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Ivan Horozov

The main goal of this paper is to construct noncommutative Hilbert modular
symbols. However, we also construct commutative Hilbert modular symbols.
Both the commutative and the noncommutative Hilbert modular symbols are
generalizations of Manin’s classical and noncommutative modular symbols. We
prove that many cases of (non)commutative Hilbert modular symbols are periods
in the Kontsevich–Zagier sense. Hecke operators act naturally on them.

Manin defined the noncommutative modular symbol in terms of iterated path
integrals. In order to define noncommutative Hilbert modular symbols, we
use a generalization of iterated path integrals to higher dimensions, which we
call iterated integrals on membranes. Manin examined similarities between
noncommutative modular symbol and multiple zeta values in terms of both
infinite series and of iterated path integrals. Here we examine similarities in the
formulas for noncommutative Hilbert modular symbol and multiple Dedekind
zeta values, recently defined by the current author, in terms of both infinite series
and iterated integrals on membranes.
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1. Introduction

Classical elliptic modular symbols were introduced by Birch [1971] and Manin
[1972] in connection with the Birch–Swinnerton-Dyer conjecture for certain con-
gruence subgroups of SL2(Z). We recall that a modular symbol {p, q} is associated
to a pair of cusp points p, q ∈P1(Q) on the completed upper half-plane H1

∪P1(Q).
One can think of the modular symbol {p, q} as a homology class of the geodesic
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connecting p and q , in H1(X0, {cusps}), where X0 is the modular curve associated
to a congruence subgroup of SL2(Z). One can pair {p, q} with a cusp form f by

{p, q}× f 7→
∫ q

p
f dz

If f is a cusp form of weight 2 then f dz can be viewed as a cohomology class
in H 1(X0). This gives a pairing between homology (Betti) and cohomology (de
Rham) that leads to periods. Modular symbols are a useful tool for studying L-
functions and in the computation of cohomology groups. For a review of such
topics, one can consult [Manin 2009].

Their theory was developed in [Manin 1972; Drinfeld 1973; Shokurov 1980;
Mazur 1973]. Later the theory was extended to higher ranks in [Ash and Rudolph
1979; Ash and Borel 1990; Gunnells 2000b].

Elliptic modular symbols are important tool in the study of modular forms.
They are particularly useful in computations with modular forms. J. Cremona
[1997] designed algorithms for computations with elliptic curves, based on modular
symbols (“modular symbol algorithms”). Some of the applications include the
computation of homology and cohomology. Also, the study of special values of
L-functions became a vast area of applications of classical modular symbols; see
[Mazur and Swinnerton-Dyer 1974; Kazhdan et al. 2000].

Later, W. Stein also contributed to the difficult area of computations with mod-
ular forms. See his excellent book [Stein 2007], which contains both theory and
computational methods. For higher-rank groups, one can consult the appendix of
this book, by P. Gunnells.

Manin’s noncommutative modular symbol [2006] is a generalization of both the
classical modular symbol and of multiple zeta values in terms of Chen’s iterated
integral theory in the holomorphic setting. Manin showed that the noncommutative
modular symbol is a noncommutative 1-cocycle. He also showed that each of the
iterated integrals on Hecke eigenforms that enter in the noncommutative modular
symbol are periods.

The main goal of this paper is to construct noncommutative Hilbert modular
symbols. However, we also construct an analog of the classical modular symbol for
Hilbert modular varieties. Both symbols are generalizations of the corresponding
constructions by Manin.

We compute explicit integrals in terms of the noncommutative Hilbert modular
symbol of type b, and present similar formulas for the recently defined multiple
Dedekind zeta values (see [Horozov 2014b]). We prove that the iterated integrals
on membranes that enter in the noncommutative modular symbol of type c are
periods. We also give some explicit and some categorical arguments in support of a
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conjecture that a certain type of noncommutative Hilbert modular symbol satisfies
a noncommutative 2-cocycle condition.

Before describing our results, let us recall the noncommutative modular symbol
of Manin [2006]. Let ∇ = d −

∑m
i=1 X i fi dz be a connection on the upper half-

plane, where f1, . . . , fm are cusp forms and X1, . . . , Xm are formal variables. One
can think of X1, . . . , Xm as constant square matrices of the same size.

Let J b
a be the parallel transport to the point b of the identity matrix 1 at the point a.

Alternatively, J a
b can be written as a generating series of iterated path integrals of

the forms f1 dz, . . . , fm dz, (see [Chen 1977] and [Manin 2006]), namely,

J b
a = 1+

m∑
i=1

X i

∫ b

a
fi dz+

m∑
i, j=1

X i X j

∫ b

a
fi dz · f j dz+ · · ·

Then J b
a J c

b = J c
a . This property leads to the 1-cocycle c1

a(γ )= J a
γ a for γ ∈ SL2(Z),

which is the noncommutative modular symbol (see [Manin 2006] and Section 2
of this paper). If f1, . . . , fm are normalized cusp Hecke eigenforms, then each
iterated integral appearing in the generating series J b

a is a period. In this paper
we introduce both commutative and noncommutative modular symbols for Hilbert
modular surfaces. As it turned out we need some new tools, in comparison to the
classical modular symbols. In particular, for the noncommutative Hilbert modular
symbol we need iterated integrals in dimension higher than one. We introduce
them and study their properties in the special case of Hilbert modular surfaces
for the Hilbert modular group SL2(OK ). For the Hilbert modular group, one may
consult [Bruinier et al. 2008] and [Freitag 1990]. In the case of Hilbert modular
surface, it is not possible to repeat Manin’s constructions for the noncommutative
modular symbols, since the integration domain is two-dimensional over the complex
numbers. Instead, we develop a new approach (Section 3), which we call iterated
integrals on membranes. This is a higher-dimensional analogue of iterated path
integrals. In Section 4G, we explore similar relations between noncommutative
Hilbert modular symbols and multiple Dedekind zeta values (see [Horozov 2014b]).

In Section 4, we associate modular symbols for SL2(OK ) to geodesic triangles and
geodesic diangles (2-cells whose boundaries have two vertices and two edges, which
are geodesics). We are going to explain how the geodesic triangles and the geodesic
diangles are constructed. Consider four cusp points in H2

∪P1(K ). We can map
any three of them to 0, 1 and∞ with a linear fractional transformation γ ∈GL2(K ).
There is a diagonal map H1

→ H2, whose image 1 contains 0, 1 and∞. We can
take a pullback of 1 with respect to the map γ in order to obtain a holomorphic
(or antiholomorphic) curve that passes through the given three points. If det γ is
totally positive or totally negative then γ ∗1 is a holomorphic curve in H2. If det γ
is not totally positive or totally negative (that is, in one of the real embeddings
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it is positive and in the other it is negative) then γ ∗1 is antiholomorphic. This
means that it is holomorphic in H2 if we conjugate the complex structure in one of
the copies of H1. The same type of change of the complex structure is considered
in [Freitag 1990].

On each holomorphic (or antiholomorphic) curve γ ∗1, there is a unique geodesic
triangle connecting the three given points. However, if we take two of the points, we
see that they belong to two geodesic triangles. Thus they belong to two holomorphic,
(antiholomorphic) curves. Therefore, there are two geodesic connecting the two
points — each lying on different holomorphic (antiholomorphic) curves, as faces of
the corresponding geodesic triangles defining the curves. There are two pairings
that we consider: the first is an integral of a cusp form over a geodesic triangle and
the second is an integral of a cusp form over a geodesic diangle. If we integrate a
holomorphic 2-form coming from a cusp form over a geodesic triangle, we obtain 0,
if the triangle lies on an holomorphic curve. Thus the only nonzero pairings come
from integration of a cusp form over a diangle or over a triangle lying on an
antiholomorphic curve.

Now let us look again at the four cusp points together with the geodesics that
we have just described. We obtain four geodesic triangles, corresponding to each
triple of points among the four points, and six diangles, corresponding to the six
“edges” of a tetrahedron with vertices the four given points. Thus, we obtain a
“tetrahedron” with thickened edges. We will use tetrahedrons with thickened edges
as an intuition for a noncommutative 2-cocycle relation (see Conjecture 4.15) for
the noncommutative Hilbert modular symbol, which is an analogue of Manin’s
noncommutative 1-cocycle relation for the noncommutative modular symbol.

Usually, the four vertices are treated as a tetrahedron and a 2-cocycle is functional
on the faces, considered as 2-chains. The boundary is defined as a sum of the 2-
cocycles on each of the faces (which are triangles). The boundary of the tetrahedron
gives a boundary relation of a 2-cocycle.

In our case the analogue of a 2-cocycle is a functional on diangles and on triangles.
And the boundary map is a sum over the faces of the thickened tetrahedron. Thus, the
faces of the thickened tetrahedron are four triangles and six diangles, corresponding
to the six edges of a tetrahedron.

We show that the geodesics on the boundary of a diangle or of a geodesic triangle
lie on a holomorphic curves γ ∗1 for various elements γ with totally positive or
totally negative determinant. This implies that when we take the quotient by a
Hilbert modular group the holomorphic curve γ ∗1 becomes a Hirzebruch–Zagier
divisor [Hirzebruch and Zagier 1976]. Then we prove that the commutative Hilbert
modular symbols paired with a cusp forms of weight (2, 2) gives periods in the
sense of [Kontsevich and Zagier 2001].
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In order to construct a noncommutative Hilbert modular symbol, first we define a
suitable generalization of iterated path integrals, which we call iterated integrals on
membranes (see Section 3). We choose the word “membrane” since such integrals
are invariant under suitable variation of the domain of integration.

There is a topological reason for considering a noncommutative Hilbert modular
symbol as opposed to only a commutative one. Let us first make such a comparison
for the case of SL2(Z). The commutative modular symbol captures H1(X0), while
the noncommutative symbol captures the rational homotopy type of the modu-
lar curve X0. Now, let X̃ be a smooth Hilbert modular surface, by which we
mean the minimal desingularization of the Borel–Baily compactification due to
Hirzebruch. Then the rational fundamental group of a Hilbert modular surface
vanishes: π1(X̃)Q = 0 (see [Bruinier et al. 2008]). The noncommutative Hilbert
modular symbol is an attempt to capture more from the rational homotopy type
than H2(X̃) captures.

For the convenience of the reader, we first define type a iterated integrals on
membranes (Definition 3.3). They are simpler to define and more intuitive. How-
ever, they do not have enough properties. (For example, they do not have an
integral shuffle relation.) Then we define type b iterated integrals on membranes
(Definition 3.4), which involves two permutations. Type b has integral shuffle
relation (Theorem 3.21(i)), and type a is a particular case of type b.

We are mostly interested in iterated integrals of type b. If there is no index spec-
ifying the type of iterated integral over membranes, we assume that it is of type b.

