
Algebra &
Number
Theory

msp

Volume 9

2015
No. 10

On 0-cycles with modulus
Amalendu Krishna



msp
ALGEBRA AND NUMBER THEORY 9:10 (2015)

dx.doi.org/10.2140/ant.2015.9.2397

On 0-cycles with modulus
Amalendu Krishna

Given a nonsingular surface X over a field and an effective Cartier divisor D,
we provide an exact sequence connecting CH0(X, D) and the relative K -group
K0(X, D). We use this exact sequence to answer a question of Kerz and Saito
whenever X is a resolution of singularities of a normal surface. This exact
sequence and two vanishing theorems are used to show that the localization
sequence for ordinary Chow groups does not extend to Chow groups with modulus.
This in turn shows that the additive Chow groups of 0-cycles on smooth projective
schemes cannot always be represented as reciprocity functors.

1. Introduction

The idea of algebraic cycles with modulus was first conceived by Bloch and Esnault
[2003b; 2003a]. One main motivation behind such a theory is to develop a theory of
motivic cohomology which can describe the relative K -theory of smooth schemes
relative to closed subschemes. A potential candidate for such a theory was later
constructed and studied by Park [2009], Krishna and Levine [2008] and more
recently by Kerz and Saito [2015] and Binda and Saito [2014]. It was conjectured
in [Krishna and Levine 2008] that there should exist a spectral sequence consisting
of these motivic cohomology groups whose abutment is the relative K -theory.

The results of this text were partly motivated by the following question of
Kerz and Saito [2015, Question V]. Let X be a smooth quasiprojective scheme
of dimension d over a field k and let D ↪→ X be an effective Cartier divisor. Let
CH0(X, D) denote the Chow group 0-cycles on X with modulus D. Let KM

d,(X,D)
denote the relative Milnor K -theory sheaf on X . Let U be an open subscheme of
X whose complement is a divisor.

Question 1.1. Assume that X is projective and k is a perfect field of positive
characteristic. Is there an isomorphism

lim
←−−

D
CH0(X, D)−→∼ lim

←−−
D

H d
nis(X,K

M
d,(X,D)),

where the limits are taken over all effective divisors on X with support outside U?
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It follows from the main results of [Kato and Saito 1986; 2015] and [Rülling and
Saito 2015] that this question has a positive solution if k is finite and the support
of X \U is a normal crossing divisor. As explained in [Kerz and Saito 2015], the
above question is part of the bigger question of whether the Chow groups with
modulus satisfy Nisnevich or Zariski descent. As we shall see shortly, the above
question is also directly related to the conjectured connection between the cycles
with modulus and the relative K -theory.

Main results. Let Pic(X, D) denote the isomorphism classes of pairs (L, φ), where
L is a line bundle on X and φ is an isomorphism φ : L|D −→∼ OD. We prove the
following result as a partial answer to the above question.

Theorem 1.2. Let k be any field and let X be a nonsingular quasiprojective surface
over k with an effective Cartier divisor D. Then there is an exact sequence

CH0(X, D) cyc(X,D)
−−−−→ K0(X, D)−→ Pic(X, D)−→ 0. (1-1)

In particular, cyc(X,D) induces a surjective map CH0(X, D)� H 2
nis(X,K

M
2,(X,D)).

Remark 1.3. The map cyc(X,D) turns out to be injective as well if X is affine. A
proof of this using completely different type of argument will appear in [Binda and
Krishna ≥ 2015].

Let us now assume that X is a resolution of singularities of a normal surface Y
and let U denote the regular locus of Y . Then we can use Theorem 1.2 to obtain
the following finer result which fully answers Question 1.1 for a special class of
surfaces.

Theorem 1.4. Let k be any field and let X be a resolution of singularities of a
normal surface Y . Let U denote the regular locus of Y . Then the cycle class map
CH0(X, D)→ H 2

nis(X,K
M
2,(X,D)) induces an isomorphism

lim
←−−

D
CH0(X, D)−→∼ lim

←−−
D

H 2
nis(X,K

M
2,(X,D)),

where the limits are taken over all effective divisors on X with support outside U.

Localization sequence for Chow groups with modulus. Since the introduction of
the Chow groups with modulus, various authors have been trying to prove several
properties of these Chow groups which are analogous to the well-known properties
of Bloch’s higher Chow groups. It was shown in [Krishna and Park 2014] recently
that the Chow groups with modulus satisfy projective bundle and blowup formulas.
It was however not known if the localization sequence for Bloch’s higher Chow
groups is true for Chow groups with modulus. We use Theorem 1.2 to show that
the Chow groups with modulus do not admit such a localization sequence. In fact,
we show that even the localization sequence for the ordinary Chow groups (in the
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sense of [Fulton 1998]) does not admit extension to Chow groups with modulus.
Answering this question was another motivation of this note.

Let m ≥ 2 be any integer and let D denote the Cartier divisor Spec(k[t]/(tm))

inside Spec(k[t]). For any Y ∈ Sch/k, the Cartier divisor Y × D ↪→ Y × A1
k is

denoted by D itself.

Theorem 1.5. Let k be an algebraically closed field of characteristic zero with
infinite transcendence degree over Q. Let Y be a connected projective curve over k
of positive genus. Then for any inclusion i : {P} ↪→Y of a closed point, the sequence

CH0({P}×A1
k , D) i∗

−→CH0(Y ×A1
k , D) j∗

−→CH0(Y \ {P}×A1
k , D)−→ 0

is not exact.
In particular, the localization sequence for Bloch’s higher Chow groups does not

extend to the Chow groups with modulus, even for a closed pair of smooth schemes.

