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Polynomial values modulo primes on
average and sharpness of the larger sieve

Xuancheng Shao

This paper is motivated by the following question in sieve theory. Given a subset
X ⊂ [N ] and α ∈

(
0, 1

2

)
. Suppose that |X (mod p)| ≤ (α + o(1))p for every

prime p. How large can X be? On the one hand, we have the bound |X | �α Nα

from Gallagher’s larger sieve. On the other hand, we prove, assuming the truth of
an inverse sieve conjecture, that the bound above can be improved (for example,
to |X | �α N O(α2014) for small α). The result follows from studying the average
size of |X (mod p)| as p varies, when X = f (Z) ∩ [N ] is the value set of a
polynomial f (x) ∈ Z[x].

1. Introduction

For a positive integer N , denote by [N ] the set {1, 2, . . . , N }. The letter p is always
used to denote a prime. The primary goal of this paper is to study upper bounds for
the sizes of subsets X ⊂ [N ] occupying a small fraction of residue classes modulo
many primes p. Gallagher’s larger sieve [1971] provides such an upper bound.

Theorem 1.1 (larger sieve). Let X ⊂ [N ] be a subset and P be a set of primes.
We have

|A| ≤

∑
p∈P log p∑

p∈P |X (mod p)|−1 log p− log N

whenever the denominator is positive.

See [Croot and Elsholtz 2004] for some variants of it and references therein for
applications. We are particularly interested in the situation when |X (mod p)| ≤ αp
for some fixed α ∈ (0, 1), and whether the bound provided by the larger sieve is
best possible.

Corollary 1.2 (larger sieve, special case). Let X ⊂ [N ] be a subset and α ∈
(
0, 1

2

]
.

If |X (mod p)| ≤ (α+ o(1))p for every prime p, then |X | � Nα+o(1).
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This is easily deduced from Theorem 1.1 by taking P to be the set of primes
up to Nα+o(1). When α > 1

2 , the statement still holds, but is beaten by the bound
|X | �α N 1/2 following from the large sieve [Montgomery 1978]. When α ≤ 1

2 , is
the bound |X | � Nα+o(1) sharp? If X is the set of perfect squares up to N , then
|X |∼N 1/2 and X occupies (p+1)/2 residue classes (the quadratic residues) modulo
any odd prime p. The question of whether this is the only type of sharp example
is usually referred to as the inverse sieve conjecture, informally stated as follows.

Conjecture 1.3 (inverse sieve conjecture, rough form). Let X ⊂ [N ] be a subset.
If |X (mod p)| ≤ 0.9p for every prime p, then either one of the following two
statements holds:

(1) The cardinality of X is extremely small.

(2) The set X possesses algebraic structure.

See Conjecture 4.1 below for one precise formulation of it. See also [Croot and
Lev 2007; Helfgott and Venkatesh 2009; Walsh 2012; Green and Harper 2014] for
more discussions and evidences towards it.

Now assume that α < 1
2 is fixed. Motivated by the inverse sieve conjecture, we

consider the sizes of X (mod p) when X is the value set of a polynomial. For
a polynomial f (x) ∈ Z[x] of degree d ≥ 1, denote by f p ∈ Fp[x] the reduction
of f modulo p. Let αp( f ) = p−1

| f p(Fp)|, the relative size of the value set of
f (mod p). Define α( f ) to be the average of αp( f ) as p varies:

α( f )= lim
Q→∞

1
π(Q)

∑
p≤Q

αp( f ).

Note the trivial lower bounds αp( f )≥ d−1 and α( f )≥ d−1.

Theorem 1.4 (polynomial values modulo primes on average). Let f ∈ Z[x] be a
polynomial of degree d ≥ 1. Then

lim
Q→∞

1
π(Q)

∑
p≤Q

αp( f )−1
≤ τ(d), (1-1)

where τ(d) is the number of positive divisors of d. Consequently, α( f )≥ τ(d)−1.

Note that for d ≥ 3 we always have τ(d) < d. Hence, it is reasonable to
conjecture that Corollary 1.2 is not sharp whenever α is smaller than (and bounded
away from) 1

2 . See the last section in [Shao 2014] for a preliminary discussion on
the simplest case d = 3.

Theorem 1.5 (inverse sieve conjecture implies improved larger sieve). Assume the
truth of Conjecture 4.1. Let X ⊂ [N ] be a subset and α ∈ (0, 1). Let ε ∈ (0, 1) be a
parameter. If |X (mod p)| ≤ (α+ o(1))p for every prime p, then |X | �α,ε N 1/d ,
where d is the smallest positive integer with τ(d)≥ (1− ε)α−1.
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For example, when α=0.49, we obtain the upper bound |X |�N 1/4. On the other
hand, since τ(d)≤ dC/ log log d for some constant C > 0, we get |X | �α Nαc log logα−1

for some constant c > 0, a huge improvement upon Corollary 1.2 for small α
(assuming the truth of the inverse sieve conjecture).

Remark 1.6. Instead of assuming that |X (mod p)|≤ (α+o(1))p for every prime p,
knowing this on average over p in an appropriate sense is sufficient for our proof
to follow. In this paper, we will focus on the model case in which we assume the
pointwise estimate.

In the remainder of this introduction we discuss further the quantities αp( f )
and α( f ). Note that (1-1) becomes an equality when f (x) = xd . Indeed, in this
case we have αp( f )∼ (p− 1, d)−1, and thus the average of αp( f )−1 is equal to

1
φ(d)

∑
a∈(Z/dZ)×

(a− 1, d)= τ(d).

Note, however, that in this case the average of αp( f ) is equal to

α( f )=
1

φ(d)

∑
a∈(Z/dZ)×

(a− 1, d)−1,

which can be evaluated to φ(d)/d when d is squarefree (and is at least (φ(d)/d)2

for any d). Since φ(d)/d � (log log d)−1, the following construction provides
polynomials f with smaller α( f ).

Theorem 1.7 (polynomials with small value sets modulo primes). Define a se-
quence of polynomials { fn} by

f1(x)= x2, fn+1(x)= ( fn(x)+ 1)2.

Then αp( fn)= an provided that p > 2 fn−1(0)+ 2 when n > 1, where the sequence
{an} is defined by

a1 =
1
2 , an+1 = an −

1
2a2

n .

Moreover, we have an ≤ 2n−1 for each n.