Similarly to Manin’s approach, we define a generating series of iterated integrals
over membrane of type b over U , which we denote by J (U ). We also define a
shuffle product of generating series of iterated integrals over membranes of type b
(see Theorem 3.21(iii)),

φ(J (U1)×Sh J (U2))= J (U1 ∪U2),

for U1,U2 disjoint 2-dimensional manifolds with corners contained in H2
∪P1(K )

(see [Borel and Serre 1973]). This shuffle product generalizes the composition of
generating series of iterated path integrals, namely, J b

a J c
b = J c

a , to dimension 2.
Note that a similar definition is also possible in higher dimensions. Also, J (U ) is
invariant under homotopy. This allows us to consider cocycles and coboundaries,
where the relations use homotopy invariance and values at different cells can be
composed via the shuffle product.

We define noncommutative Hilbert modular symbols, which we call c1 and c2;
c1 is the functional J on certain geodesic diangles and c2 is the functional J on
geodesic triangles. Conjecturally, c1 is a 1-cocycle such that if we change the
base point of c1 then c1 is modified by a coboundary. Also, conjecturally, c2 is
a 2-cocycle up to finitely many multiples of different values of c1. Also, if we
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change the base point of c2 then c2 is modified by a coboundary up to a finitely
many multiples of different values of c1. In Section 4E we give explicit formulas
in support of the interpretation of the noncommutative symbols as cocycles.

In Section 4F, we give a categorical construction, which might help to prove that
the noncommutative symbols are cocycles.

In Section 4G, we define multiple L-values associated to cusp forms, and we
compare them to multiple Dedekind zeta values (see [Horozov 2014b]).

We also briefly recall the Riemann zeta values and multiple zeta values (MZVs).
The Riemann zeta values are defined as

ζ(k)=
∑
n>0

1
nk ,

where n is an integer. MZVs are defined as

ζ(k1, . . . , km)=
∑

0<n1<···<nm

1

nk1
1 · · · n

km
m
,

where n1, . . . , nm are integers. The above MZV is of depth m. Riemann zeta values
ζ(k) and MZV ζ(k1, . . . , km) were defined by Euler [1748] for m = 1, 2.

The common feature of MZVs and the noncommutative modular symbol is that
they both can be written as iterated path integrals (see [Goncharov 2001a; 2001b]).
Moreover, Manin’s noncommutative modular symbol resembles the generating
series of MZV, which is the Drinfeld associator. Let us recall that the Drinfeld
associator is a generating series of iterated integrals of the type J b

a associated to
the connection

∇ = d − A
dx
x
− B

dx
1− x

on Y0(2) = P1
−{0, 1,∞}. One can think of Y0(2) as the modular curve associated

to the congruence subgroup 0(2) of SL2(Z). Then the differential forms dx/x and
dx/(1− x) are Eisenstein series of weight 2 on the modular curve Y0(2).

Relations between MZV and modular forms have been examined by many authors.
For example, Goncharov [2001b; 2001c] considered a mysterious relation between
MZV (multiple zeta values) of given weight and depth 3 and the cohomology of
GL3(Z), which is closely related to the cohomology of SL3(Z). In the pursuit of
such a relation in depth 4, Goncharov suggested and the current author computed
the group cohomology of GL4(Z) with coefficients in a family of representations
[Horozov 2014a]. Another relation between modular forms and MZV is presented
in [Gangl et al. 2006].

Similarly to Manin’s approach, we explore relations between the noncommutative
Hilbert modular symbols and multiple Dedekind zeta values (see [Horozov 2014b]).
Let us recall multiple Dedekind zeta values. Let each of C1, . . . ,Cm be a suitable
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subset of the ring of integers OK of a number field K . We call each of C1, . . . ,Cm

a cone. Then multiple Dedekind zeta values are defined as

ζK ;C1,...,Cm (k1, . . . , km)=
∑
αi∈Ci

1
N (α1)k1 N (α1+α2)k2 · · · N (α1+ · · ·+αm)km

.

The connection between noncommutative Hilbert modular symbols and multiple
Dedekind zeta values lies both in the similarities in the infinite sum formulas and in
the definition in terms of iterated integrals on membranes (see [Horozov 2014b]).

We consider a noncommutative Hilbert modular symbol of type b over one
diangle and compare it with (multiple) Dedekind zeta values with summation over
one discrete cone [Horozov 2014b]. However, in this case the two series look
very different. We obtain that the multiple L-values are noncommutative modular
symbols defined as J evaluated at an infinite union of diangles. We obtain that
such L-values are very similar to the sum of multiple Dedekind zeta values, in the
same way that the integrals in Manin’s noncommutative modular symbol are similar
to the multiple zeta values (MZV). Then the sum of the multiple Dedekind zeta
values is over an infinite union of cones. The idea of considering cones originated
in [Zagier 1976] and more generally in [Shintani 1976].

Classical or commutative modular symbols for SL3(Z) and SL4(Z) were con-
structed in [Ash and Borel 1990] and [Gunnells 2000a]. For GL2(OK ), where K is
a real quadratic field, Gunnells and Yasaki [2008] defined a modular symbol based
on Voronoi decomposition of a fundamental domain, in order to compute the third
cohomology group of GL2(OK ). (For the Hilbert modular group SL2(OK ) one may
consult [Bruinier et al. 2008; Freitag 1990].) In contrast, here we use a geodesic
triangulation of H2/SL2(OK ). We are interested mostly in 2-cells, whose boundaries
are geodesics. One of the (commutative) symbols that we define here resembles
combinatorially the symplectic modular symbol of [Gunnells 2000b]. However, the
meanings of the two types of symbols and their approaches are different.

There are several different directions for further work on Hilbert modular symbols.
First of all, the commutative Hilbert modular symbols behave well with respect to
Hecke operators. It will be interesting to extend the Hecke operators to cases of
higher equal weights (k, k). To apply Hecke operators to Hilbert modular groups
one either assumes a trivial narrow class group or one has to work with adeles.
Another possible continuation of the current work is to extend commutative Hilbert
modular symbols to the adelic setting. Then, one may try to extend these properties —
higher equal weight cusp forms and Hecke operators in the adelic setting — to the
noncommutative Hilbert modular symbols. Hopefully, the abelian Hilbert modular
symbol would lead to computational tools for cohomology of some Hilbert modular
groups with coefficients in various representations.



324 Ivan Horozov

For the noncommutative Hilbert modular symbols we expect that some of the con-
tinuations would be establishing the 2-categorical framework that define nonabelian
2-cohomology sets. This work would also have applications to noncommutative reci-
procity laws on algebraic surfaces. In dimension 1, we have a noncommutative reci-
procity law as a reciprocity law for a generating series of iterated path integrals on a
complex curve [Horozov 2011]. In dimension 2 we have proven both the Parshin reci-
procity and a new reciprocity for a 4-function local symbols [Horozov 2014c] defined
by the author, which are particular cases in the generating series. A 2-categorical
second cohomology set would capture algebraically the generating series of iterated
integrals on membranes needed for the general reciprocity on algebraic surfaces.

Finally, we expect that the (non)commutative Hilbert modular symbols would
be useful for studying L-functions and multiple L-functions together with their
special values.

2. Manin’s noncommutative modular symbol

In this section we recall the definition and main properties of Manin’s [2006]
noncommutative modular symbol. In this paper, Manin uses iterated path integrals
on a modular curve and on its universal cover — the upper half-plane. Our main
constructions are parallel to some extent to Manin’s approach, and for that reason
we recall it below. However, instead of iterated path integrals we introduce a new
tool — iterated integrals on membranes (see Section 3). Only this notion is adequate
for studying noncommutative Hilbert modular symbols, by generalizing the iteration
process to higher dimensions.

2A. Iterated path integrals. Here we recall iterated path integrals (see also [Parshin
1966; Chen 1977; Goncharov 2001a; Manin 2006]). In Section 3, we generalize
them to iterated integrals over membranes.

Definition 2.1. Let ω1, . . . , ωm be m holomorphic 1-forms on H1
∪ P1(Q), the

upper half-plane together with the cusps. Let

g : [0, 1] → H1
∪P1(Q),

be a piecewise smooth path. We define an iterated integral∫
g
ω1 · · ·ωm =

∫
· · ·

∫
0<t1<t2<···<tm<1

g∗ω1(t1)∧ · · · ∧ g∗ωm(tm).

Let X1, . . . , Xm be formal variables. Consider the differential equation

dF(�)= F(�)(X1ω1+ · · ·+ Xnωm) (1)
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with values in the associative but noncommutative ring of formal power series in the
noncommuting variables X1, . . . , Xm over the ring of holomorphic functions on the
upper half-plane. There is a unique solution with initial condition F(�)(g(0))= 1;
that is, equal to 1 at the starting point g(0). Then at the end of the path, that is, at
the point g(1), F(�) has the value

Fg(�)=1+
m∑

i=1

X i

∫
g
ωi+

m∑
i, j=1

X i X j

∫
g
ωiω j+

m∑
i, j,k=1

X i X j Xk

∫
g
ωiω jωk+· · · . (2)

Using the solution (2) to (1), we prove the following theorem:

Theorem 2.2. Let g1 and g2 be two paths such that the end of g1 (i.e., g1(1)) is
equal to the beginning of g2 (i.e., g2(0)). Let g1g2 denote the concatenation of g1

and g2. Then

Fg1g2(�)= Fg1(�)Fg2(�).

Proof. The left-hand side is the value of the solution of the linear first-order ordinary
differential equation at the point g2(1). From the uniqueness of the solution, we
have that the solution along g2 gives the same result, when the initial condition at
g2(0) is Fg1(�). That result is Fg1(�)Fg2(�). �

The same result can be proven via product formula for iterated integrals. We
need this alternative proof in order to generalize to higher dimensions.

Lemma 2.3 (product formula). Let ω1, . . . , ωm be holomorphic 1-forms on C and
g1, g2 two paths such that the end of g1 is the beginning of g2, that is, g1(1)= g2(0).
As before we denote by g1g2 the concatenation of the paths g1 and g2. Then∫

g1g2

ω1 · · ·ωm =

m∑
i=0

∫
g1

ω1 · · ·ωi

∫
g2

ωi+1 · · ·ωm .

Proof. Let g1 : [0, 1]→C and let g2 : [1, 2]→C. We consider the concatenation g1g2

to be a map g1g2 : [0, 2]→C whose restriction to the interval [0, 1] gives the path g1

and whose restriction to the interval [1, 2] gives g2. From Definition 2.1, we have that∫
g1g2

ω1 · · ·ωm =

∫
· · ·

∫
0<t1<···<tm<2

(g1g2)
∗ω1(t1)∧ · · · ∧ (g1g2)

∗ωm(tm).