The proof of this negative result is based on Theorem 1.2 and the following two
vanishing theorems of independent interest.

Theorem 1.6. Let k be any field and let Y be any nonsingular affine scheme over k
of dimension d ≥ 1. Then CH0(Y ×A1

k , D)= 0.

Theorem 1.7. Let k be an algebraic closure of a finite field and let X be a smooth
affine scheme over k of dimension d ≥ 3. Then for any effective Cartier divisor
D ↪→ X , we have CH0(X, D)= 0. Assuming Dred is a normal crossing divisor, we
also have H d

nis(X,K
M
d,(X,D))= 0.

Remark 1.8. Theorem 1.7 implies that the analogue of Question 1.1 has a positive
solution for affine schemes over k of dimension at least three if Dred is a normal
crossing divisor.

Remark 1.9. The assertion of Theorem 1.7 is true also for d = 2 and will appear
in [Binda and Krishna ≥ 2015]. The proof in this note does show at least that
CH0(X, D)Q = 0 even if X is a surface.

On the other hand, it is easily seen using the surjection CH0(X, D)� CH0(X)
that d ≥ 2 is a necessary condition for the vanishing of CH0(X, D).

Additive Chow groups and reciprocity functors. Ivorra and Rülling [≥ 2015] in-
troduced the reciprocity functors T (M1, · · · ,Mr ). These reciprocity functors are
expected to describe the ordinary as well as the additive higher Chow groups of
0-cycles for smooth projective schemes over a field. In this direction, it was shown
by Ivorra and Rülling [≥ 2015, Corollary 5.2.5] that for a smooth projective scheme
X of dimension d over a field k, there is an isomorphism T (G×r

m ,CH0(X))(k)'
CHd+r (X, r). They also show that T (Ga,CH0(Spec(k)))(k) ' CH0(A

1
k , D2) if

char(k) = 0, where D2 = Spec(k[t]/(t2)). This was a verification of a special
case of the general expectation that T (Ga,CH0(X))(k) should be isomorphic to
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the additive Chow group CH0(X × A1
k , D2) if X is a smooth projective scheme

over k. However, combining Theorems 1.5 and 1.6 with [Rülling and Yamazaki
2014, Theorem 1.1], we prove:

Corollary 1.10. Let k be an algebraically closed field of characteristic zero with
infinite transcendence degree over Q. Let Y be a connected projective curve over
k of positive genus. Then CH0(Y ×A1

k , D2) cannot be described in terms of the
reciprocity functors.

Outline of proofs. We recall the definitions of Chow groups with modulus in
Section 2. We then use the Thomason–Trobaugh spectral sequence to relate the
cohomology of the sheaf KM

2,(X,D) with the relative K -groups. We first prove an
analogue of Theorem 1.2 for curves in Section 3 and deduce it for surfaces using
Lemma 3.2. The proof of Theorem 1.2 is completed using some results of [Kato
and Saito 1986] and Theorem 1.4 proven by using a combination of Theorem 1.2
and an explicit formula for the Chow group of 0-cycles on normal surfaces from
[Krishna and Srinivas 2002].

We prove Theorem 1.6 by first reducing to the case of curves. This case is
achieved with the help of an algebraic version of a sort of containment lemma. We
prove Theorem 1.5 as a combination of Theorems 1.2 and 1.6. This reduces the
problem to understanding a map of cohomology groups of the relative K -theory
sheaves of nilpotent ideals. This in turn can be written as an explicit map of k-vector
spaces, where k is the ground field. Theorem 1.7 is proven by reducing to the case
of affine surfaces and empty Cartier divisor using some Bertini theorems.

2. Recollection of Chow group with modulus and relative K -theory

We fix a field k and let Sch/k denote the category of quasiprojective schemes over k.
Let Sm/k denote the full subcategory of Sch/k consisting of nonsingular (regular)
schemes. Given X ∈ Sch/k, we shall write Xsing and Xreg for the closed and open
subschemes of X , where Xred is singular and regular, respectively. In this text, a
curve will mean an equidimensional quasiprojective scheme over k of dimension
one. For a curve C , the scheme C N will often denote the normalization of Cred.
Given a closed immersion Y ↪→ X in Sch/k, we let |Y | denote the support of Y
with the reduced induced closed subscheme structure.

For X ∈ Sch/k, let K (X) and G(X) denote the K -theory spectra of perfect
complexes and coherent sheaves on X , respectively. For a closed subscheme Y ↪→ X ,
let K (X, Y ) denote the homotopy fiber of the restriction map K (X)→ K (Y ). For
a sheaf F on the small Zariski (resp. Nisnevich) site of X , let H∗zar(X,F) (resp.
H∗nis(X,F)) denote the cohomology groups of F . A cohomology group in this text
without mention of the underlying site will indicate the Zariski cohomology.
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Thomason–Trobaugh spectral sequence for K-theory with support and relative
K-theory. Given a scheme X and a closed subscheme Y ↪→ X , let K Y (X) denote
the homotopy fiber of the restriction map of spectra K (X)→ K (X \Y ). Let Ki,(X,Y )

denote the Zariski sheaf on X whose stalk at a point x ∈ X is the relative group
Ki (OX,x ,OY,x) for i ∈ Z. Given a closed point x ∈ Xreg \Y , the spectrum K {x}(Y )
is contractible and hence there are natural maps of spectra

K (k(x))→ K {x}(X)→ K (X, D)→ K (X). (2-1)

In particular, there is a commutative diagram of Thomason–Trobaugh spectral
sequences [1990, Corollary 10.5]

E p,q
2,x = H p

{x}(X,Kq,X ) +3

��

K {x}q−p(X)

��

E p,q
2,(X,Y ) = H p(X,Kq,(X,Y )) +3

��

Kq−p(X, Y )

��

E p,q
2,X = H p(X,Kq,X ) +3 Kq−p(X)

(2-2)

which is valid even when the Zariski cohomology is replaced by the Nisnevich
cohomology.

