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The abelian monoid of fusion-stable
finite sets is free

Sune Precht Reeh

We show that the abelian monoid of isomorphism classes of G-stable finite S-sets
is free for a finite group G with Sylow p-subgroup S; here a finite S-set is called
G-stable if it has isomorphic restrictions to G-conjugate subgroups of S. These
G-stable S-sets are of interest, e.g., in homotopy theory. We prove freeness by
constructing an explicit (but somewhat nonobvious) basis, whose elements are
in one-to-one correspondence with the G-conjugacy classes of subgroups in S.
As a central tool of independent interest, we give a detailed description of the
embedding of the Burnside ring for a saturated fusion system into its associated
ghost ring.

1. Introduction

Finite G-sets, where G is a finite group, appear again and again throughout mathe-
matics, e.g., in homotopy theory. In certain instances we are however interested,
not in the G-sets themselves, but instead in the shadows cast by G-sets when we
restrict the actions to a Sylow p-subgroup S of G. When a finite set X has an
action of S that “looks like” it comes from a G-action, we say that the S-set X is
G-stable (see below). G-stable S-sets occur for instance in homotopy theory when
describing maps between classifying spaces. The isomorphism classes of these
G-stable S-sets together form an abelian monoid with disjoint union as the addition.
In this paper we construct a basis for the abelian monoid of G-stable sets when
G is a finite group with Sylow p-subgroup S. Theorem A′ states that this abelian
monoid is free, and that the basis elements are in one-to-one correspondence with
the G-conjugacy classes of subgroups in S. Theorem A′ is a special case of the
more general Theorem A formulated for a saturated fusion systems F over S. As
a main tool for proving Theorem A we describe the Burnside ring of a saturated
fusion system F , and its embedding into the associated ghost ring (Theorem B).
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In more detail, let us consider a finite group G acting on a finite set X . We
can restrict the action to a Sylow p-subgroup S of G. The resulting S-set has the
property that it stays the same (up to S-isomorphism) whenever we change the
action via a conjugation map from G. More precisely, if P ≤ S is a subgroup and
ϕ : P→ S is a homomorphism given by conjugation with some element of G, we
can turn X into a P-set by using ϕ to define the action p.x := ϕ(p)x . We denote
the resulting P-set by P,ϕX . In particular when incl : P→ S is the inclusion map,
P,incl X has the usual restricted action from S to P . When a finite S-set X is the
restriction of a G-set, then X has the property

P,ϕX is isomorphic to P,incl X as P-sets, for all P ≤ S and homomorphisms
ϕ : P→ S induced by G-conjugation.

(1-1)

Any S-set with property (1-1) is called G-stable. Whenever we restrict a G-set to S,
the resulting S-set is G-stable; however there are G-stable S-sets whose S-actions
do not extend to actions of G.

The isomorphism classes of finite S-sets form a semiring A+(S) with disjoint
union as addition and cartesian product as multiplication. The collection of G-stable
S-sets is closed under addition and multiplication, hence G-stable sets form a
subsemiring.

Theorem A′. Let G be a finite group with Sylow p-group S. Every G-stable S-set
splits uniquely, up to S-isomorphism, as a disjoint union of irreducible G-stable
sets, and there is a one-to-one correspondence between the irreducible G-stable
sets and G-conjugacy classes of subgroups in S.

Hence the semiring of G-stable S-sets is additively a free commutative monoid
with rank equal to the number of G-conjugacy classes of subgroups in S.

As part of the proof we give an explicit construction of the irreducible G-stable sets
(see Proposition 4.8).

It is a well-known fact that any finite S-set splits uniquely into orbits (i.e.,
transitive S-sets), and the isomorphism type of a transitive set S/P depends only
on the subgroup P up to S-conjugation. Theorem A′ states that this fact generalizes
nicely to G-stable S-sets, which turns out to be less obvious than it might first
appear.

If we consider G-sets and restrict their actions to S, then two nonisomorphic
G-sets might very well become isomorphic as S-sets. Therefore even though finite
G-sets decompose uniquely into orbits, we have no guarantee that this decomposition
remains unique when we restrict the actions to the Sylow subgroup S. In fact,
uniqueness of decompositions fails in general when we consider restrictions of
G-sets to S, as demonstrated in Example 4.3 for the symmetric group 65 and a
Sylow 2-subgroup. It is therefore perhaps a surprise that if we consider all G-stable
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S-sets, and not just the restrictions of actual G-sets, we are again able to write
stable sets as a disjoint union of irreducibles in a unique way.

It is also worth noting that the analogue of Theorem A′ is false if we con-
sider representations instead of sets: the submonoid of G-stable S-representations
is not a free submonoid of the free monoid of complex S-representations when
G = PGL3(F3) and p = 2. We explain this counterexample in the Appendix, in
particular in Example A.2.

The proof of Theorem A′ relies only on the way G acts on the subgroups of S
by conjugation. We therefore state and prove the theorem in general for abstract
saturated fusion systems, which abstractly model the conjugacy relations within a
p-group induced by an ambient group (see Definitions 2.1 and 2.2).

If F is a fusion system over a p-group S, we say that an S-set X is F-stable if it
satisfies

P,ϕX is isomorphic to P,incl X as P-sets, for all P ≤ S and homomorphisms
ϕ : P→ S in F .

(1-2)

The F-stable S-sets form a semiring A+(F) since the disjoint union and carte-
sian product of F-stable sets is again F-stable. Theorem A′ then generalizes to
Theorem A below, which we prove instead.

Theorem A. Let F be a saturated fusion system over a p-group S. Every F-
stable S-set splits uniquely, up to S-isomorphism, as a disjoint union of irreducible
F-stable sets, and there is a one-to-one correspondence between the irreducible F-
stable sets and conjugacy/isomorphism classes of subgroups in the fusion system F .

Hence the semiring A+(F) of F-stable S-sets is additively a free commutative
monoid with rank equal to the number of conjugacy classes of subgroups in F .

One application of Theorem A is in homotopy theory, where classifying spaces
for groups and maps between them play an important role. For finite groups G, H ,
or in general discrete groups, the homotopy classes of unbased maps [BG, B H ] is
in bijection with Rep(G, H)= H\Hom(G, H), where H acts on Hom(G, H) by
postconjugation. Hence [BG, B6n] corresponds to the different ways G can act
on a set with n elements up to G-isomorphism. This implies that for a finite group
G we have [BG,

∐
n B6n] ∼= A+(G) as monoids.

However in homotopy theory one is often only interested in studying classify-
ing spaces, and maps between them, one prime at a time via the Bousfield–Kan
p-completion functor (−)∧p [1972, Sections I.1, VI.6 and VII.5]. In this context,
when S is a p-group, a formula of Mislin [1990, Formula 4] says that S satisfies

[BS,
∐

n

(B6n)
∧

p ] ' A+(S)
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as monoids. (See also [Dwyer and Zabrodsky 1987; Lannes 1995; Miller 1987;
Carlsson 1991] which Mislin’s work builds upon.) For a general finite group G,
the monoid [BG,

∐
n(B6n)

∧
p ] is highly interesting but still mysterious. Restriction

along the inclusion ι : S→ G of a Sylow p-subgroup induces a map

ι∗ : [BG,
∐

n

(B6n)
∧

p ] → [BS,
∐

n

(B6n)
∧

p ] ' A+(S),

and the image must necessarily be contained in the collection of G-stable sets
A+(FS(G)), where FS(G) is the fusion system over S generated by G.

