

+a
∑
a∈F×q

aq−1
=16=a2

S(a, (1)) ◦ S(a−1, (1))+
∑
a∈F×q

bq+1
=16=b2

S(b, (1)). (6-2)

Next, by [Guralnick and Tiep 1999, Lemma 5.1] we have

S(1, (2))◦S(1, (n−2))= IndGn
P (1P)= χ

(n)
+χ (n−1,1)

+χ (n−2,2), (6-3)

S(1, (1))◦S(1, (1))◦S(1, (n−2))= χ (n)+2χ (n−1,1)
+χ (n−2,2)

+χ (n−2,12). (6-4)

Since S(1, (1))◦S(1, (1))= S(1, (2))+S(1, (12)), the statement follows from (6-1)–
(6-4) and properties of the Harish-Chandra induction in Gn (see [James 1986]).

The case q is even can be proved similarly, using

IndG2
H2
(1H2)= S(1, (2))+ 2S(1, (12))+

∑
a∈F×q

aq−1
=16=a2

S(a, (1)) ◦ S(a−1, (1))

+

∑
a∈F×q

bq+1
=16=b2

S(b, (1))

instead of (6-2). �

Lemma 6.3. In the above notation, if p = (qn
− 1)/(q − 1), we have the following

decomposition of δ2 into irreducible constituents over S = SLn(q):
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δ2
= 2D(1, (n))+ 2D(1, (n− 1, 1))+ D(1, (n− 2, 2))+ 2D(1, (n− 2, 12))

+

∑
a∈F×q

a2
=16=a

D(a, (12)) ◦ D(1, (n− 2))

+

∑
a∈F×q

aq−1
=16=a2

D(a, (1)) ◦ D(a−1, (1)) ◦ D(1, (n− 2))

+

∑
b∈F×q

bq+1
=16=b2

D(b, (1)) ◦ D(1, (n− 2)).

In particular, if there is a composition factor U of the kS-module D ⊗ D with
U R
= 0, then n = 3 and U affords the Brauer character D(1, (13)). Furthermore,

the only composition factors of D⊗D that are not of p-defect zero are the ones with
Brauer character 1S = D(1, (n)), δ = D(1, (n− 1, 1)), and D(1, (n− 2, 12)).

Proof. Let us denote by χ◦ the restriction of any character χ of Gn to the set of
p′-elements of Gn . Then

δ2
= (ρ◦− 2 · 1Gn )

2
= (ρ◦)2− 4(χ (n−1,1))◦,

and we can apply Lemma 6.2. Since p = (qn
− 1)/(q − 1) (or more generally, if p

is a primitive prime divisor of qn
− 1), all complex characters in the decomposition

for ρ2 in Lemma 6.2 are of p-defect 0, except for χ (n), χ (n−1,1), and χ (n−2,12).
Furthermore, (χ (n−2,12))◦ = D(1, (n − 1, 1))+ D(1, (n − 2, 12)) [Guralnick and
Tiep 1999, Proposition 3.1 and §4]; in particular,

D(1, (n− 2, 12))(1)=
(qn
− q)(qn

− 2q2
+ 1)

(q − 1)(q2− 1)
+ 1.

Since Gn = S × Z(Gn), we arrive at the desired decomposition of δ2. Also,
the degree of any irreducible constituent ψ of δ2 listed above is not divisible by
|R| − 1 = qn−1

− 1, unless n = 3 and ψ = D(1, (13)), whence ψR must contain
1R since L acts transitively on Irr(R) \ {1R}. In the exceptional case, ψR does not
contain 1R , as one can see by direct computation (or by using [Kleshchev and Tiep
2010, Theorem 5.4]). �

Corollary 6.4. Assume that p = (qn
− 1)/(q − 1) and n ≥ 5. Then S = SLn(q) is

weakly adequate on D.

Proof. By Lemma 6.1 and the Artin–Wedderburn theorem applied to Q, M contains
the subspace A := (A⊗ A)⊕ (B ⊗ B) of D⊗D = End(D), with A affording α
and B affording β. Thus, the complement to A in End(V ) affords the Q-character
1 := 2αβ. It follows by Lemma 6.1 that 1R does not contain 1R , whence R does
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not have any nonzero fixed point while acting on this complement. The same must
be true for the quotient End(V )/M, which is a semisimple Q-module. Since n > 3,
by Lemma 6.3 this can happen only when M= End(V ). �

Next we will extend the result of Corollary 6.4 to the case n = 3.

Proposition 6.5. Assume that p = (q3
− 1)/(q − 1). Then S = SL3(q) is weakly

adequate on D.

Proof. Note that δ is invariant under the graph automorphism τ of S, which
interchanges the two conjugacy classes of the maximal parabolic subgroup

Q = RL = StabS(U)= StabS(〈e1, e2〉Fq )

and its opposite
Q]
= R]L] = StabS(〈e1〉Fq ).

Hence Lemma 6.1 also applies to Q]. To simplify the notation, we will drop the
subscript Fq in various spans 〈 · 〉Fq in this proof.

First we will construct the Q-submodules A,B affording the character α and β
in D. Clearly, R has q + 1 fixed points in PU and one orbit of length q2,

O := {〈e3+ y〉 : y ∈U},

on �= PN. Denoting I :=
〈∑

ω∈PN ω
〉
k , we can now decompose D=A⊕B as

Q-modules, where

A := [D, R] =
({∑

y∈U

ay〈e3+ y〉 : ay ∈ k,
∑
y∈U

ay = 0
}
⊕I

) /
I,

B := CD(R)=
({∑

ω∈PU

bωω : bω ∈ k,
∑
ω∈PU

bω = 0
}
⊕I

) /
I.

Next, R] has 1 fixed point 〈e1〉 and q + 1 orbits of length q,

O∞ := PU \ {〈e1〉}, Oc := {〈e3+ ce2+ de1〉 : d ∈ Fq}, c ∈ Fq ,

on PN. Then we can again decompose D = A]
⊕ B] as Q]-modules, where

A]
= [D, R]] and B]

= CD(R]). Note that O= PN \PU=
⋃

c∈Fq
Oc. Hence, the

q(q − 1) vectors

vc,d = 〈e3+ ce2+ de1〉− 〈e3+ ce2〉, c ∈ Fq , d ∈ F×q

belong to A∩A], and similarly the q − 1 vectors

ua = 〈e2+ ae1〉− 〈e2〉, a ∈ F×q
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belong to B∩A], and they are linearly independent. Thus

ua ⊗ vc,d ∈ (A
]
⊗A])∩ (B⊗A) and vc,d ⊗ ua ∈ (A

]
⊗A])∩ (A⊗B),

and so both (A]
⊗A])∩ (B⊗A) and (A]

⊗A])∩ (A⊗B) have dimension at least
q(q − 1)2. As a consequence,

dim((A]
⊗A])∩ (A⊗B⊕B⊗A))≥ 2q(q − 1)2. (6-5)

Since D is self-dual, it supports a nondegenerate S-invariant symmetric bilinear
form ( · , · ), with respect to which A and B are orthogonal, as are A] and B]. As
usual, we can now identify D⊗D with End(D) by sending u⊗ v ∈ D⊗D to

fu,v : x 7→ (x, u)v

for all x ∈D. Furthermore, in the proof of Corollary 6.4, we have already mentioned
that M contains the subspaces End(A)⊕End(B) (arguing with Q) and End(A])

(arguing with Q]). It now follows from (6-5) that

dim(End(A])∩ (Hom(A,B)⊕Hom(B,A)))≥ 2q(q − 1)2.

Hence for q ≥ 5 we have that

dim End(D)− dim M≤ (q2
+ q − 1)2− (q2

− 1)2− q2
− 2q(q − 1)2

= 4q(q − 1) < (q − 1)(q2
− 1)= dim D(1, (13)).

On the other hand, Lemma 6.3 and the proof of Corollary 6.4 show that the only
S-composition factor of End(D)/M (if any) is D(1, (13)). Hence, we conclude that
M= End(V ) if q ≥ 5. Since p = (q3

− 1)/(q− 1), in the remaining cases we have
q = 2, 3. The case q = 2 is already handled before as S ∼= PSL2(7), and the case
q = 3 has been checked with a computer by F. Lübeck. �

Now we can prove the weak adequacy of G on V in the case the G+-module
is homogeneous.

Proposition 6.6. Assume that t = 1, i.e., the G+-module V is homogeneous in the
case (p, H, dim W ) = ((qn

− 1)/(q − 1),SLn(q), p − 2) of Theorem 5.7. Then
(G, V ) is weakly adequate.

Proof. Since V |G+ = eW , by Theorem 2.4 we have that G+ = S = SLn(q). Recall
that gcd(n, q − 1)= 1 and q = q f

0 , where q0 is a prime and f is odd; in particular,
Out S ∼= C2 f is cyclic. It follows that L := C × SCG = 〈L , τ 〉 for some τ ∈ G,
and C := CG(S) is a p′-group. Let 9 denote the corresponding representation
of S on W and 8 denote the corresponding representation of G on V . Then, by
Corollary 6.4 and Proposition 6.5, we have that

〈9(y) : y ∈ S, y semisimple〉k = End(W ).
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First we consider the case where VL is irreducible. Then V ∼= U ⊗W , where
U is an irreducible kC-module and C acts trivially on W . Let 2 denote the
corresponding representation of C on U . By the Artin–Wedderburn theorem,
〈2(x) : x ∈ C〉k = End(U ). Since 8(xy) = 2(x)⊗9(y) for x ∈ C , y ∈ S, and
since C is a p′-group, we conclude that M contains X ⊗Y for all X ∈ End(U ) and
Y ∈ End(W ), i.e., M= End(V ).

Assume now that VL is reducible. Note that VL is semisimple and multiplicity-
free, as G/L is cyclic. Since W is τ -invariant, it follows that

VL = V1⊕ V2⊕ · · ·⊕ Vs ∼= (U1⊕U2⊕ · · ·⊕Us)⊗W,

where Vi = Ui ⊗ W for some pairwise nonisomorphic irreducible kC-modules
U1, . . . ,Us , 〈τ 〉 acts transitively on the set of isomorphism classes of U1, . . . ,Us ,
C acts trivially on W as before, and8(τ) permutes the summands V1, . . . , Vs transi-
tively. Let 2i denote the corresponding representation of C on Ui , and let 2 denote
the corresponding representation of C on U :=U1⊕· · ·⊕Us . Since Ui �U j for i 6= j ,
by the Artin–Wedderburn theorem, 〈2(x) : x ∈C〉k = End(U1)⊕· · ·⊕End(Us). It
follows as above that M contains X ⊗ Y for all Y ∈ End(W ) and all X ∈ End(Ui )

(viewing X as an element of End(U ) by letting it act as zero on U j for all j 6= i).
In other words, M contains the subspace End(V1)⊕ · · ·⊕End(Vs) of End(V ).

It remains to show that M contains Hom(Vi , V j ) for any i 6= j . Since 8(τ)
permutes the summands V1, . . . , Vs transitively, we can find σ ∈ 〈τ 〉 \C S such that
8(σ) sends Vi to V j and such that σ induces a nontrivial outer automorphism of S.
Observe that the condition p = (qn

− 1)/(q − 1) implies that all elements in the
coset Sσ are p′-elements. (Indeed, assume that xσ has order divisible by p for
some x ∈ S. Then some p′-power g of xσ is a p-element in S. It follows that σ
preserves the conjugacy class gS , which is impossible by inspecting the eigenvalues
of g.) So all elements in Lσ are p′-elements. Hence M also contains the subspace

A := 〈8(hσ) : h ∈ L〉k = 〈8(h) : h ∈ L〉k ·8(σ).

Again, by the Artin–Wedderburn theorem,

〈8(h) : h ∈ L〉k = End(V1)⊕ · · ·⊕End(Vs).

Since 8(σ) sends Vi (isomorphically) to V j , we conclude that

A⊃ End(V j , V j )8(σ)= Hom(Vi , V j ),

and so M= End(V ). �

Next we consider the subgroup

Q′ = R′L ′ = StabS(〈en〉Fq , 〈e2, . . . , en〉Fq ),
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where R′ is a q0-group of special type of order q2n−3 and L ′∼=GLn−2(q)×GL1(q).
Note that the graph automorphism x 7→ t x−1 of S sends Q′ to (Q′)g, where g ∈ S
sends e1 to en , en to −e1, and fixes all other ei . Since the S-conjugacy class of the
p′-group Q′ is fixed by all field automorphisms, it is Aut(S)-invariant. Also, Q′ is
just the normalizer in S of the root subgroup Z ′ := Z(R′)= [R′, R′] (of order q),
whence NS(Q′)= Q′.

Lemma 6.7. In the above notation, δQ′ =α
′
+β ′1+β

′

2+γ
′
+1Q′ , where α′ ∈ Irr(Q′)

has degree qn−2(q − 1), β ′1, β
′

2 ∈ Irr(Q′) have degree qn−2
− 1, γ ′ ∈ Irr(Q′) has

degree (qn−2
− q)/(q − 1) if n > 3 and is zero if n = 3, and

α′Z ′ = qn−2
∑

1Z ′ 6=λ∈Irr(Z ′)

λ, Z ′ ≤ Ker(β ′1)∩Ker(β ′2)∩Ker(γ ′).

Proof. Note that all nontrivial elements in Z ′ are L ′-conjugate to a fixed transvection
t ∈ Z ′, and δ(t)= ρ(t)− 2= (qn−1

− q)/(q − 1)− 1. It follows that

δZ ′ = qn−2
∑

1R′ 6=λ∈Irr(Z ′)

λ+

(
2(qn−2

− 1)+
qn−2
− q

q − 1
+ 1

)
· 1Z ′ .

Since R′ is of special type, it also follows that [D, Z ′] gives rise to an irreducible
Q′-module of dimension qn−2(q − 1), with character α′. Now we can write
R′/Z ′ = (R′1/Z ′) × (R′2/Z ′) as a direct product of two L ′-invariant subgroups.
Next, Q′ acts on the subset �′ of � consisting of all 1-spaces of 〈e2, . . . , en〉Fq

(with kernel containing R′1), with two orbits. Arguing as in the proof of Lemma 6.1,
we see that this permutation action affords the Q′-character β ′2+γ

′
+2 ·1Q′ , where

the irreducible characters β ′2 and γ ′ (if n > 3; γ ′ = 0 if n = 3) have the indicated
degrees. In general, Q′ has three orbits on �, whence 1Q′ enters δQ′ . Also, note
that t has an S-conjugate t ′ ∈ R′1 \ Z ′ and α′(t ′)= 0. So if we set

β ′1(1) := δQ′ − (α
′
+β ′2+ γ

′
+ 1Q′),

then we see that β ′1 = β
′

1(t) = qn−2
− 1 and β ′1(t

′) = −1. Since L ′ acts transi-
tively on the nontrivial elements of R′1/Z ′, we conclude by Clifford’s theorem that
β ′1 ∈ Irr(Q′). �

As mentioned above, S = SLn(q) has a unique irreducible kS-module D of
dimension p−2. It follows by Theorem 2.4 that in the situation (i) of Theorem 5.7,

G+ = S1× · · ·× St ,

with Si ∼= S, and G+ acts on Wi with kernel Ki :=
∏

j 6=i S j . Now, as G+-modules,
we have that

E := End(V )∼=
⊕

1≤i, j≤t

V ∗i ⊗ V j ∼= e2
⊕

1≤i, j≤t

W ∗i ⊗W j ,
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where V ∗i ⊗ Vi ∼= End(Vi ) is acted on trivially by Ki , whereas W ∗i ⊗ W j is an
irreducible kG+-module with kernel Ki ∩ K j for i 6= j . It follows that the two
G+-submodules

E1 :=
⊕

1≤i≤t

V ∗i ⊗ Vi , E2 :=
⊕

1≤i 6= j≤t

V ∗i ⊗ V j

of End(V ) share no common composition factor.
Now we can prove the main result of this section:

Theorem 6.8. Suppose we are in the case (i) of Theorem 5.7, i.e., (p, H, dim W )=

((qn
− 1)/(q − 1),SLn(q), p− 2). Then (G, V ) is weakly adequate.

Proof. (a) Consider the subgroup

Q′t = Q′× · · ·× Q′ = Q′1× · · ·× Q′t < S1× · · ·× St

of G+. By Lemma 6.7 and the discussion preceding it, Q′t satisfies the hypotheses
of Lemma 5.4, with Ai affording the Q′-character α′, and NG(Q′t) is a p′-group.
Note that Ai � A j for i 6= j since Ki∩Q′t 6= K j∩Q′t . Also, the summands A and B
of the Q′t -module V constructed in Lemma 6.7 have no common composition
factor and A is irreducible. Hence,

M⊇ End(A)⊃ e2
⊕

1≤i 6= j≤t

A∗i ⊗ A j =:A

by the Artin–Wedderburn theorem. Note that A ⊂ E2. Furthermore, if 1 is the
Q′t -character of the complement of A in E2, then, by Lemma 6.7, each irreducible
constituent of 1, when restricted to

Z ′t = Z ′× · · ·× Z ′ = Z ′1× · · ·× Z ′t ,

is trivial on (at least) all but one Z ′i . The same is true for the G+-module E/(E1+M).
On the other hand, as mentioned above, all G+-composition factors of E/E1 ∼= E2

are of the form W ∗i ⊗W j with i 6= j . The Brauer character of any such W ∗i ⊗W j ,
being restricted to Si × S j , is δ ⊗ δ, and so it contains the Q′i × Q′j -irreducible
constituent α′⊗α′ which is nontrivial at both Z ′i and Z ′j by Lemma 6.7. It follows
that E1+M = E, i.e., M surjects onto E2. Applying Lemma 5.5 to the subgroup
G+ ≤ G, we conclude that M⊇ E2.

(b) We already mentioned that the G+-modules E1 =
⊕t

i=1 E1i and E2 share no
common composition factor; in particular, k is not a composition factor of E2.
Furthermore, since

∏
j 6=i S j acts trivially on Vi , we see that for distinct i 6= j the

only common G+-composition factor that E1i and E1 j can share is the principal
character 1G+ . Recall that E1i ∼=D⊗D as Si -modules. The irreducibility of G on
V implies that Gi := StabG(Vi ) acts irreducibly on Vi , and certainly G+CGi acts
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homogeneously on Vi . By Proposition 6.6 applied to Gi , E1i is a subquotient of M.
We have therefore shown that all nontrivial G+-composition factors of E= End(V )
also occur in M with the same multiplicity, and so all the composition factors of
the G+-module E/M (if any) are trivial. Applying Lemma 5.4 to the subgroup
Q′t < G+, we conclude that M= E. �

Finally we can prove:

Theorem 6.9. Suppose (G, V ) is as in the case (i) of Theorem 2.4. Then (G, V ) is
weakly adequate.

Proof. In view of Theorems 5.7, 6.8, and Propositions 5.8, 5.9, 5.11, we need to
handle the case (p, H, dim W )= (7, 6·PSL3(4), 6). In this case, L i acts on each W j

either trivially or as H j ∼= 6 ·PSL3(4). It follows by the faithfulness of G on V that
Z(L i ) has exponent 6, and so L i is (isomorphic to) either X := (2×2) ·3 ·PSL3(4)
or a quotient 6 ·PSL3(4) of X . We can also find ki such that the kernel Ki of G+ =
L1 ∗ · · · ∗ Ln acting on Wi contains

∏
j 6=ki

L j . Without loss we may assume k1 = 1.

(a) We claim that L1 contains a subgroup Q1 = Z1×A5, whose conjugacy class is
Aut(L1)-invariant (with Z1 := Z(L1)). For this purpose, without loss of generality
we may assume that L1 ∼= X . We consider a Levi subgroup C3×SL2(4)∼=C3×A5

of SL3(4) which acts semisimply on the natural module F3
4. Then its conjugacy

class in SL3(4) is fixed by all the outer automorphisms of SL3(4). Consider a
faithful representation 3 : X → GL18(C) which is the sum of three irreducible
representations, on which X acts with different kernels ∼= C2, and let Y be the full
inverse image of A5 in X . Note that involutions in PSL3(4) lift to involutions in
6 · PSL3(4), whereas involutions in A5 lift to elements of order 4 in 2 ·A5 [Conway
et al. 1985]. It follows that 3(x) has order 2 for the inverse image x ∈ X of any
involution in A5, and so |x | = 2. Hence Y ∼= (2× 2)×A5, and the claim follows.

Defining Qi < L i similarly, we see that

Q = Q1 ∗ Q2 ∗ · · · ∗ Qn

satisfies condition (i) of Lemma 5.3. Since Q1 is self-normalizing in L1, we see
that NG+(Q)= Q and that N := NG(Q) is a p′-group.

We will now inflate Brauer characters of L1 acting on W1 to X and then replace L1

by X . According to [Jansen et al. 1995], L1 has exactly six irreducible 7-Brauer char-
acters ϕs of degree 6, 1≤ s≤ 6, lying above the six distinct characters λs of Z1 (with
kernels the three distinct central subgroups of order 2), and (ϕs)Q1 = λs ⊗ (α+β),
where α 6= β ∈ Irr(A5), and either

{α, β} = {1a, 5a} (6-6)

or
{α, β} = {3a, 3b}, (6-7)
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depending on whether ϕs takes value 2 or −2 on involutions in A5. (Here we
adopt the notation that Irr(A5)= {1a, 3a, 3b, 4a, 5a}.) In either case, we have that
(W1)Q = A1⊕ B1, where the Q-modules A1 and B1 are irreducible and nonisomor-
phic. As shown in the proof of Lemma 5.2, N G+=G and N1G+=G1 :=StabG(V1)

for N1 := NG1(Q). So we fix a decomposition G =
⋃t

i=1 gi G1 with gi ∈ N , g1= 1,
and define Ai := gi (A1) ⊂ Wi and Bi := gi (B1) ⊂ Wi . In particular, either (6-6)
holds for all (Wi )Q , or (6-7) holds for all (Wi )Q .

We claim that Q also satisfies condition (ii) of Lemma 5.3. Indeed, assume that
Wi � W j . Now if ki 6= k j , then Lki > Qki acts trivially on W j , but Z(Qki )= Zki

acts nontrivially by scalars on Wi . In the case ki = k j , we may assume that
Ki ≥

∏
s>1 Ls , and so Wi and W j afford the L1-characters ϕ, ϕ′ ∈ {ϕ1, . . . , ϕ6},

lying above different characters λ, λ′ of Z1. Now Z(Q1)= Z1 acts on Wi and W j

by scalars but via different characters λ, λ′, so we are done.

(b) Suppose we are in the case of (6-7) and, moreover, G1=StabG(V1) interchanges
the two classes 5A= x L1 and 5B= (x2)L1 of elements of order 5 of L1=61·PSL3(4).
Certainly, we can choose x ∈A5<Q1. Since N1G+=G1, we can find some element
g ∈ N1 that interchanges the classes 5A and 5B. In this case g also interchanges
the characters α = 3a and β = 3b of A5, but fixes W1 and the central character
λ ∈ {λ1, . . . , λ6} of Z1. It follows that {A1, . . . , Bt } forms a single N -orbit, and so
by Lemma 5.3 the p′-group N acts irreducibly on V , and we are done.

(c) From now on we may assume that we are not in the case considered in (b). We
claim that {A1, . . . , At } and {B1, . . . , Bt } are two distinct N -orbits. Assume the
contrary. Then by the construction of Ai and B j there must be some h ∈ N such
that B1 ∼= Ah

1 . This is clearly impossible in the case of (6-6). In the case of (6-7),
h ∈G1 and furthermore h fuses the two classes of elements of order 5 in A5. Hence
h ∈ G1 fuses the classes 5A and 5B of L1, contrary to our assumption.

Now we can apply Lemma 5.3 to see that VN = A⊕ B and so

M⊇ End(A)⊕End(B) (6-8)

by the Artin–Wedderburn theorem. We also decompose End(V ) = E1 ⊕ E2 as
G+-modules, and note that the Q-modules

E1 :=

t⊕
i=1

End(Vi )∼= e2
t⊕

i=1

W ∗i ⊗Wi ,

E2 :=
⊕

1≤i 6= j≤t

Hom(Vi , V j )∼= e2
⊕

1≤i 6= j≤t

W ∗i ⊗W j

share no common composition factor. Indeed, the p′-group Z(G+)= Z1∗· · ·∗Zn ≤

Z(Q) acts trivially on E1 and nontrivially by scalars on each W ∗i ⊗W j when i 6= j .
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Moreover, if ki 6= k j , say Ki ≥
∏

s 6=1 Ls and K j ≥
∏

s 6=2 Ls , then W ∗i ⊗W j

and W ∗j ⊗Wi are irreducible over L1× L2 (and are acted on trivially by
∏

s>2 Ls),
with nontrivial central characters ν−1

1 ⊗ ν2 and ν1 ⊗ ν
−1
2 over Z1 ∗ Z2, where

ν1, ν2 ∈ {λ1, . . . , λ6} have order 6. If Wi � W j but ki = k j , say ki = k j = 1, then
Wi and W j afford the L1-characters ϕ 6= ϕ′ lying above different characters λ 6= λ′

of Z1. We distinguish different scenarios for λ and λ′:

(c1) λ and λ′ coincide at O2(Z1) (then they must be different at O3(Z1), and in fact
λ′ = λ−1). Here, W ∗i ⊗W j and W ∗j ⊗Wi are reducible over L1 (and are acted on
trivially by

∏
s>1 Ls), with distinct nontrivial central characters λ−2 and λ2 over Z1.

Furthermore, the L1-character of W ∗i ⊗ W j is γ3 + δ3, where γ3 ∈ IBr(L1) has
degree 15, δ3 ∈ IBr(L1) has degree 21, and

(γ3)A5 = 3a+ 3b+ 4a+ 5a, (δ3)A5 = 2 · 1a+ 4a+ 3 · 5a. (6-9)

(c2) λ and λ′ coincide at O3(Z1) (then they must be different at O2(Z1)). Here,
W ∗i ⊗W j and W ∗j ⊗Wi again are reducible over L1 (and are acted on trivially
by
∏

s>1 Ls), with the same nontrivial central character λ−1λ′ over Z1. Further-
more, the L1-character of W ∗i ⊗W j is γ2+ δ2, where γ2 ∈ IBr(L1) has degree 10,
δ2 ∈ IBr(L1) has degree 26, and

(γ2)A5 = 1a+ 4a+ 5a, (δ2)A5 = 1a+ 3a+ 3b+ 4a+ 3 · 5a. (6-10)

Here we have used the fact that the character of W ∗i ⊗W j takes value (±2)2 = 4
at involutions in A5.

(c3) λ and λ′ differ at both O2(Z1) and O3(Z1). Here, W ∗i ⊗W j and W ∗j ⊗Wi are
irreducible over L1 (and are acted on trivially by

∏
s>1 Ls), with distinct nontrivial

central characters λ−1λ′ and λ(λ′)−1 over Z1. Furthermore, the L1-character of
W ∗i ⊗W j is γ6, where γ6 ∈ IBr(L1) has degree 36 and

(γ6)A5 = 2 · 1a+ 3a+ 3b+ 2 · 4a+ 4 · 5a. (6-11)

(d) According to (6-8), M contains the subspace A := End(C1) ⊕ End(D1) of
End(V1), which affords the character e2(α2

+ β2) of A5 < Q1 (and is acted on
trivially by Z1). Note that the L1-character of End(W1) is ϕiϕi = 1L1 +ψ , where
ψ ∈ IBr(L1) of degree 35 and

ψA5 = 1a+ 3a+ 3b+ 2 · 4a+ 4 · 5a.

On the other hand, the A5-character of the complement to A in End(V1) is

e2(α+β)2− e2(α2
+β2)= 2e2αβ,
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which is 2e2
· 5a in the case of (6-6) and 2e2(4a + 5a) in the case of (6-7); in

particular, it does not contain 1a. It follows by the observation right after (6-8) and
Lemma 5.5 that M⊇ End(V1) and so M⊇ E1.

(e) By (6-8), M contains the subspace Bi j := Hom(Ci ,C j )⊕ Hom(Di , D j ) of
Ei j := Hom(Vi , V j ) whenever i 6= j (recall that (Ci )Q ∼= eAi and (Di )Q ∼= eBi ).
We distinguish two cases according to whether ki and k j are equal or not.

First suppose that ki 6= k j , say ki = 1 and k j = 2. Then Ei j affords the L1× L2-
character e2θ1⊗ θ2 (where θi ∈ IBr(L i ) has degree 6) and is acted on trivially by∏

s>2 Ls . Now the Q1× Q2-character of the complement to Bi j in Hom(Vi , V j )

when restricted to the subgroup A5×A5 is

e2(α1+β1)⊗ (α2+β2)− e2(α1⊗α2+β1⊗β2)= e2(α1⊗β2+β1⊗α2)

(where α1, β1 play the role of α and β for the first factor A5 and similarly for α2, β2).
Also, the restriction of θ1⊗θ2 to A5×A5 always contains an irreducible constituent
distinct from α1⊗β2 and β1⊗α2, namely β1⊗β2.

Assume now that ki = k j = 1. Then the A5-character of the complement to Bi j

in Ei j is
e2(α+β)2− e2(α2

+β2)= 2e2αβ,

which is 2e2
· 5a in the case of (6-6) and 2e2(4a+ 5a) in the case of (6-7). On the

other hand, according to (6-9)–(6-11), the restriction to A5 of each of the irreducible
constituents γ and δ of W ∗i ⊗W j always contains either 1a or 3a.

Now assume that M 6= End(V ). Working modulo E1⊂M, we see that M⊇B :=⊕
i 6= j Bi j has a nonzero complement in E2 =

⊕
i 6= j Ei j . But the above analysis

shows that any G+-composition factor of E2 contains a Q-irreducible constituent
which is not a Q-constituent of the complement to B in E2, a contradiction. �

Proof of Theorem 1.2. (a) First we consider the case where k is algebraically
closed. Assume that G+ is p-solvable. Then G is also p-solvable. Furthermore,
dim V/ dim W divides |G/G+| by [Navarro 1998, Theorem 8.30], and so p - dim V .
So we are done by Lemma 5.1. So we may now assume that G+ is not p-solvable,
p > dim W > 1, and apply Theorem 2.4 to G. Then the statement follows from
Theorem 4.5 in the case that G+ is a central product of quasisimple groups of
Lie type in characteristic p (if in addition p> 3), and from the results of Sections 5
and 6 in the remaining cases.

Suppose that p = 3 and G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple
groups of Lie type in characteristic p (with Z(L i ) a p′-group for each i ; see
Theorem 2.4(iii)). Write VG+ = e

⊕t
i=1 Wi as usual. It is well known that the only

quasisimple groups of Lie type in characteristic p that have a faithful representation
of degree 2 over k are SL2(pa). Since dim W = 2, we must have that L j ∼= SL2(q)
for a power q > 3 of 3 for all j (as the G+-modules Wi are G-conjugate); moreover,
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for each i , there is a unique ki such that L j acts nontrivially on Wi precisely
when j = ki . Note that L i contains a unique conjugacy class of cyclic subgroups
Ti of order Cq−1. It is straightforward to check that the restrictions of all Brauer
characters ϕ ∈ IBrp(L i ) of degree 2 to Qi :=NL i (Ti ) are all irreducible and pairwise
distinct. Letting Q := Q1 ∗ · · · ∗ Qn and arguing as in case (b1) of the proof of
Theorem 5.7, we see that Q satisfies all the hypotheses of Lemma 5.2, whence
we are done.

(b) Now we consider the general case. We will view G as a subgroup of GL(V ) and
let M := 〈g : g ∈ G semisimple〉k as usual. Since the kG-module V is absolutely
irreducible, the kG-module V := V ⊗k k is irreducible, and the condition d < p
implies that the dimension of any irreducible G+-submodule in V is also less than p.
By the previous case, M⊗k k = End(V ). It follows that dimk M = (dim V )2 and
so M= End(V ).

�

7. Extensions and self-extensions, I: Generalities

First we record a convenient criterion about self-extensions in blocks of cyclic defect:

Lemma 7.1. Suppose that G is a finite group and that V is an irreducible FpG-
representation that belongs to a block of cyclic defect. Then Ext1G(V, V ) 6= 0 if and
only if V admits at least two nonisomorphic lifts to characteristic 0. In this case,
dim Ext1G(V, V )= 1.

Proof. Let B denote the block of V . If B has defect 0, V is projective and lifts
uniquely to characteristic 0. Otherwise, B is a Brauer tree algebra. Note that
Ext1G(V, V ) 6= 0 if and only if V embeds as subrepresentation of P(V )/V . The
Brauer tree shows that this happens if and only if either (i) B has an exceptional
vertex and V is the unique edge incident with it, or (ii) B does not have an exceptional
vertex and V is the unique edge of the tree. In (i), each exceptional representation
in B lifts V , in (ii) both ordinary representations in B lift V , and it is clear that
V has at most one lift in all other cases. To verify the final claim, note that
Hom(V,P(V )/V ) ∼= Ext1G(V, V ), and that in a Brauer tree algebra V occurs at
most once in soc(P(V )/V ). �

In fact, as pointed out to us by V. Paskunas, one direction of Lemma 7.1 holds
for any finite group G: if Ext1G(V, V )= 0 then V has at most one characteristic-0
lift. Indeed, if V has no self-extension, we may first realize all characteristic-0 lifts
over some finite extension E of Qp, as well as V over the residue field of E. Then
the universal deformation ring R of V over the ring OE is a quotient of OE. But then
|HomOE-alg(R,OE)| ≤ 1, i.e., V has at most one characteristic-0 lift.

We will frequently use the following simple observations:
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Lemma 7.2. Let V be a finite-dimensional vector space over k and G ≤ GL(V )
a finite absolutely irreducible subgroup. Write V |G+ = e

⊕t
i=1 Wi , where the G+-

modules Wi are absolutely irreducible and pairwise nonisomorphic. Suppose that
Ext1G+(Wi ,W j )= 0 for all i, j . Then Ext1G(V, V )= 0.

Proof. Since G+ contains a Sylow p-subgroup of G, Ext1G(V, V ) embeds in

Ext1G+(VG+, VG+)=Ext1G+
(

e
t⊕

i=1

Wi , e
t⊕

i=1

Wi

)
∼=e2

⊕
i, j

Ext1G+(Wi ,W j )=0. �

Lemma 7.3. Let N be a normal subgroup of a finite group X and let A and B be
finite-dimensional k(X/N )-modules. Consider Ext1X (A, B), where we inflate A and
B to k X-modules.

(i) If Ext1X (A, B)= 0, then Ext1X/N (A, B)= 0.

(ii) If Ext1X/N (A, B)= 0 and O p(N )= N , then Ext1X (A, B)= 0.

Proof. (i) is trivial. For (ii), let V be any extension of the k X -module A by the k X -
module B, and let 8 : X→GL(V ) denote the corresponding representation. Since
N acts trivially on A and B, we see that8(N ) is a p-group. But O p(N )= N ; hence
8(N )= 1, i.e., N acts trivially on V . Now, V ∼= A⊕ B as Ext1X/N (A, B)= 0. �

Next we recall Holt’s inequality in cohomology [1980]:

Lemma 7.4. Let G be a finite group, N C G, and let V be a finite-dimensional
kG-module. Then for any integer m ≥ 0 we have

dim H m(G, V )≤
m∑

j=0

dim H j (G/N , H m− j (N , V )).

From now on we again assume that k is algebraically closed.

Corollary 7.5. Let G = G1×G2 be a direct product of finite groups and let Vi be
a nontrivial irreducible kGi -module for i = 1, 2.

(i) If we view V1⊗ V2 as a kG-module, then H 1(G, V1⊗ V2)= 0.

(ii) If we inflate V1 and V2 to kG-modules, then Ext1G(V1, V2)= 0.

Proof. For (i), applying Lemma 7.4 to N := G1 we get

dim H 1(G, V )≤ dim H 0(G2, H 1(G1, V ))+ dim H 1(G2, H 0(G1, V )).

Now the G1-module V is a direct sum of dim V2 copies of V1 and V1 is nontrivial
irreducible, whence H 0(G1, V ) = 0. Next, H 1(G1, V ) ∼= H 1(G1, V1) ⊗ V2 as
G2-modules, with G2 acting trivially on the first tensor factor. It follows that

H 0(G2, H 1(G1, V ))∼= H 1(G1, V1)⊗ H 0(G2, V2)= 0
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as V2 is nontrivial irreducible, and so we are done.
Part (ii) follows from (i) since Ext1G(V1, V2) ∼= H 1(G, V ∗1 ⊗ V2) and V ∗1 is a

nontrivial absolutely irreducible kG1-module. �

Corollary 7.6. Let the finite group H be a central product of quasisimple subgroups
H = H1 ∗ · · · ∗ Hn , where Z(Hi ) is a p′-group for all i . For i = 1, 2, let Wi be
a nontrivial irreducible k H-module such that the action of H on Wi induces a
quasisimple subgroup of GL(Wi ). Suppose that the kernels of the actions of H on
W1 and on W2 are different. Then Ext1H (W1,W2)= 0.

Proof. View H as a quotient of L := H1× · · ·× Hn by a central p′-subgroup and
inflate Wi to a kL-module. Next, write Wi =W i

1 ⊗ · · ·⊗W i
n for some absolutely

irreducible k H j -module W i
j , 1 ≤ i ≤ 2, 1 ≤ j ≤ n. Since H j is quasisimple, if

dim W i
j = 1 then H j acts trivially on Wi . On the other hand, if dim W i

j > 1, then H j

induces a quasisimple subgroup of GL(W i
j ). Hence, the condition that the action

of H on Wi induces a quasisimple subgroup of GL(Wi ) implies that dim W i
j > 1

for exactly one index j = ki , whence the kernel of L on Wi is

H1× · · ·× Hki−1×CHki
(W i

ki
)× Hki+1× · · ·× Hn.

Note that the hypothesis on Hi imply that
∏

j 6=k1, k2
H j has no nontrivial p-quotient.

Hence, by Lemma 7.3 there is no loss in taking the quotient of L by
∏

j 6=k1, k2
H j .

If k1 6= k2, then we are reduced to the case where L = Hk1×Hk2 , W1 is a nontrivial
Hk1-module inflated to L and W2 is a nontrivial Hk2-module inflated to L , whence
we are done by Corollary 7.5(ii). Suppose now that k1 = k2, say k1 = k2 = 1
for brevity. Then we are reduced to the case where L = H1 and K1 6= K2, with
Ki = CH1(W

i
1) ≤ Z(H1). By Schur’s lemma, Z(H1) acts on Wi by scalars and

semisimply, via a linear character λi . Since K1 6= K2, we see that λ1 6= λ2. It
follows (by considering Z(H1)-blocks, or by considering λi -eigenspaces for Z(H1)

in any extension of W1 by W2) that Ext1L(W1,W2)= 0. �

More generally, we record the following consequence of the Künneth formula:

Lemma 7.7 [Benson 1998, 3.5.6]. Let H be a finite group. Assume that H is a
central product of subgroups Hi for 1≤ i ≤ t and that Z(H) is a p′-group. Let X
and Y be irreducible k H-modules. Write X = X1⊗· · ·⊗ X t and Y = Y1⊗· · ·⊗Yt ,
where X i and Yi are irreducible k Hi -modules.

(i) If X i � Yi for at least two i , then Ext1H (X, Y )= 0.

(ii) If X1 � Y1 but X i ∼= Yi for i > 1, then Ext1H (X, Y )∼= Ext1H1
(X1, Y1).

(iii) If X i ∼= Yi for all i , then Ext1H (X, Y )∼=
⊕

i Ext1Hi
(X i , Yi ).

We continue with several general remarks:
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Lemma 7.8. Let V be a kG-module of finite length.

(i) Suppose that X is a composition factor of V such that V has no indecomposable
subquotient of length 2 with X as a composition factor. Then V ∼= X ⊕M for
some submodule M ⊂ X.

(ii) Suppose that Ext1G(X, Y )= 0 for any two composition factors X , Y of V . Then
V is semisimple.

Proof. (i) We will assume that V � X . Let U be a submodule of V of smallest
length that has X as a composition factor. First we show that U ∼= X . If not, then U
has a composition series U =U0 >U1 > · · ·>Um = 0 for some m ≥ 2. Note that
U/U1∼= X , as otherwise X would be a composition factor of U1⊂U , contradicting
the choice of U . Now U/U2 is a subquotient of length 2 of V with X as a quotient.
By the hypothesis, U/U2 =U ′/U2⊕U ′′/U2 with U ′/U2 ∼= X and U ′′ ⊃U2, again
contradicting the choice of U .

Now let M be a submodule of V of largest length such that M ∩U = 0. In
particular, V/M ⊇ (M +U )/M ∼= X . Assume furthermore that V 6= M +U . Then
we can find a submodule V ′ ⊆ V such that V ′/(M +U ) is simple. Again, V ′/M
is a subquotient of length 2 of V with X as a submodule. So by the hypothesis,
V ′/M = (M +U )/M ⊕ N/M for some submodule N ⊆ V containing M properly.
But then

N ∩U = (N ∩ (M +U ))∩U = M ∩U = 0,

contrary to the choice of M . Thus V = M ⊕U is decomposable.

(ii) Induction on the length of V . If V is not simple, then by (i) we have V ∼=V ′⊕V ′′

for some nonzero submodules V ′ and V ′′. Now apply the induction hypothesis to
V ′ and V ′′. �

Lemma 7.9. Let V be a kG-module. Suppose that U is a composition factor of V
of multiplicity 1 and that U occurs both in soc V and head V . Then V ∼=U ⊕M for
some submodule M ⊂ V .

Proof. Let U1∼=U be a submodule of V . Since U occurs in head V , there is M ⊂ V
such that V/M ∼= U . Now if M ⊇ U1, then U would have multiplicity ≥ 2 in V .
Hence V =U1⊕M . �

Lemma 7.10. Let V be a kG-module of finite length. Suppose the set of isomor-
phism classes of composition factors of V is a disjoint union X∪Y of nonempty
subsets such that, for any U ∈X and W ∈Y, there is no indecomposable subquotient
of length 2 of V with composition factors U and W . Then V is decomposable.

Proof. Let X and Y denote the largest submodules of V with all composition
factors belonging to X and Y, respectively. By definition, X ∩ Y = 0. We claim
that V = X ⊕ Y . If not, we can find a submodule Z ⊃ X ⊕ Y of V such that
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U := Z/(X⊕Y ) is a simple G-module. Suppose for instance that U ∈X. Applying
Lemma 7.8(i) to the G-module Z/X and its composition factor U , we see that
Z/X ∼= U ⊕ Y . This implies that Z contains a submodule T with T/X ∼= U ,
contradicting the choice of X .

Now X, Y 6= 0 as X,Y 6=∅. It follows that V is decomposable. �

Lemma 7.11. Let V be an indecomposable kG-module.

(i) If the G+-module VG+ admits a composition factor L of dimension 1, then all
composition factors of VG+ belong to B0(G+).

(ii) Suppose a normal p′-subgroup N of G acts by scalars on a composition factor
L of the G-module V . Then N acts by scalars on V . If in addition V is faithful
then N ≤ Z(G).