Lemma 2.1. Given a modulus pair (X, D) of dimension two over k, there is a short
exact sequence

0−→ H 2
C (X,K2,(X,D))−→ K0(X, D)−→ Pic(X, D)−→ 0 (2-3)

where C is either Zariski or Nisnevich cohomology. In particular, the map
H 2

zar(X,K2,(X,D))→ H 2
nis(X,K2,(X,D)) is an isomorphism.

Proof. Let C denote either the Zariski or the Nisnevich cohomology. Since the
C-cohomological dimension of X is two, the strongly convergent spectral sequence
E p,q

2 = H p
C (X,Kq,(X,D))⇒ Kq−p(X, D) with differential dr : E

p,q
r → E p+r,q+r−1

r

gives us an exact sequence

H 0
C (X,K1,(X,D))

d0,1
2−→H 2

C (X,K2,(X,D))−→ K0(X, D)−→ H 1
C (X,K1,(X,D))−→ 0.

(2-4)
By Hilbert’s theorem 90, the map H 1

zar(X,K1,(X,D))→ H 1
nis(X,K1,(X,D)) is an

isomorphism and it follows from [Suslin and Voevodsky 1996, Lemma 2.1] that
H 1

zar(X,K1,(X,D))−→
∼ Pic(X, D). We are thus left with showing that d0,1

2 = 0. We
prove this for the Zariski cohomology as the same argument applies in the Nisnevich
case.
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Applying the above spectral sequence for K1(X, D), the equality d0,1
2 = 0 is

equivalent to the assertion that the map K1(X, D)→ H 0(X,K1,(X,D)) is surjective.
To prove this, we let f ∈ H 0(X,K1,(X,D)). This is equivalent to a regular map
f : X → Gm such that f |D = 1 and hence to a commutative diagram with exact
rows

0 // K1(Gm, {1}) //

f ∗

��

K1(Gm) //

f ∗

��

K1({1}) //

f ∗

��

0

K1(X, D) //

��

K1(X) //

δ
��

K1(D)

��

0 // H 0(X,K1,(X,D)) // H 0(X,K1,X ) // H 0(D,K1,D)

(2-5)

If we let Gm = Spec(k[t±1
]), then one can check (as is well known) that

δ ◦ f ∗([t])= f . Since t ∈ K1(Gm, {1}), we see that f ∗([t]) ∈ K1(X, D) and
δ ◦ f ∗(t) dies in H 0(D,K1,D). Hence, it must lie in H 0(X,K1,(X,D)). It follows
that the map K1(X, D)→ H 0(X,K1,(X,D)) is surjective. �

Remark 2.2. The isomorphism H 2
zar(X,K2,(X,D))−→

∼ H 2
nis(X,K2,(X,D))was shown

earlier by Kato and Saito [1986, Proposition 9.9] by a different method.

Chow groups of 0-cycles with modulus. We recall the definition of the Chow group
of 0-cycles with modulus (see [Binda and Saito 2014, §2] or [Krishna and Park
2014, §2]).

Let X be a nonsingular scheme of pure dimension d and let D ( X be an effective
Cartier divisor on X . We shall call such a pair (X, D) of a nonsingular scheme and
an effective Cartier divisor, a d-dimensional modulus pair. Let Z0(X, D) denote
the free abelian group on the closed points in X \ D. Let C ↪→ X ×P1

k be a closed
irreducible curve satisfying:

(1) C is not contained in X ×{0, 1,∞}.

(2) If ν : C N
→ X ×P1

k denotes the composite map from the normalization of C ,
then one has an inequality of Weil divisors on C N :

ν∗(D×P1
k)≤ ν

∗(X ×{1}).

We call such curves admissible. Let Z1(X, D) denote the free abelian group
on admissible curves and let R0(X, D) denote the image of the boundary map
(∂0 − ∂∞) : Z1(X, D) → Z0(X, D). The Chow group of 0-cycles on X with
modulus D is defined as the quotient

CH0(X, D) :=
Z0(X, D)
R0(X, D)

.
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To relate this definition of CH0(X,D)with the one given by Kerz and Saito [2015],
let πC : C N

→ C denote the normalization of an integral curve C ↪→ X which is
not a component of D. Let AC |D and AC N |D denote the semilocal rings of C and
C N at the supports of C ∩ D and π−1

C (C ∩ D), respectively. Let R′0(X, D) denote
the subgroup of Z0(X, D) given by the image∐

C 6⊂D

K1(AC N |D, ID)
div
−→Z0(X, D). (2-6)

Note that the surjectivity of the map K2(AC N |D)→ K2(π
∗

C(D)) implies that

K1(AC N |D, ID)= Ker(K1(AC N |D)→ K1(π
∗

C(D))

= lim
−−→
U

Ker(O(U )×→O(π∗C(D))
×),

(2-7)

where U ranges over all open subschemes of C N containing π∗C(D).
One can then check as in the classical case (see for instance [Binda and Saito

