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For an elliptic curve E/K without potential complex multiplication we bound the
index of the image of Gal(K/K ) in GL2(Ẑ), the representation being given by
the action on the Tate modules of E at the various primes. The bound is explicit
and only depends on [K : Q] and on the stable Faltings height of E . We also
prove a result relating the structure of closed subgroups of GL2(Z`) to certain Lie
algebras naturally attached to them.

1. Introduction

We are interested in studying Galois representations attached (via `-adic Tate
modules) to elliptic curves E defined over an arbitrary number field K and without
complex multiplication, i.e., such that EndK (E)=Z. Let us recall briefly the setting
and fix some notation: the action of Gal(K/K ) on the torsion points of EK gives
rise to a family of representations (indexed by the rational primes `)

ρ` : Gal(K/K )→ GL(T`(E)),

where T`(E) denotes the `-adic Tate module of E . As T`(E) is a free module of
rank 2 over Z`, it is convenient to fix bases and regard these representations as
morphisms

ρ` : Gal(K/K )→ GL2(Z`),

and it is the image G` of these maps that we aim to study. It is also natural to
encode all these representations in a single “adelic” map

ρ∞ : Gal(K/K )→ GL2(Ẑ),

whose components are the ρ` and whose image we denote G∞. By a theorem
of Serre [1972, §4, Théorème 3], G∞ is open in GL2(Ẑ), and the purpose of the
present study is to show that the adelic index [GL2(Ẑ) : G∞] is in fact bounded by
an explicit function depending only on the stable Faltings height h(E) of E and
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on the degree of K over Q, generalizing and making completely explicit a result
proved by Zywina [2011] in the special case K =Q. More precisely we show:

Corollary 9.3. Let E/K be an elliptic curve that does not admit complex multipli-
cation. The inequality

[GL2(Ẑ) : ρ∞(Gal(K/K ))]< γ1 · [K :Q]γ2 ·max{1, h(E), log[K :Q]}2γ2

holds, where γ1 = exp(1021483) and γ2 = 2.4 · 1010.

Remark 1.1. We actually prove a more precise result (Theorem 9.1), from which
the present bound follows through elementary estimates. The large constants
appearing in this theorem have a very strong dependence on those of Theorem 2.1;
unpublished results that Éric Gaudron and Gaël Rémond have been kind enough to
share with the author show that the statement can be improved to

[GL2(Ẑ) : ρ∞(Gal(K/K ))]< γ3 ·
(
[K :Q] ·max{1, h(E), log[K :Q]}

)γ4

with the much better constants γ3= exp(1.9 ·1010) and γ4= 12395; see Remark 9.4.

As an easy corollary we also get:

Corollary 9.5. Let E/K be an elliptic curve that does not admit complex multipli-
cation. There exists a constant γ (E/K ) such that the inequality

[K (x) : K ] ≥ γ (E/K )N (x)2

holds for every x ∈ Etors(K ). Here, N (x) denotes the order of x. We can take
γ (E/K )= (ζ(2) · [GL2

(
Ẑ
)
: ρ∞Gal(K/K )])−1, which can be explicitly bounded

thanks to the main theorem.

Remark 1.2. This corollary (with the same proof, but with a noneffective γ (E/K ))
follows directly from the aforementioned theorem of Serre [1972, §4, Théorème 3].
The exponent 2 for N (x) is best possible, as is easily seen from the proof by taking
N = `, a prime large enough that G` = GL2(Z`).

It should also be pointed out that for a general (possibly CM) elliptic curve,
Masser [1989, p. 262]) proves an inequality of the form

[K (x) : K ] ≥ γ ′(K )h(E)−3/2 N (x)
log N (x)

,

where γ ′(K ) is an effectively computable (but nonexplicit) constant that only
depends on [K :Q].

We briefly sketch the proof strategy, highlighting differences and similarities
between our approach and that of [Zywina 2011]. By a technique due to Masser
and Wüstholz (cf. [Masser and Wüstholz 1993c; 1993a] and [Masser 1998]), and
which is by now standard, it is possible to give a bound on the largest prime `
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for which the representation modulo ` is not surjective; an argument of Serre then
shows that (for `≥ 5) this implies full `-adic surjectivity. This eliminates all the
primes larger than a computable bound (actually, of all those that do not divide a
quantity that can be bounded explicitly in terms of E). We then have to deal with
the case of nonsurjective reduction, that is, with a finite number of “small” primes.

In [Zywina 2011] these small primes are treated using two different techniques.
All but a finite number of them are dealt with by studying a family of Lie algebras
attached to G`; this analysis is greatly simplified by the fact that the reduction
modulo ` of G` is not contained in a Borel subgroup of GL2(F`), a result depending
on the hard theorem of Mazur on cyclic `-isogenies. The remaining primes belong
to an explicit list (again given by Mazur’s results), and are treated by an application
of Faltings’ theorem to certain modular curves. This approach, however, has two
important drawbacks. On the one hand, effective results on cyclic isogenies do
not seem — at present — to be available for arbitrary number fields, so the use of
Mazur’s theorem is a severe obstacle in generalizing this technique to number fields
larger than Q. On the other hand, and perhaps more importantly, the use of Faltings’
theorem is a major hindrance to effectivity, since making the result explicit for a
given number field K would require understanding the K -points of a very large
number of modular curves, a task that currently seems to be far beyond our reach.

While we do not introduce any new ideas in the treatment of the large primes,
relying by and large on the methods of Masser–Wüstholz, we do put forward a
different approach for the small primes that allows us to bypass both the difficulties
mentioned above. With respect to [Zywina 2011], the price to pay to avoid the use
of Mazur’s theorem is a more involved analysis of the Lie algebras associated with
subgroups of GL2(Z`), which is done here without using a congruence filtration,
but dealing instead with all the orders at the same time; this approach seems to
be more natural, and proves more suitable for generalization to arbitrary number
fields. We also avoid the use of Faltings’ theorem entirely. This too comes at a
cost, namely replacing uniform bounds with functions of the Faltings height of the
elliptic curve, but it has the advantage of giving a completely explicit result, which
does not depend on the (potentially very complicated) arithmetic of the K -rational
points on the modular curves.

The organization of the paper reflects the steps alluded to above: in Section 2 we
recall an explicit form of the isogeny theorem (as proved by Gaudron and Rémond
[2014] building on the work of Masser and Wüstholz) and an idea of Masser that
will help improve many of the subsequent estimates by replacing an inequality with
a divisibility condition. In Sections 3 through 6 we prove the necessary results
on the relation between Lie algebras and closed subgroups of GL2(Z`); the main
technical tool we use to show that the Galois image is large is the following theorem,
which is proved in Sections 4 (for odd `) and 5 (for `= 2):
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Theorem 1.3. Let ` be an odd prime (resp. `= 2). For every closed subgroup G of
GL2(Z`) (resp. every closed subgroup whose reduction modulo 2 is trivial if `= 2)
define L(G) to be the Z`-span of {g− tr(g)

2 · Id | g ∈ G}.
Let H be a closed subgroup of GL2(Z`). There is a closed subgroup H1 of H , of

index at most 24 (resp. with trivial reduction modulo 2 and of index at most 192
for ` = 2), such that the following implication holds for all positive integers s: if
L(H1) contains `ssl2(Z`), then H1 itself contains

B`(4s)=
{
g ∈ SL2(Z`) | g ≡ Id (mod `4s)

}
(resp. B2(6s) for `= 2).

The methods of these sections are then applied in Section 7 to get bounds valid
for every prime ` (cf. Theorem 7.5, which might have some independent interest),
while Section 8 deals with the large primes through the aforementioned ideas of
Masser and Wüstholz. Finally, in Section 9 we put it all together to get the adelic
estimate.

2. Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is a very explicit
isogeny-type theorem taken from [Gaudron and Rémond 2014], which builds on
the seminal work of Masser and Wüstholz [1993b; 1993a]. To state it we will need
some notation: we let α(g) = 210g3 and define, for any abelian variety A/K of
dimension g,

b([K :Q], g, h(A))=
(
(14g)64g2

[K :Q]max(h(A), log[K :Q], 1)2
)α(g)

.

Theorem 2.1 [Gaudron and Rémond 2014, Théorème 1.4; cf. also the section “Cas
elliptique”]. Let K be a number field and let A, A∗ be two abelian K -varieties of
dimension g. If A, A∗ are isogenous over K , then there exists a K -isogeny A∗→ A
whose degree is bounded by b([K :Q], dim(A), h(A)).

If E is an elliptic curve without complex multiplication over K , then the same
holds with b([K :Q], dim(A), h(A)) replaced by

1013
[K :Q]2 max

(
h(E), log[K :Q], 1

)2
.

Remark 2.2. As the notation suggests, the three arguments of b will always be the
degree of a number field K , the dimension g of an abelian variety A/K and its
stable Faltings height h(A).

Remark 2.3. Unpublished results of Gaudron and Rémond show that if A is the N -
th power of an elliptic curve E/K and if A∗ is K -isogenous to A, then a K -isogeny
A∗→ A exists of degree at most 1013N

[K :Q]2N max
(
h(E), log[K :Q], 1

)2N .
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The following theorem follows easily from the arguments in Masser’s paper
[1998]; however, since it is never stated explicitly in the form we need, in the
interest of completeness we include a short proof.

Theorem 2.4. (Masser) Suppose that A/K is an abelian variety that is isomorphic
over K to a product Ae1

1 × . . .× Aen
n , where A1, . . . , An are simple over K , mutually

nonisogenous over K , and have trivial endomorphism ring over K . Let b ∈ R be
a constant with the following property: for every K -abelian variety A∗ isogenous
to A over K , there exists an isogeny ψ : A∗ → A with degψ ≤ b. Then there
exists an integer b0 ≤ b with the following property: for every K -abelian variety A∗

isogenous to A over K , there exists an isogeny ψ0 : A∗→ A with degψ0 | b0.

Proof. All the references in this proof are to [Masser 1998]. We briefly recall the
notation of this paper first. Let m be a positive integer and G be a Gal(K/K )-
submodule of A[m]. For every K -endomorphism τ of A we denote by kerm τ the
intersection ker τ ∩ A[m]; we also define

fm(G) :=min
τ
[kerm τ : G],

where the minimum is taken over all τ in EndK (A)with G⊆kerm τ . By Lemma 3.3,
we have fm(G) ≤ b for every positive integer m and every Galois submodule G
of A[m]. We set b0 :=maxm,G fm(G), where the maximum is taken over all positive
integers m and all Galois submodules G of A[m]: clearly we have b0 ≤ b. Now
if A∗ is a K -abelian variety that is K -isogenous to A over K , then by Lemma 4.1
there exists a K -isogeny ψ : A∗→ A such that degψ | b0, and this establishes the
theorem. Notice that in order to apply Lemma 4.1, we need i(EndK (A)) = 1 (in
the notation of [Masser 1998]), which can be deduced as on page 185, proof of
Theorem 2. �

We will denote by b0(K , A) the minimal b0 with the property of the theorem; in
particular b0(K , A) ≤ b([K : Q], h(A), dim(A)). Consider now b0(K ′, A) as K ′

ranges over the finite extensions of K of degree at most d . On one hand, b0(K , A)
divides b0(K ′, A); on the other hand b0(K ′, A)≤ b(d[K :Q], h(A), dim(A)) stays
bounded, and therefore the number

b0(K , A; d)= lcm
[K ′:K ]≤d

b0(K ′, A)

is finite. The function b0(K , A; d) is studied in [Masser 1998, Theorem D], mostly
through the following elementary lemma:

Lemma 2.5 [Masser 1998, Lemma 7.1]. Let X, Y ≥ 1 be real numbers and B be a
family of natural numbers. Suppose that for every positive integer t and every subset
A of B with |A| = t we have lcm(A) ≤ XY t . The least common multiple of the
elements of B is then finite, and does not exceed 4eY X1+log(C), where e = exp(1).
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By adapting Masser’s argument to the function b(d[K : Q], h(A), dim(A)) at
our disposal, it is immediate to prove:

Proposition 2.6. If A of dimension g ≥ 1 satisfies the hypotheses of Theorem 2.4,
then

b0(K ,A;d)≤4exp(1)·(d(1+logd)2)α(g)b([K :Q],dim(A),h(A))1+α(g)(log(d)+2log(1+logd)).

If E is an elliptic curve without complex multiplication over K , then the number
b0(K , E; d) is bounded by

4exp(1)·d2(1+log d)2(1013
[K :Q]2 max(h(E), log[K :Q], 1)2

)1+2 log d+2 log(1+log d)
.

Proof. We can clearly assume d≥2. We apply the lemma to B={b0(K ′, A)}[K ′:K ]≤d .
Choose t elements of B, corresponding to extensions K1, . . . , Kt of K , and set
L = K1 · · · Kt . We claim that

max{log(d t
[K :Q]), 1} ≤ (1+ log(d))t max{1, log[K :Q]}.

Indeed the right hand side is clearly at least 1, so it suffices to show the inequality

t log(d)+ log[K :Q] ≤ (1+ log(d))t max{1, log[K :Q]}.

As log(d) > 0, we have (1+ log(d))t ≥ 1+ t log(d) by Bernoulli’s inequality, and
the claim follows. We thus see that lcm(b0(K1, A), . . . , b0(Kt , A)) divides

b0(L , A)≤ b([L :Q], dim(A), h(A))

≤ b(d t
[K :Q], dim(A), h(A))

≤
(
(d(1+ log d)2)α(g)

)t b([K :Q], dim(A), h(A)),

so we can apply Lemma 2.5 with

X = b([K :Q], dim(A), h(A)), Y = (d(1+ log d)2)α(g)

to get the desired conclusion. The second statement is proved in the same way
using the corresponding improved bound for elliptic curves. �

Remark 2.7. We are only going to use the function b0(K , A; d) for bounded
values of d (in fact, d ≤ 24), so the essential feature of the previous proposition
is to show that, under this constraint, b0(K , A; d) is bounded by a polynomial in
b([K :Q], dim(A), h(A)).

Also notice that, if A = E2 is the square of an elliptic curve E/K , then using
the improved version of Theorem 2.1 mentioned in Remark 2.3 we get

b0(K , E2
; d)≤ 4exp(1)·d4(1+log d)4

·

·
(
1026
[K :Q]4 max(h(E), log[K :Q], 1)4

)1+4 log d+4 log(1+log d)
.
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We record all these facts together as a theorem for later use:

Theorem 2.8. Suppose A/K is an abelian variety, isomorphic over K to a product
of simple abelian varieties, each having trivial endomorphism ring over K . There
exists a positive integer b0(K , A), not exceeding b([K : Q], dim(A), h(A)), with
the following property: if A∗ is isogenous to A over K , then there exists an isogeny
A∗→ A, defined over K , whose degree divides b0(K , A). Furthermore, for every
fixed d the function

b0(K , A; d)= lcm[K ′:K ]≤d b0(K ′, A)

exists and is bounded by a polynomial in b([K :Q], dim(A), h(A)).

3. Group theory for GL2(Z`)

Let ` be any rational prime. The subject of the following four sections is the study of
certain Lie algebras associated with closed subgroups of GL2(Z`); the construction
we present is inspired by Pink’s paper [1993], but we will have to extend his results
in various directions: in particular, our statements apply to GL2(Z`) (and not just to
SL2(Z`)), to any `, including 2, and to arbitrary (not necessarily pro-`) subgroups.
The present section contains a few necessary, although elementary, preliminaries
on congruence subgroups, and introduces the relevant objects and notations.

Congruence subgroups of SL2(Z`). We aim to study the structure of the congru-
ence subgroups of SL2(Z`), which we denote

B`(n)=
{

x ∈ SL2(Z`) | x ≡ Id (mod `n)
}
.

Notation. We let v` be the standard discrete valuation of Z` and set v = v`(2)
(namely v= 0 if ` 6= 2 and v= 1 otherwise). We also let

(1/2
k

)
denote the generalized

binomial coefficient
(1/2

k

)
=

1
k!

∏k−1
i=0
( 1

2 − i
)

and define
√

1+ t to be the formal
power series

∑
k≥0

(1/2
k

)
tk .

