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Categories of abelian varieties over

finite fields, I: Abelian varieties over F,

Tommaso Giorgio Centeleghe and Jakob Stix

We assign functorially a Z-lattice with semisimple Frobenius action to each
abelian variety over [,. This establishes an equivalence of categories that de-
scribes abelian varieties over [, avoiding ,/p as an eigenvalue of the Frobenius in
terms of simple commutative algebra. This result extends the isomorphism classi-
fication of Waterhouse and Deligne’s equivalence for ordinary abelian varieties.
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1. Introduction

1.1. Let p be a prime number, [_Fp an algebraic closure of the prime field [, with p
elements, and [, C I]_:p the subfield with g elements, where ¢ = p® is a power of p.
The category

AV,

of abelian varieties over [, is an additive category, where for any two objects A, B
the abelian group Homg, (A, B) is free of finite rank. Even though the main result
of this paper concerns abelian varieties over the prime field [, the general theme of
our work is describing suitable subcategories C of AV, by means of lattices 7'(A)
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functorially attached to abelian varieties A of C. In contrast to the characteristic-zero
case, if we insist that
tkz (T (A)) = 2dim(A), (1-1)

then it is not possible to construct 7' (A) on the whole category AV, (see Section 1.6).
However, if we take C to be the full subcategory

ord
AV p

of ordinary abelian varieties, Deligne [1969, §7] showed that a functor A — T (A)
satisfying (1-1) exists and gives an equivalence between AV;rd and the category of
finite free Z-modules T equipped with a linear map F : T — T satisfying a list of
easy-to-state axioms.

Inspired by Waterhouse [1969, Theorem 6.1], in the present work we show that
a description in the style of Deligne can in fact be obtained, when ¢ = p, for a
considerably larger subcategory C of AV, which excludes only a single isogeny
class of simple objects of AV, from occurring as an isogeny factor (see Theorem 1).
Deligne’s method is an elegant application of the Serre—Tate theory of canonical
liftings of ordinary abelian varieties, whereas our method, closer to that used by
Waterhouse, does not involve lifting abelian varieties to characteristic zero. Even if
the main result of this paper generalizes the g = p case of Deligne’s theorem, it is
unlikely that a proof generalizing Deligne’s lifting strategy is possible.

1.2. A Weil g-number w is an algebraic integer, lying in some unspecified field of
characteristic zero, such that for any embedding ¢ : Q(r) — C we have

le(m)| = q'/2,

where |—| is the ordinary absolute value of C. Two Weil ¢g-numbers 7 and 7’ are
conjugate to each other if there exists an isomorphism Q () => Q(xr’) carrying 7 to
7', in which case we write 7 ~r’. We will denote by W, the set of conjugacy classes
of Weil g-numbers. A Weil g-number is either totally real or totally imaginary,
hence it makes sense to speak of a nonreal element of W,,.

Let A be an object of AV,, and denote by 74 : A — A the Frobenius isogeny
of A relative to ;. If A is F,-simple then Endg, (A) ® Q is a division ring, and a
well-known result of Weil says that 74 is a Weil g-number inside the number field
Q(ra). Let

A~ T] 47 (1-2)
1<i<r
be the decomposition of A up to F,-isogeny into powers of simple, pairwise non-
isogenous factors A;. The Weil support of A is defined as the subset

w(A) ={ma,,...., A} S W,
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given by the conjugacy classes of the Weil numbers 774, attached to the simple factors
A;. By Honda-Tate theory, the conjugacy classes of the 4, are pairwise distinct;
moreover, any class in W, arises as w4, for some [F,-simple abelian variety A,
uniquely determined up to [,-isogeny [Tate 1971, Théoreme 1].

1.3. Consider now the case ¢ = p. Using Honda—Tate theory, it is easy to see
that for a simple object A of AV, the ring Endg, (A) is commutative if and only if
A 7 /D> 1.€., if and only if the Frobenius isogeny w4 : A — A defines a nonreal
Weil p-number [Waterhouse 1969, Theorem 6.1]. Let

com
AV,

be the full subcategory of AV, given by all objects A such that w(A) does not contain
the conjugacy class of ,/p. Equivalently, AV °™ is the largest full subcategory of AV,
closed under taking cokernels containing all simple objects whose endomorphism
ring is commutative. Since the Weil p-number ,/p is associated to an [F,-isogeny
class of simple, supersingular abelian surfaces [Tate 1971, Exemple (b), p. 97], we
have a natural inclusion AV[?rd C AV,

The main result of this paper, proven at the end of Section 5.3, is the following:

Theorem 1. There is an ind-representable contravariant functor

A (T(A), F)

which induces an antiequivalence between AV,°™ and the category of pairs (T, F)

given by a finite, free Z-module T and an endomorphism F : T — T satisfying the
following properties:

(1) F ® Q is semisimple, and its eigenvalues are nonreal Weil p-numbers.

(i) There exists a linear map V : T — T such that FV = p.

Moreover, the lattice T (A) has rank 2 dim(A) for all A in A If"m, and F is equal
to T (7y).

To prove the theorem, we consider in Section 2 a family of Gorenstein rings
Ry =Z[F, V1/(FV —p, hy(F,V))

indexed by the finite subsets w € W), where h,,(F, V) is a certain symmetric
polynomial built out of the minimal polynomials over Q of the elements of w. An
object (T, F) in the target category of the functor 7 (—) of Theorem 1 is nothing
but an R,-module, for w C W, large enough, that is free of finite rank as a Z-
module. In this translation, the linear map F : T — T is given by the action of the
image of F in Ry, and the relation /,,(F, V) in R,, encodes precisely that F @ Q
acts semisimply and with eigenvalues given by Weil p-numbers lying in w (see
Sections 2.4, 2.5 and 3.2). Thanks to the Gorenstein property, these R,,-modules
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are precisely the reflexive R,-modules; the category that they form will be denoted
by (see Section 3)
Refl(Ry).

For v € w, the corresponding rings are linked by natural surjective maps
pry ., : Ry — Ry. We denote by R the pro-system (R, pr, ,,) With w S W),
ranging over the finite subsets avoiding the conjugacy class of ,/p. We further set

Refl(%g’m) = lim Refl(Ry),

SN
and refer to Section 3.2 for details.
In this language, Theorem 1 can be stated as saying that

T : AVE™ — Refl(R™)

is an antiequivalence of categories. While this formulation of the main result is
closer to the perspective we adopted in its proof, the more concrete statement we
chose to give above allows an immediate comparison to Deligne’s result [1969].