2014, Theorem 3.3]) that there is a canonical isomorphism

Z0(X, D)
R′0(X, D)

−→∼ CH0(X, D). (2-8)

3. The cycle class map

Let (X, D) be a 2-dimensional modulus pair. In this section, we construct the cycle
class map CH0(X, D)→ H 2(X,K2,(X,D)) and prove Theorems 1.2 and 1.4. More
generally, we assume X is either a curve or a surface and let P ∈ X \ D be a closed
point. Let X P denote the spectrum of the local ring OX,P . Assume d = 1, 2. It
follows from (2-1) and (2-2) that there is a commutative diagram

H 0({P},K0,{P})

∼

��

// K0({P})

∼

��

H d
{P}(X,Kd,X )

��

// K {P}0 (X)

��

H d(X,Kd,(X,D)) // K0(X, D)

(3-1)

where the top vertical arrow on the left is an isomorphism by excision and the
Gersten resolution for Kd,X P and the one on the right is an isomorphism by the
localization sequence for K -theory. We define the cycle class map

cyc(X,D) : Z0(X, D)−→ H d(X,Kd,(X,D)) (3-2)
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by letting cyc(X,D)([P]) be the image of 1 ∈ H 0({P},K0,{P})' Z under the com-
posite vertical arrow on the left in (3-1) and extending it linearly on all of Z0(X, D).
To show that this map kills rational equivalences, we first consider the case of
curves.

Lemma 3.1. Let (C, D) be an 1-dimensional modulus pair. Then the map cyc(C,D)
induces isomorphisms

cyc(C,D) : CH0(C, D)−→∼ H 1
zar(C,K1,(C,D))

−→∼ H 1
nis(C,K1,(C,D))−→

∼ Pic(C, D)−→∼ K0(C, D).

Proof. For any reduced closed subset S ( C such that S ∩ D = ∅ and any open
subset U ⊆ X , we have the localization fiber sequence of spectra

K (S ∩U )−→ K (U )−→ K (U \ S).

Taking the filtered colimit over closed subsets S as above under the inclusion, we
get a short exact sequence of Zariski sheaves

0−→ K1,(C,D) −→ j∗(K1,(CD,D))−→
∐
P /∈D

(iP)∗
(
K0(k(P))

)
−→ 0 (3-3)

on C , where CD is the spectrum of the semilocal ring AC |D of C at |D| and
j : CD ↪→ C is the inclusion map. This yields the cycle class map

cyc(C,D) :
∐
P /∈D

Z−→ H 1(C,K1,(C,D)). (3-4)

To show that this induces an isomorphism CH0(C, D)→ H 1(C,K1,(C,D)), we
first claim that j∗(K1,(CD,D)) is an acyclic Zariski sheaf. To prove this claim, it
suffices to show that if U ↪→ C is open and UD is the spectrum of the semilocal
ring of U at |U ∩ D|, then H i (UD,K1,(UD,D))= 0 for i ≥ 1. But this is immediate
from the exact sequence

0−→ K1,(UD,D) −→ K1,UD −→ K1,U∩D −→ 0

and the fact that UD is a semilocal scheme.
It follows from the above claim that (3-3) is an acyclic resolution of K1,(C,D)

and in particular, there is an exact sequence

K1(AC |D, ID)
div
−→

∐
P /∈D

Z−→ H 1
zar(C,K1,(C,D))−→ 0.

By (2-8), this implies that the map (3-4) induces an isomorphism CH0(C, D)−→∼

H 1
zar(C,K1,(C,D)).
The isomorphism of the natural map H 1

zar(C,K1,(C,D)) → H 1
nis(C,K1,(C,D))

follows easily from Hilbert’s theorem 90.
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We now consider the commutative diagram of homotopy fiber sequences∐
P /∈D

K (k(P)) // K (C) //

��

K (AC |D)

��

K (AC |D/I ) K (AC |D/I )

This yields a homotopy fiber sequence∐
P /∈D

K (k(P))−→ K (C, D)−→ K (AC |D, I )

and in particular, an exact sequence

K1(AC |D, I ) ∂
−→Z0(C, D)−→ K0(C, D)−→ 0

and we conclude from this that

Coker(∂)= CH0(C, D)−→∼ K0(C, D).

Finally, the isomorphism H 1
zar(C,K1,(C,D))−→

∼ Pic(C, D) follows from [Suslin and
Voevodsky 1996, Lemma 2.1]. �

Lemma 3.2. Let (X, D) be a 2-dimensional modulus pair and let f : C→ X be
a finite map, where C is a nonsingular curve such that f ∗(D) is a proper closed
subscheme of C. Then there is a commutative diagram

Z0(C, f ∗(D))
cyc(C, f ∗(D))

//

f∗
��

H 1(C,K1,(C, f ∗(D)))

f∗
��

Z0(X, D)
cyc(X,D)

// H 2(X,K2,(X,D))

(3-5)

where f∗ on the left is the pushforward map.

Proof. We set E = f ∗(D). Since ιX : D ↪→ X and ιC : E ↪→ C are Cartier divisors,
Tori

OX
(OD, f∗(OC))= 0 for i > 0. In particular, there is a commutative diagram

K (C)
f∗
//

ι∗C
��

K (X)

ι∗X
��

K (E)
f∗
// K (D)

(3-6)

As (3-6) makes sense for any open U ↪→ X and is functorial for restriction to
open subsets, we see that it is in fact a diagram of presheaves of spectra on Xzar.