The first piece of information we need is the following description of a generating
set for B`(n):

Lemma 3.1. For n ≥ 1 the group B`(n) is generated by the elements

La =

(
1 0
a 1

)
, Rb =

(
1 b
0 1

)
and Dc =

(
1+ c 0

0 1
1+c

)
,

for a, b, c ranging over `nZ`.
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Proof. Let x =
( x11

x21

x12
x22

)
be an element of B`(n). Since x11 ≡ 1 (mod `), it is in

particular a unit, so a = − x21
x11

has valuation v`(a) = v`(x21) ≥ n, i.e., a ∈ `nZ`.
Next we compute

Lax =
(

x11 x12

0 ax12+ x22

)
;

we are thus reduced to the case x21 = 0. Under this hypothesis, and by choosing
b =− x12

x11
, it is easily seen that x Rb ∈ B`(n) is diagonal, and since every diagonal

matrix in B`(n) is by definition of the form Dc for some c ∈ `nZ`, we are done. �

We will also need a description of the derived subgroup of B`(n); in order to
prove the relevant result, we first need a simpleminded lemma on valuations that
will actually come in handy in many instances:

Lemma 3.2. Let x ∈ Z`. We have:

(1) For `= 2 and v2(x)≥ 3, the series
√

1+ x =
∑

k≥0
(1/2

k

)
xk converges to the

only solution λ of the equation λ2
= 1+ x that satisfies λ ≡ 1 (mod 4). The

inequality v2(
√

1+ x − 1)≥ v2(x)− 1 holds.

(2) For ` 6= 2 and v`(x) > 0, the series
√

1+ x =
∑

k≥0
(1/2

k

)
xk converges to the

only solution λ of the equation λ2
= 1+ x that satisfies λ ≡ 1 (mod `). The

equality v`(
√

1+ x − 1)= v`(x) holds.

Proof. For `= 2, we have

v2

((1/2
k

))
= v2

(
(1/2)(−1/2) . . . (−(2k−3)/2)

k!

)
=−k− v2(k!)≥−2k,

while for any other prime,

v`

((1/2
k

))
= v`

( k−1∏
i=1

(2i − 1)
)
− v`(k!)≥−v`(k!)≥−

1
`− 1

k.

Convergence of the series is then immediate in both cases, and the identity of
power series

(∑
k≥0

(1/2
k

)
tk
)2
= 1+ t implies that, for every x such that the series

converges,
∑

k≥0
(1/2

k

)
xk is indeed a solution to the equation λ2

= 1+ x .
Let now `= 2. Note that in the series expansion

√
1+ x − 1=

∑
k≥1

(1/2
k

)
xk all

the terms, except perhaps the first one, have valuation at least

(v2(x)− 2) · 2≥ v2(x)− 1.

As for the first term, it is simply x
2 , so it has exact valuation v2(x)− 1 and we

are done; a similar argument works for ` 6= 2, except now v`(x/2) = v`(x). The
congruence

√
1+ x ≡ 1 (mod 4) (resp. modulo `) now follows. �

Lemma 3.3. For n ≥ 1 the derived subgroup of B`(n) contains B`(2n+ 2v).
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Proof. Take Rb =
( 1

0
b
1

)
with b ≡ 0 (mod `2n+2v) and set β = `n . By the above

lemma, 1 + b
β

has a square root y congruent to 1 modulo ` that automatically
satisfies y ≡ 1 (mod `n), so

M =
(

y 0
0 1

y

)
and N =

(
1 β

0 1

)
both belong to B`(n). It is immediate to compute

M N M−1 N−1
=

(
1 β(y2

− 1)
0 1

)
=

(
1 b
0 1

)
,

so Rb belongs to B`(n)′. Similar identities also show that, for every a ≡ 0
(mod 22n+2v), the derived subgroup B`(n)′ contains

( 1
a

0
1

)
= La . To finish the

proof (using Lemma 3.1) we now just need to show that B`(n)′ contains Dc for
every c ≡ 0 (mod `2n+2v). This is done through an identity similar to the above;
namely, we set

M =
( √

1+ c 0
−c

β
√

1+c
1
√

1+c

)
and N =

(
1 β
c
β

c+ 1

)
,

and compute that M N M−1 N−1
=
( 1+c

0
0

1/(1+c)

)
= Dc. The only thing left to check

is that M and N actually belong to B`(n), which is easily done by observing that
√

1+ c≡ 1 (mod `n) by the series expansion and that v`
(
−c

β
√

1+c

)
≥ 2n+2v−n≥ n.

�

To conclude this paragraph we describe a finite set of generators for the congru-
ence subgroups of SL2(Z2):

Lemma 3.4. Let a, u ∈ Z2 and La =
( 1

a
0
1

)
. Let G be a closed subgroup of SL2(Z2).

If La ∈ G, then G also contains Lau =
( 1

au
0
1

)
. Similarly, if G contains Rb =

( 1
0

b
1

)
,

then it also contains Rbu for every u ∈ Z2. Finally, if c≡ 0 (mod 4) and G contains
Dc =

( 1+c
0

0
1/(1+c)

)
, then G contains Dcu for every u ∈ Z2.

Let s≥2 be an integer. If a, b, c∈4Z2 are such that max{v2(a), v2(b), v2(c)}≤ s,
and if G contains La, Rb and Dc, then G contains B2(s).

Proof. We show that the set W consisting of the w in Z2 such that Law belongs to G
is a closed subgroup of Z2 containing 1. Indeed, Law1 Law2 = La(w1+w2) by a direct
calculation, so in particular L−1

aw = L−aw; furthermore 1 ∈W by hypothesis, and if
wn is a sequence of elements of W converging to w, then {Lawn } ⊆ G converges
to Law, and since G is closed, Law itself belongs to G, so w ∈W . It follows that
W is closed and contains the integers, and since Z is dense in Z2 we get W = Z2

as claimed. Given that u 7→ Rbu is a group morphism the same proof also works
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for the family Rbu . The situation with the family Dcu is slightly different in that
u 7→ Dcu is not a group morphism; however, if w ∈ Z2, then we see that

(Dc)
w
=

(
(1+ c)w 0

0 1
(1+c)w

)
is well-defined and belongs to G (indeed this is trivially true for w ∈ Z, and then
we just need argue by continuity). As c ≡ 0 (mod 4), we also have the identity
(1+ c)w = exp(w log(1+ c)), since all the involved power series converge: more
precisely, for any γ in 4Z2 the series

∑
∞

j=1(−1) j+1 γ j

j converges and defines
log(1+ γ ), and since the inequality v2(γ

j )− v2( j) > v2(γ ) holds for every j ≥ 2
we have v2(log(1 + γ )) = v2(γ ) ≥ 2. Suppose now that v2(γ ) ≥ v2(c): then
w =

log(1+γ )
log(1+c) exists in Z2, so we can consider (1+ c)w = exp(w log(1+ c)) =

exp(log(1+ γ ))= 1+ γ and therefore for any such γ the matrix Dγ belongs to G.
The last statement is now an immediate consequence of Lemma 3.1. �

Lie algebras attached to subgroups of GL2(Z`). Our study of the groups G` will
go through suitable integral Lie algebras, for which we introduce the following
definition:

Definition 3.5. Let A be a commutative ring. A Lie algebra over A is a finitely
presented A-module M together with a bracket [ · , · ] : M × M → M that is A-
bilinear, antisymmetric and satisfies the Jacobi identity. For any A, the module
sl2(A)= {M ∈ M2(A) | tr(M)= 0} endowed with the usual commutator is a Lie
algebra over A. The same is true for gl2(A), the set of all 2× 2 matrices with
coefficients in A.

We restrict our attention to the case A = Z`, and try to understand closed sub-
groups G of GL2(Z`) by means of a surrogate of the usual Lie algebra construction.
In order to do so, we introduce the following definitions, inspired by those of [Pink
1993]:

Definition 3.6. Let G be a closed subgroup of GL2(Z`); if `= 2, suppose that the
image of G in GL2(F2) is trivial. We set

2 : G → sl2(Z`)

g 7→ g− 1
2 tr(g) · Id .

Note that this definition makes sense even for ` = 2, since by hypothesis the
2-adic valuation of the trace of g is at least 1.

Definition 3.7. The special Lie algebra of G, denoted L(G) (or simply L if no
confusion can arise), is the closed subgroup of sl2(Z`) topologically generated
by 2(G). We further define C(G), or simply C , as the closed subgroup of Z`

topologically generated by all the traces tr(xy) for x, y in L(G).
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Remark 3.8. (1) L(G) is indeed a Lie algebra because of the identity

[2(x),2(y)] =2(xy)−2(yx).

(2) If G is a subgroup of H , then L(G) is contained in L(H).

(3) C is a Z`-module. Indeed it is a Z-module, and the action of Z is continuous
for the `-adic topology, so it extends to an action of Z` since C is closed.
Therefore C is an ideal of Z`.

The key importance of L(G), at least for odd `, lies in the following result:

Theorem 3.9 [Pink 1993, Theorem 3.3]. Let ` be an odd prime and G be a pro-`
subgroup of SL2(Z`). Set L2 = [L(G), L(G)] and

H2 = {x ∈ SL2(Z`) |2(x) ∈ L2, tr(x)− 2 ∈ C(G)}.

Then H2 is the derived subgroup of G.

On the other hand, for `= 2 the property of 2 that will be crucial for our study
of L is the following approximate addition formula:

Lemma 3.10 [Pink 1993, Formula 1.3]. The identity

2(2(g1g2)−2(g1)−2(g2))=[2(g1),2(g2)]+(tr(g1)−2)2(g2)+(tr(g2)−2)2(g1).

holds for every g1, g2 ∈ GL2(Z`) if ` 6= 2, and for every g1, g2 ∈ {x ∈ GL2(Z2) |

tr(x)≡ 0 (mod 2)} if `= 2.

In what follows, we will often want to recover partial information on G from
information about the reduction of G modulo various powers of `. It is thus
convenient to use the following notation:

Notation. We denote by G(`n) the image of the reduction map G→GL2(Z/`
nZ).

We also let π be the projection map G→ G(`).

We now record a simple fact about modules over DVRs we will need later:

Lemma 3.11. Let A be a DVR, n a positive integer, M a subset of An and N =〈M〉
the submodule of An generated by M. Denote by πk the projection An

→ A on the
k-th component. There exist a basis x1, . . . , xm of N consisting of elements of M
and scalars (σi j )1≤ j<i≤m ⊆ A with the following property: if we define inductively
t1 = x1 and ti = xi −

∑
j<i σi j t j for i ≥ 2, then πk

(
xi −

∑
j<l σi j t j

)
= 0 for every

1≤ k < l ≤ i ≤ m. The t j are again a basis of N .

Proof. We proceed by induction on n. The case n = 1 is easy: M is just a subset
of A, and the claim is that the ideal generated by M can also be generated by a
single element of M , which is clear. Consider now a subset M of An+1. Let ν
be the discrete valuation of A; the set {ν(π1(x)) | x ∈ M} consists of nonnegative
integers, therefore it admits a minimum k1. Take x1 to be any element of M such
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that ν(π1(x1))= k1. For every element m ∈ M we can form f (m)= m− π1(m)
π1(x1)

x1,
which is again an element of An+1 since by definition of x1 we have π1(x1) | π1(m).
It is clear enough that π1( f (m))= 0 for all m ∈ M . Therefore, f (M) is a subset
of {0} ⊕ An , and it is also clear that the module generated by x1 and f (M) is
again N . Apply the induction hypothesis to f (M) (thought of as a subset of An).
It yields a basis f (x2), . . . , f (xm) of f (M), scalars (τi j )2≤ j<i≤m , and a sequence
u2 = f (x2), ui = f (xi )−

∑
2≤ j<i τi j u j , such that πk

(
f (xi )−

∑
2≤ j<l τi j u j

)
= 0

for 2≤ k < l ≤ i ≤m. We also have π1
(

f (xi )−
∑

2≤ j<l τi j u j
)
= 0 if we view the

ui as elements of An+1. It is now enough to show that, with this choice of the xi , it
is possible to find scalars σi j for 1≤ j < i ≤m, in such a way that ti = ui for i ≥ 2,
and this we prove again by induction. By definition, u2 = f (x2)= x2−

π1(x2)
π1(x1)

x1, so
we can take σ21=

π1(x2)
π1(x1)

. Assuming we have proved the result up to level i , we have

ui+1 = f (xi+1)−
∑

2≤ j<i+1

τi j u j = xi+1−
π1(xi+1)

π1(x1)
x1−

∑
2≤ j<i+1

τi j t j ,

and we simply need to take σi+1,1 =
π1(xi+1)

π1(x1)
and σi j = τi j .

As for the last statement, observe that the matrix giving the transformation from
the xi to the t j is unitriangular, hence invertible. �

Subgroups of GL2(Z`), SL2(Z`), and their reduction modulo `. In view of the
next sections, it is convenient to recall some well-known facts about the subgroups
of GL2(F`), starting with the following definition:

Definition 3.12. A subgroup J of GL2(F`) is said to be:

• split Cartan, if J is conjugated to the subgroup of diagonal matrices. In this
case the order of J is prime to `.

• nonsplit Cartan, if there exists a subalgebra A of M2(F`) that is a field and
such that J = A×. The order of J is prime to `, and J is conjugated to{(a

b
bε
a

)
∈ GL2(F`)

}
, where ε is a fixed quadratic nonresidue.

• the normalizer of a split (resp. nonsplit) Cartan, if there exists a split (resp.
nonsplit) Cartan subgroup C such that J is the normalizer of C. The index
[J : C] is 2, and ` does not divide the order of J (unless `= 2).

• Borel, if J is conjugated to the subgroup of upper-triangular matrices. In this
case J has a unique `-Sylow, consisting of the matrices of the form

( 1
0
∗

1

)
.

• exceptional, if the projective image PJ of J in PGL2(F`) is isomorphic to
either A4, S4 or A5, in which case the order of PJ is either 12, 24 or 60.

The above classes essentially exhaust all the subgroups of GL2(F`). More
precisely, we have:
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Theorem 3.13 (Dickson’s classification, cf. [Serre 1972]). Let ` be a prime number
and J be a subgroup of GL2(F`). Then we have:
• if ` divides the order of J , then either J contains SL2(F`) or it is contained in

a Borel subgroup;

• if ` does not divide the order of J , then J is contained in a (split or nonsplit)
Cartan subgroup, in the normalizer of one, or in an exceptional group.

As subgroups of SL2(F`) are in particular subgroups of GL2(F`), the above clas-
sification also covers all subgroups of SL2(F`). Cartan subgroups of SL2(F`) are
cyclic (both in the split and nonsplit case).

The next lemma can be proved by direct inspection of the group structure of
A4, S4 and A5, and will help us quantify how far exceptional subgroups are from
being abelian:

Lemma 3.14. The groups A4 and S4 have abelian subgroups of order N if and
only if 1 ≤ N ≤ 4. The group A5 has abelian subgroups of order N if and only if
1≤ N ≤ 5.

The following lemma, due to Serre, will prove extremely useful in showing that
G` = GL2(Z`) using only information about the reduction of G` modulo `:

Lemma 3.15. Let ` ≥ 5 be a prime and G be a closed subgroup of SL2(Z`). If
the image of G in SL2(F`) is equal to SL2(F`), then G = SL2(Z`). Similarly, if
H is a closed subgroup of GL2(Z`) whose image in GL2(F`) contains SL2(F`),
then H ′ = SL2(Z`).

Proof. The first statement is [Serre 1998, IV-23, Lemma 3]. For the second, consider
the closed subgroup H ′ of SL2(Z`). Since by assumption we have ` > 3, the finite
group SL2(F`) is perfect, so the image of H ′ in SL2(F`) contains SL2(F`)

′
=SL2(F`).

It then follows from the first part of the lemma that H ′ = SL2(Z`), as claimed. �

The following definition will prove useful to translate statements about subgroups
of SL2(Z`) into analogous results for subgroups of GL2(Z`) and vice versa:

Definition 3.16. Let G be a closed subgroup of GL2(Z`) (resp. GL2(F`)). The
saturation of G, denoted Sat(G), is the group generated in GL2(Z`) (resp. GL2(F`))
by G and Z×` · Id (resp. F×` · Id). The group G is said to be saturated if G = Sat(G).
We also denote by Gdet=1 the group G ∩SL2(Z`) (resp. G ∩SL2(F`)).