1.4. The rings R, studied in Section 2 are in fact defined for any finite subset
w € W,. They appear naturally in connection to abelian varieties, in that for any A
in AV, the natural map

ZIF, V]/(FV —q) — Endg, (A) (1-3)

sending F to w4 and V to the Verschiebung isogeny ¢ /m4 induces an identification
between Ry, (4) and the subring Z[m4, g /ma] of End[pq (A), which has finite index
in the center (see Section 2.1). The rings R, have been already considered in
[Waterhouse 1969] and [Howe 1995], for example. The Gorenstein property of Ry,
in the ordinary cases is implicitly contained in [Howe 1995] and explicitly used in
a special case in [Howe 2004]. However, to the best of our knowledge, a systematic
investigation of the occurrence of Gorensteinness among the rings R,, has not been
carried out previously (see Theorems 11 and 12).

An %gom—linear structure on AV;Om can be deduced from the map (1-3) (see
Section 2.3). The requirement that ' = T (;r4) means precisely that the functor
T (—) is an %)™ -linear functor (see Section 3.2).

1.5. The proof of the theorem consists of two steps. First, for any finite subset
w C W, not containing the conjugacy class of ,/p, we construct a certain abelian
variety A, isogenous to the product of all simple objects attached to the elements
of w via Honda-Tate theory. The object A,, is chosen in its isogeny class with the
smallest possible endomorphism ring, i.e., such that the natural map

Ry, — Endy, (Ay)
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is an isomorphism (see Proposition 21). In order to show the existence of such an
Ay, which already appears in [Waterhouse 1969, Theorem 6.1] if w consists of
a single element, the assumption ¢ = p plays an important role. Exploiting the
Gorenstein property of Ry, in Theorem 25 we show that the functor Homg, (—, Ay,)
gives a contravariant equivalence

Homg, (—, Ay) : AVy, = Refl(Ry),

where AV, is the full subcategory of AV, given by all abelian varieties A with
w(A) Cw.

The second step consists in showing that the abelian varieties A,, previously
constructed can be chosen in such a way that the functors Homg, (—, A,,) interpolate
well and define a functor on AV,°". More precisely we show the existence of an
ind-system

A= (Aw7 ¢w,v), (1'4)

indexed by finite subsets w € W), not containing the conjugacy class of ,/p, such
that the corresponding direct limit of finite free Z-modules

T(A) = lim Homg, (A, A,)
w

stabilizes for any A in AV)™. The contravariant functor 7'(—) ind-represented by
A will produce the required antiequivalence.

1.6. As Serre has observed, it is not possible to functorially construct a lattice 7'(A)
satisfying the expected rkz (7T (A)) = 2 dim(A) on the category of abelian varieties
over Fp. This is due to the existence of objects like supersingular elliptic curves E
over Fp. As is well known, the division ring Ende (E) ® Q is a nonsplit quaternion
algebra over Q and has no 2-dimensional Q-linear representation that can serve as
T (E) ® Q. The issue just described is the same obstruction that prevents the exis-
tence of a Weil cohomology for varieties over finite fields with rational coefficients.

Using the same argument, one can show the nonexistence of a lattice 7T (A)
as above on the category AV,, where ¢ is a square. When g is not a square, the
correct instance of Serre’s observation preventing Theorem 1 from extending to all
of AV, is given by the isogeny class of [F,-simple, supersingular abelian surfaces
associated via Honda—Tate theory to the real, nonrational, Weil g-number ,/q. The
endomorphism ring of any such surface A is an order of a quaternion algebra over
Q(/q) =Q(,/p) which is ramified at the two real places [Waterhouse 1969, p. 528].
It follows that Endr, (A) ® R >~ H x H is a product of two copies of the Hamilton
quaternions H. Thus it admits no faithful representation on a 4-dimensional real
vector space, which 7T (A) ® R would give rise to.
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1.7. The dual abelian variety establishes an antiequivalence A — A’ of AV, which
preserves Weil supports and has the effect of switching the roles of Frobenius and
Verschiebung endomorphisms relative to [,. That is,

(a) =q/mar

as isogenies from A’ to itself. On the module side, we define a covariant involution
of Refl(%™), denoted by M — M, which interchanges the roles of F and V, i.e.,
such that

(T, F)"=(T, p/F).

Using these two dualities we can exhibit a covariant version of the functor 7' (—)
of Theorem 1. More precisely, define

T.(A) =T(A")"

as the pair given by the Z-module T (A") equipped with the linear map p/ T (7w a1).
In the notation as pairs, T, (A) takes the form

(T(A"), p/T(mwa)) = (T(A"), T((a)")) = (Tu(A), Tu(4)).
The functor 7,.(—) gives a covariant, R7""-linear equivalence
T,: AV;‘)“[1 — Refl(%gom) (1-5)

which is pro-represented by the system s’ = (A’ , (pfu,’ ») dual to (1-4). In the
definition of T, (—) it is necessary to apply the involution 7 to 7 (A’) in order to
guarantee that T}, be %gom—linear.

In Section 7.4 we compare T, (—) restricted to AV;,’rd with Deligne’s functor [1969,
§7], which we denote by Tpe,,(—). The comparison makes use of a compatible
pro-system of projective R,,-modules M,, of rank 1 for all finite subsets w € W,
consisting only of conjugacy classes of ordinary Weil p-numbers. Proposition 44
then describes, for all abelian varieties A over F, with w(A) € w, a natural
isomorphism

TDel,p(A) ®Rw M, = T*(A)-

Furthermore, by choosing a suitable ind-representing system s = (A, ¢y ), We
may assume that M,, = R, for all w, i.e., the antiequivalence of Theorem 1 may be
chosen in its covariant version to extend Deligne’s equivalence; see Proposition 45
for details.