In the domain of integration 0< t1< · · ·< tm <2 insert the number 1. Geometrically,
we cut the simplex 0< t1 < · · ·< tm < 2 into a disjoint union of products of pairs
of simplices such that tk ∈ [0, 1] for k ≤ i and tk ∈ [1, 2] for k > i . Thus, the union
is over distinct values of i for i = 0, . . . ,m. And for each fixed i the two simplices
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are 0< t1 < · · ·< ti < 1 and 1< ti+1 < · · ·< tm < 2. Then we have∫
g1g2

ω1 · · ·ωm =

n∑
i=0

∫
· · ·

∫
0<t1<···<ti<1

1<ti+1<···<tm<2

(g1g2)
∗ω1(t1)∧ · · · ∧ (g1g2)

∗ωm(tm)

=

n∑
i=0

(∫
· · ·

∫
0<t1<···<ti<1

g∗1ω1(t1)∧ · · · ∧ g∗1ωi (ti )
)

×

(∫
· · ·

∫
1<ti+1<···<tm<2

g∗2ωi+1(ti+1)∧ · · · ∧ g∗2ωm(tm)
)

=

m∑
i=0

∫
g1

ω1 · · ·ωi

∫
g2

ωi+1 · · ·ωm . �

Definition 2.4. The set of all shuffles sh(i, j) is a subset of all permutations σ of
the set {1, 2, . . . , i + j} such that

σ(1) < · · ·< σ(i)

and

σ(i + 1) < · · ·< σ(i + j).

Such a permutation σ is called a shuffle.

Lemma 2.5 (shuffle relation). Let ω1, . . . , ωm be holomorphic 1-forms on C and
let g be a path. Then∫

g
ω1 · · ·ωi

∫
g
ωi+1 · · ·ωm =

∑
σ∈sh(i,m−i)

∫
g
ωρ(1) · · ·ωρ(m),

where sh(i, j) is the set of shuffles from Definition 2.4.

2B. Manin’s noncommutative modular symbol. Now let g be a geodesic con-
necting two cusps a and b in the completed upper half-plane H1

∪ P1(Q). Let
�= { f1 dz, . . . , fm dz} be a finite set of holomorphic forms with respect to a con-
gruence subgroup 0 of SL2(Z) such that f1, . . . , fm are cusp forms of weight 2. Let

J b
a = Fg(�).

As a reformulation of Theorem 2.2, we obtain:

Lemma 2.6. J b
a J c

b = J c
a .

The following is a direct consequence:

Corollary 2.7. J a
b = (J

b
a )
−1.
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Now we are ready to define Manin’s noncommutative modular symbol. Note
that there is a natural action of 0 on J b

a . If γ ∈ 0 then γ J b
a is defined as J γ b

γ a . If
f1, . . . , fm are cusp forms of weight 2, then ω1= f1 dz, . . . , ωm = fm dz are forms
of weight 0, that is, they are invariant forms with respect to the group 0. Then

γ J b
a = Fγ g(ω1, . . . , ωm)= Fg(g∗ω1, . . . , g∗ωm)= Fg(ω1, . . . , ωm)= J b

a .

Let 5 be the subgroup of invertible elements of C〈〈X1, . . . , Xm〉〉 with constant
term 1. We extend the action of 0 on J b

a to a trivial action of 0 on 5.
Following Manin, we present the key theorem and definition for the noncommu-

tative modular symbol:

Theorem 2.8. Let

c1
a(γ )= J a

γ a.

Then c1
a represent a cohomology class in H 1(0,5), independently of the base

point a.

Proof. First, c1
a is a cocycle:

dc1
a(β, γ )= J a

βa(β · J
a
γ a)(J

a
βγ a)

−1
= J a

βa Jβa
βγ a Jβγ a

a = 1.

Second, c1
a and c1

b are homologous:

c1
a(γ )= J a

γ a = J a
b J b

γ b J γ b
γ a = J a

b c1
b(γ )(γ · J

a
b )
−1. �

Definition 2.9. A noncommutative modular symbol is a nonabelian cohomology
class in H 1(0,5), with representative

c1
a(γ )= J a

γ a,

3. Iterated integrals on membranes

Iterated integrals on membranes are a higher-dimensional analogue of iterated
path integrals. This technical tool was used in [Horozov 2014b] for constructing
multiple Dedekind zeta values and in [Horozov 2014c] for proving new and classical
reciprocity laws on algebraic surfaces. It appeared first in the preprint [Horozov
2006] for the purpose of noncommutative Hilbert modular symbols.

3A. Definition and properties. Let H1 be the upper half-plane. Let H2 be a product
of two upper half-planes. We are interested in the action of GL2(K ), where K is a
real quadratic field. This group acts on H2 by linear fractional transformations. It
is convenient to introduce cusp points P1(K ) as boundary points of H2.
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Let ω1, . . . , ωm be holomorphic 2-forms on H2 which are continuous at the
cusps P1(K ). Let

g : [0, 1]2→ H2
∪P1(K )

be a continuous map which is smooth almost everywhere. Denote by F1 and F2

the following coordinatewise foliations: for any a ∈ [0, 1], define the leaves

F1
a = {(t1, t2) ∈ [0, 1]2 | t1 = a} and F2

a = {(t1, t2) ∈ [0, 1]2 | t2 = a}.

Definition 3.1. We call the above map g : [0, 1]2→ H2
∪P1(K ) a membrane on

H2 if it is a continuous and piecewise differentiable map such that g(F1
a ) and g(F2

a )

belong to a finite union of holomorphic curves in H2
∪P1(K ) for all constants a.

Similarly, we define a membrane of a Hilbert modular variety. Let ω1, . . . , ωm be
holomorphic 2-forms on Y0 = H2/0 which are continuous at the cusps P1(K )/0.
Let

g : [0, 1]2→ X0

be a continuous map which is smooth almost everywhere, where X0 =H2
∪P1(K ).

Let fi : X0→ P1(C) for i = 1, 2 be two algebraically independent rational func-
tions on the Hilbert modular surface X0. Denote by F1 and F2 the following
coordinatewise foliations: for any a ∈ [0, 1], define the leaves

F1
a = {(t1, t2) ∈ [0, 1]2 | t1 = a} and F2

a = {(t1, t2) ∈ [0, 1]2 | t2 = a}.

Let also

P1
x = {P ∈ X0 | f1(P)= x} and P2

x = {P ∈ X0 | f2(P)= x}.

Definition 3.2. We call the above map g : [0, 1]2→ X0 a membrane on X0 if it is
a continuous and piecewise differentiable map such that for each a there are x1 and
x2 such that g(F1

a )⊂ P1
x1

and g(F2
a )⊂ P2

x2
.

We define three types of iterated integrals over membranes — type a, type b
and type c. Type a consists of linear iterations, while type b is more general and
involves permutations. Type a is less general, but more intuitive. The advantage of
type b is that it satisfies integral shuffle relation (Theorem 3.21). In other words
a product of two integrals of type b can be expresses as a finite sum of iterated
integrals over membranes of type b. However, one might not be able to express
a product of two integrals of type a as a sum of finitely many integrals of type a.
Both type a and type b are defined on a product of two upper half-planes. Type c
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is defined on a Hilbert modular surface; that is, on a quotient of a product of upper
half-planes by an arithmetic group which is commensurable to SL2(OK ). Type c
also satisfies a shuffle product, that is, a product of two integrals of this type can be
expresses a finite sum of such integrals.

Definition 3.3 (type a, ordered iteration over membranes). Let

g : [0, 1]2→ H2
∪P1(K )

be a membrane on H2
∪P1(K ). Then define∫
g
ω1 · · ·ωm =

∫
D

∧m
j=1g∗ωi (t1, j , t2, j ),

where

D=
{
(t1,1, . . . , t2,m)∈ [0, 1]2m

| 0≤ t1,1≤· · ·≤ t1,m ≤ 1, 0≤ t2,1≤· · ·≤ t2,m ≤ 1
}
.

Definition 3.4 (type b, two permutations). Let

g : [0, 1]2→ H2
∪P1(K )

be a membrane on H2
∪ P1(K ), and let ρ1, ρ2 be two permutations of the set

{1, 2, . . . ,m}. Then define∫ ρ1,ρ2

g
ω1 · · ·ωm =

∫
D

∧m
j=1g∗ω j (t1,ρ1( j), t2,ρ2( j)),

where

D=
{
(t1,1, . . . , t2,m)∈ [0, 1]2m

| ≤ t1,1≤ · · · ≤ t1,m ≤ 1, 0≤ t2,1≤ · · · ≤ t2,m ≤ 1
}
.

Definition 3.5 (type c, two permutations). Let

g : [0, 1]2→ X0

be a membrane on the Hilbert modular surface X0 = (H2
∪ P1(K ))/0, and let

ρ1, ρ2 be two permutations of the set {1, 2, . . . ,m}. Then define∫ ρ1,ρ2

g
ω1 · · ·ωm =

∫
D

∧m
j=1g∗ω j (t1,ρ1( j), t2,ρ2( j)),

where

D=
{
(t1,1, . . . , t2,m)∈ [0, 1]2m

| 0≤ t1,1≤· · ·≤ t1,m ≤ 1, 0≤ t2,1≤· · ·≤ t2,m ≤ 1
}
.
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Examples (iterated integrals of type b). Let αi (t1, t2)= g∗ωi (t1, t2). Denote by (1)
the trivial permutation and by (1 2) the permutation exchanging 1 and 2.

(1) The four diagrams

t1,1

t2,1

t1,2

t2,2

α1(t1,1, t2,1)

α2(t1,2, t2,2)

t1,1

t2,1

t1,2

t2,2

α1(t1,2, t2,1)

α2(t1,1, t2,2)

t1,1

t2,1

t1,2

t2,2 α1(t1,2, t2,2)

α2(t1,1, t2,1)

t1,1

t2,1

t1,2

t2,2 α1(t1,1, t2,2)

α2(t1,2, t2,1)

correspond, respectively, to the integrals∫ (2),(1)

g
ω1 ·ω2,

∫ (12),(1)

g
ω1 ·ω2,∫ (12),(12)

g
ω1 ·ω2,

∫ (1),(12)

g
ω1 ·ω2.

(2) The diagram

t1,1 t1,2 t1,3

t2,1

t2,2

t2,3

α1(t1,2, t2,1)

α2(t1,1, t2,2)

α2(t1,3, t2,3)

corresponds to the integral∫ (12),(1)

g
ω1 ·ω2 ·ω3.
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Remark 3.6. Let us give more intuition for Definition 3.4. Each of the differential
forms g∗ω1, . . . , g∗ωm has two arguments. Consider the set of first arguments for
each of the differential forms g∗ω1, . . . , g∗ωm . They are ordered as

0< t1,1 < t1,2 < · · ·< t1,m < 1 (3)

(they are the coordinates of the domain D). Since g∗ω j depends on t1,ρ1( j), we
have that t1,k is an argument of g∗ωρ−1

1 (k), where k = ρ1( j). Then we can order the
differential forms g∗ω1, . . . , g∗ωm according to the order of their first arguments
given by the inequalities (3), which is

g∗ωρ−1
1 (1), g∗ωρ−1

1 (2), . . . , g∗ωρ−1
1 (m).