The map ι∗ : [BG,
∐

n(B6n)
∧
p ] → A+(FS(G)) is an isomorphism in the cases

where both the left-hand side and the right-hand side have been calculated, though
both injectivity and surjectivity is currently unknown in general. In any case,
Theorem A shows that the algebraic approximation A+(FS(G)) has a very regular
structure for any finite group G, and hence provides information in understanding
the monoid on the left-hand side.

An important tool in proving Theorem A is the Burnside ring of F , denoted
by A(F). We can either define A(F) as the Grothendieck group of the semiring
A+(F) of F-stable sets, or we can define A(F) as the subring of A(S) consisting
of all F-stable elements, where the F-stable elements satisfy a property similar
to (1-2). Thanks to Proposition 4.4 we know that these two definitions coincide for
saturated fusion systems.

We note that there is an earlier definition by Diaz and Libman [2009a] of a
Burnside ring for F , only involving the so-called F-centric subgroups of S, while
the Burnside ring defined here concerns all subgroups of S in relation to the fusion
system F . More precisely, after p-localization the Diaz-Libman centric Burnside
ring for F is the quotient of the Burnside ring A(F) defined here by the noncentric
part of A(F), as described in [Díaz and Libman 2009b, Theorem A] and even
further in [Reeh 2016, Proposition 4.8].

The Burnside ring of F inherits the homomorphism of marks 8 from A(S) by
restriction, embedding A(F) into a product of a suitable number of copies of Z. As
a main step in proving Theorem A, we show that this mark homomorphism has
properties analogous the mark homomorphism for groups:

Theorem B. Let F be a saturated fusion system over a p-group S, and let A(F)
be the Burnside ring of F , i.e., the subring consisting of the F-stable elements
in the Burnside ring of S. Then there is a ring homomorphism 8 and a group
homomorphism 9 that fit together in the following short exact-sequence of groups:

0−→ A(F) 8
−→

∏
conj. classes of
subgroups in F

Z 9
−→

∏
[P]F conj. class of

subgroups in F

Z/|WS P|Z −→ 0,

where P ≤ S is a fully F-normalized representative of [P]F , and WS P := NS P/P.
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The map 8 comes from restricting the mark homomorphism of A(S), and 9 is
given by the [P]F -coordinate functions

9P( f ) :=
∑

s̄∈WS P

f〈s〉P (mod |WS P|)

when P is a fully normalized representative of the conjugacy class [P]F of sub-
groups in F . Here 9P =9P ′ if P ∼F P ′ are both fully normalized.

Theorem B generalizes previous results by Burnside, Dress and others (see
[Dress 1986], [tom Dieck 1979, Section 1] or [Yoshida 1990]) concerning the mark
homomorphism and congruence relations for Burnside rings of finite groups, and
such congruence relations can for instance be used, in [Reeh 2016, Corollary 6.6], for
determining idempotents in A(F)(p). As with Theorem A, Theorem B is interesting
from the viewpoint of homotopy theory: Grodal has recently announced [2011;
≥ 2015] that the map on Grothendieck groups

Gr([BG,
∐

n

(B6n)
∧

p ])→ A(FS(G))

is an isomorphism, so Theorem B also provides information about a homotopical
object via this map.

2. Fusion systems

The next few pages contain a very short introduction to fusion systems. The aim is
to introduce the terminology from the theory of fusion systems that will be used
in the paper, and to establish the relevant notation. For a proper introduction to
fusion systems see for instance Part I of “Fusion systems in algebra and topology”
by Aschbacher, Kessar and Oliver [2011].

Definition 2.1. A fusion system F over a p-group S, is a category where the objects
are the subgroups of S, and for all P, Q ≤ S the morphisms must satisfy:

(i) Every morphism ϕ∈MorF (P, Q) is an injective group homomorphism, and the
composition of morphisms in F is just composition of group homomorphisms.

(ii) HomS(P, Q)⊆MorF (P, Q), where

HomS(P, Q)= {cs | s ∈ NS(P, Q)}

is the set of group homomorphisms P→ Q induced by S-conjugation.

(iii) For every morphism ϕ ∈MorF (P, Q), the group isomorphisms ϕ : P→ ϕP
and ϕ−1

: ϕP→ P are elements of MorF (P, ϕP) and MorF (ϕP, P), respec-
tively.

We also write HomF (P, Q) or just F(P, Q) for the morphism set MorF (P, Q);
the group F(P, P) of automorphisms is denoted by AutF (P).
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The canonical example of a fusion system comes from a finite group G with a
given p-subgroup S. The fusion system of G over S, denoted FS(G), is the fusion
system over S where the morphisms from P ≤ S to Q ≤ S are the homomorphisms
induced by G-conjugation:

HomFS(G)(P, Q) := HomG(P, Q)= {cg | g ∈ NG(P, Q)}.

A particular case is the fusion system FS(S) consisting only of the homomorphisms
induced by S-conjugation.

Let F be an abstract fusion system over S. We say that two subgroup P, Q ≤ S
are F-conjugate, written P ∼F Q, if they are isomorphic in F , i.e., there exists a
group isomorphism ϕ ∈ F(P, Q). The relation of F-conjugation is an equivalence
relation, and the set of F-conjugates to P is denoted by [P]F . The set of all
F-conjugacy classes of subgroups in S is denoted by Cl(F). Similarly, we write
P ∼S Q if P and Q are S-conjugate, the S-conjugacy class of P is written [P]S
or just [P], and we write Cl(S) for the set of S-conjugacy classes of subgroups
in S. Since all S-conjugation maps are in F , any F-conjugacy class [P]F can be
partitioned into disjoint S-conjugacy classes of subgroups Q ∈ [P]F .

We say that Q is F- or S-subconjugate to P if Q is respectively F- or S-conjugate
to a subgroup of P , and we denote this by Q .F P or Q .S P , respectively. In
the case where F = FS(G), we have Q .F P if and only if Q is G-conjugate to a
subgroup of P; the F-conjugates of P are just those G-conjugates of P which are
contained in S.

A subgroup P ≤ S is said to be fully F-normalized if |NS P| ≥ |NS Q| for all
Q ∈ [P]F ; similarly P is fully F-centralized if |CS P| ≥ |CS Q| for all Q ∈ [P]F .

Definition 2.2. A fusion system F over S is said to be saturated if the following
properties are satisfied for all P ≤ S:

(i) If P is fully F-normalized, then P is fully F-centralized, and AutS(P) is a
Sylow p-subgroup of AutF (P)).

(ii) Every homomorphism ϕ ∈F(P, S) where ϕ(P) is fully F-centralized, extends
to a homomorphism ϕ ∈ F(Nϕ, S) where

Nϕ := {x ∈ NS(P) | ∃y ∈ S : ϕ ◦ cx = cy ◦ϕ}.

The saturated fusion systems form a class of particularly nice fusion systems, and
the saturation axiom are a way to emulate the Sylow theorems for finite groups. In
particular, whenever S is a Sylow p-subgroup of G, then the Sylow theorems imply
that the induced fusion system FS(G) is saturated (see for instance [Aschbacher
et al. 2011, Theorem 2.3]).



The abelian monoid of fusion-stable finite sets is free 2309

In this paper, we shall rarely use the defining properties of saturated fusion
systems directly. We shall instead mainly use the following lifting property that
saturated fusion systems satisfy:

Lemma 2.3 [Roberts and Shpectorov 2009]. Let F be saturated. Suppose that
P ≤ S is fully normalized. Then for each Q ∈ [P]F there exists a homomorphism
ϕ ∈ F(NS Q, NS P) with ϕ(Q)= P.

For the proof, see Lemma 4.5 of [Roberts and Shpectorov 2009] or Lemma 2.6(c)
of [Aschbacher et al. 2011].