Proof. (i) Since G+ = O p′(G+), it must act trivially on L . Let X (resp. Y ) denote
the largest submodule of the G+-module V with all composition factors belonging
(resp. not belonging) to B0(G+). By their definition and the definition of G+-
blocks, V = X ⊕ Y . Note that both X and Y are G-stable as G+CG. Since V is
indecomposable, we see that Y = 0 and V = X .

(ii) Note that N acts completely reducibly on V and G permutes the N -homogeneous
components of V . Since V is indecomposable, it follows that this action is transitive,
whence all composition factors of the N -module V are G-conjugate. But, among
them, the (unique) linear composition factor of L N is certainly G-invariant. Hence
this is the unique composition factor of VN , and so N acts by scalars on V . �

8. Indecomposable representations of SL2(q)

We first prove a lemma:

Lemma 8.1. Suppose that S, T are irreducible SL2(Fq)-representations over Fp

with q = pn , n ≥ 2, and E is a nonsplit extension of T by S. Then dim E ≥ p and
S � T . Moreover, if dim S = dim T then dim E ≥ (p2

− 1)/2.

Proof. This is immediate from Corollary 4.5(a) in [Andersen et al. 1983]. �

Proposition 8.2. Suppose that V is a reducible, self-dual, indecomposable repre-
sentation of SL2(Fq) over Fp, where q = pn . If dim V < 2p− 2, then q = p and
one of the following holds:

(i) dim V = p and V ∼= P(1).

(ii) dim V = p+ 1 and V is the unique nonsplit self-extension of L((p− 1)/2).

(iii) dim V = p− 1 and V is the unique nonsplit self-extension of L((p− 3)/2).

Conversely, all the listed cases give rise to examples.
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Proof. Note that p > 2.

(a) Suppose first that q= p. If V is projective, then since dim V < 2p, we must have
V ∼=P(1), which is uniserial of shape (L(0) | L(p−3) | L(0)) and of dimension p.
(See for example [Alperin 1986].) If V is nonprojective, then, as SL2(p) has a
cyclic Sylow p-subgroup, V is one of the “standard modules” described in [Janusz
1969, §5]. As V is self-dual, the standard modules are described by paths in the
Brauer tree as in [Janusz 1969, (5.2)(b)] with P0 = Q = Pk+1. By inspecting the
Brauer trees of SL2(p) (see, e.g., [Alperin 1986]) and using that dim V < 2p− 2,
we deduce moreover that k = 1 above, obtaining the modules in (ii), (iii).

In case (i), it is obvious that the module is self-dual since it is P(1). In cases (ii)
and (iii) the uniqueness of the isomorphism class of the extension implies that it is
self-dual.

(b) Now suppose that q > p. We need to show that no such V exists. (In fact we
will show this holds even under the weaker bound dim V < 2p.) Pick an irreducible
subrepresentation L(λ) of V , where λ=

∑n−1
i=0 piλi , 0≤ λi ≤ p− 1. Then V has

a subquotient isomorphic to a nonsplit extension 0→ L(λ)→ E → L(µ)→ 0,
where µ=

∑n−1
i=0 piµi , 0≤µi ≤ p−1. By Lemma 8.1 we know that λ 6=µ; hence

2 dim L(λ)+ dim L(µ) < 2p. By Corollary 4.5(a) in [Andersen et al. 1983] we
deduce that, up to a cyclic relabeling of the indices, λ= λ0+ p, µ= p−2−λ0, and
µ>(2p−3)/3≥1. In particular, µ uniquely determines λ. Hence, if soc V contains
two nonisomorphic irreducible representations, then V admits indecomposable
subrepresentations of length two that intersect in zero, so dim V ≥2p by Lemma 8.1.
Therefore, soc V ∼= L(λ)⊕r for some r ≥ 1.

Suppose first that r ≥ 2. We claim that soc2 V/ soc V ∼= L(µ)⊕s for some
0≤ µ < pn and some s ≥ 1. (Here soci M is the increasing filtration determined
by soc0 M = 0 and soci M/ soci−1 M = soc(M/ soci−1 M). Note that the socle
filtration is compatible with subobjects.) Note that any constituent of soc2 V/ soc V
extends L(λ), and hence by above it is uniquely determined, unless n = 2 and
λ0 = 1. In the latter case, the constituents can be L(µ′), L(µ′′), where µ′ = p− 3,
µ′′ = p(p − 3). But only one of them can occur since dim L(λ)+ dim L(µ′)+
dim L(µ′′)= 2p, and this proves the claim. Note that L(µ) can occur only once in
V by Lemma 8.1; in particular, s = 1. We claim that dim Ext1(L(µ), L(λ))≥ r ≥ 2.
Otherwise, soc2 V is decomposable, so we obtain a splitting π : soc2 V → L(λ)⊂
soc V . But Ext1(V/ soc2 V, L(λ)) = 0, so we can extend π to a splitting of V ,
a contradiction. Hence dim Ext1(L(µ), L(λ)) ≥ 2 and by Corollary 4.5(b) in
[Andersen et al. 1983] we deduce that n = 2 and λi , µi ∈ {(p− 3)/2, (p− 1)/2}
for all i . (Note that we can get all four combinations with λi +µi = p− 2, unlike
what is claimed in that corollary.) This contradicts that |{λi , µi : 0≤ i ≤ n−1}| ≥ 3
(by above).
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Suppose that r = 1, so soc V is irreducible. Note that soc3 V = V by Lemma 8.1,
as each constituent in a socle layer extends at least one constituent of the previous so-
cle layer. As soc V is irreducible, V embeds in the projective indecomposable mod-
ule Un(λ) whose socle is L(λ). We have V ⊂ soc3 Un(λ). Note that λi < p− 1 for
all i , as dim V < 2p. By Lemma 8.1, L(λ) does not occur in soc2 Un(λ)/ soc Un(λ).
Also, L(λ) occurs precisely n times in soc3 Un(λ)/ soc2 Un(λ). (Theorems 4.3
and 3.7 in [Andersen et al. 1983] imply that this is the case, unless n = 2 and
λi ∈ {(p− 3)/2, (p− 1)/2} for all i . But by above λi < (p− 3)/3≤ (p− 3)/2 for
some i .) Let Mi = L(λ0)⊗ L(λ1)

(p)
⊗ · · ·⊗ Q1(λi )

(pi )
⊗ · · ·⊗ L(λn−1)

(pn−1) and
M :=M0+· · ·+Mn−1⊂Un(λ) in the notation of [Andersen et al. 1983, §3]. Note by
Theorems 4.3 and 3.7 in [Andersen et al. 1983] that soc2 Un(λ)⊂ M ⊂ soc3 Un(λ)

and that M/ soc2 Un(λ)∼= L(λ)⊕n . Therefore V ⊂ M , so
V

L(λ)
⊂

M
L(λ)

=
M0

L(λ)
⊕ · · ·⊕

Mn−1

L(λ)
.

As head(Mi/L(λ))∼= L(λ), there exists i such that V/L(λ) surjects onto Mi/L(λ).
Thus dim V ≥ dim Mi ≥ 2p.

�

9. Finite groups with indecomposable modules of small dimension

Throughout this section, we assume that k = k̄ is a field of characteristic p > 3. We
want to describe the structure of finite groups G that admit reducible indecomposable
modules of dimension ≤ 2p− 2. The next results essentially reduce us to the case
of quasisimple groups.

Lemma 9.1. Let G be a finite group, p > 3, and V be a faithful kG-module of
dimension < 2p. Suppose that Op(G) = 1 and Op′(G) ≤ Z(G). Then F(G) =
Op′(G)= Z(G), F∗(G)= E(G)Z(G), and G+= E(G) is either trivial or a central
product of quasisimple groups of order divisible by p. In particular, G has no
composition factor isomorphic to C p, and so H 1(G, k)= 0.

Proof. (a) Since Op(G) = 1, Z := Z(G) ≤ F(G) ≤ Op′(G). It follows that
F(G)= Z = Op′(G), and F∗(G)= E(G)Z . If moreover E(G)= 1, then

Z = F(G)= F∗(G)≥ CG(F∗(G))= G,

whence G is an abelian p′-group, and G+ = 1= E(G).

(b) Assume now that E(G) > 1 and write E(G)= L1 ∗ · · · ∗ L t , a central product
of t ≥ 1 quasisimple subgroups. Since Op′(E(G))≤ Op′(G)= Z , p | |L i | for all i .

Next we show that NG(L i )/CG(L i )L i is a p′-group for all i . Indeed, note that
the L i -module V admits a nontrivial composition factor U of dimension < 2p.
Otherwise it has a composition series with all composition factors being trivial,
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whence L i acts on V as a p-group. Since V is faithful and L i is quasisimple,
this is a contradiction. So we can apply Theorem 2.1 and [Guralnick et al. 2014,
Theorem 2.1] to the image of L i in GL(U ). In particular, denoting Si := L i/Z(L i ),
one can check that Out Si is a p′-group, unless it is a simple group of Lie type in
characteristic p. In the former case we are done since NG(L i )/CG(L i )L i ↪→Out Si .
Consider the latter case. Observe that Z(L i )≤ Z(E(G))≤ F(G) is a p′-group. So
we may replace L i by its simply connected isogenous version GF , where F :G→G

is a Steinberg endomorphism on a simple simply connected algebraic group G in
characteristic p. If moreover p divides |NG(L i )/CG(L i )L i |, then NG(L i ) induces
an outer automorphism σ of L i of order p. As p > 3, this can happen only when σ
is a field automorphism. More precisely, L i is defined over a field Fpbp (for some
b ≥ 1), where Fpbp is the smallest splitting field for L i [Kleidman and Liebeck
1990, Proposition 5.4.4] and σ is induced by the field automorphism x 7→ x pb

.
Since dim U ≥ 2 > (dim V )/p, U must be σ -invariant. In turn, this implies by
[Kleidman and Liebeck 1990, Proposition 5.4.2] that U and its (pb)-th Frobenius
twist are isomorphic. In this case, the proofs of Proposition 5.4.6 and Remark 5.4.7
of [Kleidman and Liebeck 1990] show that dim U ≥ 2p > 2p, a contradiction.

(c) Recall that CG(E(G))=CG(F∗(G))≤ F∗(G)= E(G)Z , whence CG(E(G))=
Z . Also, G acts via conjugation on the set {L1, . . . , L t }, with kernel (say) N .
We claim that p - |G/N |. If not, then we may assume that some p-element
g ∈ G permutes L1, . . . , L p cyclically. Arguing as in (b), we see that L1 acts
nontrivially on some composition factor U of the E(G)-module V , and we can
write U = U1 ⊗ · · · ⊗ Ut , where Ui ∈ IBrp(L i ). If U is not g-invariant, then
dim V ≥ p(dim U )≥ 2p, a contradiction. Hence U is g-invariant. It follows that
2≤ dim U1 = · · · = dim Up and so dim U ≥ 2p > 2p, again a contradiction.

Now N/E(G)Z embeds in
∏t

i=1 Out L i . Furthermore, the projection of N into
Out L i induces a subgroup of NG(L i )/CG(L i )L i , which is a p′-group by (b). It
follows that N/E(G)Z is a p′-group, and so G+ = E(G). The last statement
also follows. �

The next result on H 1 follows from standard results on H 1 — see [Guralnick
et al. 2007, Lemma 5.2] and the main result of [Guralnick 1999].

Lemma 9.2. Let G be a finite group and let V be a faithful irreducible kG-module.
Assume that H 1(G, V ) 6= 0. Then Op′(G) = Op(G) = 1, E(G) = L1 × · · · × L t

and VE(G) = W1 ⊕ · · · ⊕ Wt , where the L i are isomorphic nonabelian simple
groups of order divisible by p, Wi is an irreducible kL i -module, and L j , j 6= i acts
trivially on Wi . Moreover, dim H 1(G, V )≤ dim H 1(L1,W1), dim Wi ≥ p− 2 and
dim V ≥ t (p− 2). In particular, if G is not almost simple, then either dim V =
2p− 4, 2p− 2 or dim V ≥ 2p, or (p, dim V )= (5, 9).
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Lemma 9.3. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2. Assume that Op(G)= 1 and dim V ≤ 2p− 2. If J := Op′(G+)�
Z(G+), then:

(i) p = 2a
+ 1 is a Fermat prime.

(ii) dim V1 = dim V2 = p− 1.

(iii) J/Z(J ) is elementary abelian of order 22a .

(iv) H 1(G+, k) 6= 0.

Proof. Since Ext1G(V1, V2) ↪→Ext1G+(V1, V2), there are irreducible G+-submodules
Wi of Vi for i = 1, 2 such that Ext1G+(W1,W2) 6= 0. Assume that J acts by scalars
on at least one of the Wi . Then, by Lemma 7.11(ii), J acts by scalars on both
W1 and W2. If W ′1 is any G+-composition factor of V1, then W ′1 is G-conjugate
to W1. But J CG, so we see that J acts by scalars on W ′1. Thus J acts by scalars
on all G+-composition factors of V1, and similarly for V2. Consider a basis of V
consistent with a G+-composition series of V , and any x ∈ J and y ∈ G+. Then
[x, y] acts as the identity transformation on each G+-composition factor in this
series, and so it is represented by an upper unitriangular matrix in the chosen basis.
The same is true for any element in [J,G+]CG. Since V is faithful, we see that
[J,G+] ≤ Op(G)= 1 and so J ≤ Z(G+), a contradiction.

Thus J cannot act by scalars on any Wi . Let 8i denote the representation of G+

on Wi . Then H :=8i (G+) < GL(Wi ) has no nontrivial p′-quotient, and contains
a nonscalar normal p′-subgroup 8i (J ). Applying Theorem 2.1 and also [Blau
and Zhang 1993, Theorem A] to H , we conclude that p = 2a

+ 1 is a Fermat
prime, dim Wi = p− 1, and Q := Op′(H) acts irreducibly on Wi . Furthermore,
Z(Q) = Z(H), and H/Q acts irreducibly on Q/Z(Q), an elementary abelian 2-
group of order 22a . Now8i (J ) is a normal p′-subgroup of H that is not contained in
Z(Q). It follows that8i (J )Z(Q)= Q, Z(8i (J ))=8i (J )∩Z(Q), J is irreducible
on Wi , and 8i (J )/Z(8i (J ))∼= Q/Z(Q) is elementary abelian of order 22a . Since
dim V ≤ 2p− 2, it also follows that Wi = Vi .

Letting A := V ∗1 ⊗V2, we then see that A= [J, A]⊕CA(J ) as J -modules. Next,

0 6= Ext1G(V1, V2)∼= H 1(G, A)∼= H 1(G,CA(J )),

since H 1(G, [J, A]) = 0 by the inflation restriction sequence. It follows that
CA(J ) 6= 0. But J is irreducible on both V1 and V2, so we must have that
dim CA(J ) = 1 and V1 ∼= V2 as J -modules. Since G+ acts trivially on any
1-dimensional module, it follows that H 1(G+, k) 6= 0. Since W1 ∼= W2 as J -
modules and V is a faithful semisimple J -module, we also see that Ker(81)∩ J =
Ker(82)∩ J = 1. Thus 8i is faithful on J , and so J/Z(J ) is elementary abelian
of order 22a . �
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Lemma 9.4. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2 of dimension > 1, p > 3, and Op(G)= 1.

(i) Assume that Op′(G+) ≤ Z(G+), and either dim V < 2p − 2 or dim V1 =

dim V2 = p − 1. If G+ is not quasisimple, then G+ = L1 ∗ L2 is a central
product of two quasisimple groups, dim V1 = dim V2 = p − 1 and, up to
relabeling the L i , one of the following holds:

(a) Vi= Ai⊗B as G+-modules, where Ai ∈ IBrp(L1) is of dimension (p−1)/2
and B ∈ IBrp(L2) is of dimension 2; furthermore, Ext1L1

(A1, A2) 6= 0.
(b) Vi = (Ai ⊗ k) ⊕ (k ⊗ Bi ) as G+-modules, where Ai ∈ IBrp(L1) has

dimension (p− 1)/2, and some g ∈ G interchanges L1 with L2 and Ai

with Bi . Furthermore, Ext1L1
(A1, A2) 6= 0.

(ii) If dim V < 2p− 2, then G+ is quasisimple.

Proof. (i) By Lemma 9.1 applied to G+, G+= (G+)+= E(G+)= L1∗L2∗· · ·∗L t ,
a central product of t quasisimple groups. Suppose t > 1. Since Ext1G(V1, V2) ↪→

Ext1G+(V1, V2), there are irreducible G+-submodules Wi of Vi for i = 1, 2 such
that Ext1G+(W1,W2) 6= 0. Write Wi =Wi1⊗· · ·⊗Wi t , where Wi j is an irreducible
L j -module. By Lemma 7.7, we may assume that W1 j ∼= W2 j for j = 2, . . . , t ,
and either Ext1L1

(W11,W21) 6= 0, or W11 ∼= W21 and Ext1L j
(W1 j ,W2 j ) 6= 0 for

some j . Interchanging L1 and L j in the latter case, we can always assume that
Ext1L1

(W11,W21) 6= 0. By [Guralnick 1999, Theorem A], we then have

dim W11+ dim W21 ≥ p− 1> 2. (9-1)

Now if W1 j is nontrivial for some j ≥ 2, say W12 � k, then

dim V ≥ dim W1+ dim W2 ≥ 2(dim W11+ dim W21)= 2p− 2.

It follows that Vi = Wi = Wi1 ⊗ Wi2 ⊗ k ⊗ · · · ⊗ k, dim Wi1 = (p − 1)/2, and
dim Wi2 = 2. Furthermore, t = 2 as V is faithful, and we arrive at (a).

We may now assume that W1 j ∼=W2 j ∼= k for all j>1. Suppose that G normalizes
L1. Since every G+-composition factor of V1 is G-conjugate to W1, it follows that
L2 acts trivially on all composition factors of V1. The same is true for V2. As L2 is
quasisimple, we see that L2 acts trivially on V , contrary to the faithfulness of V .
Thus there must be some g ∈ G conjugating L1 to L j for some j > 1, say Lg

1 = L2.
By (9-1) we may assume that W11 � k. Then g(W1) � W1, as L2 acts trivially
on W1 but not on g(W1). Thus (V1)G+ has at least two distinct simple summands
W1 and g(W1). If furthermore W21 � k, then (V2)G+ also has at least two distinct
simple summands W2 and g(W2), and so

dim V ≥ 2(dim W1+ dim W2)= 2(dim W11+ dim W21)≥ 2p− 2.
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In this case, we must have that Vi = Wi ⊕ g(Wi ), dim Wi = (p− 1)/2, and t = 2
as V is faithful, and we arrive at (b).

Consider the case W21 ∼= k. Now (9-1) implies that dim W1 = dim W11 ≥ p− 2,
whence dim V1 ≥ 2p−4. On the other hand, dim V2 ≥ 2. It follows that 2p−4= 2,
again a contradiction.

(ii) By Lemma 9.3, Op′(G+)≤ Z(G+). Hence we are done by (i). �

Lemma 9.5. Let H be a quasisimple finite group of Lie type in characteristic p> 3.
Assume that V1, V2 ∈ IBrp(H) satisfy dim V1+ dim V2 < 2p.

(i) If H � SL2(q), PSL2(q), then Ext1H (V1, V2) = 0. In particular, there is no
reducible indecomposable kG-module with G+ ∼= H and dim V < 2p.

(ii) Suppose H ∼= SL2(q) or PSL2(q), Ext1H (V1, V2) 6= 0, and dim V1 = dim V2.
Then q = p and V1 = L((p− 3)/2) or L((p− 1)/2).

Proof. (i) Note that Z(H) is a p′-group as p > 3. Hence, we can replace H by the
fixed-point subgroup GF for some Steinberg endomorphism F : G→ G on some
simple simply connected algebraic group G defined over a field of characteristic
p (see Lemma 7.3). Hence, if H � Sp2n(5), the result follows by [McNinch
1999, Theorem 1.1]. In the exceptional case H = Sp2n(5), we have p = 5 and
so we are only considering modules of dimension at most 9. If n ≥ 3, then
dim V1+ dim V2 > 10 unless at least one of the Vi is trivial and the other is either
trivial or the natural module of dimension 2n, and in both cases Ext1H (V1, V2)=0. If
n= 2, one just computes that all the relevant Ext1H (V1, V2) are trivial (done by Lux).

Suppose now that V is a reducible indecomposable kG-module with G+ ∼= H
and dim V < 2p. By Lemma 7.8(ii), there are composition factors V1, V2 of V such
that Ext1G(V1, V2) 6= 0. It then follows that Ext1H (W1,W2) 6= 0 for some simple
H -summands Wi of Vi for i = 1, 2 and dim W1+ dim W2 < 2p, a contradiction.

(ii) Again we can replace H by SL2(q). The statement then follows from Lemma 8.1
when q > p, and from [Andersen et al. 1983] if q = p. �

There are a considerable number of examples of nonsplit extensions (V1|V2)

with G+ nonquasisimple and dim V1+dim V2 = 2p−2. For example, suppose that
G=SL2(p)×SL2(p) and V1= L(1)⊗L(a) and V2= L(1)⊗L(p−a−3). Then by
[Andersen et al. 1983] and Lemma 7.7, Ext1G(V1, V2) 6= 0. For our adequacy results,
we do need to consider the case where dim V1 = dim V2 = p− 1 in more detail:

Lemma 9.6. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2, both of dimension p− 1. Assume that p > 3 and Op(G)= 1. Then
one of the following holds:

(i) Op′(G+)� Z(G+) and Lemma 9.3 applies.

(ii) G+ is quasisimple.
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(iii) G+ = SL2(p) × SL2(pa) (modulo some central subgroup) and one of the
following holds:

(a) V1 ∼= V2 ∼= L((p− 3)/2)⊗ L(1)(p
b) as G+-modules (for some 0≤ b < a).

(b) a = 1 and V1 ∼= V2 ∼= X ⊕ Y , where G+ acts as a quasisimple group on
X, Y and dim X = dim Y = (p− 1)/2 (so X, Y ∼= L((p− 3)/2) for the
copy of SL2(p) acting nontrivially on X or Y ).

Proof. Assume that neither (i) nor (ii) holds. Then by Lemma 9.4(i), E(G+) =
G+ = L1 ∗ L2 is a central product of two quasisimple groups, and either (a) or (b)
of Lemma 9.4(i) occurs. In either case, we see that L1 admits an indecomposable
module W of length 2 with composition factors A1 and A2, both of dimension
(p− 1)/2. By [Blau and Zhang 1993, Theorem A] applied to W , L1 is of Lie type
in characteristic p. Also, Z(L1) ≤ Z(G+) ≤ Op′(G) is a p′-group. Hence L1 ∼=

SL2(p) (modulo a central subgroup) by Lemma 9.5 and A1 ∼= A2 ∼= L((p− 3)/2).
In particular, L2 ∼= SL2(p) in case (b), and (iii)(b) holds. In the case of (a),
B ∈ IBrp(L2) has dimension 2. Since p > 3, by Theorem 2.1 we conclude that L2

is of Lie type in characteristic p, and in fact that L2 ∼= SL2(pa) (modulo a central
subgroup) and B ∼= L(1)(p

b) for some a ≥ 1 and 0≤ b < a. Thus (iii)(a) holds. �

Proposition 9.7. Let p > 3 and let G be a finite group with a faithful, reducible,
indecomposable kG-module V of dimension ≤ 2p− 3. Suppose in addition that
Op(G) = 1. Then G+ = E(G+), G has no composition factor isomorphic to C p,
and one of the following holds:

(i) G+ is quasisimple.

(ii) G+ is a central product of two quasisimple groups and dim V = 2p − 3.
Furthermore, V has one composition factor of dimension 1, and either one of
dimension 2p− 4 or two of dimension p− 2. In either case, V � V ∗.

Proof. (a) Note that Op(G+) ≤ Op(G)= 1. Next we show that J := Op′(G+) ≤
Z(G+). As in the proof of Lemma 9.3, it suffices to show that J acts by scalars
on every G+-composition factor of V . So assume that there is a G+-composition
factor X of V on which J does not act by scalars. Again as in the proof of
Lemma 9.3, we see by Theorem 2.1 that dim X ≥ p− 1. Since dim V ≤ 2p− 3,
it follows that X is a G+-composition factor of multiplicity 1, and, moreover, J
acts by scalars on any other G+-composition factor Y of V . Also, X extends to
a G-composition factor (of multiplicity 1) of V . Now, by Lemma 7.8(i), there is
an indecomposable subquotient of length 2 of V with G-composition factors X
and T � X . In particular, by symmetry we may assume that 0 6= Ext1G(X, T ) ↪→
Ext1G+(X, T ), and so Ext1G+(X, Y ) 6= 0 for some simple G+-summand Y of T . But
this is impossible by Lemma 7.11(ii) (as J acts by scalars on Y but not on X ).
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Applying Lemma 9.1 to G+, we see that

G+ = (G+)+ = E(G+)= L1 ∗ · · · ∗ L t ,

a central product of t quasisimple subgroups. Note that t ≥ 1 as otherwise G is
a p′-group and so V does not exist. Furthermore, G has no composition factors
isomorphic to C p.

(b) Assume now that t ≥ 2. Suppose in addition that , for every composition factor
Vi of V , at most one of the components L j of G+ acts nontrivially on Vi . For
1≤ j ≤ t , let X j denote the set of isomorphism classes of composition factors Vi of
V on which L j acts nontrivially. Also let X0 denote the set of isomorphism classes
of composition factors Vi of V on which G+ acts trivially. By the faithfulness of V ,
X j 6=∅ for j > 0. Consider for instance X ∈ X1. By Lemma 7.8(i), there is some
X ′ ∈ X j (for some j) and some indecomposable subquotient W of length 2 of V
with composition factors X , X ′. Note that the p-radical of the group induced by
the action of G on W is trivial, as C p is not a composition factor of G. Applying
Lemma 9.4(ii) to W , we see that j = 0 or 1. Moreover, if for all X ∈ X1 there is
no such W with X ′ ∈ X0, then Lemma 7.10 applied to

(
X := X1,Y :=

⋃
i 6=1 Xi

)
implies that V is decomposable, a contradiction. Thus for some X ∈ X1, such a W
exists with X ′ ∈X0. Note that in this case dim X ≥ p−2. Indeed, G+ acts trivially
on X ′, and by symmetry we may assume that

0< dim Ext1G(X
′, X)≤ dim Ext1G+(X

′, X).

Therefore, for some simple summand X1 of the G+-module X we have that
0 6= Ext1G+(k, X1) ∼= H 1(G+, X1). Note that C p is not a composition factor of
G+, so by Lemma 7.3 we may assume here that G+ acts faithfully on X1. Applying
Lemma 9.2 to G+, we get dim X ≥ dim X1 ≥ p− 2.

Similarly, for some Y ∈X2, we get an indecomposable subquotient T of length 2
of V with composition factors Y and Y ′ ∈ X0, and moreover dim Y ≥ p− 2. Since
dim V ≤ 2p − 3 and X0 3 X ′, Y ′, we conclude that dim V = 2p − 3, dim X =
dim Y = p − 2, t = 2, and X ′ ∼= Y ′ has dimension 1. Suppose in addition that
V ∼= V ∗. Observe that X∗ � Y, X ′, so X ∼= X∗. Similarly, Y and X ′ are self-dual.
Thus all three composition factors of V have multiplicity 1 each and are self-dual.
At least one of them occurs in soc V , and then also in head V by duality. It follows
by Lemma 7.9 that V is decomposable, a contradiction. Thus we arrive at (ii).

(c) Finally, we consider the case where at least two of the L i act nontrivially on some
composition factor Vi of V . By Lemma 7.8(i), there is some indecomposable sub-
quotient W of length 2 of V with composition factors Vi and V j . By Lemma 9.4(ii)
applied to W , dim V j = 1. In turn this implies by Lemma 9.2 that dim Vi ≥ 2p− 4.
Since dim V ≤ 2p − 3, we must have that dim Vi = 2p − 4, V = W , t = 2 and
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dim V = 2p− 3. Applying Lemma 7.9 and using the indecomposability of V as
above, we see that V � V ∗, and again arrive at (ii). �

10. Extensions and self-extensions, II

Let q be any odd prime power. It is well known (see, e.g., [Tiep and Zalesskii 1997]
and [Guralnick et al. 2002]) that the finite symplectic group Sp2n(q) has two complex
irreducible Weil characters ξ1, ξ2 of degree (qn

+1)/2, and two such characters η1, η2

of degree (qn
− 1)/2, whose reductions modulo any odd prime p - q are absolutely

irreducible and distinct and are called (p-modular) Weil characters of Sp2n(q).

Lemma 10.1. Let q be an odd prime power and p an odd prime divisor of qn
+ 1

which does not divide
∏2n−1

i=1 (q
i
− 1). Let S := Sp2n(q) and let W1 and W2 denote

the irreducible kS-modules affording the two irreducible p-modular Weil characters
of S of degree (qn

− 1)/2. Then for 1 ≤ i, j ≤ 2 we have that Ext1S(Wi ,W j ) = 0,
unless i 6= j and n = 1, in which case dim(Ext1S(Wi ,W j ))= 1.

Proof. The conditions on (n, q) imply that (n, q) 6= (1, 3). In this case, [Tiep and
Zalesskii 1996, Theorem 1.1] implies that each Wi has a unique complex lift (a
complex module affording some ηi ). Also, the Sylow p-subgroups of S are cyclic
of order (qn

+ 1)p. Hence Ext1S(Wi ,Wi )= 0 by Lemma 7.1.
Note that an involutory diagonal automorphism σ of S fuses η1 with η2 and

W1 with W2. Consider the semidirect product H := S o 〈σ 〉 and the irreducible
k H -module V := IndH

S (W1) of dimension qn
−1. Certainly, IndH

S (η1) is a complex
lift of V .

Assume that n > 1. Now if (n, q) 6= (2, 3), then by [Tiep and Zalesskii 1996,
Theorem 5.2], S has exactly five irreducible complex characters of degree≤ (qn

−1):
1S , η1, η2, ξ1, and ξ2. When (n, q)= (2, 3), there is one extra complex character of
degree 6 [Conway et al. 1985]. It follows that if χ is any complex lift of V , then
χS = η1+ η2. Since σ fuses η1 and η2, we see that χ = IndH

S (η1). Thus V has a
unique complex lift, and so by Lemma 7.1 and Frobenius reciprocity we have

0= Ext1H (V, V )= Ext1H (IndH
S (W1), V )∼= Ext1S(W1, VS)

∼= Ext1S(W1,W1)⊕Ext1S(W1,W2).

In particular, Ext1S(W1,W2)= 0.
Next suppose that n = 1. Inspecting the character table of SL2(q) as given

in [Digne and Michel 1991, Table 2], we see that S has a σ -invariant complex
irreducible character χ of degree q−1 such that the restriction of χ to p′-elements of
S is the Brauer character of VS . Since H/S is cyclic and generated by σ , it follows
that χ extends to a complex irreducible character χ̃ of H . Now χ̃ 6= IndH

S (η1) (since
the latter is reducible over S), but both of them are complex lifts of V (by Clifford’s
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theorem). Applying Lemma 7.1 and Frobenius reciprocity as above, we see that
dim Ext1H (V, V )= dim Ext1S(W1,W2)= 1. �

Lemma 10.2. Let H be a quasisimple group with Z(H) a p′-group. Let W and W ′

be absolutely irreducible k H-modules in characteristic p of dimension d, where
(H, p, d) is one of the following triples:

(2A7, 5, 4), (3J3, 19, 18), (2Ru, 29, 28), (61 ·PSL3(4), 7, 6),

(61 ·PSU4(3), 7, 6), (2J2, 7, 6), (3A7, 7, 6), (6A7, 7, 6), (M11, 11, 10),

(2M12, 11, 10), (2M22, 11, 10), (6Suz, 13, 12), (2G2(4), 13, 12), (3A6, 5, 3),

(3A7, 5, 3), (M11, 11, 9), (M23, 23, 21), (2A7, 7, 4), (J1, 11, 7).

If Z(H) acts the same way on W and W ′, assume in addition that there is an auto-
morphism of H which sends W to W ′. Then Ext1H (W,W ′)= 0, with the following
two exceptions: (H, p, d)=(3A6, 5, 3) and (2A7, 7, 4), where dim Ext1H (W,W )=1.

Proof. Note that the Sylow p-subgroups of H have order p. Hence, in the case
W ∼=W ′ we can apply Lemma 7.1; in particular, we arrive at the two exceptions listed
above. This argument settles the cases of (M11, 11, 9), (M23, 23, 21), (J1, 11, 7),
and (2G2(4), 13, 12).

If W � W ′ and Z(H) acts differently on W and W ′, then we also get that
Ext1H (W,W ′) = 0 since Z(H) is a central p′-group. So it remains to consider
the case where W � W ′ and Z(H) acts the same way on both of them. Suppose
in addition that there is an involutory automorphism σ of H that swaps W and
W ′ and that the module IndJ

H (W ) of J := H o 〈σ 〉 has at most one complex
lift. Then we can apply Lemma 7.1 to J as in the proof of Lemma 10.1 to con-
clude that Ext1(W,W ′) = 0. These arguments are used to handle the cases of
(2A7, 5, 4), (3A7, 5, 3), (3A7, 7, 6), (2J2, 7, 6), (6Suz, 13, 12), (61 ·PSL3(4), 7, 6),
and (61 ·PSU4(3), 7, 6).

In the six remaining cases of (6A7,7,6), (3J3,19,18), (2Ru,29,28), (M11,11,10),
(2M12, 11, 10), and (2M22, 11, 10), we note (using [Jansen et al. 1995] or [GAP
2004]) that the nonisomorphic H -modules W and W ′ with the same action of Z(H)
are not Aut(H)-conjugate. �

Corollary 10.3. Suppose that q > 3 is an odd prime power such that p= (q+1)/2
prime. Then there is a finite absolutely irreducible linear group G < GL(V ) =
GLq−1(k) of degree q − 1 over k such that G+ ∼= SL2(q), all irreducible G+-
submodules in V are Weil modules of dimension (q−1)/2, and dim Ext1G(V, V )= 1.
In particular, (G, V ) is not adequate.

Proof. Our conditions on p, q imply that q ≡ 1 (mod 4). Now we can just appeal to
the proof of Lemma 10.1, taking H =GU2(q)/C , where C is the unique subgroup
of order (q + 1)/2 in Z(GU2(q)). �
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Proposition 10.4. Suppose (G, V ) is as in the extraspecial case (ii) of Theorem 2.4.
Then Ext1G(V, V )= 0.

Proof. Write V |G+= e
∑t

i=1 Wi as usual and let Ki be the kernel of the action of G+

on Wi . By Lemma 7.2, it suffices to show that Ext1G+(Wi ,W j )=0 for all i, j . Recall
that R := Op′(G+) acts irreducibly on Wi . By Theorem 2.4, Ki has no composition
factor ∼= C p, whence Ext1G+(Wi ,Wi )= Ext1G+/Ki

(Wi ,Wi ) by Lemma 7.3(ii). Next,
G+/Ki has cyclic Sylow p-subgroups (of order p) by Theorem 2.1(e), and we have
shown in the proof of Proposition 5.6 that the G+/Ki -module Wi has a unique
complex lift. Hence Ext1G+/Ki

(Wi ,Wi )= 0 by Lemma 7.1.
Suppose now that i 6= j and let M be any extension of the G+-module Wi by

the G+-module W j . Recall that the R-modules Wi and W j are irreducible and
nonisomorphic, as shown in the proof of Proposition 5.6. But R is a p′-group,
so by Maschke’s theorem M = M1 ⊕ M2 with Mi ∼= Wi as R-modules. Now
for any g ∈ G+, g(Mi ) ∼= (Wi )

g ∼= Wi as R-modules, and so g(Mi ) = Mi . Thus
M = M1⊕M2 as a G+-module. We have shown that Ext1G+(Wi ,W j )= 0. �

Proposition 10.5. Suppose that (G, V ) is as in case (i) of Theorem 2.4. Then
Ext1G(V, V ) = 0, unless one of the following possibilities occurs for the group
H <GL(W ) induced by the action of G+ on any irreducible G+-submodule W of V :

(i) p = (q + 1)/2, dim W = p− 1, and H ∼= SL2(q).

(ii) p = 2 f
+ 1 is a Fermat prime, dim W = p− 2, and H ∼= SL2(2 f ).

(iii) (H, p, d)= (3A6, 5, 3) and (2A7, 7, 4).

Proof. Write V |G+ = e
∑t

i=1 Wi as usual and let Ki be the kernel of the action of
G+ on Wi . By Lemma 7.2, it suffices to show that Ext1G+(Wi ,W j )= 0 for all i, j .
Note that neither G+ nor Ki can have C p as a composition factor, according to
Theorem 2.4. Furthermore, if Ki 6=K j then we are done by Corollary 7.6. So we may
assume that Ki = K j and then by Lemma 7.3 replace G+ by H =G+/Ki =G+/K j .
Now we will go over the possibilities for (H,Wi ) listed in Theorem 2.1(b)–(d).

Suppose we are in the case (b1) of Theorem 2.1. Assume first that (p, H) =
((qn
+ 1)/2,Sp2n(q)). It is well known (see [Guralnick et al. 2002, Theorem 2.1])

that H has exactly two irreducible modules of dimension (qn
− 1)/2, namely the

two Weil modules of that dimension. Hence we can apply Lemma 10.1 and arrive
at the exception (i).

Next, assume that (p, H)= ((qn
+ 1)/(q+ 1),PSUn(q)); in particular, n ≥ 3 is

odd. Applying [Guralnick et al. 2002, Theorem 2.7 and Proposition 11.3], we see
that there is a unique irreducible k H -module of dimension p−1= (qn

−q)/(q+1),
and, furthermore, that this module has a unique complex lift. Hence we are done
by Lemma 7.1.
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Suppose now that we are in the case (c) of Theorem 2.1. If H = Ap, then using
[Guralnick and Tiep 2005, Lemma 6.1] for p ≥ 17 and [Conway et al. 1985] for
p ≤ 13, we see that H has a unique irreducible k H -module of dimension p− 2,
and, furthermore, that this module has no complex lift unless p= 5, whence we are
done by Lemma 7.1. Note that the exception p = 5 is recorded in (ii) (with f = 2).

Next, assume that (p, H) = ((qn
− 1)/(q − 1),PSLn(q)). If n = 2, then p =

q + 1 = 2 f
+ 1 is a Fermat prime, in which case H = SL2(2 f ) has a unique

irreducible k H -module W of dimension p− 2, with 2 f−1 complex lifts, whence
dim Ext1H (W,W )= 1 by Lemma 7.1. This exception is recorded in (ii). If n ≥ 3,
then by [Guralnick and Tiep 1999, Theorem 1.1], H has a unique irreducible k H -
module W of dimension p−2 with no complex lifts, whence dim Ext1H (W,W )= 0
by Lemma 7.1.

It remains to consider the 19 cases listed in Lemma 10.2. Furthermore, by
Corollary 7.6, we need only consider the case where G+ acts on Wi and W j

with the same kernel. Since G+ has no composition factor isomorphic to C p, by
Lemma 7.3(ii) we may view Wi and W j as modules over the same quasisimple group
H , with the same kernel. The irreducibility of G on V further implies that W j ∼=W g

i
for some g ∈ G, whence the H -modules Wi and W j are Aut(H)-conjugate. Now
we are done by applying Lemma 10.2. �

Corollary 10.6. Suppose that p = 2 f
+ 1 is a Fermat prime. Then there is a finite

absolutely irreducible linear group G <GL(V )=GLp−2(k) of degree p−2 over k
such that G = G+ ∼= SL2(2 f ) and dim Ext1G(V, V ) = 1. In particular, (G, V ) is
not adequate.

Proof. See the proof of Proposition 10.5 and the exception (ii) listed therein. �

Proof of Theorem 1.3. (a) Assume first that G is not p-solvable. Then G+ has
no composition factor isomorphic to C p, and H 1(G, k)= 0 by Theorem 2.4. By
Lemma 7.2, we need to verify that Ext1G+(Wi ,W j ) = 0 for any two simple G+-
submodules Wi and W j of V , of dimension 1< d < p. Suppose for instance that
Ext1G+(W1,W2) 6= 0.

Suppose in addition that p > 3. Then the perfect group G+ admits a reducible
indecomposable module U with two composition factors W1 and W2, of dimension
2d, say with kernel K . Since G+ has no composition factor isomorphic to C p,
Op(X)= 1 for the group X := G+/K induced by the action of G+ on U . Suppose
that X is not quasisimple. By Proposition 9.7, we have d = p − 1. Then by
Lemma 9.6, either we arrive at the exception (b)(ii) listed in Theorem 1.3, or else
Lemma 9.3 applies. In the latter case, we see that H 1(X, k) 6= 0, whence X and
G+ admit C p as a composition factor, a contradiction. Thus X is quasisimple and
Z(X) is a p′-group. If X is of Lie type in characteristic p > 3, then we must have
d = (p± 1)/2 and arrive (using Lemma 9.5) at the exception (b)(i). Otherwise
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we are in the case (i) of Theorem 2.4, and so by Proposition 10.5 we arrive at the
exceptions (b)(iii)–(v).

(b) Now we consider the case where p= 3 and G is not p-solvable. Then the perfect
group G+ acts nontrivially on W1 and W2, which are of dimension 2. Applying
Theorem 2.4, we see that G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple
groups; moreover, for all j we have that L j = SL2(q) with q = 3a > 3 or q = 5.
Also, for each i , there is a unique ki such that L j acts nontrivially on Wi precisely
when j = ki . Since Ext1X (k, k)= 0 for any perfect group X , by Lemma 7.7 we may
assume that k1 = k2 = 1 and Ext1L1

(W1,W2) 6= 0. If q = 5, then the case (b)(iii)
holds. Otherwise we arrive at (b)(vi) — indeed, Ext1L1

(L(3a−2), L(3a−1)) 6= 0 by
[Andersen et al. 1983, Corollary 4.5].

(c) We may now assume that G+ is p-solvable (and so is G). In particular, the
subgroup H < GL(Wi ) induced by the action of G+ on Wi is p-solvable, whence
p is a Fermat prime, and H = Op′(H)P with P ∼= C p. Since G+ projects onto H ,
G+ also has C p as a composition factor, and so H 1(G+, k) 6= 0; in particular,
Ext1G+(V, V ) 6= 0. We arrive at the exception (a) of Theorem 1.3. �

Proof of Corollary 1.4. Suppose that (G, V ) is not adequate, and let V := V ⊗k k.
By the assumptions, dim W < p. Since dim V / dim W divides |G/G+| by [Navarro
1998, Theorem 8.30], p - dimk V = dimk V . Next, (G, V ) is weakly adequate by
Theorem 1.2. It follows that Ext1G(V, V ) 6= 0 and so Ext1G(V , V ) 6= 0. Now we can
apply Theorem 1.3. �
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Random matrices, the Cohen–Lenstra
heuristics, and roots of unity

Derek Garton

The Cohen–Lenstra–Martinet heuristics predict the frequency with which a fixed
finite abelian group appears as an ideal class group of an extension of number
fields, for certain sets of extensions of a base field. Recently, Malle found
numerical evidence suggesting that their proposed frequency is incorrect when
there are unexpected roots of unity in the base field of these extensions. Moreover,
Malle proposed a new frequency, which is a much better match for his data. We
present a random matrix heuristic (coming from function fields) that leads to a
function field version of Malle’s conjecture (as well as generalizations of it).