If we consider the homotopy cofibers of the horizontal arrows in (3-6), we obtain
a commutative diagram of homotopy cofiber sequences of presheaves of spectra
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on Xzar. Taking the long homotopy groups exact sequences, we obtain the associated
diagram of the long exact sequences of the presheaves of homotopy groups. The
exactness of the sheafification functor yields a commutative diagram of the long
exact sequences of the sheaves of homotopy groups corresponding to (3-6).

Let K̃ (X \C) and K̃ (D \E) denote the homotopy cofibers of the top and bottom
horizontal arrows in (3-6), respectively. Let K̃i,X\C denote the Zariski sheaf on
X associated to the presheaf of homotopy groups U 7→ πi (K̃ (U \C)). Defining
K̃i,D\E in a similar way, we get a commutative diagram of the long exact sequences

· · · // K̃3,X\C //

��

f∗(K2,C) //

��

K2,X //

��

K̃2,X\C //

��

f∗(K1,C) //

��

· · ·

· · · // K̃3,D\E // f∗(K2,E) // K2,D // K̃2,D\E // f∗(K1,E) // · · ·

(3-7)

If C is the image of f : C→ X , then we have a factorization K (C)→ G(C)→
K (X) (see [Srinivas 1991, Proposition 5.12(i)]) and this shows that there is a factor-
ization Ki,X→ K̃i,X\C→ j∗(Ki,X\C)→ j∗(Ki (k(X))), where j : X\C ↪→ X is the in-
clusion. The Gersten resolution says that the composite map is injective. Hence, the
map Ki,X→ K̃i,X\C is injective. Since the map f∗(Ki,C)→ f∗(Ki,E) is surjective for
i ≤ 2, the above diagram refines to a commutative diagram of short exact sequences

0 // K2,X //

��

K̃2,X\C //

φ

��

f∗(K1,C) //

��

0

0 // K2,D // K̃2,D\E // f∗(K1,E) // 0

(3-8)

Set K̃2,(X,D) = Ker(K2,X → K2,D). Since the vertical arrows on the left and the
right ends in (3-8) are surjective, the middle arrow is also surjective and there is
a short exact sequence of the kernel sheaves

0−→ K̃2,(X,D) −→ Ker(φ)−→ f∗(K1,(C,E))−→ 0. (3-9)

Considering the long exact cohomology sequences with and without support and
observing that H i (C, f∗(K1,(C,E)))' H i (C,K1,(C,E)) (the higher direct images of
K1,(C,E) vanish as one can easily check), we get a commutative diagram∐

Q∈6P

Z ∼ //

f∗

��

H 1
6P
(C,K1,C) ∼ //

��

H 1
6P
(C,K1,(C,E)) //

��

H 1(C,K1,(C,E))

��

Z ∼ // H 2
{P}(X,K2,X ) ∼ // H 2

{P}(X, K̃2,(X,D)) // H 2(X, K̃2,(X,D))

(3-10)
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for any closed point P ∈ X \ D and 6P = f −1(P). It is well known that the
leftmost vertical map is the pushforward map. Since the map K2,(X,D)→ K̃2,(X,D)

is a surjective map whose kernel is supported on D, the map H 2(X,K2,(X,D))→

H 2(X, K̃2,(X,D)) is an isomorphism. This immediately yields (3-5). �

Proof of Theorem 1.2. In view of Lemma 2.1, the proof of Theorem 1.2 is reduced
to showing that the cycle class map cyc(X,D) : Z0(X, D)→ H 2(X,K2,(X,D)) con-
structed in (3-2) kills the group of rational equivalences R′0(X, D) (see (2-8)) and
is surjective. So, let us take an integral curve C ↪→ X which is not contained in D
and let f : C N

→ X denote the induced map from the normalization of C . Letting
E= f ∗(D) and g∈Ker(O×C N �O×E ), we need to show that cyc(X,D)◦ f∗(div(g))=0.
For this, we consider the diagram

R′0(C
N , E) //

f∗
��

Z0(C N , E)
cyc

(C N ,E)
//

f∗
��

H 1(C N ,K1,(C N ,E))

f∗
��

R′0(X, D) // Z0(X, D)
cyc(X,D)

// H 2(X,K2,(X,D))

(3-11)

in which the left square commutes by [Krishna and Park 2014, Proposition 2.10]
and the right square commutes by Lemma 3.2. Since the composite horizontal map
on the top is zero by Lemma 3.1, it follows that

cyc(X,D) ◦ f∗(div(g))= f∗ ◦ cyc(C N ,E)(div(g))= 0.

The surjectivity of cyc(X,D) now follows from Lemma 3.2, the isomorphism
KM

2,(X,D) −→
∼ K̃2,(X,D), the diagram (3-1) and [Kato and Saito 1986, Theorem 2.5].