See Remark 2.5 below for the reasoning behind this construction of fn . It is easy
to see heuristically why one expects the relation an+1 = an −

1
2a2

n . Indeed, if we
model the value set of fn (mod p) as a random subset S⊂ Fp with each element s ∈
Fp chosen in S with probability an independently at random, then for every quadratic
residue r , the probability that r can be written as (s+1)2 for some s ∈ S is 2an−a2

n .
Hence the expected size of the set (S+ 1)2 is (2an − a2

n)p/2+ O(1), as desired.
Since deg fn = 2n , we have α( fn)� (log(deg fn))

−1. We do not know whether
this is the best example or whether the bound for α( f ) in Theorem 1.4 is sharp.
See Section 6B for more discussion of this.
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The investigation of αp( f ) for a fixed prime p has a long history (see [Birch and
Swinnerton-Dyer 1959; Cohen 1970]), and explicit formulae for αp( f ) are known
in terms of the proportion of fixed-point-free elements in a certain Galois group
(see Lemma 5.1 and the remark following). Not surprisingly, the quantity α( f )
can also be evaluated in terms of a certain Galois group, and this is recorded in
Proposition 6.1. Due to a lack of understanding of the relevant Galois groups, our
lower bound for α( f ) is instead obtained by studying the number of solutions to
f (x) ≡ f (y) (mod p) on average as p varies (see Section 2), and it is for this
reason that the average of αp( f )−1 naturally shows up.

A related line of work is on classifying those polynomials f ∈ Fp[x] for which
αp( f ) is close to the lower bound d−1 (for a fixed p). In particular, results in
[Gomez-Calderon and Madden 1988] imply that αp( f )≥ 2d−1

+ o(1) whenever
p 6≡ ±1 (mod d).

The rest of this paper is organized as follows. In Section 2 we state a general and
quantitative version of Theorem 1.4 for polynomials over arbitrary number fields,
and outline the proof strategy, with the details given in Section 3. In Section 4 we
state a precise form of the inverse sieve conjecture and deduce Theorem 1.5. In
Section 5, Theorem 1.7 is proved by computing relevant Galois groups. Finally, in
Section 6, we make some further remarks concerning the larger sieve as well as the
quantity α( f ).

2. Statement of results and proof strategy

Notation. For a number field K , we denote by OK its ring of integers and by 1K

its (absolute) discriminant. For a prime ideal p in OK , we use κp to denote the
residue field OK /p and N (p)= |κp| to denote the norm of p. For a polynomial f
with coefficients in OK , we use fp to denote its reduction modulo p.

As indicated in the introduction, we are mainly interested in studying the sizes
of value sets of fp for one-variable polynomials f .

Definition 2.1. Let K be a number field, and let f (x) ∈ OK [x] be a polynomial.
For any prime ideal p in OK , define

αp( f )= N (p)−1
| fp(κp)|.

This will be studied via the related quantity that measures the number of solutions
of gp = 0 for (multivariable) polynomials g.

Definition 2.2. Let K be a number field and let g(X) ∈ OK [X ] be a polynomial in
n variables X = (X1, . . . , Xn). For any prime ideal p in OK , define

mp(g)= N (p)−(n−1)
|{X ∈ κn

p : gp(X)= 0}|.
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To make our result quantitative, we also need a notion that measures the sizes of
the coefficients of a polynomial.

Definition 2.3 (heights). Let K be a number field, and let g(x) ∈ OK [X ] be a
polynomial. We define its (absolute logarithmic) height h(g) to be the sum

h(g)=
∑
v

max
a

log |a|v, (2-1)

where the sum is over all places v of K and the maximum is taken over all coefficients
a of g.

Here |a|v is the normalized absolute value, so that it does not depend on the
choice of the field K . For example, when f ∈ Z[x] is primitive, the height h( f ) is
the logarithm of the (usual archimedean) absolute value of the largest coefficient
of f . See [Hindry and Silverman 2000] for basic properties of the height function.

Theorem 2.4. Let K be a number field and f ∈ OK [x] be a polynomial of degree
d ≥ 1. Let g ∈ OK [x, y] be the polynomial defined by g(x, y)= f (x)− f (y). Let
s(g) be the number of irreducible factors of g in K [x, y]. Then for any Q ≥ 2
we have ∑

N (p)≤Q

mp(g)= s(g)
∑

N (p)≤Q

1+ O
(
Q exp(−c

√
log Q)+ h(g)

)
for sufficiently small c = c(K , d) > 0.

Proof of Theorem 1.4 assuming Theorem 2.4. First, by an application of the Cauchy–
Schwarz inequality, we have αp( f )≥ mp(g)−1. It thus suffices to show that

s(g)≤ τ(d) (2-2)

when K =Q. This follows by considering the homogeneous part of degree d of
g(x, y) = f (x)− f (y). Indeed, since this homogeneous part is a(xd

− yd) for
some a 6= 0, it factors into τ(d) irreducible factors over Q (which are cyclotomic
polynomials), and thus g(x, y) can be factored into at most τ(d) irreducible factors
over Q. �

Remark 2.5. The argument above motivates the choice of fn in Theorem 1.7.
Indeed, if a polynomial f is highly decomposable, in the sense that f is the
composition of many polynomials (each of which has degree at least 2), then
g(x, y)= f (x)− f (y) will necessarily have many irreducible factors, which should
lead to small values of αp( f ). In Proposition 5.3 we deduce another consequence
of Theorem 2.4, that indecomposable polynomials have large values of αp.

We will in fact prove the following more general result, of which Theorem 2.4
is a special case. Two polynomials g1, g2 are said to be equivalent if they are
scalar multiples of each other. Recall also that g ∈ K [X ] is said to be absolutely
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(or geometrically) irreducible if it is irreducible and remains irreducible over the
algebraic closure of K .

Theorem 2.6 (average number of solutions modulo primes). Let K be a number
field and g(X) ∈ OK [X ] be a polynomial in n variables of total degree d ≥ 1. Let
s(g) be the number of nonequivalent irreducible factors of g in K [X ]. Let L be
a Galois extension of K such that g factors into absolutely irreducible factors in
L[X ]. Let C = C(K , n, d) > 0 be sufficiently large. If Q ≥ exp(C(log1L)

2), then∑
N (p)≤Q

mp(g) log N (p)

= s(g)Q− t (g)
Qβ0

β0
+ O

(
Q exp(−c

√
log Q)+ h(g)+ log1L

)
(2-3)

for sufficiently small c = c(K , n, d) > 0, where t (g) ∈ [0, s(g)], and the second
term appears only if the Dedekind zeta function ζL has a Siegel zero β0 ∈

( 1
2 , 1

)
.