Similarly, we can order the differential forms g∗ω1, . . . , g∗ωm with respect to the
order of their second arguments:

g∗ωρ−1
2 (1), g∗ωρ−1

2 (2), . . . , g∗ωρ−1
2 (m).

We call the first ordering horizontal and the second ordering vertical.

Now we are going to examine the homotopy of a domain of integration and
what that reflects about the integral. Let gs : [0, 1]2→ H2

∪P1(K ) be a family of
membranes such that gs(0, 0)=∞ and gs(1, 1)= 0. Assume that the parameter s
is in the interval [0, 1].

Let h(s, t1, t2)= gs(t1, t2) be a homotopy between g0 and g1. Let

Gs : [0, 1]2m
→ (H2

∪P1(K ))m

be the map

Gs(t1,1,. . .,t2,m)=
(
gs(t1,σ1(1),t2,σ2(1)),gs(t1,σ1(2),t2,σ2(2)),. . .,gs(t1,σ1(m),t2,σ (m))

)
.

Let H be the induced homotopy between G0 and G1, defined by

H(s, t1,1, . . . , t2,m)= Gs(t1,1, . . . , t2,m).

We define diagonals in the domain D ⊂ (0, 1)2m , where

D =
{
(t1,1, t2,1, . . . , t1,m, t2,m) ∈ (0, 1)2m

| 0≤ t1,1 ≤ t1,2 ≤ · · · ≤ t1,m ≤ 1

and 0≤ t2,1 ≤ t2,2 ≤ · · · ≤ t2,m ≤ 1
}
.

We define D1,k for k = 0, . . . ,m by D1,0 = D|t1,1=0, D1,k = D|t1,k=t1,k+1 for k =
1, . . . ,m− 1 and D1,m = D|t1,m=1. Similarly, we define D2,k for k = 0, . . . ,m by
D2,0 = D|t2,1=0, D2,k = D|t2,k=t2,k+1 for k = 1, . . . ,m− 1 and D2,m = D|t2,m=1.
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For iterated integrals of types a and b, we define diagonals in V = (H2
∪P1(K ))m .

We denote a generic coordinate of V = (H2
∪P1(K ))m by (z1,1, z2,1, . . . , z1,m, z2,m)

For k = 1, . . . ,m− 1, let V1,k = V |z1,k=z1,k+1 . Let also V1,0 = V |z1,1=0 and V1,m =

V |z1,m=1. Similarly, for k = 1, . . . ,m − 1, let V2,k = V |z2,k=z2,k+1 . Let also V2,0 =

V |z2,1=0 and V2,m = V |z2,m=1.
For iterated integrals of type c, we define “diagonals” as fibers product of schemes

corresponding to certain varieties (for fiber products of schemes one may look at the
book [Hartshorne 1977]). Occasionally, it will be more natural to realize multiple
fiber products as finite limits in the category of schemes of finite type over C. Let
X i, j = X0 for i, j = 1, . . . , n. Let V be the universal scheme (finite limit) that
maps to X i j for each i and j as a part of a commutative diagram. The commutative
diagram is defined as follows: X i, j and X i+1, j both map to P1(C) via the morphism
f1 for 1 ≤ i ≤ n − 1 and all j , and X i, j and X i, j+1 both map to P1(C) via the
morphism f2 for 1≤ j ≤ n− 1 and all i . Define the following:

• Let V1,0 be the subscheme of V defined by putting P1(C) in the place of X1, j ,
so that f1 : X1, j→P1(C) is replaced by the identity map and the corresponding
f2 : X1, j → P1(C) is deleted.

• Let V2,0 be the subscheme of V defined by putting P1(C) in the place of X i,1,
so that f2 : X1, j→P1(C) is replaced by the identity map and the corresponding
f1 : X1, j → P1(C) is deleted.

• Let V1,n be the subscheme of V defined by putting P1(C) in the place of Xn, j ,
so that f1 : Xn, j→P1(C) is replaced by the identity map and the corresponding
f2 : Xn, j → P1(C) is deleted.

• Let V2,n be the subscheme of V defined by putting P1(C) in the place of X i,n ,
so that f2 : Xn, j→P1(C) is replaced by the identity map and the corresponding
f1 : Xn, j → P1(C) is deleted.

• Additionally, let V1,i be the subscheme of V obtained by replacing each factor
X i, j ×P1(C) X i+1, j by the corresponding diagonal for fixed i and for all j .

• Finally, let V2, j be the subscheme of V obtained by replacing each factor
X i, j ×P1(C) X i, j+1 by the corresponding diagonal for fixed j and all i .

Theorem 3.7 (homotopy invariance theorem I). The iterated integrals on mem-
branes from Definition 3.4 (of type b) are homotopy-invariant with respect to
homotopies that preserve the boundary of the membrane.

Proof. Let

�=
∧m

j=1ω j (z1,σ1( j), z2,σ2( j)).
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Note that � is a closed form, since ωi is a form of top dimension. By Stokes’
theorem, we have

0=
∫ s=1

s=0

∫
D

H∗d� (4)

=

∫
D

G∗1�−
∫

D
G∗0� (5)

±

∫ s=1

s=0

m−1∑
k=1

(∫
D1,k

±

∫
D2,k

)
H∗� (6)

±

∫ s=1

s=0

(∫
D1,0

±

∫
D2,0

)
H∗� (7)

±

∫ s=1

s=0

(∫
D1,m

±

∫
D2,m

)
H∗�. (8)

We want to show that the difference in the terms in (5) is zero. It is enough to
show that each of the terms (6), (7) and (8) are zero. If z1,k = z1,k+1 for types a
and b (or on V1,k for type c), then the wedge of the corresponding differential forms
will vanish. Thus the terms in (6) are zero. If z1 = 0 then dt1 = 0, defined via the
pullback H∗. Then the terms (7) are equal to zero. Similarly, we obtain that the
last integral (8) vanishes. �

Let A be a 2-dimensional manifold with corners in [0, 1]2. We recall the domain
of integration

D=
{
(t1,1, . . . , t2,m)∈ [0, 1]2m

| 0≤ t1,1≤· · ·≤ t1,m ≤ 1, 0≤ t2,1≤· · ·≤ t2,m ≤ 1
}
.

Let us define

AD
= {(t1,1, . . . , t2,m) ∈ D | (t1,i , t2, j ) ∈ A for i, j = 1, . . . ,m }

Let ρ1 and ρ2 be two permutations of m elements. We define a function on AD

G(t1,1, . . . , t2,m)=
(
g(t1,ρ1(1), t2,ρ2(1)), g(t1,ρ1(2), t2,ρ2(2)), . . . , g(t1,ρ1(m), t2,ρ(m))

)
.

Recall that
�=

∧m
j=1ω j (z1,ρ1( j), z2,ρ2( j)).

Definition 3.8. With the above notation, we define an iterated integral over a
membrane of type b restricted to a domain U = g(A) by

b
∫ ρ1,ρ2

g,U
ω1 · · ·ωm =

∫
AD

G∗�.

Now we are going to define iterated integrals of type c:
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Definition 3.9. Let �0 =
∧m

i, j=1�i, j , where �i, j =ωiδi, j on X i,i ≡ X0 and where
�i, j = 1 for i 6= j . Let in : X→

∏n
i, j=1 X i, j be the inclusion of the finite limit into

the product of the schemes X i, j . Let �= in∗�0.
With this definition of �, we define iterated integrals of type c restricted to a

domain U = g(A) by

c
∫ ρ1,ρ2

g,U
ω1 · · ·ωm =

∫
AD

G∗�.

Let A1 and A2 be two manifolds with corners which are subsets of [0, 1]2, with
a common component of the boundary. Let A = A1 ∪ A2. Let s be a map of sets
with values 1 or 2:

s : {1, . . . ,m} → {1, 2}.

We define a certain subset AD
s of AD as follows: consider the image of the map G.

It has m coordinates. The first coordinate, g(t1,ρ1(1), t2,ρ2(1)), will be restricted to
the set As(1). The second coordinate, g(t1,ρ1(2), t2,ρ2(2)), will be restricted to As(2),
and so on, and the last m coordinate g(t1,ρ1(m), t2,ρ2(m)) will be restricted to As(m).
Formally, this can be written as

AD
s = {(t1,1, . . . , t2,m) ∈ AD

| (t1,ρ1(i), t2,ρ2(i)) ∈ As(i) for i = 1, . . . ,m}.

Note that the image of the map s is 1 or 2.

Definition 3.10. With the above notation, we define an iterated integral of type b
or c over two domains U1 and U2, where Ui = g(Ai ) and U =U1 ∪U2, by∫ ρ1ρ2

g,U,s
ω1 · · ·ωm =

∫
AD

s

G∗�. (9)

For type b we have that U is in H2
∪P1(K ) and for type c we have that U is in

X0 = (H2
∪P1(K ))/0.

Again we examine the homotopy of iterated integrals on membranes. Now we
restrict the domain of integration to a manifold with corners A that is a subset of
[0, 1]2. Assume that for the boundary of a domain A, denoted by ∂A, we have that
g(∂A) belongs to a finite union of complex analytic curves in H2 for type b and
in X0 for type c. We call the minimal union of complex analytic (holomorphic)
curves such that g(∂A) belongs to a finite union of complex analytic curves in H2

for type b and in X0 for type c the complex boundary of g(∂A).

Theorem 3.11 (homotopy invariance theorem II). Iterated integrals over mem-
branes are homotopy invariant with respect to homotopies that change the boundary
∂U of the domain of integration U so that the boundary varies on a finite union of
complex analytic curves.
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Proof. Assume that g0(∂A) and g1(∂A) have the same complex boundary. Let h be
a homotopy between g0 and g1, such that for each value of s we have that h(s, ∂A)
has the same complex boundary as h(0, ∂A) = g0(∂A). Let A ⊂ B be a strict
inclusion of disks. Identify B− A◦ with A×[0, 1]. Let i : B− A◦→ [0, 1]× ∂A.
Here A◦ is the interior of A and ∂A is the boundary of A. Let g̃0 be a map from B
to H2 such that g̃0(a)= g0(a) for a ∈ A and g̃0(b) ∈ h(i(b)). Since the restriction
of the pullback (g̃∗0ωi )|B−A = 0 is mapped to a finite union of complex curves, it
vanishes. Therefore ∫

A
g∗0�=

∫
B

g̃∗0�. (10)

Let g̃1 be a membrane from B defined by g̃1(a)= g1(a) for a ∈ A and g̃1(b)= g̃1(a)
for i(b)= (s, a). (Note that i(b) ∈ [0, 1]× ∂A.) Again,∫

A
g∗1�=

∫
B

g̃∗1�. (11)

However, the boundary of B is mapped to the same set (pointwise) by both g̃0 and g̃1.
Moreover, the homotopy between g0 and g1 extends to a homotopy between g̃0 and
g̃1 that respects the inclusion into the complex boundary. Thus by Theorem 3.7, we
have that ∫

B
g̃∗0�=

∫
B

g̃∗1�.