1. Introduction

1.1. Cohen–Lenstra–Martinet and Malle. We start with Cohen and Lenstra’s fa-
mous heuristic principle concerning the distribution of ideal class groups of quadratic
number fields. We fix an odd prime `, to be used throughout the paper.

Heuristic 1.1.1 [Cohen and Lenstra 1984]. A finite abelian `-group should appear
as the `-Sylow subgroup of the ideal class group of an imaginary quadratic extension
of Q with frequency inversely proportional to the order of its automorphism group.

With a bit more notation, we can reframe this heuristic. Let G be the poset of
isomorphism classes of finite abelian `-groups and for any number field K , let
cl(K ) denote the ideal class group of K . For any group G, let G[`∞] denote its
`-Sylow subgroup. Now, since

∑
A∈G 1/|Aut A| =

∏
∞

i=1 (1− `
−i )−1 (a fact first

proved by Hall [1938]), the map G→ R given by A 7→ |Aut A|−1∏∞
i=1 (1− `

−i )

defines a discrete probability distribution on G. Heuristic 1.1.1 is the claim that the
statistics of this distribution match the statistics of `-Sylow subgroups of imaginary
quadratic extensions (when ordered by fundamental discriminant). In other words,
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Heuristic 1.1.1 is equivalent to the following assertion: for any A ∈ G,

lim
X→∞

∣∣{0≤ D ≤ X | −D a fundamental discriminant, cl(Q(
√
−D))[`∞] ' A}

∣∣∣∣{0≤ D ≤ X | −D a fundamental discriminant}
∣∣

=
1

|Aut A|

∞∏
i=1

(1− `−i ).

(This assertion remains unproven; in fact, this limit is not even known to exist.)
This heuristic explains many previously observed tendencies of class groups of
imaginary quadratic fields; for example that their orders seem to be divisible by
three with probability

1−
∞∏

i=1

(1− 3−i )= 1
3 +

1
9 + · · · ≈ .44.

Cohen and Martinet [1990] extended their heuristics to include relative class
groups of finite extensions of arbitrary number fields, placing different distributions
on G depending on properties of the family of extensions they study. Once again,
they proved that these distributions imply many numerical observations, thereby
obtaining a new family of conjectures. (Recall that relative ideal class groups are
defined as follows: if K/K0 is an extension of number fields, the relative class
group cl(K/K0) is the kernel of the norm map NK/K0 : cl(K )→ cl(K0).)

However, Malle [2008] presented new computational data that called into question
some of the Cohen–Lenstra–Martinet conjectures. For example, he studied the
3-parts of the relative class groups of quadratic extensions of Q(

√
−3), which has

third roots of unity. Cohen, Lenstra and Martinet predicted that the class numbers
of such extensions should be coprime to 3 with probability

∞∏
i=2

(1− 3−i )≈ .840.

On the other hand, when Malle computed the class numbers of the first million of
these extensions with discriminant at least 1020, he discovered that the proportion
of them with class number coprime to 3 was about .852. He conjectured that the
proportion of all such class groups that have class number coprime to 3 should be
exactly

4
3

∞∏
i=1

(1+ 3−i )−1
≈ .852,

which is in much better agreement with his data. In a subsequent paper, Malle
[2010] presented more computational evidence calling into question more of the
Cohen–Lenstra–Martinet conjectures, once again when there are `th roots of unity
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in the base field. In that paper, he also presented a new family of distributions on G

to describe relative class groups when the base field of the extension has `th roots of
unity but not `2th roots of unity (see Conjecture 2.1 in [ibid.]). These distributions
on G imply rank statistics that seem to be a much better fit for his new data. A
special case of his conjecture is the following:

Conjecture 1.1.2 [Malle 2010]. Suppose that A∈G and that A has `-rank r . Let K0

be a number field with `th but not `2th roots of unity. Let S be the set of quadratic
extensions K/K0 with a fixed signature (with fixed relative unit rank u). Then

lim
X→∞

|{K ∈ S | |Disc K | ≤ X, cl(K/K0)[`
∞
] ' A}|

|{K ∈ S | |Disc K | ≤ X}|

=

∏u+r
i=u+1 (`

i
− 1)

`r(u+1)|A|u|Aut A|
·

∞∏
i=u+1

(1+ `−i )−1.

In this paper, we study a random matrix model of ideal class groups of function
fields when the base field has `th roots of unity (i.e., the function field analog
of the situation Malle studies in Conjecture 1.1.2). We compute the distributions
on G given by this matrix model in two cases (see Theorem 5.1.4): in the case
when the base field has `th roots of unity but not `2th roots of unity, and in the
case when the base field has `2th roots of unity but not `3th roots of unity. In the
former case, our distribution matches the distribution proposed by Malle. Moreover,
we compute all the moments of the distribution given by this matrix model in the
general case when the base case has `ξ th but not `ξ+1th roots of unity for any
ξ ∈ Z>0 (see Corollary 3.2.7).

The work in this paper is based on my Ph.D. dissertation [Garton 2012]. The
matrix distributions were computed independently in the Ph.D. dissertation of
M. Adam [2014b] as well as in [Adam 2014a]. They are also used in [Adam and
Malle 2015].

1.2. The function field case. Complementing the work described in Section 1.1,
investigators have been studying analogous phenomena in function fields defined
over finite fields. Friedman and Washington [1989] addressed the case of quadratic
extensions of the field Fpn (t) for a prime p 6= 2 and n ∈ Z>0. More precisely, if
f (t)∈Fpn [t] is monic of degree 2g+1 with distinct roots, let C f be the hyperelliptic
curve (defined over Fpn ) of genus g given by y2

= f (t). Note that the curve C f

has exactly one point at infinity, just as imaginary quadratic extensions of Q have
exactly one place at infinity. Thus, Pic0

Fpn (C f ) is isomorphic to the ideal class
group of the field extension

Fpn (t)
[√

f (t)
]
/Fpn (t).
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To study these groups, Friedman and Washington introduced a new heuristic
principle, one that comes from the geometry of hyperelliptic curves over finite

fields. Specifically, for f (t) ∈ Fpn [t] monic of degree 2g+ 1 with distinct roots,
let T`(C f ) be the `-adic Tate module of C f , which is a free 2g-dimensional Z`-
module. In addition, let Frobpn be the pn-power Frobenius map acting on T`(C f ).
Thinking of Frobpn as a matrix over Z`, it is well known that coker(Id−Frobpn ) is
isomorphic to the `-Sylow subgroup of Pic0

Fpn (C f ) (see the appendix of [Friedman
and Washington 1989] for a proof of this fact). The same authors conjectured that
the statistics of `-Sylow subgroups of ideal class groups of quadratic extensions of
Fpn (t) match the statistics of `-adic matrices. Specifically, if we let

F(g, pn, `, A) :=∣∣{ f ∈ Fpn [t] | f monic with distinct roots, deg f=2g+1,Pic0
Fpn (C f )[`

∞
] ' A}

∣∣∣∣{ f ∈ Fpn [t] | f monic with distinct roots, deg f = 2g+ 1}
∣∣ ,

then they proposed the following:

Heuristic 1.2.1 [Friedman and Washington 1989]. If A ∈ G, then

lim
g→∞

F(g, pn, `, A)= lim
g→∞

α2g({φ ∈Mat2g (Z`) | coker (Id−φ)' A}),

where α2g is the normalized Haar measure on Mat2g (Z`).

(See Sections 2.1 and 2.2 for more details on Haar measures.) Katz and Sarnak
[1999] vastly extended the philosophy of considering the action of Frobenius as a
random matrix, especially when the size of the base field is large. Friedman and
Washington show that the limit on the right-hand side of Heuristic 1.2.1 exists,
and that it defines exactly the same distribution on G as Cohen and Lenstra’s
original heuristic for imaginary quadratic extensions of Q. However, just as the
work of Malle calls into question the appropriateness of certain Cohen–Lenstra–
Martinet distributions, it also calls into question the appropriateness of Friedman and
Washington’s proposed distribution. Indeed, the Friedman–Washington heuristic
does not depend at all on the presence of `th roots of unity in the base field Fpn (t),
while Malle’s work suggests that distributions modeling `-Sylow subgroups of class
groups ought to change in the presence of `th roots of unity. Thus, the new data
of Malle suggests that Heuristic 1.2.1 might be flawed when Fpn (t) has `th roots
of unity.

A possible explanation for this flaw is that Frobpn is a symplectic similitude
with respect to the Weil pairing on T`(C f ). Indeed, it scales the Weil pairing
by pn , so when considered as a matrix, Frobpn ∈ GSp(p

n)

2g (Z`). (See Section 2.1
for more details on this notation.) Since the presence of `th roots of unity in



Random matrices, the Cohen–Lenstra heuristics, and roots of unity 153

Fpn (t) depends on the congruence class of pn (mod `), the set of symplectic simil-
itudes that scale the Weil pairing by pn does indeed change when Fpn (t) has `th
roots of unity. These facts led Friedman and Washington (and Achter [2008]) to
suggest:

Heuristic 1.2.2. If A ∈ G, then

lim
g→∞

F(g, pn, `, A)= lim
g→∞

µ
(pn)

2g ({φ ∈ GSp(p
n)

2g (Z`) | coker(Id−φ)' A}),

where µ(p
n)

2g is the unique normalized multiplicative Haar measure on Sp2g(Z`)

translated to GSp(p
n)

2g (Z`).

(Again, see Sections 2.1 and 2.2 for more details on Haar measures.) Friedman
and Washington hoped that this new heuristic would turn out to describe the same
distribution as Heuristic 1.2.1, but Achter [2006] proved that

lim
g→∞

µ
(pn)

2g

(
{φ ∈ GSp(1)2g (Z`) | coker(Id−φ)' {0}}

)
6= lim

g→∞
α2g

(
{φ ∈Mat2g(Z`) | coker(Id−φ)' {0}}

)
,

revealing that this was not the case, providing an early indication of the importance
of the presence of `th roots of unity in the base field. Achter used work of Katz
and Sarnak [1999] to prove a revised version of Heuristic 1.2.1:

Theorem 1.2.3 [Achter 2008]. If A ∈ G, then

lim
pn→∞

∣∣F(g, pn, `, A)−µ(p
n)

2g

(
{φ ∈ GSp(p

n)

2g (Z`) | coker(Id−φ)' A}
)∣∣= 0.

We remark that this limit in Theorem 1.2.3 leaves g fixed while letting pn increase,
whereas the limit in Heuristic 1.2.2 does the opposite.

The work of Ellenberg, Venkatesh and Westerland [Ellenberg et al. 2009] uses
the topology of Hurwitz spaces to study Heuristic 1.2.2. One consequence of their
work is that

lim
g→∞

lim
pn
→∞

pn
6≡1 (mod `)

F(g, pn, `, A)=
1

|Aut A|

∞∏
i=1

(1− `−i ).

Since pn
≡ 1 (mod `) exactly when Fpn (t) has `th roots of unity, this result only

addresses the case when the base field does not have `th roots of unity (and only
when pn

→∞). The remaining case is when pn
≡ 1 (mod `); that is, the case

where there are `th roots of unity in the base field. Conjecture 1.1.2 suggests that a
different distribution is needed to describe this case. In fact, Corollary 5.2.2 gives
such a distribution. Using Achter’s result (Theorem 1.2.3), Corollary 5.2.2 implies
the following theorem:
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Theorem 1.2.4. If A is a finite abelian `-group with `-rank r and `2-rank s, then

lim
g→∞

lim
pn
→∞

pn
≡1 (mod `ξ ),

pn
6≡1 (mod `ξ+1)

F(g, pn, `, A)

=


`

r(r−1)
2
· (`−1

; `−1)r ·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|−1 if ξ = 1,

`
r(r−1)

2 +
s(s−1)

2 · (`−1
; `−1)s · (`

−1
; `−2)d r−s

2 e
·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|−1 if ξ = 2,

where (`−1
; `− j )k is the `− j -Pochhammer symbol, defined for any j ∈ Z>0 and

k ∈ Z≥0 (see Notation 5.1.1).

Theorem 1.2.4 extends Conjecture 1.1.2 by including the case where Fpn (t) has
`2th roots of unity but not `3th roots of unity. Since imaginary hyperelliptic curves
have only one place at infinity, the function field version of Conjecture 1.1.2 should
set u = 0; making this substitution in Conjecture 1.1.2 yields the ξ = 1 case of
Theorem 1.2.4.

2. Preliminaries

2.1. Notation and definitions. As above, let ` be an odd prime and let G be the
poset of isomorphism classes of finite abelian `-groups, with the relation [A] ≤ [B]
if and only if there exists an injection A ↪→ B. (For notational simplicity, we will
conflate finite abelian `-groups and the equivalence classes containing them.) For
any A ∈ G, we denote the exponent of A by exp A. If i ∈ Z>0, let

rank`i A := dimF`(`
i−1 A/`i A).

We will abbreviate rank` A by rank A. If r1, . . . , ri−1 ∈ Z>0 and ri ∈ Z≥0, let
G(r1, . . . , ri ) be the following subposet of G:

G(r1, . . . , ri ) := {A ∈ G | rank` j A = r j for all j ∈ {1, . . . , i}}.

Next, for any ρ ∈ Z>0, set Rρ = Z`/`
ρZ` ' Z/`ρZ. For any g, ρ ∈ Z>0, let

〈 · , · 〉2g,ρ be the symplectic form on (Rρ)2g given by

�g :=

(
0 Idg

− Idg 0

)
with respect to the standard basis; note that 〈 · , · 〉2g,a : (Rρ)2g

× (Rρ)2g
→ (Rρ)

is Rρ-bilinear, alternating and nondegenerate. (See Theorem III.2 of [McDonald
1976] for more details on symplectic spaces.) Let 〈 · , · 〉2g be the analogous choice
of symplectic form on (Z`)2g. For any ring R and any g ∈ Z>0, if R2g has a
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symplectic form 〈 · , · 〉, then the symplectic group of R is

Sp2g(R)' Sp(R2g, 〈 · , · 〉)

= {φ ∈ GL(R2g) | 〈φ(x), φ( y)〉 = 〈x, y〉 for all x, y ∈ R2g
}.

Note that a different choice of symplectic form on R2g yields an isometric space,
so the choice is immaterial (see p. 188 of [McDonald 1976] for more details).
Similarly, the group of symplectic similitudes of R is

GSp2g(R)' GSp(R2g, 〈 · , · 〉)=
{
φ ∈ GL(R2g) | there exists m(φ) ∈ R×

such that 〈φ(x), φ( y)〉 = m(φ) · 〈x, y〉 for all x, y ∈ R2g}.
For concreteness, we will always assume that the rings (Rρ)2g and (Z`)2g are
equipped with the forms 〈 · , · 〉2g,ρ and 〈 · , · 〉2g fixed above. The map

m : GSp2g (R)→ R× : φ 7→ m(φ)

described above is a homomorphism called the multiplier map, and the element
m(φ) ∈ R× is called the multiplier of φ. For any g ∈ Z>0, let µ2g be the unique
Haar measure on Sp2g(Z`) satisfying µ2g(Sp2g(Z`))= 1. (We say a Haar measure
satisfying this last condition is normalized.) Note that µ2g is invariant under both
left and right multiplication since Sp2g(Z`) is a unimodular group. Finally, for any
g ∈ Z>0 and any unit x in a ring R, let GSp(x)2g (R)= m−1(x).

For any x ∈ (Z`)× and φ ∈GSp(x)2g (Z`) we define a measure µ(x)2g on GSp(x)2g (Z`)

as follows: for any µ2g-measurable subset S ⊆ Sp2g(Z`), define

µ
(x)
2g (Sφ) := µ2g(S).

This measure is independent of the choice φ ∈ GSp(x)2g (Z`). Indeed, given some
other ψ ∈GSp(x)2g (Z`), there exists a unique φψ ∈ Sp2g(Z`) such that φψφ =ψ ; i.e.,
Sψ = Sφψφ. Since µ2g is translation-invariant, we know that

µ2g(S)= µ2g(Sφψ),

as desired. Moreover, since µ2g is translation-invariant (by Sp2g(Z`)) and normal-
ized, so is µ(x)2g . Similarly, for any ρ ∈ Z>0, let ν2g,ρ be the unique normalized Haar
measure on Sp2g(Rρ), and for any x ∈ R×ρ , define ν(x)2g,ρ on GSp(x)2g (Rρ) as above. For
any ρ ∈ Z>0, x ∈ R×ρ and S ⊆GSp(x)2g (Rρ), we know ν

(x)
2g,ρ(S)= |S| · |Sp2g(Rρ)|

−1,
since Sp2g(Rρ) is a finite group. To ease notation, for any A ∈ G, g ∈ Z>0 and
x ∈ (Z`)×, we set

µ
(x)
2g (A) := µ

(x)
2g ({φ ∈ GSp(x)2g (Z`) | coker(Id−φ)' A}).
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Furthermore, if ρ ∈ Z>0 and x ∈ R×ρ , set

ν
(x)
2g,ρ(A) := ν

(x)
2g,ρ({γ ∈ GSp(x)2g (Rρ) | coker(Id−γ )' A}).

2.2. The Haar measures. The measures defined in Section 2.1 have an important
relationship, given in the following lemma.

Lemma 2.2.1. Suppose A ∈ G, g ∈ Z>0, x ∈ (Z`)× and ρ ∈ Z>0. Let · : Z`→ Rρ
denote reduction mod `ρ . If `ρ > exp A, then

µ
(x)
2g (A)= ν

(x)
2g,ρ(A).

Proof. Choose any φ ∈ GSp(x)2g (Z`). Then for any measurable S ⊆ GSp(x)2g (Z`), we
know that

µ
(x)
2g (S)= µ

(x)
2g (Sφ

−1φ)= µ2g(Sφ−1)

by the definition of µ(x)2g . Since µ2g is invariant under translation, every coset of
the kernel of the reduction map · : Sp2g (Z`)→ Rρ has the same measure; namely,

[Sp2g(Z`) : ker( ·)]−1
= |Sp2g(Rρ)|

−1.

Moreover, note that if ψ ∈GSp(x)2g (Z`), then m(ψ)=m(ψ) and coker (Id−ψ)' A
if and only if coker (Id−ψ)' A, since `ρ > exp A. The result follows. �

Notation 2.2.2. Suppose that g ∈ Z>0 and ξ ∈ Z≥0. For ρ ∈ Z>0 satisfying ρ ≥ ξ ,
we define an important subgroup of GSp2g(Rρ):

GSp〈ξ〉2g (Rρ) := {γ ∈ GSp2g(Rρ) | m(γ ) ∈ `
ξ Rρ + 1}.

Note that GSp〈ρ〉2g (Rρ)= Sp2g(Rρ) and GSp〈0〉2g (Rρ)= GSp2g(Rρ). For any A ∈ G,
we adopt the suggestive notation

N 〈ξ〉2g,ρ(A) := |{γ ∈ GSp〈ξ〉2g (Rρ) | coker(Id−γ )' A}|

and, if ρ > ξ ,

ν
〈ξ〉

2g,ρ(A) :=
N 〈ξ〉2g,ρ(A)− N 〈ξ+1〉

2g,ρ (A)

|GSp〈ξ〉2g (Rρ)| − |GSp〈ξ+1〉
2g (Rρ)|

.

Goal 2.2.3. We can now state the matrix-theoretic analog of the situation about
which Malle made his Conjecture 2.1. Following Heuristic 1.2.2, for A ∈ G,
x ∈ (Z`)× and ξ ∈ Z>0, with x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1), we must
evaluate

µx(A) := lim
g→∞

µ
(x)
2g (A).
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If we let · : Z`→ Rρ denote reduction mod `ρ , then we know by Lemma 2.2.1 that
this amounts to calculating

lim
g→∞

ν
(x)
2g,ρ(A)

for any ρ ∈ Z>0 satisfying both `ρ > exp A and ρ > ξ . In Note 3.1.5 we will see
that, for all such ρ,

ν
(x)
2g,ρ(A)= ν

〈ξ〉

2g,ρ(A),

so we will turn our attention to computing

lim
g→∞

ν
〈ξ〉

2g,ρ(A),

which we compute explicitly for ξ = 1, 2 in Corollary 5.2.2. Using Achter’s result,
Theorem 1.2.3, we then obtain Theorem 1.2.4 as a corollary.

Remark 2.2.4. Suppose that x ∈ Z`. In addition to explicitly computing the
distribution µx : G→ R if x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1) for ξ = 1, 2, we
also compute the moments of this distribution for any ξ ∈ Z>0. Specifically, in
Corollary 3.2.7 we find that if A ∈ G then∑

B∈G

|Surj(B, A)|µx(B)= |3(A/`ξ )|.

(See Notation 3.2.1 for the definition of 3.) For any A ∈ G, we call the quantity∑
B∈G|Surj(B, A)|µx(B) the “Ath moment” of the distribution µx by analogy. Just

as the kth moment of a real-valued random variable X is the expected value of
X k , the Ath moment of µx is the expected value of |Surj(B, A)|, where B is a
G-valued random variable. Moreover, under certain favorable conditions, the set of
Ath moments of a distribution on G determines the distribution, making the analogy
even stronger. The term “Ath moment” is becoming standard in the literature related
to the Cohen–Lenstra heuristics (see, for example, [Ellenberg et al. 2009; Matchett
Wood 2014]).

3. The symplectic action

3.1. Basic properties.

Notation 3.1.1. For any A, B ∈ G, let Inj(A, B) and Surj(A, B) be the sets of
injective homomorphisms and surjective homomorphisms from A to B.

In what follows, we will consider either injections or surjections (as well as
either kernels or cokernels) depending on which is more convenient at the time.
The next two lemmas justify this shifting point of view.
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Lemma 3.1.2. Suppose that A ∈ G, g, ρ ∈ Z>0 and ξ ∈ Z≥0. If ρ ≥ ξ , then
GSp〈ξ〉2g (Rρ) acts on Inj(A, (Rρ)2g) and Surj((Rρ)2g, A) by postcomposition and
precomposition, respectively. These actions have the same number of orbits.

Proof. If `ρ < exp A, the result is trivial, so suppose `ρ ≥ exp A. In this case,
we can think of A as an Rρ-module. Moreover, we know that Rρ is an injective
Rρ-module by Baer’s criterion, so the functor

( · )∨ := Hom( · , Rρ) : Rρ−mod→ Rρ−mod

is exact. Thus, for any γ ∈ GSp〈ξ〉2g (Rρ),

f, h ∈ Inj(A, (Rρ)2g) with γ ◦ f = h

if and only if

f ∨, h∨ ∈ Surj(((Rρ)2g)∨, A∨) with f ∨ ◦ γ ∨ = h∨.

After choosing Rρ-bases for (Rρ)2g and A, it is easy to see that ((Rρ)2g)∨' (Rρ)2g,
A∨ ' A and γ ∨ = γ>∈ GSp〈ξ〉2g (Rρ), giving the result. �

The number orbits of the action described above turn out to be very important,
so we bestow a name upon them:

Definition 3.1.3. Suppose that A ∈ G, g, ρ ∈ Z>0 and ξ ∈ Z≥0. If ρ ≥ ξ , let oA,〈ξ〉
2g,ρ

be the number of orbits of GSp〈ξ〉2g (Rρ) acting on Inj(A, (Rρ)2g) or Surj((Rρ)2g, A).

Lemma 3.1.4. For A, g, ρ, ξ as above,

N 〈ξ〉2g,ρ(A)=
∣∣{γ ∈ GSp〈ξ〉2g (Rρ) | ker(Id−γ )' A}

∣∣.
Proof. As in Lemma 3.1.2, this follows from the exactness of ( · )∨. Note that, for
any γ ∈ GSp〈ξ〉2g (Rρ),

(coker(Id−γ ))∨ = ker((Id−γ )∨)= ker(Id−γ>),

giving the result. �

In Goal 2.2.3, we turned our attention from the measures of cosets of the sym-
plectic group to subgroups of the group of symplectic similitudes. The following
note justifies this turn.

Note 3.1.5. Suppose that A ∈G, g ∈Z>0, x ∈Z` and ξ ∈Z>0, with x ≡ 1 (mod `ξ )
but x 6≡ 1 (mod `ξ+1). If ρ ∈ Z>0 satisfies ρ > ξ , then

ν
(x)
2g,ρ(A)= ν

〈ξ〉

2g,ρ(A).
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Proof. This amounts to showing that if x, y ∈ Rρ such that x ≡ y ≡ 1 (mod `ξ ) but
neither x nor y is equivalent to 1 (mod `ξ+1), then

ν
(x)
2g,ρ(A)= ν

(y)
2g,ρ(A).

By our assumptions on x and y, there exists some m0 such that ` -m0 and x m0 = y.
Choose some m in the arithmetic progression {m0+ `

ρ−ξ j}∞j=0 such that

gcd(m, |GSp2g(Rρ)|)= 1,

and choose k such that mk ≡ 1 (mod |GSp2g(Rρ)|). Now, the map

( · )m : GSp(x)2g (Rρ)→ GSp(y)2g (Rρ)

γ 7→ γ m

is bijective with inverse ( · )k . Moreover, for any z ∈ (Rρ)2g and any γ ∈GSp(x)2g (Rρ),
it is clear that γ z = z if and only if γ mz = z. Thus, we obtain∣∣{γ ∈ GSp(x)2g (Rρ) | ker(Id−γ )' A}

∣∣= ∣∣{γ ∈ GSp(y)2g (Rρ) | ker(Id−γ )' A}
∣∣,

and we conclude by Lemma 3.1.4. �

3.2. Orbit counting.

Notation 3.2.1. For any A ∈ G, let 3(A) be the set of alternating bilinear forms
on A thought of as a (Z/ exp A)-module.

Note 3.2.2. Suppose that A = Z/`α1 ⊕ · · ·⊕Z/`αr with α1 ≥ · · · ≥ αr > 0. Then

|3(A)| = `
∑r

i=2 (i−1)αi

Proof. Let {ei }
r
i=1 be a (Z/ exp A)-basis for A such that ei has order `αi for

all i ∈ {1, . . . , r}. Every alternating bilinear form 〈 · , · 〉 on A corresponds to
an antisymmetric matrix (〈ei , e j 〉) ∈Matr×r (Z/ exp A). Moreover, `α j 〈ei , e j 〉 =

〈ei , `
α j e j 〉 = 0 for all i < j since ei has order `αi for all i ∈ {1, . . . , r}. Conversely,

any antisymmetric matrix (ai j ) ∈Matr×r (Z/ exp A) corresponds to an alternating
bilinear form on A, as long it has 0s along its main diagonal and `α j ai j =0 whenever
i < j (this requirement encodes the fact that any bilinear form 〈 · , · 〉 on A must
satisfy `α j 〈ei , e j 〉 = 0 for all i < j). There are `α j such elements of Z/ exp A, so
the result follows. �

Lemma 3.2.3. Suppose that r ∈ Z≥0, A ∈ G(r), g, ρ ∈ Z>0 and ξ ∈ Z≥0. If
`ρ ≥ exp A, ρ ≥ ξ and 2g ≥ r , then

oA,〈ξ〉
2g,ρ ≤ `

−(ρ−ξ)
|3(A)| + (`− 1)

ρ−ξ−1∑
i=0

`−(i+1)
|3(A/`ξ+i )|.
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Furthermore, when g ≥ r , the upper bound above is an equality. (In particular,
oA,〈ξ〉

2g,ρ is independent of g for large enough g.)

As pointed out in Goal 2.2.3, we need only calculate

lim
g→∞

ν
〈ξ〉

2g,ρ(A).

Despite this fact, the inequality for small g in Lemma 3.2.3 does indeed turn out to
be useful. This is due to the fact that ν〈ξ〉2g,ρ(A) can be expressed as a sum of orbit
data for finite abelian groups of rank up to 2g. (See Corollary 4.2.4.)

Proof of the lemma. The result is obviously true when r = 0, so suppose that
r > 0. Theorem 2.14 of [Michael 2006] shows that the set of orbit representatives
of GSp〈ρ〉2g (Rρ)= Sp2g(Rρ) acting on Surj((Rρ)2g, A) injects into 3(A); there, this
injection is denoted s ′, and when g ≥ r , the map s ′ is a bijection.

We can define an action of (Rρ)× =GSp2g (Rρ)/Sp2g (Rρ) on Surj((Rρ)2g, A)
as follows. For any x ∈ (Rρ)× and f ∈ Surj((Rρ)2g, A), note that(

0 x · Idg

− Idg 0

)
∈ GSp2g (Rρ), and define x · f = f ◦

(
0 x · Idg

− Idg 0

)
.

We can also define an action of (Rρ)× on 3(A) by x · 〈 · , · 〉 = x〈 · , · 〉 for any
x ∈ (Rρ)× and 〈 · , · 〉 ∈3(A). Again referring to the notation of [ibid.], the map s ′

is equivariant with respect to these two actions. (This follows from the definition
of the map s ′ and the comment immediately preceding Lemma 2.2 from [ibid.].)

Thus, computing the number of orbits of GSp〈ξ〉2g (Rρ) acting on Surj((Rρ)2g, A)
is a straightforward application of Burnside’s counting theorem. Indeed, suppose
that A=Z/`α1⊕· · ·⊕Z/`αr with α1≥ · · · ≥ αr > 0, then use Note 3.2.2 to see that

oA,〈ξ〉
2g,ρ ≤

1
|`ξ Rρ + 1|

·

∑
υ∈`ξ Rρ+1

|Fix (υ)|

=
1

|`ξ Rρ + 1|

((ρ−ξ−1∑
i=0

∑
υ∈(`ξ+i Rρ+1)\(`ξ+i+1 Rρ+1)

|Fix(υ)|
)
+

∑
υ∈`ρ Rρ+1={1}

|Fix(υ)|
)

=
1

`ρ−ξ

(ρ−ξ−1∑
i=0

(`ρ−ξ−i
− `ρ−ξ−i−1)`

∑r
j=2( j−1)min {ξ+i,α j }+ `α2+2α3+···+(r−1)αr

)

=
1

`ρ−ξ
|3(A)| + (`− 1)

ρ−ξ−1∑
i=0

`−(i+1)
|3(A/`ξ+i )|,

with equality when g ≥ r . �

Notation 3.2.4. Suppose that A∈G, ρ ∈Z>0 and ξ ∈Z≥0. If `ρ ≥ exp A and ρ≥ ξ ,
use Lemma 3.2.3 to define oA,〈ξ〉

ρ := oA,〈ξ〉
2g,ρ for any g ∈ Z>0 such that g ≥ rank A.
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We now mention an identity which will be useful later. (See Corollary 3.2.7 and
Note 4.2.5.)

Note 3.2.5. Suppose A ∈ G and ρ, ξ ∈ Z>0. If `ρ ≥ exp A and ρ > ξ , then by
Lemma 3.2.3 and Note 3.2.2, we see that

`oA,〈ξ〉
ρ − oA,〈ξ+1〉

ρ = (`− 1)|3(A/`ξ )|.

Below is a simple observation, which has Corollary 3.2.7 as an important conse-
quence. This corollary gives the moments of the probability distributions µx :G→R

for any x ∈ Z`, as promised in Section 2.2.

Lemma 3.2.6. Suppose that A ∈G, g, ρ ∈Z>0 and ξ ∈Z≥0. Furthermore, suppose
ρ≥ξ , let γ ∈GSp〈ξ〉2g (Rρ), and consider Inj(A, ker(Id−γ ))⊆ Inj(A, (Rρ)2g). There
is a one-to-one correspondence between Inj(A, ker(Id−γ )) and Fix(γ ). Dually,
there is a one-to-one correspondence between Surj(coker(Id−γ ), A) and Fix(γ ).

Proof. Suppose that f ∈ Inj(A, (Rρ)2g). Note that f ∈ Inj(A, ker(Id−γ )) if and
only if (Id−γ ) f = 0 if and only if f = γ f . The dual proof is similar. �

Corollary 3.2.7. Let x ∈Z` and suppose that x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1)

for some ξ ∈ Z>0. If A ∈ G, then∑
B∈G

|Surj(B, A)|µx(B)= |3(A/`ξ )|.

Proof. Choose any g, ρ ∈ Z>0 such that g ≥ rank A, `ρ ≥ exp A, and ρ > ξ . To
begin with, note that∑

B∈G

|Surj(B, A)|ν(x)2g,ρ(B)

= |GSp(x)2g (Rρ)|
−1
·

∑
B∈G

|Surj(B, A)| ·
∣∣{γ ∈ GSp(x)2g (Rρ) | coker(Id−γ )' B}

∣∣
= |GSp(x)2g (Rρ)|

−1
·

∑
γ∈GSp(x)2g (Rρ)

|Surj(coker(Id−γ ), A)|.

Now, thanks to Note 3.1.5, we can turn our attention to the quantity

|GSp〈ξ〉2g (Rρ) \GSp〈ξ+1〉
2g (Rρ)|−1

·

∑
γ∈GSp〈ξ〉2g (Rρ)\GSp〈ξ+1〉

2g (Rρ)

|Surj(coker(Id−γ ), A)|.

Using the fact that |GSp〈ξ〉2g (Rρ)| = `|GSp〈ξ+1〉
2g (Rρ)| and applying Lemma 3.2.6

to GSp〈ξ〉2g (Rρ) acting on Surj((Rρ)2g, A), then using Burnside’s counting theorem
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and Notation 3.2.4, we see that

|GSp〈ξ〉2g (Rρ) \GSp〈ξ+1〉
2g (Rρ)|−1

·

∑
γ∈GSp〈ξ〉2g (Rρ)\GSp〈ξ+1〉

2g (Rρ)

|Surj(coker(Id−γ ), A)|

=
`

(`− 1)|GSp〈ξ〉2g (Rρ)|

( ∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix γ | −
∑

γ∈GSp〈ξ+1〉
2g (Rρ)

|Fix γ |
)

=
`

`− 1

( ∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix γ |

|GSp〈ξ〉2g (Rρ)|
−

∑
γ∈GSp〈ξ+1〉

2g (Rρ)

|Fix γ |

`|GSp〈ξ+1〉
2g (Rρ)|

)

=
`

`− 1

(
oA,〈ξ〉

2g,ρ −
1
`

oA,〈ξ+1〉
2g,ρ

)
=

1
`− 1

(
`oA,〈ξ〉
ρ − oA,〈ξ+1〉

ρ

)
,

so we can conclude by applying Note 3.2.5 and Lemma 2.2.1. �

4. A weighted Möbius function

4.1. First observations. Let P be a locally finite poset. The Möbius function on P,
denoted by µP, is defined by the following criteria: for any x, z ∈ P,

µP(x, z)= 0 if x � z,

µP(x, z)= 1 if x = z,∑
x≤y≤z µP(x, y)= 0 if x < z.

A classic reference for Möbius functions is [Rota 1964]. In this section, we need to
study a variant of the Möbius function on the poset of subgroups of a finite group
(ordered by inclusion). For a history of the work on the Möbius function on this
poset, see [Hawkes et al. 1989]. Now, for any finite group G, let PG be the poset
of subgroups of G ordered by inclusion. For A ∈ G, we study an amalgam of the
Möbius functions on PA and G, which we define below.

Notation 4.1.1. For any A, B ∈ G, let sub(A, B) be the number of subgroups of B
that are isomorphic to A. If A ∈ G, an A-chain is a finite (possibly empty) linearly
ordered subset of {B ∈ G | B > A}. Now, given an A-chain C = {A j }

i
j=1, with

A j < A j+1 for all j ∈ {1, . . . , i − 1}, define

sub(C) := (−1)i sub(A, A1)

i−1∏
j=1

sub(A j , A j+1).
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(We set sub(C)= 1 if C is empty.) Finally, for any A, B ∈ G, let

S(A, B)=


0 if A � B,

1 if A = B,∑
A-chains C,
maxC=B

sub(C) if A < B.

Remark 4.1.2. Though S is defined on the poset G, it is closely related to the
classical work on the Möbius function on the subgroup lattice of a fixed group.
Indeed, by applying Lemma 2.2 of [Hawkes et al. 1989], we see that if A, B∈G, then

S(A, B)=
∑
C≤B
C'A

µB(C, B).

Given x ∈ (Z`)×, we can use the function S defined in Notation 4.1.1 to begin
our analysis of the measure µx , following the outline in Goal 2.2.3.

Lemma 4.1.3. Suppose A ∈G, g, ρ ∈Z>0 and ξ ∈Z≥0, with ρ ≥ ξ and `ρ ≥ exp A.
Then

oA,〈ξ〉
2g,ρ |GSp〈ξ〉2g (Rρ)| =

∑
B∈G

B≤(Rρ)2g

N 〈ξ〉2g,ρ(B)|Inj(A, B)|.

Proof. Applying Lemma 3.2.6 and Burnside’s counting theorem, we see that

oA,〈ξ〉
2g,ρ |GSp〈ξ〉2g (Rρ)| =

∑
γ∈GSp〈ξ〉2g (Rρ)

|Fix(γ )| =
∑

γ∈GSp〈ξ〉2g (Rρ)

|Inj(A, ker(Id−γ ))|

=

∑
B∈G

B≤(Rρ)2g

N 〈ξ〉2g,ρ(B)|Inj(A, B)|,

where the last step follows from Lemma 3.1.4. �

For A, g, ρ, ξ as above, Lemma 4.1.3 gives us an “upper triangular” system of
equations, which we will solve for N 〈ξ〉2g,ρ(A). (The quotes indicate that the system
is indexed by the poset P(Rρ)2g .) Proposition 4.1.4 is the first step along this path.

Proposition 4.1.4. Suppose A, g, ρ, ξ are as above. Then

N 〈ξ〉2g,ρ(A)

|GSp〈ξ〉2g (Rρ)|
=

∑
B∈G

B≤(Rρ)2g

oB,〈ξ〉
2g,ρ ·

S(A, B)
|Aut B|

.

Proof. We use strong induction on |(Rρ)2g
|/|A|. In light of Lemma 4.1.3, the

base case A = (Rρ)2g is trivial. Now suppose the result is true for all B ∈ G with
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B ≤ (Rρ)2g and |(Rρ)2g
|/|B|< |(Rρ)2g

|/|A|. Using Lemma 4.1.3, we see that

N 〈ξ〉2g,ρ(A)

|GSp〈ξ〉2g (Rρ)|
=

1
|Aut A|

·

(
oA,〈ξ〉

2g,ρ −
1

|GSp〈ξ〉2g (Rρ)|
·

∑
B∈G

B≤(Rρ)2g

B 6=A

N 〈ξ〉2g,ρ(B)|Inj(A, B)|
)

=
oA,〈ξ〉

2g,ρ

|Aut A|
−

∑
B∈G

B≤(Rρ)2g

B 6=A

N 〈ξ〉2g,ρ(B)

|GSp〈ξ〉2g (Rρ)|
· sub(A, B),

so the result follows by the induction hypothesis. �

4.2. Vanishing of the Möbius function. Before proceeding, we need a bit more
notation, and two results from [Garton 2014b].

Notation 4.2.1. For any A ∈ G and any i ∈ Z≥0, let

A⊕i := A⊕

i times︷ ︸︸ ︷
(Z/`)⊕ · · ·⊕ (Z/`) .

Hall [1934] proved that if G is an `-group of order `n , then µG(1,G) = 0
unless G is elementary abelian, in which case µG(1,G)= (−1)n`(

n
2). There is an

analogous result for the function S:

Theorem 4.2.2 [Garton 2014b]. If A, B ∈ G, then S(A, B)= 0 unless there exists
an injection ι : A ↪→ B with coker(ι) elementary abelian.

Additionally, this property of S will prove helpful:

Theorem 4.2.3 [ibid.]. If A, B ∈ G and B = C⊕i for some C ∈ G with rank C =
rank A and i ∈ Z≥0, then S(A, B)= S(A,C) · S(C, B).

Theorem 4.2.2 and Theorem 4.2.3 have the following corollary:

Corollary 4.2.4. Suppose A, g, ρ, ξ are as above, and let r = rank A. If in addition
we know ξ ∈ Z>0 and ρ satisfies ρ > ξ and `ρ > exp A, then

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B) ·
2g−r∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
.

Proof. Using the fact that |GSp〈ξ〉2g (Rρ)| = `|GSp〈ξ+1〉
2g (Rρ)|, note that

ν
〈ξ〉

2g,ρ(A)=
N 〈ξ〉2g,ρ(A)− N 〈ξ+1〉

2g,ρ (A)

|GSp〈ξ〉2g (Rρ)| − |GSp〈ξ+1〉
2g (Rρ)|

=
`N 〈ξ〉2g,ρ(A)

(`− 1)|GSp〈ξ〉2g (Rρ)|
−

N 〈ξ+1〉
2g,ρ (A)

(`− 1)|GSp〈ξ+1〉
2g (Rρ)|

.
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Applying Proposition 4.1.4, we obtain

ν
〈ξ〉

2g,ρ(A)=
∑
B∈G

B≤(Rρ)2g

`oB,〈ξ〉
2g,ρ − oB,〈ξ+1〉

2g,ρ

`− 1
·

S(A, B)
|Aut B|

.

Now, by Theorem 4.2.2 we know that if B ∈ G is not of the form B =C⊕i for some
C ∈ G(r) and some i ∈ Z≥0, then S(A, B) vanishes. Thus, by Theorem 4.2.3, we
conclude that

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B) ·
2g−r∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
,

as desired. �

Note 4.2.5. Suppose A, g, ρ, ξ, r are as in Corollary 4.2.4, and suppose that g ≥ r .
Then for any B ∈G(r) and i ∈ {0 . . . , g−r}, we know by Note 3.2.5 and Note 3.2.2
that

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
= |3(B⊕i/`

ξ )| = `ir+ i(i−1)
2 |3(B/`ξ B)|,

and for any i ∈ {g− r + 1, . . . , 2g− r}, we can use the proof of Lemma 3.2.3 to
note that

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
≤ `oB⊕i ,〈ξ〉

2g,ρ ≤ `|3(B⊕i )| = `
ir+ i(i−1)

2 +1
|3(B)|.

Thus, if
∞∑

i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |

converges absolutely (and it does; see Lemmas 5.1.2 and 5.1.3 and Theorem 5.1.4),
then so does

∞∑
i=0

`oB⊕i ,〈ξ〉

2g,ρ − oB⊕i ,〈ξ+1〉
2g,ρ

`− 1
·

S(B, B⊕i )

|Aut B⊕i |
,

and

lim
g→∞

ν
〈ξ〉

2g,ρ(A)=
∑

B∈G(r)

S(A, B)|3(B/`ξ B)| ·
∞∑

i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |
.

Analyzing the inner series is the subject of the next section. (Note that this limit
does not depend on ρ, once ρ is large enough; this is consistent with Lemma 2.2.1.)
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5. q-series and convergence

5.1. q-series. Before continuing, we make a small foray into some q-series notation
and calculations.

Notation 5.1.1. For z, q ∈ C with |q|< 1 and i ∈ Z≥0, let

(z; q)i :=
i−1∏
j=0

(1− q j z).

To ease notation, set (q)i := (q; q)i . Recall the definition of the q-binomial coeffi-
cients: for any k,m ∈ Z≥0, let( k

m

)
q
:=

(q)k
(q)m(q)k−m

,

with
( k

m

)
q := 0 if k < m.