Consequently, for Q ≥ exp(C(log1L)
2) we have∑

N (p)≤Q

mp(g)≤ s(g)
∑

N (p)≤Q

1+ O
(
Q exp(−c

√
log Q)+ h(g)+ log1L

)
. (2-4)

The bounds for the error terms stem from a quantitative version of the Cheb-
otarev density theorem in [Lagarias and Odlyzko 1977]. Assuming the truth of the
generalized Riemann hypothesis (GRH) for ζL , we can get a much better error term
O
(
Q1/2(log1L +[L : Q] log Q)

)
, and of course without the Siegel zero term. The

unconditional error term, however, is already enough for our application.

Proof of Theorem 2.4 assuming Theorem 2.6. We show that g(x, y)= f (x)− f (y)
factors into absolutely irreducible factors over L = K (µd), where µd is the group of
d-th roots of unity. Indeed, since the homogeneous part of degree d of f (x)− f (y)
is a(xd

− yd) for some nonzero a ∈ K , it factors over L into linear factors. Thus,
there is a factorization

f (x)− f (y)=
r∏

i=1

gi (x, y)

of f (x) − f (y) into absolutely irreducible factors g1, g2, . . . , gr , such that the
top-degree part of each gi is defined over L . We claim that each gi is defined over L
as well. Suppose not. Without loss of generality, assume that some coefficient
of g1 does not lie in L . Let τ ∈ Gal(Q/L) be an automorphism that moves this
coefficient. Let τ(g1) be the polynomial obtained by applying τ to every coefficient
of g1. Then τ(g1) is also a factor of f (x)− f (y), and thus τ(g1) is equivalent to gi

for some 1 ≤ i ≤ r . By our choice of τ , τ(g1) must be equivalent to gi for some
i > 1, and thus g1 and gi have equivalent top-degree parts. This contradicts the fact
that xd

− yd has no repeated factors.
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Now that the potential Siegel zero β0 of ζL depends only on K and d , the Siegel
zero term in (2-3) can be absorbed into the error term, and the conclusion follows
easily from partial summation. �

Remark 2.7. In the argument above we used the fact that polynomials of the form
f (x)− f (y) ∈ K [x, y] factor into absolutely irreducible factors in L[x, y], with
L = K (µd). For a general polynomial g(X)∈ K [X ] of height h(g), it can be shown
that one can take L with [L :Q] ≤ C and 1L ≤ C exp(Ch(g)) for some constant
C = C(K , n, d) > 0. Thus the log1L factor in the error term can be removed, and
the assumption on Q can be replaced by Q ≥ exp(Ch(g)2). We will, however, not
need this relation between the size of L and the height h(g).

Remark 2.8. The arguments used in proving Theorem 2.6 can be generalized to
study the average behavior of |V (Fp)| as p varies, for any algebraic variety V
defined over Z. More precisely, let m = dim V . Then the average of p−m

|V (Fp)|

as p varies is equal to the number of irreducible components of V .

To finish this section, we sketch the proof of Theorem 2.6. By Lang–Weil,
mp(g) is essentially the number of absolutely irreducible factors of gp. Factor g
into absolutely irreducible factors in L[X ], and consider the natural action of the
Galois group G =Gal(L/K ) on these factors. For almost all primes P⊂ OL , these
absolutely irreducible factors remain absolutely irreducible modulo P, and thus
mp(g) is essentially the number of these factors which are defined over κp. This is
equal to the number of fixed points of the Frobenius element associated with P.
By the Chebotarev density theorem, these Frobenius elements are equidistributed
in G as P varies. Hence the average of mp(g) is equal to the average number of
fixed points of the G-action. By Burnside’s lemma, this is equal to the number of
G-orbits, which is exactly the number of irreducible factors s(g) of g. In carrying
out this procedure some additional effort is needed to keep track of the explicit
dependence on the height of g.

3. Proof of Theorem 2.6

In this section we prove Theorem 2.6. The implied constants appearing in this
section are always allowed to depend on K , n, d.

Factor (g) into principal prime ideals in L[X ]:

(g)= (g1)
e1(g2)

e2 · · · (gr )
er ,

where gi ∈ L[X ] is absolutely irreducible, and gi , g j are not equivalent when i 6= j .
Let G be the Galois group Gal(L/K ). For any 1≤ i ≤ r and any ξ ∈ G, let ξ(gi )

be the polynomial obtained by applying ξ to all coefficients of gi . Since ξ(gi ) is
also a factor of g, ξ(gi ) is equivalent to g j for some 1 ≤ j ≤ r . Hence ξ acts on
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{(g1), . . . , (gr )} by sending (gi ) to (ξ(gi )). In this way we obtain a G-action on
{(g1), . . . , (gr )}.

Lemma 3.1 (Galois descent). Let E be any field and F be a Galois extension of E.
Let h ∈ F[X ] be a polynomial. The following two statements are equivalent:

(1) The ideal (h)⊂ F[X ] is fixed by every element of G = Gal(F/E).

(2) The ideal (h) is defined over E. In other words, there exists a scalar α ∈ F×

such that αh ∈ E[X ].

Proof. This is a standard result in the theory of Galois descent. For completeness,
we give a proof here. Clearly (2) implies (1). Now assume that (1) holds, so that for
each ξ ∈ G, we have ξ(h)= cξh for some cξ ∈ F×. The scalars {cξ : ξ ∈ G} form
a 1-cocycle G→ F×, and thus by Hilbert’s Theorem 90 we have cξ = α/ξ(α) for
some α ∈ F×. Now that ξ(h)= αh/ξ(α), we conclude that ξ(αh)= αh for each
ξ ∈ G. Thus αh ∈ E[X ], as desired. �

Lemma 3.2. Let the notation be as above. The number of orbits of the G-action on
{(g1), (g2), . . . , (gr )} is equal to s(g).

Proof. Let H= {h1, h2, . . . , hs} be the set of nonequivalent irreducible factors of g
(well defined up to scalars in K ), where s = s(g). We construct a bijection between
the set of orbits and H.

Let O⊂ {(g1), (g2), . . . , (gr )} be a G-orbit, and let h be the product of those gi

with (gi ) ∈ O. We claim that (h) is defined over K , and moreover (h) is a prime
ideal in K [X ] (hence (h) = (h j ) for some 1 ≤ j ≤ s). In fact, since any ξ ∈ G
permutes the factors in O, the ideal (h) is fixed by ξ . By Lemma 3.1, the ideal (h)
is defined over K . Now let h′ ∈ K [X ] be a factor of h (with positive degree), and
let O′ ⊂ O be the set of those (gi ) ∈ O dividing h′. For any (gi ) ∈ O′ and any ξ ∈ G,
ξ(gi ) is also a factor of h′ and thus (ξ(gi )) ∈ O′. This shows that G preserves O′,
and thus O′ = O and (h′)= (h). Hence (h) is a prime ideal.