3. Burnside rings for groups

In this section we consider the Burnside ring of a finite group S, and the semiring of
finite S-sets. We recall the structure of the Burnside ring A(S) and how to describe
the elements and operations of A(S) in terms of fixed points and the homomorphism
of marks. In this section S can be any finite group, but later we shall only need the
case where S is a p-group.

We consider finite S-sets up to S-isomorphism, and let A+(S) denote the set
of isomorphism classes. Given a finite S-set X , we denote the isomorphism class
of X by [X ] ∈ A+(S). Taking disjoint union as addition and cartesian product
as multiplication gives a commutative semiring structure on A+(S). Additively,
A+(S) is a free commutative monoid, where the basis consists of the (isomorphism
classes of) transitive S sets, i.e., [S/P] where P is a subgroup of S. Two transitive
S-sets S/P and S/Q are isomorphic if and only if P is conjugate to Q in S.

To describe the multiplication of the semiring A+(S), it is enough to know the
products of basis elements [S/P] and [S/Q]. By taking the product (S/P)×(S/Q)
and considering how it breaks into orbits, one reaches the following double coset
formula for the multiplication in A+(S):

[S/P] · [S/Q] =
∑

s∈[P\S/Q]

[S/(P ∩ sQ)], (3-1)

where [P\S/Q] is a set of representative of the double cosets Ps Q with s ∈ S.
The Burnside ring of S, denoted A(S), is constructed as the Grothendieck group

of A+(S), consisting of formal differences of finite S-sets. Additively, A(S) is
a free abelian group with the same basis as A+(S). For each element X ∈ A(S)
we define cP(X), with P ≤ S, to be the coefficients when we write X as a linear
combination of the basis elements [S/P] in A(S), i.e.,

X =
∑

[P]∈Cl(S)

cP(X) · [S/P],

where Cl(S) denotes the set of S-conjugacy classes of subgroup in S.
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The resulting maps cP : A(S)→ Z are group homomorphisms, but they are not
ring homomorphisms. Note also that an element X is in A+(S), i.e., X is an S-set,
if and only if cP(X)≥ 0 for all P ≤ S.

Instead of counting orbits, an alternative way of characterising an S-set is counting
the fixed points for each subgroup P ≤ S. For every P ≤ S and S-set X , we denote
the number of fixed points by 8P(X) := |X P

|, and this number only depends on P
up to S-conjugation. Since we have

|(X t Y )P
| = |X P

| + |Y P
| and |(X × Y )P

| = |X P
| · |Y P

|

for all S-sets X and Y , the fixed point map 8P : A+(S)→ Z extends to a ring
homomorphism 8P : A(S)→ Z. On the basis elements [S/P], the number of fixed
points is given by

8Q([S/P])= |(S/P)Q
| =
|NS(Q, P)|
|P|

,

where NS(Q, P)={s ∈ S | sQ≤ P} is the transporter in S from Q to P . In particular,
8Q([S/P]) 6= 0 if and only if Q .S P (Q is conjugate to a subgroup of P).

We have one fixed point homomorphism 8P per conjugacy class of subgroups
in S, and we combine them into the homomorphism of marks

8=8S
: A(S)

∏
[P]8P

−−−−→

∏
[P]∈Cl(S)

Z.

This ring homomorphism maps A(S) into the product ring �̃(S) :=
∏
[P]∈Cl(S) Z

which is the so-called ghost ring for the Burnside ring A(S).
Results by Burnside, Dress and others show that the mark homomorphism is

injective, and that the obstruction group Obs(S) :=
∏
[P]∈Cl(S)(Z/|WS P|Z), where

WS P := NS P/P , is the cokernel of 8. These statements are combined in the
following proposition, the proof of which can be found in [Dress 1986], [tom Dieck
1979, Chapter 1] and [Yoshida 1990, Lemma 2.1].

Proposition 3.1. Let 9 = 9S
: �̃(S)→ Obs(S) be given by the [P]-coordinate

functions

9P(ξ) :=
∑

s̄∈WS P

ξ〈s〉P (mod |WS P|).

Here ξ〈s〉P denotes the [〈s〉P]-coordinate of an element ξ ∈ �̃(S)=
∏
[P]∈Cl(S) Z.

The following sequence of abelian groups is then exact:

0−→ A(S) 8
−→ �̃(S) 9

−→Obs(S)−→ 0.

Moreover, 8 is a ring homomorphism, while 9 is just a group homomorphism.



The abelian monoid of fusion-stable finite sets is free 2311

The strength of this result is that it enables one to perform calculations for the
Burnside ring A(S) inside the much nicer product ring �̃(S), where we identify
each element X ∈ A(S) with its fixed point vector (8Q(X))[Q]∈Cl(S).

Corollary 3.2. For a normal subgroup P ≤ S, and an S-set X , we have∑
s̄∈S/P

8〈s〉P(X)≡ 0 (mod |S/P|).

Proof. Applying Proposition 3.1 with WS P = S/P , gives 9P(8(X)) = 0 in
Z/|P/S|Z. �

4. Stable sets for a fusion system

Let F be a fusion system over a p-group S. In this section we rephrase the property
of F-stability in terms of the fixed point homomorphisms, and show in Example 4.3
how Theorem A can fail for a group G if we only consider S-sets that are restrictions
of G-sets, instead of considering all G-stable sets. We also consider two possible
definitions for the Burnside ring of a fusion system — these agree if F is saturated.
The proof of Theorem A begins in Section 4.1 in earnest.

A finite S-set X is said to be F-stable if it satisfies (1-2):

P,ϕX is isomorphic to P,incl X as P-sets, for all P ≤ S and homomorphisms
ϕ : P→ S in F .

In order to define F-stability not just for S-sets, but for all elements of the Burnside
ring, we extend P,ϕX to all X ∈ A(S). Given a homomorphism ϕ ∈ F(P, S) and
an S-set X , the P-set P,ϕX was defined as X with the action restricted along ϕ,
that is p.x := ϕ(p)x for x ∈ X and p ∈ P . This construction then extends linearly
to a ring homomorphism rϕ : A(S)→ A(P), and we denote P,ϕX := rϕ(X) for all
X ∈ A(S). In this way (1-2) makes sense for all X ∈ A(S).

It is possible to state F-stability purely in terms of fixed points and the homomor-
phism of marks for A(S). The following lemma seems to be generally known, but
not published anywhere, so we include it for the sake of completeness. A version
of this lemma was included in the Ph.D. thesis of Gelvin [2010, Proposition 3.2.3],
and previously the lemma has at least been implicitly used by Broto, Levi and
Oliver [2003, Proof of Proposition 5.5]. A special case of the lemma, for bisets,
was also proved by Ragnarsson and Stancu [2013, Lemma 4.8, parts (b) and (c)].

Lemma 4.1 [Gelvin 2010]. The following are equivalent for all elements X ∈ A(S):

(i) P,ϕX = P,incl X in A(P) for all ϕ ∈ F(P, S) and P ≤ S.

(ii) 8P(X)=8ϕP(X) for all ϕ ∈ F(P, S) and P ≤ S.

(iii) 8P(X)=8Q(X) for all pairs P, Q ≤ S with P ∼F Q.
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We shall primarily use (ii) and (iii) to characterize F-stability.

Proof. Let 8P
: A(P)→ �̃(P) be the homomorphism of marks for A(P), and note

that 8P
R(P,incl X)=8R(X) for all R ≤ P ≤ S.