1.8. Finally, we indicate how to recover the ¢-adic Tate module 7;(A), for a prime
£ # p, and the contravariant Dieudonné module 7', (A) (see [Waterhouse 1969, §1.2])
from the module 7'(A). This involves working with the formal Tate module Ty (A)
and the formal Dieudonné module T, (o) of the direct system o, respectively
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defined as the direct limit of 7y(A,) and the inverse limit of the 7,(A,), with
transition maps obtained via functoriality of 7, and 7),. More concretely, we have
natural isomorphisms

Ty(A) =~ Homg, (T (A) ® Z¢, Te(sA)),
Tp(A) = (T(A) ®Zp) Qa, Tp(sA);

see Propositions 27 and 28 for notation and proofs. In this respect the functor 7' (—)
can be interpreted as an integral lifting of the Dieudonné module functor 7),(—).

In a forthcoming paper, we will apply the method used here to study certain
categories of abelian varieties over a finite field which is larger that [,. Therefore,
although Theorem 1 deals with abelian varieties over [,, we only restrict to the
case ¢ = p when it becomes necessary.

2. On the ubiquity of Gorenstein rings among minimal central orders

2.1. Minimal central orders. Let w C W, be any finite set of conjugacy classes

of Weil g-numbers. Choose Weil g-numbers 1, ..., 7, representing the elements
of w, and consider the ring homomorphism
ZIF, VI/(FV —q)— [] Q) @-1)
1<i<r
sending F to (mwy,...,m,) and V to (¢/my, ..., q/7)).

Definition 2. The minimal central order R, is the quotient
ZIF, V]1/(FV —q) = Ry (2-2)

by the kernel of the homomorphism (2-1). The image of F in R,, will be denoted
by Fy,, and the image of V by V,,.

The construction of the ring R,, is independent of the chosen Weil g-numbers in
their respective conjugacy classes. When w consists of a single conjugacy class
of a Weil number 7, the ring Ry, isomorphic to the order of Q(;) generated by
7 and g/, will sometimes be denoted simply by R,. Since the representatives

my, ..., T, are pairwise nonconjugate, there is a canonical finite index inclusion
Ry, C l_[ Ry
Tew

in particular,

R,®Q=[] Q). (2-3)

Tew

Moreover, for finite subsets v C w € W, we have a natural surjection

Pryyw P Ry = Ry.
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Our main goal in this section is to show that, under a mild assumption on w, the
ring R, is a 1-dimensional Gorenstein ring. This will be proved in Section 2.5,
where we obtain a description of R, by identifying the relations between the
generators F and V.

Example 3. The equality of closed subschemes

Spec(Ry) = | Spec(Rx) < Spec(ZIF, VI/(FV —¢))

TEew

shows that the spectrum of R,, is obtained by gluing the spectra of the rings R,
along their various intersections inside Spec(Z[F, V]/(FV — q)). This means,
roughly, that congruences between Weil g-numbers are responsible for R,, differing
from the product of the R, for all 7 € w.

We measure in a special situation the deviation of R,, from being isomorphic
to [, cw Rr. Fori =1,2, let m; be a quadratic Weil g-number with minimal
polynomial

x> —Bix+q,

where ; € Z, and set A = 81 — . Since g/m; = B; — m;, we have
Ry, = ZImi] = Z[x)/(x* — pix +q);
moreover, the subring R, € Z[m] x Z[m,] is generated as a Z-algebra by
0, &), (1, m2) € Z[71] X Z[72],

since it is generated by (7, m2) and (8 — 71, B> — m2). Because f; = B, modulo
A, there are isomorphisms of quotients

2]/ ALl ] = Z[m2]/ AZ[s] =: Ro,
and R,, becomes the fiber product
Ry = Z[m1] X gy Z[72],

which is an order of index A2 in the product Ry, x R,. The congruences between 7|
and 7, are encoded by the closed subscheme of Spec(Z[F, V]/(FV —q)) given by

Spec(Rp) = Spec(Ry,) N Spec(Ry,).
Note that the minimal polynomials x? — B; + ¢ yield Weil g-numbers if and only if
,312 <4q.

In particular, by letting g range over the powers of the prime p, the Weil g-numbers
7; may be chosen so that A is divisible by an arbitrary integer.
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2.2. Connection to abelian varieties. We proceed to link R, to abelian varieties
over [,. Any such A has two distinguished isogenies, given by the Frobenius
74 and the Verschiebung g/m, relative to ;. The Q-algebra Endg (A) ® Q is
semisimple, and its center is equal to the subalgebra Q(;4) generated by w4 [Tate
1966, Theorem 2]. It follows that any isogeny decomposition of A, as in (1-2),
induces the isomorphism

Qra) > [[ Qera, (2-4)

a; €EW(A)

sending ;w4 to (7wa,, ..., a,), Where wy,, ..., w4, are the Weil g-numbers defined
by the simple factors of A and w(A) is the Weil support of A defined in the
introduction.

From (2-4) we deduce that the ring homomorphism

ra:Z[F,V]/(FV —q) — Endg, (A)

sending F to w4 and V to g/m4 gives an identification between Ry, 4) and the
image of r4, namely the subring

Zlma, q/mal,

which sits inside the center of Endg, (A) with finite index. In this way we see that
Ry a) plays the role of a lower bound for the center of Endg, (A). This justifies the
terminology we chose in its definition.

Remark 4. One can ask whether there exists an abelian variety A with Weil support
w such that the natural map R,, — Endg, (A) induced by r4 gives an isomorphism
between R, and the center of Endg, (A). In Proposition 21 below, generalizing a
result of Waterhouse, we obtain a partial result in this direction.

2.3. Linear structures over minimal central orders. For a finite subset w C W,
the full subcategory

AV, C AV,

consists of all abelian varieties A such that w(A) C w or, equivalently, such that 74
factors through the quotient Z[F, V]/(FV —q) — R,,. Since for any morphism
f:A— Bin AV, and any n € Z[F, V]/(FV — q) the diagram

A L. p (2-5)
VA(W)l lVB(U)
f
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is commutative, as follows from the naturality of the Frobenius and Verschiebung
isogenies, we deduce an R, -linear structure on the category AV,,. Furthermore, for
finite subsets v € w the Ry -linear structure on AV, induced by the fully faithful
inclusion AV, C AV,, is compatible, via the surjection pr with the R,-linear
structure on AV,,.

v,w?