Lemma 3.17. (1) For every closed subgroup G of GL2(Z`), the groups G and
Sat(G) have the same derived subgroup and the same special Lie algebra.

(2) The two associations G 7→ Gdet=1 and H 7→ Sat(H) are mutually inverse
bijections between the sets

G =
{

subgroups G of GL2(Z`)

∣∣∣ G is saturated,
det(g) is a square for every g in G

}
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and
H=

{
subgroups H of SL2(Z`) | − Id ∈ H

}
.

For every G in G, the groups G and Gdet=1 have the same derived subgroup
and the same special Lie algebra.

(3) The map G 7→ Sat(G) commutes with reducing modulo `, i.e.,

(Sat(G))(`)= Sat(G(`)).

If ` is odd and G is saturated, we also have G(`)det=1
= Gdet=1(`).

Proof. (1) The statement is obvious for the derived subgroup. As for the special
Lie algebra, let λg be any element of Sat(G), where λ ∈ Z×` and g ∈ G. As L(G)
is a Z`-module, 2(λg)= λ2(g) belongs to L(G), hence L(Sat(G))⊆ L(G). The
other inclusion is trivial.

(2) The first statement is immediate to check since the determinant of any homo-
thety is a square; the other follows by writing G = Sat(H) and applying (1) to
(Sat(H))det=1

= H and Sat(H).

(3) This is clear for the saturation. For G 7→ Gdet=1, note that G(`)det=1 contains
Gdet=1(`), so we need to show the opposite inclusion. Take any matrix [g] in
G(`)det=1. By definition, [g] is the reduction of a certain g ∈ G whose determinant
is 1 modulo `. As ` is odd and det(g) is congruent to 1 modulo `, we can apply
Lemma 3.2 and write det(g) = λ2, where λ =

√
1+ (det(g)− 1) is congruent

to 1 modulo `. As G is saturated, it contains λ−1 Id, hence also λ−1g, whose
determinant is 1 by construction. Furthermore, as λ≡ 1 (mod `), the two matrices
λ−1g and g are congruent modulo `. We have thus found an element of G of
determinant 1 that maps to [g], so Gdet=1

→ G(`)det=1 is surjective. �

Finally, since we will be mainly concerned with the pro-` part of our groups, we
will find it useful to give this object a name:

Notation. If G is a closed subgroup of SL2(Z`), we write N (G) for its maximal
normal subgroup that is a pro-` group.

The following lemma shows that N (G) is well-defined and describes it:

Lemma 3.18. Let G be a closed subgroup of SL2(Z`) and π : G → G(`) the
projection modulo `. Then G admits a unique maximal normal pro-` subgroup
N (G), which can be described as follows.

(1) If G(`) is of order prime to `, then N (G)= kerπ and G(`)∼= G
N (G) .

(2) If the order of G(`) is divisible by `, and if G(`) is contained in a Borel
subgroup, then N (G) is the inverse image in G of the unique `-Sylow S of G(`).

(3) If G(`) is all of SL2(F`), then N (G)= kerπ and G(`)∼= G
N (G) .
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Proof. Let N be a pro-` normal subgroup of G. The image π(N ) is a normal
pro-` subgroup of G(`), hence it is trivial in cases (1) and (3) and it is either trivial
or the unique `-Sylow of G(`) in case (2). In cases (1) and (3) it follows that
N ⊆ kerπ , and since kerπ is pro-` we see that kerπ is the unique maximal normal
pro-` subgroup of G. In case (2), let S be the unique `-Sylow of G(`). It is clear
that N is contained in π−1(S), which on the other hand is pro-` and normal in G.
Indeed, by choosing an appropriate (triangular) basis for G(`) we can define a map
G→ G(`)→ F×` with kernel π−1(S) via

g 7→
(

a b
0 1/a

)
7→ a. �

4. Recovering G from L(G), when ` is odd

Our purpose in this section (for ` 6= 2) and the next (for `= 2) is to prove results
that yield information on G from analogous information on L(G).

Theorem 4.1. Let ` be an odd prime and G a closed subgroup of SL2(Z`).

(i) Suppose that G(`) is contained in a Cartan or Borel subgroup, and that
|G/N (G)| 6= 4. Then the following implication holds for all positive integers s:
(?) if L(G) contains `ssl2(Z`), then L(N (G)) contains `2ssl2(Z`).

(ii) Without any assumption on G, there is a closed subgroup H of G that satisfies
[G : H ] ≤ 12 and the conditions in (i) (so H has property (?)).

Theorem 4.2. Let ` be an odd prime, and G a closed subgroup of GL2(Z`).

(i) Suppose that G satisfies the two conditions:
(a) det(g) is a square in Z×` for every g ∈ G;
(b) Sat(G)det=1 satisfies the hypotheses of Theorem 4.1(i).
Then the following implication holds for all positive integers s:
(??) if L(G) contains `ssl2(Z`), then G ′ contains B`(4s).

(ii) Without any assumption on G, either G ′ = SL2(Z`) or there is a closed sub-
group H of G that satisfies both [G : H ] ≤ 24 and the conditions in (i) (so H
has property (??)).

Remark 4.3. Condition (b) can be made more explicit using the description of
the maximal normal pro-` subgroup given in Lemma 3.18. The conditions on G
can be translated into conditions on (Sat(G))det=1(`): this group should be cyclic
or have order divisible by ` and be contained in a Borel subgroup of GL2(F`).
In the first case we require |(Sat(G))det=1(`)| 6= 4; in the second case we need
|Sat(G)det=1(`)/S| 6= 4, where S is the unique `-Sylow of Sat(G)det=1(`). With
this description, it is clear that condition (b) is true if Sat(G)det=1(`) is contained
in a Borel or Cartan subgroup and has order not divisible by 4.
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Let us remark that the statements numbered (ii) in the above theorems require a
case by case analysis, which will be carried out on pages 2370–2372 for Theorem 4.2
(the proof of Theorem 4.1(ii) is perfectly analogous). In this proof we will also
show that part (i) of Theorem 4.2 can be reduced to the corresponding statement
in Theorem 4.1, so the core of the problem lies in proving the result for SL2(Z`).
Before delving into the details of the proof (that involves a certain amount of
calculations) we describe the general idea, which is on the contrary quite simple.
The following paragraph should only be considered as outlining the main ideas,
without any pretense of formality.

If G is as in Theorem 4.1(i), then G/N (G) is cyclic, and we can fix a generator
[g] ∈ G/N (G) that lifts to a certain g ∈ G. The operator ϕ : x 7→ g−1xg acts on G,
and, since it fixes Id, also on L(G). Furthermore, it preserves L(N (G))⊆ L(G) by
normality of N (G) in G, and obviously it fixes 2(g). If we were working over Q`

instead of Z`, we would have a decomposition L(G)∼= 〈2(g)〉⊕M , where M is a
ϕ-stable subspace of dimension 2, and the projection operator p : L(G)→ M could
be expressed as a polynomial in ϕ. We would also expect M to consist of elements
coming from N (G), because 〈2(g)〉 is simply the special Lie algebra of 〈g〉; this
would provide us with many nontrivial elements in L(N (G)). We would finally
deduce the equality L(N (G))= sl2(Q`) by exploiting the fact that L(N (G)) is a
Lie algebra of dimension at least 2 that is also stable under ϕ. This point of view
also suggests that we cannot expect the theorem to hold when G(`) is exceptional:
if G/N (G) is a simple group, then we expect the special Lie algebra of G not to
be solvable, and since the only nonsolvable subalgebra of sl2(Q`) is sl2(Q`) itself,
L(G) should be very large even if N (G) is very small.

In what follows we prove (i) of Theorem 4.1 first when |G/N (G)| = 2 and
then in case G(`) is respectively contained in a split Cartan, Borel, or nonsplit
Cartan subgroup; we then discuss the optimality of the statement, showing through
examples that it cannot be extended to the exceptional case and that `2s cannot be
replaced by anything smaller. Finally, on pages 2370–2372 we finish the proof of
Theorem 4.2.

Notation. For x ∈ L(G), we set πi j (x)= xi j , the coefficient in the i-th row and j -th
column of the matrix representation of x in sl2(Z`). The maps πi j are obviously
linear and continuous.

The case |G/N(G)|= 2. Suppose first that G(`) is contained in a Cartan subgroup,
so that G/N (G)∼=G(`). The only nontrivial element x in G(`) satisfies the relations
x2
= Id and det(x)= 1, so it must be − Id. It follows that G contains an element g

of the form − Id+`A for a certain A ∈M2(Z`). Considering the sequence

g`
n
= (− Id+`A)`

n
=− Id+O(`n+1),
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and given that G is closed, we see that − Id is in G. Next observe that for every
h ∈ G, either h or −h belongs to N (G). If g1, g2, g3 are elements of G such
that 2(g1),2(g2),2(g3) is a basis for L(G), then on the one hand for each i
either gi or −gi belongs to N (G), and on the other hand 2(−gi ) = −2(gi ), so
L(G)= L(N (G)) and the claim follows.

Next suppose G(`) is contained in a Borel subgroup. We can assume that the
order of G(`) is divisible by `, for otherwise G(`) is cyclic and we are back in the
previous case. The canonical projection G→ G/N (G) factors as

G → G(`) → F×`

g 7→
(

a b
0 1/a

)
7→ a,

so if G/N (G) has order 2, G(`) contains an element of the form
(
−1
0

b
−1

)
. Taking the

`-th power of this element shows that G(`) contains − Id and we conclude as above.

The split Cartan case. Suppose that G(`) is contained in a split Cartan, so that,
by choosing a suitable basis, we can assume that G(`) is contained in the subgroup
of diagonal matrices of SL2(F`). Fix an element g ∈ G such that [g] ∈ G(`) is a
generator. By assumption, the order of [g] is not 4, and by the previous paragraph we
can assume it is not 2; furthermore it is not divisible by `. The minimal polynomial of
[g] is then separable, and [g] has two distinct eigenvalues in F×` . It follows that g can
be diagonalized over Z` (its characteristic polynomial splits by Hensel’s lemma), and
there is a basis in which g=

(a
0

0
1/a

)
, where a is an `-adic unit. Note that our assump-

tion |G(`)| - 4 implies in particular that a4
6≡ 1 (mod `). A fortiori ` does not divide

a2
− 1, so the diagonal coefficients of 2(g) =

(a2
−1/(2a)

0
0

−(a2−1/)(2a)

)
are `-adic

units. The following lemma allows us to choose a basis of L(G) containing 2(g):

Lemma 4.4. Suppose g ∈ G is such that 2(g) is not zero modulo `. The algebra
L(G) admits a basis of the form 2(g),2(g2),2(g3), where g2, g3 are in G.

Proof. Recall that L(G) is of rank 3 since it contains `ssl2(Z`). Start by choosing
g1, g2, g3 ∈ G such that 2(g1),2(g2),2(g3) is a basis for L(G). As 2(g) is not
zero modulo `, from an equality of the form

2(g)=
3∑

i=1

λi2(gi )

we deduce that at least one of the λi is an `-adic unit, and we can assume without
loss of generality that it is λ1. But then

2(g1)= λ
−1
1 (2(g)− λ22(g2)− λ32(g3)),

and we can replace g1 with g. �
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Recall that we denote by ϕ the endomorphism of sl2(Z`) given by x 7→ g−1xg.
We now prove that L(N (G)) is ϕ-stable and, more generally, describe the ϕ-stable
subalgebras of sl2(Z`).

Lemma 4.5. Let ` be an odd prime, G a closed subgroup of GL2(Z`), N a normal
closed subgroup of G and g an element of G. The special Lie algebra L(N ) is
stable under ϕ.

Proof. As 2(N ) generates L(N ), it is enough to prove that ϕ stabilizes 2(N ). Let
x =2(n) for a certain n ∈ N : then

g−1xg = g−1(n− tr(n)
2 Id)g = g−1ng− tr(g−1ng)

2 Id=2(g−1ng),

and this last element is in 2(N ) since N is normal in G. �

Lemma 4.6. Let s be a nonnegative integer. Let L be a ϕ-stable Lie subalgebra
of sl2(Z`) and x11, x12, x21, y11, y12, y21 be elements of Z` with v`(x21) ≤ s and
v`(y12) ≤ s. If L contains both l1 =

( x11
x21

x12
−x11

)
and l2 =

( y11
y21

y12
−y11

)
, then it contains

all of `2ssl2(Z`).

Proof. Consider first the case x12 = y21 = 0. We compute

ϕ(l1)=

(
x11 0

a2x21 −x11

)
,

so L contains
( x11

a2x21

0
−x11

)
− l1 =

( 0
(a2−1)x21

0
0

)
, where by our hypothesis on a the

valuation of the bottom left coefficient is at most s. Analogously, L contains( 0
0
(a2
−1)y12

0

)
, and since it is a Lie algebra, it also contains the commutator[(

0 (a2
− 1)y12

0 0

)
,

(
0 0

(a2
− 1)x21 0

)]
=

(
(a2
− 1)2x21 y12 0

0 −(a2
− 1)2x21 y12

)
,

whose diagonal coefficients have valuation at most 2s. This establishes the lemma
in case x12 and y21 are both zero, since the three elements we have found generate
`2ssl2(Z`). The general case is then reduced to the previous one by replacing l1, l2 by

a2ϕ(l1)− l1 =

(
(a2
− 1)x11 0

(a4
− 1)x21 −(a2

− 1)x11

)
and a−2ϕ(l2)−l2, and noticing that since ` -a4

−1 we have v`((a4
−1)x21)=v`(x21)

and v`((a−4
− 1)y12)= v`(y12)). �

We know from Lemma 4.5 that L(N (G)) is ϕ-stable, so in order to apply
Lemma 4.6 to L(N (G)) we just need to find two elements l1, l2 in L(N (G)) with
the property that v` ◦ π21(l1) ≤ s and v` ◦ π12(l2) ≤ s. Since the values of the
diagonal coefficients do not matter for the application of this lemma we will simply
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write ∗ for any diagonal coefficient appearing from now on. In particular we write
g2, g3,2(g2),2(g3) in coordinates as follows:

gi =

(
∗ g(i)12

g(i)21 ∗

)
, 2(gi )=

(
∗ g(i)12

g(i)21 ∗

)
.

As [g] generates G(`), for i = 2, 3 there exist ki ∈ N such that [gi ] = [g]ki ,
or equivalently such that g−ki gi ∈ N (G). Since 2(g),2(g2),2(g3) generate
`ssl2(Z`), but the off-diagonal coefficients of 2(g) vanish, we can choose two
indices i1, i2 ∈ {2, 3} such that v` ◦π21(2(gi1))≤ s and v` ◦π12(2(gi2))≤ s. On
the other hand, L(N (G)) contains

2(g−ki gi )=2

((
a−ki 0

0 aki

)(
∗ g(i)12

g(i)21 ∗

))
=

(
∗ a−ki g(i)12

aki g(i)21 ∗

)
,

where a±ki is an `-adic unit. The `-adic valuation of the off-diagonal coefficients of
2(g−ki gi ) is then the same as that of the corresponding coefficients of2(gi ), and we
find two elements l1=2(g−ki1 gi1) and l2=2(g−ki2 gi2) that satisfy v`◦π21(l1)≤ s
and v`◦π12(l2)≤ s, as required. We can now apply Lemma 4.6 with (L , g, l1, l2)=

(L(N (G)), g,2(gi1),2(gi2)) and deduce that L(N (G)) contains `2ssl2(Z`), as
claimed.

The Borel case. Suppose G(`) is included in a Borel subgroup. If the order of
G(`) is prime to `, then G(`) is in fact contained in a split Cartan subgroup, and
we are reduced to the previous case. We can therefore assume without loss of
generality that the order of G(`) is divisible by `. In this case, we know that N (G)
is the inverse image in G of the unique `-Sylow of G(`), and that the canonical
projection G→ G/N (G) factors as

G → G(`) → F×`

g 7→
(

a b
0 1/a

)
7→ a.