By the definition of the P-action on P,ϕX , we have (P,ϕX)R
= XϕR for any S-set

X and all subgroups R ≤ P . This generalizes to

8P
R(P,ϕX)=8ϕR(X)

for X ∈ A(S).
Assume (i). Then we immediately get

8P(X)=8P
P(P,incl X)=8P

P(P,ϕX)=8ϕP(X)

for all P ≤ S and ϕ ∈ F(P, S), which proves (i)⇒(ii).
Assume (ii). Let P ≤ S and ϕ ∈ F(P, S). By assumption, we have 8ϕR(X)=

8R(X) for all R ≤ P , hence

8P
R(P,ϕX)=8ϕR(X)=8R(X)=8P

R(P,incl X).

Since 8P is injective, we get P,ϕX = P,incl X ; so (ii)⇒(i).
Finally, we have (ii)⇔(iii) because Q is F-conjugate to P exactly when Q is

the image of a map ϕ ∈ F(P, S) in the fusion system. �

Definition 4.2. We let A+(F)⊆ A+(S) be the set of all the F-stable sets, and by
property (iii) the sums and products of stable elements are still stable, so A+(F) is
a subsemiring of A+(S).

Suppose that F =FS(G) is the fusion system for a group with S ∈ Sylp(G). Let
X ∈ A+(G) be a G-set, and let S,incl X be the same set with the action restricted
to the Sylow p-subgroup S. If we let P ≤ S and cg ∈ HomFS(G)(P, S) be given,
then x 7→ gx is an isomorphism P,incl X ∼= P,cg X of P-sets. The restriction S,incl X
is therefore G-stable.

Restricting the group action from G to S therefore defines a homomorphism of
semirings A+(G)→ A+(FS(G)), but as the following example shows, this map
need not be injective or surjective.

Example 4.3. The symmetric group 65 on 5 letters has Sylow 2-subgroups iso-
morphic to the dihedral group D8 of order 8. We then consider D8 as embedding
in 65 as one of the Sylow 2-subgroups. Let H, K be respectively Sylow 3- and
5-subgroups of 65.

The transitive 65-set [65/H ] contains 40 elements and all the stabilizers have
odd order (they are conjugate to H ). When we restrict the action to D8, the
stabilizers therefore become trivial so the D8-action is free, hence [65/H ] restricts
to the D8-set 5 · [D8/1], that is 5 disjoint copies of the free orbit [D8/1]. Similarly,
the transitive 65-set [65/K ] restricts to 3 · [D8/1].
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These two restrictions of 65-sets are not linearly independent as D8-sets — the
65-sets 3 · [65/H ] and 5 · [65/K ] both restrict to 15 · [D8/1]. If the restrictions of
65-sets were to form a free abelian monoid, then the set [D8/1] would have to be
the restriction of an 65-set as well; since [D8/1] is irreducible as a D8-set, it would
have to be the restriction of an irreducible (hence transitive) 65-set. However 65

has no subgroup of index 8, hence there is no transitive 65 with 8 elements.
This shows that the restrictions of 65-sets to D8 do not form a free abelian

monoid, and we also see that [D8/1] is an example of an FD8(65)-stable set
(81([D8/1])= 8 and 8Q([D8/1])= 0 for 1 6= Q ≤ D8) which cannot be given the
structure of a 65-set.

To define the Burnside ring of a fusion system F , we have two possibilities.
We can consider the semiring of all the F-stable S-sets and take the Grothendieck
group of this. Alternatively, we can first take the Grothendieck group for all S-sets
to get the Burnside ring of S, and then afterwards we consider the subring herein
consisting of all the F-stable elements. The following proposition implies that the
two definitions coincide for saturated fusion systems.

Proposition 4.4. Let F be a fusion system over a p-group S, and consider the
subsemiring A+(F) of F-stable S-sets in the semiring A+(S) of finite S-sets.

This inclusion induces a ring homomorphism from the Grothendieck group of
A+(F) to the Burnside ring A(S), which is injective.

If F is saturated, then the image of the homomorphism is the subring of A(S)
consisting of the F-stable elements.

Proof. Let Gr be the Grothendieck group of A+(F), and let I : Gr→ A(S) be the
induced group homomorphism coming from the inclusion i : A+(F) ↪→ A+(S).

An element of Gr is a formal difference X −Y where X and Y are F-stable sets.
Assume now that X − Y lies in ker I . This means that i(X)− i(Y ) = 0 in A(S);
since A+(S) is a free commutative monoid, we conclude that i(X)= i(Y ) as S-sets.
But i is just the inclusion map, so we must have X = Y in A+(F) as well, and
X − Y = 0 in Gr. Hence I : Gr→ A(S) is injective.

It is clear that the difference of two F-stable sets is still F-stable, so im I lies in
the subring of F-stable elements. If F is saturated, then the converse holds, and all
F-stable elements of A(S) can be written as a difference of F-stable sets; however
the proof of this must be postponed to Corollary 4.11 below. �

Definition 4.5. Let F be saturated. We define the Burnside ring of F , denoted A(F),
to be the subring consisting of the F-stable elements in A(S).

Once we have proven Corollary 4.11, we will know that A(F) is also the
Grothendieck group of the semiring A+(F) of F-stable sets.
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4.1. Proving Theorems A and B. The proof of Theorem A falls into several parts.
We begin by constructing some F-stable sets αP satisfying certain properties — this
is the content of 4.6–4.8. We construct one αP per F-conjugacy class of subgroups,
and these are the F-stable sets which we will later show are the irreducible stable
sets. A special case of the construction was originally used by Broto, Levi and
Oliver [2003, Proposition 5.5] to show that every saturated fusion system has a
characteristic biset.

In 4.9–4.11 we then proceed to show that the constructed αP ’s are linearly
independent, and that they generate the Burnside ring A(F). When proving that
the αP ’s generate A(F), the same proof also establishes Theorem B.

Finally, we use the fact that the αP ’s form a basis for the Burnside ring, to argue
that they form an additive basis already for the semiring A+(F), completing the
proof of Theorem A itself.

As mentioned, we first construct an F-stable set αP for each F-conjugacy class
of subgroups. The idea when constructing αP is that we start with the single
orbit [S/P] which we then stabilize: we run through the subgroups Q ≤ S in
decreasing order and add orbits to the constructed S-set until it becomes F-stable
at the conjugacy class of Q in F . The stabilization procedure is handled in the
following technical Lemma 4.6, which is then applied in Proposition 4.8 to construct
the αP ’s.

Recall that cP(X) denotes the number of (S/P)-orbits in X , and 8P(X) denotes
the number of P-fixed points.

Lemma 4.6. Let F be a saturated fusion system over a p-group S, and let H be a
collection of subgroups of S such that H is closed under taking F-subconjugates,
i.e., if P ∈H, then Q ∈H for all Q .F P.

Assume that X ∈ A+(S) is an S-set satisfying 8P(X) = 8P ′(X) for all pairs
P ∼F P ′, with P, P ′ 6∈H. Assume furthermore that cP(X)= 0 for all P ∈H.

Then there exists an F-stable set X ′ ∈ A+(F) ⊆ A+(S) satisfying 8P(X ′) =
8P(X) and cP(X ′)=cP(X) for all P 6∈H, and cP(X ′)=cP(X) for all P≤ S which
are fully normalized in F . In particular, for a P ∈H which is fully normalized, we
have cP(X ′)= 0.

Proof. We proceed by induction on the size of the collection H. If H=∅, then X
is F-stable by assumption, so X ′ := X works.

Assume that H 6=∅, and let P ∈H be maximal under F-subconjugation as well
as fully normalized.