Remark 5. If W C W, is now any subset, denote by %Ry the projective system
(Rw, pry,,) as w ranges through all finite subsets of W, and by AVy the full
subcategory of AV, whose objects are all abelian varieties A with w(A) € W. We
will treat AV, as the direct 2-limit of the categories AV,,, for finite subsets w of W.
The collection of R, -linear structures on the subcategories AV,, € AVy, which are
linked by the compatibility conditions described above, form what we will refer to
as the Ry -linear structure on AVy .

2.4. The symmetric polynomial. Let w be a Weil g-number. If Q(r) has a real
place then 72 = ¢, so that Q(r) is totally real, and [Q() : Q] is either 2 or 1
according to whether the degree e = [[, : ] is odd or even, respectively. In the
first case there is only one conjugacy class of real Weil g-numbers; in the second
one there are two of them, given by the rational integers ¢¢/?> and —g/2. In the
general case where 7 is not real, the field Q(;r) is a nonreal CM field, with complex
conjugation induced by 7 +— g /7.

The degree 2d = [Q(r) : Q] is even, except for the two rational Weil g-numbers
occurring for e even, in which case d = 1/2. Set

2d—1

Pr(x) = x* +ayy_1x +---4aix +ag € Z[x]

for the normalized minimal polynomial of = over Q. The polynomial P, (x) depends
only on the conjugacy class of 7. The following lemma is well known (see [Howe
1995, Proposition 3.4]):

Lemma 6. Let w be a nonreal Weil g-number. Forr > 0, we have ag—, = q" a4,

Proof. We can arrange the roots oy, ..., azs of P;(x) so that ¢; and aog41—;
are complex conjugates of each other, that is, ojos+1—; = q. For a subset
I C{1,...,2d} weset I°={1,...,2d}\ I and I={:2d+1—iel}; we
will use the multiindex notation o/ = ]—[i <7 %. Then, summing over subsets of
{1,...,2d}, we compute

1

2d
d+
=D"ag_, = a —<]_[ ) o
\1| d+r =1 |1|=d+r
DI
|=d—

Y =g D e, O

|J r |J|=d—r
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We next construct a symmetric polynomial i, (F, V) € Z[F, V]. The idea is to
consider the rational function P, (F)/F d e 7[F, g/ F] (at least when d € Z), and
then formally set V =g/ F.

Definition 7. We define the symmetric polynomial h, (F, V) attached to a Weil
g-number 7 as follows:

(1) If  is a nonreal Weil g-number, then we set
ha(F,V)=F%4ay, FI 4+ tag Ftag+ag V+--+ay Vo + v
(2) If # = £p™ . /p is real but not rational, then we set
hy(F,V)=F—V.
(3) If m = & p™ is rational, then we set
hapn(F,V)=F/2Fv!/2

The polynomial 4 ,,(F, V) just defined belongs to Z[ F, V] if & not rational, and
to Z[F'/2, V1/2] otherwise. It appears already in [Howe 1995, §9].

Lemma 8. (1) If is a nonreal Weil q-number, then we have hy (7, q/m) =0.

(2) If m is a real, but not rational, Weil q-number, then h,(F,V)=F —V and
hz(7,q/m)=0.

(3) If m = £p™ is rational, then hym(F, V) -h_,n(F,V) = F —V is again
contained in Z| F, V], and vanishes for F =mw and V = q/m.

Proof. Assertion (1) follows from A, (7, g/m) = Py () /rrd = 0 which is based on
Lemma 6. Assertion (2) and (3) are trivial. O

Definition 9. An ordinary Weil g-number is a Weil g-number 7 such that exactly
half of the roots of its minimal polynomial P (x) in an algebraic closure of Q,, are
p-adic units.

A Weil g-number is ordinary if and only if its associated isogeny class of simple
abelian varieties over [, is ordinary. Real Weil numbers are not ordinary.

Lemma 10. Let w C W, be a finite subset of nonreal conjugacy classes of Weil
q-numbers. Then w consists of ordinary conjugacy classes if and only if h,,(0, 0) is
not divisible by p.

Proof. Letay, ..., a4, q/a1, ..., q/og be the roots of | P, (x). Then

TEW
d

ho(F, V)= [(F = (@i +q/a) +V) mod (FV —gq)
i=1
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so that

d
hy(F, V) = (=1 [ (e + g /) mod p.
i=1
This integer is not divisible by p if and only if the algebraic integers «; + ¢ /o; are
p-adic units for all i. This happens if and only if either «; or ¢ /¢; are p-adic units
for all 7, that is, if w consists of ordinary conjugacy classes. U

2.5. Structure of the minimal central orders. In what follows we will define the
degree of a finite subset w € W, by

deg(w) =rkz(R,) = ) [Q(x) : Q.

TEew

So w is of even degree if and only if w either contains none or both rational Weil
g-numbers +¢¢/?
notion, we will say that an arbitrary subset W C W, is of even degree if either none
or both rational conjugacy classes of Weil g-numbers belong to W.

If w € W, is any finite subset, we set

, which only exist when e = [[F, : [,] is even. Extending this

hu(F, V) =[] hx(F, V),

TEew

which is contained in Z[F, V'] as soon as w is of even degree.
Theorem 11. Let w C W, be a finite set of Weil q-numbers of even degree.

(1) We have R, =Z[F,V]/(FV —q, hy(F, V)).

(2) The ring R, is a 1-dimensional complete intersection; in particular, it is a
Gorenstein ring.

When w consists of ordinary Weil g-numbers, part (1) of Theorem 11 is [Howe
1995, Proposition 9.1].

Proof. The ring R, is reduced as it injects into a product of number fields. Moreover,
R, is a finite Z-algebra, because it is generated by F and V satisfying integral rela-
tions in R,,. Thus R, is free of finite rank as a Z-module and of Krull dimension 1.
More precisely, by (2-3) we have

tkz(Ry) = Z [Q(7): Q] =:2D

TEew

The ring Z[F, V]/(FV —gq) is a normal ring with at most one rational singularity
inp=(F,V, p). Hence, hy(F, V) is a nonzero divisor in Z[F, V]/(FV —¢q) and
it remains to show (1) to conclude the proof of (2).
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We now show assertion (1). By Lemma 8 the evaluation of h,,(F, V) in R,
vanishes for all 7 € w. Hence we obtain a surjection

¢:S=1Z[F,V1/(FV —q, hy(F, V)) - Ry.