Conversely, let h j ∈H be an irreducible factor of g, and let O be the set of those
(gi ) dividing h j . We claim that O is a G-orbit, and moreover the product of those
ideals in O is equal to (h j ). In fact, for any ξ ∈G and (gi )∈O, the polynomial ξ(gi )

is also a factor of h j . Hence G preserves O. If O′ ⊂ O is a G-orbit, the argument
above shows that the product of the ideals in O′ is defined over K . Hence O′ = O

by the irreducibility of h j . Finally, the argument above also shows that the product
of the ideals in O is defined over K , and is thus equal to (h j ). �

The following lemma shows that the heights of the factors gi are controlled by
the height of g. Note that the height h(gi ) depends only on the ideal (gi ) since two
equivalent polynomials have the same height.

Lemma 3.3 (Gelfond’s inequality). Let the notation be as above. Then h(gi ) ≤

h(g)+C for some constant C = C(K , n, d) > 0.
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Proof. See Proposition B.7.3 in [Hindry and Silverman 2000]. �

Let p be a prime in OK and P be a prime in OL lying above p. For each 1≤ i ≤ r ,
let (gi ) (mod P) be the ideal in κP[X ] obtained by reduction modulo P. The
following lemma will be used to ensure that (gi ) (mod P) remains absolutely
irreducible for all but finitely many P.

Lemma 3.4 (Noether). Let n, d be positive integers. There exist polynomials
`1, . . . , `m with integral coefficients depending only on n and d in variables Ai1...in

(i1+ · · ·+ in ≤ d), such that the following statement holds. For any algebraically
closed field F , a polynomial f ∈ F[X ] in n variables of total degree at most d with

f (x1, . . . , xn)=
∑

i1+···+in≤d

ai1...in x i1
1 · · · x

in
n

is reducible over F or has total degree less than d if and only if ` j ((ai1...in ))= 0 for
each 1≤ j ≤ m.

Proof. See Theorem 2A in [Schmidt 1976]. �

Lemma 3.5. Let the notation be as above. There exists a positive integer E ≤
C exp(Ch(g)), for some C = C(K , n, d) > 0, such that (gi ) (mod P) is absolutely
irreducible for each 1≤ i ≤ r whenever P - E.

Proof. It suffices to prove the statement for each individual i . Let `1, . . . , `m be the
polynomials in Lemma 3.4 corresponding to the degree of gi . After normalizing
we may assume that some coefficient of gi is equal to 1. Thus h(a) ≤ h(gi ) for
every coefficient a of gi , where h(a) for a ∈ L× is defined by

h(a)=
∑
v

max(log |a|v, 0).

Since gi is absolutely irreducible, ` j does not vanish at the coefficient vector of gi

for some 1≤ j ≤m; call this nonvanishing value A ∈ L \ {0}. Since all coefficients
of gi have heights bounded by h(gi ), we have h(A)= O(h(gi )+1)= O(h(g)+1).
Therefore, there exists a positive integer E ≤ C exp(Ch(g)) such that A (mod P)

is nonzero whenever P - E . For these P, the absolute irreducibility of gi (mod P)

follows from another application of Lemma 3.4. �

Remark 3.6. The qualitative version of this statement is a special case of a general
result in algebraic geometry: if R is a domain with fraction field F and S is a
domain finitely generated over R such that the F-algebra SF = F⊗R S is absolutely
irreducible over F , then there is a nonempty open subset U ⊂ Spec(R) such that
the fiber algebra Su = k(u)⊗R S over k(u), the residue field at u, is absolutely
irreducible.
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Let E be the positive integer from Lemma 3.5. After enlarging E if necessary (but
still with E ≤ C exp(Ch(g))), we may assume that g1 (mod P), . . . , gr (mod P)

are pairwise inequivalent whenever P - E .
Let p - E be a prime in OK and P be a prime in OL lying above p. The decompo-

sition group GP = Gal(κP/κp) acts on the factors {g1 (mod P), . . . , gr (mod P)}

so that ξ(gi (mod P)) is equivalent to g j (mod P) for any ξ ∈ GP. Comparing
this with the G-action on {g1, . . . , gr } described at the beginning of this section,
we see that they are compatible via the natural inclusion GP ↪→ G. In particular,
both GP and G can be viewed as subgroups of the symmetric group on r elements.

For any conjugacy class [ξ ] ⊂ G, let s([ξ ]) be the number of fixed points of any
element in [ξ ].

Lemma 3.7. Let the notation be as above. If p - E and p is unramified in L ,
then mp(g)= s([σp])+ O(N (p)−1/2), where [σp] is the Frobenius conjugacy class
associated to p.

Proof. Let h ∈ {g1, . . . , gr }. Note that σP fixes (h) if and only if σP fixes (hP), and
this happens if and only if (hP) is defined over κp, by Lemma 3.1. Hence s([σp]) is
exactly the number of nonequivalent absolutely irreducible factors of gp in κp[X ].

Now let h1, . . . , hs, hs+1, . . . , ht be the nonequivalent irreducible factors of gp
in κp[X ], where h1, . . . , hs are absolutely irreducible, with s = s([σp]). Let V (hi )

be the solution set {X ∈ κn
p : hi (X)= 0}. Then

mp(g)= N (p)−(n−1)
( t∑

i=1

|V (hi )| + O
(∑

i< j

|V (hi )∩ V (h j )|

))
. (3-1)

For i < j , since hi and h j are nonequivalent, V (hi )∩V (h j ) has dimension at most
n− 2. Thus by the Lang–Weil bound [1954] we have

|V (hi )∩ V (h j )| � N (p)n−2.

(In fact the weaker Schwarz–Zippel estimate is enough here). On the other hand,
for 1≤ i ≤ s, the Lang–Weil bound gives

|V (hi )| = N (p)n−1(1+ O(N (p)−1/2))

since hi is absolutely irreducible, and for s < i ≤ t we have

|V (hi )| = |V (hi )∩ V (h j )| � N (p)n−2

for some s < j ≤ t , with h j a Galois conjugate of hi . Combining these estimates
together in (3-1) we obtain

mp(g)= s+ O(N (p)−1/2),

as desired. �
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We are now ready to evaluate the quantity

M f (Q)=
∑

N (p)≤Q

mp(g) log N (p).