Let H be the image of this map. The group H is cyclic and we can assume that
its order does not divide 4: it is not 4 by hypothesis and if it is 1 or 2, we are done.
Let g be any inverse image in G of a generator of H . The matrix representing g
can be diagonalized over Z` since the characteristic polynomial of [g] ∈ G(`) is
separable, and the same exact argument as in the previous paragraph shows that we
can choose a basis of L(G) of the form 2(g),2(g2),2(g3). By definition of H ,
we see that for i = 2, 3, there is an integer ki such that [gi ] = [g]ki in G/N (G),
and the rest of the proof is identical to that of the previous paragraph.

The nonsplit Cartan case. Suppose now that G(`) is contained in a nonsplit Cartan
subgroup. Fix a g ∈ G such that [g] generates G(`). We know that [g] is of the
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form
(
[a]
[b]
[bε]
[a]

)
, where [ε] is a fixed quadratic nonresidue modulo `. In order to put

g into a standard form we need the following elementary lemma, which is an `-adic
analogue of the Jordan canonical form over the reals.

Lemma 4.7. Up to a choice of basis of Z2
`, the matrix representing g can be chosen

to be of the form
(a

b
bε
a

)
for certain a, b, ε lifting [a], [b], [ε], and where moreover

a, b are `-adic units.

Proof. The characteristic polynomial of [g] splits over F`[
√
[ε]], so by Hensel’s

lemma the characteristic polynomial of g splits over Z`[
√
ε]. The two eigenvalues

of g in Z`[
√
ε] are of the form a±b

√
ε for certain a, b∈Z` (the notation is coherent:

since the eigenvalues of [g] are simply the projections of the eigenvalues of g, the
elements a, b map to [a], [b] modulo `, respectively).

By the definition of eigenvalue, we can find a vector v+ ∈ Z`[
√
ε]2 such that

gv+= (a+b
√
ε)v+. Normalize v+ in such a way that at least one of its coordinates

is an `-adic unit, write v+ =w+ z
√
ε for certain w, z ∈ Z2

`, and set v− =w− z
√
ε.

As g has its coefficients in Z`, the vector v− is an eigenvector for g, associated
with the eigenvalue a− b

√
ε. The projections of v± in

(
F`[
√
[ε]]

)2 are therefore
nonzero eigenvectors of [g] corresponding to different eigenvalues, hence they are
linearly independent. It follows that w= v++v−

2 , z= v+−v−
2
√
ε

are independent modulo
`Z`[
√
ε], and since w, z lie in Z2

` they are a fortiori independent modulo `. The
matrix (z | w) is then invertible modulo `, so it lies in GL2(Z`) and can be used as
base-change matrix. It is now straightforward to check that in this basis the element
g is represented by the matrix

(a
b

bε
a

)
. Finally notice that a and b are units: if [b]= 0

or [a] = 0, it is easy to check that the order of G(`) divides 4, contradicting the
assumptions. �

We can also assume that G contains− Id, since replacing G with G ·{± Id} alters
neither the derived subgroup nor the special Lie algebra of G. By Lemma 4.4, the
algebra L(G) admits a basis of the form 2(g),2(g2),2(g3), where g is as above
and g2, g3 are in G. We write in coordinates

g2 =

(
y11 y12

y21 y22

)
, 2(g2)=

( y11−y22
2 y12

y21 −
y11−y22

2

)
,

g3 =

(
z11 z12

z21 z22

)
, 2(g3)=

( z11−z22
2 z12

z21 −
z11−z22

2

)
.

Projection operators, ϕ-stable subalgebras. Recall that ϕ denotes x 7→ g−1xg.
Following our general strategy, we now describe projection operators associated
with the action of ϕ and ϕ-stable subalgebras of sl2(Z`).
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Lemma 4.8. Let E, F ∈ Z`. If the matrix
(
−F
E
−εE

F

)
belongs to L(N (G)), then

L(N (G)) also contains(
−F 0

0 F

)
,

(
−E 0

0 E

)
,

(
0 −εE
E 0

)
, and

(
0 −εF
F 0

)
.

Proof. We know from Lemma 4.5 that L(N (G)) is ϕ-stable, so the identity

1
2ab

(
ϕ

(
−F −εE
E F

)
− (a2

+ b2ε)

(
−F −εE
E F

))
=

(
−εE −εF

F εE

)
(4-1)

shows that
(
−εE

F
−εF
εE

)
is in L(N (G)). At least one of F/E and E/F is an `-adic

integer, and we can assume it is F/E (the other case being perfectly analogous). In
particular we have v`(F)≥ v`(E). It follows that L(N (G)) contains

F
E

(
−F −εE
E F

)
−

(
−εE −εF

F εE

)
=

(
εE2
−F2

E 0
0 −

εE2
−F2

E

)
.

If v`(F) > v`(E), we have v`(εE2
− F2) = 2v`(E), while if v`(F) = v`(E) we

can write
F = `v`(E)ζ, E = `v`(E)γ,

where ζ, γ are not zero modulo `. In this second case we have εE2
− F2

=

`2v`(E)(εγ 2
− ζ 2), and (εγ 2

− ζ 2) does not vanish modulo ` since [ε] is not a
square in F×` . Hence v`(εE2

− F2) = 2v`(E) holds in any case, and (due to the
denominator E) we have found in L(N (G)) a matrix whose off-diagonal coefficients
vanish and whose diagonal coefficients have the same valuation as E . By the
stability of L(N (G)) under multiplication by `-adic units we have thus proved
that L(N (G)) contains

(
−E

0
0
E

)
. Identity (4-1) applied to this element shows that

L(N (G)) also contains
( 0

E
−εE

0

)
. Since

(
−F
−E
−εE

F

)
is in L(N (G)) by assumption,

taking the difference of these two matrices shows that
(
−F

0
0
F

)
is in L(N (G)) as

well. Applying Equation (4-1) to this last matrix we finally deduce that L(N (G))
also contains

( 0
F
−εF

0

)
. �

Lemma 4.9. Let E, F be elements of Z` satisfying min{v`(F), v`(E)} ≤ s. If(
−F
E
−εE

F

)
belongs to L(N (G)), then L(N (G)) contains `2ssl2(Z`).

Proof. Suppose v`(F) ≤ s, the other case being similar. The special Lie alge-
bra L(N (G)) contains

(
−F

0
0
F

)
,
( 0

F
−εF

0

)
by the previous lemma, so (given that

v`(F)≤ s) it also contains `s
( 1

0
0
−1

)
, `s
( 0

1
−ε
0

)
. Taking the commutator of these two

elements yields another element of L(N (G)), namely[
`s
(

0 −ε
1 0

)
, `s
(

1 0
0 −1

)]
= `2s

(
0 2ε
2 0

)
.
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Finally, since

1
2
`2s
(

0 2ε
2 0

)
+ `2s

(
0 −ε
1 0

)
= `2s

(
0 0
2 0

)
,

it is immediately checked that L(N (G)) contains a basis of `2ssl2(Z`), as desired. �

The case g2, g3 /∈ N (G). Let us assume for now that gi 6∈ N (G) and −gi 6∈ N (G)
for i = 2, 3. We will deal later with the case when some of these elements already
belong to N (G). Given that by hypothesis L(G) contains `ssl2(Z`), we must have
a representation

`s
(

1 0
0 −1

)
=

3∑
i=1

λi2(gi )

for certain scalars λ1, λ2, λ3 ∈ Z`. However, since the diagonal coefficients of
2(g) vanish, there exists an index i ∈ {2, 3} such that v` ◦π11(2(gi ))≤ s. Renum-
bering g2, g3 if necessary, we can assume i = 2. In coordinates, the condition
v` ◦π11(2(g2))≤ s becomes v`(y11− y22)≤ s.

Now, since [g] generates G(`), there is an integer k such that [g]−k
= [g2]

in G(`); in other words, both g2gk and gk g2 are trivial modulo ` and therefore
belong to N (G). It is immediate to check that the matrix gk is of the form

( c
d

dε
c

)
for

certain c, d ∈Z`. Now if d is 0 modulo `, then (since c2
−εd2

≡ 1 (mod `)) we have
c≡±1 (mod `), so either g2 or−g2 reduces to the identity modulo ` and is therefore
in N (G), contradicting our assumption. Hence d is an `-adic unit. We then introduce

g4 =

(
c dε
d c

)(
y11 y12

y21 y22

)
, g5 =

(
y11 y12

y21 y22

)(
c dε
d c

)
.

By construction, g4 and g5 are elements of N (G), whence 2(g4),2(g5) are
elements of L(N (G)). In particular, L(N (G)) contains their difference

2(g4)−2(g5)= g4− g5 =

(
−d(y12− εy21) dε(−y11+ y22)

d(y11− y22) d(y12− εy21)

)
,

where v` ◦π21(2(g4)−2(g5))≤ s and v` ◦π12(2(g4)−2(g5))≤ s, because d, ε
are `-adic units. Applying Lemma 4.9 to the element 2(g4)−2(g5) we have just
constructed we therefore deduce L(N (G))⊇ `2ssl2(Z`), as desired.

The case when one generator belongs to N (G). Let x =
( x11

x21

x12
−x11

)
denote any

element of sl2(Z`). It is easy to check that

1
2ab

(
(3+ 4εb2)(ϕx − x)−ϕ(ϕx − x)

)
=

(
x12− εx21 2εx11

−2x11 −x12+ εx21

)
,

and, furthermore, if x belongs to L(N (G)), then
( x12−εx21
−2x11

2εx11
−x12+εx21

)
is in L(N (G))

as well.
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Suppose now that either g2 or −g2 (resp. g3 or −g3) belongs to N (G). Since
2(−gi )=−2(gi ), we can assume that g2 (resp. g3) itself belongs to N (G). Take( x11

x21

x12
−x11

)
to be 2(g2) (resp. 2(g3)). Subtracting x21

b 2(g1) from 2(g2) we get( x11
0

x12−εx21
−x11

)
∈ L(G), and since we know that

2(g2)−
π21(2(g2))

b 2(g1) and 2(g3)−
π21(2(g3))

b 2(g1)

together span `s
( 1

0
0
−1

)
⊕ `s

( 0
0

1
0

)
, we see that at least one of the coefficients of

the matrix 2(g2)−
π21(2(g2))

b 2(g1) = 2(g2)−
x21
b 2(g1) must have valuation at

most s, that is min{v`(x11), v`(x12 − εx21)} ≤ s. We now apply Lemma 4.9 to( x12−εx21
−2x11

2εx11
−x12+εx21

)
, which is in L(N (G)), to deduce L(N (G)) ⊇ `2ssl2(Z`), and

we are done.

Optimality. The following examples show that it is neither possible to extend
Theorem 4.2 to the exceptional case, nor to improve the exponent 2s.

Proposition 4.10. Let ` be a prime ≡ 1 (mod 4). For every t ≥ 1, there exists a
closed subgroup G of SL2(Z`) whose special Lie algebra is sl2(Z`) and whose
maximal pro-` subgroup is contained in B`(t).

Proof. Notice that the following six elements form a finite subgroup H of PSL2(Z[i])(
1 0
0 1

)
,

(
0 1
−1 1

)
,

(
1 −1
1 0

)
,

(
0 i
i 0

)
,

(
−i i
0 i

)
,

(
i 0
i −i

)
,

and that H is isomorphic to S3: indeed, it is the group of permutations of {0, 1,∞}⊂
P1(Z[i]). The inverse image H̃ of H in SL2(Z[i]) is therefore a finite group of
cardinality 12. Now since ` ≡ 1 (mod 4) there is a square root of −1 in Z`, so
Z[i] ↪→ Z` and H̃ ↪→ SL2(Z`). Consider G = H̃ ·B`(t)⊂ SL2(Z`). It is clear that
B`(t) is normal in G. Since G

B`(t) is isomorphic to a quotient of H̃ (and therefore
has order prime to `), the subgroup B`(t) is clearly the maximal pro-` subgroup
of G. Furthermore, the special Lie algebra of G contains the three elements

2

((
0 1
−1 1

))
=

(
−1/2 1
−1 1/2

)
, 2

((
0 i
i 0

))
=

(
0 i
i 0

)
, 2

((
i 0
i −i

))
=

(
i 0
i −i

)
,

that are readily checked to be a basis of sl2(Z`). �

On the other hand, the following example shows that there exist subgroups of
SL2(Z`) such that L(G) contains `ssl2(Z`), but L(N (G)) only contains `2ssl2(Z`).
Fix s ≥ 1, an integer N > 4 and a prime ` congruent to 1 modulo N ; then Z×`
contains a primitive N -th root of unity a, and we let g =

(a
0

0
1/a

)
. The module

M = `s
(0

0
1
0

)
⊕ `s

( 0
1

0
0

)
⊕ `2s

( 1
0

0
−1

)
is a Lie subalgebra of sl2(Z`), so by Theorem

3.4 of [Pink 1993]

H =
{

x ∈ SL2(Z`) | tr(x)≡ 2 (mod `2s),2(x) ∈ M
}
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is a pro-` group with special Lie algebra M . Let G be the group generated by g
and H . Up to units, 2(g) equals

( 1
0

0
−1

)
, so L(G) contains all of `ssl2(Z`). On the

other hand, H is normal in G: one simply needs to check that g−1 Mg = M , and
this is obvious from the equality

g−1
(

x11 x12

x21 −x11

)
g =

(
x11

x12
a2

a2x21 −x11

)
.

Finally, H is maximal among the pro-` subgroups of G, since G/H is a quotient
of 〈g〉 ∼= Z/NZ, hence of order prime to `. Therefore N (G)= H and L(N (G))=
L(H)= M contains `tsl2(Z`) only for t ≥ 2s.

Proof of Theorem 4.2. We now prove (i) of Theorem 4.2 by reducing it to the
corresponding statement in Theorem 4.1.

As G and Sat(G) have the same special Lie algebra and derived subgroup, we
can assume G = Sat(G). As G is saturated and satisfies the condition on the
determinant, we know from Lemma 3.17 that G = Sat(H) for H = Gdet=1. By the
same lemma, we also have L(H)= L(G) and G ′ = H ′.

By assumption, H satisfies the hypotheses of Theorem 4.1(i), so H has prop-
erty (?). As L(G) = L(H) contains `ssl2(Z`), we deduce that L0 = L(N (H))
contains `2ssl2(Z`), and since N (H) is a pro-` group we can apply Theorem 3.9
to it. In order to do so, we need to estimate C(N (H))= tr(L0 · L0) and [L0, L0].
Note that

C(N (H)) 3 tr
(
`2s
(

1 0
0 −1

)
· `2s

(
1 0
0 −1

))
= 2`4s,

so given that ` is odd we have C(L0)⊇ (2`4s)= (`4s). Likewise,

[L0, L0] ⊇ [`
2ssl2(Z`), `

2ssl2(Z`)] = `
4ssl2(Z`),

so the derived subgroup of N (H) (which is clearly included in H ′ = G ′) is

N (H)′ =
{

x ∈ SL2(Z`) | tr x − 2 ∈ C(N (H)),2(x) ∈ [L0, L0]
}
,

and by the above it contains{
x ∈ SL2(Z`) | tr x ≡ 2 (mod `4s),2(x)≡ 0 (mod `4s)

}
⊇ B`(4s),

which concludes the proof of (i).
We are now left with the task of proving (ii). Consider first the map

G
det
→ Z×` →

Z×`

Z×2
`

∼=
Z

2Z

and let G1 be its kernel. Then [G :G1] ≤ 2, so we can replace G by G1 and assume
that the condition on the determinant is satisfied. We are reduced to showing that,
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under this hypothesis, either G ′ = SL2(Z`) or there exists a subgroup H of index at
most 12 that satisfies the right conditions on Sat(H)det=1. For notational simplicity,
we let π denote the projection map G→G(`). We now distinguish cases according
to ` and G(`) (cf. Theorem 3.13):

(-) if ` ≥ 5 and G(`) contains SL2(F`), then it follows from Lemma 3.15 that
G ′ = SL2(Z`).

(-) if ` = 3, we let S denote either a 3-Sylow of G(3) if the order of G(3) is
a multiple of 3, or the trivial group {Id} if it is not. Notice that G(3) is a
subgroup of {g ∈ GL2(F3) | det(g) is a square}, which has order 24, so the
index [G(3) : S] is at most 8. We set H = π−1(S). It is clear that [G : H ] ≤ 8,
and H satisfies the conditions in (i) by Remark 4.3, because (Sat H)det=1(3)
is either {± Id} or a group of order 6.