Let P ′∼F P . Then there is a homomorphism ϕ∈F(NS P ′, NS P)with ϕ(P ′)= P
by Lemma 2.3 since F is saturated. The restriction of S-actions to ϕ(NS P ′)
gives a ring homomorphism A(S)→ A(ϕ(NS P ′)) that preserves the fixed-point
homomorphisms 8Q for Q ≤ ϕ(NS P ′)≤ NS P .
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If we consider the S-set X with the action restricted to ϕ(NS P ′), we can apply
Corollary 3.2 for the normal subgroup P = ϕ(P ′)Eϕ(NS P ′) to get∑

s̄∈ϕ(NS P ′)/P

8〈s〉P(X)≡ 0 (mod |ϕ(NS P ′)/P|).

Similarly, we have P ′E NS P ′, with which Corollary 3.2 gives us∑
s̄∈NS P ′/P ′

8〈s〉P ′(X)≡ 0 (mod |NS P ′/P ′|).

Since P is maximal in H, we have by assumption8Q(X)=8Q′(X) for all Q∼F Q′

where P is F-conjugate to a proper subgroup of Q. Specifically, we have

8〈ϕ(s)〉P(X)=8ϕ(〈s〉P ′)(X)=8〈s〉P ′(X)

for all s ∈ NS P ′ with s 6∈ P ′. It then follows that

8P(X)−8P ′(X)=
∑

s̄∈ϕ(NS P ′)/P

8〈s〉P(X)−
∑

s̄∈NS P ′/P ′
8〈s〉P ′(X)

≡ 0− 0 (mod |WS P ′|).

We can therefore define λP ′ := (8P(X)−8P ′(X))/|WS P ′| ∈ Z.
Using the λP ′ as coefficients, we construct a new S-set

X̃ :=
(

X +
∑

[P ′]S⊆[P]F

λP ′ · [S/P ′]
)
∈ A(S).

Here [P]F is the collection of subgroups that are F-conjugate to P . The sum is
then taken over one representative from each S-conjugacy class contained in [P]F .

A priori, the λP ′ might be negative, and as a result X̃ might not be an S-set. In
the original construction of [Broto et al. 2003], this problem is circumvented by
adding copies of ∑

[P ′]S⊆[P]F

|NS P|
|NS P ′|

· [S/P ′]

until all the coefficients are nonnegative.
It will however be shown in Lemma 4.7 below, under the assumption that

cP ′(X)= 0 for P ′ ∼F P , that λP ′ is always nonnegative, and λP ′ = 0 if P ′ is fully
normalized. Hence X̃ is already an S-set without further adjustments.

We clearly have cQ(X̃) = cQ(X) for all Q 6∼F P , in particular for all Q 6∈ H.
Furthermore, if P ′∼F P is fully normalized, then cP ′(X̃)= cP ′(X)+λP ′ = cP ′(X).



2316 Sune Precht Reeh

Because 8Q([S/P ′]) = 0 unless Q .S P ′, we see that 8Q(X̃) = 8Q(X) for
every Q 6∈H. Secondly, we calculate 8P ′(X̃) for each P ′ ∼F P:

8P ′(X̃)=8P ′(X)+
∑

[P̃]S⊆[P]F

λP̃ ·8P ′([S/P̃])

=8P ′(X)+ λP ′ ·8P ′([S/P ′])=8P ′(X)+ λP ′ |WS P ′|

=8P(X),

which is independent of the choice of P ′ ∼F P .
We define H′ :=H \ [P]F as H with the F-conjugates of P removed. Because

P is maximal in H, the subcollection H′ again contains all F-subconjugates of any
H ∈H′.

By induction we can apply Lemma 4.6 to X̃ and to the smaller collection H′. We
get an X ′ ∈ A+(F) with 8Q(X ′) = 8Q(X̃) and cQ(X ′) = cQ(X̃) for all Q 6∈ H′,
such that cQ(X ′)= 0 if Q ∈H′ is fully normalized.

It follows that 8Q(X ′)=8Q(X̃)=8Q(X) and cQ(X ′)= cQ(X̃)= cQ(X) for
all Q 6∈H, and we also have cQ(X ′)= 0 if Q ∈H is fully normalized. �

Lemma 4.7. Let F be a saturated fusion system over a p-group S, and let P ≤ S
be a fully normalized subgroup.

Suppose that X is an S-set with cP ′(X)= 0 for all P ′ ∼F P , and suppose that X
is already F-stable for subgroups larger than P , i.e.,

∣∣X R
∣∣= ∣∣X R′

∣∣ for all R ∼F R′,
where P is F-conjugate to a proper subgroup of R.

Then
∣∣X P

∣∣≥ ∣∣X P ′
∣∣ for all P ′ ∼F P.

Proof. Let Q ∼F P be given. Because P is fully normalized, there exists by
Lemma 2.3 a homomorphism ϕ : NS Q ↪→ NS P in F , with ϕ(Q)= P .

Let A1, . . . , Ak be the subgroups of NS Q that strictly contain Q, meaning that
Q < Ai ≤ NS Q. We put Bi := ϕ(Ai ), and thus also have P < Bi ≤ NS P . We
let C1, . . . ,C` be the subgroups of NS P strictly containing P which are not the
image (under ϕ) of some Ai . Hence B1, . . . , Bk,C1, . . . ,C` are all the different
subgroups of NS P strictly containing P . We denote the set {1, . . . , k} of indices
by I , and also J := {1, . . . , `}.

Because cQ(X)= cP(X)= 0 by assumption, no orbit of X is isomorphic to S/Q,
hence no element in X Q has Q as a stabilizer. Let x ∈ X Q be any element, and let
K > Q be the stabilizer of x ; so x ∈ X K

⊆ X Q . Since K is a p-group, there is some
intermediate group L with Q C L ≤ K ; hence x ∈ X L for some Q < L ≤ NS Q.
We conclude that

X Q
=

⋃
i∈I

X Ai .
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With similar reasoning we also get

X P
=

⋃
i∈I

X Bi ∪

⋃
j∈J

XC j .

The proof is then completed by showing∣∣X P
∣∣= ∣∣∣⋃

i∈I

X Bi ∪

⋃
j∈J

XC j

∣∣∣≥ ∣∣∣⋃
i∈I

X Bi

∣∣∣ (∗)= ∣∣∣⋃
i∈I

X Ai

∣∣∣= ∣∣X Q
∣∣.

We only need to prove equality (∗).
Showing (∗) has only to do with fixed points for the subgroups Ai and Bi .

Because Bi =ϕ(Ai )∼F Ai are subgroups that strictly contain P and Q, respectively,
we have |X Bi | = |X Ai | by assumption.

To get (∗) for the unions
⋃

Ai and
⋃

Bi we then have to apply the inclusion-
exclusion principle:∣∣∣⋃

i∈I

X Bi

∣∣∣= ∑
∅6=3⊆I

(−1)|3|+1
∣∣∣⋂
i∈3

X Bi

∣∣∣= ∑
∅6=3⊆I

(−1)|3|+1∣∣X 〈Bi 〉i∈3
∣∣.

Here 〈Bi 〉i∈3 ≤ NS P is the subgroup generated by the elements of the Bi ’s with
i ∈3⊆ I . Recalling that Bi =ϕ(Ai ) by definition, we have 〈Bi 〉i∈3=〈ϕ(Ai )〉i∈3=

ϕ(〈Ai 〉i∈3), and consequently,∑
∅6=3⊆I

(−1)|3|+1∣∣X 〈Bi 〉i∈3
∣∣= ∑

∅6=3⊆I

(−1)|3|+1∣∣Xϕ(〈Ai 〉i∈3)
∣∣.