�

Proof of Theorem 1.4. Let π : X→ Y be a resolution of singularities of a normal
surface over any field k. We set U = Yreg and C(U )= lim

←−−D CH0(X, D), where the
limit is taken over all effective Cartier divisors on X with support outside U . Let
E ↪→ X denote the reduced exceptional divisor. If D ( X is an effective Cartier
divisor with support |D| ⊆ E , then m E − D must be an effective Cartier divisor
some m� 1. This implies that the canonical maps

C(U )→ lim
←−−

m
CH0(X,m E) and lim

←−−
D

H 2(X,K2,(X,D))→ lim
←−−

m
H 2(X,K2,(X,m E))

are isomorphisms.
Let CH0(Y ) denote the Chow group of 0-cycles on Y in the sense of [Levine

and Weibel 1985] and let S ↪→ Y denote the singular locus of Y with reduced
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subscheme structure. We then have a commutative diagram

CH0(Y )
cyc(Y,mS)

//

π∗

��

H 2(Y,K2,(Y,mS))

π∗

��

∼

((

CH0(X,m E)
cyc(X,m E)

//

��

H 2(X,K2,(X,m E))

��

H 2(Y,K2,Y )

π∗vv

CH0(X)
cycX

// H 2(X,K2,X )

(3-12)

The map cyc(Y,mS) is defined exactly like cyc(X,m E) and is an isomorphism by
[Krishna 2015, Proposition 3.1]. The natural map H 2(Y,K2,(Y,mS))→ H 2(Y,K2,Y )

is an isomorphism also by [Krishna 2015, Proposition 3.1]. The map π∗ :CH0(Y )→
CH0(X,m E) is induced by the identity map π∗ : Z0(U )→ Z0(X,m E).

To show that it preserves rational equivalences, let C ↪→ Y be an integral curve
not meeting S and let h ∈ k(C)×. Let 0h ↪→ C ×P1 ↪→ Y ×P1 be the graph of
the function h : C → P1. It is then clear that 0h ∩ (S ×P1) = ∅. In particular,
π−1(0h) ∩ (E × P1) = ∅. This shows that [0h] ∈ Z1(X,m E) is an admissible
1-cycle such that

π∗(div(h))=π∗([h∗(0)]−[h∗(∞)])=π∗(∂0([0h])−∂∞([0h]))= (∂0−∂∞)([0h]).

This shows the inclusion π∗(div(h)) ⊂ R0(X,m E) and it yields the pullback
π∗ : CH0(Y )� CH0(X,m E). All other maps in (3-12) are naturally defined and
all are surjective.

If we let F2K0(X,m E) denote the image of the map cyc(X,m E) :CH0(X,m E)→
K0(X,m E), then it follows from Theorem 1.2 and Lemma 2.1 that F2K0(X,m E)→
H 2(X,K2,(X,m E)) is an isomorphism. We now apply [Krishna and Srinivas 2002,
Theorem 1.1] to conclude that the map H 2(Y,K2,(Y,mS))→ H 2(X,K2,(X,m E)) is
an isomorphism for all sufficiently large m. It follows that all arrows in the upper
square of (3-12) are isomorphisms for all sufficiently large m. In particular, the map
cyc(X,m E) :CH0(X,m E)→ H 2(X,K2,(X,m E)) is an isomorphism for all sufficiently
large m and hence the map C(U )→ lim

←−−
m

H 2(X,K2,(X,m E)) is an isomorphism. �

4. Vanishing theorems and failure of localization

Let k be a field and consider the effective Cartier divisor D = Spec(k[t]/tm) on
A1

k = Spec(k[t]). Given X ∈ Sch/k, let us denote the effective Cartier divisor
X × D ↪→ X ×A1

k by D itself. We shall prove Theorem 1.6 using the following
algebraic result.
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Lemma 4.1. Let A be the coordinate ring of a smooth affine curve over k and let
m be a maximal ideal of A[t] which contains the ideal (t − a), where a ∈ k×. Then
we can find a prime ideal p of height one in A[t] such that the following hold.

(1) p(m.

(2) A[t]/p is smooth.

(3) m/p is a principal ideal.

(4) p+ (t)= A[t].

Proof. Consider the maximal ideal m′ = m ∩ A of A. Since A is a Dedekind
domain, we can write m′ = ( f1, f2). But this implies using our hypothesis that
m= (t−a, f1, f2)= (a−1t−1, f1, f2). In case f1= f2, we take p= (t−a) which
clearly does the job. So we assume that f1 6= f2.

Since Am′ is a discrete valuation ring, m′Am′ is a principal ideal. In particular,
there is an element f ∈ A such that f /∈m′ and m′A f is principal. As f /∈m′, we
have ( f )+m′ = A, and this gives us an identity α f − α1 f1− α2 f2− 1= 0 in A.
Setting g = α f , we see that m′Ag is also a principal ideal. Furthermore, we have

ga−1t − 1= g(a−1t − 1)+ g− 1= g(a−1t − 1)+α1 f1+α2 f2 ∈m. (4-1)

If we set p = (ga−1t − 1) ( A[t], we have just shown that p ( m. Since
A[t]/p' Ag and hence

m
p
'

mAg[t]
pAg[t]

'
(−g−1(α1 f1+α2 f2), f1, f2)Ag[t]

pAg[t]
'
( f1, f2)Ag[t]

pAg[t]
'm′Ag,

we see that (2) and (3) are satisfied. The item (4) is clear. This proves the lemma. �

Proof of Theorem 1.6. We can assume that Y is connected. We set X = Y ×A1
k

and U = Y ×Gm . Let p : X→ A1
k and q : X→ Y denote the projection maps. Let

P ∈ U be a closed point and set P1 = p(P) and P2 = q(P). Then P1 ∈ Gm and
P2 ∈ Y are closed points as well.