By Lemma 3.7, we have

M f (Q)=
∑

N (p)≤Q
p unramified in L

s([σp]) log N (p)+ O(Q1/2 log Q+ log E + log1L).

Since E ≤ C exp(Ch(g)), we have log E = O(h(g)+ 1). Hence

M f (Q)=
∑

C

s(C)ψC(Q)+ O(Q1/2 log Q+ h(g)+ log1L),

where the sum is over all conjugacy classes C in G, and

ψC(Q)=
∑

N (p)≤Q
p unramified in L
[σp]

m
=C

log N (p).

By (a quantitative version of) the Chebotarev density theorem [Lagarias and Odlyzko
1977], for Q ≥ exp(C(log1L)

2) we have

ψC(Q)=
|C |
|G|

Q−
|C |
|G|

χ0(C)
Qβ0

β0
+ O

(
Q exp(−c(log Q)1/2)

)
,

where the second term occurs only if the Dedekind zeta function ζL has a Siegel
zero β0, and χ0 is the real character of a one-dimensional representation of G for
which the associated L-function has β0 as a zero. It follows that

M f (Q)= Q ·
1
|G|

∑
ξ∈G

s(ξ)−
Qβ0

β0
·

1
|G|

∑
ξ∈G

s(ξ)χ0(ξ)

+ O
(
Q exp(−c(log Q)1/2)+ h(g)+ log1L

)
.

By Burnside’s lemma and Lemma 3.2, we have

1
|G|

∑
ξ∈G

s(ξ)= s(g). (3-2)

The equality (2-3) follows by setting

t (g)=
1
|G|

∑
ξ∈G

s(ξ)χ0(ξ). (3-3)
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By a change of summation, we can write

t (g)=
1
|G|

r∑
i=1

∑
ξ∈Gi

χ0(ξ),

where Gi ⊂G is the subgroup of elements fixing (gi ). Since χ0 is a one-dimensional
real character, the inner sum is either 0 or |Gi |, and in the latter case χ0(ξ) = 1
for all ξ ∈ Gi . Thus in the sum in (3-3) we may restrict to those ξ with χ0(ξ)= 1.
Comparing this with (3-2), we obtain t (g) ∈ [0, s(g)] as claimed.

Finally, the inequality (2-4) follows easily from (2-3) by dropping the Siegel
zero term and partial summation.

4. Inverse sieve conjecture implies improved larger sieve

In this section we state a precise version of the inverse sieve conjecture and then
prove Theorem 1.5. The implied constants here are always allowed to depend on
α, ε.

Conjecture 4.1 (inverse sieve conjecture). Let X ⊂[N ] be a subset and let ε, ε′> 0
be real. Assume that for each parameter Q ≥ N ε we have∑

p≤Q

|X (mod p)|
p

≤ (1− ε′)π(Q).

Then at least one of the following two situations happens:

(1) (very small size) |X | �ε,ε′ N ε .

(2) (algebraic structure) There exists a polynomial f (x) ∈ Q[x] of degree d ∈
[2,C] and height at most N C such that |X ∩ f ([N ])| ≥ C−1

|X |, where C =
C(ε, ε′) is a constant.

Here, we say that a polynomial f (x) ∈ Q[x] has height at most H if f (x) =
A−1 f ∗(x) for some positive integer A ≤ H and f ∗ ∈ Z[x] with all coefficients
bounded by H in absolute value. This is slightly different from the notion of
height used in the statement of Theorem 2.4, in that h( f ) is invariant under scalar
multiplication but the notion here is not. Note that if a polynomial f (x) ∈ Q[x]
has height at most H , then h( f )� log H .

Remark 4.2. We make a few remarks explaining why some quantitative aspects of
this conjecture are reasonable.

• The condition on X essentially says that X misses a positive proportion of
residue classes modulo primes p on average, as soon as p exceeds a small positive
power of N . With this assumption, we know from the large sieve that |X | � N 1/2

and from the larger sieve that |X | � Nα+O(ε) if the upper bound (1− ε′)π(Q) is
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replaced by απ(Q). Without the knowledge about X (mod p) for p ≤ N ε , one can
essentially add to X any N ε extra elements without violating the assumption, but
one should still expect to see algebraic structure apart from these extra elements.

• The conclusion |X ∩ f ([N ])| ≥ C−1
|X | is equivalent to the seemingly weaker

one |X ∩ f (Q)| ≥ C−1
|X |, after a suitable modification of the polynomial f which

does not increase its height too much. To see that the interval [N ] can be replaced
by Z, note that the set J = {n ∈ Z : 1 ≤ f (n) ≤ N } is the union of at most d
intervals and has size at most d N . Since X ∩ f (Z)= X ∩ f (J ), there is an interval
I ⊂ J with |X ∩ f (I )| ≥ d−1

|X ∩ f (Z)|, and we may assume that I ⊂ [N ] after
a translation. To see that f (Z) can be replaced by f (Q), note that if f (x) ∈ Z

for some x ∈ Q then the denominator of x must divide some positive integer B
depending on the coefficient of f . Then f (Q)∩Z⊂ f ∗(Z)∩Z, where f ∗ is defined
by f ∗(x)= f (x/B).

• The conclusion that f (Z) captures a positive proportion of X cannot be replaced
by the stronger one that f (Z) captures almost all of X . Indeed, it is possible for X
to be the union of f (Z) for several distinct polynomials f .

If |X (mod p)| ≤ αp for small α, repeated applications of Conjecture 4.1 allow
us to strengthen it by requiring the degree d to be fairly large.

Proposition 4.3 (inverse sieve conjecture in the larger sieve regime). Assume the
truth of Conjecture 4.1. Let X ⊂ [N ] be a subset. Let α ∈ (0, 1) and ε ∈ (0, α) be
real. Assume that |X (mod p)| ≤ (α+ o(1))p for each prime p. Then at least one
of the following two situations happens:

(1) (very small size) |X | �ε N ε .

(2) (algebraic structure) There exists a polynomial f (x) ∈ Q[x] of degree d ∈
[2,C] and height at most N C such that |X∩ f (Z)| ≥C−1

|X |, where C =C(ε)
is a constant. Moreover, we may ensure that τ(d)≥ (1− ε)α−1.