We are done if we can show that S is generated by 2D elements as a Z-module.
By construction, i, (F, V) is a product of polynomials of the form

Jr(F) 48z (V)

with f, g, € Z[X] monic (or —g, monic). The degrees are deg( ) = deg(g,) =
[Q(m) : Q]/2 if 7 is nonrational, and 1 if 7 is rational. Having a representative of
the form f(F) + g(V) for monic polynomials f, g (or —g) of the same degree is
preserved under taking products:

(1(F) + g1 (V) (f2(F) + g2(V))

= f1o(F)+ g182(V) + lower degree terms in F, V,
where the mixed terms are of lower degree, because F'V = g necessarily leads to
cancellations.

Hence the same holds for the product: A, (F, V)= f(V)+g(V) with deg(f) =
deg(g) = D. In particular,

FP,FP-1 F1,v,. .. vP~l
generate S as a Z-module. ([

Since Theorem 1 deals with abelian varieties over [, our main concern in this
paper are the commutative algebra properties of R,, for finite subsets of W,. Here
Theorem 11 covers all cases. In order to complete the picture, we answer what
happens if w € W, contains exactly one rational conjugacy class of Weil g-numbers.

Theorem 12. Let g be the square of a positive or negative integer \/q € Z. Let
v C W, be a finite set containing no rational conjugacy class, and set w = vU{,/q}.

(1) We have R, = Z[F, V1/(FV —q, hy(F, V)(F = /@), ho(F, V)(V = /q)).
(2) Thering Ry, is Gorenstein if and only if all conjugacy classes of Weil q-numbers
in v are ordinary.

Proof. Reasoning as in the proof of Lemma 8, we see that the defining quotient
map Z[F, V]/(FV —q) — Ry factors as a surjective map

S =ZIF,V1/(FV —q. hy(F. V)(F = /). hy(F. V)(V = /@) = Ru.
As in Theorem 11, as a Z-module, the ring R,, is free of rank

tkz(Ry) =1+ [Q(r) : Q] =:2D + 1.

TEev
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It is easy to see that S is generated as a Z-module by
FP FP=Y L F LV, ..., VP,

This shows assertion (1) above.

For assertion (2), we first note that after inverting one of the elements p, F or
V, the three relations can be reduced to two relations, so that outside of (p, F, V)
the ring R,, is a local complete intersection and hence Gorenstein. It remains to
discuss the local ring in p = (p, F, V).

There is a unique polynomial 4 € Z[X] such that

hy(F, V) =h(F)—h(0) +h(V) € Z[F, V],

and for this 4 we have h(0) = h,(0, 0). Since Z is regular (hence Gorenstein) and
R, is a flat Z-algebra, it follows from [Matsumura 1989, Theorem 23.4] that R, is
Gorenstein in p if and only if

Ry/pRyw =Fp[F, VI/(FV, h(F)F, h(V)V)

is Gorenstein in p = (F, V). The ring R,/ pR,, is Artinian, hence of dimension 0,
so that by [Matsumura 1989, Theorem 18.1] the ring (R, /pRy)p is Gorenstein if
and only if

1 = dimg, Hom(x (p), Rw/pRuw).

The space of homomorphisms has the same dimension as the socle, i.e., the maximal
submodule annihilated by (F, V). The socle is the intersection of the kernels of
F and V as [p-linear maps of R,, which can be easily evaluated in the basis
FP FP=1 . F,1,V,..., VP, The intersection is 1-dimensional if p { h(0),
and it is 2-dimensional otherwise. By Lemma 10, this completes the proof. ([

3. Remarks on reflexive modules

3.1. Reflexive versus Z-free. Let S be a noetherian ring. Recall that a finitely
generated S-module M is reflexive (resp. torsionless) if the natural map

M — Homg(Homg(M, §), S)

is an isomorphism (resp. injective). We denote the category of finitely generated
reflexive S-modules by Refl(S).

Lemma 13. Let w C W, be a finite set of Weil q-numbers such that R,, is Goren-
stein, and let £ be a prime number. Let M be a finitely generated R,,-module
(resp. Ry ® Z¢-module). The following are equivalent:

(a) M is reflexive.
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(b) M is torsionless.

(¢c) M is free as a Z-module (resp. Z¢-module).

Proof. Assertions (a) and (b) are equivalent by [Bass 1963, Theorem 6.2(4)], since
R,, is Gorenstein and of dimension 1.

For a uniform treatment, we set S = R, ® A with A =Z (resp. A =Z;). Since S
is finite flat over A, the dual module Homg(M, S) is free as a A-module. The same
holds for every submodule of Homg (M, S), which shows assertion (b) implies (c).

For the converse direction we introduce the total ring of fractions S C K = S®7Q,
which is a product of fields. Therefore, assuming (c), the composite map

M—->MRSPSQAVD=M®s K - Homg(Homg (M Qs K, K), K)

is injective. And since it factors over the natural map M — Homg(Homg(M, S), S),
the latter is also injective and hence M is torsionless. U

3.2. The main theorem with reflexive modules. Let w C W, be a finite set of
conjugacy classes of Weil g-numbers of even degree (see Section 2.5), so that,
in particular, R,, is Gorenstein (see Theorem 11). For an object M of Refl(R,,),
let (M, Fr) be the pair consisting of the Z-module My underlying M and of the
linear map Fy; : My — My given by the action of Fy, € R, on M.

Proposition 14. The functor M +— (Mg, Fy) gives an equivalence between Refl(R,,)
and the category of pairs (T, F) consisting of a finite, free Z-module T, and an
endomorphism F : T — T satisfying the following conditions:

(1) F ® Q is semisimple with eigenvalues given by Weil q-numbers in w.

(ii) There exists V : T — T such that FV =q.

A morphism between two such pairs (T, F) and (T’, F') is a linearmap f:T — T’
such that fF = F'f.