(-) if G(`) is exceptional, then by Lemma 3.14 there exists a cyclic subgroup B of
PG(`) with [PG(`) : B] ≤ 12: such a B can be taken to have order 3 (resp. 5)
if PG(`) is isomorphic to A4 or S4 (resp. to A5). Fix a generator [b] of B and
let ξ be the composition G→G(`)→PG(`). We set H := ξ−1(B); it is clear
that [G : H ]≤12. Let now b∈G(`) be an element that maps to [b] in B, and let
m be the (odd) order of [b]. We know that det b is a square in F×` , hence there
exists a λ∈ F×` such that det(λb)= 1. Notice now that (λb)m is a homothety (it
projects to the trivial element in PG(`)) and has determinant 1, so it is either
Id or − Id; replacing λ by −λ if necessary, we can assume that (λb)m =− Id.
By construction, every element in (Sat(H)det=1)(`)= Sat(H(`))det=1 can be
written as ±(λb)n for some n ∈ N and for some choice of sign. Now using
the fact that (λb)m =− Id, we see that (Sat(H)det=1)(`) is cyclic, generated
by λb: since the order of λb is either 6 or 10, H satisfies the conditions in (i)
by Remark 4.3.

(-) if G(`) is contained in a (split or nonsplit) Cartan subgroup, then the same is
true for the group (Sat(G)det=1)(`). If (Sat(G)det=1)(`) does not have order 4,
we are done, so suppose it does. Then PG(`) has at most 4 elements, and we
can take

H = ker(G→ G(`)→ PG(`)).

This H has index at most 4 in G, and H(`) has trivial image in PGL2(F`),
so H(`) is contained in the homotheties subgroup of GL2(F`). Therefore
(Sat(H))det=1(`) = Sat(H(`))det=1

= {± Id} and H satisfies the conditions
in (i).

(-) if G(`) is contained in the normalizer of a (split or nonsplit) Cartan subgroup C,
but not in C itself, then G has a subgroup G1 of index 2 whose image modulo
` is contained in C, and we are reduced to the Cartan case.
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(-) if G(`) is contained in a Borel subgroup, then the same is true for Sat(G)det=1(`).
To ease the notation, we set G2 = Sat(G)det=1. We can also assume that `
divides the order of G(`) (hence that of G2(`) as well), for otherwise we are
back to the (split) Cartan case. Now if |G2/N (G2)| 6= 4 we can set H = G; if,
on the contrary, |G2/N (G2)| = 4 we consider the group morphism

τ : G → G(`) → F×`

g 7→ [g] =
(

a b
0 c

)
7→ a/c.

Every g ∈ G is of the form λg2 for suitable λ ∈ Z×` and g2 ∈ G2, and since
τ(λg2)= τ(g2), we deduce τ(G)= τ(G2). On the other hand, when restricted
to G2 the function τ becomes

g 7→ [g] =
(

a b
0 1/a

)
7→ a2,

and as we have already remarked g 7→ [g] =
(a

0
b

1/a

)
7→ a is the quotient map

G2 � G2/N (G2). Hence τ factors through the quotient G2/N (G2) and we
have |τ(G)|= (|τ(G2)|) |4. We take H to be the kernel of τ . Then it is clear that
[G : H ] divides 4, and we claim that H satisfies the conditions in (i). To check
this last claim, notice first that H(`) is a subgroup of G(`), so it is contained
in a Borel subgroup. We also have kerπ ⊆ H , so G/H ∼= G/ kerπ

H/ kerπ =
G(`)
H(`) ; in

particular [G(`) : H(`)] divides 4, and therefore the order of H(`) is divisible
by `. Finally, any matrix

(a
0

b
c

)
in H(`) satisfies a/c = 1 by construction, so

the intersection Sat(H(`))∩SL2(F`) consists of matrices
(a

0
b
c

)
with a = c and

ac = 1; hence a = c =±1. This implies that the quotient of Sat(H)det=1(`)

by its `-Sylow has at most 2 elements, and since this quotient is exactly
Sat(H)det=1/N (Sat(H)det=1), the result follows. �

Remark 4.11. For future applications, we remark that the same proof shows that the
inequality [G :H ]≤24 appearing in Theorem 4.2(ii) can be replaced by the condition
[G : H ] | 48, and even by [G : H ] | 24 if in addition G satisfies det(G)⊆ Z×2

` .

5. Recovering G from L(G), when ` = 2

We now consider closed subgroups of GL2(Z2), and endeavor to show results akin
to those of the previous section. For GL2(Z2), the statement is as follows:

Theorem 5.1. Let G be a closed subgroup of GL2(Z2).

(1) Suppose that G(4) is trivial and det(G)≡1 (mod 8). The following implication
holds for all positive integers n: if L(G) contains 2nsl2(Z2), then the derived
subgroup G ′ of G contains the principal congruence subgroup B2(12n+ 2).
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(2) Without any assumption on G, the subgroup

H = ker(G→ G(4))∩ ker
(
G→ G(8)

det
→ (Z/8Z)×

)
satisfies [G : H ] ≤ 2 · 96= 192 and the conditions in (i).

Note that (ii) is immediate: the order of GL2(Z/4Z) is 96, and once we demand
that G(4) is trivial, the determinant modulo 8 can only take two different values. As
in the previous section, the core of the problem lies in understanding the subgroups
of SL2(Z2), so until the very last paragraph of this section the letter G will denote
a closed subgroup of SL2(Z2). In view of the result we want to prove, we will also
enforce the assumption that G has trivial reduction modulo 4; indeed in this context
the relevant statement is:

Theorem 5.2. Let G be a closed subgroup of SL2(Z2) whose reduction modulo 4
is trivial, and let s be an integer no less than 2. If L(G) contains 2ssl2(Z2), then G
contains B2(6s).

The idea of the proof is quite simple: despite the fact there is in general no reason
why 2(G) should be a group under addition, we will show that for every pair x, y
of elements of 2(G) it is possible to find an element that is reasonably close to
x + y and that lies again in 2(G). The error term will turn out to be quadratic in x
and y, which is not quite good enough by itself, since a correction of this order of
magnitude could still be large enough to destroy any useful information about x+ y;
the technical step needed to make the argument work is that of multiplying all the
elements we have to deal with by a power of 2 large enough so that the quadratic
error term becomes negligible with respect to the linear part. The rest of the proof
is really just careful bookkeeping of the correction terms appearing in the various
addition formulas. We shall continue using the notation from the previous section:

Notation. For x ∈ L := L(G), we set πi j (x)= xi j , the coefficient in the i-th row
and j-th column of the matrix representation of x in sl2(Z2). The maps πi j are
linear and continuous.

We start with a compactness lemma. Our arguments only yield (arbitrarily good)
approximations of elements of 2(G), and we need to know that this is enough to
show that the matrices we are approximating actually belong to 2(G).

Lemma 5.3. Let G be a closed subgroup of SL2(Z`), g an element of G, and e ≥ 2.
Suppose that 2(g) ≡ 0 (mod 2e). Then tr(g)− 2 is divisible by 22e. Moreover,
2−1
:2(G)∩ 22sl2(Z2)→ G is well-defined and continuous, and the intersection

2(G)∩ 22sl2(Z2) is compact.
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Proof. Write2(g)=
(a

c
b
−a

)
and g= tr(g)

2 Id+2(g). As G is a subgroup of SL2(Z2),
we have the identity

1= det g = det
( tr(g)

2 Id+2(g)
)
=
( tr(g)

2

)2
− a2
− bc.

Furthermore, G (hence g) is trivial modulo 4 by assumption, so an immediate
calculation shows that 1= det(g)≡ 1+ (tr(g)− 2) (mod 8). It follows that tr(g)

2 is
the unique solution to the equation λ2

= 1+a2
+bc that is congruent to 1 modulo 4,

hence tr(g)
2 =

√
1+ a2+ bc =

∑
∞

j=0
(1/2

j

)
(a2
+ bc) j by Lemma 3.2. Given that

a2
+ bc ≡ 0 (mod 22e) and 2e > 3, using again Lemma 3.2 we find

v2(tr(g)− 2)= v2
(
2
( tr(g)

2 − 1
))
= 1+ v2

(√
1+ (a2+ bc)− 1

)
≥ 2e.

The case e = 2 of the above computation shows that every x ∈ 22sl2(Z2) admits
exactly one inverse image in SL2(Z2) that reduces to the identity modulo 4, so
2 : B2(2)→ 22sl2(Z2) is a continuous bijection: we have just described the (two-
sided) inverse, so we only need to check that the image of B2(2) under 2 does
indeed land in 22sl2(Z2). We have to show that if g=

( d
c

b
e

)
is any element of B2(2),

then 2(g)=
(
(d−e)/2

c
b

(e−d)/2

)
has all its coefficients divisible by 4. This is obvious

for b and c. For the diagonal ones, note that de − bc = 1, so de ≡ 1 (mod 8)
and hence d ≡ e (mod 8) and d−e

2 ≡ 0 (mod 4) as required. Observe now that
a2
+ bc = 1

2 tr(2(g)2), so we can write

2−1(x)= x +
√

1+ 1
2 tr(x2) · Id,

which is manifestly continuous. Therefore, 2 establishes a homeomorphism be-
tween B2(2) and 22sl2(Z2).

In particular, the map 2−1
:2(G)∩ 22sl2(Z2)→ G is well-defined and continu-

ous, and we finally deduce that the intersection 2(G)∩ 22sl2(Z2)=2(G ∩B2(2))
is compact, since this is true for G ∩B2(2) and 2 is continuous. �

The core of the proof of Theorem 5.2 is contained in the following lemma:

Lemma 5.4. Let e1, e2 be integers not less than 2 and x1, x2 be elements of 2(G).
Suppose that x1 ≡ 0 (mod 2e1) and x2 ≡ 0 (mod 2e2). Then 2(G) contains an
element y congruent to x1+ x2 modulo 2e1+e2−1. If , furthermore, both x1 and x2

are in upper-triangular form, then we can find such a y having the same property.

Proof. Write x1 =2(g1), x2 =2(g2) and set y =2(g1g2). Applying Lemma 3.10,
we find

2(y− x1− x2)= [x1, x2] + (tr(g1)− 2)x2+ (tr(g2)− 2)x1.

Consider the 2-adic valuation of the terms on the right. The commutator [x1, x2]

is clearly 0 modulo 2e1+e2 . We also have tr(g1)−2≡ 0 (mod 22e1) and tr(g2)−2≡
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0 (mod 22e2) by Lemma 5.3, so the last two terms are divisible by 22e1+e2 and
2e1+2e2 , respectively. It follows that the right hand side of this equality is zero
modulo 2e1+e2 , and upon dividing by 2 we get the first statement in the lemma.

For the last claim, simply note that if x1, x2 are upper-triangular then the same
is true for all of the error terms, so y = x1+ x2+ (triangular error terms) is indeed
triangular. �

As a first application, we show that the image of 2 is stable under multiplication
by 2 (up to units):

Lemma 5.5. Let x ∈2(G) and m ∈N. There exists a unit λ ∈ Z×2 such that λ ·2m x
again belongs to 2(G).

Proof. Clearly there is nothing to prove for m = 0, so let us start with the case
m = 1. Write x =2(g) for a certain g ∈ G. By our assumptions on G, the trace of
g is congruent to 2 modulo 4, so λ= tr(g)

2 is a unit in Z2. We can therefore form
g̃ = 1

λ
g, which certainly exists as a matrix in GL2(Z2), even though it does not

necessarily belong to G. Our choice of g̃ is made so as to ensure tr(g̃)= 2, so the
formula given in Lemma 3.10 (applied with g1 = g2 = g̃) yields

2(2(g̃2)−2(g̃)−2(g̃))= [2(g̃),2(g̃)] + (tr(g̃)− 2)2(g̃)+ (tr(g̃)− 2)2(g̃),

where the right hand side vanishes. We deduce 2(g̃2) = 22(g̃), and it is now
immediate to check that 2(g2) = λ · 22(g), whence the claim for m = 1. An
immediate induction then proves the general case. �

We now take the first step towards understanding the structure of 2(G), namely
showing that a suitable basis of L can be found inside 2(G). Note that L , being
open, is automatically of rank 3.

Lemma 5.6. There exist a basis {x1, x2, x3} ⊆ 2(G) of L and scalars σ̃21, σ̃31,
σ̃32 ∈ Z2 with the following properties: π21(x2− σ̃21x1)= 0, π21(x3− σ̃31x1)= 0
and

π21(x3− σ̃31x1− σ̃32(x2− σ̃21x1))= π11(x3− σ̃31x1− σ̃32(x2− σ̃21x1))= 0.

Remark 5.7. The slightly awkward equations appearing in the statement of this
lemma actually have a simple interpretation: they represent that it is possible to
subtract a suitable multiple of x1 from x2 and x3 so as to make them upper-triangular,
and that it is then further possible to subtract one of the matrices thus obtained from
the other so as to leave it with only one nonzero coefficient (in the top right corner).

Proof. This is immediate from Lemma 3.11, which can be applied after identifying
sl2(Z2) ∼= Z3

2 via
(a

c
b
−a

)
7→ (c, a, b). Note that with this identification, the three

canonical projections Z3
2 → Z2 become π21, π11 and π12, respectively, and the

vanishing conditions in the statement become exactly those of Lemma 3.11. �
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As previously mentioned, in order to make the quadratic error terms appearing in
Lemma 5.4 negligible, we need to work with matrices that are highly divisible by 2:

Lemma 5.8. Let x1, x2, x3 be a basis of L. There exist elements y1, y2, y3 ∈2(G)
and units λ1, λ2, λ3 ∈ Z×2 such that yi = λi · 24s xi for i = 1, 2, 3; in particular,
y1, y2, y3 are zero modulo 24s , and the module generated by y1, y2, y3 over Z2

contains 25ssl2(Z2).

Proof. Everything is obvious (by Lemma 5.5) except perhaps the last statement.
Note that y1, y2, y3 differ from 24s x1, 24s x2, 24s x3 only by multiplication by units,
so these two sets generate over Z2 the same module M . But the xi generate
L ⊇ 2ssl2(Z2), hence M = 24s L contains 25ssl2(Z2). �

Notation. Let x1, x2, x3 be a basis of L as in Lemma 5.6, and let y1, y2, y3 be the
elements given by Lemma 5.8 when applied to x1, x2, x3. The properties of the xi

become corresponding properties of the yi :

• there is a scalar σ21 ∈ Z2 such that

y2− σ21 · y1 =

(
b11 b12

0 −b11

)
∈ sl2(Z2);

• there are scalars σ31, σ32 such that

y3− σ31 y1 =

(
d11 d12

0 −d11

)
∈ sl2(Z2),

y3− σ31 y1− σ32(y2− σ21 · y1)=

(
0 c12

0 0

)
∈ sl2(Z2).

To ease the notation a little we set

t1 = y1 =

(
a11 a12

a21 −a11

)
, t2 =

(
b11 b12

0 −b11

)
and t3 =

(
0 c12

0 0

)
.

It is clear that {t1, t2, t3} and {y1, y2, y3} generate the same module M over Z2,
so in particular M contains 25ssl2(Z2).

Lemma 5.9. The 2-adic valuations of a21, b11 and c12 do not exceed 5s.

Proof. We can express
( 0

25s
0
0

)
as a Z2-linear combination(

0 0
25s 0

)
= λ1t1+ λ2t2+ λ3t3

of t1, t2, t3, for a suitable choice of λ1, λ2, λ3 in Z2. Comparing the bottom-left
coefficients, we find λ1a21 = 25s , so v2(a21)≤ 5s, as claimed.

The same argument, applied to the representation of
( 25s

0
0
−25s

)
(resp.

( 0
0

25s

0

)
) as a

combination of t1, t2, t3, gives b11 | 25s (resp. c12 | 25s) and finishes the proof of the
lemma. �
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For future reference, and since it is easy to lose track of all the notation, we
record here two facts we will need later:

Remark 5.10. We have σ32 =
d11
b11

and v2(d12− σ32b12)= v2(c12)≤ 5s.

We now further our investigation of the approximate additive structure of 2(G).
Since essentially all of the arguments are based on sequences of approximations
the following notation will turn out to be very useful.