Using (10) and (11), we complete the proof of this theorem. �

3B. Generating series. We are going to define two types of generating series —
type a and type b, corresponding to the iterated integrals on membranes of type a
and type b.

Definition 3.12 (type a). Let A be a domain in R2. Let g be a membrane. Let
U = g(A)⊂ H2. And let ω1, . . . , ωm be holomorphic 2-forms on H2. We define a
generating series of type a by

J a(U )= 1+
∞∑

k=1

∑
c:{1,...,k}→{1,...,m}

Xc(1)⊗ · · ·⊗ Xc(k)

∫
g,U

ωc(1) · · ·ωc(k),

where c : {1, . . . , k} → {1, . . . ,m} is a map of sets.

Consider a map of sets c : {1, . . . , k}→{1, . . . ,m} and two permutations ρ1, ρ2 of
{1, 2, . . . , k}. We call two triples (c′, ρ ′1, ρ

′

2) and (c′′, ρ ′′1 , ρ
′′

2 ) equivalent if they are
in the same orbit of the permutation group Sk . That is, (c′′, ρ ′′1 , ρ

′′

2 )∼ (c
′, ρ ′1, ρ

′

2)

if for some τ ∈ Sk we have c′′ = c′τ−1, ρ ′′1 = ρ
′

1τ
−1 and ρ ′′2 = ρ

′

2τ
−1. Then

for the equivalence class of a triple (c, ρ1, ρ2), we can associate a unique pair
(c ◦ ρ1, c ◦ ρ2) (which are precisely the indices of the X - and Y -variables in (12)
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and (13), respectively.) The reason for using such an equivalence is that the integral
in (13) is invariant by the above action of τ ∈ Sk on the triple (c, ρ1, ρ2).

Definition 3.13 (ring R, values of the generating series). The values of the genera-
tion series of iterated integrals on membranes will be in a ring R, which we define
as follows. Let

R0 = C〈〈X1, Y1, . . . , Xm, Ym〉〉/I

be the quotient of the ring of formal power series modulo the two-sided ideal I
generated by X i Y j−Y j X i for i, j = 1, . . . ,m. Let R⊂ R0 be the subring of formal
power series whose monomials have the following property: in every monomial of
R, X i occurs as many times as Yi .

Definition 3.14 (type b). We define the generating series of type b on U by

J b(U )= 1+
∞∑

k=1

∑
(c,ρ1,ρ2)/∼

Xc(ρ−1
1 (1))⊗ · · ·⊗ Xc(ρ−1

1 (k)) (12)

⊗ Yc(ρ−1
2 (1))⊗ · · ·⊗ Yc(ρ−1

2 (k))

∫ ρ1,ρ2

g,U
ωc(1) · · ·ωc(k), (13)

where the second summation is over all maps of sets c : {1, . . . , k} → {1, . . . ,m}
and all permutations ρ1, ρ2 of k elements, up to the above equivalence.

Let Y0 be a Hilbert modular surface. Let α and β be two rational functions
on Y0. We denote by D the union of the divisors (α)∞ and (β)∞ at infinity. Let
F : Y0− D→ C2 be defined as F(y)= (α(y), β(y)). Let g : (0, 1)2→ Y0− D be
a membrane, so that the composition F ◦ g respects the coordinatewise foliations.
Consider the differential forms ωi from the definition of type b. They are invariant
under the action of the arithmetic group 0. Thus, we can treat them as differential
forms on the Hilbert modular variety Y0.

Definition 3.15 (type c). With the new definition of a membrane g and a domain
U ⊂ Y0, we define the generating series of type c by

J c(U )= 1+
∞∑

k=1

∑
(c,ρ1,ρ2)/∼

Xc(ρ−1
1 (1))⊗ · · ·⊗ Xc(ρ−1

1 (k)) (14)

⊗ Yc(ρ−1
2 (1))⊗ · · ·⊗ Yc(ρ−1

2 (k))

∫ ρ1,ρ2

g,U
ωc(1) · · ·ωc(k), (15)

where the second summation is over all maps of sets c : {1, . . . , k} → {1, . . . ,m}
and all permutations ρ1, ρ2 of k elements, up to the above equivalence.
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Definition 3.16 (ring R′, generating series J (U1,U2)). We define a generating
series of iterated integrals on two disjoint domain U1 and U2 (see Definition 3.10).
Let Ui = g(Ai ). Define

J (U1,U2)

= 1+
∞∑

k=1

∑
s:{1,...,k}→{1,2}

∑
(c,ρ1,ρ2)/∼

Xc(ρ−1
1 (1)),s(1)⊗ · · ·⊗ Xc(ρ−1

1 (k)),s(k) (16)

⊗ Yc(ρ−1
2 (1)),s(1)⊗ · · ·⊗ Yc(ρ−1

2 (k)),s(k)

∫ ρ1,ρ2

g,U,s
ωc(1) · · ·ωc(k), (17)

The generating series takes values in a ring R′ defined as follows. Let

R′0 = C〈〈X1,1, X1,2, Y1,1, Y1,2, . . . , Xm,1, Xm,2, Ym,1, Ym,2〉〉/I ′

be a quotient of the ring of formal power series, where I ′ is the two-sided ideal
generated by the Lie commutators of all the X i, j and Yk,l . Let R′ be the subring of
R′0 with the property that in every monomial of R′, X i, j occurs as many times as Yi, j .

Lemma 3.17. Let φ : R′→ R be the homomorphism of rings defined by φ(X i,1)=

φ(X i,2)= X i and φ(Yi,1)= φ(Yi,2)= Yi . If U =U1 ∪U2 is in H2
∪P1(K ), then

φ(J (U1,U2))= J b(U ).

If U =U1 ∪U2 is in X0, then

φ(J (U1,U2))= J c(U ).

Proof. After applying the homomorphism φ the formal variables on the left-hand
side become independent of the map s. Therefore, we have to examine what
happens when we sum over all possible maps s. The value s(i) is 1 or 2. This
has the following significance: if s(i)= 1, then we restrict the form g∗ωc(i) to A1

(instead of to A). Similarly, if s(i)= 2, we restrict g∗ωc(i) to A2. If we add both
choices (restriction to A1 and restriction to A2) then we obtain the restriction of
g∗ωc(i) to A = A1 ∪ A2. Thus, we obtain the formula∑

s:{1,...,k}→{1,2}

∫ ρ1,ρ2

g,U,s
ωc(1) · · ·ωc(k) =

∫ ρ1,ρ2

g,U
ωc(1) · · ·ωc(k).

We do the same for every monomial in R. That proves the above lemma for the
generating series. �

3C. Shuffle product of generating series. The regions of integration that we are
mostly interested in will be ideal diangles, that is, 2-cells whose boundaries have
two vertices and two edges, and ideal triangles. All other regions that we will deal
with are going to be a finite union of ideal diangles and ideal triangles. The first
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type of decomposition is based on a union of two diangles with a common vertex.
The second type of decomposition will be based on two of the cells (diangles or
triangles) with a common edge.

Let g1 and g2 be two membranes. Let P= (0, 0) and Q= (1, 1) be the vertices of
a diangle A⊂R2 and Q= (1, 1) and R= (2, 2) be the two points of a diangle B⊂R2.
Assume that A lies within the rectangle with vertices (0, 0), (0, 1), (1, 1), (1, 0).
Similarly, assume that B lies within the rectangle (1, 1), (1, 2), (2, 2), (2, 1). Let
U = g(A) and V = g(B).

Theorem 3.18. (i)
∫

g,U∪V
ω1 · · ·ωm =

m∑
j=0

∫
g,U

ω1 · · ·ω j

∫
g,V

ω j+1 · · ·ωm .

(ii) The generating series of type a from Definition 3.12 satisfies

J a(g; A∪ B;�)= J a(g; A;�)J a(g; B;�).

The proof of the first statement is essentially the same as the combinatorial proof for
composition of paths, when one considers iterated path integrals (see Lemma 2.3).
The proof of the second statement combines all compositions into generating series
(see Definition 3.12), resembling Manin’s approach for the noncommutative modular
symbol.

For generating series of type b, we have a similar statement:

Definition 3.19. Let ρ ′ and ρ ′′ be two permutations of the sets {1, . . . , i} and
{i+1,. . .,i+ j}, respectively. We define the permutation ρ ′−1

∪ρ ′′−1 of {1,. . .,i+ j},
which acts on {1, . . . , i} as ρ ′−1 and on {i + 1, . . . , i + j} as ρ ′′−1. We define the
set of shuffles of two given permutations, denoted by sh(ρ ′, ρ ′′), as the set of all
permutations ρ of the set {1, 2, . . . , i + j} such that ρ−1 is the composition of a
shuffle of sets τ ∈ sh(i, j) (see Definition 2.4) with ρ ′−1

∪ ρ ′′−1. That is,

ρ−1
= τ ◦ (ρ ′−1

∪ ρ ′′−1).

Definition 3.20. We define a shuffle of two monomials

M ′= Xc′(ρ′−1
1 (1))⊗·· ·⊗Xc′(ρ′−1

1 (i))⊗Yc′(ρ′−1
2 (1))⊗·· ·⊗Yc′(ρ′−1

2 (i))

∫ ρ′1,ρ
′

2

g,U ′
ωc′(1) · · ·ωc′(i)

and

M ′′ = Xc′′(ρ′′−1
1 (1))⊗ · · ·⊗ Xc′′(ρ′′−1

1 ( j))⊗ Yc′′(ρ′′−1
2 (1))⊗ · · ·⊗ Yc′′(ρ′′−1

2 ( j))

×

∫ ρ′′1 ,ρ
′′

2

g,U ′′
ωc′′(i+1) · · ·ωc′′(i+ j),

where ρ ′1 and ρ ′2 are permutations of {1, . . . , i}, c′ is a map of sets {1, . . . , i} →
{1, . . . ,m}, ρ ′′1 and ρ ′′2 are permutations of {i + 1, . . . , i + j}, and c′′ is a map of
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sets {i + 1, . . . , i + j} → {1, . . . ,m}. By a shuffle product of the monomials M ′

and M ′′, we mean the sum

M ′×Sh M ′′ =
∑

ρ1∈sh(ρ′1,ρ
′′

1 )

ρ2∈sh(ρ′2,ρ
′′

2 )

Xc(ρ−1
1 (1)),s(1)⊗ · · ·⊗ Xc(ρ−1

1 (i+ j)),s(i+ j)

⊗ Yc(ρ−1
2 (1)),s(1)⊗ · · ·⊗ Yc(ρ−1

2 (i+ j)),s(i+ j)

∫ ρ1,ρ2

g,U ′∪U ′′,s
ωc(1) · · ·ωc(i+ j),

where c : {1, . . . , i + j} → {1, . . . ,m} is such that its restriction to the first i
elements is c′ and its restriction to the last j elements is c′′. Here the maps s takes
the value 1 on the set c−1

{1, . . . , i} = c′−1
{1, . . . , i} and the value 2 on the set

c−1
{i + 1, . . . , i + j} = c′′−1

{i + 1, . . . , i + j}.

