Vol. 9, No. 10, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 10
Issue 9, 1845–2052
Issue 8, 1601–1843
Issue 7, 1373–1600
Issue 6, 1147–1371
Issue 5, 939–1146
Issue 4, 695–938
Issue 3, 451–694
Issue 2, 215–450
Issue 1, 1–214

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
The abelian monoid of fusion-stable finite sets is free

Sune Precht Reeh

Vol. 9 (2015), No. 10, 2303–2324
Abstract

We show that the abelian monoid of isomorphism classes of G-stable finite S-sets is free for a finite group G with Sylow p-subgroup S; here a finite S-set is called G-stable if it has isomorphic restrictions to G-conjugate subgroups of S. These G-stable S-sets are of interest, e.g., in homotopy theory. We prove freeness by constructing an explicit (but somewhat nonobvious) basis, whose elements are in one-to-one correspondence with the G-conjugacy classes of subgroups in S. As a central tool of independent interest, we give a detailed description of the embedding of the Burnside ring for a saturated fusion system into its associated ghost ring.

Keywords
Fusion systems, Burnside rings, finite groups
Mathematical Subject Classification 2010
Primary: 20D20
Secondary: 20J15, 19A22
Milestones
Received: 3 December 2014
Revised: 31 August 2015
Accepted: 8 October 2015
Published: 16 December 2015
Authors
Sune Precht Reeh
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139
United States