Proof. Suppose that |X | � N ε . We will apply Conjecture 4.1 iteratively to con-
struct a sequence of polynomials f1, f2, . . . , fk and a sequence of sets X0 =

X, X1, X2, . . . , Xk , with k = O(1), such that the following conditions hold:

(1) deg fi = di ∈ [2,C], and τ(d1d2 · · · dk)≥ (1− ε)α−1;

(2) the height of fi is at most N O(1) for each 1≤ i ≤ k;

(3) X i ⊂ [N ] and |X i | � |X i−1| for each 1≤ i ≤ k;

(4) fi (X i )⊂ X i−1 for each 1≤ i ≤ k.

Suppose first that these objects are constructed. Let f = f1 ◦ f2 ◦ · · · ◦ fk .
By property (1), the degree d of f is O(1) and satisfies τ(d) ≥ (1− ε)α−1. By
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property (2), the height of f is N O(1). By property (3), we have |Xk | � |X |. By
property (4), we have f (Xk)⊂ X ∩ f ([N ]). Hence

|X ∩ f ([N ])| ≥ | f (Xk)| � |Xk | � |X |,

as desired.
It thus remains to construct f1, . . . , fk and X1, . . . , Xk . Suppose that f j , X j

with j < i are already chosen for some i ≥ 1 satisfying the required properties
(2)–(4) and deg f j = d j ∈ [2,C]. We will construct fi and X i from these. Let
F = f1 ◦ · · · ◦ fi−1 if i > 1 and let F be the identity map if i = 1. Let D be the
degree of F . We may assume that τ(D) < (1− ε)α−1, since we may stop the
iteration otherwise. By property (4), we have F(X i−1)⊂ X .

Let F = A−1 F∗ with A ≤ N C a positive integer and F∗ ∈ Z[x] a polynomial
whose coefficients are all bounded by N C . Let G ∈ Z[x, y] be the polynomial
defined by G(x, y) = F∗(x)− F∗(y). Let p - A be a prime. For each r ∈ Z/pZ,
let νp(r) be the number of x ∈ Z/pZ with F(x)≡ r (mod p). Then

|X i−1 (mod p)| ≤
∑

r∈F(X i−1) (mod p)

νp(r)

≤ |X (mod p)|1/2
(∑

r

νp(r)2
)1/2

≤ (α+ o(1))1/2m p(G)1/2 p,

by Cauchy–Schwarz, the assumption that |X (mod p)| ≤ (α + o(1))p, and the
definition of m p(G) in Definition 2.2. For any Q ≥ N ε , we then have∑

p≤Q

|X i−1 (mod p)|
p

≤ (α+ o(1))1/2
∑
p≤Q

m p(G)1/2+ O(log A)

≤ (α+ o(1))1/2π(Q)1/2
(∑

p≤Q

m p(G)
)1/2

+ O(log N ).

Now apply Theorem 2.4 (and recall (2-2)) to obtain∑
p≤Q

|X i−1 (mod p)|
p

≤ [(α+ o(1))τ (D)]1/2π(Q)+ O
(
Q exp(−c(log Q)1/2)+ Q1/2 log N

)
.

Since τ(D) < (1 − ε)α−1, the first term above is at most (1 − ε/2)π(Q), and
thus X i−1 satisfies the hypotheses in Conjecture 4.1, with ε replaced by ε/3 and
N sufficiently large. Since |X i−1| � N ε , we must be in the algebraic case. Let
fi ∈Q[x] be a polynomial of degree di ∈ [2,C] and height at most N C such that
|X i−1 ∩ fi ([N ])| � |X i−1|, and let X i ⊂ [N ] be chosen so that fi (X i ) ⊂ X i−1
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and |X i | � |X i−1|. This completes the inductive construction. Finally, since the
quantity τ(d1d2 · · · di ) strictly increases with i , the process terminates after O(1)
iterations. �

Proof of Theorem 1.5. Apply Proposition 4.3 to conclude that either |X | is very
small and we are done, or else there exists a polynomial f (x) ∈ Q[x] of degree
d ∈ [2,C] and height at most N C such that |X ∩ f ([N ])| ≥ C−1

|X |. Moreover, we
have τ(d)≥ (1− ε)α−1. Hence

|X | � |X ∩ f ([N ])| ≤ |[N ] ∩ f ([N ])| � N 1/d ,

where the last inequality follows from a result of Walsh [2015], which removes
the ε term from the exponent appearing in [Bombieri and Pila 1989; Heath-Brown
2002]. �

5. Polynomials with small value sets modulo primes

In this section we prove Theorem 1.7. First we state a result connecting the quantity
αp( f ) to a Galois group. For a polynomial f (x)∈ Fp[x] of degree d , denote by R f

the set of roots in Fp(t) of the polynomial f (x)− t . Define

G f = Gal(Fp(R f )/Fp(t)), G∗f = Gal(Fp(R f )/Fp(t)).

In other words, G f and G∗f are the Galois groups of the splitting field of f (x)− t
over Fp(t) and Fp(t), respectively. It is easy to see that G∗f is a normal subgroup
of G f with G f /G∗f cyclic. In fact, G f /G∗f is isomorphic to Gal(Fp(R f )∩Fp/Fp).
For any subset 4 ⊂ G f , we use α(4) to denote the proportion of elements in 4
with at least one fixed point under the natural action on R f .

Lemma 5.1 [Cohen 1970]. Let f (x) ∈ Fp[x] be a polynomial of degree d ≥ 1. Let
σG∗f be the coset which is the Frobenius generator of the cyclic quotient G f /G∗f ,
considered under its isomorphism with Gal(Fp(R f )∩ Fp/Fp). Then

αp( f )= α(σG∗f )+ Od(p−1/2).

In particular, if G f = G∗f then

αp( f )= α(G f )+ Od(p−1/2).

Remark 5.2. In [Cohen 1970] this is deduced from a function field version of the
Chebotarev density theorem. The Galois groups G f and G∗f above can be interpreted
in terms of finite étale Galois coverings of P1(Fp). In this way Lemma 5.1 becomes
a 0-dimensional special case of Deligne’s equidistribution theorem. See [Kowalski
2010] for an excellent survey on this topic. This function field version of the
Chebotarev density theorem and related equidistribution results play an important
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role in proving function field analogues of certain classical analytic number theory
conjectures [Bank et al. 2015; Andrade et al. 2015; Entin 2014].

Proof of Theorem 1.7. Recall that the sequence of polynomials { fn} is defined by

f1(x)= x2, fn+1(x)= ( fn(x)+ 1)2.