Theorem 3.21 (shuffle product). For iterated integrals of type b and the corre-
sponding generating series, we have the following shuffle relations:

(i)
∫ ρ′1,ρ

′

2

g,U
ω1 · · ·ω j

∫ ρ′′1 ,ρ
′′

2

g,U
ω j+1 · · ·ωm =

∑
ρ1∈sh(ρ′1,ρ

′′

1 )

ρ2∈sh(ρ′2,ρ
′′

2 )

∫ ρ1,ρ2

g,U
ω1 · · ·ωm . (18)

(ii)
∫ ρ′1,ρ

′

2

g,U ′
ω1 · · ·ω j

∫ ρ′′1 ,ρ
′′

2

g,U ′′
ω j+1 · · ·ωm =

∑
ρ1∈sh(ρ′1,ρ

′′

1 )

ρ2∈sh(ρ′2,ρ
′′

2 )

∫ ρ1,ρ2

g,U,s
ω1 · · ·ωm, (19)

where s is a map from {1, . . . ,m} to {1, 2} such that {1, . . . , j} are mapped to
1 and the remaining elements are mapped to 2.

(iii) φ(J b(U ′)×Sh J b(U ′′))= J b(U ′ ∪U ′′). (20)

(iv) φ(J c(U ′)×Sh J c(U ′′))= J c(U ′ ∪U ′′). (21)

Proof. For part (i), it is useful to consider the two orderings of differential forms,
given in Remark 3.6. Note that we need to order the forms both horizontally and
vertically in the terminology of that remark. Let us consider first the horizon-
tal order. That is the order with respect to the first variables of the differential
forms g∗ωρ′−1

1 (1), . . . , g∗ωρ′−1
1 ( j) and g∗ωρ′′−1

1 ( j+1), . . . , g∗ωρ′′−1
1 (m), corresponding

to the two integrals on the left-hand side of (18). In order to arrange both of
the above orderings in one sequence of increasing first arguments, we need to
shuffle them (similarly to shuffling a deck of cards). That leads to ρ1 ∈ sh(ρ ′1, ρ

′′

1 )

(see Definition 3.19). We proceed similarly with the second arguments and the
permutations ρ ′2, ρ

′′

2 and ρ2.
For (ii), apply the equality from part (i) with the differential forms g∗ω1, . . . ,g∗ω j

multiplied by the function 1A′ , defined by

1A′(x)=
{

1 for x ∈ A′,
0 for x /∈ A′,



340 Ivan Horozov

and the differential forms g∗ω j+1, . . . , g∗ωm multiplied by 1A′′ .
For part (iii), we are going to establish similar relation among generating series

as elements of R′. Applying the homomorphism φ : R′→ R from Lemma 3.17,
we obtain the desired equality. Every monomial from J (U1) is of the form

M ′= Xc′(ρ′−1
1 (1))⊗·· ·⊗Xc′(ρ′−1

1 (i))⊗Yc′(ρ′−1
2 (1))⊗·· ·⊗Yc′(ρ′−1

2 (i))

∫ ρ′1,ρ
′

2

g,U ′
ωc′(1) · · ·ωc′(i)

and similarly every monomial from J (U2) is of the form

M ′′ = Xc′′(ρ′′−1
1 (1))⊗ · · ·⊗ Xc′′(ρ′′−1

1 ( j))⊗ Yc′′(ρ′′−1
2 (1))⊗ · · ·⊗ Yc′′(ρ′′−1

2 ( j))

×

∫ ρ′′1 ,ρ
′′

2

g,U ′′
ωc′′(i+1) · · ·ωc′′(i+ j),

where ρ ′1 and ρ ′2 are permutations of {1, . . . , i}, c′ is a map of sets {1, . . . , i} →
{1, . . . ,m}, ρ ′′1 and ρ ′′2 are permutations of {i + 1, . . . , i + j}, and c′′ is a map of
sets {i+1, . . . , i+ j}→ {1, . . . ,m}. We take the shuffle product of the monomials
M ′ and M ′′ (see Definition 3.20):

M ′×Sh M ′′ =
∑

ρ1∈sh(ρ′1,ρ
′′

1 )

ρ2∈sh(ρ′2,ρ
′′

2 )

Xc(ρ−1
1 (1)),s(1)⊗ · · ·⊗ Xc(ρ−1

1 (i+ j)),s(i+ j)

⊗Yc(ρ−1
2 (1)),s(1)⊗ · · ·⊗ Yc(ρ−1

2 (i+ j)),s(i+ j)

∫ ρ1,ρ2

g,U,s
ωc(1) · · ·ωc(i+ j),

where the map s takes the value 1 on the set c−1
{1, . . . , i} and the value 2 on the

set c−1
{i + 1, . . . , i + j}. This determines the map s uniquely.

In order to complete the proof, we have to show that every monomial in J (U1,U2)

can be obtained in exactly one way as a result (on the right-hand side) of a shuffle
product of a pair of monomials (M1,M2) from J (U1) and J (U2). Every monomial
from J (U1,U2) is characterized by two permutation ρ1, ρ2 and two maps of sets
c : {1, . . . , k} → {1, . . . ,m} and s : {1, . . . , k} → {1, 2}. Let i be the number
of elements in s−1(1) and j the number of elements in s−1(2). Then i + j = k.
Then i is the number of differential forms among g∗ωc(1), · · · , g∗ωc(k) which are
restricted to the set A1. The remaining j differential forms are restricted to A2.
Also, every permutation ρ1 can be written in an unique way as a composition of a
shuffle τ1 ∈ sh(i, j) and two disjoint permutations ρ ′1 and ρ ′′1 of i and of j elements,
respectively (see Definition 3.19). Similarly, ρ2 can be written in a unique way as
a product of a shuffle τ2 ∈ sh(i, j) and two disjoint permutation ρ ′2 and ρ ′′2 . The
map of sets c1 is defined as a restriction of the map c to the image of ρ ′1. Similarly,
the map c2 is defined as a restriction of the map c to the image of ρ ′′1 . Now we can
define the monomials M ′ and M ′′ in J (U1) and J (U2) based on the triples ρ ′1, ρ

′

2, c′
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and ρ ′′1 , ρ
′′

2 , c′′, respectively. Such monomials are unique. One can show that the
shuffle product of M ′ and M ′′ contains the monomial in J (U1,U2) that we started
with exactly once. The proof of part (iii) is complete after applying Lemma 3.17. �

4. Hilbert modular symbols

In this section, we recall the Hilbert modular group and its action on the product
of two upper half-planes. Then we define commutative Hilbert modular symbols
(Section 4A) and its pairing with the cohomology of the Hilbert modular surface
(Section 4B). In Sections 4C and 4D, we define noncommutative Hilbert modular
symbols (Definition 4.13) as generating series of iterated integrals over membranes
of type b. We also examine relations among the noncommutative Hilbert modular
symbols (Theorem 4.12), which we interpret as cocycle conditions or as a difference
by a coboundary (Conjecture 4.14). In Section 4E, we consider a two-category
C with a sheaf J on C . Then the noncommutative Hilbert modular symbol is a
sheaf on a two-category. This is done in order to give a plausible approach to
defining a suitable noncommutative cohomology set. In Section 4F, we make
explicit computations and compare them to computations for multiple Dedekind
zeta values.

4A. Commutative Hilbert modular symbols. In this subsection, we define com-
mutative Hilbert modular symbols, using geodesics, geodesic triangles and geodesic
diangles. Then, we prove certain relations among the commutative Hilbert mod-
ular symbols, which are generalized to relations among noncommutative Hilbert
modular symbols (Section 4D).

Let K =Q(
√

d) be a real quadratic extension of Q. Then the ring of integers in
K is

OK =

{
Z[(1+

√
d)/2] for d = 1 mod 4,

Z[
√

d] for d = 2, 3 mod 4.

Then 0 = SL2(OK ) is called a Hilbert modular group. Let γ ∈ 0. We recall the
action of γ on a product of two upper half-planes H2. Let

γ = γ1 =

(
a1 b1

c1 d1

)
.

Let a2, b2, c2, d2 be the Galois conjugates of a1, b1, c1, d1, respectively. Let us
define γ2 by

γ2 =

(
a2 b2

c2 d2

)
.

Let z = (z1, z2) be any point of the product of two upper half-planes H2.
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For an element γ ∈ GL2(K ), we define the following action: If det γ is totally
positive, that is det γ1 > 0 and det γ2 > 0, then the action of γ on z = (z1, z2) ∈H2

is essentially the same as for γ ∈ SL2(K ), namely,

γ z = (γ1z1, γ2z2),

where

γ1z1 =
a1z1+ b1

c1z1+ d1
and γ2z2 =

a2z2+ b2

c2z2+ d2

are linear fractional transforms. If det γ is totally negative, that is, det γ1 < 0 and
det γ2 < 0, then we define

γ z =
(
−

a1z1+ b1

c1z1+ d1
,−

a2z2+ b2

c2z2+ d2

)
.

Similarly if one of the embeddings of det γ is positive and the other is negative, for
example, det γ1 > 0 and det γ2 < 0, e.g., for det γ =

√
d , then

γ z =
(

a1z1+ b1

c1z1+ d1
,−

a2z2+ b2

c2z2+ d2

)
.

We add cusp points P1(K ) to H2. Then the quotient SL2(OK )\(P
1(K )∪H2)

is compact.
We are going to carefully examine geodesics joining the cusps 0, 1 and∞.
Let z0, z1, z∞ be three distinct cusp points. There is a unique γ ∈ PGL2(K ) that

sends z0, z1 and z∞ to 0, 1 and∞, respectively.
Let

i : H→ H2, i(x)= (x, x)

be the diagonal map and 1 be its image. Consider the Hirzebruch–Zagier divisor
X = γ ∗1. It is an analytic curve that passes through the points z0, z1 and z∞. Then
X is a holomorphic curve in H2 if det γ is totally positive or totally negative. If
det γ is not totally positive or totally negative, then X is a holomorphic curve in
H1
×H1

∪P1(K ); in other words, it is an antiholomorphic curve in H2, such as
z1 = −z2. Let 1X = γ

∗1 be the pullback of the geodesic triangle 1 formed by
the points 0, 1,∞ in the analytic curve X .