Proof. Thanks to Lemma 13, an R,-module belongs to Refl(R,,) if and only if it is
finite and free as a Z-module. Moreover, the linear map Fy; : Mg — M) satisfies in
the ring Endz (Mj) the polynomial

F hy(F.q/F)=[] P(F),

TEew

which is squarefree. Therefore Fj; ® Q is semisimple with eigenvalues given by
Weil g-numbers whose conjugacy classes belong to w. The map Vy, : My — My
induced by the action of V,, € R, on M satisfies Vi Fyy = q. Essential surjectivity
of the functor follows easily from Lemma 13. U
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Let now v € w be a finite subset which is also of even degree. By Lemma 13,
the natural projection pr, ,, : Ry, — R, gives a fully faithful embedding

Refl(Ry) € Refl(Ry,),

by means of which Refl(R,) can be regarded as the full subcategory whose objects
are those for which the Ry,-action factors over pr,, ,, : Ryy = R,. Using the descrip-
tion of Proposition 14, we easily see that an object M of Refl(R,,) lies in Refl(R,)
if and only if the eigenvalues of Fiy ® Q : My ® Q — My ® Q define conjugacy
classes of Weil g-numbers in v.

Definition 15. Let W C W, be a subset of even degree, and Ry = (R,,)) be the
pro-ring with w ranging over all finite subsets of W of even degree. The category

Refl(Rw) := lim Refl(R,,)

wCwW
is the full subcategory of the category of Z[ F, V ]-modules given by all M such that:

(1) There exists wy € W such that the structural action of Z[F, V] on M fac-
tors through Z[F, V] — R,,, (and hence through Z[F, V] — R,, for all w
containing wyy).

(2) For any finite w C W of even degree containing wy,, the module M is reflexive
as an R,,-module.

Notice that condition (2) is equivalent to asking that M be a reflexive module
over Ry, for some w € W of even degree such that the action of R,, on M is defined
(see Lemma 13).

Remark 16. For any finite w € W of even degree, the category Refl(Ry) contains
the R, -linear category Refl(R,,) as a full subcategory. Moreover, if v C w are finite
subsets of W of even degree, then the R, -linear structure on Refl(R,) induced from
the fully faithful embedding Refl(R,) C Refl(R,,) is compatible, via the surjection
pry. : Ry — Ry, with the natural R,,-linear structure. Formally we are in a situation
analogous to that described in Remark 5, where the category AVy played the role of
Refl(Rw). We will then refer to this data as the Ry -linear structure of Refl(Ry ).

The category Refl(Ry) can be given a concrete description in terms of pairs
(T, F) given by a finite free Z-module T and a linear map F : T — T such that:
(i) F ® Q is semisimple and its eigenvalues are Weil g-numbers in W.
(ii) There exists V : T — T with FV =gq.
The notion of morphism between two such pairs is clear. This can be seen reasoning

as in Proposition 14, and using the compatibility of linear structures described in
Remark 16.
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Denote now the set W), \ {,/p} of nonreal conjugacy classes of Weil p-numbers
simply by W;°™, and the corresponding pro-ring Ryem by %™, Theorem 1 then
claims the existence of a contravariant, %W;om-linear, ind-representable equivalence

T : AV;Om — Refl(?]i;‘)m)

such that 7'(A) is a lattice of rank 2 dim(A). By definition, the Q{Wﬁom-linearity of
T (—) is the requirement that for any finite w C W;"m the restriction of T to AV,,
has values in Refl(R,,) and is R, -linear. These conditions amount precisely to the
equality F = T (;r4) for all A in AVIC,"m.

3.3. Further remarks. The following piece of homological algebra is used later:

Lemma 17. Let S be a 1-dimensional Gorenstein ring. For any finitely generated
reflexive S-module M, we have

Exty(M, S) = 0.

Proof. We use a free presentation of the dual Homg(M, §) and dualize again. This
yields an embedding of M into a free S-module and then a short exact sequence

0—M—S"—M —0.

The Ext-sequence, and the fact that S has injective dimension 1 [Bass 1963, §1],
yield
0 = Ext§(8", S) —> Exty(M, §) —> Ext3(M’, §) =0

from which the lemma follows. |

Finally, here is a criterion for invertible reflexive modules in terms of their
endomorphism algebras:

Proposition 18. Let S be a reduced Gorenstein ring of dimension at most 1, and
let M be a reflexive module. Then the following are equivalent:

(a) M is locally free of rank 1.
(b) The natural map S — Endg(M) is an isomorphism.

Proof. If M is locally free of rank 1, then Endg(M) ~ MY ® M =~ S, where
MY =Homg(M, S), and (b) holds.

For the converse, we may assume that S is a complete local ring by passing to
the completion. Since Ends(M) = S we have M # 0, and, moreover, M cannot
be a module (extending the S-module structure) for a strictly larger subring of the
total ring of fractions of S. Now [Bass 1963, Proposition 7.2] shows that M has a
nonzero projective direct summand M. With M = My & M, we find

S x Endg(M;) = Endg(Mo) x Endg(M;) € Endg(M) = §
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and therefore Endg(M;) = 0. This forces M; = 0, and M is projective. Then
Endg (M) is projective with rank equal to the square of the rank of M (as a locally
constant function on Spec(S)). Thus M is of rank 1 and the proof is complete. [J

4. Abelian varieties with minimal endomorphism algebra

Before restricting to the case ¢ = p, we recall the following classical result of
Tate (see [Tate 1966, §1] for £ # p, [Waterhouse and Milne 1971, Theorem 6]
for any ¢, also [Chai et al. 2014, §A.1]) which will be used frequently. For A an
abelian variety over [, and ¢ a prime number, denote by A[£*°] the £-divisible
group corresponding to A.

Theorem 19 (Tate). Let A, B be abelian varieties over [, and £ a prime number.
The natural map f — f[€%°] induces an isomorphism

Homg, (A, B) ® Z; = Hom(A[£*], B[£™]).

As is well known, the isomorphism of Tate’s theorem takes a more concrete form
as follows. If £ # p, it can be formulated in terms of Galois representations, and
says that the functor £-adic Tate module 7;(—) induces an isomorphism

Homg, (A, B) ® Zy — Homgz,(Gay;, | (Te(A), T¢(B)).

If £ = p, using the language of Dieudonné modules, Tate’s theorem translates
into the fact that the functor contravariant Dieudonné module 7, (—) induces an
isomorphism

Homy, (A, B) ® Z,, = Homg, (T,(B), T)(A)),
where %, 1s the Dieudonné ring of F,.