For i ∈ Z≥0, let ri = −1/(`
i(i+1)

2 (`−1)i ). We define the next object in terms of
any finite set of nonnegative integers S and any i ∈ Z satisfying i > max S. If
S∪{0}= {s0, . . . , s j }, where 0= s0< s1< · · ·< s j+1 := i , define r i

S =
∏ j

i=0 rsi+1−si .
Finally, let t0 = 1, let t1 = r1

∅, and for i > 1, let

ti =
∑

S⊆{1,...i−1}

r i
S.

Lemma 5.1.2.
∞∑

i=0

ti =
∞∏

i=1

(1+ `−i )−1.

Proof. Let R = r1 + r2 + · · · and, to get into the spirit of a q-series calculation,
let q = `−1. Using a product formula of Euler (see [Andrews 1976, p. 19]), we
note that

R =−
∞∑

i=1

q
i(i+1)

2

(1− q i ) · · · (1− q)
=−

∞∑
i=1

q i q
i(i−1)

2

(1− q i ) · · · (1− q)
= 1−

∞∏
i=1

(1+ q i ).

Now, by the definition of ti (and by using Lemma 5.1.3 to rearrange the terms of
the sum), we know

∞∑
i=0

ti = 1+ R+ R2
+ R3

+ · · · =
1

1− R
=

∞∏
i=1

(1+ `−i )−1,

as desired. �

Next, we justify the reordering of the summands in Lemma 5.1.2:
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Lemma 5.1.3. For any finite set of nonnegative integers S and i ∈ Z satisfying
i >max S, let ρi

S := |r
i
S|. Next, let τ0 = 1, let τ1 = ρ

1
∅, and for any i > 1, let

τi :=
∑

S⊆{1,...i−1}

ρi
S.

Then
∑
∞

i=0 τi converges.

Proof. For fun, we will give two proofs: a simple proof that holds for any ` > 3,
and a more complicated one that holds for `≥ 3. Note that the sum clearly diverges
for `= 2 since it includes infinitely many 1s.

For the simple proof, note that for any finite set S of nonnegative integers and
any i >max S, we know ρi

S ≤ (`− 1)−i . It follows that for any i ∈ Z≥0, we have
that τi ≤ 2i−1(`− 1)−i , so

∑
∞

i=0 τi converges for ` > 3.
Of course, this argument fails for ` = 3. In this case, for a finite set S of

nonnegative integers and an i >max S, we must use a (slightly) better bound than
ρi

S ≤ (`−1)−i . Let λ= (`−1)−1. Since (`m
−1)−1

≤ (`−1)−m for any m ∈ Z≥0,
if we let S ∪ {0} = {s0, . . . , s j }, where 0= s0 < s1 < · · ·< s j+1 := i , then

ρi
S =

j∏
k=0

|rsk+1−sk | ≤

j∏
k=0

λ
1
2 (sk+1−sk)(sk+1−sk+1). (1)

Let Ti be the number of compositions of i by triangular numbers. By rearranging
the terms of

∑
∞

i=0 τi to order them by the exponent of λ appearing in the bound (1),
we see that if

∑
∞

i=1 Tiλ
i converges, then so does

∑
∞

i=0 τi . Since the generating
function for the number of compositions of positive triangular numbers is

∞∑
i=0

Ti x i
=

1

1−
∑
∞

j=1 x
1
2 j ( j+1)

, (2)

we need only show that the radius of convergence of (2) is at least λ. Since `≥ 3,
we know that λ≤ 1

2 , and

1> 1
2 + (

1
2)

3
+ (1

2)
6
+ ( 1

2)
10
+ · · · ,

so the lemma is true. �

We can now finish proving the result mentioned in Note 4.2.5.

Theorem 5.1.4. Suppose A ∈ G, ρ, ξ ∈ Z>0, and let r = rank A. If ρ > ξ and
`ρ > exp A, then

lim
g→∞

ν
〈ξ〉

2g,ρ(A)=
∞∏

i=1

(1+ `−i )−1
·

∑
B∈G(r)

|3(B/`ξ B)| ·
S(A, B)
|Aut B|

.
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Proof. Let B ∈ G(r, s), let S be a finite set of nonnegative integers, and let i
be a positive integer with i > max S. Suppose S ∪ {0} = {s0, . . . , s j }, where
0= s0 < · · ·< s j+1 := i . Now, we know by [Garton 2014a] that, for any k,m ∈Z≥0

with k ≤ m,

sub(B⊕k, B⊕m)=
`(r+k)(m−k)(`−1)r−s+m

(`−1)r−s+i (`−1)m−k

and

|Aut B⊕i | =
`2ir+i2

(`−1)r−s+i

(`−1)r−s
|Aut B|,

so

(−1) j+1
·
`ir+ i(i−1)

2

|Aut B⊕i |
·

j∏
k=0

sub(B⊕sk , B⊕sk+1)

= (−1) j+1
·
`−ir− i(i+1)

2

|Aut B|
·
(`−1)r−s

(`−1)r−s+i
·

j∏
k=0

`(r+sk)(sk+1−sk)(`−1)r−s+sk+1

(`−1)r−s+sk (`
−1)sk+1−sk

= (−1) j+1
·
`−ir− i(i+1)

2

|Aut B|
·

j∏
k=0

`(r+sk)(sk+1−sk)

(`−1)sk+1−sk

= (−1) j+1
·

1
|Aut B|

·

j∏
k=0

`−
1
2 (sk+1−sk)(sk+1−sk+1)

(`−1)sk+1−sk

.

But by Lemma 5.1.2, this means that

∞∑
i=0

`ir+ i(i−1)
2

S(B, B⊕i )

|Aut B⊕i |
=

1
|Aut B|

·

∞∑
i=0

ti =
1

|Aut B|
·

∞∏
i=1

(1+ `−i )−1,

so we conclude by Note 4.2.5. �

5.2. The main results. To conclude we mention two corollaries of Theorem 5.1.4,
one trivial and one nontrivial.

Corollary 5.2.1. If x ∈ (Z`)× satisfies x ≡ 1 (mod `), then

lim
g→∞

µ
(x)
2g ({0})=

∞∏
i=1

(1+ `−i )−1.

Friedman and Washington [1989] proved the analog of Corollary 5.2.1 for the
groups GLn (Z`); namely, they proved that

lim
g→∞

µGLn(Z`)({φ ∈ GLn(Z`) | coker(Id−φ)' {0}})=
∞∏

i=1

(1− `−i ),
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where µGLn(Z`) is the normalized Haar measure on GLn(Z`). Friedman and Wash-
ington expressed the hope that the statistics of GLn(Z`) (as n→∞) would match
those of GSp2g(Z`) (as 2g→∞). Achter [2006] proved that this was not the case.
Corollary 5.2.1 calculates a particular statistic for GSp2g(Z`) (as 2g→∞). It is note-
worthy that the quantity in Corollary 5.2.1 matches Malle’s conjectured probability
that the class numbers of relative class groups are coprime to ` (when the base field
of the extension has `th roots of unity but not `2th roots of unity; see Conjecture 2.1
in [Malle 2010]). Furthermore, Corollary 5.2.2 shows that the distribution on G

proposed by Malle matches the distribution on G given by µ(x)2g for any x ∈ (Z`)×

with x ≡ 1 (mod `) but x 6≡ 1 (mod `2). Moreover, Corollary 5.2.2 also computes
the distribution on G given by µ(x)2g when x ≡ 2 (mod `) but x 6≡ 1 (mod `3); this is
analogous to the number field case when the base field has `2th roots of unity but
not `3th roots of unity. The proof of Corollary 5.2.2 relies heavily on calculations
from [Garton 2014a].

Corollary 5.2.2. Suppose r, s ∈ Z≥0 with r ≥ s. Furthermore, suppose that x ∈ Z`

and ξ ∈ Z>0 with x ≡ 1 (mod `ξ ) but x 6≡ 1 (mod `ξ+1). If A ∈ G(r, s), then

lim
g→∞

µ
(x)
2g (A)

=


`

r(r−1)
2
· (`−1)r ·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|
if ξ = 1,

`
r(r−1)

2 +
s(s−1)

2
· (`−1)s(`

−1
; `−2)d r−s

2 e
·

∏
∞

i=1 (1+ `
−i )−1

|Aut A|
if ξ = 2.

Proof. Choose any ρ ∈ Z>0 with ρ > ξ and `ρ > exp A. Then by Lemma 2.2.1
we know

µ
(x)
2g (A)= ν

〈ξ〉

2g,ρ(A).

Now, we know from [Garton 2014a] that

∑
B∈G(r)

S(A, B)
|Aut B|

=
(`−1)r

|Aut A|
,

and, for any i ∈ {s, . . . , r},

∑
B∈G(r,i)

S(A, B)
|Aut B|

= (−1)i−s
· `

s(s+1)
2 −

i(i+1)
2
·

(r−s
r−i

)̀
−1
·
(`−1)s

|Aut A|
.

The ξ = 1 case follows from Note 3.2.2. For ξ = 2, use Note 3.2.2 again to see that
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∑
B∈G(r)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=

r∑
i=s

∑
B∈G(r,i)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=

r∑
i=s

(−1)i−s
· `

r(r−1)
2 +

s(s+1)
2 −i
·

(r−s
r−i

)̀
−1
·
(`−1)s

|Aut A|

=
`

r(r−1)
2 +

s(s+1)
2 (`−1)s

|Aut A|
·

r∑
i=s

(−1)i−s
·

(r−s
r−i

)̀
−1
· `−i .

Letting k = r − s and q = 1/`, we apply formula (1.10) from [Kupershmidt 2000],
which is a corollary of formula (1.12), to obtain

∑
B∈G(r)

|3(B/`2 B)| ·
S(A, B)
|Aut B|

=
`

r(r−1)
2 +

s(s−1)
2 (`−1)s

|Aut A|
·

k∑
i=0

(−1)i
(k

i

)
q
q i

=
`

r(r−1)
2 +

s(s−1)
2 (`−1)s

|Aut A|
· (q; q2)

d
k
2 e
,

as desired. �
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Local Beilinson–Tate operators
Amnon Yekutieli

In 1968 Tate introduced a new approach to residues on algebraic curves, based on
a certain ring of operators that acts on the completion at a point of the function
field of the curve. This approach was generalized to higher-dimensional algebraic
varieties by Beilinson in 1980. However, Beilinson’s paper had very few details,
and his operator-theoretic construction remained cryptic for many years. Cur-
rently there is a renewed interest in the Beilinson–Tate approach to residues in
higher dimensions.

Our paper presents a variant of Beilinson’s operator-theoretic construction.
We consider an n-dimensional topological local field K, and define a ring of
operators E.K/ that acts on K, which we call the ring of local Beilinson–Tate
operators. Our definition is of an analytic nature (as opposed to the original
geometric definition of Beilinson). We study various properties of the ring E.K/.
In particular we show that E.K/ has an n-dimensional cubical decomposition,
and this gives rise to a residue functional in the style of Beilinson and Tate.
Presumably this residue functional coincides with the residue functional that we
had constructed in 1992; but we leave this as a conjecture.
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Introduction

Let X be a smooth curve over a perfect base field k, with function field k.X/,
and let x 2X be a closed point. The completion K WD k.X/.x/ of k.X/ at x is a
local field. Tate [1968] introduced a ring E.K/� Endk.K/, and two-sided ideals
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E.K/1, E.K/2 � E.K/. These new objects were defined using the valuation ring
of K. Let us call the elements of E.K/ local Tate operators. Heuristically, elements
of E.K/1 are “compact operators”, and elements of E.K/2 are “discrete operators”.
An operator � 2 Endk.K/ is called finite potent if for some positive integer m the
operator �m has finite rank. Tate proved that each � 2 E.K/1 \ E.K/2 is finite
potent, and that E.K/1CE.K/2 D E.K/. Using some algebraic manipulations of
the structure .E.K/; fE.K/j g/, Tate constructed a residue functional

ResT
k.X/=k;x W�

1
k.X/=k! k:

Here �1
k.X/=k is the module of Kähler 1-forms of k.X/. Then he showed that his

residue functional is the same as the one gotten by Laurent series expansion at x.
Finally, Tate gave a global variant of this residue functional, using the adeles

of X instead of the completion k.X/.x/. He related the local and global residues,
and proved that, when the curve X is proper, the sum of the local residues of any
form ˛ 2�1

k.X/=k is zero. The Tate construction gave a totally new way of looking
at residues and duality for curves.

This circle of ideas was extended by Beilinson [1980] to higher dimensions in
his extremely brief paper (that did not contain any proofs). Actually Beilinson’s
paper had in it several important innovations, related to a finite type k-scheme X .
By a chain of points in X of length n we mean a sequence � D .x0; : : : ; xn/ of
points such that xi is a specialization of xi�1. The chain � is saturated if each xi
is an immediate specialization of xi�1. Beilinson said that:

(1) For a chain � of length n and a quasi-coherent sheaf M there is an OX -
module M� , gotten by an n-fold zigzag inverse and direct limit process. When
M is coherent and nD 0, this is the mx0-adic completion yMx0 of the stalk
Mx0 . (Let us call M� the Beilinson completion of M along �.)

(2) For every n 2 N and quasi-coherent sheaf M, there is a sheaf An.M/ called
the sheaf of adeles of degree n with values in M. It is a restricted product of
the Beilinson completions M� along length n chains. The sheaves An.M/

assemble into a flasque resolution of M. When X is a curve, A1.OX / is the
usual sheaf of adeles of X .

(3) For a saturated chain � D .x0; : : : ; xn/, the completion k.x0/� of the residue
field k.x0/ is a finite product of n-dimensional local fields.

(4) Let A WD k.x0/� as in (3). Then there is a ring E.A/ � Endk.A/, with an
n-dimensional cubical decomposition (see Definition 0.3 below), from which
a Tate-style residue functional can be obtained.

(5) The higher adeles in (2) and the cubically decomposed ring of operators E.A/
in (4) can be combined to prove a global residue theorem when X is proper.
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The adelic resolution (2) was clarified, and all claims proved (for any noetherian
scheme X ), by Huber [1991]. The assertion about higher local fields (3) was proved
in [Yekutieli 1992] (for any excellent noetherian scheme X ); see Theorem 6.1.

For a long time assertions (4) and (5) were essentially neglected and remained
cryptic. Very recently we heard about renewed interest in the work of Beilinson,
mainly by Braunling, Groechenig and Wolfson [Braunling 2014a; 2014b; Braunling
et al. 2014]. Item (4) above is discussed in [Braunling 2014a; 2014b]. A long-term
goal of this team is to understand and make precise the global aspect (5) of Beilin-
son’s construction, and then to apply this construction in various directions. Indepen-
dently, Osipov [2005; 2007] has been studying higher adeles and higher local fields.

Discussions with Wolfson and Braunling led us to the realization that the topo-
logical aspects of higher local fields, and their implications on item (4) above, are
not sufficiently understood. The purpose of this paper is to present an analytic
variant of the Beilinson–Tate construction for topological local fields and to study
its properties. Presumably our analytic construction agrees with the geometric con-
struction of [Beilinson 1980; Braunling 2014b], and the resulting residue functional
is the same as the residue functional from [Yekutieli 1992] — see Conjectures 0.9
and 0.12 below.

Throughout the introduction we keep the assumption that k is a perfect base field.
An n-dimensional topological local field over k is — roughly speaking — a field
extension K of k, with a rank n valuation, and with a topology compatible with
the valuation. An example is the field of iterated Laurent series K D k..t2//..t1//,
which is of dimension 2. See Definitions 3.1 and 3.8 for details. It is important to
mention that a topological local field K of dimension n � 2 is not a topological
ring, but only a semi-topological ring: multiplication is continuous only in one
argument. We abbreviate “topological local field” to “TLF” and “semi-topological”
to “ST”. The theory of ST rings and modules is reviewed in Section 1.

A TLF K of dimension n has discrete valuation rings Oi .K/ and residue
fields ki .K/ for i D 1; : : : ; n. They are related as follows: ki .K/ is the residue
field of Oi .K/ and the fraction field of OiC1.K/; and K is the fraction field of
O1.K/. By a system of liftings for K we mean a sequence � D .�1; : : : ; �n/,
where each �i W ki .K/!Oi .K/ is a continuous lifting of the canonical surjection
Oi .K/� ki .K/. Such systems of liftings always exist; see Proposition 3.19.

Consider a TLF K equipped with a system of liftings � . We define a ring of
operators E� .K/� Endk.K/, and ideals E� .K/i;j � E� .K/. Our definition (Defi-
nitions 4.5 and 4.14 in the body of the paper) is a modification of Beilinson’s original
definition from [Beilinson 1980]. But whereas Beilinson’s original definition was
geometric in nature (and pertained only to a TLF arising as a factor of a completion
k.x0/�), our definition is of an analytic nature. (We saw a similar definition in a
private communication from Braunling.)
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Here is our first main result. It is repeated as Corollary 4.22.

Theorem 0.1. Let K be an n-dimensional TLF over k, and let � and � 0 be two
systems of liftings for K.

(1) There is equality E� .K/D E� 0.K/ of these subrings of Endk.K/.

(2) For any i D 1; : : : ; n and j D 1; 2 there is equality E� .K/i;j D E� 0.K/i;j of
these ideals of E� .K/.

The theorem justifies the next definition.

Definition 0.2. Let K be an n-dimensional TLF over k. Define E.K/ WD E� .K/
and E.K/i;j WD E� .K/i;j , where � is any system of liftings for K. We call E.K/
the ring of local Beilinson–Tate operators on K.

Here is a definition from [Braunling 2014b], which distills Beilinson’s definition
[1980]. The notation we use is closer to the original notation of Tate.

Definition 0.3. Let A be a commutative k-ring. An n-dimensional cubically de-
composed ring of operators on A is data .E; fEi;j g/ consisting of:

� A k-subring E � Endk.A/ containing A.

� Two-sided ideals Ei;j �E, indexed by i 2 f1; : : : ; ng and j 2 f1; 2g.

These are the conditions:

(i) For every i 2 f1; : : : ; ng we have E DEi;1CEi;2.

(ii) Every operator � 2
Tn
iD1

T2
jD1 Ei;j is finite potent.

The next result is Theorem 4.24(1) in the body of the paper.

Theorem 0.4. Let K be an n-dimensional TLF over k. The data

.E.K/; fE.K/i;j g/

of local Beilinson–Tate operators is an n-dimensional cubically decomposed ring
of operators on K.

Let A be any commutative ST k-ring. We can talk about the ring Endcont
k .A/

of continuous k-linear operators on A. There is also the ring Dcont
A=k of continuous

differential operators; see the review in Section 2. There are inclusions of k-rings

A� Dcont
A=k � Endcont

k .A/� Endk.A/:

Theorem 0.5. Let K be an n-dimensional TLF over k. The ring E.K/ of local
Beilinson–Tate operators satisfies

Dcont
K=k � E.K/� Endcont

k .K/:



Local Beilinson–Tate operators 177

This is repeated as Theorem 4.24(2). Actually Theorem 0.5 is used in the proofs
of Theorems 0.1 and 0.4.

In [Yekutieli 1992] we developed a theory of residues for TLFs. For every
n-dimensional TLF K, we consider the module of top-degree separated differential
forms �n;sep

K=k . It is a rank 1 free K-module, and it has the fine K-module topology.
This means that, for any nonzero form ˛2�

n;sep
K=k , the corresponding homomorphism

K!�
n;sep
K=k is a topological isomorphism. (We will say more about the fine topology

later in the introduction.) The residue functional

ResTLF
K=k W�

n;sep
K=k ! k (0-6)

constructed in [Yekutieli 1992] is a continuous k-linear homomorphism, enjoying
several important properties. See Theorem 5.4 for details.

Beilinson [1980] claimed that an n-dimensional cubically decomposed ring of
operators .E; fEi;j g/ on a commutative k-ring A determines a residue functional

ResBT
A=kIE W�

n
A=k! k: (0-7)

For nD 1 this is the original abstract residue of [Tate 1968]. For n � 2 this was
worked out in [Braunling 2014b], using Lie algebra homology and Hochschild
homology.

Now consider an n-dimensional TLF K over k. By Theorem 0.4, K is equipped
with an n-dimensional cubically decomposed ring of operators E.K/; and we let

ResBT
K=k W�

n
K=k! k (0-8)

denote the corresponding residue functional.
LetA be any commutative ST k-ring. For any q the module of Kähler differentials

�
q

A=k has a canonical topology (this is recalled at the end of Section 2). There
is a canonical continuous surjection �q

A=k � �
q;sep
A=k to the separated module of

differentials. Often (e.g., when A D K is a TLF of dimension at least 1 and
char.k/D 0) the kernel of this canonical surjection is very big.

Conjecture 0.9. Let K be an n-dimensional TLF over k. The following diagram
of k-linear homomorphisms is commutative:

�n
K=k

can
// //

ResBT
K=k

%%

�
n;sep
K=k

ResTLF
K=k

��

k

When n� 1 we know the conjecture is true. For nD 0 it is trivial, and for nD 1
it is proved in [Tate 1968]. In order to help in proving this conjecture in higher
dimensions we have included a review of the residue functional ResTLF

K=k and its
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properties. This is Section 5 of the paper. We also state Conjecture 5.7, which is
closely related to Conjecture 0.9.

Suppose A is a finite product of n-dimensional TLFs over k; say AD
Qr
lD1Kl .

Let us define E.A/ WD
Q
l E.Kl/ and E.A/i;j WD

Q
l E.Kl/i;j . It is not hard to see

that the data
.E.A/; fE.A/i;j g/ (0-10)

is an n-dimensional cubically decomposed ring of operators on A.
Let X be a finite type k-scheme, let � D .x0; : : : ; xn/ be a saturated chain of

points in X such that xn is a closed point, and let K WD k.x0/. According to
[Yekutieli 1992] (see Theorem 6.1), the Beilinson completion A WDK� is a finite
product of n-dimensional TLFs over k. Beilinson’s construction [1980], worked out
in detail in [Braunling 2014b], gives rise to an n-dimensional cubically decomposed
ring of operators

.EX;�.K/; fEX;�.K/i;j g/ (0-11)

on K� . (This is our notation.) Note that by definition both EX;�.K/ and E.K�/ are
subrings of Endk.K�/.

Conjecture 0.12. Let X be a finite type k-scheme, let � D .x0; : : : ; xn/ be a satu-
rated chain of points in X such that xn is a closed point, and let K WD k.x0/. Then
the n-dimensional cubically decomposed rings of operators E.K�/ and EX;�.K/
are equal.

To help in proving this conjecture we have included Section 6, in which we recall
some facts from [Yekutieli 1992] about the Beilinson completions k.x0/� , and
provide our interpretation of the geometric definition of EX;�.K/. In Remark 6.11
we explain the geometric significance of these conjectures.

To finish the introduction we wish to discuss a technical result that is used in the
proof of Theorem 0.1. This result is of a very general nature, and could possibly
find other applications.

We work in the category STRingc k of commutative ST k-rings. The mor-
phisms are continuous k-ring homomorphisms. Let A 2 STRingc k. The fine
A-module topology on an A-module M is the finest topology that makes M into a
ST A-module. For example, if M ŠAr for r 2N, then the product topology is the
fine A-module topology on M . For more see Section 1.

Consider an artinian local ring A in STRingc k, with residue field K. Give K
the fine A-module topology relative to the canonical surjection � W A!K; so �
becomes a homomorphism in STRingc k. Suppose � WK!A is a homomorphism in
STRingc k such that � ı� is the identity ofK. We call � a lifting ofK in STRingc k.
The lifting � is called a precise lifting if the topology on A coincides with the fine
K-module topology on it (via �). The ring A is called a precise artinian local
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ring if it admits some precise lifting. There are examples of artinian local rings
in STRingc k that are not precise, like in Example 1.27. However, the rings that
we are interested in (such as quotients of O1.K/ for a TLF K— see Lemma 3.14,
and Beilinson completions of artinian local rings — see Example 1.26) are precise.
The reader might wonder if all continuous liftings � WK! A for a precise artinian
local ring A are precise. This is answered affirmatively in Corollary 0.14 below. It
is a consequence of the following technical result:

Given a lifting � W K ! A and an A-module M , we denote by rest� .M/ the
K-module whose underlying k-module is M , and K acts via � .

Theorem 0.13. Let A be a precise artinian local ring in STRingc k, with residue
field K. Put on K the fine A-module topology. Let �1, �2 W K ! A be liftings in
STRingc k of the canonical surjection � W A!K, and assume that �2 is a precise
lifting.

Let M1 and M2 be finite A-modules, and let � W M1 ! M2 be an A-linear
homomorphism. For l D 1; 2 chooseK-linear isomorphisms  l WKrl

�
! rest�l .Ml/.

Let � 2Matr2�r1.Endk.K// be the matrix representing the k-linear homomorphism

 �12 ı� ı 1 WK
r1 !Kr2 :

Then:

(1) The matrix � belongs to Matr2�r1.Dcont
K=k/.

(2) Assume that M1 D M2 and � is the identity automorphism. Write r WD r1.
Then the matrix � belongs to GLr.Dcont

K=k/.

This is repeated as Theorem 2.8 in the body of the paper. From it we deduce the
next result, which is Corollary 2.12.

Corollary 0.14. Let A be a precise artinian local ring in STRingc k, with residue
field K. Give K the fine A-module topology. Then any lifting � W K ! A in
STRingc k is a precise lifting.

1. Semi-topological rings and modules

We begin with a general discussion of various categories of rings. The notation
introduced here will make some of our more delicate definitions possible.

Let Ring be the category of rings (not necessarily commutative). The morphisms
are unit-preserving ring homomorphisms. Inside it there is the full subcategory
Ringc of commutative rings.

Now let us fix a nonzero commutative base ring k. A ring homomorphism
f W k! A is called central if f .k/ is contained in the center of A. In this case
we call A a central k-ring. (A more common name for A is an associative unital
k-algebra.) The central k-rings form a category Ringk, in which a morphism is a
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ring homomorphism A!B that respects the given central homomorphisms k!A

and k! B . Inside Ringk there is the full subcategory Ringc k of commutative
k-rings. Of course, if kD Z then Ring ZD Ring.

LetA be a local ring in Ringc k, with maximal ideal m and residue fieldKDA=m.
Recall that A is called a complete local ring if the canonical homomorphism
A! lim i A=mi is bijective. The canonical surjection � W A�K makes K into
an object of Ringc k. A lifting of the canonical surjection � W A�K in Ringc k,
or a coefficient field for A in Ringc k, is a homomorphism � W K ! A in Ringc k
such that the composition � ı � is the identity of K.

The next result is part of the Cohen structure theorem. We will repeat its proof,
because the proof itself will feature in some of our constructions.

Theorem 1.1 (Cohen). Assume k is a perfect field. Let A be a complete local ring
in Ringc k, with residue field K. Then there exists a lifting � WK! A in Ringc k of
the canonical surjection � W A�K. Moreover, if k!K is finite, then this lifting
� is unique.

Proof. Consider the K-module �1
K=k of Kähler differential forms. Choose a

collection fbxgx2X of elements of K so that the collection of forms fd.bx/gx2X is
a basis of the K-module �1

K=k. According to [Matsumura 1986, Theorems 26.5
and 26.8], the collection of elements fbxgx2X is algebraically independent over k,
and K is formally étale over the subfield k.fbxg/ generated by this collection.
(Actually, if either char kD 0 or K is finitely generated over k, then the field K is
separable algebraic over k.fbxg/. See [Matsumura 1986, Theorem 26.2].)

For any x 2 X choose an arbitrary lifting �b.bx/ 2 A of the element bx; thus
�.�b.bx//D bx . Since the collection fbxgx2X is algebraically independent over k,
the subring kŒfbxg� of K is a polynomial ring. Therefore the function �b WX ! A

extends uniquely to a homomorphism �p W kŒfbxg�! A in Ringc k. Because A is
a local ring, for any nonzero element b 2 kŒfbxg� its lift �p.b/ is invertible in A.
Thus �p extends uniquely to a homomorphism �r W k.fbxg/!A. (The subscripts b,
p, r refer to “basis”, “polynomial” and “rational”.)

Let Ai WD A=miC1, with surjection �i W A! Ai . Because k.fbxg/! K is
formally étale, the homomorphism �i ı �r W k.fbxg/! Ai extends uniquely to
a homomorphism �i W K ! Ai , which lifts Ai � K D A0. We get an inverse
system of liftings, and thus a lifting � W K ! lim i A=mi D A, � WD lim i �i .
The restriction of � to k.fbxg/ equals �r, and in particular we see that � is a
homomorphism in Ringc k.

If k!K is finite then X D∅, and hence � is unique. �

Remark 1.2. Liftings exist whenever they can exist, namely if and only if A
contains a field. This is called the equal characteristics case. Indeed, if A contains
a field then it contains some perfect field k (e.g., Q or Fp). Now Theorem 1.1 can
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be applied. Note that, if the residue field K contains Q, then A also contains Q.
The complication arises when the residue fieldKDA=m contains Fp , but A does

not contain it (i.e., p¤ 0 in A). This is called the mixed characteristics case. In this
case the notion of lifting has to be modified. First the base ring k is replaced by two
rings: a perfect field k of characteristic p, and a complete DVR zk whose maximal
ideal is generated by p and whose residue field is k. The ring zk is called the ring
of Witt vectors of k. (e.g., when kD Fp, its ring of Witt vectors is zkD yZ.p/, the
p-adic integers.) A homomorphism k!K lifts canonically to a homomorphism
zk! A. Next there is a complete DVR zK, whose maximal ideal is generated by p
and whose residue field is K, and zk! zK is p-adically formally smooth. Therefore
there exists a lifting � W zK! A over zk. Moreover, all such liftings are controlled
by �1

K=k, just as in the proof of Theorem 1.1.
In this paper we shall deal exclusively with the equal characteristics case.

We are going to look at a more subtle lifting situation, involving topologies on
A and K.

We consider the base ring k as a topological ring with the discrete topology.
Recall that a topological k-module is a k-module M endowed with a topology
such that addition and multiplication are continuous functions M �M !M and
k�M !M respectively. We say that the topology on M is k-linear, and that
M is a linearly topologized k-module, if the element 0 2M has a basis of open
neighborhoods consisting of open k-submodules.

In order to define a k-linear topology on a k-module M , all we have to do
is to provide a collection fUigi2I of k-submodules of M that is cofiltered under
inclusion; namely, for any i , j 2 I , there exists k 2 I such that Uk � Ui \Uj .
The resulting topology on M , in which the collection fUigi2I is a basis of open
neighborhoods of 02M , is called the k-linear topology generated by this collection.

Definition 1.3. Let M1; : : : ;Mp, N be linearly topologized k-modules, and let
� W

Qp
iD1Mi !N be a k-multilinear function. We say that � is semi-continuous

if, for every m D .m1; : : : ; mp/ 2
Qp
iD1Mi and every i 2 f1; : : : ; pg, the homo-

morphism

�m;i WMi !N; �m;i .m
0
i / WD �.m1; : : : ; mi�1; m

0
i ; miC1; : : : ; mp/;

is continuous.

Definition 1.4 [Yekutieli 1992]. A semi-topological k-ring is a k-ring A with a
k-linear topology on it (so the underlying k-module of A is a linearly topologized
k-module) such that multiplication � W A�A! A is a semi-continuous bilinear
function.

The semi-topological k-rings form a category STRingk, in which the morphisms
are the continuous k-ring homomorphisms.
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We use the abbreviation “ST” for “semi-topological”. The ring k with its
discrete topology is the initial object of STRingk. Inside STRingk there is the full
subcategory STRingc k of commutative ST k-rings.

Example 1.5. Suppose A is a commutative k-ring, and a� A is an ideal. Give A
the a-adic topology. Then A is a ST k-ring. (The ring A is actually a topological
ring, because multiplication A�A! A is continuous.) The ring of Laurent series
A..t//— see Definition 1.17 — is a ST k-ring, but it is usually not a topological
ring.

Definition 1.6. Let A be a ST k-ring. A left ST A-module is a left A-module M
endowed with a k-linear topology on it (so M is a linearly topologized k-module)
such that the bilinear function � WA�M!M , �.a;m/ WDa �m, is semi-continuous.

The ST left A-modules form a category, in which the morphisms are the contin-
uous A-linear homomorphisms. We denote this category by STModA.

There is a similar right module version, denoted by STModAop.

Remark 1.7. If A is a discrete ST k-ring (e.g., AD k), then a ST A-module M is
also a topological A-module, because the multiplication function A�M !M is
continuous. We will usually ignore this fact.

Proposition 1.8. Let A be a ST k-ring. The category STModA has these proper-
ties:

(1) It is a k-linear additive category.

(2) It has limits and colimits (of arbitrary cardinality). In particular there are
coproducts, products, kernels and cokernels.

Proof. This is all essentially in [Yekutieli 1992, Section 1.2]. The fact that STModA

is k-linear is clear.
Given a collection fMxgx2X of ST A-modules, indexed by a set X , let M WDL
x2X Mx be the direct sum in ModA. Given any collection fUxgx2X , where

Ux �Mx is an open k-submodule, let U WD
L
x2X Ux , which is a k-submodule

of M . Give M the k-linear topology generated by these k-submodules U . This
makes M into a ST A-module, and together with the embeddings Mx ,!M it
becomes a coproduct in STModA. Likewise, the product

Q
x2X Mx in ModA,

with the product topology, becomes a product in STModA.
Let � W M ! N be a homomorphism in STModA. Then Ker.�/, with the

topology induced on it from M (the subspace topology), is a kernel of �. The
module Coker.�/, with the topology induced on it from N (the quotient topology),
is a cokernel of �.

Now that we have coproducts, products, kernels and cokernels, any limit and
colimit can be produced in STModA. �
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Let A 2 STRingk. We often use the notation Homcont
A .M;N / to denote the

k-module of continuous A-linear homomorphism between two ST left A-modules
M and N . This is just another way to refer to the k-module HomSTModA.M;N /.

Remark 1.9. The concept of ST module is very close to the concept of smooth
representation from the theory of representations of topological groups. Perhaps
some of our work here can be used in that area.

Definition 1.10. Let A be a ST ring, and let M be a left A-module. The fine
A-module topology on M is the finest linear topology on M that makes it into a ST
A-module.

It is not clear at first whether such a topology exists; but it does — see [Yekutieli
1992, Section 1.2]. The fine topology can be characterized as follows: a ST
A-module M has the fine A-module topology if and only if, for any N 2 STModA,
the canonical function

Homcont
A .M;N /! HomA.M;N /

is bijective [Yekutieli 1992, Proposition 1.2.4]. (So we get a left adjoint to the
forgetful functor STModA!ModA.)

The fine A-module topology can be described quite explicitly. First consider
a free module F D

L
x2X A. The direct sum (i.e., coproduct) topology on it is

the fine topology. Now take any A-module M , and let F �M be some A-linear
surjection from a free module F . Then the quotient topology on M coincides with
its fine topology.

Definition 1.11. Let � WM !N be a homomorphism in STModA.

(1) � is called a strict monomorphism if it is injective and the topology on M
equals the subspace topology on it induced by � and N .

(2) � is called a strict epimorphism if it is surjective and the topology on N equals
the quotient topology on it induced by � and M .

Example 1.12. Let � WM ! N be a homomorphism in STModA, and assume
both modules have the fine A-module topologies. If � is a surjection, then it is a
strict epimorphism. If � WM !N a split injection in STModA, then it is a strict
monomorphism.

Definition 1.13. Let f W A! B be a homomorphism in STRingk. We say that
f is a strict monomorphism (resp. strict epimorphism) in STRingk if it is so in
STModk.

Definition 1.14. Let A2 STRingc k, let f WA!B be a homomorphism in Ringc k,
and let M 2 ModB . We view M as an A-module via f . The fine A-module
topology on M is called the fine .A; f /-module topology.
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Lemma 1.15. In the situation of Definition 1.14:

(1) The ring B , with the fine .A; f /-module topology, becomes an object of
STRingc k; and f W A! B becomes a morphism in STRingc k.

(2) Give B the fine .A; f /-module topology. Then the fine B-module topology
on M coincides with the fine .A; f /-module topology on it. Therefore M ,
endowed with the fine .A; f /-module topology, is an object of STModB .

Proof. This is easy using [Yekutieli 1992, Proposition 1.2.4]. �
Lemma 1.16. Let fBigi2N be an inverse system in STRingk. The ringB WD lim

 ��i
Bi ,

with its inverse limit topology (see Proposition 1.8(2)), is a ST k-ring.

Proof. This follows almost immediately from the definitions. �
Here is the most important construction of ST rings in our context. This is

[Yekutieli 1992, Definition 1.3.3]. Lemmas 1.15 and 1.16 justify it.

Definition 1.17. Let A be a commutative ST k-ring.

(1) Let t be a variable.
(a) For any i 2 N put on the truncated polynomial ring AŒt�=.t iC1/ the fine

A-module topology. This makes AŒt�=.t iC1/ a ST k-ring.
(b) Give the ring of formal power seriesAŒŒt �� WD lim i AŒt�=.t iC1/ the inverse

limit topology. In this way AŒŒt �� is a ST k-ring.
(c) Give the ring of formal Laurent series A..t// WD AŒŒt ��Œt�1 � the fine

AŒŒt ��-module topology. In this way A..t// is a ST k-ring.

(2) Let t D .t1; : : : ; tn/ be a sequence of variables. The ring of iterated Laurent
series

A..t//D A..t1; : : : ; tn//

is the commutative ST k-ring defined recursively on n by

A..t1; : : : ; tn// WD A..t2; : : : ; tn//..t1//;

using part (1).

Note that as ST A-modules there is an isomorphism

A..t//D

�Y
i�0

A � t i
�
˚

�M
i<0

A � t i
�
Š

�Y
i2N

A

�
˚

�M
i2N

A

�
:

Remark 1.18. Strangely, for n � 2 (and when A is nonzero), the ring B WD
A..t1; : : : ; tn// is not topological; namely, multiplication is not a continuous function
B �B! B . This is the reason for introducing the semi-topological apparatus.

Furthermore, the topology on B is not metrizable. Still, B is complete, in the
sense that the canonical homomorphism B! lim U B=U , where U runs over all
open k-submodules of B , is bijective.
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Exercise 1.19. Let K WD k..t//, the ring of Laurent series in the sequence of
variables t D .t1; : : : ; tn/, with its topology from Definition 1.17. Let F.Zn;k/
be the set of functions a W Zn ! k, written in subscript notation; namely for
i D .i1; : : : ; in/ 2 Zn the value of a is ai 2 k. The notation for monomials in t is
ti WD t

i1
1 � � � t

in
n . We say that a collection fai ti gi2Zn of elements of K is a Cauchy

collection if, for every open k-submodule U �K, there is a finite subset I � Zn

such that ai ti 2 U for all i … I . A function a 2 F.Zn;k/ is called Cauchy if
the collection fai ti gi2Zn is Cauchy. The set of Cauchy functions is denoted by
Fc.Z

n;k/. The exercise is to show that for any a2 Fc.Z
n;k/ the series

P
i2Zn ai t

i

converges inK, and that the resulting function Fc.Z
n;k/!K is a k-linear bijection.

(For a slightly more general assertion see the end of [Yekutieli 1992, Section 1.3].)

Definition 1.20. Let f W A ! B be a homomorphism in STRingk. Given M
in STModB , we denote by restf .M/ the ST A-module whose underlying ST
k-module is M , and A acts via f .

In this way we get a functor

restf W STModB! STModA:

We now return to liftings.

Definition 1.21. Let A be a local ring in STRingc k, with residue field K. We put
on K the fine A-module topology, so that the canonical surjection � W A�K is a
morphism in STRingc k. A lifting ofK in STRingc k is a homomorphism � WK!A

in STRingc k such that the composition � ı � is the identity of K.

The important thing to remember is that � WK! A has to be continuous.

Example 1.22. Assume k is a field of characteristic 0. Let K WD k..t2// and
A WD KŒŒt1��, with topologies from Definition 1.17. So we are in the situation of
Definition 1.21. Consider the lifting � WK! A from Example 3.13. If at least one
of the elements ci is nonzero, the lifting � is not continuous.

Remark 1.23. Let A be a local ring in STRingc k, with maximal ideal m. We do
not assume any relation between the given topology of A and its m-adic topology.
For instance, A could have the discrete topology, which is finer than any other
topology.

On the other hand, in Example 1.22 above, where AD k..t2//ŒŒt1�� and mD .t1/,
the m-adic topology on A is finer than the given topology on it (since the discrete
topology on K D k..t2// is finer than its t2-adic topology).

The next definition is a generalization of [Yekutieli 1992, Definition 2.2.1].

Definition 1.24. Let A be an artinian local ring in STRingc k, with residue field K.
We put onK the fineA-module topology, so that the canonical surjection � WA�K

is a strict epimorphism in STRingc k.
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(1) A lifting � W K ! A in STRingc k is called a precise lifting if the original
topology of A equals the fine .K; �/-module topology on it.

(2) The topology on A is called a precise topology, and A is called a precise
artinian local ring in STRingc k, if there exists some precise lifting � WK!A

in STRingc k.

Here are examples:

Example 1.25. Start with an artinian local ring A in Ringc k, and with a given
lifting � WK! A of the residue field. Put any topology on K that makes it into an
object of STRingc k. Next give A the fine .K; �/-module topology. According to
Lemma 1.15(2), the fine A-module topology on K equals its original topology. We
see that � WK! A is a precise lifting, and hence A is a precise artinian local ring
in STRingc k.

Definition 1.24 makes sense also for an artinian semi-local ring A, with Jacobson
radical r and residue ring K WD A=r. Of course, here K is a finite product of fields.
This is used in the next example.

Example 1.26. We use the Beilinson completion that is explained in Section 6.
Assume k is a perfect field, and let X be a finite type k-scheme. Take a saturated
chain of points � D .x0; : : : ; xn/ in X , and let A WDOX;x0=mlC1x0

for some l 2 N.
So A is an artinian local ring, and its residue field is K WD k.x0/. Let � WK! A

be a lifting in Ringc k.
We view A and K as quasi-coherent sheaves on X , constant on the closed

set fx0g. The lifting � is a differential operator of OX -modules, and hence, accord-
ing to [Yekutieli 1992, Propositions 3.1.10 and 3.2.2], there is a homomorphism
�� WK� ! A� in STRingc k that lifts the canonical surjection �� W A� !K� . The
arguments in the proof of [Yekutieli 1992, Proposition 3.2.5] show that K� has the
fine A� -module topology, and vice versa.

By Theorem 6.1 the ring K� is a finite product of fields. Therefore A� is an
artinian semi-local ring, with residue ring K� . We see that the lifting �� WK�!A�
is a precise lifting, and A� is a precise artinian semi-local ring in STRingc k.

Example 1.27. Assume k is a field. Let K WD k..t// with the discrete topology,
and let m WD k..t// with the t -adic topology. We view m as a ST K-module. Define
A WDK˚m, the trivial extension ofK by m (so m2D 0). For any lifting � WK!A,
the .K; �/-module topology on A is the discrete topology. Therefore there is no
precise lifting, and A is not a precise artinian local ring in STRingc k.