Given four points on the boundary in H2
∪P1(K ), we are tempted to consider

them as vertices of a geodesic tetrahedron in H2
∪P1(K ), whose faces are triangles

of the type 1X . However, there is one problem that we encounter: Two distinct
cusps could be connected by two different geodesics in H2

∪P1(K ). In particular,
two triangles from the faces of the “tetrahedron” might not have a common edge,
but only two common vertices. Thus, we are led to consider a thickened tetrahedron
with two types of faces on the boundary: the first type is an ideal triangle that we
have just defined and the other type is an ideal diangle — a union of geodesics
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connecting two fixed points, which has the homotopy type of a disc with two
vertices and two edges. The two edges of an ideal diangle in the boundary of a
thickened tetrahedron correspond to the two geodesics connecting the same two
cusps, where two geodesics belong to the geodesic triangles that have the two cusps
in common.

Let us describe a diangle D0,∞;1,α whose two vertices are 0 and∞ and whose
two sides are geodesics that belong to each of the ideal triangles 0, 1,∞ and 0, α,∞.
The geodesic l0 between the points 0 and∞ that lie on the geodesic triangle 0, 1,∞
can be parametrized in the following way: {(i t, i t) | t ∈R, t ≥ 0} ⊂ Im(H)× Im(H).
Here by Im(H) we mean the imaginary part of the upper half-plane. The ele-
ment γ ∈ 0 that sends 0, α,∞ to 0, 1,∞ is γ =

(
α−1 0

0 1

)
. Then (γ−1)∗(i t, i t) =

(|α1|i t, |α2|i t). Therefore, the geodesic lα between the points 0 and∞ that lie on the
geodesic triangle 0, α,∞ can be parametrized as {(|α1|i t, |α2|i t) | t ∈ R, t ≥ 0} ⊂
Im(H)× Im(H). Then, we define the diangle D0,∞;1,α as the two-dimensional
region in Im(H)× Im(H) between the lines l0 and lα . We also consider the diangle
with orientation. If |α1| > |α2| then it is positively oriented. If the inequality is
reversed then the diangle is negatively oriented; if |α1| = |α2| then it is a degenerate
diangle, which consists of a single geodesic. All other diangles that we will consider
are translates of D0,∞;1,α via the action of any element γ ∈ PGL2(K ).

Lemma 4.1. (i) Each geodesic triangle 1X lies either on a holomorphic curve or
on an antiholomorphic curve.

(ii) Each geodesic in a geodesic triangle 1X belongs both to a holomorphic curve
and to an antiholomorphic curve.

Proof. Part (i) follows from the construction of a geodesic triangle before the lemma.
For part (ii), consider the following: Let 1(0, 1,∞) be the geodesic triangle in
the diagonal of H2 connecting the points 0, 1 and∞. It is a holomorphic curve.
Thus, a geodesic {(i t, i t) ∈ H2

| t > 0}, connecting the points 0 and∞ as a face
of the geodesic triangle 1(0, 1,∞), lies on a holomorphic curve. Now consider
the geodesic triangle D(0,

√
d,∞). It lies on an antiholomorphic curve in H2,

by which we mean a complex curve in H2 (where we have taken the complex
conjugate complex structure in one of the upper half-planes), since the linear
fractional transformation that sends D(0,

√
d,∞) to D(0, 1,∞) does not have

totally positive (or totally negative) determinant. Explicitly, the linear fractional
transformation that sends (0,

√
d,∞) to (0, 1,∞) is

γ =

(
1 0
0
√

d

)
.

Then

(γ1, γ2)=

((
1 0
0
√

d

)
,

(
1 0
0 −
√

d

))
.
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We have γ1(i t) = (1/
√

d)i t and γ2(i t) = −(1/
√

d)i t = γ1(i t). Then the same
geodesic (i t, i t) belongs to the antiholomorphic curve given by the pullback of
the diagonal with respect to the linear fractional map γ . Thus, we obtain that the
geodesic (i t, i t) connecting 0 and∞ belongs to both a holomorphic curve and an
antiholomorphic curve. Similarly, any translate of the geodesic (i t, i t) via a linear
fractional map from GL2(K ) would belong to both a holomorphic curve and an
antiholomorphic curve. That proves part (ii). �

Definition 4.2. Let p1, p2, p3, p4 be cusp points in H2
∪P1(K ). To each triple of

points p1, p2, p3, we associate the geodesic triangle {p1, p2, p3} with coefficient 1
as an element of the singular chain complex in C2(H

2
∪ P1(K ),Q). Also, to

each quadruple of points p1, p2, p3, p4, we associate the geodesic diangle between
the two geodesic connecting p1 and p2 so that the first geodesic is a face of the
geodesic triangle {p1, p2, p3} and the second geodesic is a face of the geodesic
triangle {p1, p2, p4}. We denote such a diangle by {p1, p2; p3, p4}. We call the
geodesic triangle {p1, p2, p3} and the geodesic diangle {p1, p2; p3, p4}, considered
as elements of C2(H

2
∪P1(K ),Q), commutative Hilbert modular symbols.

Theorem 4.3. The commutative Hilbert modular symbols, modulo the boundary of
singular 3-chains ∂C3(H

2
∪P1(K ),Q), satisfy the following properties:

(1) If σ is a permutation of the set {1, 2, 3} then

{pσ(1), pσ(2), pσ(3)} = sign(σ ){p1, p2, p3}.

(2) If p1, p2, p3, p4 are four points on the same holomorphic (or antiholomorphic)
curve of the type γ ∗1, then

{p1, p2, p3}+ {p2, p3, p4} = {p1, p2, p4}+ {p1, p3, p4}.

For every four points p1, p2, p3, p4, we associate a diangle with vertices p1

and p2. Let {p1, p2; p3, p4} be the corresponding symbol.

(3) If p1, p2, p3, p4 are four points on the same holomorphic (or antiholomorphic)
curve of type γ ∗1, then

0= {p1, p2; p3, p4}.

(4) For every distinct four points p1, p2, p3, p4, we have the following relations,
based on the orientation of the domain:

{p2, p1; p3, p4} = {p1, p2; p4, p3} = −{p2, p1; p4, p3} = −{p1, p2; p3, p4}.
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(5) For every five points p1, p2, p3, p4, p5, we have

{p1, p2; p3, p4}+ {p1, p2; p4, p5} = {p1, p2; p3, p5}.

(6) We also have a relation between the two types of commutative Hilbert modular
symbols. For every four distinct points p1, p2, p3, p4, we have

0= {p1, p2, p3}+ {p2, p3, p4}− {p1, p2, p4}− {p1, p3, p4}

+ {p1, p2; p3, p4}+ {p2, p3; p1, p4}+ {p3, p1; p2, p4}

+ {p3, p4; p1, p2}+ {p1, p4; p2, p3}+ {p2, p4; p3, p1}.

Proof. Part (1) follows from the orientation of the simplex in singular homology.
Part (2) is an equality induced by two different triangulations on a holomorphic
(or antiholomorphic) curve with four vertices. In that setting the diangles are trivial,
which proves part (3). Part (4) follows from the orientation of the diangle. Part (5)
corresponds to a union of two geodesic diangles with a common face, given by
a third geodesic diangle. Part (5) will be used for a noncommutative 1-cocycle
relation for the noncommutative Hilbert modular symbol (see Conjecture 4.14).
Part (6) is a boundary relation for the boundary of a thickened tetrahedron. By a
thickened tetrahedron, we mean a union of four geodesic triangles corresponding to
each triple of points among the four points p1, p2, p3, p4 together with six geodesic
diangles that correspond to the area between the faces of the geodesic triangles.
They correspond exactly to the thickening of the six edges of a tetrahedron. �

Part 6 will be used to derive explicit formulas for the noncommutative Hilbert
modular symbol of type c′ resembling a noncommutative 2-cocycle relation (see
Conjecture 4.15).

4B. Pairing of the modular symbols with cohomology. In this subsection, we
consider pairings between commutative Hilbert modular symbols and cusp forms.
In some cases, we prove that such pairings give periods in the sense of [Kontsevich
and Zagier 2001].

We are interested in holomorphic cusp forms with respect to 0. Equivalently,
we can consider the holomorphic 2-forms on X̃ , the minimal smooth algebraic
compactification of X [Hirzebruch 1973]. At this point we should distinguish
between geodesic triangles that lie on a holomorphic curve and those that lie on an
antiholomorphic curve. The reason for this distinction is that a holomorphic 2-form
restricted to a holomorphic curve vanishes. The way to distinguish the two types
of geodesic triangles is the following: Let γ be a linear fractional transform that
sends the points p1, p2, p3 to 0, 1,∞. If det γ is totally positive or totally negative,
then the geodesic triangle p1, p2, p3 lies on a holomorphic curve. If det γ is neither
totally positive nor totally negative, then the geodesic triangle p1, p2, p3 lies on an
antiholomorphic curve.
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Definition 4.4. Define M2(H
2
∪ P1(K ),Q) to be the span of the Hilbert modu-

lar symbols {p1, p2, p3} and {p1, p2; p3, p4} as a subspace of the singular chain
C2(H

2
∪P1(K ),Q). We define the pairing

〈 , 〉 : M2(H
2
∪P1(K ))× S2,2(0)→ C

by setting

〈{p1, p2, p3}, f dz1 ∧ dz2〉 =

∫
{p1,p2,p3}

f dz1 ∧ dz2

for geodesic triangles and

〈{p1, p2; p3, p4}, f dz1 ∧ dz2〉 =

∫
{p1,p2;p3,p4}

f dz1 ∧ dz2

for geodesic diangles.

We are going to use that a Hilbert modular surface X (C) can be realized as the
complex points of an arithmetic surface defined over a number field F .

Theorem 4.5. The image of the above pairing is a period over a number field F
when we integrate a normalized cusp Hecke eigenform f of weight (2, 2). (For
Hecke eigenforms, see [Shimura 1978; Berger et al. 2013].)

Proof. From Lemma 3.1(ii), the boundary of the geodesic triangles of the diangles
are geodesics that lie on holomorphic curves in H2

∪ P1(K ). Therefore, in the
quotient by the congruence group 0, the geodesic lies in a Hirzebruch–Zagier
divisor on the Hilbert modular surface. Thus, we integrate a closed algebraic
differential 2-form (that is, a global differential 2-form with algebraic coefficients)
on the Hilbert modular surface, with boundaries Hirzebruch–Zagier divisors. �

Conjecture 4.6. Let f ∈ Sk,k(0) be a normalized cusp Hecke eigenform of weight
(k, k). Then ∫

{p1,p2,p3}

f dz1 ∧ dz2

for geodesic triangles and ∫
{p1,p2;p3,p4}

f dz1 ∧ dz2

for geodesic diangles are periods.

Theorem 4.5 is a proof of Conjecture 4.6 for the case of cusp form of weight (2, 2).
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4C. Iteration — revisited. We defined iterated integrals on diangles in Definitions
3.14 and 3.15. However, these definitions have to be extended to other domains of
integration in order to consider iterated integrals on geodesic triangles.

A consequence of the results from this subsection is the following:

Theorem 4.7. Iterated integrals of type c on a geodesic diangle and on a geodesic
triangle of algebraic differential 2-forms on a Hilbert modular surface are periods
in the sense of Kontsevich–Zagier.