Remark 20. For any prime ¢ the R, -linear structure on the category AV,, defined
in Section 2.1 induces an enrichment of the functor 7, (—) to left R,, ® Z,-modules
for £ # p, and to right! R,, ® Z ,-modules for £ = p.

For any A € AV,, and any ¢ # p, the action of the arithmetic Frobenius of [,
on Ty(A) agrees with the action of F,, ® 1 € R, ® Z;, and we have a natural
identification

Homgz,(Gal;,1(T¢(A), Te(B)) = Homg, g7, (Ti (A), Te(B))

for £ # p and all A, B € AV,,. In the special case where ¢ = p, and only in this
case, the Dieudonné ring Qb[pq is commutative, and hence the theory of Dieudonné

Twe employ the contravariant Dieudonné theory; therefore the left Ry,-module structure of the
Hom-groups in AVy, turns into a right Ry ® Zp-modules structure on the corresponding Dieudonné
modules. However Ry, is commutative, hence for A in AVy, we can safely treat Tp(A) as a left
Ry ® Z p-module.
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modules of abelian varieties over the prime field [, does not involve semilinearity
aspects. For any A € AV,, the action of Qb[pp on T}, (A) factors through the quotient
SZ)[FP — Ry, ® Z,, and Tate’s theorem says that

Homg, (T,(A), T,(B)) =Homg,ez,(T,(B), Tp(A))

forall A, B € AV,,. So, roughly speaking, the Dieudonné theory of abelian varieties
over the prime field is analogous to the theory of Tate modules at primes £ # p, up
to replacing covariance with contravariance.

For any = € W,,, we choose a simple abelian variety B over [, whose associated
Weil p-number represents 7.

Proposition 21. Let w € W), be a finite set of conjugacy classes of Weil p-numbers
not containing \/p. There exists an abelian variety A, over T, isogenous to
[1;cy B such that T;(Ay) is free of rank 1 over Ry, ® Z; for all primes £. Further-
more, for any such A, the natural map

Ry, — End[pp (Ay)
is an isomorphism.

Remark 22. In the case where w consists of just one Weil p-number, the abelian
variety A,, in Proposition 21 was already considered by Waterhouse [1969, Theo-
rem 6.1]. We observe that the product [ ] cw Azy of the varieties constructed for
each singleton {7} C w may well fail to serve as the A,, satisfying the properties of
Proposition 21. This failure is explained by a phenomenon analogous to congruences
between Weil g-numbers, discussed in Example 3.

Proof. Let B be any abelian variety over [, isogenous to [ [, B. Forany w € W,
with 7w 7% ,/p, it is straightforward to verify using Honda—Tate theory [Tate 1971,
Théoréme 1(ii)] that
(i) all local invariants of the division ring Endgp (By) are trivial,
(i) [Q(r) : @] =2dim(By).
In fact, each of these conditions is equivalent to the commutativity of End[pp (By).
Since the abelian varieties B, m € w, are pairwise nonisogenous, we have that

Endg, (B) is also commutative, and isomorphic to an order of the product of CM
fields [ | Q(r). We deduce the chain of equalities

TEew

tkz(Endg, (B)) = Z [Q@r) : Q] = Z 2dim(B;) = 2dim(B).
Tew Tew
From the injectivity of the isomorphism of Theorem 19, and using the lan-
guage of Dieudonné modules if £ = p, it follows that the action of R, ® Q; =
[1ew Q@) ® Q; on
Ve(B) =Ty(B) ®z, Qy



244 Tommaso Giorgio Centeleghe and Jakob Stix

is faithful. Hence V¢ (B) has rank 1 over [[__,, Q(r) ® Qy, since they both have
dimension 2dim(B) over Q; (notice that dimg,(V,(B)) = 2dim(B) because we
work over ).

Therefore, for every £ we can choose an R, ® Z,-lattice

Ay C Vi(B)

which is free of rank 1, and which contains Ty(B) if £ # p and is contained in
T,(B)if £ = p.
If Ry, ® Z, is the maximal order of [ [, Q(;r) ® Q¢, as occurs for almost all ¢,
then 7, (B) is necessarily free of rank 1 over R, ® Z, and we take A, = T;(B).
Now, if £ # p, then the finite subgroup

N¢=A¢/To(B) C B[£™],

being an R, -submodule, is stable under Frobenius and hence is defined over [,,. The
corresponding isogeny ¥, : B — B/N, induces an identification A, >~ Ty(B/Ny)
of R, ® Zy-modules.

Similarly, the p-power degree isogeny v, : B — B/N,, where N, is the [F,-
subgroup-scheme of B corresponding to the Dieudonné module 7, (B)/A ,, induces
an identification 7,(B/N,) ~ A, of Ry, ® Z,-modules. Therefore, after applying
a finite sequence of isogenies to B, we obtain the abelian variety A,, with the
desired property.

Lastly, by Theorem 19, the natural map

Ry, — Endy, (Ay)

is an isomorphism after — ® Z, for all prime numbers £, since T¢(A,) >~ Ry ® Z,.
Therefore the last statement of the proposition follows. ([

Remark 23. One can show that there is a free and transitive action of the Picard
group Pic(Ry,) on the set of isomorphism classes of abelian varieties A,, satisfying
the conditions of Proposition 21 (see [Waterhouse 1969, Theorem 6.1.3] for the case
of simple abelian varieties, i.e., w = {mr}). We will discuss this below in Section 7.3.

The Gorenstein property of R, allows the following useful characterization of
the abelian varieties A,, satisfying the property of Proposition 21 (see also the end
of §4 in [Serre and Tate 1968]).

Proposition 24. Let w C W), be a finite set of conjugacy classes of Weil p-numbers
not containing \/p, and let A be an abelian variety over F, isogenous to [ [ .,, Bx.
The following conditions are equivalent:

(a) Ty(A) is free of rank 1 over Ry, @ Zy, for all primes £.

(b) Endg, (A) is equal to the minimal central order Ry,.
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Proof. Thanks to Proposition 21, we only need to show that (b) implies (a). Since
R, is Gorenstein by Theorem 11, its completion R, ® Z, is also Gorenstein. It
follows from [Bass 1963, Theorem 6.2] that the torsion-free R,, ® Z,-module Ty(A)
is reflexive.