Write Gn = G fn , G∗n = G∗fn
, and Rn = R fn . Since any root α ∈ Rn satisfies either

fn−1(α)=−1+
√

t or fn−1(α)=−1−
√

t , we may decompose Rn as the union
Rn = R+n ∪ R−n , with

R±n = {α ∈ Rn : fn−1(α)=−1±
√

t}.

Note that both Gal(Fp(R+n )/Fp(
√

t) and Gal(Fp(R−n )/Fp(
√

t)) are isomorphic to
Gn−1, and similarly both Gal(Fp(R+n )/Fp(

√
t) and Gal(Fp(R−n )/Fp(

√
t)) are iso-

morphic to G∗n−1.
Let Hn and H∗n be the normal subgroup of Gn and G∗n that fixes

√
t , so that

[Gn : Hn] = [G∗n : H∗n ] = 2. Since Hn preserves both R+n and R−n , we get an
embedding ιn : Hn ↪→ Gn−1×Gn−1 by setting the first and second components of
ιn(ξ) to be the images of ξ under the two quotient maps Hn→Gal(Fp(R+n )/Fp(

√
t))

and Hn→Gal(Fp(R−n )/Fp(
√

t)), respectively. Similarly, we also get an embedding
ι∗n : H

∗
n ↪→ G∗n−1×G∗n−1.

We show, by induction on n, that when p > 2 fn−1(0)+ 2, the embeddings ιn
and ι∗n are in fact isomorphisms, and moreover Gn = G∗n for each n. The base case
is clear. Now assume that Gn−1 = G∗n−1. To see that ι∗n is surjective, by Lemma 15
in [Fried 1970] it suffices to verify that for each λ ∈ Fp, at most one of the two
values −1+

√
λ and −1−

√
λ is a branch point of fn−1. By definition, the set of

branch points of fn−1 is

{ fn−1(x) : x ∈ Fp, f ′n−1(x)= 0}.

This is easily computed to be the set

{ f1(0), f2(0), . . . , fn−1(0)} = {0, 1, 4, 25, . . . }.

When p > 2 fn−1(0)+ 2, it is indeed the case that at most one of −1+
√
λ and

−1−
√
λ can lie in this set for any λ. This shows that

H∗n ∼= G∗n−1×G∗n−1
∼= Gn−1×Gn−1.

Moreover, since H∗n ⊂ Hn ⊂ Gn−1×Gn−1, we conclude that H∗n = Hn , and thus
G∗n = Gn as well. This completes the induction step.

With the structure of Gn in hand, it is now a simple matter to write down the
recursive relation

αp( fn)=
1
2

[
1− (1−αp( fn−1))

2]
= αp( fn−1)−

1
2αp( fn−1)

2,
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provided that p > 2 fn−1(0)+ 2. In fact, if ξ ∈ Gn has a fixed point, then ξ must
fix
√

t and thus lie in Hn , and moreover at least one of the two components of ιn(ξ)
has a fixed point. Finally, the bound an ≤ 2n−1 follows from a standard induction
argument. �

We mentioned in Remark 2.5 the reasoning behind making fn highly decom-
posable. To end this section, we show that decomposability is quite essential in
order for αp to be small. The proof uses Theorem 2.4 together with results in [Fried
1970] (similar arguments are also used in [Guralnick and Wan 1997]). We say that
a polynomial f is indecomposable if it cannot be written as a composition of two
polynomials of degree at least 2.

Proposition 5.3. Let f (x) ∈ Z[x] be an indecomposable polynomial of degree
d ≥ 1. Then the average value of αp( f )−1 as p varies is at most 2. Consequently,
α( f )≥ 1

2 .

Proof. Let G be the Galois group of the splitting field of f (x)− t over Q(t), viewed
as a subgroup of the symmetric group Sd on d letters via its action on the d roots
of f (x)− t . Since f is indecomposable, G is primitive [Fried 1970, Lemma 2].
Moreover, G contains a d-cycle [ibid., Lemma 3]. Hence either d is prime or G
is doubly transitive [ibid., Lemma 7]. In either case, the conclusion follows from
Theorem 2.4, since τ(d)= 2 when d is prime and ( f (x)− f (y))/(x− y)∈Q[x, y]
is irreducible when G is doubly transitive [ibid., Lemma 14]. �

6. Further remarks

6A. More on the sharpness of Gallagher’s larger sieve. Gallagher’s larger sieve
in its general form as stated in Theorem 1.1 has the optimal bound. Indeed, if
we take A ⊂ [N ] to be any subset with cardinality Q and take P be the set of all
primes between Q and N , the general form of the larger sieve gives the sharp bound
|A| � Q, because the numerator is about N and the denominator is about N/Q.
This shows that any potential improvement to Corollary 1.2 must incorporate the
ill-distribution modulo many small primes.

Under the assumption of Corollary 1.2, one may go over the argument in the
proof of the larger sieve to find out what happens if |A| is close to Nα. Indeed, in
the typical proof of Gallagher’s larger sieve, one uses the upper and lower bounds

|X |2

α
log Q ≤

∑
x,x ′∈X

∑
p|x−x ′
p≤Q

log p ≤ |X |2 log N + |X |Q, (6-1)

where Q is about Nα.
If the upper bound is (almost) sharp, then almost all of the nonzero differences

x − x ′ should be Q-smooth, meaning that they do not have prime divisors larger
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than Q. For a random integer n, it is reasonable to expect that∑
p|n

p≤Q

log p ≈
∑
p≤Q

log p
p
∼ log Q. (6-2)

If this indeed holds for almost all differences x − x ′, then one can take Q to be any
small power of N and deduce from (6-1) that |X | � N ε .

Now consider the situation when X is the set of d-th powers up to N . Because
of the factorization

ad
− bd
=

∏
`|d

8`(a, b),

where 8` is the cyclotomic polynomial of degree φ(`), we cannot expect (6-2)
to be true for n = ad

− bd . However, it is still reasonable to expect that each
factor 8`(a, b) satisfies (6-2). If so, then we obtain an upper bound in (6-1) with
log N there replaced by τ(d) log Q, which in turn implies that τ(d)≥ α−1. This is
consistent with the conclusion of Theorem 1.5.

On the other hand, making this heuristic rigorous could be extremely hard. For
example, it is an open problem to obtain a bound better than |X | � N 1/2 for
X ⊂ [N ] with all nonzero differences x − x ′ (x, x ′ ∈ X ) N κ -smooth, where κ > 0
is sufficiently small (see [Elsholtz and Harper 2015]).