A question that immediately comes to mind is this: If A is a precise artinian
local ring in STRingc k, are all liftings � W K! A in STRingc k precise? This is
answered affirmatively in Corollary 2.12 in the next section.



Local Beilinson–Tate operators 187

Let A be a ST k-ring and let M be a ST A-module. The closure f0g of the zero
submodule f0g is an A-submodule of M .

Definition 1.28. Let A be a ST k-ring and let M be a ST A-module.

(1) If f0g is closed in M , then M is called a separated ST module.

(2) Define M sep WDM=f0g. This is a ST A-module with the quotient topology
from M , and we call it the separated ST module associated to M .

Of course,M is a separated ST module if and only if it is a Hausdorff topological
space.

The assignmentM 7!M sep is a k-linear functor from STModA to itself. There is
a functorial strict epimorphism �M WM !M sep. The ST module M sep is separated,
and it is easy to see that for any separated ST A-module N the homomorphism

Homcont
A .M sep; N /! Homcont

A .M;N /

induced by �M is bijective.

Remark 1.29. The reader might wonder why we work with separated modules
and not with complete modules. The reason is that, for a ST A-module M , its
completion yM WD lim U M=U , where U runs over all open subgroups of M ,
could fail to be an A-module!

However, in many important instances (such as the module of differentials of a
topological local field), the ST A-module M sep turns out to be complete.

We end this section with a discussion of ST tensor products.

Definition 1.30 [Yekutieli 1992, Definition 1.2.11]. Suppose A is a commutative
ST k-ring, and M1; : : : ;Mp are ST A-modules. The tensor product topology on
the A-module

pO
iD1

Mi WDM1˝A � � � ˝AMp

is the finest linear topology such that the canonical multilinear function

pY
iD1

Mi !

pO
iD1

Mi

is semi-continuous.

With this topology,
Np
iD1Mi is a ST A-module. Given any semi-continuous

A-multilinear function ˇ W
Qp
iD1Mi !N , where N is a ST A-module, the corre-

sponding A-linear homomorphism
Np
iD1Mi !N is continuous. For more details

see [Yekutieli 1992, Section 1.2].
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Example 1.31. Let f W A! B be a homomorphism in STRingc k, and let M be
in STModA. Then B˝AM , with the tensor product topology, is a ST B-module.
We get an adjoint to the forgetful functor restf . If M has the fine A-module
topology, then B ˝AM has the fine B-module topology. See [Yekutieli 1992,
Proposition 1.2.14 and Corollary 1.2.15].

Remark 1.32. Assume the base ring k is a field. Let M and N be ST k-modules
(i.e., linearly topologized k-modules). Beilinson [2008] talks about three topologies
on the tensor product M ˝kN .

In our paper we encounter two topologies on M ˝k N . The first is the ten-
sor product topology from Definition 1.30. It is symmetric: the automorphism
m1˝m2 7!m2˝m1 of M ˝kM is a homeomorphism.

For the second kind of tensor product topology consider M WD k.t2/ with the
t2-adic topology, and N WD k.t1/ the t1-adic topology. So M Š N in STModk.
Let K WD k..t1; t2// be the field of iterated Laurent series, with the topology
of Definition 1.17, starting from the discrete topology on k. The embedding
M ˝kN �K induces a topology on it, making it into a ST k-module. Presumably
this topology on M ˝kN can be described in terms of the topologies of M and N .
Now K is complete, and M ˝k N is dense in it. Since the roles of the two
variables in K are different (e.g., the series

P
i2N t

i
1 � t
�i
2 is summable, but the

series
P
i2N t

�i
1 � t

i
2 is not summable), we see that this topology on M ˝kN is not

symmetric.
It should be interesting to compare our two tensor product topologies to the three

discussed in [Beilinson 2008].

2. Continuous differential operators

Our approach to continuous differential operators is an adaptation to the ST context
of the definitions from [EGA IV 1967]. We are following [Yekutieli 1992; 1995].
Recall that the base ring k is a nonzero commutative ring, and it has the discrete
topology.

Let A be a commutative k-ring. Any k-central A-bimodule P has an increasing
filtration fFi .P /gi2Z by A-sub-bimodules, called the differential filtration. This
filtration is defined inductively. For i � �1 we define Fi .P / WD 0. For i � 0 the
elements of Fi .P / are the elements p 2 P such that a �p �p � a 2 Fi�1.P / for
every a 2 A.

Now assume A is a commutative ST k-ring, and let M , N be ST A-modules.
The set Homcont

k .M;N / of continuous k-linear homomorphisms is a k-central
A-bimodule, so it has a differential filtration. We define

Diffcont
A=k.M;N / WD

[
i

Fi .Homcont
k .M;N //� Homcont

k .M;N /:
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The elements of

Fi .Diffcont
A=k.M;N // WD Fi .Homcont

k .M;N //

are by definition continuous differential operators of order at most i . Note that

F0.Diffcont
A=k.M;N //D Homcont

A .M;N /:

When N DM we write

Diffcont
A=k.M/ WD Diffcont

A=k.M;M/:

This is a subring of Endcont
k .M/. Let Dercont

A=k.M/ be the A-module of continuous
k-linear derivations A!M . Then

F1.Diffcont
A=k.A;M//DM ˚Dercont

A=k.M/

as left A-modules.
If M D A then we write

Dcont
A=k WD Diffcont

A=k.A/: (2-1)

This is the ring of continuous differential operators of A (relative to k). Let us write
T cont
A=k WD Dercont

A=k.A/, the Lie algebra of continuous derivations of A. Then

F1.Dcont
A=k/D A˚ T cont

A=k

as left A-modules.
If A is discrete, then Dcont

A=k DDA=k, the usual ring of differential operators from
[EGA IV 1967]; and T cont

A=k D TA=k, the usual Lie algebra of derivations.

Remark 2.2. There is a canonical topology on Homcont
k .M;N /, called the Hom

topology, making it a ST A-module; see [Yekutieli 1995, Definition 1.1]. However,
in this paper we shall not need this topology, and hence we consider Homcont

k .M;N /

as an untopologized object (or as a discrete ST k-module).

Example 2.3. Let t D .t1; : : : ; tn/ be a sequence of variables of length n � 1. In
Definition 1.17 we saw how to make the ring of iterated Laurent series k..t// WD
k..t1; : : : ; tn// into a ST k-ring. This is a separated ST ring, i.e., k..t//D k..t//sep.
Let kŒt� be the polynomial ring, with discrete topology. According to [Yekutieli
1992, Corollary 1.5.19] the ring homomorphism kŒt�!k..t// is topologically étale
relative to k. This implies that any k-linear differential operator � on kŒt� extends
uniquely to a continuous k-linear differential operator y� on k..t//. This gives us a
ring homomorphism DkŒt�=k! Dcont

k..t//=k that respects the differential filtrations,
and such that the induced homomorphism

k..t//˝kŒt�DkŒt�=k! Dcont
k..t//=k (2-4)

is bijective.
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If k has characteristic 0 (i.e., Q� k), then by (2-4) any y� 2 Fl.Dcont
k..t//=k/ can

be expressed uniquely as a finite sum

y� D
X

.i1;:::;in/

a.i1;:::;in/ � @
i1
1 � � � @

in
n ; (2-5)

where ik 2 N,
P
k ik � l , a.i1;:::;in/ 2 k..t// and @i WD @=@ti .

On the other hand, if k has characteristic p > 0 (i.e., Fp � k), then the structure
of Dcont

k..t//=k is totally different. For everym� 0 let k..tp
m

// WDk..tp
m

1 ; : : : ; t
pm

n //,
which is a subring of k..t//. The ring k..t// is a free module over k..tp

m

//

of rank pnm, and the topology on k..t// is the fine k..tp
m

//-module topology.
According to [Yekutieli 1992, Theorem 1.4.9 and Corollary 2.1.18] we have

Dcont
k..t//=k D Dk..t//=k D

[
m�0

Endk..tpm //

�
k..t//

�
:

Let B be a k-ring (not necessarily commutative). For any r1, r2 2 N let
Matr2�r1.B/ be the set of r2 � r1 matrices with entries in B . The set of matrices
Matr.B/ WDMatr�r.B/ is a k-ring with matrix multiplication, and Matr2�r1.B/
is a k-central Matr2.B/-Matr1.B/-bimodule. The group of invertible elements of
Matr.B/ is denoted by GLr.B/.

Now consider some M 2Modk. The k-ring B WD Endk.M/ acts on M from
the left. We view M r1 as a column module, namely we make the identification
M r1 D Matr1�1.M/. Then, for any � 2 Matr2�r1.B/ and m 2M r1 , the matrix
product � �m is an element of M r2 . In this way we obtain a canonical isomorphism

Homk.M
r1 ;M r2/ŠMatr2�r1.Endk.M//DMatr2�r1.B/ (2-6)

of left Matr2.B/-modules and right Matr1.B/-modules.
The next lemma shows that this also happens in the topological and differential

contexts.

Lemma 2.7. Let A 2 STRingc k and M 2 STModA. For any natural numbers r1
and r2, matrix multiplication gives rise to bijections

Matr2�r1.Endcont
k .M//Š Homcont

k .M r1 ;M r2/

and

Matr2�r1.Diffcont
A=k.M//Š Diffcont

A=k.M
r1 ;M r2/:

In particular, a homomorphism � WM r !M r in STModk is an isomorphism if
and only if the corresponding matrix belongs to GLr.Endcont

k .M//.

Proof. This is a straightforward consequence of the definitions. �
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Lifting, precise liftings and precise artinian local rings in STRingc k were intro-
duced in Definitions 1.21 and 1.24. The main result of this section is the next
theorem.

Theorem 2.8. Let A be a precise artinian local ring in STRingc k, with residue
field K. Give K the fine A-module topology. Let �1, �2 W K ! A be liftings in
STRingc k of the canonical surjection A � K, and assume that �2 is a precise
lifting.

Let M1 and M2 be finite A-modules, and let � W M1 ! M2 be an A-linear
homomorphism. For l D 1; 2 chooseK-linear isomorphisms  l WKrl

�
! rest�l .Ml/.

Let � 2Matr2�r1.Endk.K// be the matrix such that the diagram

M1
�
// M2

Kr1

 1

OO

�
// Kr2

 2

OO

in Modk is commutative. Then the following hold:

(1) The matrix � belongs to Matr2�r1.Dcont
K=k/.

(2) Assume that M1 D M2 and � is the identity automorphism. Write r WD r1.
Then the matrix � belongs to GLr.Dcont

K=k/.

Proof. (1) GiveM1 andM2 the fine A-module topologies. Let us writeM l WDK
rl ;

these are ST K-modules with the fine K-module topologies. Since �1, �2 WK!A

are continuous, it follows that both  l W M l ! Ml are continuous, namely are
homomorphisms in STModk. Furthermore, because �2 is a precise lifting, it follows
that  2 WM 2!M2 is a homeomorphism, so it is an isomorphism in STModk.
We conclude that � D  �12 ı� ı 1 is a homomorphism in STModk, namely it is
continuous.

Next, let us view A as a K-ring via �1. (There is no topology in this paragraph.)
The canonical surjection A � K makes A into an augmented K-ring. Let us
view M 1 as an A-module via this augmentation. Now both M 1 and M1 are finite
length A-modules, and  1 WM 1!M1 is K-linear. According to [Yekutieli 1992,
Proposition 1.4.4],  1 is a differential operator over A. (The order of this operator
is bounded by r1� 1.)

Similarly, we can view A as an augmented K-ring via �2. (There is no topology
in this paragraph either.) Now both  2 WM 2!M2 and its inverse  �12 WM2!M 2

are K-linear, and therefore they are differential operators over A. We conclude that
the composition

� D  �12 ı� ı 1 WM 1!M 2
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is a differential operator over A. Here the liftings �1, �2 stop playing a role. Now
A acts on M 1 and M 2 via the canonical surjection A�K, and this implies that
� is a differential operator over K.

Combining the two results above we conclude that � WM 1!M 2 is a continuous
differential operator over K. Using Lemma 2.7 we see that the matrix � belongs to
Matr2�r1.Dcont

K=k/. This establishes (1).

(2) The proof of this part is very similar to that of [Yekutieli 1995, Lemma 6.6]
Let m be the maximal ideal of A, and write M WDM1. Consider the m-adic

filtration on M . The associated graded module grm.M/ is a K-module of length r
(regardless of any lifting). By a filteredK-basis ofM we mean a collection fmigr1D1
of elements of M such that the collection of symbols fmigr1D1 is a K-basis of
grm.M/ and such that deg.mi / � deg.miC1/. Such bases exist: simply choose a
graded basis of grm.M/, suitably ordered, and lift it to M .

Choose a filteredK-basis fmigr1D1 ofM . For lD 1; 2 let �l WM! rest�l .M/ be
theK-linear isomorphism corresponding to this filtered basis. We get a commutative
diagram

M
�D1M

// M
�D1M

// M
�D1M

// M

M

 1

OO

�1
//

�

@@
M

�1

OO

�0

// M

�2

OO

�2
// M

 2

OO

in Modk. By what we already know from (1), the matrices in the bottom row
belong to Matr.Dcont

K=k/; and they satisfy � D �2 ı�0 ı�1. Moreover �1, �2 are in
GLr.K/� GLr.Dcont

K=k/. Thus it suffices to prove that �0 2 GLr.Dcont
K=k/.

Write �0 D Œ
i;j � with 
i;j 2 Dcont
K=k. These operators satisfy

rX
iD1

�1.ai / �mi D

rX
i;jD1

�2.
i;j .ai // �mj (2-9)

for any column Œai � 2Kr . Therefore, for any i and any a 2K, taking ai WD a and
aj WD 0 for j ¤ i , formula (2-9) gives

�1.a/ �mi D

rX
jD1

�2.
i;j .a// �mj :

But the basis fmigr1D1 is filtered, and this implies that 
i;j .a/D 0 for j < i and

i;i .a/D a. As elements of the ring Dcont

K=k we get 
i;j D 0 for j < i and 
i;i D 1.
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So the matrix �0 is upper triangular with 1 on the diagonal:

�0 D Œ
i;j �D

26664
1 � � � � �

0 1 � � � �
:::
:::
: : :

:::

0 0 � � � 1

37775 2Matr.Dcont
K=k/:

The matrix � WD 1��0 2Matr.Dcont
K=k/ is nilpotent, and hence the matrix

� WD

rX
iD0

�i 2Matr.Dcont
K=k/

satisfies � ı�0 D �0 ı � D 1. We conclude that �0 2 GLr.Dcont
K=k/. �

Remark 2.10. An attempt to deduce assertion (2) of the theorem from assertion (1)
by functoriality will not work. This is because (a priori) there is no symmetry
between the two liftings �1 and �2: only the lifting �2 is assumed to be precise.

Eventually we show (Corollary 2.12) that the lifting �1 is also precise. But this
relies on Theorem 2.8!

Corollary 2.11. In the situation of part (2) of the theorem, the fine .K; �1/-module
topology on M1 DM2 equals the fine .K; �2/-module topology on it.

Proof. For l D 1; 2 let us denote by M st
l

the k-module Ml endowed with the fine
.K; �l/-module topology. We want to prove that M st

1 DM
st
2 ; or, equivalently, we

want to prove that the identity automorphism � WM1!M2 in Modk becomes an
isomorphism �st WM st

1 !M st
2 in STModk.

We have equality � D  2 ı� ı �11 of isomorphisms M1!M2 in Modk. By
definition of the fine topology,  l W Krl

�
!M st

l
are isomorphisms in STModk.

Therefore it suffices to prove that � WKr1 !Kr2 is an isomorphism in STModk.
This is true by Lemma 2.7 and part (2) of the theorem. �

The next corollary is a generalization of [Yekutieli 1992, Proposition 2.2.2(a)].

Corollary 2.12. Let A be a precise artinian local ring in STRingc k, with residue
field K. Give K the fine A-module topology. Then any lifting � W K ! A in
STRingc k is a precise lifting.

Proof. Write �1 WD � . By definition there exists some precise lifting �2 WK!A; so
the topology on A equals the fine .K; �2/-module topology. Now apply Corollary
2.11 with M WD A. �

Here is another corollary, pointed out to us by Wolfson:

Corollary 2.13. Let A be a precise artinian local ring in STRingc k, with residue
field K, and let � W K ! A be a precise lifting. Let M be a finite A-module,
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and choose a K-linear isomorphism Kr �! rest� .M/. Then A acts on M Š Kr

via Matr.Dcont
K=k/.

Proof. In the theorem, takeMl WDM . For a2A we get an A-linear homomorphism
� WM !M , �.m/ WD a �m. �

Remark 2.14. If we only wanted to know that � 2 Matr2�r1.Endcont
k .K// in

Theorem 2.8(1), and that in part (2) � 2 GLr.Endcont
k .K//; then we did not have

to talk about differential operators at all, and the proof could have been included
in Section 1. The reason for placing the proof here is twofold. First, it is more
economical to prove the full result at once.

The second reason is more delicate. Sometimes in characteristic p > 0, differ-
ential operators are automatically continuous. See Example 2.3. In such cases all
liftings � WK! A are continuous. This says that Theorem 2.8 could hold without
assuming a priori that the liftings �1, �2 WK! A are continuous.

We finish this section with a discussion of differential forms. This will be needed
in Section 5. Recall that for A 2 Ringc k we have the de Rham complex, or the
DG ring of Kähler differentials, �A=k D

L
i�0�

i
A=k, with its differential d. In

degree 0 we have �0
A=kDA, and the k-linear derivation d WA!�1

A=k is universal,
in the sense that for any k-linear derivation @ W A!M there is a unique A-linear
homomorphism � W�1

A=k!M such that @D � ıd. The A-module�i
A=k is the i -th

exterior power of the A-module �1
A=k, and the operator d on �A=k is the unique

extension of d W�0
A=k!�1

A=k to an odd derivation.
Now consider A 2 STRingc k. The abstract DG ring �A=k is too big (at least in

characteristic 0). However the DG ring �A=k has a canonical ST structure. For
every i consider the .iC1/-st tensor power TiC1k .A/ WD A˝k � � � ˝k A, with its
tensor product topology (Definition 1.30). There is a surjection TiC1k .A/��i

A=k,

a0˝ a1˝ � � �˝ ai 7! a0 � d.a1/ � � � d.ai /;

and we use it to give �i
A=k the quotient topology. Then �A=k D

L
i�0�

i
A=k gets

the direct sum topology. It turns out that �A=k becomes a DG ST ring. In particular
the differential d is continuous. For any i let �i;sep

A=k WD .�
i
A=k/

sep, the associated
separated ST module. Let �sep

A=k WD
L
i�0�

i;sep
A=k , with the direct sum topology.

Note that �0;sep
A=k D A

sep.

Proposition 2.15 [Yekutieli 1992]. Let A be a commutative ST k-ring.

(1) The ST k-module �sep
A=k has a DG ST k-ring structure such the canonical

surjection �A W�A=k ��
sep
A=k is a homomorphism of DG ST k-rings.

(2) Let M be a separated ST A-module. The derivation d W A!�
1;sep
A=k induces a

bijection
Homcont

A .�
1;sep
A=k ;M/ �!Dercont

A=k.M/:
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For a proof and full details see [Yekutieli 1992, Section 1.5].

Example 2.16. Let K WD k..t1; : : : ; tn// be as in Example 2.3, and let kŒt� WD
kŒt1; : : : ; tn�. Since K is a separated ST k-ring, we see that �0;sep

K=k DK. Because
the homomorphism kŒt�!K is topologically étale in STRingc k, it follows that
�
1;sep
K=k is a free K-module with basis the sequence .d.t1/; : : : ; d.tn//. For every i

we have
�
i;sep
K=k D

Vi
K�

1;sep
K=k ;

a free K-module of rank
�
n
i

�
, with the fine K-module topology. For proofs see

[Yekutieli 1992, Corollaries 1.5.19 and 1.5.13].
Note that if k is a field of characteristic 0, then the K-module �1

K=k is a free
K-module of rank equal to tr:degk.K/, which is uncountably infinite. Thus the
kernel of the canonical surjection �K W�1K=k ��

1;sep
K=k is gigantic.

3. Topological local fields

In this section we review definitions and results from [Yekutieli 1992, Section 2.1].
We start with a definition due to Parshin [1976; 1983] and Kato [1979]. See also
[Fesenko and Kurihara 2000].

Definition 3.1. Let K be a field. An n-dimensional local field structure on K, for
n� 1, is a sequence O1.K/; : : : ;On.K/ of complete discrete valuation rings, such
that:

� K is the fraction field of O1.K/.
� For 1� i � n� 1, the residue field of Oi .K/ is the fraction field of OiC1.K/.

The data .K; fOi .K/gniD1/ is an n-dimensional local field. We refer to Oi .K/
as the i-th valuation ring of K. The residue field of Oi .K/ is denoted by ki .K/,
and its maximal ideal is denoted by mi .K/. We also write k0.K/ WDK.

Let K be an n-dimensional local field. A system of uniformizers in K (called
a regular system of parameters in [Yekutieli 1992]) is a sequence .a1; : : : ; an/ of
elements of O1.K/ such that a1 generates the maximal ideal m1.K/ of O1.K/ and,
if n� 2, the sequence .a2; : : : ; an/, which is the image of .a2; : : : ; an/ under the
canonical surjection O1.K/� k1.K/, is a system of uniformizers in k1.K/. A
system of uniformizers aD .a1; : : : ; an/ in K determines a valuation on K, with
values in the group Zn ordered lexicographically.

It is easy to find a system of uniformizers in an n-dimensional local field K. Say
.a2; : : : ; an/ is a system of uniformizers in k1.K/. Choose an arbitrary lifting to a
sequence .a2; : : : ; an/ in O1.K/, and append to it any uniformizer a1 of O1.K/.

Let O.K/ be the subring of K defined by

O.K/ WDO1.K/�k1.K/O2.K/ � � � �kn�1.K/On.K/: (3-2)
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This is a local ring, whose residue field is kn.K/. We call O.K/ the ring of integers
of K. The ring O.K/ is integrally closed in its field of fractions K; but unless
nD 1 (in which case O.K/DO1.K/), O.K/ is not noetherian.

A 0-dimensional local field is just a field; there are no valuations. Its ring of
integers is O.K/ WDK, and k0.K/ WDK too.

Definition 3.3. Let k be a nonzero commutative ring. An n-dimensional local
field over k, for n 2 N, is an n-dimensional local field .K; fOi .K/gniD1/ together
with a ring homomorphism k!O.K/ such that the induced ring homomorphism
k! kn.K/ is finite.

In other words, the n-dimensional local field structure of K lives in the category
Ringc k of commutative k-rings. If k is a field, then kn.K/ is a finite field extension
of k.

By abuse of notation, we usually call K an n-dimensional local field over k, and
keep the data fOi .K/gniD1 implicit.

Remark 3.4. Some authors insist that the base ring be kD Z; this forces kn.K/
to be a finite field. We do not impose such a restriction.

Definition 3.5. Let K and L be n-dimensional local fields over k, for n � 0. A
morphism of n-dimensional local fields over k is a k-ring homomorphism f WK!L

such that the following conditions hold when n� 1:

� f .O1.K//�O1.L/.
� The induced k-ring homomorphism f W O1.K/! O1.L/ is a local homo-

morphism.

� The induced k-ring homomorphism f W k1.K/! k1.L/ is a morphism of
.n�1/-dimensional local fields over k.

The category of n-dimensional local fields over k is denoted by LFn k. Note that
any morphism in LFn k is finite. Cf. Remark 3.11 below regarding more general
morphisms between local fields.

Remark 3.6. It can be shown that a field K in Ringc k admits at most one structure
of an n-dimensional local field (see, e.g., [Morrow 2013, Remark 2.3]). This implies
that the forgetful functor LFn k! Ringc k is fully faithful.

From here on we assume that the base ring k is a perfect field. This implies that
all our local fields are of equal characteristic.

Definition 3.7. Let k be a perfect field. Given a finite field extension k0 of k, the
standard n-dimensional topological local field over k with last residue field k0 is
the field of iterated Laurent series

k0..t1; : : : ; tn// WD k0..tn// � � � ..t1//:
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Let us write K WD k0..t1; : : : ; tn//. The field K comes equipped with these two
structures:

(1) A structure of an n-dimensional local field, in which the valuation rings are

Oi .K/ WD k0..tiC1; : : : ; tn//ŒŒti ��;

and the residue fields are

ki .K/ WD k0..tiC1; : : : ; tn//:

(2) A structure of an ST k-ring, with the topology from Definition 1.17, starting
from the discrete topology on k0.

For nD 0 we have K D k0, a finite extension of k with the discrete topology.

Definition 3.8 [Yekutieli 1992, Section 2.1]. Let k be a perfect field. An n-dimen-
sional topological local field over k, for n� 0, is a field K together with:

(a) A structure fOi .K/gniD1 of an n-dimensional local field on K.

(b) A ring homomorphism k!O.K/ such that k! kn.K/ is finite.

(c) A topology on K, making it a semi-topological k-ring.

The condition is this:

(P) There is a bijection

f W k0..t1; : : : ; tn//
�
!K

from the standard n-dimensional topological local field with last residue field
k0 WD kn.K/. The bijection f must have these two properties:
(i) f is an isomorphism in LFn =k (i.e., it respects the valuations).

(ii) f is an isomorphism in STRingc k (i.e., it respects the topologies).

Such a bijection f is called a parametrization of K.

The parametrization f is not part of the structure of K; it is required to exist, but
(as we shall see) there are many distinct parametrizations. We use the abbreviation
“TLF” for “topological local field”.

Definition 3.9. Let K and L be n-dimensional TLFs over k. A morphism of TLFs
f WK! L is a homomorphism of k-rings satisfying these two conditions:

(i) f is a morphism of n-dimensional local fields (i.e., it respects the valuations;
see Definition 3.5).

(ii) f is a homomorphism of ST k-rings (i.e., it is continuous).

The category of n-dimensional TLFs over k is denoted by TLFn =k.

There are forgetful functors TLFn k! LFn k and TLFn k! STRingc k.
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Remark 3.10. The conditions of Definition 3.3 and 3.8 are more restrictive than
those of [Yekutieli 1992, Definition 2.1.10], in this respect: here we require that the
last residue field k0 WD kn.K/ is finite over the base field k, whereas in [loc. cit.]
we only required that �1k0=k should be a finite k0-module (which allows k0 to be a
finitely generated extension field of k with transcendence degree greater than 0).

If the TLF K arises as a local factor of a Beilinson completion k.x0/� , as in
Theorem 6.1, then the last residue field kn.K/ is finite over k. So this fits into
Definition 3.8.

Remark 3.11. In [Yekutieli 1992, Section 2.1] we also allow the much more
general possibility of a morphism of TLFs f WK! L where dim.K/ < dim.L/.
For instance, the inclusions k! k..t2//! k..t1; t2// are morphisms. In this way
we get a category TLFk, which contains each TLFn k as a full subcategory.

Remark 3.12. The papers on higher local fields from the Parshin school (prior
to 1992) did not have a correct treatment of the topology on higher local fields.
Some papers (e.g., [Parshin 1976; 1983; Beilinson 1980]) ignored it. Others —
most notably [Lomadze 1981] — erroneously claimed that the topology of a local
field is intrinsic, namely that it is determined by the valuations. This is correct in
dimension 1; but it is false when char.k/D 0 and the dimension is 2 or higher. We
gave a counterexample in [Yekutieli 1992, Example 2.1.22] that we reproduce in
an expanded form as Example 3.13 below.

It is a deep fact, also proved in [Yekutieli 1992], that in characteristic p > 0 the
topology is determined by the valuation, so that the forgetful functor TLFn k!
LFn k is an equivalence. The proof relies on the structure of the ring of differential
operators DK=k in characteristic p > 0 (see [Yekutieli 1992, Theorem 2.1.14 and
Proposition 2.1.21]).

Example 3.13. This is a slightly expanded version of [Yekutieli 1992, Exam-
ple 2.1.22]. Let k be a field of characteristic 0, and let K WDk..t1; t2//, the standard
TLF of dimension 2. We choose a collection fbigi2I of elements in k1.K/Dk..t2//
that is a transcendence basis over the subfield k.t2/. For any i 2 I we choose some
element ci 2O1.K/. As explained in the proof of Theorem 1.1, there is a unique
lifting

� W k..t2//!O1.K/D k..t2//ŒŒt1��

in Ringc k such that �.t2/D t2 and �.bi /D bi C t1ci for all i 2 I . Next we extend
� to a k-ring automorphism f W O1.K/ ! O1.K/ by setting f .t1/ WD t1. By
localization this extends to a k-ring automorphism f WK!K.

It easy to check that f is an automorphism of K in the category LF2 k of local
fields. However, since f is the identity on the subfield k.t1; t2/ � K, and this
subfield is a dense subset of K, it follows that f is continuous if and only if it is
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the identity automorphism of K, which occurs if and only if ci D 0 for all i . Thus,
if we choose at least one ci ¤ 0, f is not a morphism in TLF2 k.

Let K be a TLF of dimension n� 1 over k. The inclusion O1.K/ ,!K gives
O1.K/ an induced structure of ST k-ring (it is the subspace topology). Then the
surjection O1.K/ � k1.K/ gives k1.K/ an induced structure of ST k-ring (it
is the quotient topology). And so on all the way to kn.K/. In other words, the
topologies are such that each Oi .K/ ,! ki�1.K/ is a strict monomorphism in
STRingc k, and each Oi .K/� ki .K/ is a strict epimorphism.

If we choose a parametrization K Š k0..t1; : : : ; tn//, then the induced ring
isomorphisms

k0..tiC1; : : : ; tn//ŒŒti ��ŠOi .K/
and

k0..tiC1; : : : ; tn//Š ki .K/

are also isomorphisms of ST k-rings. This follows from [Yekutieli 1992, Proposi-
tion 1.3.5]. In particular, each ki .K/ is an .n�i/-dimensional TLF over k.

Recall the notions of precise lifting and precise artinian local ring from Definition
1.24.

Lemma 3.14. Let K be a TLF of dimension n � 1 over k; let l � 0. Then the ST
ring Al WDO1.K/=m1.K/lC1, with the quotient topology from O1.K/, is a precise
artinian local ring in STRingc k.

Proof. Choose a parametrization K Š k0..t1; : : : ; tn//, and let K WD k0..t2; : : : ; tn//.
ThenKŠk1.K/ andKŒŒt1��ŠO1.K/ as ST k-rings; and the inclusionK!KŒŒt1��

represents a lifting �1 W k1.K/!O1.K/. As ST K-modules, O1.K/Š
Q1
iD0K

and Al Š
Ql
iD0K. This shows that the quotient topology on Al coincides with the

fine K-module topology on it. So �1 is a precise lifting. �

Lemma 3.15. Let K 2 TLFn k, with last residue field k0 WD kn.K/. There is a
unique lifting � W k0!O.K/ in STRingc k of the canonical surjection O.K/� k0.

Proof. Since k0 is discrete, we do not have to worry about continuity. We use
induction on n. Let � W k0 ! O.k1.K// � k1.K/ be the unique lifting for this
.n�1/-dimensional TLF. Consider the canonical surjection � WO1.K/! k1.K/.
By Theorem 1.1 there is a unique k-ring homomorphism � W k0!O1.K/ such that
� ı � D � . It is trivial to see that �.k0/ is inside O.K/. �

The construction and classification of parametrizations of a TLF (condition (P)
in Definition 3.8) is made clear by the next theorem (which is a special case of
[Yekutieli 1992, Corollary 2.1.19]).

Theorem 3.16 [Yekutieli 1992]. Let K be an n-dimensional TLF over k, let
.a1; : : : ; an/ be a system of uniformizers in K, let k0 WD kn.K/, and let � W k0!
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O.K/ be the unique lifting over k. Then � extends uniquely to an isomorphism of
TLFs

f W k0..t1; : : : ; tn//!K

such that f .ti /D ai .

Definition 3.17. Let K be an n-dimensional TLF over k. By a system of liftings
for K we mean a sequence � D .�1; : : : ; �n/, where for each i

�i W ki .K/!Oi .K/

is a homomorphism of ST k-rings that lifts the canonical surjection Oi .K/ �
ki .K/.

The important thing to remember is that each lifting �i W ki .K/! Oi .K/ is
continuous. When nD 0 the only system of liftings is the empty system � D ./.

Example 3.18. Take a standard TLF K WDk0..t1; : : : ; tn//. It comes equipped with
a standard system of liftings

�i W ki .K/!Oi .K/;
namely the inclusions

�i W k
0..tiC1; : : : ; tn//! k0..tiC1; : : : ; tn//ŒŒti ��:

Proposition 3.19. Any n-dimensional TLF K over k admits a system of liftings.

Proof. Take a parametrization f W k0..t1; : : : ; tn//! K. The standard system of
liftings of k0..t1; : : : ; tn// induces a system of liftings on K. �

4. Lattices and BT operators

As before, k is a perfect base field.

Definition 4.1. Let K be an n-dimensional TLF over k, and let M be a finite
K-module. An O1.K/-lattice in M is a finite O1.K/-submodule L of M such that
M DK �L. We denote by Lat.M/ the set of O1.K/-lattices in M .

Let L be an O1.K/-lattice in M . Recall that O1.K/ is a DVR. This implies that
L is a free O1.K/-module, of rank equal to that of M .

Example 4.2. Consider a TLF K, and take M WD Kr . Choose a uniformizer
a 2 O1.K/. For any i 2 Z there is a lattice Li WD ai �O1.K/r � Kr . Let us call
these standard lattices. They do not depend on the choice of uniformizer.

When r D 1, all the O1.K/-lattices inM are standard. When r > 1, M has many
more lattices. However any O1.K/-lattice L in M can be sandwiched between two
standard lattices: Li � L� L�j for i , j � 0.
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Suppose M is a finite K-module, and L, L0 2 Lat.M/ with L � L0. Then
the quotient L0=L is a finite length O1.K/-module. If we are given a lifting
�1 W k1.K/! O1.K/, then L0=L becomes a finite module over the TLF k1.K/,
which we denote by rest�1.L

0=L/; see Definition 1.20.

Lemma 4.3. Let M be a finite K-module, let L be an O1.K/-lattice in M , and let
a 2O1.K/ be a uniformizer. Give M the fine K-module topology. For every i 2 Z

give the lattice Li WD ai �L the fine O1.K/-module topology. For every i 2 N give
the quotient L=Li the fine O1.K/-module topology.

(1) The topology on M equals the fine O1.K/-module topology on it.

(2) The inclusions Li !M , for i 2 Z, are strict monomorphisms in STModk.

(3) Consider the direct system fL�j gj2N in STModk. Give limj!L�j the direct
limit topology. Then the canonical bijection limj!L�j ! M is an iso-
morphism in STModk.

(4) The canonical surjections L! L=Li , for i 2 N, are strict epimorphisms in
STModk.

(5) Let �1 W k1.K/!O1.K/ be a lifting in STRingc k of the canonical surjection.
Then for every i 2N the topology onL=Li equals the fine .k1.K/; �1/-module
topology on it.

(6) Consider the inverse system fL=Ligi2N in STModk. Give lim i .L=Li / the
inverse limit topology. Then the canonical bijection L! lim i .L=Li / is an
isomorphism in STModk.

Proof. All these assertions become clear after we choose an O1.K/-linear iso-
morphism LŠ O1.K/r and a ST k-ring isomorphism O1.K/Š k1.K/ŒŒt ��. See
[Yekutieli 1992, Proposition 1.3.5]. �

Let K be a TLF of dimension n� 1 over k. If � D .�1; : : : ; �n/ is a system of
liftings for K, then we write d1.� / WD .�2; : : : ; �n/. This is a system of liftings for
the TLF k1.K/.

Definition 4.4. Let K be an n-dimensional TLF over k, and let .M1;M2/ be a pair
of finite K-modules.

(1) By a pair of O1.K/-lattices in .M1;M2/ we mean a pair .L1; L2/, where
Li 2 Lat.Mi /. The set of such pairs is denoted by Lat.M1;M2/.

(2) Let � WM1!M2 be a k-linear homomorphism, and let .L1; L2/, .L01; L
0
2/

be in Lat.M1;M2/. We say that .L01; L
0
2/ is a �-refinement of .L1; L2/ if

L01 � L1, L2 � L02, �.L01/� L2 and �.L1/� L02. In this case we write

.L01; L
0
2/�� .L1; L2/;

and refer to it as a �-refinement in Lat.M1;M2/.
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The relation �� is a partial ordering on Lat.M1;M2/. If .L01; L
0
2/�� .L1; L2/,

then there is an induced k-linear homomorphism � W L1=L
0
1! L02=L2.

The next two definitions are variations of the original definitions in [Beilinson
1980], which are themselves generalizations to n � 2 of the definitions in [Tate
1968]. We saw similar definitions in the more recent papers [Osipov 2005; 2007;
Braunling 2014a; 2014b]. The notation we use is close to that of Tate.

Definition 4.5. Let K be an n-dimensional TLF over k, let � D .�1; : : : ; �n/ be
a system of liftings for K, and let .M1;M2/ be a pair of finite K-modules. We
define the subset

EK� .M1;M2/� Homk.M1;M2/

as follows:

(1) If nD 0, any k-linear homomorphism � WM1!M2 belongs to EK� .M1;M2/.

(2) If n�1, then a k-linear homomorphism � WM1!M2 belongs to EK� .M1;M2/

if it satisfies these two conditions:

(i) Every .L1; L2/ 2 Lat.M1;M2/ has some �-refinement .L01; L
0
2/.

(ii) For every �-refinement .L01; L
0
2/�� .L1; L2/ in Lat.M1;M2/ the induced

homomorphism

� W L1=L
0
1! L02=L2

belongs to

Ek1.K/d1.� /
.rest�1.L1=L

0
1/; rest�1.L

0
2=L2//:

A homomorphism � WM1!M2 that belongs to EK� .M1;M2/ is called a local
Beilinson–Tate operator relative to � , or a BT operator for short.

Let K be a TLF over k of dimension at least 1. We denote by O1.K/km1.K/
the ST k-ring which is the ring O1.K/ with its m1.K/-adic topology. Given an
O1.K/-module M , the fine O1.K/km1.K/-module topology on M is called the fine
m1.K/-adic topology. Now suppose � WM1!M2 is a k-linear homomorphism. We
say that � is m1.K/-adically continuous if it is continuous for the fine m1.K/-adic
topologies on M1 and M2.

Example 4.6. If n D 1 then the usual topology on O1.K/ equals the m1.K/-
adic topology. Thus K has the fine m1.K/-adic topology. If n > 1 then the fine
m1.K/-adic topology is finer than, and not equal to, the usual topology on O1.K/
and K.

Lemma 4.7. In the situation of Definition 4.5, the homomorphism � WM1!M2

satisfies condition (2.i) if and only if it is m1.K/-adically continuous.
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Proof. Let K be the field k1.K/, but with the discrete topology. The lifting �1
induces an isomorphism of ST rings KŒŒt �� �!O1.K/km1.K/. Thus the field K, with
the fine m1.K/-adic topology, is isomorphic to K..t// as ST k-rings. But we know
that

K..t//Š

�Y
i�0

K � t i
�
˚

�M
i<0

K � t i
�

as ST k-modules, where K � t i Š K is discrete; cf. the proof of [Yekutieli 1992,
Proposition 1.3.5]. It is now an exercise in quantifiers to compare t -adic continuity
to condition (2.i). Cf. [Braunling 2014b, Remark 1 in Section 1.1], where this is
also mentioned. �

Lemma 4.8. In the situation of Definition 4.5, give M1 and M2 the fine K-module
topologies. Then every � 2 EK� .M1;M2/ is continuous.

Proof. The proof is by induction on n. For n D 0 there is nothing to prove,
since these are discrete modules. So assume n � 1. (Actually for n D 1 this
was proved in Lemma 4.7.) In view of Lemma 4.3, it suffices to prove that,
for every .L01; L

0
2/ �� .L1; L2/ in Lat.M1;M2/, the induced homomorphism

� W L1=L
0
1! L02=L2 is continuous. But � is a BT operator in dimension n� 1, so

by induction it is continuous. �

Lemma 4.9. Let K be an n-dimensional TLF over k, and let � be a system of
liftings for K. For l D 1; 2; 3; 4 let Ml be a finite K-module, and for l D 1; 2; 3 let
�l WMl !MlC1 be a k-linear homomorphism.

(1) If �1 is K-linear then it is a BT operator.

(2) If �1 and �2 are BT operators, then �2 ı�1 is a BT operator.

(3) Assume that �1 is surjective and K-linear, �3 is injective and K-linear, and
�3 ı�2 ı�1 is a BT operator. Then �2 is a BT operator.

Here is a diagram depicting the situation:

M1

�1
�!M2

�2
�!M3

�3
�!M4:

Proof. We prove all three assertions by induction on n and on their sequential order.
For n D 0 all assertions are trivial, so let us assume that n � 1. The conditions
mentioned below are those in Definition 4.5.

(1) For this we assume that assertion (1) is true in dimension n� 1. Condition
(2.i), namely the m1.K/-adic continuity of �1, is clear. Consider any �-refine-
ment .L01; L

0
2/��1 .L1; L2/ in Lat.M1;M2/. Since the induced homomorphism

� W L1=L
0
1! L02=L2 is O1.K/-linear, it is also .k1.K/; �1/-linear. By induction

on n, � is a BT operator. So condition (2.ii) holds.



204 Amnon Yekutieli

(2) Here we assume that assertions (2) and (3) are true in dimension n� 1. Write
 WD �2 ı �1. The m1.K/-adic continuity of  , that is, condition (2.i), is clear.
Consider any  -refinement .L01; L

0
3/ � .L1; L3/ in Lat.M1;M3/. To satisfy

condition (2.ii) we have to prove that  W L1=L01! L03=L3 is a BT operator in
dimension n � 1. Let LÞ

2 2 Lat.M2/ be a lattice that contains �1.L1/, and let
LÞ
3 2 Lat.M3/ be a lattice that contains both L03 and �2.LÞ

2 /. Let L~2 2 Lat.M2/

be a lattice that is contained in LÞ
2 . Let L~1 2 Lat.M1/ be such that L~1 � L

0
1 and

�1.L
~
1 /�L

~
2 . All these choices are possible because condition (2.i) is satisfied by

�1 and �2. Consider the commutative diagram

L1

L~1

˛
// //

�1 ��

L1

L01

 
//
L03
L3
//
ˇ
//
LÞ
3

L3

LÞ
2

L~2

�2

77

in Modk. Since �1 and �2 are BT operators, condition (2.ii) says that �1 and �2
are BT operators (in dimension n�1). By part (2) the composition �2 ı�1 is a BT
operator. The homomorphisms ˛ and ˇ are k1.K/-linear. Therefore by part (3) the
homomorphism  is a BT operator.

(3) For this we assume that assertions (1) and (2) are true in dimension n. Let
 WD �3 ı �2 ı �1. Choose K-linear homomorphisms  1 W M2 ! M1 and
 3 W M4 ! M3 that split �1 and �3 respectively. Then �2 D  3 ı  ı  1. By
assertions (1) and (2), we see that �2 is a BT operator. �

Lemma 4.10. In the situation of Definition 4.5, the set EK� .M1;M2/ is a k-sub-
module of Homk.M1;M2/.