By (b) and Theorem 19 we have Endg, gz, (T¢(A)) = Ry, @ Z,, so Proposition 18
yields that 7, (A) is projective of rank 1. Since R,, ® Z; is a finite Z,-algebra, hence
a product

Ry®Z =]]R
A

of complete local rings R;, its Picard group is trivial and Ty (A) is free of rank 1 as
an R,, ® Z,-module. O

We conclude the section by observing that if A is an abelian variety over [, for
q arbitrary, the Dieudonné module 7),(A) has rank 2 dim(A) over the Witt vectors
W (F,) of . It follows that the naive analogue of (a) can never be attained if g > p
for rank reasons, and the above proposition is peculiar to the ¢ = p case.

5. Construction of the antiequivalence

In this section we give a proof of Theorem 1. Recall from Remark 5 that for a
subset W C W, of conjugacy classes of Weil g-numbers, the category AVy is the
full subcategory of AV, consisting of all abelian varieties A over [, whose support
w(A) is contained in W.

5.1. Finite Weil support. We begin by defining the lattice 7 (A) and its endomor-
phism F on the increasing family of subcategories

AV, C AVISOm

for finite subsets w C Wzom.

Let us then assume that ,/p ¢ w, and pick an abelian variety A, satisfying
the condition of Proposition 21 for w. For any object A of AV,, there is a natural
R, = End[Fp (A)-module structure on

My, (A) :=Homg, (A, Ay).
This is the same R, -structure described in Remark 5.

Theorem 25. Let w C W, be a finite set of nonreal conjugacy classes of Weil
p-numbers. The functor My, (—) induces an antiequivalence

AV,, — Refl(R,).

The Z-rank of My, (A) is 2 dim(A).
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Proof. We begin by showing that M,,(—) is fully faithful. The map
f :Homg, (A', A”) — Homg, (My,(A"), My, (A)

is a homomorphism of finitely generated Z-modules, and hence it is an isomorphism
if and only if it is an isomorphism after scalar extension — ® Z, for all primes £.
We first treat the case £ # p. For N € Refl(R,, ® Z), set

NY = Homg, gz, (N, T;(Ay)),

which is isomorphic to the R, ® Z,-dual of N, in view of our choice of A,,. The
isomorphism of Theorem 19 gives a natural isomorphism of contravariant functors

(Te(=))” = Homg, gz, (Te(=), Te(Aw)) = My(—) ®Z, (5-1)

on AV,, (see Remark 20). This translates into the commutative diagram

Homg, (A", A") ® Z, Homg, ez, (Te(A), Te(A”))

lf@zz l (=)

Homg, (M, (A”), Myy(A) ®Z, —— Homg,gz,(To(A")", T,(A)")

where both horizontal maps are isomorphisms as a consequence of Theorem 19.
Since R,, ® Z; is a completion of a Gorenstein ring by Theorem 11, it is itself
Gorenstein. Because Ty(A,) is free of rank 1, this implies that N +— NV is an
contravariant autoequivalence of Refl(R,,®Z,) [Bass 1963, Theorem 6.2]. Therefore
the right vertical map in the diagram is an isomorphism, and we conclude that
f ®Z, is an isomorphism as well.

Concerning the case £ = p, for any N € Refl(R,, ® Z,,) we set

Ny = Home®Zp(Tp(Aw)7 N)

The isomorphism of Theorem 19 then gives a natural isomorphism of contravariant
functors

(Tp(=))v =Homg,g7,(Tp(Aw), Tp(—)) XMy (-)®Z, (5-2)

on AV,,, which translates into the commutative diagram

Homy, (A, A") ®Z,, Homg, o7, (T,(A"), Tp(A"))

lf@zp l(_)\/

Hompg, (M,,(A"), My(A") ®Z, —— Homg,gz,(T,(A")y, To(A)\)
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The horizontal maps are isomorphisms by Theorem 19. Since T),(A,,) is free of
rank 1 over R,, ® Z, the right vertical map in the diagram is an isomorphism. We
conclude that f ® Z,, is an isomorphism as well.

We have now established that the functor A — M,,(A) from AV, to the category
Refl(Ry) is fully faithful.

In order to show that M,,(—) is an equivalence, we must now show that this
functor is essentially surjective. Let M € Refl(R,,) be a reflexive module. Since R, is
Gorenstein, the natural map M — Homg, (Hompg, (M, Ry,). R,,) is an isomorphism.
Dualizing a presentation of the dual Hompg, (M, R, ) leads to a copresentation

0—> M —> (Ry)" -5 (R,)™.

Since My, (Ay) = Endg,(Ay) = Ry, we find by full faithfulness of M, (—) a
homomorphism

U (Ay)" — (Ay)"
with ¥ = M, (V). The cokernel
B = coker(W¥)

exists and is an abelian variety B € AV,,. By definition of the cokernel, the functor
M,, (—) is left-exact; hence

0 — My (B) —> My ((Aw)) —=25 My ((Aw)™).
and so
M ~M,,(B)

as R,,-modules. This completes the proof of essential surjectivity.

We are only left with showing that rkz (Homg, (A, Ay)) =2 dim(A) for all A in
AV,,. The statement is additive in A and depends only on the isogeny class of A
and A,,. Recall that for any 7 € W), we have chosen a simple abelian variety B,
over [, whose associated Weil p-number represents 7. Because A, is isogenous
to [, <, Bx., it is enough to show that for any 7 € w we have

rkz (Hom[pp (B,,, ]_[ B,,,)> =2dim(By).
n'ew
This follows from the equality rkz (Endy, (Bx)) =2 dim(By) for all Weil p-numbers
w7 /p [Tate 1971, Théoreme 1(ii)], and the proof of the theorem is complete. [

5.2. The direct system. In order to prove Theorem 1, we construct a direct system
A =1lim A,, consisting of abelian varieties A,, indexed by finite sets w of Weil
p-numbers not containing ,/p, and having the property stated in Proposition 21.
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Let v € w be two finite sets of nonreal Weil p-numbers. By means of the
canonical surjection

Pry.y @ Ry = Ry,

we ma