Notation. We write a = b+ O(2n) if a ≡ b (mod 2n).

Lemma 5.11. Let a1, a2 ∈ 2(G) ∩ 24ssl2(Z2) and ξ ∈ Z2. Then 2(G) contains
an element z congruent to a1 − ξa2 modulo 28s−1. If moreover a1, a2 are upper-
triangular, then z can be chosen to have the same property.

Proof. We construct a sequence (zn)n≥0 of elements of 2(G) and a sequence
(ξn)n≥0 of elements of Z2 satisfying ξn = ξ + O(2n) and

zn = a1− ξna2+ O(28s−1).

We can take z0 = a1 and ξ0 = 0. Given zn, ξn , we proceed as follows. If we let
wn = v2(ξn − ξ), then wn ≥ n by the induction hypothesis, and by Lemma 5.5 we
can find a unit λn such that 2wnλna2 also belongs to 2(G). Note that both zn and
2wnλna2 are zero modulo 24s . Apply Lemma 5.4 to (x1, x2) = (zn, 2wnλna2): it
yields the existence of an element zn+1 of2(G) of the form zn+2wnλna2+O(28s−1).
We take ξn+1 = (ξn − 2wnλn); let us check that ξn+1, zn+1 have the right properties.
Clearly,

zn+1 = zn + 2wnλna2+ O(28s−1)= a1− (ξn − 2wnλn)a2+ O(28s−1).

On the other hand, the definition of wn implies that ξn − ξ = 2wn ·µn where µn

is a unit, so

v2(ξn+1− ξ)= v2((ξn − 2wnλn)− ξ)

= v2(2wn ·µn − 2wn · λn)

= wn + v2(µn − λn)≥ wn + 1≥ n+ 1,

since µn, λn are both units and therefore odd. To conclude the proof it is simply
enough to take z = z8s−1: indeed

a1− ξa2− z8s−1 = a1− ξa2− (a1− ξ8s−1a2+ O(28s−1))

= (ξ8s−1− ξ)a2+ O(28s−1)

= O(28s−1)

as required. The proof in the upper-triangular case goes through completely un-
changed, simply using the corresponding second part of Lemma 5.4. �
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The above lemma is still not sufficient, since it cannot guarantee that we will ever
find a matrix with a coefficient that vanishes exactly. This last remaining obstacle
is overcome through the following result:

Lemma 5.12. Let a1, a2∈2(G)∩24ssl2(Z2) and ξ ∈Z2. Suppose that for a certain
pair (i, j), the (i, j)-th coefficient of a1−ξa2 vanishes while v2◦πi j (a2)≤ 5s. Then
2(G) contains an element z whose (i, j)-th coefficient is zero and that is congruent
to a1− ξa2 modulo 27s−1. If , furthermore, a1, a2 are upper-triangular, then this z
can be chosen to be upper-triangular as well (while still satisfying πi j (z)= 0).

Proof. Let z0 be the element whose existence is guaranteed by Lemma 5.11 when
applied to a1, a2, ξ . We propose to build a sequence (zn)n≥0 of elements of 2(G)
satisfying the following conditions:

(1) zn+1 ≡ zn (mod 27s−1), and therefore zn ≡ z0 ≡ 0 (mod 24s);

(2) the sequencewn=v2◦πi j (zn) is monotonically strictly increasing; in particular
we have wn ≥ w0 ≥ 8s− 1.

Suppose we have constructed zn, wn and let k= v2◦πi j (a2)≤ 5s. By Lemma 5.5,
we can find a unit λ such that 2wn−kλa2 also belongs to 2(G) (note that wn ≥

8s−1≥5s≥ k). We know that zn≡0 (mod 24s) and 2wn−kλa2≡0 (mod 2wn−k+4s)

(note that a2 ≡ 0 (mod 24s)). Apply Lemma 5.4 to (x1, x2) = (zn, 2wn−kλa2): it
yields the existence of an element zn+1 of 2(G) that is congruent to zn+2wn−kλa2

modulo 2(4s+wn−k)+4s−1.
We can write πi j (zn)= 2wnµn and πi j (a2)= 2kξ with µn, ξ ∈ Z×2 , so

v2 ◦πi j (zn + 2wn−kλa2)= v2(2wnµn + 2wn−k2k
· ξλ)= wn + v2(µn + ξλ),

and since µn, ξ and λ are all odd the last term is at least wn+ 1. As k is at most 5s
by hypothesis we deduce

wn+1 = v2 ◦πi j (zn+1)

= v2 ◦πi j
(
zn + 2wn−kλa2+ O(2(4s+wn−k)+4s−1)

)
≥min

{
v2 ◦πi j (zn + 2wn−kλa2), 8s− 1+wn − k

}
>wn.

As 2wn−kλa2≡ 0 (mod 2wn−k+4s), the difference zn+1−zn is zero modulo 2wn−s ,
hence a fortiori modulo 27s−1 since wn ≥ w0 ≥ 8s− 1.

Lemma 5.3 says that 2(G)∩ 22sl2(Z2) is compact, so zn admits a subsequence
converging to a certain z ∈2(G). By continuity of πi j , it is immediate to check that
πi j (z)= 0, and since every zn is congruent modulo 27s−1 to z0 the same is true for z.
Given that z0 is congruent to a1− ξa2 modulo 28s−1, the last assertion follows.

Finally, the upper-triangular case is immediate, since it is clear from the con-
struction that if a1, a2 are upper-triangular then the same is true for all the approx-
imations zn . �
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The result we were really aiming for follows at once:

Proposition 5.13. Let G be a closed subgroup of SL2(Z2) whose reduction modulo
2 is trivial, and let s be an integer no less than 2. If L(G) contains 2ssl2(Z2), then
2(G) contains both an element of the form

( 0
0

c̃12
0

)
, where v2(c̃12)≤ 5s, and one of

the form
( f11

0
0
− f11

)
, where v2( f11)≤ 6s.

Proof. We apply Lemma 5.12 to a1 = y2, a2 = y1, ξ = σ21, (i, j) = (2, 1); the
hypotheses are satisfied since y1 ≡ y2 ≡ 0 (mod 24s) and v2 ◦ π21(y1) ≤ 5s by
Lemma 5.9. It follows that 2(G) contains a matrix b̃ of the form

( b̃11
0

b̃12
−b̃11

)
, where

we have b̃i j ≡ bi j (mod 27s−1) for every 1≤ i, j ≤ 2; in particular, v2(b̃11)≤ 5s.
The same lemma, applied to a1 = y3, a2 = y1 and ξ = σ31, implies that 2(G)

contains a matrix d̃ of the form
( d̃11

0
d̃12
−d̃11

)
, where for every i, j we have d̃i j ≡

di j (mod 27s−1); in particular,

v2(d̃11)≥min{7s− 1, v2(d11)} ≥ v2(b11)= v2(b̃11).

Now since v2(d̃11)≥ v2(b̃11), we can find a scalar ζ such that

d̃ − ζ b̃ =
(

d̃11 d̃12

0 −d̃11

)
− ζ

(
b̃11 b̃12

0 −b̃11

)
=

(
0 e12

0 0

)
,

so applying once again Lemma 5.12 (more precisely, the version for triangular
matrices) we find that 2(G) contains a certain matrix ẽ =

( 0
0

ẽ12
0

)
, where ẽ12 ≡

e12 (mod 27s−1). Observe now that

ζ =
d̃11

b̃11
=

d11+ O(27s−1)

b11+ O(27s−1)
=

d11

b11
+ O(27s−1−v2(b11))=

d11

b11
+ O(22s−1),

so upon multiplying by b̃12, which is divisible by 24s , we obtain the congruence
ζ b̃12 ≡

d11
b11

b̃12 (mod 26s−1). Since furthermore b̃12 ≡ b12 (mod 26s−1) we deduce
ζ b̃12 ≡

d11
b11

b12 (mod 26s−1). But then the inequality v2(c12)≤ 5s (cf. Remark 5.10)
implies

v2(ẽ12)= v2
(
e12+ O(27s−1)

)
= v2

(
d̃12− ζ b̃12+ O(27s−1)

)
= v2

(
d12−

d11
b11

b12+ O(26s−1)
)

= v2
(
c12+ O(26s−1)

)
≤ 5s.

The existence of the diagonal element is now almost immediate: indeed, we can
apply once more Lemma 5.12 to the difference

2s
(

b̃11 b̃12

0 −b̃11

)
−

2s b̃12

ẽ12

(
0 ẽ12

0 0

)
=

(
b̃11 0
0 −b̃11

)
,
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the hypotheses being satisfied since clearly 2s b̃≡ 0 (mod 25s) and v2(ẽ12)≤ 5s for
what we have just seen. It follows that 2(G) contains a matrix

( f11
0

0
− f11

)
congruent

to 2s
( b̃11

0
0
−b̃11

)
modulo 27s−1, and this is enough to deduce

v2( f11)= v2(2sb11+ O(27s−1))= s+ v2(b11)≤ 6s. �

Proof of Theorem 5.2. With all the preliminaries in place this is now quite easy: by
Proposition 5.13 we know that 2(G) contains an element of the form

(0
0

c̃12
0

)
, where

v2(c̃12)≤ 5s, and by the explicit description of 2−1 (Lemma 5.3) this element must
come from Rc̃12 =

(1
0

c̃12
1

)
∈ G. Similarly, if we let f denote the diagonal element( f11

0
0
− f11

)
, then

2−1( f )=
(

f11 0
0 − f11

)
+

√
1+ 1

2 tr( f 2) · Id

is an operator of the form Dc =
( 1+c

0
0

1/(c+1)

)
, where

v2(c)= v2

(
f11+

√
1+ 1

2 tr( f 2)− 1
)

= v2
(

f11+ O(22v2( f11)−1)
)

= v2( f11)≤ 6s.

Observe now that replacing G with G t , the group {gt
| g ∈ G} endowed with the

obvious product gt
1 · g

t
2 = (g2g1)

t , simply exchanges L(G) for L(G)t , so if L(G)
contains the (symmetric) set 2ssl2(Z2), then the same is true for L(G t). Thus G t

contains R25s and G contains L25s . We have just shown that G contains La, Rb and
Dc for certain a, b, c of valuation at most 6s, so it follows from Lemma 3.4 that G
contains B2(6s). �

Remark 5.14. The above result should be thought of as an analogue of Theorem 3.9
for `= 2, even though the present result is actually much weaker. It would of course
be interesting to have a complete classification result for pro-2 groups purely in
terms of Lie algebras, but as pointed out in [Pink 1993] the problem seems to be
substantially harder than for ` 6= 2.

It is now easy to deduce Theorem 5.1(i):

Proof. The proof follows closely that of Theorem 4.2(i): we can replace G first by
H = G · (1+8Z2) and then by H0 = H ∩SL2(Z2) without altering L(G) or G ′, so
we are reduced to working with subgroups of SL2(Z2). Note now that n ≥ 2, since
by hypothesis every element in G (and hence in H0) has its off-diagonal coefficients
divisible by 4. Theorem 5.2 then guarantees that H0 contains B2(6n), so G ′ = H ′0
contains B2(12n+ 2) because of Lemma 3.3. �
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6. Lie algebras modulo `n

Fix any prime number ` and let L be a topologically open and closed, Z`-Lie
subalgebra of sl2(Z`). The same arguments of the previous section, namely an
application of Lemma 3.11, yield the existence of a basis of L of the form

x1 =

(
a11 a12

a21 −a11

)
, x2 =

(
b11 b12

0 −b11

)
, x3 =

(
0 c12

0 0

)
.

Definition 6.1. A basis of this form will be called a reduced basis.

There is clearly no uniqueness of such an object, but in what follows we will
just assume that the choice of a reduced basis has been made.

Notation. We let k(L), or simply k, denote the number minm∈L v`(m21), where
m21 is the bottom-left coefficient of m in the standard matrix representation of
elements of sl2(Z`). Furthermore, for every positive n we denote by L(`n) be the
image of the mod-`n reduction map πn : L→ sl2(Z/`

nZ); clearly L(`n) is a Lie
algebra over Z/`nZ.

Remark 6.2. It is apparent from the definition of a reduced basis that k(L)=v`(a21).
Also notice that, by definition, the images of x1, x2, x3 in L(`n) generate it as a
(Z/`nZ)-module.

The following statement allows us to deduce properties of G(`n) from corre-
sponding properties of L(`n):

Proposition 6.3. Let L be as above, and assume that L is obtained as 2(G) for
a certain closed subgroup G of GL2(Z`) (whose reduction modulo 2 is trivial if
`= 2). For every integer m ≥ 1, let G(`m) be the image of G in GL2(Z/`

mZ), and
let jm = |{i ∈ {1, 2, 3} | xi 6≡ 0 (mod `m)}| (that is, exactly jm among x1, x2 and x3

are nonzero modulo `m). For every n ≥ 1 the following are the only possibilities
(recall that v = v`(2)):

• jn is at most 1 and G(`n) is abelian.

• jn = 2 and either j2n = 3 or G(`n−k(L)+1−2v) is contained in the subgroup of
upper-triangular matrices (up to a change of coordinates in GL2(Z`)).

• jn = 3 and L contains `n+2k(L)−1sl2(Z`).

Remark 6.4. The exponent n+2k(L)−1 is best possible: fix integers k ≥ 0, n ≥ 1
and let L be the Lie algebra generated (as a Z`-module) by x1 =

( 1
`k

0
−1

)
, x2 =(

`k+n−1

0
0

−`k+n−1

)
, and x3=

( 0
0
`n−1

0

)
. Then clearly k(L)=k, jn(L)=3, and it is easy to

check that n+2k−1 is the smallest exponent s such that `ssl2(Z`) is contained in L .

Proof. Assume first jn ≤ 1. It is clear that every element of G(`n) can we written as
λ Id+mn for some λ ∈ Z/`nZ and mn ∈ L(`n). Now L is generated by x1, x2, x3,
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so in turn every mn is of the form πn(µ1x1+µ2x2+µ3x3), and since at most one of
πn(x1), πn(x2), πn(x3) is nonzero we can find an ln ∈ L(`n) such that, for every mn ,
there exists a scalar µ ∈ Z/`nZ with mn = µ ln . It follows that every element of
G(`n) can be written as λ Id+µ ln for suitable λ,µ, and since Id and ln commute,
our claim follows.

Next consider the case jn = 2. We can safely assume that j2n = 2, for otherwise
we are done (notice that j2n ≥ jn = 2). Under this assumption, it is clear that for
i = 1, 2, 3, we have πn(xi )= 0 if and only if π2n(xi )= 0. Suppose first πn(x1)= 0,
so that k(L)≥ 1. Then G(`n) is a subset of

Z/`nZ · Id+Z/`nZ ·πn(x2)+Z/`nZ ·πn(x3),

and Id, πn(x2), πn(x3) are upper-triangular matrices. So G(`n), and hence also
G(`n−k(L)+1−2v) since k(L)≥ 1, is in triangular form.

Suppose next πn(x1) 6=0. Assume that πn(x3)=0 (the other case being analogous,
as we are only going to use that x2 is upper-triangular). L is a Lie algebra, hence so
is L(`2n); furthermore, every element in L(`2n) is a combination of π2n(x1), π2n(x2)

with coefficients in Z/`2nZ. In particular, there exist ξ1, ξ2 ∈ Z/`2nZ such that

−2b11x1+ 2a11x2 =

(
−a21b12 4(a11b12− a12b11)

0 a21b12

)
≡ ξ1x1+ ξ2x2 (mod `2n).