Proof. The proof is by induction on n, and we can assume that n � 1. Take any
�1, �2 2 EK� .M1;M2/ and any a 2 k. Let  WD a � �1 C �2; we have to show
that  2 EK� .M1;M2/. Since condition (2.i) of Definition 4.5 is about m1.K/-adic
continuity (by Lemma 4.7), we see that  satisfies it.

We need to check condition (2.ii) of that definition. So let .L01; L
0
2/ be a

 -refinement of .L1; L2/. By m1.K/-adic continuity there are lattices LÞ
1 � L

0
1

and L02�L
Þ
2 such that �i .LÞ

1 /�L2 and �i .L1/�LÞ
2 . Consider the commutative

diagram

L1

LÞ
1

˛
// //

a��1C�2

66

L1

L01

 
//
L02
L2
//
ˇ
//
LÞ
2

L2
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in Modk. The induction hypothesis tells us that a ��1C�2 is a BT operator. The
homomorphisms ˛ and ˇ are k1.K/-linear. Therefore, according to Lemma 4.9(3),
the homomorphism  is a BT operator. �

Lemma 4.11. Let K be an n-dimensional TLF over k, let � be a system of liftings
for K, and let .M1;M2/ be a pair of finite K-modules. Then

Diffcont
K=k.M1;M2/� EK� .M1;M2/:

Proof. We use induction on n. For nD 0 there is nothing to prove, so let’s assume
that n� 1. (Actually, for nD 1 there is nothing to prove either; see Example 4.12.)

Let � W M1 ! M2 be a continuous differential operator. Choose K-linear
isomorphisms Ml Š Krl for l D 1; 2; so we may view � as a matrix Œ�i;j � in
Matr2�r1.Dcont

K=k/. According to (1) and (2) of Lemma 4.9, it suffices to prove that
each �i;j is a BT operator. Therefore we can assume that M1 D M2 D K and
� 2 Dcont

K=k.
Choose a uniformizer a 2O1.K/. If char.k/D 0 then by formula (2-5) there is

an integer d , depending on the coefficients of the operator � in that expansion, such
that �.ai �O1.K//� ai�d �O1.K/ for all i . Hence � is m1.K/-adically continuous.

If char.k/D p > 0, then by [Yekutieli 1992, Theorem 1.4.9] the operator � is
linear over the subfield K 0 WDk �Kp

d

�K for a sufficiently large natural number d .
The field K 0 is also an n-dimensional TLF, K 0 ! K is a morphism of TLFs,
and O1.K 0/! O1.K/ is a finite homomorphism. So the m1.K/-adic topology
on O1.K/ coincides with its m1.K 0/-adic topology. Since � is O1.K 0/-linear, it
follows that � is m1.K

0/-adically continuous. Using Lemma 4.7, we see that in
both cases (char.k/D 0 and char.k/ > 0) condition (2.i) of Definition 4.5 holds.

Now take a �-refinement .L01; L
0
2/�� .L1; L2/ in Lat.M1;M2/. Write M 1 WD

rest�1.L1=L
0
1/ and M 2 WD rest�1.L

0
2=L2/. We must prove that � WM 1!M 2 is

a BT operator between these k1.K/-modules. We know that � is a differential
operator over O1.K/, and therefore it is also a differential operator over k1.K/.
Choose some k1.K/-linear isomorphisms  l W k1.K/rl

�
!M l . Then

 WD  �12 ı� ı 1 W k1.K/
r1 ! k1.K/

r2

is a differential operator over k1.K/. By the induction hypothesis,  is a BT
operator. Finally, by (1) and (2) of Lemma 4.9, the homomorphism �D 2ı ı 

�1
1

is a BT operator. �

Example 4.12. If nD 0, then by definition

EK� .M1;M2/D Homk.M1;M2/:

This is a finite k-module.
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If nD 1 then condition (2.ii) of Definition 4.5 is trivially satisfied. Lemma 4.7
and Example 4.12 show that

EK� .M1;M2/D Homcont
k .M1;M2/;

the module of continuous k-linear homomorphisms. This was already noticed in
[Osipov 2005; 2007; Braunling 2014b, Section 1.1].

The equalities above indicate that the choice of � is irrelevant. However in
dimensions 0 and 1 there is only one lifting, so in fact there is no news here. Later,
in Theorem 4.20, we will prove that in any dimension the system of liftings � is
not relevant.

Example 4.13. For n� 2 the inclusion

EK� .M1;M2/� Homcont
k .M1;M2/

is usually proper (i.e., it is not an equality). Here is a calculation demonstrating this:
Let K WD k..t1; t2//, the standard TLF with its standard system of liftings � . Take
M1DM2 WDK. Any a 2K is a series aD

P
i2Z ai .t2/ � t

i
1, where ai .t2/ 2 k..t2//

and ai .t2/D 0 for i � 0. We let  2 Endk.K/ be

 

�X
i2Z

ai .t2/ � t
i
1

�
WD a0.t1/:

To see that this is continuous we use the continuous decomposition

K D k..t2//..t1//Š k..t2//ŒŒt1��˚

�M
i<0

k..t2// � t
i
1

�
:

This gives a continuous function 1 WK!k..t2//, sending
P
i2Z ai .t2/�t

i
1 to a0.t2/.

Next there is an isomorphism  2 Wk..t2//!k..t1//, a0.t2/ 7!a0.t1/. Finally the in-
clusion 3 Wk..t1//!k..t2//..t1// is continuous. The function is D 3ı 2ı 1,
so it is continuous.

Take the standard lattices Li D t i1 � k..t2//ŒŒt1�� in K. For every j the element
aj WD t

j
2 belongs to L0, yet the element  .aj /D t

j
1 does not belong to LjC1. Thus

 .L0/ is not contained in any lattice, and requirement (2.i) of Definition 4.5 is
violated, so  does not belong to EK� .K;K/.

Recall that for an n-dimensional TLF K, with n � 2, and a system of liftings
� D .�1; : : : ; �n/, the truncation d1.� /D .�2; : : : ; �n/ is a system of liftings for
the first residue field k1.K/.

Definition 4.14. Let K be a TLF over k of dimension n� 1, let � D .�1; : : : ; �n/
be a system of liftings for K, and let .M1;M2/ be a pair of finite K-modules. For
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integers i 2 f1; : : : ; ng and j 2 f1; 2g, we define the subset

EK� .M1;M2/i;j � EK� .M1;M2/

to be the set of BT operators � WM1!M2 that satisfy the conditions:

(i) The operator � belongs to EK� .M1;M2/1;1 if there exists some L2 2 Lat.M2/

such that �.M1/� L2.

(ii) The operator � belongs to EK� .M1;M2/1;2 if there exists some L1 2 Lat.M1/

such that �.L1/D 0.

(iii) Let n � 2. For i 2 f2; : : : ; ng and j 2 f1; 2g, the operator � belongs to
EK� .M1;M2/i;j if for any �-refinement .L01; L

0
2/�� .L1; L2/ in Lat.M1;M2/

the induced homomorphism

� W L1=L
0
1! L02=L2

belongs to

Ek1.K/d1.� /
.rest�1.L1=L

0
1/; rest�1.L

0
2=L2//i�1;j :

Definition 4.15. Let K be an n-dimensional TLF over k, and let � be a system of
liftings for K. We define

E� .K/ WD EK� .K;K/:

If n� 1 we define
E� .K/i;j WD EK� .K;K/i;j :

Lemma 4.16. Let K be an n-dimensional TLF over k, with n � 1, and let � be
a system of liftings for K. For l D 1; 2; 3; 4 let Ml be a finite K-module, and for
l D 1; 2; 3 let �l 2 EK� .Ml ;MlC1/. Take any j 2 f1; 2g and i 2 f1; : : : ; ng.

(1) The set EK� .M1;M2/i;j is a k-submodule of EK� .M1;M2/.

(2) If �2 2 EK� .M2;M3/i;j , then �3 ı�2 ı�1 2 EK� .M1;M4/i;j .

(3) Assume that �1 is surjective and K-linear, �3 is injective and K-linear, and
�3 ı�2 ı�1 2 EK� .M1;M4/i;j . Then �2 2 EK� .M2;M3/i;j .

Proof. We use induction on n and on the sequential order of the assertions.

(1) For i D 1 this is clear. Now assume i � 2 (and hence also n� 2). For this we
use the same strategy as in the proof of Lemma 4.10. We are allowed to make use
of assertion (3) in dimension n� 1.

(2) For i D 1 this is clear. Now assume i � 2 (and hence also n � 2). Here
we use the same proof as of Lemma 4.9(2), relying on assertions (2) and (3) in
dimension n� 1.

(3) Same as the proof of Lemma 4.9(3). We rely on assertion (2) in dimension n. �
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Lemma 4.17. Let K be an n-dimensional TLF over k, with n� 1, and let � be a
system of liftings for K. Let M1 and M2 be finite K-modules. For any i there is the
equality

EK� .M1;M2/D EK� .M1;M2/i;1CEK� .M1;M2/i;2:

Proof. For i D 1 this is clear. (It is Tate’s original observation [1968].)
Assume i � 2 (and hence also n� 2). For this we use induction on n. Choose

K-linear isomorphisms Krl ŠMl for l D 1; 2. According to Lemmas 4.9 and 4.16
there are k-linear isomorphisms

EK� .M1;M2/ŠMatr2�r1.E� .K//

and

EK� .M1;M2/i;j ŠMatr2�r1.E� .K/i;j /:

Therefore we can assume that M1 DM2 DK.
The induction hypothesis says that the identity automorphism 1k1.K/ of the TLF

k1.K/ is a sum 1k1.K/ D �1 C �2, where �j 2 Ed1.� /.k1.K//i�1;j . Choose a
uniformizer a 2 O1.K/. Any element of K has a unique expansion as a seriesP
q2Z �1.bq/ �a

q , where bq 2 k1.K/ and bq D 0 for q� 0. Define �j 2 Endk.K/

by the formula

�j

�X
q2Z

�1.bq/ � a
q

�
WD

X
q2Z

�1.�j .bq// � a
q:

A little calculation shows that �j 2 E� .K/i;j ; and clearly �1C�2 D 1K . �

Definition 4.18 [Tate 1968]. Let M be a k-module. An operator � 2 Endk.M/ is
called finite potent if, for some positive integer q, the operator �q has finite rank,
i.e., the k-module �q.M/ is finite.

Lemma 4.19. Let K be a TLF over k of dimension n � 1, let � be a system of
liftings for K, and let M be a finite K-module. Then any operator

� 2
\

iD1;:::;n
jD1;2

EK� .M;M/i;j

is finite potent.

Proof. The proof is by induction on n. (For nD 1 this is Tate’s original observation.)
Since � 2 EK� .M;M/1;1, there is a lattice L2 2 Lat.M/ such that �.M/� L2.

Since � 2EK� .M;M/1;2, there is a lattice L1 2Lat.M/ such that �.L1/D 0. After
replacing L1 by a smaller lattice, we can assume that L1 � L2. Consider the
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commutative diagram

0
�

//

�

��

L1

�

��

�
//

�

||

L2

�

��

�
// M

�

{{

�

��

0
�

// L1
�

// L2
�

// M

in Modk. Define M WD L2=L1. If we can prove that the induced homomorphism
� WM !M is finite potent, then it will follow, by a simple linear algebra argument
based on the diagram above, that � is finite potent.

If nD 1 then M is finite over k, so we are done. If n� 2, then by definition

� 2
\

iD1;:::;n�1
jD1;2

EKd1.� /.M;M/i;j :

The induction hypothesis says that � is finite potent. �

Theorem 4.20. Let K be an n-dimensional TLF over k, and let .M1;M2/ be a
pair of finite K-modules. Suppose � and � 0 are two systems of liftings for K.

(1) There is equality

EK� .M1;M2/D EK� 0.M1;M2/

inside Homk.M1;M2/

(2) If n� 1, there is equality

EK� .M1;M2/i;j D EK� 0.M1;M2/i;j

for all i D 1; : : : ; n and j D 1; 2.

Proof. (1) By symmetry it is enough to prove the inclusion “�”. The proof is by
induction on n. For nD 0 there is nothing to prove.

Now assume n � 1. Let � 2 EK� .M1;M2/. We have to prove that � is in
EK� 0.M1;M2/. Since condition (2.i) of Definition 4.5 does not involve the liftings,
there is nothing to check.

Next we consider condition (2.ii). Take some �-refinement .L01; L
0
2/�� .L1; L2/

in Lat.M1;M2/. DefineM 1 WDL1=L
0
1 andM 2 WDL

0
2=L2, and let � WM 1!M 2 be

the induced homomorphism. Let us writeK WDk1.K/, � WDd1.� / and � 0 WDd1.� 0/.
We know that

� 2 EK� .rest�1.M 1/; rest�1.M 2//: (4-21)

The induction hypothesis says that E� .K/D E� 0.K/.
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ChooseK-linear isomorphisms �l WKrl
�
!rest�1.M l/ and �0

l
WKrl �!rest� 01.M l/.

This gives rise to a commutative diagram

M 1

D
// M 1

�
// M 2

D
// M 2

Kr1

�01

OO

 1
// Kr1

�1

OO

 
// Kr2

�2

OO

 2
// Kr2

�02

OO

in Modk. According to formula (4-21) and Lemma 4.9, the operator  is in
Matr2�r1.E� .K//. Combining Lemma 3.14 and Theorem 2.8 we see that the oper-
ators  l belong to GLrl .D

cont
K=k

/. Therefore, by Lemma 4.11,  l 2 GLrl .E� .K//.
We conclude that  0 WD  2 ı ı 1 is in

Matr2�r1.E� .K//DMatr2�r1.E� 0.K//:

So by Lemma 4.9 we have

� D �02 ı 
0
ı�0 �11 2 EK� 0.rest� 01.M 1/; rest� 01.M 2//:

This is what we had to prove.

(2) Again we only prove the inclusion “�”, and the proof is by induction on n.
For i D 1 the conditions do not involve the liftings, so there is nothing to check.
Now consider i � 2 (and hence n � 2). We assume that the theorem is true for
dimension n� 1. Take some � 2 EK� .M1;M2/i;j , and let .L01; L

0
2/ �� .L1; L2/

be a �-refinement in Lat.M1;M2/. In the notation of the proof of part (1) above,
the operator  is inside Matr2�r1.E� .K/i;j /. This is because

� 2 EK� .rest�1.M 1/; rest�1.M 2//i;j ;

and E� .K/i;j is a two-sided ideal in the ring E� .K/. The induction hypothesis
tells us that E� .K/i;j D E� 0.K/i;j . Therefore the same calculations as above yield

� 2 EK� 0.rest� 01.M 1/; rest� 01.M 2//i;j

as required. �

Taking M1 DM2 WDK in the theorem we obtain:

Corollary 4.22. Let K be an n-dimensional TLF over k, and let � and � 0 be two
systems of liftings for K. Then E� .K/ D E� 0.K/. If n � 1 then E� .K/i;j D
E� 0.K/i;j for all i , j .

The corollary justifies the next definition.

Definition 4.23. Let K be an n-dimensional TLF over k.
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(1) We define

E.K/ WD E� .K/;

where � is any system of liftings for K. Elements of E.K/ are called local
Beilinson–Tate operators on K.

(2) Assume n� 1. For i 2 f1; : : : ; ng and j 2 f1; 2g we define

E.K/i;j WD EK� .K;K/i;j ;

where � is any system of liftings for K.

Of course, when n D 0 we have E.K/ D Endk.K/, which is not interesting.
The next theorem summarizes what we know about BT operators in dimensions 1
and above. Recall the notion of an n-dimensional cubically decomposed ring of
operators on a commutative k-ring A, from Definition 0.3.

Theorem 4.24. Let K be an n-dimensional TLF over k, with n� 1.

(1) The ring of BT operators E.K/, with its collection of ideals fE.K/i;j g, is an
n-dimensional cubically decomposed ring of operators on K.

(2) There are inclusions of rings

K � Dcont
K=k � E.K/� Endcont

k .K/� Endk.K/:

Proof. Assertion (1) is a combination of Lemmas 4.16, 4.17 and 4.19. Assertion (2)
is a combination of Lemmas 4.9, 4.10 and 4.11. �

Remark 4.25. It would be good to have a structural understanding of the objects
E.K/ and E.K/i;j associated to a TLFK. For instance, does E.K/ carry a canonical
structure of an ST ring, or perhaps some “higher semi-topological structure”? Such
a structure could help in proving Conjecture 5.7.

Remark 4.26. Osipov [2007] introduced the categories Cn, n 2 N, that fiber
over Modk. These categories are defined inductively, in a way that closely resembles
Beilinson’s definitions [1980]. The paper [Braunling et al. 2014] introduced the
categories Taten of n-Tate spaces, also fibered over Modk. Presumably these two
concepts coincide.

Let K be an n-dimensional TLF over k. It seems likely that K should have
a canonical Cn-structure, or a canonical Taten-structure. Moreover, the subrings
EndCn.K/, EndTaten.K/ and E.K/ of Endk.K/ should coincide.

If that is the case, then some of our statements above become similar or equivalent
to some results in [Osipov 2007]. For instance, our Lemma 4.8 corresponds to
[Osipov 2007, Proposition 3].
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5. Residues

In this section we provide background for Conjecture 0.9 in the Introduction. The
base ring k is a perfect field, and it has the discrete topology.

Recall the way the DG ring of separated differential forms �sep
A=kD

L
i�0�

i;sep
A=k

was defined in Section 2 for any commutative ST k-ring A. The usual module
of Kähler differentials �iA=k is a ST k-module, with topology induced from the
surjection TiC1k .A/��i

A=k. Then �i;sep
A=k WD .�

i
A=k/

sep is the associated separated
ST module. In degree 0 we have �0;sep

A=k D A
sep. There is a canonical surjection of

DG ST k-rings
�A W�A=k ��

sep
A=k; (5-1)

which is a topological strict epimorphism. Given any homomorphism f W A! B

in the category STRingc k, there is an induced commutative diagram of DG ST
k-rings

�
A=k

�.f /
//

�A

����

�
B=k

�B

����

�
sep
A=k

�sep.f /
// �

sep
B=k

Let K be an n-dimensional TLF over k, with its DG ST ring of separated
differential forms �sep

K=k D
Ln
iD0�

i;sep
K=k. In degree 0 we have �0;sep

K=k DK, since
K is separated (in fact it is a complete ST k-module). In degree n the K-module
�
n;sep
K=k is free of rank 1 with the fine K-module topology. If aD .a1; : : : ; an/ is a

system of uniformizers for K, then the element

dlog.a/ WD a�11 � d.a1/ � � � a
�1
n � d.an/ (5-2)

is a basis of �n;sep
K=k . See Theorem 3.16 and Example 2.16.

There is a theory of trace homomorphisms for separated differential forms. For
any morphism f WK! L in TLFn k, there is a homomorphism

TrTLF
L=K W�

sep
L=k!�

sep
K=k: (5-3)

This is a degree 0 homomorphism of DG ST �sep
K=k-modules. It is uniquely charac-

terized by these properties: it is functorial; in degree 0 it coincides with the usual
trace trL=K W L!K; and

TrTLF
L=K ı dlogD dlog ı nL=K

as functions L� ! �
1;sep
K=k , where nL=K W L� ! K� is the usual norm. The

homomorphism TrTLF
L=K

is nondegenerate in top degree, in the sense that the induced
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homomorphism
�
n;sep
L=k ! HomK.L;�

n;sep
K=k /

is bijective. See [Yekutieli 1992, Section 2.3].
In [Yekutieli 1992, Section 2.4] we introduced the residue functional for TLFs.

Its properties are summarized in the following theorem:

Theorem 5.4 [Yekutieli 1992]. Let K be an n-dimensional TLF over k. There is a
k-linear homomorphism

ResTLF
K=k W�

n;sep
K=k ! k

with these properties:

(1) Continuity: the homomorphism ResTLF
K=k is continuous.

(2) Uniformization: let aD .a1; : : : ; an/ be a system of uniformizers forK, and let
k0!O.K/ be the unique k-ring lifting of the last residue field k0 WD kn.K/
into the ring of integers O.K/ ofK. Then, for any b2k0 and any i1; : : : ; in2Z,
we have

ResTLF
K=k.b � a

i1
1 � � � a

in
n � dlog.a//D

�
trk0=k.b/ if i1 D � � � D in D 0;
0 otherwise:

(3) Functoriality: let f WK! L be a morphism in the category TLFn k. Then

ResTLF
L=k D ResTLF

K=k ı TrTLF
L=K :

(4) Nondegeneracy: the residue pairing

h�;�ires WK ��
n;sep
K=k ! k; ha; ˛ires WD ResTLF

K=k.a �˛/

is a topological perfect pairing.

Furthermore, the function ResTLF
K=k is the uniquely determined by properties (1)

and (2).

Remark 5.5. Actually the residue homomorphism ResTLF
�=�

exists in much greater
generality. Recall from Remark 3.11 that there is a category TLFk whose objects are
TLFs of all dimensions, and there are morphisms f WK!L for dim.K/< dim.L/.
The category TLFn k is a full subcategory of TLFk. In [Yekutieli 1992, Section 2.4]
we construct a residue homomorphism

ResTLF
L=K W�

sep
L=k!�

sep
K=k

for any morphism K!L in TLFk. This is a DG ST �sep
K=k-linear homomorphism

of degree �m, where m WD dim.L/� dim.K/, and it has properties like those in
Theorem 5.4. When K D k this is the residue homomorphism ResTLF

L=k above; and
when mD 0 this is the trace homomorphism: ResTLF

L=K
D TrTLF

L=K
.
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Another remark is a sign change: the uniformization formula above differs
from that of [Yekutieli 1992, Theorem 2.4.3] by a factor of .�1/.

n
2/. This is

disguised as a permutation of the factors of the differential form dlog.t1; : : : ; tn/.
Cf. also [Yekutieli 1992, Remark 2.4.4]. Our better acquaintance recently with DG
conventions dictates the current formula.

Let K be a TLF over k of dimension n � 1. The homological algebra and
Lie algebra construction of [Beilinson 1980], as explained in [Braunling 2014b,
Section 3.1], takes as input the cubically decomposed ring of BT operators E.K/
from Definition 4.23, and produces the Beilinson–Tate residue functional

ResBT
K=k W�

n
K=k! k: (5-6)

Not much is known about this residue functional when n� 2. We have already
posed Conjecture 0.9, comparing ResBT

K=k to ResTLF
K=k. Here is another conjecture:

Conjecture 5.7. Let K be a TLF over k. The k-linear functional ResBT
K=k is

continuous.

It is closely related to the first conjecture. Indeed:

Proposition 5.8. (1) Conjecture 0.9 implies Conjecture 5.7.

(2) Conjectures 5.7 and 0.12 together imply Conjecture 0.9.

Proof. (1) We know that �K W �nK=k ! �
n;sep
K=k and ResTLF

K=k are continuous; see
Theorem 5.4(1).

(2) Assume ResBT
K=k is continuous. Then, since k is separated, the homomorphism

ResBT
K=k factors via �K . It remains to compare the continuous functionals

ResBT
K=k; ResTLF

K=k W�
n;sep
K=k ! k:

Conjecture 0.12 says that we can use the results of [Braunling 2014b]. Now
according to [Braunling 2014b, Theorem 26(3)], the functional ResBT

K=k satisfies
the uniformization condition (2) of Theorem 5.4. Since the k-module spanned by
the forms

b � a
i1
1 � � � a

in
n � dlog.a/

is dense inside �n;sep
K=k , and both functionals ResBT

K=k and ResTLF
K=k agree on it, these

functionals must be equal. �

To end this section here are some remarks and examples related to the TLF
residue:

Remark 5.9. The uniqueness of the residue functional ResTLF
K=k has several other

expressions, besides properties (1)–(2) of Theorem 5.4. For simplicity let us assume
that k is infinite and kn.K/D k.
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Here is one alternative characterization: Let G be the “Galois group” of K=k,
namely G WD AutTLFn k.K/. The group G acts on �n;sep

K=k by continuous k-linear
isomorphisms, and hence it acts on Homcont

k .�
n;sep
K=k ;k/. It is not hard to show that

ResTLF
K=k is the only G-invariant element � 2 Homcont

k .�
n;sep
K=k ;k/ that also satisfies

�.dlog.a//D 1, where a is any system of uniformizers of K.
For the second characterization of the residue functional, let us assume that

char.k/ D 0. (This also works in char.k/ D p > 0, but in a more complicated
way — see [Yekutieli 1992, Digression 2.4.28].) Define HnDR.K/ WD Hn.�sep

K=k/.
This is a rank 1 k-module generated by the cohomology class of dlog.a/. A
calculation shows that ResTLF

K=k is the only k-linear homomorphism � W�
n;sep
K=k ! k

that factors through HnDR.K/ (i.e., it vanishes on n-coboundaries) and also satisfies
�.dlog.a//D 1.

Remark 5.10. In dimension 1 the residue functional on local fields (with its topo-
logical aspects) was understood a long time ago (see [Serre 1988]).

The first attempt to extend the residue functional to local fields of dimension n�2
was by Parshin and his school [1976; 1978; 1983; Beilinson 1980; Lomadze 1981].
In [Parshin 1976] the case of a surface is discussed, without attempt to isolate the
resulting 2-dimensional local field from its geometric origin. In [Parshin 1983] there
is a brief mention of a residue functional on a standalone n-dimensional local field,
but without any details whatsoever. Beilinson [1980], quoting [Parshin 1976; 1978],
incorrectly states that the residue functional on an n-dimensional local field K is
independent of the parametrization of K (which, according to Theorem 3.16, means
independent of the topology on K).

Lomadze [1981] studied the setup of a standalone n-dimensional local field
in great detail. However, since he misunderstood the role of the topology in
local fields of dimension n � 2 (see Remark 3.12), the residue functional he
proposed was not well defined. To be specific, [Lomadze 1981] claimed that
for a local field K 2 LFn k there is a k-linear homomorphism, let us denote it
by res W �n

K=k ! k, which satisfies continuity, uniformization (property (2) of
Theorem 5.4), and invariance under automorphisms of K in LFn k. However this is
false for n� 2 and char.k/D 0, as was shown by a counterexample in [Yekutieli
1992]. We reproduce this counterexample, in an expanded form, in Examples 5.11
and 5.12 below.

In characteristic p > 0 the residue functional is indeed well defined on the
category LFn k. But this is due to the fact, discovered in [Yekutieli 1992], that the
forgetful functor TLFn k! LFn k is an equivalence when char.k/D p > 0. See
Remark 3.12.

Example 5.11. This is an expanded version of [Yekutieli 1992, Example 2.1.24]. It
shows that, when char.k/D 0 and n� 2, there cannot be a k-linear homomorphism
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res W�n
K=k!k for a local fieldK 2LFn k which satisfies continuity, uniformization,

and invariance under automorphisms of K in LFn k.
LetA be any commutative ST k-ring. In order to distinguish between an “abstract”

differential form ˛ 2 �i
A=k and the “separated” differential form �A.˛/ 2 �

i;sep
A=k ,

we shall write ˛ WD �A.˛/. Also we denote by d the differential operator in the DG
ring �sep

A=k. So �A ıdD dı�A as k-linear homomorphisms �i
A=k!�

iC1;sep
A=k . Note

that when A itself is separated we have �0;sep
A=k D�

0
A=k D A.

Since the homomorphism res W�n
K=k! k is assumed to be continuous, and k

is separated (because it is discrete), it follows that res factors through �n;sep
K=k , and

res.˛/D res.˛/ for any ˛ 2�n
K=k.

We shall use the setup of Example 3.13. So char.k/ D 0, n D 2, and K D
k..t1; t2//D k..t2//..t1//, the standard 2-dimensional TLF with last residue field k.
We choose a collection fbigi2I in k..t2// that is a transcendence basis over the
subfield k.t2/. We single out one element of the indexing set, say i0 2 I , and define
�.bi0/ WD bi0C t1. For i ¤ i0 we let �.bi / WD bi . This determines an automorphism
f of K in the category LF2 k. (We already observed in Example 3.13 that f is not
continuous). Let us write b WD bi0 ; so f .t1/D t1, f .t2/D t2 and f .b/D bC t1.

Define the differential forms

˛ WD t�11 � d.b/ � t
�1
2 � d.t2/; ˇ WD t�11 � d.bC t1/ � t

�1
2 � d.t2/

and

 WD t�11 � d.t1/ � t

�1
2 � d.t2/D dlog.t1; t2/

in �2
K=k. Note that ˇ D ˛C 
 and ˇ D f .˛/.

Consider the continuous k-linear derivation @=@t2 of k..t2//. It is dual to the
differential form d.t2/ 2 �1;sep

k..t2//=k. Hence, letting b0 WD @.b/=@t2 2 k..t2//, we
have d.b/D b0 � d.t2/ in �1;sep

k..t2//=k. Since the inclusion k..t2//!K is continuous,
it follows that d.b/D b0 � d.t2/ in �1;sep

K=k . But then d.b/ � d.t2/D 0 in �2;sep
K=k , from

which we deduce that ˛D 0 in �2;sep
K=k . Therefore res.˛/D res.˛/D 0. On the other

hand, ˇ D ˛C 
 D 
 . And hence

res.ˇ/D res.ˇ/D res.
/D res.
/D 1

by the uniformization property. We see that ˇ D f .˛/, res.˛/D 0 and res.ˇ/D 1.

Example 5.12. Here is another way to view the previous example. Again k has
characteristic 0. Let K be the local field k..t1; t2//. We consider various topologies
on K that make it into a TLF; namely we are looking at the objects in the fiber
above K of the forgetful functor F W TLFn k! LFn k. Theorem 3.16 shows that
the group AutLFn k.K/ acts transitively on the objects in this fiber.

The first topology on the local field K is the standard topology of k..t1; t2//,
and we denote the resulting TLF by Kst. For the second topology we use the
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automorphism f from Example 5.11. We take the fine .Kst; f
�1/-module topology

on K, and call the resulting TLF Knt. Thus f W Knt! Kst is an isomorphism in
TLFn k, and F.Knt/D F.Kst/DK in LFn k.

Let Kt be any TLF such that F.Kt/DK (for instance the standard TLF Kst and
the nonstandard TLF Knt). There is a surjection

�t D �Kt W�
2
K=k D�

2
Kt=k

��
2;sep
Kt=k

;

and thus a residue homomorphism rest W�
2
K=k! k defined by rest WD ResTLF

Kt=k
ı �t.

Consider the differential forms ˛, ˇ, 
 2 �2
K=k from Example 5.11. The

calculation there shows that �st.˛/D 0. On the other hand, since f ı �nt D �st ıf

and f .
/D 
 , we have f .�nt.˛//D �st.f .˛//D �st.ˇ/D �st.˛/C�st.
/D �st.
/D

f .�nt.
//, and therefore �nt.˛/D �nt.
/. We conclude that, for the differential form
˛ 2�2

K=k, we have resst.˛/D 0, but resnt.˛/D resnt.
/D 1.

Question 5.13. Take any n� 2. Consider the local field K WD k..t1; : : : ; tn//, and
the various TLFs Kt lying above it in TLFn k, as in the previous example. We know
that the residue rest.˛/, for ˛ 2 �n

K=k, could change as we change the topology.
However our counterexample involved transcendentals (the element b).

What about the subfield k.t1; : : : ; tn/ 2 K? Is it true that for a form ˛ in
�nk.t1;:::;tn/=k

the residue rest.˛/ is independent of the topology Kt on K?

6. Geometry: completions

In this section we give background for Conjecture 0.12 in the introduction. We
recall some facts on the Beilinson completion operation, and reproduce Beilinson’s
geometric definition of the BT operators.

Throughout this section k is a noetherian commutative ring, and X is a finite
type k-scheme. By a chain of points of length n in X we mean a sequence
� D .x0; : : : ; xn/ of points in X such that xi is a specialization of xi�1 for all i .
The chain � is called a saturated chain if every xi is an immediate specialization of
xi�1, namely the closed set fxig has codimension 1 in fxi�1g. If n� 1, we denote
by d0.�/ the chain obtained from � by deleting the point x0.

Let M be a quasi-coherent OX -module. Beilinson [1980] introduced the com-
pletion M� of M along � , which we refer to as the Beilinson completion. This is a
very special case of his higher adeles. The definition of M� is inductive on n, by an
n-fold zigzag of inverse and direct limits. For a detailed account see [Yekutieli 1992,
Section 3] or [Morrow 2013]. A basic geometric fact used in the definition is that,
for any coherent sheaf M, point x 2X and number i 2N, the truncated localization
Mx=m

iC1
x Mx , when viewed as an OX -module supported on the closed set fxg, is

quasi-coherent. An important instance of this is when MDOX and i D 0, which
gives the residue field k.x/DOX;x=mx .
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Here are some important properties of the Beilinson completion operation. Let
M be some quasi-coherent OX -module and let � D .x0; : : : ; xn/ be a chain in X .
We can view the completion M� either as a module over the local ring OX;xn or as
a constant OX -module supported on the closed set fxng. Warning: M� is usually
not quasi-coherent. For any subchain � 0 � � there is a canonical homomorphism
M�0 ! M� . When n D 0, so � D .x0/, there is a canonical homomorphism
Mx0!M.x0/, where the former is the stalk at the point. If M is coherent, then the
homomorphism yMx0 !M.x0/ from the mx0-adic completion is an isomorphism.

The completion OX;� of the structure sheaf OX is a commutative ring, the
canonical sheaf homomorphism OX ! OX;� is flat, and M� is an OX;�-module.
The sheaf homomorphism OX;� ˝OX M !M� is an isomorphism. Thus the
functor M 7!M� is exact. If M is coherent, � is saturated, and n � 1, then the
canonical homomorphism

OX;x0 ˝OX Md0.�/!M�

is an isomorphism.
The zigzag completion operation endows M� with a k-linear topology, similar to

the iterated Laurent series construction in Definition 1.17. The ring OX;� becomes
a ST k-ring, and M� is a ST OX;� -module.

Let A be a semi-local commutative ring, with Jacobson radical r. We say that A
is a complete semi-local ring if the canonical homomorphism A! lim i A=ri is
bijective. The residue ring of A is the ring A=r, which is a finite product of fields.

Theorem 6.1 [Parshin 1976; Beilinson 1980; Yekutieli 1992]. Let k be an excellent
noetherian ring, let X be a finite type k-scheme, and let � D .x0; : : : ; xn/ be a
saturated chain in X of length n � 1 such that xn is a closed point. Then the
Beilinson completions OX;� and k.x0/� have these algebraic properties:

(1) The ring k.x0/� is a finite product of n-dimensional local fields over k.

(2) The ring OX;� is a complete semi-local commutative k-ring, with Jacobson
radical rDOX;� ˝OX;x0 mx0 and residue ring k.x0/� .

(3) Let K be one of the factors of the reduced artinian semi-local ring k.x0/� ,
which by (1) is an n-dimensional local field. The DVR O1.K/ is the integral
closure in K of the ring OX;d0.�/.

If the base ring k is a perfect field, then the completion k.x0/� also has these
topological properties:

(4) Let K be one of the factors of the ring k.x0/� . Then K, with the induced
topology from k.x0/� , is an n-dimensional TLF over k.

(5) The image of the field k.x0/ in the ST ring k.x0/� is dense.
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Proof. (1–3) For nD 1 this is classical. For nD 2 this is in [Parshin 1976]. For
n� 3 these assertions appear in [Beilinson 1980] without a proof. The proofs are
[Yekutieli 1992, Theorem 3.3.2 and Corollary 3.3.5].

(4–5) For nD 1 this is classical. For n � 2 these assertions are [Yekutieli 1992,
Proposition 3.3.6 and Corollary 3.3.7]. �

Remark 6.2. The condition that xn is a closed point is only important to ensure
that the last residue fields kn.K/ are finite over k. Cf. Remark 3.10. The results in
[Yekutieli 1992] quoted in the proof above only require the chain � to be saturated.

Suppose � D .x0; : : : ; xn/ is a saturated chain in X . We have seen that there is a
commutative diagram of flat ring homomorphisms

OX;xn //

��

OX;.xn/

$$

OX;x0 // OX;.x0/ // OX;�

Definition 6.3. Let � D .x0; : : : ; xn/ be a saturated chain in X of length n � 1,
and let M be a finite length OX;x0-module. An OX;x1-lattice in M is a finite
OX;x1-submodule L of M such that M DOX;x0 �L. We denote by LatX;�.M/ the
set of all such lattices.

Of course the points x2; : : : ; xn have no influence on LatX;�.M/. Note that if �
has length 0 then M� DM for any finite length OX;x0-module M .

Lemma 6.4. Let � D .x0; : : : ; xn/ be a saturated chain in X , and let M be a finite
length OX;x0-module. If L, L0 2 LatX;�.M/ and L � L0, then L0=L is a finite
length OX;x1-module.

Proof. We can assume that M ¤ 0. Let Z be the support in SpecOX;x1 of L. Then
Z is a 1-dimensional scheme, with only two points: the closed point x1 and the
generic point x0. The finite OX;x1-module L0=L satisfies

.L0=L/x0 ŠOX;x0 ˝OX;x1 .L
0=L/D 0;

and hence it is supported on fx1g. �

Let � D .x0; : : : ; xn/ be a saturated chain in X , and let M be a finite length
OX;x0-module. We can view M as a quasi-coherent sheaf on X , constant on the
closed set fx0g. The canonical homomorphism Md0.�/!M� is bijective. (If nD 0
then d0.�/ is empty, and we define M./ WDM .) Note that M� is a finite length
OX;� -module.
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Suppose we are given OX;x1-lattices L� L0 in M . By the exactness of comple-
tion there are inclusions

Ld0.�/ � L
0
d0.�/
�Md0.�/ DM� ;

and there is a canonical isomorphism of finite length OX;d0.�/-modules

.L0=L/d0.�/ Š L
0
d0.�/

=Ld0.�/:

Let .M1;M2/ be a pair of finite length OX;x0-modules. Let LatX;�.M1;M2/

be the set of pairs .L1; L2/, where Li 2 LatX;�.Mi /. We write Mi;� WD .Mi /� .
Suppose � WM1;� !M2;� is a k-linear operator. Like in Definition 4.4, we say
that .L01; L

0
2/ is a �-refinement of .L1; L2/, and that .L01; L

0
2/ �� .L1; L2/ is a

�-refinement in LatX;�.M1;M2/, if L01 � L1, L2 � L02, �.L1;d0.�// � L
0
2;d0.�/

and �.L0
1;d0.�/

/� L2;d0.�/.
Suppose A is a semi-local ring, with residue ring K. Any finite length A-module

M has a canonical decomposition M D
L

nMn, where n runs over the finite set of
maximal ideals of A, which of course coincides with the set SpecK.

Definition 6.5. Let A be a semi-local ring in Ringc k, with residue ring K. Let M1,
M2 be finite length A-modules, and let � WM1!M2 be a k-linear homomorphism.
We say that � is local on SpecK if �.M1;n/�M2;n for every n 2 SpecK.

Here is a slight enhancement of the original definition found in [Beilinson 1980];
see Remark 6.7 below and Definition 4.5.

Definition 6.6 [Beilinson 1980]. Let �D .x0; : : : ; xn/ be a saturated chain of points
in X such that xn is a closed point. Let .M1;M2/ be a pair of finite length modules
over the ring OX;x0 . We define the subset

EX;�.M1;M2/� Homk.M1;� ;M2;�/

as follows:

(1) If n D 0, then any k-linear homomorphism � W M1;� ! M2;� belongs to
EX;�.M1;M2/.

(2) If n�1, a k-linear homomorphism � WM1;�!M2;� belongs to EX;�.M1;M2/

if it satisfies these three conditions:
(i) Every .L1; L2/ 2 LatX;�.M1;M2/ has some �-refinement .L01; L

0
2/.

(ii) For every �-refinement .L01; L
0
2/ �� .L1; L2/ in LatX;�.M1;M2/ the

induced homomorphism

� W .L1=L
0
1/d0.�/! .L02=L2/d0.�/

belongs to
EX;d0.�/.L1=L

0
1; L
0
2=L2/:

(iii) The homomorphism � is local on Speck.x0/� .
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Remark 6.7. Condition (2.iii) of Definition 6.6 is not part of the original definition
in [Beilinson 1980]. Note that Tate [1968] only considered smooth curves, for
which the completion is always a single local field, and there is no issue of locality.

The same locality condition eventually appears in Braunling’s treatment — see
the definition of the ring Ej in [Braunling 2014b, Theorem 26(1)].

The next definition uses notation like that of Tate. It can of course be rewritten
using the notations of [Beilinson 1980] or of [Braunling 2014a; 2014b]. Compare
to Definition 4.14 above.

Definition 6.8 [Beilinson 1980]. Let �D .x0; : : : ; xn/ be a saturated chain of points
in X of length n � 1 such that xn is a closed point. Let .M1;M2/ be a pair of
finite length modules over the ring OX;x0 . For any i 2 f1; : : : ; ng and j 2 f1; 2g we
define the subset

EX;�.M1;M2/i;j � EX;�.M1;M2/

to be the set of operators � W M1;� ! M2;� in EX;�.M1;M2/ that satisfy the
conditions:

(i) � belongs to EX;�.M1;M2/1;1 if there exists some L2 2LatX;�.M2/ such that
�.M1;�/� L2;d0.�/.

(ii) � belongs to EX;�.M1;M2/1;2 if there exists some L1 2LatX;�.M1/ such that
�.L1;d0.�//D 0.

(iii) Let n� 2. For i 2 f2; : : : ; ng and j 2 f1; 2g, � belongs to EX;�.M1;M2/i;j if,
for any �-refinement .L01; L

0
2/�� .L1; L2/ in LatX;�.M1;M2/, the induced

homomorphism

� W .L1=L
0
1/d0.�/! .L02=L2/d0.�/

belongs to
EX;d0.�/.L1=L

0
1; L
0
2=L2/i�1;j :

Definition 6.9. Let � D .x0; : : : ; xn/ be a saturated chain of points in X , of length
n� 1, such that xn is a closed point. Consider the residue field K WD k.x0/.

(1) We define EX;�.K/ WD EX;�.K;K/.

(2) If n� 1 we define EX;�.K/i;j WD EX;�.K;K/i;j .

By definition there are inclusions

EX;�.K/i;j � EX;�.K/� Endk.K�/:

Theorem 6.10 [Beilinson 1980; Braunling 2014b, Proposition 13]. Assume k is a
perfect field. The data

.EX;�.K/; fEX;�.K/i;j g/
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from Definition 6.9 is an n-dimensional cubically decomposed ring of operators
on K� , in the sense of Definition 0.3.

Conjecture 0.12 asserts that this n-dimensional cubically decomposed ring of
operators on K� coincides with the cubically decomposed ring of operators

.E.K�/; fE.K�/i;j g/

from Definition 4.23, modified as in formula (0-10).