Because Q < Ai ≤ NS Q, we also have Q < 〈Ai 〉i∈3 ≤ NS Q; by assumption we
therefore get |Xϕ(〈Ai 〉i∈3)| = |X 〈Ai 〉i∈3 | for all ∅ 6=3⊆ I . It then follows that∑

∅6=3⊆I

(−1)|3|+1∣∣Xϕ(〈Ai 〉i∈3)
∣∣= ∑

∅6=3⊆I

(−1)|3|+1∣∣X 〈Ai 〉i∈3
∣∣= · · · = ∣∣∣⋃

i∈I

X Ai

∣∣∣,
where we use the inclusion-exclusion principle in reverse. We have thus shown the
equality

∣∣⋃
i∈I X Bi

∣∣= ∣∣⋃i∈I X Ai
∣∣ as required. �

Applying the technical Lemma 4.6, we can now construct the irreducible F-stable
sets αP for P ≤ S as described in the following proposition. That the αP ’s are in
fact irreducible, or even that they are unique, will not be shown until the proof of
Theorem A itself.

Proposition 4.8. Let F be a saturated fusion system over a p-group S.
For each F-conjugacy class [P]F ∈ Cl(F) of subgroups, there is an F-stable set

αP ∈ A+(F) such that

(i) 8Q(αP)= 0 unless Q is F-subconjugate to P.

(ii) cP ′(αP)= 1 and8P ′(αP)= |WS P ′| when P ′ is fully normalized and P ′∼F P.

(iii) cQ(αP)= 0 when Q is fully normalized and Q 6∼F P.
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Proof. Let P ≤ S be fully F-normalized. We let X ∈ A+(S) be the S-set

X :=
∑

[P ′]S⊆[P]F

|NS P|
|NS P ′|

· [S/P ′] ∈ A+(S).

X then satisfies that 8Q(X) = 0 unless Q .S P ′ for some P ′ ∼F P , in which
case we have Q .F P . For all P ′, P ′′ ∈ [P]F we have 8P ′′([S/P ′]) = 0 unless
P ′′ ∼S P ′; consequently,

8P ′(X)=
|NS P|
|NS P ′|

·8P ′([S/P ′])=
|NS P|
|NS P ′|

· |WS P ′| = |WS P|

which doesn’t depend on P ′ ∼F P .
Let H be the collection of all Q which are F-conjugate to a proper subgroup

of P; then 8Q(X)=8Q′(X) for all pairs Q ∼F Q′ not in H. Using Lemma 4.6
we get some αP ∈ A+(F) with the required properties. �

Properties (ii) and (iii) make it really simple to decompose a linear combination
X of the αP ’s. The coefficient of αP in X is just the number of [S/P]-orbits in X
as an S-set — when P is fully normalized. This is immediate since αP contains
exactly one copy of [S/P], and no other αQ contains [S/P].

In particular we have:

Corollary 4.9. The αP ’s in Proposition 4.8 are linearly independent.

In order to prove that the αP ’s generate all F-stable sets, we will first show that
the αP ’s generate all the F-stable elements in the Burnside ring. As a tool for
proving this, we define a ghost ring for the Burnside ring A(F); as a consequence
of how the proof proceeds, we end up showing an analogue of Proposition 3.1 for
saturated fusion systems, describing how the Burnside ring A(F) lies embedded in
the ghost ring — this is the content of Theorem B.

Definition 4.10. We defined the ghost ring �̃(S) for the Burnside ring of a group as
the product ring

∏
[P]S∈Cl(S) Z where the coordinates correspond to the S-conjugacy

classes of subgroups. For the ring A(F), we now similarly define the ghost ring
�̃(F) as a product ring

∏
[P]F∈Cl(F) Z with coordinates corresponding to the F-

conjugacy classes of subgroups.
The surjection of indexing sets Cl(S)→Cl(F) which sends an S-conjugacy class
[P]S to its F-conjugacy class [P]F , induces a homomorphism �̃(F) ↪→ �̃(S) that
embeds �̃(F) as the subring of vectors which are constant on each F-conjugacy
class.

Since A(F) is the subring of F-stable elements in A(S), we can restrict the
mark homomorphism 8S

: A(S)→ �̃(S) to the subring A(F) and get an injective
ring homomorphism 8F

: A(F)→ �̃(F). This is the homomorphism of marks
for A(F).
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To model the cokernel of 8F we define Obs(F) as

Obs(F) :=
∏

[P]∈Cl(F)
P f.n.

(Z/|WS P|Z),

where “f.n.” is short for “fully normalized”, so we take fully normalized representa-
tives of the conjugacy classes in F .

Theorem B. Let F be a saturated fusion system over a p-group S, and let A(F)
be the Burnside ring of F , i.e., the subring consisting of the F-stable elements in
the Burnside ring of S. We then have a short-exact sequence

0−→ A(F) 8
−→ �̃(F) 9

−→Obs(F)−→ 0.

where 8=8F is the homomorphism of marks, and 9 =9F
: �̃(F)→ Obs(F) is

a group homomorphism given by the [P]-coordinate functions

9P(ξ) :=
∑

s̄∈WS P

ξ〈s〉P (mod |WS P|)

when P ≤ S is a fully normalized representative of the conjugacy class [P] in F .
Here 9P =9P ′ if P ∼F P ′ are both fully normalized.

Proof. We choose some total order of the conjugacy classes [P], [Q] ∈ Cl(F) such
that |P|> |Q| implies [P]< [Q], i.e., we take the subgroups in decreasing order.
It holds in particular that Q .F P implies [P] ≤ [Q].

With respect to the ordering above, the group homomorphism 9 is given by a
lower triangular matrix with 1’s in the diagonal, hence 9 is surjective. The mark
homomorphism 8 = 8F is the restriction of the injective ring homomorphism
8S
: A(S)→ �̃(S), so 8 is injective.

We know from the group case, Proposition 3.1, that9S
◦8S
= 0. By construction

we have (9)P = (9
S)P for the coordinate functions when P is fully normalized;

and 8 is the restriction of 8S . We conclude that 9 ◦8= 0 as well. It remains to
be shown that im8 is actually all of ker9.

Consider the subgroup H :=Span{αP | [P]∈Cl(F)} spanned by the αP ’s in A(F),
and consider also the restriction8|H of the mark homomorphism8 : A(F)→ �̃(F).

The map 8|H is described by a square matrix M in terms of the ordered bases of
H = Span{αP ’s} and �̃(F). Because M[Q],[P] :=8Q(αP) is zero unless P ∼F Q
or |P|> |Q|, we conclude that M is a lower triangular matrix. The diagonal entries
of M are

M[P],[P] =8P(αP)= |WS P|,

when P is fully normalized.
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All the diagonal entries are nonzero, so the cokernel of 8|H is finite of order

|coker8|H | =
∏

[P]∈Cl(F)

M[P],[P] =
∏

[P]∈Cl(F)
P f.n.

|WS P|.

Since 8|H is a restriction of 8, it follows that |coker8| ≤ |coker8|H |. At the
same time, 9 ◦8= 0 implies that |coker8| ≥ |Obs(F)|.

We do however have

|Obs(F)| =
∏

[P]∈Cl(F)
P f.n.

|WS P| = |coker8|H |.

The only possibility is that ker9 = im8 = im8|H , completing the proof of
Theorem B. �

From the last equality im8= im8|H , and the fact that 8 is injective, it also fol-
lows that A(F)=H so the αP ’s span all of A(F). Combining this with Corollary 4.9
we get:

Corollary 4.11. The αP ’s form an additive basis for the Burnside ring A(F).

The corollary tells us that any element X ∈ A(F) can be written uniquely as
an integral linear combination of the αP ’s. In particular, any F-stable set can be
written as a linear combination of αP ’s, and if the coefficients are all nonnegative,
then we have a linear combination in A+(F).