Matching the bottom-left coefficients, we find ξ1a21 ≡ 0 (mod `2n), so, using
v`(a21)= k(L), we immediately deduce ξ1≡ 0 (mod `2n−k(L)). Reducing the above
congruence modulo `2n−k(L) we then have the relations{

−a21b12 ≡ ξ2b11 (mod `2n−k(L))

4(a11b12− a12b11)≡ ξ2b12 (mod `2n−k(L)).
(6-1)

We now introduce the vector y =
( b12
−2b11

)
∈ Z2

`. An immediate calculation shows
that this is an exact eigenvector for x2 (associated with the eigenvalue −b11), and
on the other hand it is also an approximate eigenvector for 2x1, in the sense that
2x1 · y ≡ (ξ2− 2a11)y (mod `2n−k(L)). Indeed,

2x1 · y =
(

a11 a12

a21 −a11

)(
2b12

−4b11

)
=

(
2a11b12− 4a12b11

2a21b12+ 4a11b11

)
,

and using (6-1) we find

2x1 · y =
(

2a11b12− 4a12b11

2a21b12+ 4a11b11

)
≡

(
2a11b12+ ξ2b12− 4a11b12

−2ξ2b11+ 4a11b11

)
≡ (ξ2− 2a11)y (mod `2n−k(L)),

as claimed.
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Now if ` 6= 2 we immediately deduce x1 · y ≡ (ξ2/2− a11)y (mod `2n−k(L)). If,
on the other hand `= 2, then we would like to prove that v2(ξ2)≥ 1 in order to be
able to divide by 2. Observe that y is not zero modulo 2n+1, since its coordinates
are (up to a factor of 2) the entries of x2, which we have assumed not to reduce to
zero in L(2n).

Let α=min{v2(2b11), v2(b21)} ≤ n and reduce the last congruence modulo 2α+1.
Then 2x1 · y ≡ x1 · (2y)≡ 0 (mod 2α+1), so (ξ2− 2a11)y ≡ 0 (mod 2α+1), which
implies that ξ2 is even (that is to say, v2(ξ2) ≥ 1), for otherwise multiplying by
λ− 2a11 would be invertible modulo 2α+1 and we would find y ≡ 0 (mod 2α+1),
contradicting the definition of α. It follows that we can indeed divide the above
congruence by 2 to get

x1 · y ≡ (ξ2/2− a11)y (mod 22n−k(L)−1).

Equivalently, the following congruence holds for every prime `:

x1 · y ≡
(
ξ2/2− a11

)
y (mod `2n−k(L)−v).

Note now that it is in fact true for every ` that y is not zero modulo `n+v (its
coordinates are, up to a factor of 2, the entries of x2, which we have assumed not
to reduce to zero modulo `n).

Let again α = min{v`(2b11), v`(b21)} ≤ n− 1+ v and set ỹ = `−α y. Dividing
the congruence x1 · y ≡ (ξ2/2− a11)y (mod `2n−k(L)−v) by `α, we get x1 · ỹ ≡(
ξ2/2− a11

)
ỹ (mod `n−k(L)+1−2v), where ỹ =

( ỹ1
ỹ2

)
is a vector with at least one

coordinate an `-adic unit. Assume by symmetry that v`(ỹ1) = 0 and introduce
the base-change matrix P =

( ỹ1
ỹ2

0
1

)
: this is then an element of GL2(Z`), since its

determinant ỹ1 is not divisible by `.
An element of G(`n−k(L)+1−2v) will be of the form g = λ Id+µ1x1+µ2x2, so

by construction conjugating G via P puts G(`n−k(L)+1−2v) in upper-triangular form.
Indeed, the first column of xi (for i=1, 2) in the coordinates defined by P is given by

P−1xi P
(1

0

)
= P−1xi · ỹ = P−1((ξ2/2− a11)ỹ+ `n−k(L)+1−2vw

)
= (ξ2/2− a11)

(1
0

)
+ `n−k(L)+1−2vP−1w

≡ (ξ2/2− a11)
(1

0

)
(mod `n−k(L)+1−2v)

where w is a suitable vector in Z2
` (that vanishes for i = 2).

Finally, suppose jn=3. Then we have in particular πn(x3) 6=0, so v`(c12)≤n−1.
As L is a Lie algebra, we see that it contains

x4 = [x1, x3] − 2a11x3 =

(
−a21c12 0

0 a21c12

)
,
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whose diagonal entries have valuation at most v`(a21)+ v`(c12)≤ k(L)+ (n− 1).
Furthermore, L also contains the linear combination

x5 = `
n+k(L)−1x1+

`n+k(L)−1a11

a21c12
x4−

`n+k(L)−1a12

c12
x3 =

(
0 0

`n+k(L)−1a21 0

)
.

Notice that the coefficients `n+k(L)−1a11
a21c12

and `n+k(L)−1a12
c12

have positive `-adic valuation
by what we have already shown, and that the valuation of the only nonzero coefficient
of x5 is n+ 2k(L)− 1. Setting

s1 =

(
0 1
0 0

)
, s2 =

(
1 0
0 −1

)
, s3 =

(
0 0
1 0

)
,

we see that L contains the three elements x3 = c12s1, x4 = −a21c12s2, x5 =

`n+k(L)−1a21s3. By what we have already proved, we have

max
{
v`(c12), v`(−a21c12), v`(`

n+k(L)−1a21)
}
= n+ 2k(L)− 1,

so the Z`-module generated by x3, x4, x5 contains `n+2k(L)−1sl2(Z`), and a fortiori
so does L . �

Corollary 6.5. Let G be a closed subgroup of GL2(Z`) satisfying property (??) of
Theorem 4.2 (resp. G(4)= {Id} and det(G)≡ 1 (mod 8) if `= 2). Then for every
positive integer n ≥ k(L(G)), at least one of the following holds:

(1) G(`n) is abelian.

(2) G(`n−k(L(G))+1−2v) is contained in the subgroup of upper-triangular matrices
(up to a change of coordinates in GL2(Z`)).

(3) G ′ contains the principal congruence subgroup

B`(16n− 4)= (Id+`16n−4gl2(Z`))∩SL2(Z`)

if ` is odd, and it contains B2(48n− 10) if `= 2.

Proof. To ease the notation, set L = L(G). Consider L(`n) and distinguish cases
depending on jn as in the statement of the previous proposition. If jn ≤ 1 we are in
case (1) and we are done. If jn ≥ 2 we begin by proving that either (2) holds or L
contains `4n−1sl2(Z`).

If jn = 2 and j2n = 2, then we are in situation (2) by the previous proposition.
If, on the other hand, jn = 2 and j2n = 3, then (again by Proposition 6.3) we have

L ⊇ `2n+2k(L)−1sl2(Z`)⊇ `
4n−1sl2(Z`)

since n ≥ k(L). Finally, for jn = 3 the proposition yields directly

L ⊇ `n+2k(L)−1sl2(Z`)⊇ `
3n−1sl2(Z`).

In all cases, property (??) (resp. Theorem 5.1(i) for `= 2) now implies that G ′

contains B`(16n− 4) (resp. B2(48n− 10)) as claimed. �
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7. Application to Galois groups

We now plan to apply the above machinery to the Galois representations attached
to an elliptic curve. Let therefore K be a number field and E an elliptic curve over
K without (potential) complex multiplication.

Notation. ` is any rational prime, n a positive integer and G` the image of
Gal(K/K ) inside Aut T`(E) ∼= GL2(Z`). As before, v is 0 or 1 according to
whether ` is odd or even, respectively.

If ` is odd (resp. ` = 2), then by Theorem 4.2 (resp. Theorem 5.1) we know
that either G` contains a subgroup H` satisfying [G` : H`] ≤ 24 (respectively
[G` : H`] ≤ 192 for ` = 2) and the hypotheses of Corollary 6.5, or otherwise
G ′` = SL2(Z`). In this second case, we put H` = G`.

We also denote by K` the extension of K fixed by H`. The degree [K` : K ] is
then bounded by 24 for odd `, and by 2 · |GL2(Z/4Z)| = 2 · 96 for ` = 2. For a
fixed `, upon replacing K with K` we are reduced to the case where G` satisfies the
hypotheses of Corollary 6.5. In order to apply this result we want to have numerical
criteria to exclude the “bad” cases (1) and (2). These numerical bounds form the
subject of Lemma 7.1 and Proposition 7.4 below, whose proofs are inspired by the
arguments of [Masser and Wüstholz 1993c; 1989].

Lemma 7.1. If `n - b0(K , E), the group G`(`
n) cannot be put in triangular form.

Proof. Suppose that G`(`
n) is contained (up to a change of basis) in the group of

upper-triangular matrices. The subgroup 0 of E[`n
] given (in the coordinates in

which G`(`
n) is triangular) by

0 =
{(a

0

) ∣∣ a ∈ Z/`nZ
}

is Gal(K/K )-stable, hence defined over K . Consider then E∗ = E/0 and the
natural projection π : E → E∗ of degree |0| = `n . By Theorem 2.8, we also
have an isogeny E∗→ E of degree b, with b | b0(K , E). Composing the two, we
get an endomorphism of E that kills 0, and therefore corresponds (since

( 1
0

)
is

annihilated by `n) to multiplication by a certain `nd , d ∈ Z. Taking degrees, we get
`n
· b = |0| · b = d2`2n , so `n

| b and `n
| b0(K , E). �

Corollary 7.2. Let L be the special Lie algebra of G` (supposing that G`(2) is
trivial if ` = 2). The inequality k(L) ≤ v`(b0(K , E)) holds, so that in particular
`k(L)
| b0(K , E).

Proof. Let t = v`(b0(K , E)). If by contradiction we had k(L)≥ t+1, then L(`t+1)

would be triangular, and therefore so would be G`(`
t+1)⊆ Z/`t+1Z · Id+L(`t+1),

which is absurd, since `t+1 - b0(K , E). �
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Corollary 7.3. If `n - b0(K , E), the group G`(`
n) does not consist entirely of scalar

matrices. In particular, this is true for G`(`
v`(b0(K ,E))+1).

Proposition 7.4. If `2n does not divide b0(K , E)4b0(K , E × E), the group G`(`
n)

is not abelian. In particular, the group G`(`) is not abelian if ` does not divide
b0(K , E)b0(K , E × E).

Proof. For simplicity, set d = b0(K , E). By Corollary 7.3, there is an α ∈G` whose
image modulo `1+v`(d) is not a scalar matrix. Suppose now that G`(`

n) is abelian.
The subgroup 0=

{
(x, α(x)) | x ∈ E[`n

]
}
⊂ E×E is defined over K , since for any

γ ∈ G`(`
n) we have γ · (x, α(x))= (γ · x, γ ·α(x))= (γ · x, α(γ · x)) as G`(`

n) is
commutative. We can therefore form the quotient K -variety E∗= (E×E)/0, which
comes equipped with a natural isogeny E × E � E∗ of degree |0| = E[`n

] = `2n;
on the other hand, Theorem 2.8 yields the existence of a K -isogeny E∗→ E × E
of degree b | b0(K , E × E). Composing the two, we obtain an endomorphism
ψ of E × E , which (given that E does not admit complex multiplication) can be
represented as a 2×2 matrix

( e11
e21

e12
e22

)
with coefficients in Z and nonzero determinant.

Now since ψ kills 0, we must have e11x + e12α(x)= 0 and e21x + e22α(x)= 0
for every x ∈ E[`n

]. Let η = min{v`(ei j )} and suppose by contradiction that
η < n− v`(d). For the sake of simplicity, let us assume this minimum is attained
for e12 (the other cases being completely analogous: the situation is manifestly
symmetric in the index i , and to show that it is symmetric in j , it is enough to
compose with α−1, which is again a nonscalar matrix). Dividing the equation
e11x + e12α(x)= 0 by `η, we get

e11

`η
x +

e12

`η
α(x)≡ 0 (mod `n−η), ∀x ∈ E[`n

],

whence e11

`η
x +

e12

`η
α(x)= 0, ∀x ∈ E[`n−η

],

where now e12
`η

is invertible modulo `n−η, being relatively prime to `. Multiplying
by the inverse of e12

`η
, we then find that

α(x)=−
e11

`η

(e12

`η

)−1
x, ∀x ∈ E[`n−η

],

i.e., α is a scalar modulo `n−η. By definition of α, this implies `n−η
| d, so

n−η≤ v`(d), a contradiction. It follows that `2n`−2v`(d) | `2η
|det

( e11
e21

e12
e22

)
. Squaring

this last divisibility, we find

`4n`−4v`(d)
∣∣ (det

(
e11 e12

e21 e22

))2

= deg(ψ)= b`2n,

so `2n`−4v`(d) | b and `2n
| `4v`(d)b0(K , E × E) | d4 b0(K , E × E). The second

assertion follows immediately from the fact that ` is prime. �
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With these results at hand it is now immediate to deduce the following theorem,
where we use the notation introduced at the beginning of this section and the symbol
B`(n) of Section 3.

Theorem 7.5. Let ` be a prime and set D(`) = b0(K`, E)5b0(K`, E × E). Let n
be a positive integer. Suppose that `n−v does not divide D(`): then H ′` contains
B`(16n− 4) for odd `, and it contains B2(48n− 10) for `= 2.

Proof. By the discussion at the beginning of this section, there are two possibilities:
if the derived subgroup G ′` is all of SL2(Z`), then the conclusion is obvious since
H` = G`; if this is not the case, then H` satisfies the hypotheses of Corollary 6.5.
Note that the image of Gal(K`/K`) in Aut T`(E) is exactly H` by construction. We
wish to apply Corollary 6.5 to G = H`, assuming that `n−v does not divide D(`).

Since `k(L)
|b0(K`, E) by Corollary 7.2, we deduce that `n−k(L)−v does not divide

b0(K`, E)4b0(K`, E × E), and a fortiori `n−k(L)+1−2v - b0(K`, E)4b0(K`, E × E).
Lemma 7.1 then implies that G(`n−k(L)+1−2v) cannot be put in triangular form, and
on the other hand `n−v - b0(K`, E)5b0(K`, E × E) implies that `2n does not divide
b0(K`, E)4b0(K`, E × E), so G(`n) is not abelian (thanks to Proposition 7.4). It
then follows from Corollary 6.5 that G ′ = H ′` contains the principal congruence
subgroup B`(16n− 4) (resp. B`(48n− 10) for `= 2). �

Corollary 7.6. Let the notation be as above. The index [SL2(Z`) : (H ′` ∩B`(1))] is
of the form |SL2(F`)|B(`), where for ` 6= 2 the number B(`) is a power of ` dividing
`33
· D(`)48 (resp. B(2) is a power of 2 dividing 2255 D(2)144).

Proof. We can write the index [SL2(Z`) : (H ′` ∩B`(1))] as

[SL2(Z`) : B`(1)] · [B`(1) : (H ′` ∩B`(1))] = |SL2(F`)| · [B`(1) : (H ′` ∩B`(1))],

so we just need to prove that B(`)= [B`(1) : (H ′`∩B`(1))] divides `33 D(`)48 (and
the analogous statement for ` = 2). Notice that since B`(1) is a pro-` group, the
number B(`) is a power of `.

Choose n such that `n−v
|| D(`). Then `n+1−v - D(`), and therefore the above

theorem implies that H ′` contains B`(16(n+1)−4)⊆B`(1) (resp. B2(48(n+1)−10)
for `= 2): the index of B`(16(n+ 1)− 4) in B`(1) is `3(16(n+1)−5), so we get

[B`(1) : (H ′` ∩B`(1))] | `
48n+33

| `33
· D(`)48

for ` 6= 2, and likewise we have

[B2(1) : (H ′2 ∩B2(1))] | 23(48(n−1)+85)
| 2255 D(2)144

for `= 2. �
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8. The determinant and the large primes

We now turn to studying the determinant of the adelic representation and the
behavior at the very large primes.

Proposition 8.1. The index[
Ẑ× :

∏
`

det ρ`(Gal(K/K ))
]

is bounded by [K :Q].

Proof. The Weil pairing induces an identification of the determinant Gal(K/K )
ρ`
−→

G`
det
−→Z×` with Gal(K/K )

χ`
→Z×` , where χ` denotes the `-adic cyclotomic character.

By Galois theory, we have∏
`

det ρ`
(
Gal(K/K )

)
=

∏
`

χ`
(
Gal(K/K )

)
∼= Gal

(
K (µ∞)/K

)
.

Let F= K∩Q(µ∞), which is a finite Galois extension of Q. As Q(µ∞) is Galois
over Q, the restriction map Gal(K (µ∞)/K )→ Gal(Q(µ∞)/F) is well-defined
and induces an isomorphism. Therefore[

Ẑ× :
∏
`

χ`(Gal(K/K ))
]
=
[
Gal

(
Q(µ∞)/Q

)
: Gal

(
Q(µ∞)/F

)]
= [F :Q] ≤ [K :Q],

as claimed. �

We will also need a surjectivity result (on SL2) modulo ` for every ` sufficiently
large: as previously mentioned, these are essentially the ideas of [Masser and
Wüstholz 1993c] and [Masser 1998], in turn inspired by those of Serre.