We can find a nonsingular curve ι : C ↪→ Y containing P2 (see [Kleiman and
Altman 1979, Theorem 1] when k is infinite and [Poonen 2008, Theorem 1.1] when
k is finite). It follows from [Krishna and Park 2014, Proposition 2.10] that there is
a pushforward map ι∗ : CH0(C ×A1

k , D)→ CH0(Y ×A1
k , D) such that the class

[P] ∈ CH0(Y ×A1
k , D) lies in the image of this map. We can therefore assume that

Y is a curve.
Now P defines a unique closed point P ′ ∈ Xk(P) such that P = π(P ′), where

π : Spec(k(P))→ Spec(k) is the finite map. This gives [P] = π∗([P ′]) under the
pushforward map π∗ :CH0(Xk(P), D)→CH0(X, D) (see [Krishna and Park 2014,
Proposition 2.10]). It suffices therefore to show that the class [P ′] ∈CH0(Xk(P), D)
dies. We can thus assume that P1 ∈ Gm(k).
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We can now apply Lemma 4.1 to get a smooth affine curve i : C ↪→ X which
is a closed subset of X containing P such that C ∩ (Y × D) = ∅ and P ∈ C is a
principal Cartier divisor. In particular, the class [P] ∈CH0(C) is zero. On the other
hand, the condition C∩(Y×D)=∅ implies that the inclusion Z0(C) ↪→Z0(X, D)
defines a pushforward map i∗ :CH0(C)→CH0(X, D) (see [Krishna and Park 2014,
Corollary 2.11]) such that i∗([P]) = [P] ∈ CH0(X, D). It follows that [P] = 0.
This proves that CH0(X, D)= 0. The second part of the theorem now follows from
Theorem 1.2. �

As an immediate consequence of Theorems 1.2 and 1.6, we get:

Corollary 4.2. Given a nonsingular affine curve Y over a field k, we have

K0(Y ×A1
k , D)−→∼ Pic(Y ×A1

k , D).

Remark 4.3. Theorem 1.6 is known to fail when d = 0 (see [Bloch and Esnault
2003a]).

Proof of Theorem 1.7. Let the pair (X, D) be as in Theorem 1.7 and let x ∈ X \ D
be a closed point. We can assume that X is connected. We claim that there is a
smooth affine closed subscheme ι : Y ↪→ X of dimension d−1 such that Y ∩D=∅
and x ∈ Y .

To prove the claim, let A denote the coordinate ring of X and let I ↪→ A denote
the defining ideal of D. Let m ↪→ A denote the maximal ideal corresponding
to x ∈ X . Our assumption implies that there exist elements a ∈m2 and b ∈ I such
that a−b= 1. We can now apply [Swan 1974, Theorems 1.3, 1.4] to conclude that
for general a′ ∈m2, the ring A/(a− a′b) is integral and smooth. Setting f =a−a′b,
we see that f ∈m and f − 1= a− a′b− 1= b− a′b = b(1− a′) ∈ I . This shows
that Y := Spec(A/( f )) satisfies our requirement.

Using the above claim and [Krishna and Park 2014, Corollary 2.11], we get
a pushforward map ι∗ : CH0(Y )→ CH0(X, D) whose image contains the cycle
class [x]. The desired vanishing now follows because one knows that CH0(Y )= 0
(see for instance [Krishna and Srinivas 2007, Theorem 6.4.1]).

To prove the second assertion of the theorem, we first notice that for a closed
point x ∈ X \ D, we have natural maps

K0(k(x))−→∼ H d
{x}(X,K

M
d,(X,D))−→ H d

zar(X,K
M
d,(X,D))−→ H d

nis(X,K
M
d,(X,D)).

Setting cyc(X,D)([x]) to be the image of 1 ∈ K0(k(x)) under the composite map,
we get a cycle class map cyc(X,D) : Z0(X, D)→ H d

nis(X,K
M
d,(X,D)).

If Dred has normal crossings, then it follows from [Rülling and Saito 2015,
Definition 3.4.1, Proposition 3.5] that cyc(X,D) has a factorization CH0(X, D)→
H2d

nis(X,Z(d)X |D)→ H d
nis(X,K

M
d,(X,D)), where Z(d)X |D is the sheaf of cycle com-

plexes U 7→ Zd(U |D, 2d −•) on Xnis. Moreover, it follows from [Kato and Saito
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1986, Theorem 2.5] that the map cyc(X,D) : CH0(X, D)→ H d
nis(X,K

M
d,(X,D)) is

surjective. The vanishing of H d
nis(X,K

M
d,(X,D)) now follows from the first part of

the theorem. �

Proof of Theorem 1.5. In view of Theorem 1.6, the theorem is equivalent to the
assertion that the pushforward map CH0({P}×A1

k , D) i∗
−→CH0(Y ×A1

k , D) is not
surjective. If we let π : Y → Spec(k) denote the structure map, then the composite
map CH0({P}×A1

k , D) i∗
−→CH0(Y ×A1

k , D) π∗
−→CH0(A

1
k , D) is an isomorphism.

In particular, i∗ is split injective. Our aim is to show that it is not surjective.
We set X = Y × A1

k , V = Y \ {P}, U = V × A1
k and Z = {P} × A1

k . For any
W ∈ Sch/k, we shall write W × D as WD in this proof. In view of Theorem 1.2,
it suffices to show that the composite map CH0(Z , D) i∗

−→CH0(X, D) cyc(X,D)
−−−−→

H 2(X,K2,(X,D)) is not surjective.
Let HP

YD
denote the exact category of coherent sheaves on YD which have coho-

mological dimension at most one and which are supported on {P}×D so that there
is a commutative diagram of the fiber sequences of spectra (see [Srinivas 1991,
Theorem 9.1])

K (Z) //

��

K (X) //

��

K (U )

��

K (HP
YD
) // K (YD) // K (VD)

(4-2)