There are versions of Gallagher’s larger sieve over arbitrary number fields [Ellen-
berg et al. 2009; Zywina 2010]. One can ask similar questions about their sharpness
in this general setting, and use Theorem 2.4 to formulate an improved larger sieve
conjecture. We will not do so here since the case over Z is already quite interesting.

6B. Computing α( f ) via Galois groups. The main result of this paper computes
the average of m p( f ) as p varies, as a consequence of the Chebotarev density
theorem. It is natural to ask if one can compute α( f ), the average of αp( f ) as p
varies, directly, especially since we do have such a formula for each individual
αp( f ) as in Lemma 5.1.

Proposition 6.1. Let K be a number field and f (x)∈OK [x] be a monic polynomial
of degree d. Let G = Gal(K (R)/K (t)), where R is the set of roots of f (x)− t .
Let α(G) be the proportion of elements in G with at least one fixed point under the
natural action on R. Then

lim
Q→∞

1
π(Q)

∑
N (p)≤Q

αp( f )= α(G).

In other words, α( f )= α(G).

Remark 6.2. Unfortunately, we are unable to use this interpretation to obtain good
lower bounds on α( f ), but see [Guralnick and Wan 1997] for an example where
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large values of αp( f ) are studied via Galois groups. On the other hand, we feel
that any possible improvement to the bound α( f )≥ τ(d)−1 is likely to come from
studying the Galois group G.

Proof. Write E = K (R). Let G∗ = Gal(K (R)/K (t)). Let L = E ∩ K be the
algebraic closure of K in E , so that E = L(R) and G∗ = Gal(E/L(t)). By the
primitive element theorem, there exists θ ∈ E such that E = L(t, θ). Suppose that θ
satisfies the relation

hm(t)θm
+ · · ·+ h1(t)θ + h0(t)= 0,

where m = [E : L(t)] and hm(t), . . . , h1(t), h0(t) are relatively prime polynomials
over L . Let h ∈ L[t, y] be the two-variable polynomial defined by

h(t, y)= hm(t)ym
+ · · ·+ h1(t)y+ h0(t).

Clearly h is a minimal polynomial of θ , and thus h is irreducible. By the definition
of L , the polynomial h is also absolutely irreducible.

Let p ⊂ OK be a prime in K and P ⊂ OL be a prime in L lying above p. By
Lemma 3.5, hP ∈ κP[t, y] remains absolutely irreducible for all but finitely many P.
Let θP ∈ κP(t) be an element satisfying hP(t, θP)= 0, so that EP = κP(t, θP) is a
degree-m field extension of κP(t) with EP ∩ κp = κP. Since E/L(t) is Galois, all
roots of h(t, y) in L(t) lie in E . This implies that all roots of hP(t, y) in κP(t) lie
in EP for all but finitely many P, and thus EP/κP(t) is also Galois. Note that there
is a natural isomorphism G∗ = Gal(E/L(t))∼= Gal(EP/κP(t)), since an element
in either Galois group is determined by its image of θ or θP.

Now we look at the polynomial f (x)− t . Since it factors into linear factors
over E , its reduction fp(x)− t factors into linear factors over EP for all but finitely
many P. By an abuse of notation, we will continue to write R for the set of roots
of fp(x)− t in κp(t). Therefore the splitting fields κP(R) and κp(R) are contained
in EP. On the other hand, since θ ∈ K (R) and L ⊂ K (R), we have θP ∈ κp(R)
and κP ⊂ κp(R) for all but finitely many P. This shows that κp(R)= EP.

Let σPG∗ be the coset which is the inverse image of the Frobenius automor-
phism σP under the quotient map

Gal(EP/κp(t))� Gal(κP(t)/κp(t))= Gal(κP/κp),

which has kernel Gal(EP/κP(t))= G∗. By Lemma 5.1, we have

αp( f )= α(σPG∗)+ Od(N (p)−1/2).

Note that the quantity α(σPG∗) does not depend on the choice of P. Via the
inclusion Gal(κP/κp) ↪→ Gal(L/K ), we may view σP as an element in Gal(L/K )
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and σPG∗ as a coset in G. By the Chebotarev density theorem, the cosets σPG∗

become equidistributed in G as p varies. Therefore α( f )= α(G) as desired. �

For a generic polynomial of degree d, the Galois group G in Proposition 6.1 is
the full symmetric group Sd . Indeed, using the large sieve inequality, Gallagher
[1973] obtained a precise bound on the number of exceptional polynomials (with
coefficients bounded by a parameter) whose Galois group is not Sd . This bound
has since been improved by Dietmann [2013]. By Proposition 6.1, this implies that

α( f )= α(Sd)= 1− 1
2
+

1
6
−

1
24
+ · · ·+

(−1)d−1

d!

for a typical f of degree d. Moreover, this quantity tends to 1− e−1 as d→∞.
For d ≤ 4, we have the following sharp lower bounds.

Proposition 6.3 (polynomials of small degree). For a positive integer d, let αd be
the smallest possible value of α( f ), where f ∈Q[x] is a polynomial of degree d.
Then α2 =

1
2 , α3 =

2
3 , and α4 =

3
8 .

Proof. For d = 2 this is obvious. Suppose that d ∈ {3, 4}. Let G be the Galois group
as in Proposition 6.1. We claim that G 6= Z/dZ, the cyclic group of order d . In fact,
for t ∈ Z sufficiently large, the polynomial f (x)= t has at least one real root and
at least one nonreal root. Let α ∈ R be a real root of f (x)= t . Then the splitting
field of f (x)− t contains properly the subfield Q(α), and thus has degree larger
than d over Q. This shows that the Galois group of f (x)− t is not Z/dZ for all t
sufficiently large. The fact that G 6=Z/dZ then follows from Hilbert’s irreducibility
theorem. Now that G ⊂ Sd is transitive and G 6= Z/dZ, the only possibilities are
G = S3 when d = 3 and G ∈ {S4, A4, D4} when d = 4. The conclusion follows by
computing α(G) for these choices of G. �

Not surprisingly, the nature of αd depends not only on the size of d, but also
the arithmetic of d (see Proposition 5.3). In general, given a transitive subgroup
G ⊂ Sd , we do not know how to tell whether G can be realized as a Galois group as
in Proposition 6.1. This is reminiscent of the inverse Galois problem over K (t), but
here we require the polynomial to take the shape f (x)− t for some f (x) ∈ K [x].
We refer the interested reader to the book [Serre 2008] and references therein for
background and known results on the classical inverse Galois problem.
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