Lemma 8.2. If ` - b0(K , E × E; 2)b0(K , E; 60), then the group G`(`) contains
SL2(F`).

Proof. Let ` be a prime for which G`(`) does not contain SL2(F`) and let, for the
sake of clarity, G = G`(`). By Theorem 3.13, if G does not contain SL2(F`), then
the following are the only possibilities:

(I) G is contained in a Borel subgroup of GL2(F`): by definition, such a subgroup
fixes a line, therefore ` | b0(K , E) by Lemma 7.1.

(II) G is contained in the normalizer of a Cartan subgroup of GL2(F`): let C be
this Cartan subgroup and N its normalizer. By Dickson’s classification, C has index
2 in N , so the morphism

Gal(K/K )→ G→
G

G ∩ C
↪→

N
C
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induces a quadratic character of Gal(K/K ), whose kernel corresponds to a certain
field K ′ satisfying [K ′ : K ]≤ |N/C| = 2. By construction, the image of Gal(K ′/K ′)
in Aut(E[`]) is contained in C, so applying Proposition 7.4 to EK ′ we get

` | b0(K ′, E)b0(K ′, E × E) | b0(K , E; 2)b0(K , E × E; 2).

Notice that this also covers the case of G being contained in a Cartan subgroup.

(III) The projectivization PG of G is a finite group of order at most 60: we
essentially copy the previous argument. Let H = PG; then we have a morphism

Gal(K/K )→ G→
F×` G
F×`
= H

whose kernel defines an extension K ′′ of K with [K ′′ : K ] = |H | ≤ 60 and such
that the image of the representation of Gal(K ′′/K ′′) on E[`] is contained in F×` :
Lemma 7.1 then yields ` | b0(K ′′, E) | b0(K , E; 60).

It is then apparent that the lemma is true with the condition

` - b0(K , E)b0(K , E × E)b0(K , E; 2)b(K , E × E; 2)b0(K , E; 60);

however, since

b0(K , E) | b0(K , E; 2) | b0(K , E; 60), b0(K , E × E) | b0(K , E × E; 2),

and since ` is prime, we see that ` divides

b0(K , E)b0(K , E × E)b0(K , E; 2)b0(K , E × E; 2)b0(K , E; 60)

if and only if it divides b(K , E × E; 2)b0(K , E; 60), which finishes the proof. �

Corollary 8.3. Let 9 = 30 · b0(K , E × E; 2)b0(K , E; 60). If ` -9, then G ′` is all
of SL2(Z`).

Proof. The previous lemma implies that G`(`) contains SL2(F`), and by hypothesis
` is strictly larger than 3, so the corollary follows from Lemma 3.15. �

9. The adelic index and some consequences

We have thus acquired a good understanding of the `-adic representation for every
prime `, and we are now left with the task of bounding the overall index of the full
adelic representation. The statement we are aiming for is:

Theorem 9.1. Let E/K be an elliptic curve without complex multiplication with
stable Faltings height h(E). Let ρ∞ : Gal(K/K )→ GL2

(
Ẑ
)

be the adelic Galois
representation associated with E , and set

9=2·3·5·b0(K , E×E; 2)b0(K , E; 60), D(∞)=b0(K , E; 24)5b0(K , E×E; 24).
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Let moreover K2 be as in Section 7 and put

D(2)= b0(K2, E)5b0(K2, E × E).

With this notation, we have[
GL2

(
Ẑ
)
: ρ∞Gal(K/K )

]
≤ [K :Q] · 2222

· D(2)144
· rad(9)36

· D(∞)48,

where rad(9)=
∏
`|9 ` is the product of the primes dividing 9.

The strategy of proof, which essentially goes back to Serre, is to pass to a suitable
extension of K over which the adelic representation decomposes as a direct product
and then use the previous bounds. For this, we will need some preliminaries. If
L is any number field, we let Lcyc = L(µ∞) be its maximal cyclotomic extension.
From the exact sequence

1→
SL2(Ẑ)

Gal(K/Kcyc)
→

GL2(Ẑ)

ρ∞
(
Gal(K/K )

) → Ẑ×

det ◦ρ∞
(
Gal(K/K )

) → 1

we see that [GL2(Ẑ) : ρ∞
(
Gal(K/K )

)
] equals

[̂Z× : det ◦ρ∞
(
Gal(K/K )

)
] · [SL2(Ẑ) : ρ∞

(
Gal(K/Kcyc)

)
],

where the first term is bounded by [K : Q] thanks to Proposition 8.1. It thus
remains to understand the term [SL2(Ẑ) : ρ∞

(
Gal(K/Kcyc)

)
]. Let P be the (finite)

set consisting of 2, 3, 5, and the prime numbers ` for which G` does not contain
SL2(Z`), and let F be the field generated over K by

⋃
`∈P E[`]. It is clear that

[SL2(Ẑ) : ρ∞
(
Gal(K/Kcyc)

)
] ≤ [SL2(Ẑ) : ρ∞

(
Gal(K/Fcyc)

)
].

Notation. We set S = ρ∞
(
Gal(K/Fcyc)

)
⊆ SL2(Ẑ) =

∏
` SL2(Z`) and let S` be

the projection of S on SL2(Z`).

The core of the argument is contained in the following proposition.

Proposition 9.2. Let B(`) be as in Corollary 7.6 and D(2) be as in the statement
of Theorem 9.1. The following hold:

(1) S =
∏
` S`.

(2) For ` ∈ P , ` 6= 2, we have[
SL2(Z`) : S`

]
| (|SL2(F`)| · B(`));

for `= 2, we have [
SL2(Z2) : S2

]
< 2258 D(2)144.

(3) For ` /∈ P , the equality S` = SL2(Z`) holds.
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Proof. (1) This would follow from [Serre 2013, Théorème 1], but since we do not
need the added generality and the proof is quite short we include it here for the
reader’s convenience.

Regard S as a closed subgroup of
∏
` S` ⊆

∏
` SL2(Z`) = SL2(Ẑ). For each

finite set of primes B, let pB : S→ SB =
∏
`∈B S` be the canonical projection. We

plan to show that for every such B containing P we have pB(S)= SB . Indeed let
us consider the case B = P first. Our choice of F implies that S` = ρ`(Gal(F/F))
is a pro-` group for every ` ∈ P: the group S` has trivial reduction modulo `
by construction, and therefore S` admits the usual congruence filtration by the
kernels of the reductions modulo `k for varying k. Now a pro-` group is obviously
pronilpotent, so pB(S) is pronilpotent as well and therefore it is the product of its
pro-Sylow subgroups (which are just the S`). To treat the general case, we recall
some terminology from [Serre 1998]. Following Serre, we say that a finite simple
group 6 occurs in the profinite group Y if there exist a closed subgroup Y1 of Y
and an open normal subgroup Y2 of Y1 such that 6 ∼= Y1/Y2. We also write Occ(Y )
for the set of isomorphism classes of finite simple nonabelian groups occurring
in Y . From [Serre 1998, IV-25] we obtain the following description of the sets
Occ(GL2(Zp)):
• Occ(GL2(Zp))=∅ for p = 2, 3;

• Occ(GL2(Z5))= {A5};

• Occ(GL2(Zp))= {PSL2(Fp), A5} for p ≡±1 (mod 5), p > 5;

• Occ(GL2(Zp))= {PSL2(Fp)} for p ≡±2 (mod 5), p > 5.

Let B be a finite set of primes containing P and satisfying pB(S)= SB , and fix
a prime `0 /∈ B. We claim that pB∪{`0}(S) = SB∪{`0}. Notice first that PSL2(F`0)

occurs in S`0 and therefore in pB∪{`0}(S). Set N`0 = ker(pB∪{`0}(S)→ pB(S)).
From the exact sequence

1→ N`0 → pB∪{`0}(S)→ pB(S)→ 1, (9-1)

we see that Occ(pB∪{`0}(S)) = Occ(pB(S)) ∪Occ(N`0). On the other hand, the
only finite nonabelian simple groups that can occur in pB(S) are A5 and groups
of the form PSL2(F`) for ` 6= `0, so PSL2(F`0) does not occur in pB(S) (notice
that PSL2(F`0) 6

∼= A5 since `0 6= 5), and therefore it must occur in N`0 . Denote
by N`0 the image of N`0 in SL2(F`0). The kernel of N`0 → SL2(F`0) is a pro-`0

group, so Occ
(
N`0

)
equals Occ

(
N`0

)
and therefore N`0 projects surjectively onto

PSL2(F`0). Hence we have N`0 = SL2(F`0) by [Serre 1998, IV-23, Lemma 2], and
by Lemma 3.15 this implies N`0 = SL2(Z`0): by (9-1) we then have pB∪{`0}(S)=
pB(S) × SL2(Z`0), as claimed. By induction, the equality pB(S) = SB holds
for any finite set of primes B containing P , and since S is profinite we deduce
that S =

∏
` S`.
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(2) The group S` is the kernel of the projection map (G` ∩SL2(Z`))→ SL2(F`);
as such, it contains the intersection H ′` ∩ B`(1) (notation as in Section 7), so we
just need to invoke Corollary 7.6 to have[

SL2(Z`) : S`
]
|
[

SL2(Z`) : (H ′` ∩ B`(1))
]
| |SL2(F`)|B(`),

as claimed. On the other hand, the group H2 is a subgroup of ρ2
(
Gal(K/K (E[4]))

)
for `= 2, while S2 is ρ2

(
Gal(K/Kcyc(E[2]))

)
, so S2 is larger than H ′2 ∩B2(1) and

we can again use the bound of Corollary 7.6, which now reads[
SL2(Z2) : S2

]
≤ 2255 D(2)144

|SL2(F2)|< 2258 D(2)144.

(3) As ` 6∈ P , we know that ρ`(Gal(K/K )) contains SL2(Z`), so PSL2(F`) occurs
in ρ`(Gal(K/K )). Consider the Galois group Gal(F/K ): it is by construction a
subquotient of

∏
p∈P GL2(Zp), so the only groups that can occur in it are those

in
⋃

p∈P Occ(GL2(Zp)), and in particular PSL2(F`) does not occur in Gal(F/K ).
Now ρ`(Gal(K/K )) is an extension of a quotient of Gal(F/K ) by ρ`(Gal(K/F)),
so PSL2(F`) occurs in ρ`

(
Gal(K/F)

)
, and furthermore ρ`(Gal(K/F)) is an exten-

sion of an abelian group by ρ`(Gal(K/Fcyc)), so the group PSL2(F`) also occurs in
ρ`(Gal(K/Fcyc))= S`: reasoning as in (1), we then see that S` projects surjectively
onto PSL2(F`), and therefore S` = SL2(Z`). �

The proof of Theorem 9.1 is now immediate:

Proof of Theorem 9.1. We have already seen that
[
GL2(Ẑ) : ρ∞(Gal(K/K ))

]
equals

[Z× : det ◦ρ∞Gal(K/K )] · [SL2(Ẑ) : ρ∞(Gal(K/Kcyc))]. Now the first factor in
this product is at most [K : Q], while the second is bounded by [SL2(Ẑ) : S]; it
follows that the adelic index is bounded by

[K :Q] · [SL2(Ẑ) : S] ≤ [K :Q] ·
∏
`∈P

[SL2(Z`) : S`]

≤ [K :Q] ·
∏
`|9

[SL2(Z`) : S`]

< [K :Q] · 2258
· D(2)144

·

∏
`|9, 6̀=2

|SL2(F`)| ·
∏

`|9,` 6=2

B(`),

(9-2)

where we have used the fact that ` -9⇒` /∈P . We now observe that, by construction,
for all odd primes ` we have v`(D(∞))≥ v`(D(`)), so by Corollary 7.6 the quantity∏
`|9,` 6=2 B(`) divides∏

`|9,` 6=2

`33`48v`(D(`))
∣∣ ∏
`|9,` 6=2

`33`48v`(D(∞)),
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which in turn divides
( rad(9)

2

)33
· D(∞)48. Combining this fact with Equation (9-2)

and the trivial bound |SL2(F`)|< `
3 we find that the adelic index is at most

[K :Q] · 2225
· D(2)144

·

( ∏
`|9, 6̀=2

`3
)
· rad(9)33

· D(∞)48,

which in turn is less than [K :Q] · 2222
· D(2)144

· rad(9)36
· D(∞)48, whence the

theorem. �

Using the estimates of Proposition 2.6 to bound 9, D(2) and D(∞), we get:

Corollary 9.3. Let E/K be an elliptic curve that does not admit complex multipli-
cation. The inequality

[GL2(Ẑ) : ρ∞
(
Gal(K/K )

)
]< γ1 · [K :Q]γ2 ·max

{
1, h(E), log[K :Q]

}2γ2

holds, where γ1 = exp(1021483) and γ2 = 2.4 · 1010.

Remark 9.4. With some work, the techniques used in [Le Fourn 2015] (cf. espe-
cially Theorem 4.2 of op. cit.) could be used to improve the above bound on 9;
unfortunately, the same methods do not seem to be easily applicable to bound D(∞).
Notice that our estimates for 9 and D(∞) are essentially of the same order of
magnitude, so using a finer bound for 9 without changing the one for D(∞) would
only yield a minor improvement of the final result.

On the other hand, it is easy to see that using the improved version of the isogeny
theorem mentioned in Remarks 2.3 and 2.7, one can prove[

GL2(Ẑ) : ρ∞
(
Gal(K/K )

)]
< γ3 ·

(
[K :Q] ·max

{
1, h(E), log[K :Q]

})γ4

with γ3 = exp(1.9 · 1010) and γ4 = 12395.

The field generated by a torsion point. As an easy consequence of our main result,
we can also prove:

Corollary 9.5. Let E/K be an elliptic curve that does not admit complex multipli-
cation. There exists a constant γ (E/K ) such that the inequality

[K (x) : K ] ≥ γ (E/K )N (x)2

holds for every x ∈ Etors(K ). Here, N (x) denotes the order of x. We can take
γ (E/K )= (ζ(2) · [GL2

(
Ẑ
)
: ρ∞Gal(K/K )])−1, which can be explicitly bounded

thanks to the main theorem.

Proof. For any such x , set N = N (x) and choose a point y ∈ E[N ] such that (x, y)
is a basis of E[N ] as (Z/NZ)-module. Let G(N ) be the image of Gal(K/K ) inside
Aut E[N ], which we identify with GL2(Z/NZ) via the basis (x, y). We have a
tower of extensions K (E[N ])/K (x)/K , where K (E[N ]) is Galois over K and
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therefore over K (x). The Galois groups of these extensions are given — essentially
by definition — by

Gal(K (E[N ])/K )= G(N ) and Gal(K (E[N ])/K (x))= Stab(x),

where Stab(x)=
{
σ ∈ G(N ) | σ(x)= x

}
. It follows that

[K (x) : K ] =
[K (E[N ]) : K ]
[K (E[N ]) : K (x)]

=
|G(N )|
|Stab(x)|

,

and furthermore it is easy to check that

|G(N )| =
|GL2(Z/NZ)|

[GL2(Z/NZ) : G(N )]
=

N 3ϕ(N )
∏

p|N

(
1− 1

p2

)
[GL2(Z/NZ) : G(N )]

.

On the other hand, the stabilizer of x in G(N ) is contained in the stabilizer of x
in GL2(Z/NZ), which is simply{(

1 a
0 b

) ∣∣∣ a ∈ Z/NZ, b ∈ (Z/NZ)×
}
,

so |Stab(x)| ≤ |Z/NZ| · |(Z/NZ)×| = Nϕ(N ). Finally, the index of G(N ) inside
GL2(Z/NZ) is certainly not larger than the index of G∞ inside GL2(Ẑ). Putting
everything together we obtain

[K (x) : K ] =
N 3ϕ(N )

∏
p|N

(
1− 1

p2

)
[GL2(Z/NZ) : G(N )] · |Stab(x)|

≥

N 3ϕ(N )
∏

p prime

(
1− 1

p2

)
Nϕ(N ) · [GL2(Ẑ) : G∞]

,

and the corollary follows by remarking that
∏

p prime

(
1− 1

p2

)
=

1
ζ(2) . �
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