As in the proof of Lemma 3.2, this diagram canonically extends to a commutative
diagram of presheaves of spectra. Let KP

i,YD
denote the Zariski sheaf on Z associated

to the presheaf of homotopy groups W 7→ πi (K (HP
YD∩W )). Sheafifying the associ-

ated presheaves of homotopy groups and arguing as in the proof of Lemma 3.2, we
obtain the commutative diagrams of short exact sequence of Zariski sheaves

0

��

0

��

0

��

0 // K̃2,(X,D) //

��

j∗(K̃2,(U,D)) //

��

i∗(KP
1,Z )

//

��

0

0 // K2,X //

��

j∗(K̃2,U ) //

��

K1,Z //

��

0

0 // K2,YD
//

��

j∗(K1,VD )
//

��

KP
1,YD

//

��

0

0 0 0

(4-3)
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and

0 // K1,(Z ,D) //

��

K1,Z // K1,{P}D
//

��

0

0 // KP
1,Z

// K1,Z // KP
1,YD

// 0

(4-4)

These diagrams together give rise to a commutative diagram of exact sequences

0 // H 0(Z ,K1,Z )
ι∗(Z ,D)

//

��

H 0({P}D,K1,{P}D )
∂Z
//

��

H 1(Z ,K1,(Z ,D)) //

i∗
��

0

0 // H 1(X,K2,X )
ι∗(X,D)

// H 1(YD,K2,YD ) ∂X

// H 2(X,K2,(X,D)) // 0

(4-5)

The maps ∂Z and ∂X are surjective because H 1(Z ,K1,Z ) ' CH0(Z) = 0 =
CH2(X)' H 2(X,K2,X ). By the homotopy invariance of K -theory, the composite
map H 0(Z ,K1,Z )

ι∗(Z ,D)−−−→ H 0({P}D,K1,{P}D)) −→ H 0({P},K1,{P}) is an isomor-
phism. We claim that the composite map H 1(X,K2,X )

ι∗(X,D)−−−→ H 1(YD,K2,YD )−→

H 1(Y,K2,Y ) is also an isomorphism.
We have a commutative diagram

K1(Y ) //

��

H 0(Y,K1,Y )

��

K1(X) // H 0(X,K1,X )

(4-6)

where the vertical arrows are isomorphisms and the horizontal arrows are split
surjections. This implies that the induced pullback map SK1(Y )→ SK1(X) is an
isomorphism. We now have a commutative diagram

SK1(Y ) //

��

H 1(Y,K2,Y )

��

SK1(X) // H 1(X,K2,X )

(4-7)

where the top horizontal arrow is an isomorphism and the bottom horizontal arrow is
surjective (see [Krishna and Srinivas 2002, Lemma 2.3]). We have shown above that
the left vertical arrow is an isomorphism. This implies that the right vertical arrow
is surjective. On the other hand, it is split injective via the 0-section embedding.
Hence, it is an isomorphism. This proves the claim.
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The claim shows that the first horizontal arrows from left in both rows of (4-5)
are split injective. Combining this with Lemmas 3.1 and 3.2, we can identify
i∗ : CH0(Z , D)→ H 2(X,K2,(X,D)) as the map

i∗ : K1({P}× D, {P}× {0})→ H 1(YD,K2,(YD,Y )). (4-8)

Using [Krishna and Srinivas 2002, Corollary 4.2], this map is same as the map of
Q-vector spaces

i∗ : I → H 1
(

YD,
�1
(YD,Y )/Q

d(IY )

)
, (4-9)

where I is the ideal sheaf of Spec(k) inside D, IY = I ⊗k OY and �1
(YD,Y )/Q =

Ker(�1
YD/Q

��1
Y/Q). We are thus reduced to showing that this map of Q-vector

spaces is not surjective. Notice that the assumption m ≥ 2 implies that I 6= 0.
By [Krishna and Srinivas 2002, Lemma 4.3], there is a short exact sequence

0−→�1
k/Q⊗k IY −→

�1
(YD,Y )/Q

d(IY )
−→

�1
(YD,Y )/k

dk(IY )
−→ 0.

It is easy to check by local calculations that
�1
(YD ,Y )/k

d(IY )
' �1

Y/Q⊗k dk(I ), where
dk : I→�1

D/k is the k-derivation. In particular, the above sequence can be written as

0→ (I ⊗k �
1
k/Q)⊗k OY → K2,(YD,Y )→ dk(I )⊗k �

1
Y/k→ 0. (4-10)

Taking the associated long exact cohomology sequence, we get a commutative
diagram

dk(I )⊗k H 0(Y, �1
Y/k)

∂
// (I ⊗k �

1
k/Q)⊗k H 1(Y,OY )

// H 1(YD,K2,(YD,Y ))
// dk(I ) // 0

I

i∗

OO

dk

88

(4-11)

with the top sequence exact.
It is straightforward to check that dk is an isomorphism. On the other hand, as

k has infinite transcendence degree over Q and Y has positive genus, we see that
∂ is a map of k-vector spaces whose source is finite dimensional but the target is
infinite dimensional. This shows that there is a split exact sequence

0→
(I ⊗k �

1
k/Q)⊗k H 1(Y,OY )

dk(I )⊗k H 0(Y, �1
Y/k)

→ H 1(YD,K2,(YD,Y ))→ dk(I )→ 0 (4-12)

such that the first term is an infinite dimensional k-vector space and the compos-
ite map I i∗

−→ H 1(YD,K2,(YD,Y ))→ dk(I ) is an isomorphism. In particular, the
cokernel of i∗ is an infinite dimensional k-vector space. This finishes the proof of
Theorem 1.5. �
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