Theorem A. Let F be a saturated fusion system over a p-group S. The sets αP

from Proposition 4.8 are all the irreducible F-stable sets, and every F-stable set
splits uniquely, up to S-isomorphism, as a disjoint union of the αP ’s.

Hence the semiring A+(F) of F-stable sets is additively a free commutative
monoid with rank equal to the number of conjugacy classes of subgroups in F .

Proof. Let αP ∈ A+(F) for each conjugacy class [P] ∈ Cl(F) be given as in
Proposition 4.8. Let X ∈ A+(F) be any F-stable S-set.

Since the αP ’s form a basis for A(F) by Corollary 4.11, we can write X uniquely
as

X =
∑

[P]∈Cl(F)

λP ·αP

with λP ∈ Z.
Suppose that P is fully normalized; then cP(αQ)= 1 if P ∼F Q, and cP(αQ)= 0

otherwise. As a consequence of this, we have

cP(X)=
∑

[Q]∈Cl(F)

λQ · cP(αQ)= λP

whenever P is fully normalized.
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Because X is an S-set, we see that λP = cP(X)≥0. Hence the linear combination
X =

∑
[P]∈Cl(F) λP ·αP has nonnegative coefficients, i.e., it is a linear combination

in the semiring A+(F).
As a special case, if we have another element α′P in A(F) satisfying the properties

of Proposition 4.8, then the fact that λQ = cQ(α
′

P) for all fully normalized Q ≤ S,
shows that λP = 1 and λQ = 0 for Q 6∼F P . Thus the linear combination above
simplifies to α′P = αP . Hence the αP ’s are uniquely determined by the properties
of Proposition 4.8. �

Appendix: The monoid of complex representations

For a saturated fusion system F over S, it makes sense to talk about F-stability of
S-representations instead of S-sets. In this appendix we show that the analogues of
Theorems A and A′ fail for representations in general by giving an example where
the abelian monoid of F-stable complex representations is not free.

For a finite dimensional complex representation ρ : S→ GLn(C) of S, we can
restrict ρ along any fusion map ϕ ∈ F(P, S) to form a representation P,ϕρ := ρ ◦ϕ

of the subgroup P ≤ S. Just as for finite S-sets, we compare each P,ϕρ to the usual
restriction P,inclρ and say that ρ is F-stable if

P,ϕρ is isomorphic to P,incl X as representations of P, for all P ≤ S and
homomorphisms ϕ : P→ S in F .

The isomorphism classes of F-stable complex S-representations form an abelian
monoid R+(F) with direct sum of representations as the addition. As we know, the
isomorphism class of any complex representation is determined completely by the
associated character. Our first order of business is therefore to determine which
characters belong to F-stable representations. We say that a character χ : S→ C is
F-stable if it satisfies χ(s)=χ(ϕ(s)) for all elements s ∈ S and maps ϕ ∈F(〈s〉, S),
that is χ should be constant on each conjugacy class in F of elements in S.

Lemma A.1. Let ρ : S→ GLn(C) be a representation, and let χ : S→ C be the
associated character. Then ρ is F-stable if and only if χ is F-stable.

Proof. Consider a subgroup P ≤ S and a map ϕ ∈ F(P, S). Then the character
associated to the restriction P,ϕρ = ρ ◦ϕ is equal to χ ◦ϕ. The representation P,ϕρ

is isomorphic to P,inclρ precisely when they have the same character on P , that is,
whenever χ ◦ϕ = χ |P , which on elements becomes χ(ϕ(s))= χ(s) for all s ∈ P .

We now immediately conclude that ρ is F-stable if and only if χ(ϕ(s))= χ(s)
for all s ∈ P , P ≤ S and ϕ ∈ F(P, S). By restricting each ϕ to the cyclic subgroup
〈s〉 ≤ P , it is enough to check that χ(ϕ(s))= χ(s) for all s ∈ S and ϕ ∈ F(〈s〉, S),
i.e., that χ is F-stable. �
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Using Lemma A.1 to characterize the F-stable representations, we will now
study the example below and see that R+(F) is not a free abelian monoid for this
particular choice of F .

Example A.2. We consider the saturated fusion system F := FSD16(PGL3(F3))

induced by the projective general linear group PGL3(F3) on the semidihedral group
of order 16, i.e., the group SD16 = 〈D, S | D8

= S2
= 1, SDS−1

= D3
〉. One

possible inclusion of SD16 inside PGL3(F3) has as matrix representatives:1 0 0
0 1 1
2 1 0

 represents D, and

1 0 0
0 1 2
0 0 2

 represents S.

The group SD16 has 7 conjugacy classes of elements, and 7 irreducible characters.
These are all listed in the character table below:

1 D,D3 D5,D7 D2,D6 D4 S,D2S,D4S,D6S DS,D3S,D5S,D7S
1 1 1 1 1 1 1 1
χa 1 −1 −1 1 1 −1 1
χb 1 −1 −1 1 1 1 −1
χab 1 1 1 1 1 −1 −1
χ2 2 0 0 −2 2 0 0
χi 2 i

√
2 −i

√
2 0 −2 0 0

χ−i 2 −i
√

2 i
√

2 0 −2 0 0

Inside F , the class of D4 becomes conjugate to the class of S, and the class of D2

becomes conjugate to the class of DS. None of the other conjugacy classes in SD16

are fused in F . The F-stable characters are therefore precisely the characters where
the 4-th value is equal to the 7-th value, and the 5-th is equal to the 6-th.

Note that 1 is the only irreducible character for SD16 that is F-stable. Adding
rows we see that the following four characters are also F-stable: α := χa + χi ,
β := χa + χ−i , γ := χb + χ2 + χi and δ := χb + χ2 + χ−i . Each of these four
characters cannot be written as a sum of smaller F-stable characters, so α, β, γ and
δ correspond to representations that are irreducible in R+(F). At the same time,
however, we have

χa +χb+χ2+χi +χ−i = α+ δ = β + γ.

Hence χa +χb +χ2+χi +χ−i corresponds to an element of R+(F) that can be
written as a sum of two irreducible elements in two different ways. The abelian
monoid R+(F) is therefore not free, so the analogue of Theorem A for complex
representations is false.



The abelian monoid of fusion-stable finite sets is free 2323

Acknowledgements. The claim of Theorem A was initially suggested by Matthew
Gelvin and formed by his previous interest in similar problems as well as my own
work on my masters thesis and the first part of [Reeh 2016]. Matthew’s claim
became the subject of conversations at the University of Copenhagen, involving
also Jesper Michael Møller, Bob Oliver, Kasper Andersen and Jesper Grodal. Due
to a seeming lack of systematic structure in the irreducible stable sets, and the fact
that the decompositions are only unique up to S-isomorphism, the claim was met
with initial skepticism, but Kasper Andersen produced a large amount of computer
evidence supporting the claim’s validity (using Magma). I would like to thank
them all. In particular it was Kasper Andersen’s examples that gave me the idea for
Lemma 4.7, which formed the missing link in the proof of Theorem A. I also thank
my Ph.D. advisor Jesper Grodal for his helpful suggestions and feedback during
the writing of this paper.