Remark 6.11. Consider an integral finite type k-scheme X of dimension n. Let
� D .x0; : : : ; xn/ be a maximal chain in X ; so x0 is the generic point. Write
K WD k.X/D k.x0/. According to Theorem 6.10 there is a cubically decomposed
ring of operators EX;�.K/ on K� . Applying the abstract BT residue of formula
(0-7) with E WD EX;�.K/, we obtain the functional

ResBT
X;� WD ResBT

K�=kIE
W�nK=k! k:

This is the residue functional that Beilinson [1980] had.
Beilinson [1980] claimed that the functionals ResBT

X;�
satisfy several geometric

properties. Most notably, when X is a proper scheme, then for any ˛ 2�n
K=k there

is a global residue formula: X
�

ResBT
X;�.˛/D 0: (6-12)

The sum is on all maximal chains � in X .
Conjectures 0.9 and 0.12, combined with our results in [Yekutieli 1992] regarding

the residue functionals ResTLF
K�=k

, imply most of the geometric properties of the
residue functionals ResBT

X;�
stated in [Beilinson 1980], including formula (6-12).

Conversely, as noted by Beilinson (private communication), a direct proof of
the geometric properties of the functionals ResBT

X;�
(perhaps by generalizing Tate’s

original idea to higher dimensions), together with Conjecture 0.12, would imply
Conjecture 0.9.
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We assign functorially a Z-lattice with semisimple Frobenius action to each
abelian variety over Fp. This establishes an equivalence of categories that de-
scribes abelian varieties over Fp avoiding

√
p as an eigenvalue of the Frobenius in

terms of simple commutative algebra. This result extends the isomorphism classi-
fication of Waterhouse and Deligne’s equivalence for ordinary abelian varieties.
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1. Introduction

1.1. Let p be a prime number, Fp an algebraic closure of the prime field Fp with p
elements, and Fq ⊂ Fp the subfield with q elements, where q = pe is a power of p.
The category

AVq

of abelian varieties over Fq is an additive category, where for any two objects A, B
the abelian group HomFq (A, B) is free of finite rank. Even though the main result
of this paper concerns abelian varieties over the prime field Fp, the general theme of
our work is describing suitable subcategories C of AVq by means of lattices T (A)
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functorially attached to abelian varieties A of C. In contrast to the characteristic-zero
case, if we insist that

rkZ(T (A))= 2 dim(A), (1-1)

then it is not possible to construct T (A) on the whole category AVq (see Section 1.6).
However, if we take C to be the full subcategory

AVord
q

of ordinary abelian varieties, Deligne [1969, §7] showed that a functor A 7→ T (A)
satisfying (1-1) exists and gives an equivalence between AVord

q and the category of
finite free Z-modules T equipped with a linear map F : T → T satisfying a list of
easy-to-state axioms.

Inspired by Waterhouse [1969, Theorem 6.1], in the present work we show that
a description in the style of Deligne can in fact be obtained, when q = p, for a
considerably larger subcategory C of AVp, which excludes only a single isogeny
class of simple objects of AVp from occurring as an isogeny factor (see Theorem 1).
Deligne’s method is an elegant application of the Serre–Tate theory of canonical
liftings of ordinary abelian varieties, whereas our method, closer to that used by
Waterhouse, does not involve lifting abelian varieties to characteristic zero. Even if
the main result of this paper generalizes the q = p case of Deligne’s theorem, it is
unlikely that a proof generalizing Deligne’s lifting strategy is possible.

1.2. A Weil q-number π is an algebraic integer, lying in some unspecified field of
characteristic zero, such that for any embedding ι :Q(π) ↪→ C we have

|ι(π)| = q1/2,

where |−| is the ordinary absolute value of C. Two Weil q-numbers π and π ′ are
conjugate to each other if there exists an isomorphism Q(π)−→∼ Q(π ′) carrying π to
π ′, in which case we write π∼π ′. We will denote by Wq the set of conjugacy classes
of Weil q-numbers. A Weil q-number is either totally real or totally imaginary,
hence it makes sense to speak of a nonreal element of Wq .

Let A be an object of AVq , and denote by πA : A→ A the Frobenius isogeny
of A relative to Fq . If A is Fq-simple then EndFq (A)⊗Q is a division ring, and a
well-known result of Weil says that πA is a Weil q-number inside the number field
Q(πA). Let

A ∼
∏

1≤i≤r

Aei
i (1-2)

be the decomposition of A up to Fq-isogeny into powers of simple, pairwise non-
isogenous factors Ai . The Weil support of A is defined as the subset

w(A)= {πA1, . . . , πAr } ⊆Wq
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given by the conjugacy classes of the Weil numbers πAi attached to the simple factors
Ai . By Honda–Tate theory, the conjugacy classes of the πAi are pairwise distinct;
moreover, any class in Wq arises as πA, for some Fq-simple abelian variety A,
uniquely determined up to Fq -isogeny [Tate 1971, Théorème 1].

1.3. Consider now the case q = p. Using Honda–Tate theory, it is easy to see
that for a simple object A of AVp the ring EndFp(A) is commutative if and only if
πA 6∼

√
p, i.e., if and only if the Frobenius isogeny πA : A→ A defines a nonreal

Weil p-number [Waterhouse 1969, Theorem 6.1]. Let

AVcom
p

be the full subcategory of AVp given by all objects A such thatw(A) does not contain
the conjugacy class of

√
p. Equivalently, AVcom

p is the largest full subcategory of AVp

closed under taking cokernels containing all simple objects whose endomorphism
ring is commutative. Since the Weil p-number

√
p is associated to an Fp-isogeny

class of simple, supersingular abelian surfaces [Tate 1971, Exemple (b), p. 97], we
have a natural inclusion AVord

p ⊂ AVcom
p .

The main result of this paper, proven at the end of Section 5.3, is the following:

Theorem 1. There is an ind-representable contravariant functor

A 7→ (T (A), F)

which induces an antiequivalence between AVcom
p and the category of pairs (T, F)

given by a finite, free Z-module T and an endomorphism F : T → T satisfying the
following properties:

(i) F ⊗Q is semisimple, and its eigenvalues are nonreal Weil p-numbers.

(ii) There exists a linear map V : T → T such that FV = p.

Moreover, the lattice T (A) has rank 2 dim(A) for all A in AVcom
p , and F is equal

to T (πA).

To prove the theorem, we consider in Section 2 a family of Gorenstein rings

Rw = Z[F, V ]/(FV − p, hw(F, V ))

indexed by the finite subsets w ⊆ Wp, where hw(F, V ) is a certain symmetric
polynomial built out of the minimal polynomials over Q of the elements of w. An
object (T, F) in the target category of the functor T (−) of Theorem 1 is nothing
but an Rw-module, for w ⊂ Wp large enough, that is free of finite rank as a Z-
module. In this translation, the linear map F : T → T is given by the action of the
image of F in Rw, and the relation hw(F, V ) in Rw encodes precisely that F ⊗Q

acts semisimply and with eigenvalues given by Weil p-numbers lying in w (see
Sections 2.4, 2.5 and 3.2). Thanks to the Gorenstein property, these Rw-modules
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are precisely the reflexive Rw-modules; the category that they form will be denoted
by (see Section 3)

Refl(Rw).

For v ⊆ w, the corresponding rings are linked by natural surjective maps
prv,w : Rw→ Rv. We denote by Rcom

p the pro-system (Rw, prv,w) with w ⊆ Wp

ranging over the finite subsets avoiding the conjugacy class of
√

p. We further set

Refl(Rcom
p )= lim

−−→
w⊆Wp\{

√
p}

Refl(Rw),

and refer to Section 3.2 for details.
In this language, Theorem 1 can be stated as saying that

T : AVcom
p → Refl(Rcom

p )

is an antiequivalence of categories. While this formulation of the main result is
closer to the perspective we adopted in its proof, the more concrete statement we
chose to give above allows an immediate comparison to Deligne’s result [1969].

1.4. The rings Rw studied in Section 2 are in fact defined for any finite subset
w ⊆Wq . They appear naturally in connection to abelian varieties, in that for any A
in AVq the natural map

Z[F, V ]/(FV − q) → EndFq (A) (1-3)

sending F to πA and V to the Verschiebung isogeny q/πA induces an identification
between Rw(A) and the subring Z[πA, q/πA] of EndFq (A), which has finite index
in the center (see Section 2.1). The rings Rw have been already considered in
[Waterhouse 1969] and [Howe 1995], for example. The Gorenstein property of Rw
in the ordinary cases is implicitly contained in [Howe 1995] and explicitly used in
a special case in [Howe 2004]. However, to the best of our knowledge, a systematic
investigation of the occurrence of Gorensteinness among the rings Rw has not been
carried out previously (see Theorems 11 and 12).

An Rcom
p -linear structure on AVcom

p can be deduced from the map (1-3) (see
Section 2.3). The requirement that F = T (πA) means precisely that the functor
T (−) is an Rcom

p -linear functor (see Section 3.2).

1.5. The proof of the theorem consists of two steps. First, for any finite subset
w ⊆Wp not containing the conjugacy class of

√
p, we construct a certain abelian

variety Aw isogenous to the product of all simple objects attached to the elements
of w via Honda–Tate theory. The object Aw is chosen in its isogeny class with the
smallest possible endomorphism ring, i.e., such that the natural map

Rw→ EndFp(Aw)
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is an isomorphism (see Proposition 21). In order to show the existence of such an
Aw, which already appears in [Waterhouse 1969, Theorem 6.1] if w consists of
a single element, the assumption q = p plays an important role. Exploiting the
Gorenstein property of Rw, in Theorem 25 we show that the functor HomFp(−, Aw)
gives a contravariant equivalence

HomFp(−, Aw) : AVw −→∼ Refl(Rw),

where AVw is the full subcategory of AVp given by all abelian varieties A with
w(A)⊆ w.

The second step consists in showing that the abelian varieties Aw previously
constructed can be chosen in such a way that the functors HomFp(−, Aw) interpolate
well and define a functor on AVcom

p . More precisely we show the existence of an
ind-system

A= (Aw, ϕw,v), (1-4)

indexed by finite subsets w ⊆Wp not containing the conjugacy class of
√

p, such
that the corresponding direct limit of finite free Z-modules

T (A)= lim
−−→
w

HomFp(A, Aw)

stabilizes for any A in AVcom
p . The contravariant functor T (−) ind-represented by

A will produce the required antiequivalence.

1.6. As Serre has observed, it is not possible to functorially construct a lattice T (A)
satisfying the expected rkZ(T (A))= 2 dim(A) on the category of abelian varieties
over Fp. This is due to the existence of objects like supersingular elliptic curves E
over Fp. As is well known, the division ring EndFp

(E)⊗Q is a nonsplit quaternion
algebra over Q and has no 2-dimensional Q-linear representation that can serve as
T (E)⊗Q. The issue just described is the same obstruction that prevents the exis-
tence of a Weil cohomology for varieties over finite fields with rational coefficients.

Using the same argument, one can show the nonexistence of a lattice T (A)
as above on the category AVq , where q is a square. When q is not a square, the
correct instance of Serre’s observation preventing Theorem 1 from extending to all
of AVp is given by the isogeny class of Fq-simple, supersingular abelian surfaces
associated via Honda–Tate theory to the real, nonrational, Weil q-number

√
q . The

endomorphism ring of any such surface A is an order of a quaternion algebra over
Q(
√

q)=Q(
√

p)which is ramified at the two real places [Waterhouse 1969, p. 528].
It follows that EndFq (A)⊗R'H×H is a product of two copies of the Hamilton
quaternions H. Thus it admits no faithful representation on a 4-dimensional real
vector space, which T (A)⊗R would give rise to.
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1.7. The dual abelian variety establishes an antiequivalence A 7→ At of AVq which
preserves Weil supports and has the effect of switching the roles of Frobenius and
Verschiebung endomorphisms relative to Fq . That is,

(πA)
t
= q/πAt

as isogenies from At to itself. On the module side, we define a covariant involution
of Refl(Rcom

p ), denoted by M 7→ Mτ , which interchanges the roles of F and V , i.e.,
such that

(T, F)τ = (T, p/F).

Using these two dualities we can exhibit a covariant version of the functor T (−)
of Theorem 1. More precisely, define

T∗(A)= T (At)τ

as the pair given by the Z-module T (At) equipped with the linear map p/T (πAt ).
In the notation as pairs, T∗(A) takes the form

(T (At), p/T (πAt ))= (T (At), T ((πA)
t))= (T∗(A), T∗(πA)).

The functor T∗(−) gives a covariant, Rcom
p -linear equivalence

T∗ : AVcom
p → Refl(Rcom

p ) (1-5)

which is pro-represented by the system At
= (At

w, ϕ
t
w′,w) dual to (1-4). In the

definition of T∗(−) it is necessary to apply the involution τ to T (At) in order to
guarantee that T∗ be Rcom

p -linear.
In Section 7.4 we compare T∗(−) restricted to AVord

p with Deligne’s functor [1969,
§7], which we denote by TDel,p(−). The comparison makes use of a compatible
pro-system of projective Rw-modules Mw of rank 1 for all finite subsets w ⊆Wp

consisting only of conjugacy classes of ordinary Weil p-numbers. Proposition 44
then describes, for all abelian varieties A over Fp with w(A) ⊆ w, a natural
isomorphism

TDel,p(A)⊗Rw Mw −→
∼ T∗(A).

Furthermore, by choosing a suitable ind-representing system A= (Aw, ϕv,w), we
may assume that Mw = Rw for all w, i.e., the antiequivalence of Theorem 1 may be
chosen in its covariant version to extend Deligne’s equivalence; see Proposition 45
for details.

1.8. Finally, we indicate how to recover the `-adic Tate module T`(A), for a prime
` 6= p, and the contravariant Dieudonné module Tp(A) (see [Waterhouse 1969, §1.2])
from the module T (A). This involves working with the formal Tate module T`(A)
and the formal Dieudonné module Tp(A) of the direct system A, respectively
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defined as the direct limit of T`(Aw) and the inverse limit of the Tp(Aw), with
transition maps obtained via functoriality of T` and Tp. More concretely, we have
natural isomorphisms

T`(A)' HomR`
(T (A)⊗Z`, T`(A)),

Tp(A)' (T (A)⊗Zp) ⊗̂Rp Tp(A);

see Propositions 27 and 28 for notation and proofs. In this respect the functor T (−)
can be interpreted as an integral lifting of the Dieudonné module functor Tp(−).

In a forthcoming paper, we will apply the method used here to study certain
categories of abelian varieties over a finite field which is larger that Fp. Therefore,
although Theorem 1 deals with abelian varieties over Fp, we only restrict to the
case q = p when it becomes necessary.

2. On the ubiquity of Gorenstein rings among minimal central orders

2.1. Minimal central orders. Let w ⊆ Wq be any finite set of conjugacy classes
of Weil q-numbers. Choose Weil q-numbers π1, . . . , πr representing the elements
of w, and consider the ring homomorphism

Z[F, V ]/(FV − q)→
∏

1≤i≤r

Q(πi ) (2-1)

sending F to (π1, . . . , πr ) and V to (q/π1, . . . , q/πr ).

Definition 2. The minimal central order Rw is the quotient

Z[F, V ]/(FV − q)→ Rw (2-2)

by the kernel of the homomorphism (2-1). The image of F in Rw will be denoted
by Fw, and the image of V by Vw.

The construction of the ring Rw is independent of the chosen Weil q-numbers in
their respective conjugacy classes. When w consists of a single conjugacy class
of a Weil number π , the ring R{π}, isomorphic to the order of Q(π) generated by
π and q/π , will sometimes be denoted simply by Rπ . Since the representatives
π1, . . . , πr are pairwise nonconjugate, there is a canonical finite index inclusion

Rw ⊆
∏
π∈w

Rπ ;

in particular,
Rw⊗Q=

∏
π∈w

Q(π). (2-3)

Moreover, for finite subsets v ⊆ w ⊆Wq we have a natural surjection

prv,w : Rw→ Rv.
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Our main goal in this section is to show that, under a mild assumption on w, the
ring Rw is a 1-dimensional Gorenstein ring. This will be proved in Section 2.5,
where we obtain a description of Rw by identifying the relations between the
generators F and V .

Example 3. The equality of closed subschemes

Spec(Rw)=
⋃
π∈w

Spec(Rπ )⊆ Spec(Z[F, V ]/(FV − q))

shows that the spectrum of Rw is obtained by gluing the spectra of the rings Rπ
along their various intersections inside Spec(Z[F, V ]/(FV − q)). This means,
roughly, that congruences between Weil q-numbers are responsible for Rw differing
from the product of the Rπ for all π ∈ w.

We measure in a special situation the deviation of Rw from being isomorphic
to
∏
π∈w Rπ . For i = 1, 2, let πi be a quadratic Weil q-number with minimal

polynomial
x2
−βi x + q,

where βi ∈ Z, and set 1= β1−β2. Since q/πi = βi −πi , we have

Rπi = Z[πi ] ' Z[x]/(x2
−βi x + q);

moreover, the subring Rw ⊆ Z[π1]×Z[π2] is generated as a Z-algebra by

(0,1), (π1, π2) ∈ Z[π1]×Z[π2],

since it is generated by (π1, π2) and (β1−π1, β2−π2). Because β1 ≡ β2 modulo
1, there are isomorphisms of quotients

Z[π1]/1Z[π1] ' Z[π2]/1Z[π2] =: R0,

and Rw becomes the fiber product

Rw = Z[π1]×R0 Z[π2],

which is an order of index12 in the product Rπ1×Rπ2 . The congruences between π1

and π2 are encoded by the closed subscheme of Spec(Z[F, V ]/(FV −q)) given by

Spec(R0)= Spec(Rπ1)∩Spec(Rπ2).

Note that the minimal polynomials x2
−βi +q yield Weil q-numbers if and only if

β2
i < 4q.

In particular, by letting q range over the powers of the prime p, the Weil q-numbers
πi may be chosen so that 1 is divisible by an arbitrary integer.
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2.2. Connection to abelian varieties. We proceed to link Rw to abelian varieties
over Fq . Any such A has two distinguished isogenies, given by the Frobenius
πA and the Verschiebung q/πA relative to Fq . The Q-algebra EndFq (A)⊗Q is
semisimple, and its center is equal to the subalgebra Q(πA) generated by πA [Tate
1966, Theorem 2]. It follows that any isogeny decomposition of A, as in (1-2),
induces the isomorphism

Q(πA)'
∏

πAi ∈w(A)

Q(πAi ), (2-4)

sending πA to (πA1, . . . , πAr ), where πA1, . . . , πAr are the Weil q-numbers defined
by the simple factors of A and w(A) is the Weil support of A defined in the
introduction.

From (2-4) we deduce that the ring homomorphism

rA : Z[F, V ]/(FV − q)→ EndFq (A)

sending F to πA and V to q/πA gives an identification between Rw(A) and the
image of rA, namely the subring

Z[πA, q/πA],

which sits inside the center of EndFq (A) with finite index. In this way we see that
Rw(A) plays the role of a lower bound for the center of EndFq (A). This justifies the
terminology we chose in its definition.

Remark 4. One can ask whether there exists an abelian variety A with Weil support
w such that the natural map Rw→ EndFp(A) induced by rA gives an isomorphism
between Rw and the center of EndFp(A). In Proposition 21 below, generalizing a
result of Waterhouse, we obtain a partial result in this direction.

2.3. Linear structures over minimal central orders. For a finite subset w ⊆ Wq

the full subcategory
AVw ⊆ AVq

consists of all abelian varieties A such that w(A)⊆w or, equivalently, such that rA

factors through the quotient Z[F, V ]/(FV − q)→ Rw. Since for any morphism
f : A→ B in AVq and any η ∈ Z[F, V ]/(FV − q) the diagram

A
f //

rA(η)

��

B

rB(η)

��

A
f // B

(2-5)
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is commutative, as follows from the naturality of the Frobenius and Verschiebung
isogenies, we deduce an Rw-linear structure on the category AVw. Furthermore, for
finite subsets v ⊆ w the Rw-linear structure on AVv induced by the fully faithful
inclusion AVv ⊆ AVw is compatible, via the surjection prv,w, with the Rv-linear
structure on AVv.

Remark 5. If W ⊆ Wq is now any subset, denote by RW the projective system
(Rw, prw,v) as w ranges through all finite subsets of W , and by AVW the full
subcategory of AVq whose objects are all abelian varieties A with w(A)⊆W . We
will treat AVW as the direct 2-limit of the categories AVw, for finite subsets w of W .
The collection of Rw-linear structures on the subcategories AVw ⊆ AVW , which are
linked by the compatibility conditions described above, form what we will refer to
as the RW -linear structure on AVW .

2.4. The symmetric polynomial. Let π be a Weil q-number. If Q(π) has a real
place then π2

= q, so that Q(π) is totally real, and [Q(π) : Q] is either 2 or 1
according to whether the degree e = [Fq : Fp] is odd or even, respectively. In the
first case there is only one conjugacy class of real Weil q-numbers; in the second
one there are two of them, given by the rational integers qe/2 and −qe/2. In the
general case where π is not real, the field Q(π) is a nonreal CM field, with complex
conjugation induced by π 7→ q/π .

The degree 2d = [Q(π) :Q] is even, except for the two rational Weil q-numbers
occurring for e even, in which case d = 1/2. Set

Pπ (x)= x2d
+ a2d−1x2d−1

+ · · ·+ a1x + a0 ∈ Z[x]

for the normalized minimal polynomial of π over Q. The polynomial Pπ (x) depends
only on the conjugacy class of π . The following lemma is well known (see [Howe
1995, Proposition 3.4]):

Lemma 6. Let π be a nonreal Weil q-number. For r ≥ 0, we have ad−r = qr ad+r .

Proof. We can arrange the roots α1, . . . , α2d of Pπ (x) so that αi and α2d+1−i

are complex conjugates of each other, that is, αiα2d+1−i = q. For a subset
I ⊆ {1, . . . , 2d} we set I c

= {1, . . . , 2d} \ I and I = {i : 2d + 1 − i ∈ I }; we
will use the multiindex notation α I

=
∏

i∈I αi . Then, summing over subsets of
{1, . . . , 2d}, we compute

(−1)d+r ad−r =
∑
|I |=d+r

α I
=

( 2d∏
i=1

αi

)
·

∑
|I |=d+r

1
α I c

= qr
·

∑
|J |=d−r

qd−r

α J = qr
·

∑
|J |=d−r

α J
= qr (−1)d−r ad+r . �
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We next construct a symmetric polynomial hπ (F, V ) ∈ Z[F, V ]. The idea is to
consider the rational function Pπ (F)/Fd

∈ Z[F, q/F] (at least when d ∈ Z), and
then formally set V = q/F .

Definition 7. We define the symmetric polynomial hπ (F, V ) attached to a Weil
q-number π as follows:

(1) If π is a nonreal Weil q-number, then we set

hπ (F, V )= Fd
+a2d−1 Fd−1

+· · ·+ad+1 F+ad+ad+1V +· · ·+a2d−1V d−1
+V d .

(2) If π =±pm√p is real but not rational, then we set

hπ (F, V )= F − V .

(3) If π =±pm is rational, then we set

h±pm (F, V )= F1/2
∓ V 1/2.

The polynomial hw(F, V ) just defined belongs to Z[F, V ] if π not rational, and
to Z[F1/2, V 1/2

] otherwise. It appears already in [Howe 1995, §9].

Lemma 8. (1) If π is a nonreal Weil q-number, then we have hπ (π, q/π)= 0.

(2) If π is a real, but not rational, Weil q-number, then hπ (F, V ) = F − V and
hπ (π, q/π)= 0.

(3) If π = ±pm is rational, then h pm (F, V ) · h−pm (F, V ) = F − V is again
contained in Z[F, V ], and vanishes for F = π and V = q/π .

Proof. Assertion (1) follows from hπ (π, q/π)= Pπ (π)/πd
= 0 which is based on

Lemma 6. Assertion (2) and (3) are trivial. �

Definition 9. An ordinary Weil q-number is a Weil q-number π such that exactly
half of the roots of its minimal polynomial Pπ (x) in an algebraic closure of Qp are
p-adic units.

A Weil q-number is ordinary if and only if its associated isogeny class of simple
abelian varieties over Fq is ordinary. Real Weil numbers are not ordinary.

Lemma 10. Let w ⊆ Wq be a finite subset of nonreal conjugacy classes of Weil
q-numbers. Then w consists of ordinary conjugacy classes if and only if hw(0, 0) is
not divisible by p.

Proof. Let α1, . . . , αd , q/α1, . . . , q/αd be the roots of
∏
π∈w Pπ (x). Then

hw(F, V )≡
d∏

i=1

(F − (αi + q/αi )+ V ) mod (FV − q)
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so that

hw(F, V )≡ (−1)d
d∏

i=1

(αi + q/αi ) mod p.

This integer is not divisible by p if and only if the algebraic integers αi + q/αi are
p-adic units for all i . This happens if and only if either αi or q/αi are p-adic units
for all i , that is, if w consists of ordinary conjugacy classes. �

2.5. Structure of the minimal central orders. In what follows we will define the
degree of a finite subset w ⊆Wq by

deg(w)= rkZ(Rw)=
∑
π∈w

[Q(π) :Q].

So w is of even degree if and only if w either contains none or both rational Weil
q-numbers ±qe/2, which only exist when e = [Fq : Fp] is even. Extending this
notion, we will say that an arbitrary subset W ⊆Wq is of even degree if either none
or both rational conjugacy classes of Weil q-numbers belong to W .

If w ⊆Wq is any finite subset, we set

hw(F, V )=
∏
π∈w

hπ (F, V ),

which is contained in Z[F, V ] as soon as w is of even degree.

Theorem 11. Let w ⊆Wq be a finite set of Weil q-numbers of even degree.

(1) We have Rw = Z[F, V ]/(FV − q, hw(F, V )).

(2) The ring Rw is a 1-dimensional complete intersection; in particular, it is a
Gorenstein ring.

When w consists of ordinary Weil q-numbers, part (1) of Theorem 11 is [Howe
1995, Proposition 9.1].

Proof. The ring Rw is reduced as it injects into a product of number fields. Moreover,
Rw is a finite Z-algebra, because it is generated by F and V satisfying integral rela-
tions in Rw. Thus Rw is free of finite rank as a Z-module and of Krull dimension 1.
More precisely, by (2-3) we have

rkZ(Rw)=
∑
π∈w

[Q(π) :Q] =: 2D

The ring Z[F, V ]/(FV−q) is a normal ring with at most one rational singularity
in p= (F, V, p). Hence, hw(F, V ) is a nonzero divisor in Z[F, V ]/(FV − q) and
it remains to show (1) to conclude the proof of (2).
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We now show assertion (1). By Lemma 8 the evaluation of hw(F, V ) in Rπ
vanishes for all π ∈ w. Hence we obtain a surjection

ϕ : S = Z[F, V ]/(FV − q, hw(F, V ))� Rw.

We are done if we can show that S is generated by 2D elements as a Z-module.
By construction, hw(F, V ) is a product of polynomials of the form

fπ (F)+ gπ (V )

with fπ , gπ ∈ Z[X ] monic (or −gπ monic). The degrees are deg( fπ )= deg(gπ )=
[Q(π) :Q]/2 if π is nonrational, and 1 if π is rational. Having a representative of
the form f (F)+ g(V ) for monic polynomials f, g (or −g) of the same degree is
preserved under taking products:

( f1(F)+ g1(V ))( f2(F)+ g2(V ))

= f1 f2(F)+ g1g2(V )+ lower degree terms in F, V ,

where the mixed terms are of lower degree, because FV = q necessarily leads to
cancellations.

Hence the same holds for the product: hw(F, V )= f (V )+g(V ) with deg( f )=
deg(g)= D. In particular,

F D, F D−1, . . . , F, 1, V, . . . , V D−1

generate S as a Z-module. �

Since Theorem 1 deals with abelian varieties over Fp, our main concern in this
paper are the commutative algebra properties of Rw for finite subsets of Wp. Here
Theorem 11 covers all cases. In order to complete the picture, we answer what
happens if w⊆Wq contains exactly one rational conjugacy class of Weil q-numbers.

Theorem 12. Let q be the square of a positive or negative integer
√

q ∈ Z. Let
v⊆Wq be a finite set containing no rational conjugacy class, and set w= v∪{

√
q}.

(1) We have Rw = Z[F, V ]/
(
FV − q, hv(F, V )(F −

√
q), hv(F, V )(V −

√
q)
)
.

(2) The ring Rw is Gorenstein if and only if all conjugacy classes of Weil q-numbers
in v are ordinary.

Proof. Reasoning as in the proof of Lemma 8, we see that the defining quotient
map Z[F, V ]/(FV − q)→ Rw factors as a surjective map

S = Z[F, V ]/
(
FV − q, hv(F, V )(F −

√
q), hv(F, V )(V −

√
q)
)
� Rw.

As in Theorem 11, as a Z-module, the ring Rw is free of rank

rkZ(Rw)= 1+
∑
π∈v

[Q(π) :Q] =: 2D+ 1.
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It is easy to see that S is generated as a Z-module by

F D, F D−1, . . . , F, 1, V, . . . , V D.

This shows assertion (1) above.
For assertion (2), we first note that after inverting one of the elements p, F or

V , the three relations can be reduced to two relations, so that outside of (p, F, V )
the ring Rw is a local complete intersection and hence Gorenstein. It remains to
discuss the local ring in p= (p, F, V ).

There is a unique polynomial h ∈ Z[X ] such that

hv(F, V )= h(F)− h(0)+ h(V ) ∈ Z[F, V ],

and for this h we have h(0)= hv(0, 0). Since Z is regular (hence Gorenstein) and
Rw is a flat Z-algebra, it follows from [Matsumura 1989, Theorem 23.4] that Rw is
Gorenstein in p if and only if

Rw/pRw = Fp[F, V ]/(FV, h(F)F, h(V )V )

is Gorenstein in p= (F, V ). The ring Rw/pRw is Artinian, hence of dimension 0,
so that by [Matsumura 1989, Theorem 18.1] the ring (Rw/pRw)p is Gorenstein if
and only if

1= dimFp Hom(κ(p), Rw/pRw).

The space of homomorphisms has the same dimension as the socle, i.e., the maximal
submodule annihilated by (F, V ). The socle is the intersection of the kernels of
F and V as Fp-linear maps of Rw, which can be easily evaluated in the basis
F D, F D−1, . . . , F, 1, V, . . . , V D. The intersection is 1-dimensional if p - h(0),
and it is 2-dimensional otherwise. By Lemma 10, this completes the proof. �

3. Remarks on reflexive modules

3.1. Reflexive versus Z-free. Let S be a noetherian ring. Recall that a finitely
generated S-module M is reflexive (resp. torsionless) if the natural map

M→ HomS(HomS(M, S), S)

is an isomorphism (resp. injective). We denote the category of finitely generated
reflexive S-modules by Refl(S).

Lemma 13. Let w ⊆Wq be a finite set of Weil q-numbers such that Rw is Goren-
stein, and let ` be a prime number. Let M be a finitely generated Rw-module
(resp. Rw⊗Z`-module). The following are equivalent:

(a) M is reflexive.
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(b) M is torsionless.

(c) M is free as a Z-module (resp. Z`-module).

Proof. Assertions (a) and (b) are equivalent by [Bass 1963, Theorem 6.2(4)], since
Rw is Gorenstein and of dimension 1.

For a uniform treatment, we set S= Rw⊗3 with 3=Z (resp. 3=Z`). Since S
is finite flat over 3, the dual module HomS(M, S) is free as a 3-module. The same
holds for every submodule of HomS(M, S), which shows assertion (b) implies (c).

For the converse direction we introduce the total ring of fractions S⊂K = S⊗ZQ,
which is a product of fields. Therefore, assuming (c), the composite map

M→ M ⊗Z Q= M ⊗S K → HomS(HomK (M ⊗S K , K ), K )

is injective. And since it factors over the natural map M→HomS(HomS(M, S), S),
the latter is also injective and hence M is torsionless. �

3.2. The main theorem with reflexive modules. Let w ⊆ Wq be a finite set of
conjugacy classes of Weil q-numbers of even degree (see Section 2.5), so that,
in particular, Rw is Gorenstein (see Theorem 11). For an object M of Refl(Rw),
let (M0, FM) be the pair consisting of the Z-module M0 underlying M and of the
linear map FM : M0→ M0 given by the action of Fw ∈ Rw on M .

Proposition 14. The functor M 7→(M0,FM) gives an equivalence between Refl(Rw)
and the category of pairs (T, F) consisting of a finite, free Z-module T , and an
endomorphism F : T → T satisfying the following conditions:

(i) F ⊗Q is semisimple with eigenvalues given by Weil q-numbers in w.

(ii) There exists V : T → T such that FV = q.

A morphism between two such pairs (T, F) and (T ′, F ′) is a linear map f : T→ T ′

such that f F = F ′ f .

Proof. Thanks to Lemma 13, an Rw-module belongs to Refl(Rw) if and only if it is
finite and free as a Z-module. Moreover, the linear map FM : M0→ M0 satisfies in
the ring EndZ(M0) the polynomial

Fd
· hw(F, q/F)=

∏
π∈w

Pπ (F),

which is squarefree. Therefore FM ⊗Q is semisimple with eigenvalues given by
Weil q-numbers whose conjugacy classes belong to w. The map VM : M0→ M0

induced by the action of Vw ∈ Rw on M satisfies VM FM = q . Essential surjectivity
of the functor follows easily from Lemma 13. �
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Let now v ⊆ w be a finite subset which is also of even degree. By Lemma 13,
the natural projection prv,w : Rw→ Rv gives a fully faithful embedding

Refl(Rv)⊆ Refl(Rw),

by means of which Refl(Rv) can be regarded as the full subcategory whose objects
are those for which the Rw-action factors over prv,w : Rw→ Rv . Using the descrip-
tion of Proposition 14, we easily see that an object M of Refl(Rw) lies in Refl(Rv)
if and only if the eigenvalues of FM ⊗Q : M0⊗Q→ M0⊗Q define conjugacy
classes of Weil q-numbers in v.

Definition 15. Let W ⊆ Wq be a subset of even degree, and RW = (Rw) be the
pro-ring with w ranging over all finite subsets of W of even degree. The category

Refl(RW ) := lim
−−→
w⊆W

Refl(Rw)

is the full subcategory of the category of Z[F, V ]-modules given by all M such that:

(1) There exists wM ⊆ W such that the structural action of Z[F, V ] on M fac-
tors through Z[F, V ] → RwM (and hence through Z[F, V ] → Rw for all w
containing wM ).

(2) For any finite w⊆W of even degree containing wM , the module M is reflexive
as an Rw-module.

Notice that condition (2) is equivalent to asking that M be a reflexive module
over Rw for some w⊆W of even degree such that the action of Rw on M is defined
(see Lemma 13).

Remark 16. For any finite w⊆W of even degree, the category Refl(RW ) contains
the Rw-linear category Refl(Rw) as a full subcategory. Moreover, if v⊆w are finite
subsets of W of even degree, then the Rv-linear structure on Refl(Rv) induced from
the fully faithful embedding Refl(Rv)⊆ Refl(Rw) is compatible, via the surjection
prv,w : Rw→ Rv , with the natural Rw-linear structure. Formally we are in a situation
analogous to that described in Remark 5, where the category AVW played the role of
Refl(RW ). We will then refer to this data as the RW -linear structure of Refl(RW ).

The category Refl(RW ) can be given a concrete description in terms of pairs
(T, F) given by a finite free Z-module T and a linear map F : T → T such that:

(i) F ⊗Q is semisimple and its eigenvalues are Weil q-numbers in W .

(ii) There exists V : T → T with FV = q .

The notion of morphism between two such pairs is clear. This can be seen reasoning
as in Proposition 14, and using the compatibility of linear structures described in
Remark 16.
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Denote now the set Wp \ {
√

p} of nonreal conjugacy classes of Weil p-numbers
simply by W com

p , and the corresponding pro-ring RW com
p

by Rcom
p . Theorem 1 then

claims the existence of a contravariant, RW com
p

-linear, ind-representable equivalence

T : AVcom
p → Refl(Rcom

p )

such that T (A) is a lattice of rank 2 dim(A). By definition, the RW com
p

-linearity of
T (−) is the requirement that for any finite w ⊆W com

p the restriction of T to AVw
has values in Refl(Rw) and is Rw-linear. These conditions amount precisely to the
equality F = T (πA) for all A in AVcom

p .

3.3. Further remarks. The following piece of homological algebra is used later:

Lemma 17. Let S be a 1-dimensional Gorenstein ring. For any finitely generated
reflexive S-module M , we have

Ext1S(M, S)= 0.

Proof. We use a free presentation of the dual HomS(M, S) and dualize again. This
yields an embedding of M into a free S-module and then a short exact sequence

0−→ M −→ Sn
−→ M ′ −→ 0.

The Ext-sequence, and the fact that S has injective dimension 1 [Bass 1963, §1],
yield

0= Ext1S(S
n, S)−→ Ext1S(M, S)−→ Ext2S(M

′, S)= 0

from which the lemma follows. �

Finally, here is a criterion for invertible reflexive modules in terms of their
endomorphism algebras:

Proposition 18. Let S be a reduced Gorenstein ring of dimension at most 1, and
let M be a reflexive module. Then the following are equivalent:

(a) M is locally free of rank 1.

(b) The natural map S→ EndS(M) is an isomorphism.

Proof. If M is locally free of rank 1, then EndS(M) ' M∨ ⊗ M ' S, where
M∨ = HomS(M, S), and (b) holds.

For the converse, we may assume that S is a complete local ring by passing to
the completion. Since EndS(M) = S we have M 6= 0, and, moreover, M cannot
be a module (extending the S-module structure) for a strictly larger subring of the
total ring of fractions of S. Now [Bass 1963, Proposition 7.2] shows that M has a
nonzero projective direct summand M0. With M = M0⊕M1, we find

S×EndS(M1)= EndS(M0)×EndS(M1)⊆ EndS(M)= S
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and therefore EndS(M1) = 0. This forces M1 = 0, and M is projective. Then
EndS(M) is projective with rank equal to the square of the rank of M (as a locally
constant function on Spec(S)). Thus M is of rank 1 and the proof is complete. �

4. Abelian varieties with minimal endomorphism algebra

Before restricting to the case q = p, we recall the following classical result of
Tate (see [Tate 1966, §1] for ` 6= p, [Waterhouse and Milne 1971, Theorem 6]
for any `, also [Chai et al. 2014, §A.1]) which will be used frequently. For A an
abelian variety over Fq and ` a prime number, denote by A[`∞] the `-divisible
group corresponding to A.

Theorem 19 (Tate). Let A, B be abelian varieties over Fq , and ` a prime number.
The natural map f 7→ f [`∞] induces an isomorphism

HomFq (A, B)⊗Z` −→
∼ Hom(A[`∞], B[`∞]).

As is well known, the isomorphism of Tate’s theorem takes a more concrete form
as follows. If ` 6= p, it can be formulated in terms of Galois representations, and
says that the functor `-adic Tate module T`(−) induces an isomorphism

HomFq (A, B)⊗Z` −→
∼ HomZ`[GalFq ]

(T`(A), T`(B)).

If `= p, using the language of Dieudonné modules, Tate’s theorem translates
into the fact that the functor contravariant Dieudonné module Tp(−) induces an
isomorphism

HomFq (A, B)⊗Zp −→
∼ HomDFq

(Tp(B), Tp(A)),

where DFq is the Dieudonné ring of Fq .

Remark 20. For any prime ` the Rw-linear structure on the category AVw defined
in Section 2.1 induces an enrichment of the functor T`(−) to left Rw⊗Z`-modules
for ` 6= p, and to right1 Rw⊗Zp-modules for `= p.

For any A ∈ AVw and any ` 6= p, the action of the arithmetic Frobenius of Fq

on T`(A) agrees with the action of Fw ⊗ 1 ∈ Rw ⊗ Z`, and we have a natural
identification

HomZ`[GalFp ]
(T`(A), T`(B))= HomRw⊗Z`(T`(A), T`(B))

for ` 6= p and all A, B ∈ AVw. In the special case where q = p, and only in this
case, the Dieudonné ring DFq is commutative, and hence the theory of Dieudonné

1We employ the contravariant Dieudonné theory; therefore the left Rw-module structure of the
Hom-groups in AVw turns into a right Rw ⊗Zp-modules structure on the corresponding Dieudonné
modules. However Rw is commutative, hence for A in AVw we can safely treat Tp(A) as a left
Rw ⊗Zp-module.
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modules of abelian varieties over the prime field Fp does not involve semilinearity
aspects. For any A ∈ AVw the action of DFp on Tp(A) factors through the quotient
DFp � Rw⊗Zp, and Tate’s theorem says that

HomDFp
(Tp(A), Tp(B))= HomRw⊗Zp(Tp(B), Tp(A))

for all A, B ∈AVw. So, roughly speaking, the Dieudonné theory of abelian varieties
over the prime field is analogous to the theory of Tate modules at primes ` 6= p, up
to replacing covariance with contravariance.

For any π ∈Wp, we choose a simple abelian variety Bπ over Fp whose associated
Weil p-number represents π .

Proposition 21. Let w⊆Wp be a finite set of conjugacy classes of Weil p-numbers
not containing

√
p. There exists an abelian variety Aw over Fp isogenous to∏

π∈w Bπ such that T`(Aw) is free of rank 1 over Rw⊗Z` for all primes `. Further-
more, for any such Aw, the natural map

Rw→ EndFp(Aw)
is an isomorphism.

Remark 22. In the case where w consists of just one Weil p-number, the abelian
variety Aw in Proposition 21 was already considered by Waterhouse [1969, Theo-
rem 6.1]. We observe that the product

∏
π∈w A{π} of the varieties constructed for

each singleton {π} ⊂w may well fail to serve as the Aw satisfying the properties of
Proposition 21. This failure is explained by a phenomenon analogous to congruences
between Weil q-numbers, discussed in Example 3.

Proof. Let B be any abelian variety over Fp isogenous to
∏
π∈w Bπ . For any π ∈Wp

with π 6∼
√

p, it is straightforward to verify using Honda–Tate theory [Tate 1971,
Théorème 1(ii)] that

(i) all local invariants of the division ring End0
Fp
(Bπ ) are trivial,

(ii) [Q(π) :Q] = 2 dim(Bπ ).

In fact, each of these conditions is equivalent to the commutativity of EndFp(Bπ ).
Since the abelian varieties Bπ , π ∈ w, are pairwise nonisogenous, we have that

EndFp(B) is also commutative, and isomorphic to an order of the product of CM
fields

∏
π∈w Q(π). We deduce the chain of equalities

rkZ(EndFp(B))=
∑
π∈w

[Q(π) :Q] =
∑
π∈w

2 dim(Bπ )= 2 dim(B).

From the injectivity of the isomorphism of Theorem 19, and using the lan-
guage of Dieudonné modules if ` = p, it follows that the action of Rw ⊗Q` =∏
π∈w Q(π)⊗Q` on

V`(B)= T`(B)⊗Z` Q`
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is faithful. Hence V`(B) has rank 1 over
∏
π∈w Q(π)⊗Q`, since they both have

dimension 2 dim(B) over Q` (notice that dimQp(Vp(B)) = 2 dim(B) because we
work over Fp).

Therefore, for every ` we can choose an Rw⊗Z`-lattice

3` ⊂ V`(B)

which is free of rank 1, and which contains T`(B) if ` 6= p and is contained in
Tp(B) if `= p.

If Rw⊗Z` is the maximal order of
∏
π∈w Q(π)⊗Q`, as occurs for almost all `,

then T`(B) is necessarily free of rank 1 over Rw⊗Z` and we take 3` = T`(B).
Now, if ` 6= p, then the finite subgroup

N` =3`/T`(B)⊂ B[`∞],

being an Rw-submodule, is stable under Frobenius and hence is defined over Fp. The
corresponding isogeny ψ` : B→ B/N` induces an identification 3` ' T`(B/N`)
of Rw⊗Z`-modules.

Similarly, the p-power degree isogeny ψp : B → B/Np, where Np is the Fp-
subgroup-scheme of B corresponding to the Dieudonné module Tp(B)/3p, induces
an identification Tp(B/Np)'3p of Rw⊗Zp-modules. Therefore, after applying
a finite sequence of isogenies to B, we obtain the abelian variety Aw with the
desired property.

Lastly, by Theorem 19, the natural map

Rw→ EndFp(Aw)

is an isomorphism after − ⊗Z` for all prime numbers `, since T`(Aw)' Rw⊗Z`.
Therefore the last statement of the proposition follows. �

Remark 23. One can show that there is a free and transitive action of the Picard
group Pic(Rw) on the set of isomorphism classes of abelian varieties Aw satisfying
the conditions of Proposition 21 (see [Waterhouse 1969, Theorem 6.1.3] for the case
of simple abelian varieties, i.e., w= {π}). We will discuss this below in Section 7.3.

The Gorenstein property of Rw allows the following useful characterization of
the abelian varieties Aw satisfying the property of Proposition 21 (see also the end
of §4 in [Serre and Tate 1968]).

Proposition 24. Let w⊆Wp be a finite set of conjugacy classes of Weil p-numbers
not containing

√
p, and let A be an abelian variety over Fp isogenous to

∏
π∈w Bπ .

The following conditions are equivalent:

(a) T`(A) is free of rank 1 over Rw⊗Z`, for all primes `.

(b) EndFp(A) is equal to the minimal central order Rw.
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Proof. Thanks to Proposition 21, we only need to show that (b) implies (a). Since
Rw is Gorenstein by Theorem 11, its completion Rw ⊗Z` is also Gorenstein. It
follows from [Bass 1963, Theorem 6.2] that the torsion-free Rw⊗Z`-module T`(A)
is reflexive.

By (b) and Theorem 19 we have EndRw⊗Z`(T`(A))= Rw⊗Z`, so Proposition 18
yields that T`(A) is projective of rank 1. Since Rw⊗Z` is a finite Z`-algebra, hence
a product

Rw⊗Z` =
∏
λ

Rλ

of complete local rings Rλ, its Picard group is trivial and T`(A) is free of rank 1 as
an Rw⊗Z`-module. �

We conclude the section by observing that if A is an abelian variety over Fq , for
q arbitrary, the Dieudonné module Tp(A) has rank 2 dim(A) over the Witt vectors
W (Fq) of Fq . It follows that the naive analogue of (a) can never be attained if q > p
for rank reasons, and the above proposition is peculiar to the q = p case.

5. Construction of the antiequivalence

In this section we give a proof of Theorem 1. Recall from Remark 5 that for a
subset W ⊆Wq of conjugacy classes of Weil q-numbers, the category AVW is the
full subcategory of AVq consisting of all abelian varieties A over Fq whose support
w(A) is contained in W .

5.1. Finite Weil support. We begin by defining the lattice T (A) and its endomor-
phism F on the increasing family of subcategories

AVw ⊆ AVcom
p

for finite subsets w ⊆W com
p .

Let us then assume that
√

p /∈ w, and pick an abelian variety Aw satisfying
the condition of Proposition 21 for w. For any object A of AVw there is a natural
Rw = EndFp(Aw)-module structure on

Mw(A) := HomFp(A, Aw).

This is the same Rw-structure described in Remark 5.

Theorem 25. Let w ⊆ Wp be a finite set of nonreal conjugacy classes of Weil
p-numbers. The functor Mw(−) induces an antiequivalence

AVw→ Refl(Rw).

The Z-rank of Mw(A) is 2 dim(A).
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Proof. We begin by showing that Mw(−) is fully faithful. The map

f : HomFp(A
′, A′′)→ HomRπ (Mw(A′′),Mw(A′))

is a homomorphism of finitely generated Z-modules, and hence it is an isomorphism
if and only if it is an isomorphism after scalar extension − ⊗Z` for all primes `.

We first treat the case ` 6= p. For N ∈ Refl(Rw⊗Z`), set

N∨ = HomRw⊗Z`(N , T`(Aw)),

which is isomorphic to the Rw⊗Z`-dual of N , in view of our choice of Aw. The
isomorphism of Theorem 19 gives a natural isomorphism of contravariant functors

(T`(−))∨ = HomRw⊗Z`(T`(−), T`(Aw))'Mw(−)⊗Z` (5-1)

on AVw (see Remark 20). This translates into the commutative diagram

HomFp(A
′, A′′)⊗Z`

' //

f⊗Z`

��

HomRw⊗Z`(T`(A
′), T`(A′′))

(−)∨

��

HomRw(Mw(A′′),Mw(A′))⊗Z`
' // HomRw⊗Z`(T`(A

′′)∨, T`(A′)∨)

where both horizontal maps are isomorphisms as a consequence of Theorem 19.
Since Rw ⊗ Z` is a completion of a Gorenstein ring by Theorem 11, it is itself
Gorenstein. Because T`(Aw) is free of rank 1, this implies that N 7→ N∨ is an
contravariant autoequivalence of Refl(Rw⊗Z`) [Bass 1963, Theorem 6.2]. Therefore
the right vertical map in the diagram is an isomorphism, and we conclude that
f ⊗Z` is an isomorphism as well.

Concerning the case `= p, for any N ∈ Refl(Rw⊗Zp) we set

N∨ = HomRw⊗Zp(Tp(Aw), N ).

The isomorphism of Theorem 19 then gives a natural isomorphism of contravariant
functors

(Tp(−))∨ = HomRw⊗Zp(Tp(Aw), Tp(−))'Mw(−)⊗Zp (5-2)

on AVw, which translates into the commutative diagram

HomFp(A
′, A′′)⊗Zp

' //

f⊗Zp

��

HomRw⊗Zp(Tp(A′′), Tp(A′))

(−)∨

��

HomRw(Mw(A′′),Mw(A′))⊗Zp
' // HomRw⊗Zp(Tp(A′′)∨, Tp(A′)∨)
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The horizontal maps are isomorphisms by Theorem 19. Since Tp(Aw) is free of
rank 1 over Rw⊗Zp, the right vertical map in the diagram is an isomorphism. We
conclude that f ⊗Zp is an isomorphism as well.

We have now established that the functor A 7→Mw(A) from AVw to the category
Refl(Rw) is fully faithful.

In order to show that Mw(−) is an equivalence, we must now show that this
functor is essentially surjective. Let M ∈Refl(Rw) be a reflexive module. Since Rw is
Gorenstein, the natural map M→HomRw(HomRw(M, Rw), Rw) is an isomorphism.
Dualizing a presentation of the dual HomRw(M, Rw) leads to a copresentation

0−→ M −→ (Rw)n
ψ
−−→ (Rw)m .

Since Mw(Aw) = EndFp(Aw) = Rw, we find by full faithfulness of Mw(−) a
homomorphism

9 : (Aw)m→ (Aw)n

with ψ =Mw(9). The cokernel

B = coker(9)

exists and is an abelian variety B ∈ AVw. By definition of the cokernel, the functor
Mw(−) is left-exact; hence

0−→Mw(B)−→Mw((Aw)n)
Mw(9)
−−−−−→Mw((Aw)m),

and so
M 'Mw(B)

as Rw-modules. This completes the proof of essential surjectivity.
We are only left with showing that rkZ(HomFp(A, Aw))= 2 dim(A) for all A in

AVw. The statement is additive in A and depends only on the isogeny class of A
and Aw. Recall that for any π ∈Wp we have chosen a simple abelian variety Bπ
over Fp whose associated Weil p-number represents π . Because Aw is isogenous
to
∏
π∈w Bπ , it is enough to show that for any π ∈ w we have

rkZ

(
HomFp

(
Bπ ,

∏
π ′∈w

Bπ ′
))
= 2 dim(Bπ ).

This follows from the equality rkZ(EndFp(Bπ ))= 2 dim(Bπ ) for all Weil p-numbers
π 6∼
√

p [Tate 1971, Théorème 1(ii)], and the proof of the theorem is complete. �

5.2. The direct system. In order to prove Theorem 1, we construct a direct system
A = lim

−−→
Aw consisting of abelian varieties Aw indexed by finite sets w of Weil

p-numbers not containing
√

p, and having the property stated in Proposition 21.
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Let v ⊆ w be two finite sets of nonreal Weil p-numbers. By means of the
canonical surjection

prv,w : Rw � Rv,

we may consider Rv-modules as Rw-modules such that the action factors over prv,w.
Lemma 13 shows that

Refl(Rv)⊆ Refl(Rw)

is a full subcategory. After choosing abelian varieties Av and Aw as in Proposition 21,
associated to the sets v and w respectively, we obtain a diagram of functors

AVw
HomFp (−,Aw) // Refl(Rw)

AVv

?�

OO

HomFp (−,Av) // Refl(Rv)
?�

OO
(5-3)

where the vertical functors are natural full subcategories. This diagram need not
commute for arbitrary unrelated choices Aw and Av. The next proposition shows
that for every Aw there is a canonical abelian subvariety Av,w ⊆ Aw that leads to a
choice of Av for which (5-3) commutes.

Proposition 26. Let w be a set of nonreal conjugacy classes of Weil p-numbers, let
Aw be an abelian variety over Fp such that EndFp(Aw)= Rw, and let v ⊆ w be any
subset. Then the subgroup generated by all images

Av,w := 〈im( f ) : f : B→ Aw, B ∈ AVv〉 ⊆ Aw

satisfies the following:

(1) Av,w belongs to AVv and is an abelian subvariety of Aw.

(2) T`(Av,w) is free of rank 1 over Rv ⊗Z` for all primes `.

(3) The diagram (5-3) commutes when Aw is chosen to be the abelian variety
associated to w and Av = Av,w as that associated to v.

(4) The abelian variety Av,w is the image of any map f : B → Aw such that
w(B)= v and w(coker( f ))= w \ v.

Proof. Assertion (1) is obvious and assertion (3) follows from the natural equality

HomFp(B, Av,w)= HomFp(B, Aw)

for every B ∈AVv , since every morphism f : B→ Aw takes values in the subvariety
Av,w ⊆ Aw.
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Assertion (4) is obvious once we pass to the semisimple category of abelian
varieties up to isogeny. Therefore f (B) and Av,w have the same dimension. Since
by definition f (B)⊆ Av,w, we obtain the claimed equality.

It remains to verify assertion (2), which by Proposition 24 is equivalent to
EndFp(Av,w)= Rv. The natural map

Rw = EndFp(Aw)=Mw(Aw)→Mw(Av,w)= EndFp(Av,w) (5-4)

factors through the quotient map prv,w : Rw� Rv . In order to prove (2), it is enough
to show that (5-4) is surjective. It suffices to verify surjectivity after − ⊗Z` for
every prime number `.

Assume first that ` 6= p. Let C be the quotient abelian variety C = Aw/Av,w.
There is an exact sequence of reflexive Rw⊗Z`-modules

0−→ T`(Av,w)−→ T`(Aw)−→ T`(C)−→ 0,

and its Ext-sequence contains

HomRw⊗Z`(T`(Aw),T`(Aw))−→ HomRw⊗Z`(T`(Av,w),T`(Aw))

−→ Ext1Rw⊗Z`
(T`(C),T`(Aw)).

The Ext1-term vanishes by Lemma 17. Thus Theorem 19 shows the surjectivity of

Mw(Aw)⊗Z` = HomRw⊗Z`(T`(Aw),T`(Aw))

� HomRw⊗Z`(T`(Av,w),T`(Aw))=Mw(Av,w)⊗Z`.

If `= p, then the inclusion Av,w ⊆ Aw gives a surjection of reflexive Rw⊗Zp-
modules

Tp(Aw)� Tp(Av,w).

Since Tp(Aw) is free over Rw⊗Zp, we obtain a surjection

HomRw⊗Zp(Tp(Aw), Tp(Aw))� HomRw⊗Zp(Tp(Aw), Tp(Av,w)),

which, by Theorem 19, says that Mw(Aw)⊗Zp→Mw(Av,w)⊗Zp is surjective.
This completes the proof of the proposition. �

5.3. Proof of the main result. We are now ready to prove our main result. We
must show that the abelian varieties Aw that exist by Proposition 21 for each w, and
which yield equivalences of the desired type on the respective full subcategories
AVw by Theorem 25, can be chosen in a compatible way for every v ⊆ w. This
requires a two-step process. We use the notation of Proposition 26.

• First, we establish compatibility on the set-theoretic level: we must fix isomor-
phism classes for each Aw such that Av ' Av,w for every v ⊆ w.
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• Secondly, we categorize the first choice: we must choose isomorphisms
Av ' Av,w such that the inclusions ϕw,v : Av ' Av,w ⊆ Aw obey the cocycle
condition ϕw,v ◦ϕv,u = ϕw,u for u ⊆ v ⊆ w, and thus construct an ind-system
A= (Aw, ϕw,v).

Proof of Theorem 1. For any finite set w ⊆ Wp that avoids
√

p, let Z(w) be the
set of isomorphism classes [A] of abelian varieties A in AVw such that the natural
map Rw → EndFp(A) is an isomorphism. The elements of Z(w) all belong to
the same isogeny class, and so Z(w) is finite, since there are only finitely many
isomorphism classes of abelian varieties over a finite field lying in a given isogeny
class (in fact, finiteness holds for isomorphism classes of abelian varieties of fixed
dimension [Milne 1986, Corollary 18.9]). Moreover, the set Z(w) is nonempty by
Proposition 21.

For any pair v ⊆w of finite sets of nonreal Weil p-numbers, we construct a map

ζv,w : Z(w)→ Z(v)

given by ζv,w([A])= [B], where B is the abelian subvariety of A generated by the
image of all f :C→ A with w(C)⊆ v. Proposition 26 states that ζv,w indeed takes
values in Z(v).

These maps satisfy the compatibility condition

ζu,w = ζu,vζv,w

for all tuples u ⊆ v ⊆ w, hence they define a projective system

(Z(w), ζv,w)

indexed by finite subsets w ⊆ Wp with
√

p /∈ w. Since the sets Z(w) are finite
and nonempty, a standard compactness argument shows that the inverse limit is
not empty:

Z = lim
←−−
w

Z(w) 6=∅.

We choose a compatible2 system z = (zw) ∈ Z of isomorphism classes of abelian
varieties.

Now we would like to choose abelian varieties Aw in each class zw, and inclusions

ϕw,v : Av→ Aw

2We will see later in Remark 40 that ζv,w is always surjective. This extra piece of information
simplifies the construction of the system marginally. However, we find it conceptually easier to deduce
this fact from the antiequivalence of Theorem 1, hence the order of the assertions and proofs.
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for every v ⊆ w that are isomorphic to the inclusion from Proposition 26 in a
compatible way: for u ⊆ v ⊆ w we want

ϕw,u = ϕw,vϕv,u .

Because the set of Weil numbers is countable, we may choose a cofinal totally
ordered subsystem of finite subsets of W com

p

w1 ⊆ w2 ⊆ · · · ⊆ wi ⊆ · · · .

Working first with this totally ordered subsystem, we can construct a direct system

A0 = (Awi , ϕw j ,wi )

of abelian varieties, as desired, by induction. If Awi is already constructed, then
we choose Awi+1 in zwi+1 and deduce from ζwi ,wi+1(zwi+1) = zwi that there is an
inclusion ϕwi+1,wi : Awi → Awi+1 as desired.

Once this is achieved, we may identify all transfer maps of the restricted system
A0 with inclusions. Now we can extend the directed system A0 from the index set
{wi : i ∈ N} to an ind-object A on all finite subsets of Wp. For a general finite
w ⊂Wp we choose i large enough such that w ⊆ wi , and define

Aw := Aw,wi ⊆ Awi

by means of the construction of Proposition 26. This choice is well defined, i.e.,
independent of i� 0. Furthermore, there are compatible transfer maps ϕv,w : Av→
Aw for all v ⊆ w that lead to the desired direct system

A= (Aw, ϕw,v).

In the sense of ind-objects we have A0'A and so A0 would suffice for Theorem 1,
but we wanted to restore symmetry and have Aw for all finite subsets w ⊆W com

p .
Let A be any element of AVcom

p , and set

T (A)= HomFp(A,A)= lim
−−→
w

HomFp(A, Aw)= lim
−−→
w

Mw(A).

The groups HomFp(A, Aw) are stable when w is large enough. More precisely, if
w, w′ are finite sets of Weil p-numbers with w(A)⊆ w ⊆ w′, then the map

ϕw′,w ◦ − : HomFp(A, Aw)→ HomFp(A, Aw′)

is an isomorphism (see Proposition 26). Moreover, T (−) restricted to AVw recovers
the functor Mw(−) of Theorem 25 constructed using the object Aw of A, and
induces an antiequivalence between AVw and Refl(Rw).
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Observe that, by the naturality of the Frobenius isogeny, for any finite w ⊆Wp

avoiding
√

p and any f ∈ HomFp(A, Aw) the diagram

A
f //

πA

��

Aw

πAw

��

A
f // Aw

is commutative. This implies that, for w sufficiently large, the action of Fw ∈ Rw
on T (A) is given by T (πA), the morphism induced by the Frobenius isogeny πA

via functoriality of T .
Compatibility in w shows that T (−) induces an antiequivalence

T = lim
−−→

Mw : AVcom
p = lim

−−→
w

AVw −→∼ lim
−−→
w

Refl(Rw)= Refl(Rcom
p ).

Due to the remarks of Section 3.2, this is precisely the claim of Theorem 1, and so
its proof is complete. �

6. Properties of the functor T

6.1. Recovering Tate and Dieudonné module. Let A be an abelian variety over
Fp, and set w = w(A). We explain here how the Rw ⊗Z`-modules T`(A) can be
recovered from the pair (T (A), F) attached to A by Theorem 1. We set

R` = lim
←−−
w

(Rw⊗Z`)

for all prime numbers `, where in the projective limit w ranges through all finite
subsets of W com

p , and define

T`(A)=
{

lim
−−→w

T`(Aw) ` 6= p,
lim
←−−w

Tp(Aw) `= p,

as the direct limit if ` 6= p and the projective limit if `= p of the system obtained
by applying T`(−) to the direct system A = (Aw)w constructed in the proof of
Theorem 1.

We first discuss the `-adic Tate module, and assume ` 6= p. Since for v ⊆ w
the map Av→ Aw is an inclusion of abelian varieties, the induced map T`(Av)→
T`(Aw) is the inclusion of a direct summand, at least as Z`-modules. Hence T`(A)
is a free Z`-module of countable infinite rank.

Proposition 27. Let A be an abelian variety over Fp with
√

p /∈ w(A). There is a
natural isomorphism of R`-modules

T`(A)−→∼ HomR`
(T (A)⊗Z`, T`(A)).
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Proof. Let w⊆W com
p be a finite set containing w(A). Since Rw⊗Z` is Gorenstein,

dualizing (5-1) yields the first equality in

T`(A)= HomRw⊗Z`(Mw(A)⊗Z`, T`(Aw))= HomR`
(T (A)⊗Z`, T`(A)).

The second equality holds, because T`(Aw)⊆ T`(A) is the maximal submodule on
which R` acts through its quotient R`→ Rw⊗Z`. �

Now we address the contravariant Dieudonné module Tp(A). We endow Tp(A)

with the projective limit topology. If M is a topological Rp-module which is finite
and free over Zp, then the action of Rp on M factors through Rp→ Rw⊗Zp for
some large enough w, by compactness of M . We denote by

M ⊗̂Rp Tp(A)= lim
←−−
w�∅

M ⊗Rw⊗Zp Tp(Aw)

the continuous tensor product.

Proposition 28. Let A be an abelian variety over Fp with
√

p /∈ w(A). There is a
natural isomorphism of Rp-modules

Tp(A)= (T (A)⊗Zp) ⊗̂Rp Tp(A).

Proof. Let w ⊆ W com
p be a finite set containing w(A). We deduce from (5-2) a

natural identification

Tp(A)= HomRw⊗Zp(Tp(Aw), Tp(A))⊗Rw⊗Zp Tp(Aw)

=Mw(A)⊗Rw Tp(Aw)= (T (A)⊗Zp) ⊗̂Rp Tp(A),

because for w(A)⊆ w ⊆ w′ the natural maps

(T (A)⊗Zp)⊗Rw′⊗Zp Tp(Aw′)→ (T (A)⊗Zp)⊗Rw⊗Zp Tp(Aw)

are isomorphisms. �

6.2. Isogenies and inclusions. We discuss how the functor T (−) detects isogenies
and inclusions.

Proposition 29. Let A and B be abelian varieties in AVcom
p .

(1) The map f : B→ A is an isogeny if and only if T ( f )⊗Q is an isomorphism.

(2) For an isogeny f : B→ A, the map T ( f ) is injective and the image is of index

deg( f )= |coker(T ( f ))|.

Proof. (1) An isogeny f has an inverse up to multiplication-by-n map for n=deg( f ).
Therefore T ( f ) is an isomorphism after inverting deg( f ).

Conversely, if f is not an isogeny, then either ker( f ) or coker( f ) have a nontrivial
abelian variety as a direct summand up to isogeny. In the presence of such a direct
summand the map T ( f )⊗Q cannot be an isomorphism.
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(2) We indicate the `-primary part by an index `. Then using Proposition 27, for
` 6= p we have

|coker(T ( f ))|` = |coker(T ( f ))⊗Z`| = |coker(T`( f )∨ : T`(A)∨→ T`(B)∨)|.

The duals here are Hom(−, Rw ⊗ Z`). Since Rw ⊗ Z` is reduced Gorenstein of
dimension 1, we can use [Bass 1963, Theorem 6.3(4)] and induction on the length
to see that

|coker(T`( f )∨ :T`(A)∨→T`(B)∨)|=|coker(T`( f ) :T`(B)→T`(A))|=| ker( f )|`.

If `= p, using Proposition 28 yields

|coker(T ( f ))|p = |coker(T ( f ))⊗Zp| = |coker(Tp( f ) : Tp(A)→ Tp(B))|

= | ker( f )|p,

where the last equality follows from Dieudonné theory. �

Proposition 30. Let A and B be abelian varieties in AVcom
p . For a map f : B→ A,

the following are equivalent:

(a) T ( f ) : T (A)� T (B) is surjective.

(b) The map f can be identified with the inclusion of an abelian subvariety.

Proof. If T ( f ) is surjective, Proposition 27 shows that the induced map T`(B)→
T`(A) is injective. Therefore ker( f ) is at most a finite group scheme. We may
therefore replace A by the image A0 of B→ A and thus reduce to the case of the
isogeny f0 : B→ A0. Here Proposition 29 implies that deg( f0)= 1, hence B = A0

and f is indeed an inclusion of an abelian subvariety.
Conversely, if f : B→ A is an inclusion, then there is a map g : A→ B such

that g f : B → B is an isogeny. Therefore T ( f ) has at least an image of finite
index. The image of T ( f ) is a reflexive submodule in the image of the equivalence
T (−), so that there is an abelian variety C and a factorization B→ C→ A with
T (A)� T (C) surjective and T (C)⊆ T (B) an inclusion.

We have already proven that C→ A is an abelian subvariety, and it is easy to
see that B→ C is an isogeny. Therefore B→ C is an isomorphism. �

As an application, we prove a variant for objects of AVp of Waterhouse’s theo-
rem on possible endomorphism rings of Fp-simple abelian varieties over Fp; see
[Waterhouse 1969, Theorem 6.1.2]:

Theorem 31. Let w be a set of conjugacy classes of nonreal Weil p-numbers. Then
the following are equivalent:

(a) S is an order in Rw⊗Q containing Rw.

(b) S is isomorphic as an Rw-algebra to EndFp(B) for an abelian variety B with
w(B)= w whose simple factors up to isogeny occur with multiplicity 1.
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Proof. Since Rw is the minimal central order for abelian varieties B with w(B)=w,
it is clear that (b) implies (a).

Conversely, if S is an order containing Rw, then S is a reflexive Rw-module and
thus corresponds to an abelian variety B. Let Aw be the abelian variety occurring in
the ind-system pro-representing T (−), so that T (Aw)= Rw. The inclusion Rw ⊆ S
corresponds to an isogeny ϕ : B→ Aw by Proposition 29, so that B has the required
Weil support and product structure up to isogeny. Moreover,

EndFp(B)= EndRw(S)= {λ ∈ Rw⊗Q : λS ⊆ S} = S

shows (a) implies (b). �

7. Ambiguity and comparison

The construction of the functor T (−) in Section 5.3 depends on the choice of an
ind-abelian variety A. For the sake of distinguishing the different choices, we set
in this section

TA(−)= HomFp(−,A).

7.1. Continuous line bundles.

Definition 32. Let W ⊆Wq be a subset. Let us denote by RW the pro-ring (Rw),
where w ranges over the finite subsets of W .

(1) An RW -module is a pro-system M = (Mw) with w ranging over the finite
subsets of W , such that Mw is an Rw-module and the maps Mw → Mv for
v⊆w are Rw-module homomorphisms (where Rw acts on Mv via the projection
Rw→ Rv). Homomorphisms of M are levelwise Rw-module homomorphisms.

(2) An RW -module M is invertible if for allw⊆W the Rw-module Mw is invertible
and for v ⊆ w the maps Mw→ Mv are surjective (equivalently, they induce a
natural isomorphism Mw⊗Rw Rv ' Mv).

(3) The set of isomorphism classes of invertible RW -modules forms a group,
denoted by Pic(RW ), under levelwise tensor products, the Picard group of RW .

For a finite setw of conjugacy classes of Weil q-numbers, we set Xw=Spec(Rw)
and consider the ind-schemes

X = lim
−−→
w

Xw,

and for a subset W ⊆Wq the ind-scheme

XW = lim
−−→
w⊆W

Xw,
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with closed immersions as transfer maps, all denoted i , induced by the projections
prv,w : Rw � Rv. The invertible RW -modules are just line bundles on XW , and

Pic(RW )= Pic(XW )= H1(XW ,O×).

Since O×XW
= lim
←−−w⊆W i∗O×Xw , we find an exact sequence

0−→ lim
←−−
w⊆W

1 R×w −→ Pic(RW )−→ lim
←−−
w⊆W

Pic(Rw)−→ 0.

The quotient of Pic(RW ) given by lim
←−−w

Pic(Rw) parametrizes the choices of a
compatible system of isomorphism classes of rank-1 Rw-modules Mw. The lim

←−−

1-
term parametrizes all choices of transfer maps to obtain an invertible RW -module
M = (Mw) from a given compatible choice of isomorphism classes of invertible
Rw-modules at every level.

Proposition 33. Let V ⊆W ⊆Wq be subsets. Then the natural restriction map

Pic(RW )� Pic(RV )

is surjective.

Proof. For v ⊆ w, define Zariski sheaves Kv,w on XW by the short exact sequence

0−→ Kv,w −→ i∗O×Xw −→ i∗O×Xv −→ 0.

Then KV,W = lim
←−−w⊆W Kw∩V,w is the kernel of O×XW

� i∗O×XV
. The Zariski coho-

mology sequence yields an exact sequence

Pic(RW )−→ Pic(RV )−→ H2(XW ,KV,W ),

and it remains to show vanishing of H2(XW ,KV,W ). The pro-structure of KV,W

leads to a short exact sequence

0−→ lim
←−−
w⊆W

1 H1(Xw,Kw∩V,w)−→H2(XW ,KV,W )−→ lim
←−−
w⊆W

H2(Xw,Kw∩V,w)−→0.

The lim
←−−

-term on the right vanishes by cohomological dimension because dim(Xw)
is 1. The lim

←−−

1-term on the left vanishes, as we claim that (H1(Xw,Kw∩V,w))w⊆W

is a surjective system, and hence a Mittag–Leffler system. Indeed, for finite subsets
w ⊆ w′ ⊆W , the cokernel Cw,w′ of

Kw′∩V,w′→ Kw∩V,w

is a sheaf with support in at most the finitely many points of Xw′ that are con-
tained in more than one irreducible component, and so H1(Xw′,Cw,w′)= 0. Since
H1(Xw′,−) is right exact, we have an exact sequence

H1(Xw′,Kw′∩V,w′)→ H1(Xw,Kw∩V,w)→ H1(Xw′,Cw,w′)= 0,

from which we deduce the claim. �
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7.2. Mixed tensor products. We recall Serre and Tate’s well-known tensor product
construction (see [Giraud 1968] for the parallel Hom-construction explaining a
construction of Shimura and Taniyama). Let A be an abelian variety over Fq and M
a finitely generated Rw-module for some w(A) ⊆ w ⊂ Wq . The Rw-action on A
induces an Rw-module structure on the set of U -valued points for any Fq -scheme U .
The fppf-sheafification (M ⊗Rw A)# of the functor on Fq -schemes

U 7→ M ⊗Rw A(U )

is representable by an abelian variety. Indeed, let

Rm
w

ϕ
−−→ Rn

w −→ M −→ 0

be a finite presentation. The m×n-matrix ϕ also defines a map ϕA : Am
→ An , and

M⊗Rw A(U )=coker(ϕ⊗idA(U ))=coker(ϕA : A(U )m→ A(U )n)=coker(ϕA(U )),

so that

(M ⊗Rw A)# = coker(ϕA),

and this is representable by an abelian variety. We denote the representing object by

M ⊗Rw A.

If w ⊆ w′ and M ′ is a finitely presented Rw′-module with M = M ′ ⊗Rw′ Rw,
then there is an obvious identification

M ′⊗Rw′ A = M ⊗Rw A.

In particular, if W ⊆ Wq is a subset and w(A) ⊆ W , then for any invertible RW -
module M= (Mw) we have a well-defined tensor product given by

M⊗RW A := Mw⊗Rw A

for all sufficiently large finite w(A)⊆ w ⊆W .

7.3. Choices of ind-representing objects. Before we describe our choices, we need
three propositions of independent interest.

Proposition 34. Let W ⊆ Wq be a subset, A an abelian variety with w(A) ⊆ W ,
and M= (Mw) an invertible RW -module. Then there is a natural isomorphism

HomFq (−,M⊗RW A)'M⊗RW HomFq (−, A)

of functors AVW → Refl(RW ).
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Proof. We set w = w(A), and must show that naturally in X

HomFq (X,Mw⊗Rw A)' Mw⊗Rw HomFq (X, A)

for any abelian variety X over Fq . We extend this claim to projective Rw-modules
M of finite rank. Since the tensor construction is compatible with direct sums,
clearly the claim is additive in M in the sense that it holds for M ′ and M ′′ if and
only if it holds for M = M ′⊕M ′′. This reduces the claim to free modules M = Rn

w,
and by the same argument to M = Rw. Now the claim trivially holds. �

Proposition 35. Let W ⊆ Wq be a subset containing no rational Weil q-number.
Any RW -linear contravariant equivalence

S : AVW → Refl(RW )

is ind-representable, i.e., of the form

S(−)= HomFp(−,B)

for an ind-system B= (Bw, ϕw,v) such that the following holds for all finite subsets
v ⊆ w ⊆W :

(i) w(Bw)= w.

(ii) The natural map Rw→ EndFq (Bw) is an isomorphism.

(iii) Bw is isogenous to the product of its simple factors with multiplicity 1.

(iv) The maps ϕw,v : Bv→ Bw are inclusions.

Proof. The pro-system RW = (Rw, prv,w) can be considered as the pro-system of
the free rank-1 modules Rw ∈ Refl(Rw) ⊆ Refl(RW ). As such there is a unique
ind-system B= (Bw, ϕw,v) with S(B)= (S(Bw))=RW . Yoneda’s lemma assigns
to the compatible elements 1 ∈ Rw = S(Bw) a natural transformation

8 : HomFq (−,B)= lim
−−→
w

HomFq (−, Bw)→ S(−).

For every A ∈ AVW the map 8 is the composition of the two isomorphisms

lim
−−→
w

Hom(A, Bw)
S
−−→ lim

−−→
w

HomRw(Rw, S(A))
ev1
−−→ S(A),

where ev1 denotes the evaluation map at 1. It remains to prove the finer claims on
the ind-representing system B.

Since S is an RW -linear equivalence, RW acts on Bw through Rw as on S(Bw)=
Rw. Here we use that Rw is commutative, and so we can forget to pass to the
opposite ring due to S being contravariant. Since Fw acts on Bw by the Frobenius
isogeny πBw , and on Rw = S(Bw) by Fw ∈ Rw, it follows that w(Bw)= w.
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The natural map Rw → EndFw(Bw) is an isomorphism, because applying the
RW -linear S(−) transforms it to the map Rw→ EndRw

(Rw), which is indeed an
isomorphism. We deduce assertion (iii) from this as well.

It remains to show that ϕw,v : Bv → Bw is isomorphic to an inclusion for all
v ⊆ w. We denote the image of ϕw,v by C . Since S is ind-representable, the
surjection Bv→ C becomes an inclusion

S(C) ↪→ S(Bv).

Since by construction S(Bw)→ S(Bv) is the surjective map prv,w : Rw→ Rv , we
conclude that S(C) ' S(Bv) is an isomorphism. Consequently, because S is an
equivalence, we have C ' Bv and assertion (iv) holds. �

The third proposition is related to Proposition 24.

Proposition 36. Let W ⊆ Wq be a subset containing no rational Weil q-number,
and let

S : AVW → Refl(RW )

be an RW -linear contravariant equivalence.
Let w ⊆W be a finite set of conjugacy classes of Weil q-numbers, and let A be

an abelian variety over Fq with w = w(A). The following are equivalent:

(a) The natural map Rw→ EndFq (A) is an isomorphism.

(b) S(A) is a projective Rw-module of rank 1.

Proof. Since S(−) is an equivalence of categories, the map Rw→ EndFp(A) is an
isomorphism if and only if the map

Rw→ EndRw(S(A))

is an isomorphism (S is contravariant but the rings are commutative here). Since
Rw is a reduced Gorenstein ring of dimension 1 by Theorem 11, this is equivalent
by Proposition 18 to S(A) being a projective Rw-module of rank 1. �

We define the tensor product of an invertible RW -module M = (Mw) and an
ind-system A= (Aw, ϕw,v) of abelian varieties indexed by finite subsets of W and
with w(Aw)= w by

M⊗A := (Mw⊗Rw Aw).

Theorem 37. Let W ⊆Wq be a subset containing no rational Weil q-number.
Let A = (Aw, ϕw,v) be an ind-system of abelian varieties over Fq indexed by

finite subsets of W such that:

(i) w(Aw)= w.

(ii) The natural map Rw→ EndFq (Aw) is an isomorphism.
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(iii) Aw is isogenous to the product of its simple factors with multiplicity 1.

(iv) The maps ϕw,v : Av→ Aw are inclusions.

For an invertible RW -module M, the ind-system M⊗RW A has the same properties
(i)–(iv), and the group Pic(RW ) acts freely and transitively by

A 7→M⊗RW A

on the set of isomorphism classes of such ind-systems.

Remark 38. When q = p and W = {π} consists of a single Weil p-number,
Theorem 37 is a special case of [Waterhouse 1969, Theorem 6.1.3], which inspired
the above result.

Proof of Theorem 37. By a W -version of the proof of Theorem 1 for any ind-system
A satisfying (i)–(iv), the functor

TA = HomFq (−,A) : AVW → Refl(RW )

is a contravariant RW -linear antiequivalence AVW → Refl(RW ). The effect of the
action by M∈Pic(RW ) on the represented functors is described by Proposition 34 as

TM⊗RW A(−)=M⊗RW TA(−).

Since M= (Mw) is invertible, the functor M⊗RW − is an autoequivalence of AVW .
We thus have natural isomorphisms

Rw = EndFq (Aw)= EndFq (M⊗RW Aw)= TM⊗RW A(M⊗RW Aw).

Moreover, since M= (Mw) is invertible, the functor TM⊗RW A(−) is an antiequiva-
lence as well, and

TM⊗RW A(M⊗RW A)=RW

as pro-systems. It follows from the proof of Proposition 35 that M⊗RW A also
satisfies properties (i)–(iv). This shows that Pic(RW ) indeed acts on isomorphism
classes of such A.

Let M be an invertible RW -module, and let A be a pro-system as above such
that there is an isomorphism M ⊗RW A ' A. Evaluating the resulting natural
isomorphism

M⊗RW TA(−)' TA(−)

in A itself yields an isomorphism M⊗RW RW 'RW , and hence M must be trivial
in Pic(RW ). This shows that the action is free.

Let now A and B be two pro-systems of the type considered. The RW -module

M= TB(A)= (HomFp(Aw, Bw))
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(note that all maps of pro-objects A→B are levelwise maps since w(Aw)= w =
w(Bw)) is levelwise an invertible Rw-module Mw = TB(Aw) by Proposition 36.
The transfer maps Mw→Mv agree with TB(ϕw,v), which is surjective. Indeed, the
image corresponds to an abelian variety C such that ϕw,v factors as

Av −→ C −→ Aw.

Now the same argument as in the proof of Proposition 35 shows that w(C)⊆w and
C→ Aw is an inclusion. Since ϕw,v is an inclusion, we necessarily have Av = C
and TB(ϕw,v) is indeed surjective. Consequently, the RW -module M = (Mw)

is invertible.
There is a natural map defined by composition of maps

M⊗RW TA(−)= Hom(A,B)⊗Hom(−,A)−→ Hom(−,B)= TB(−).

This is an isomorphism, because for every X in AVW and large enough w we have

M⊗RW TA(X)= HomFp(Aw, Bw)⊗Rw HomFp(X, Aw)

= TB(Aw)⊗Rw HomRw(TB(Aw), TB(X))

= TB(X).

Here we have used again the assumption that TB(−) is an equivalence and the fact
that TB(Aw) is invertible as an Rw-module by Proposition 36. �

Corollary 39. The action of Pic(Rcom
p ) on the isomorphism classes of ind-systems

A that represent Rcom
p -linear antiequivalences Acom

p → Refl(Rcom
p ) is free and

transitive.

Proof. This follows immediately from Theorem 37, the proof of Theorem 1 and
Proposition 35. �

Remark 40. With the notation of Section 5.3, for finite sets v ⊆ w ⊆Wp avoiding
√

p the transfer map
ζv,w : Z(w)→ Z(v)

in the pro-system of isomorphism classes occurring in the proof of Theorem 1 is in
fact surjective. This follows immediately from Theorem 37 and the surjectivity of
Pic(Rw)→ Pic(Rv) from Proposition 33.

Corollary 41. Let V ⊆W ⊆Wp be subsets avoiding
√

p, and let AV = (Av, ϕw,v)
be an ind-system of abelian varieties over Fp indexed by finite subsets of V as in
Theorem 37 such that

TAV = HomFp(−,AV ) : AVV → Refl(RV )
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is an RV -linear antiequivalence of categories. Then AV can be extended to an
ind-system AW = (Aw, ϕv,w) of abelian varieties over Fp indexed by finite subsets
of W as in Theorem 37. In particular the antiequivalence

TAW = HomFp(−,AW ) : AVW → Refl(RW )

naturally extends TAV .

Proof. We start by choosing an auxiliary ind-system BW indexed by finite subsets
of W as in Theorem 37. The restriction

HomFp(−,BW ) : AVV → Refl(RV )

is an RV -linear antiequivalence and is ind-represented by the restriction BV =BW |V

of the indices to finite subsets of V . By Theorem 37 there is an MV ∈ Pic(RV )

such that
AV =MV ⊗RV BV .

By Proposition 33 we can find MW ∈ Pic(RW ) such that MV =MW ⊗RW RV . Then

AW =MW ⊗Rw
BW

obviously extends AV in the desired manner. �

7.4. Comparison with Deligne’s functor for ordinary abelian varieties over Fp.
Let w ⊆ W com

p be a finite subset, and let τ : Rw → Rw be the automorphism
interchanging Fw and Vw. Denote by Rτw the Rw-module obtained by letting Rw
operate onto itself via τ . Similarly, for an object M of Refl(Rw), denote by Mτ the
Rw-module M ⊗Rw Rτw.

We fix a contravariant equivalence T as in Theorem 1, and an ind-representing
system A= (Aw, ϕw′,w) for T = TA. The covariant functor on AVcom

p

T∗(A)= T (At)τ = lim
−−→
w

Hom(At
w, A),

is pro-representable by the dual system At
= (At

w, ϕ
t
w′,w) and a version of Theorem 1

with a covariant equivalence

T∗ : AVcom
p → Refl(Rcom

p )

holds. Notice that T∗ is Rcom
p -linear, since the dual of the Frobenius isogeny

πA : A→ A is the Verschiebung isogeny p/πAt : At
→ At .

We recall that Deligne’s functor TDel on AVord
q is defined as

TDel(A)= H1( Ã(C),Z),

where Ã/W (Fp) is the Serre–Tate canonical lift of A⊗Fq Fp to characteristic 0 over
the Witt-vectors W (Fp), and where the C-valued points are taken with respect to an
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a priori fixed embedding W (Fp) ↪→ C. The lattice TDel(A) comes equipped with a
natural Frobenius action by F = TDel(πA).

Note that the functor depends on the chosen embedding W (Fp) ↪→ C.
We denote by W ord

q the set of conjugacy classes of ordinary Weil q-numbers,
i.e., of Weil q-numbers such that at least half of the roots of the characteristic
polynomial are p-adic units, when regarded inside an algebraic closure of Qp. With
the abbreviation Rord

q =RW ord
q

, the main result of [Deligne 1969, §7] can be stated as:

Theorem 42. The covariant functor TDel induces an Rord
q -linear equivalence of

categories
TDel : AVord

q → Refl(Rord
q ).

We now compare T∗(−) with TDel when both are restricted to AVord
p :

Proposition 43. The functor TDel(−) is pro-representable by a pro-system ADel

and
TDel(ADel)=Rord

q .

The dual ind-system At
Del satisfies (i)–(iv) of Proposition 35.

Proof. This follows from Proposition 35 applied to the functor X 7→ TDel(X t). �

Let T ord
∗

and TDel,p denote the restriction of T∗ and TDel to AVord
p , respectively.

The functor T ord
∗

is pro-represented by the dual Aord,t of the ind-system Aord which
is defined as A restricted to indices in W ord

p .

Proposition 44. There is an invertible Rord
p -module M= (Mw)w∈W ord

p
and a natural

isomorphism
M⊗Rord

p
TDel,p(−)−→

∼ T ord
∗
(−)

of covariant equivalences AVord
p → Refl(Rord

p ), and a natural isomorphism of
ind-systems

M⊗Rord
q

At
Del 'Aord.

Proof. This follows from Theorem 37 applied to W =W ord
q . �

Proposition 45. For an appropriate choice of ind-system A = (Aw, ϕv,w), the
covariant functor T∗ associated to the functor T = TA of Theorem 1 extends a given
choice of Deligne’s functor

TDel,p ' T∗|Aord
p
: AVord

p → Refl(Rord
p ).

Proof. This follows from Proposition 44 together with the argument of Corollary 41
based on the surjectivity Pic(Rcom

p )→ Pic(Rord
p ) of Proposition 33. �
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