References

[Aschbacher et al. 2011] M. Aschbacher, R. Kessar, and B. Oliver, Fusion systems in algebra and
topology, London Mathematical Society Lecture Note Series 391, Cambridge University Press, 2011.
MR 2012m:20015 Zbl 1255.20001

[Bousfield and Kan 1972] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and
localizations, vol. 304, Lecture Notes in Mathematics, Springer, Berlin, 1972. MR 51 #1825
Zbl 0259.55004

[Broto et al. 2003] C. Broto, R. Levi, and B. Oliver, “The homotopy theory of fusion systems”, J.
Amer. Math. Soc. 16:4 (2003), 779–856. MR 2004k:55016 Zbl 1033.55010

[Carlsson 1991] G. Carlsson, “Equivariant stable homotopy and Sullivan’s conjecture”, Invent. Math.
103:3 (1991), 497–525. MR 92g:55007 Zbl 0736.55008

[Díaz and Libman 2009a] A. Díaz and A. Libman, “The Burnside ring of fusion systems”, Adv. Math.
222:6 (2009), 1943–1963. MR 2011a:20039 Zbl 1188.19001

[Díaz and Libman 2009b] A. Díaz and A. Libman, “Segal’s conjecture and the Burnside rings of
fusion systems”, J. Lond. Math. Soc. (2) 80:3 (2009), 665–679. MR 2011d:55029 Zbl 1183.55003

[tom Dieck 1979] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in
Mathematics 766, Springer, Berlin, 1979. MR 82c:57025 Zbl 0445.57023

[Dress 1986] A. W. M. Dress, “Congruence relations characterizing the representation ring of the
symmetric group”, J. Algebra 101:2 (1986), 350–364. MR 87j:20019 Zbl 0592.20012

[Dwyer and Zabrodsky 1987] W. Dwyer and A. Zabrodsky, “Maps between classifying spaces”, pp.
106–119 in Algebraic topology, Barcelona, 1986, edited by J. Aguadé and R. Kane, Lecture Notes in
Math. 1298, Springer, Berlin, 1987. MR 89b:55018 Zbl 0646.55007

[Gelvin 2010] M. J. K. Gelvin, Fusion action systems, Ph.D. thesis, Massachusetts Institute of
Technology, 2010, Available at http://search.proquest.com/docview/847033297. MR 2814028

[Grodal 2011] J. Grodal, “Group actions on sets, at a prime p”, pp. 2647–2648 in Homotopy theory,
Oberwolfach Rep. 8:3, European Mathematican Society, Zürich, 2011. MR 2978664

[Grodal ≥ 2015] J. Grodal, “The Burnside ring of the p-completed classifying space of a finite
group”, in preparation.

http://dx.doi.org/10.1017/CBO9781139003841
http://dx.doi.org/10.1017/CBO9781139003841
http://msp.org/idx/mr/2012m:20015
http://msp.org/idx/zbl/1255.20001
http://msp.org/idx/mr/51:1825
http://msp.org/idx/zbl/0259.55004
http://dx.doi.org/10.1090/S0894-0347-03-00434-X
http://msp.org/idx/mr/2004k:55016
http://msp.org/idx/zbl/1033.55010
http://dx.doi.org/10.1007/BF01239524
http://msp.org/idx/mr/92g:55007
http://msp.org/idx/zbl/0736.55008
http://dx.doi.org/10.1016/j.aim.2009.06.023
http://msp.org/idx/mr/2011a:20039
http://msp.org/idx/zbl/1188.19001
http://dx.doi.org/10.1112/jlms/jdp048
http://dx.doi.org/10.1112/jlms/jdp048
http://msp.org/idx/mr/2011d:55029
http://msp.org/idx/zbl/1183.55003
http://msp.org/idx/mr/82c:57025
http://msp.org/idx/zbl/0445.57023
http://dx.doi.org/10.1016/0021-8693(86)90199-7
http://dx.doi.org/10.1016/0021-8693(86)90199-7
http://msp.org/idx/mr/87j:20019
http://msp.org/idx/zbl/0592.20012
http://dx.doi.org/10.1007/BFb0083003
http://msp.org/idx/mr/89b:55018
http://msp.org/idx/zbl/0646.55007
http://search.proquest.com/docview/847033297
http://msp.org/idx/mr/2814028
http://dx.doi.org/10.4171/OWR/2011/46
http://msp.org/idx/mr/2978664


2324 Sune Precht Reeh

[Lannes 1995] J. Lannes, “Applications dont la source est un classifiant”, pp. 566–573 in Proceedings
of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), edited by S. D. Chatterji,
Birkhäuser, Basel, 1995. MR 97h:55021 Zbl 0854.55014

[Miller 1987] H. Miller, “The Sullivan conjecture and homotopical representation theory”, pp.
580–589 in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley,
Calif., 1986), edited by A. M. Gleason, Amer. Math. Soc., Providence, RI, 1987. MR 89f:55016
Zbl 0678.55008

[Mislin 1990] G. Mislin, “On group homomorphisms inducing mod-p cohomology isomorphisms”,
Comment. Math. Helv. 65:3 (1990), 454–461. MR 92a:20059 Zbl 0713.55009

[Ragnarsson and Stancu 2013] K. Ragnarsson and R. Stancu, “Saturated fusion systems as idempo-
tents in the double Burnside ring”, Geom. Topol. 17:2 (2013), 839–904. MR 3070516 Zbl 1306.20011

[Reeh 2016] S. P. Reeh, “Transfer and characteristic idempotents for saturated fusion systems”, Adv.
in Math. 289 (2016), 161–211.

[Roberts and Shpectorov 2009] K. Roberts and S. Shpectorov, “On the definition of saturated fusion
systems”, J. Group Theory 12:5 (2009), 679–687. MR 2010h:20047 Zbl 1234.20028

[Yoshida 1990] T. Yoshida, “On the unit groups of Burnside rings”, J. Math. Soc. Japan 42:1 (1990),
31–64. MR 90j:20027 Zbl 0694.20009

Communicated by David Benson
Received 2014-12-03 Revised 2015-08-31 Accepted 2015-10-08

reeh@mit.edu Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/97h:55021
http://msp.org/idx/zbl/0854.55014
http://msp.org/idx/mr/89f:55016
http://msp.org/idx/zbl/0678.55008
http://dx.doi.org/10.1007/BF02566619
http://msp.org/idx/mr/92a:20059
http://msp.org/idx/zbl/0713.55009
http://dx.doi.org/10.2140/gt.2013.17.839
http://dx.doi.org/10.2140/gt.2013.17.839
http://msp.org/idx/mr/3070516
http://msp.org/idx/zbl/1306.20011
http://dx.doi.org/10.1016/j.aim.2015.10.022
http://dx.doi.org/10.1515/JGT.2009.003
http://dx.doi.org/10.1515/JGT.2009.003
http://msp.org/idx/mr/2010h:20047
http://msp.org/idx/zbl/1234.20028
http://dx.doi.org/10.2969/jmsj/04210031
http://msp.org/idx/mr/90j:20027
http://msp.org/idx/zbl/0694.20009
mailto:reeh@mit.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2015 is US $255/year for the electronic version, and $440/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 9 No. 10 2015

2197Equivariant torsion and base change
MICHAEL LIPNOWSKI

2241Induction parabolique et (ϕ, 0)-modules
CHRISTOPHE BREUIL

2293On the normalized arithmetic Hilbert function
MOUNIR HAJLI

2303The abelian monoid of fusion-stable finite sets is free
SUNE PRECHT REEH

2325Polynomial values modulo primes on average and sharpness of the larger sieve
XUANCHENG SHAO

2347Bounds for Serre’s open image theorem for elliptic curves over number fields
DAVIDE LOMBARDO

2397On 0-cycles with modulus
AMALENDU KRISHNA

1937-0652(2015)9:10;1-#

A
lgebra

&
N

um
ber

Theory
2015

Vol.9,
N

o.10


	1. Introduction
	2. Fusion systems
	3. Burnside rings for groups
	4. Stable sets for a fusion system
	4.1. Proving Theorems A and B

	Appendix: The monoid of complex representations
	References
	
	