Before giving the proof, we need definitions of several objects, as well as their
properties. In the process, we will be able to extend the definition of iterated
integrals on membranes when the domain of integration is a geodesic triangle.

For type b, in Definition 3.14, we have a map g : U → H2 that sends the two
R-foliations on U into two coordinatewise C-foliations of H2. The same definition
does not work when the domain U is a geodesic triangle. The reason is that a
geodesic triangle is either a holomorphic curve or an antiholomorphic curve. In
both cases, a pullback of one leaf to the geodesic triangle is a point not a line (which
is the case for the diangles).

In order to extend Definitions 3.14 and 3.15 to the case when the domain U is a
geodesic triangle, we are going to construct a new space using the fiber products
multiple times.

Now, we are going to define a space Yn associated to an iterated integral on n
2-forms on H2. We are going to use fiber products (see [Hartshorne 1977]). Let p1

and p2 be the projections of H2 on the first and the second component, respectively.
Define X i j =H2 for 1≤ i ≤ n and 1≤ j ≤ n. (One should think of the component
X i j as the complexification of the real coordinate (si , t j ).) Let Ci =H for 1≤ i ≤ n
and C ′j = H for 1≤ j ≤ n. Let

X j = X1 j ×C ′j X2 j ×C ′j · · · ×C ′j Xnj .

(X j corresponds to the variable t j .) Then

X j ⊂ X1 j × X2 j × · · ·× Xnj .

Let also

Pj = (p1, . . . , p1) : X1 j × X2 j × · · ·× Xnj → C1× · · ·×Cn.

Let P◦j = Pj |X j be the restriction of Pj to the subset X j . We define Yn as the fiber
product of X1, . . . , Xn with respect to the morphisms P◦1 , . . . , P◦n over the base
C1× · · ·×Cn , namely

Yn = X1×C · · · ×C Xn, (22)

where C=C1×· · ·×Cn . Note that X j is isomorphic to X j+1. Let Z j be the subspace
of Yn defined by setting the j - and the ( j+1)-components of Yn = X1×C · · ·×C Xn
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to be equal. (The space Z j corresponds to a boundary components obtained by
letting t j = t j+1.) Similarly, we could have defined Yn by defining first

X ′i = X i1×Ci X i2×Ci · · · ×Ci X in,

(X ′i corresponds to si ) so that

X ′i ⊂ X i1× X i2× · · ·× X in.

Let

P ′i = (p2, . . . , p2) : X i1× X i2× · · ·× X in→ C ′1× · · ·×C ′n.

Define P ′◦i = P ′i |X ′i to be the restriction of P ′i to X ′i . We define Yn as the fiber
product of X ′1, . . . , X ′n with respect to the morphisms P ′◦1 , . . . , P ′◦n over the base
C ′1× · · ·×C ′n , namely,

Yn = X ′1×C ′ · · · ×C ′ X ′n, (23)

where C ′ = C ′1×· · ·×C ′n . Similarly we define Z ′i to be the subspace of Yn defined
by setting the i- and the (i +1)-components of Yn = X ′1×C ′ · · ·×C ′ X ′n to be equal.
(The space Z ′i corresponds to a boundary components obtained by letting si = si+1.)

We have given two definitions (22) and (23) of the space Yn . In the two definitions
we have only exchanged the role of p1 and p2. We will prove that both definitions
lead to the same object in the case n = 2. The general case is left to the reader.

Lemma 4.8. For n = 2, the two definitions (22) and (23) define isomorphic objects
Y2.

Proof. The space Y2 can be defined as a finite limit (in a categorical sense) of a
diagram in the following way. Consider the commutative diagram

C ′1

X11

==

||

X12

""

aa

C1 C2

X21

!!

bb

X22

}}

<<

C ′2
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For any space W such that

C ′1

X11

==

||

X12

""

aa

C1 W

bb <<

""||

C2

X21

!!

bb

X22

}}

<<

C ′2

(24)

commutes, we have that the maps fi j :W → X i j factor through gi j : Y2→ X i j , so
that fi j = gi j ◦ h for some h :W → Y2, and Y2 is part of the commutative diagram

C ′1

X11

==

||

X12

""

aa

C1 Y2

bb <<

""||

C2

X21

!!

bb

X22

}}

<<

C ′2

In order to prove this universal property of Y2 we follow the first definition of Y2.
This leads to the commutative diagram

C ′1

X11

88

}}

X11×C ′1 X12 //oo X12

!!

ff

C1 W

OO

��

C2

X21

&&

aa

X21×C ′2 X22 //oo X22

xx

==

C ′2

Then we have that X1= X11×C ′1 X12 maps to C=C1×C2 and also X2= X21×C ′2 X22

maps to C = C1 × C2. Thus the maps from W to any element of the diagram
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factors through Y2 = X1×C X2. Similarly, W factors through X ′1×C ′ X ′2, where
X ′1 = X11×C1 X21, X ′2 = X12×C2 X22 and C ′ = C ′1×C ′2. Since both X1×C X2

and X ′1×C ′ X ′2 are universal objects with respect to the diagram (24), we have that
they are isomorphic. �

Now, we return to the initial question of this subsection, namely, how to iterate
over a geodesic triangle so that it is consistent with the current definition of iteration
over a diangle.

For an n-fold iteration of 2-forms of types b or c, we have to specify a domain
U ⊂H2, dimR U = 2, and a pair of permutations ρ1 and ρ2 of n elements. We make
an essential assumption that the boundary of U ⊂ H2, denoted by ∂U , projected
onto the Hilbert modular surface Y0 lies on a finite union of Hirzebruch–Zagier
divisors. We will denote the finite union of such Hirzebruch–Zagier divisors by HZ.

Let
Pρ1,ρ2 : X11× · · ·× Xnn→ Xρ1(1)ρ2(1)× · · ·× Xρ1(n)ρ2(n)

be a projection to n of the factors. Let Ui j ∼=U for 1≤ i ≤ n and 1≤ j ≤ n. Let

I :Uρ1(1)ρ2(1)× · · ·×Uρ1(n)ρ2(n)→ Xρ1(1)ρ2(1)× · · ·× Xρ1(n)ρ2(n)

be induced from the product of inclusion of the domains U → X . We will use the
notation

Uρ
=Uρ1(1)ρ2(1)× · · ·×Uρ1(n)ρ2(n)

and
Xρ
= Xρ1(1)ρ2(1)× · · ·× Xρ1(n)ρ2(n).

Then the map I becomes
I :Uρ

→ Xρ .

Let
J : Yn→ Xρ

be the composition of the natural inclusion Yn→ X11×· · ·×Xnn and the projection
Pρ1,ρ2 . Then we define the domain of integration to be

Uρ
Yn
=Uρ

×Xρ Yn,

which is the fiber product of the maps I and J . Since I :Uρ
→ Xρ is an inclusion,

we have that the induced map
Uρ

Yn
→ Yn

is an inclusion.
In the above constructions, we have used a parallel between type b and type c

iterated integrals on membranes. The following definition allows us to extend in
some sense the two types when the domain of integration is an ideal triangle:
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Definition 4.9 (iterated integrals on membranes of types b′ or c′). For any manifold
with corners of dimension 2 on a Hilbert modular variety, we define an iterated
integral∫ 6n(ρ1,ρ2)

U
( f1 dz1 ∧ dz2) · · · ( fn dz1 ∧ dz2)

=

∫
Uρ

Yn

J ∗( f1 dz1 ∧ dz2, . . . , fn dz1 ∧ dz2), (25)

where fk dz1 ∧ dz2 is a form defined on Xρ1(k)ρ2(k) for 1 ≤ k ≤ n. If Yn and Uρ
Yn

are constructed in the setting of type b iterated integrals on membranes, then the
above definition is of iterated integrals on membranes of type b′. Similarly, if Yn

and Uρ
Yn

are constructed in the setting of type c iterated integrals on membranes,
then the above definition is of iterated integrals on membranes of type c′.

If U is a diangle, then the relation of the above integral to the ones defined by
iterated integrals over membranes is the following: The integral∫ 6n(ρ1,ρ2)

U
( f1 dz1 ∧ dz2) · · · ( fn dz1 ∧ dz2)

is the sum of the integrals from Definitions 3.14 or 3.15, namely, the sum∑
ρ∈6n

∫ (ρρ1,ρρ2)

U
( f1 dz1 ∧ dz2) · · · ( fn dz1 ∧ dz2)

over the orbit of the diagonal action of the permutation group 6n on any chosen
pair of permutations (ρ1, ρ2).

Proposition 4.10 (properties of the iterated integral (25)). (1) The iterated integral
(25) is well-defined when U is an ideal triangle both for types b and c.

(2) The iterated integral (25) for type c is a period if U is an ideal triangle
or an ideal diangle, when f1, . . . , fn are normalized Hecke eigenforms of
weight (2, 2).

(3) The iterated integral (25), both for types b and c, is homotopy invariant with
respect to homotopies that vary within the divisors

J−1(Xρ1(1)ρ2(1)× · · ·× p−1
1 (qi )× · · ·× Xρ1(n)ρ2(n)

)
,

where qi is a point of Xρ1(i)ρ2(i) for fixed i and p1 : Xρ1(i)ρ2(i)→ C ; or homo-
topies that vary within the divisors

J−1(Xρ1(1)ρ2(1)× · · ·× p−1
2 (qi )× · · ·× Xρ1(n)ρ2(n)

)
,

where qi is a point of Xρ1(i)ρ2(i) for fixed i and p2 : Xρ1(i)ρ2(i)→ C ′.
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Proof. (a) The integral (25) is well-defined for any two-dimensional submanifold
with corners of the Hilbert modular variety [Borel and Serre 1973].

(b) The iterated integral (25) is a period since:

(1) A Hilbert modular variety can be defined over a number field.

(2) The normalized Hecke eigenforms f1, . . . , fn of weight (2, 2) can be realized
as algebraic differential forms on the Hilbert modular variety.

(3) The boundary of the region of integration Uρ
Yn

is a divisor on Yn , namely,

n⋃
i=1

HZi ,

where

HZi = J−1(Xρ1(1)ρ2(1)× · · ·×HZ× · · ·× Xρ1(n)ρ2(n))

is a divisor of Yn obtained as a pullback of a divisor whose i-th component is
a Hirzebruch–Zagier divisor HZ, and the rest of the factors are Xρ1(k)ρ2(k) for
k 6= i .

(c) The proof is essentially the same as that of Theorem 3.7. �

The domain U Yn might be cut into disconnected components by the Zi and Z ′j .
In order to choose a connected component we need to define another region of
integration. Recall that for the case of iterated integrals on membranes of type
b, p1 : H

2
→ C and p2 : H

2
→ C ′ are projections onto the first and the second

component, with C ∼= H and C ′ ∼= H.
For the case of iterated integrals on membranes of type c, p1 = α1 ◦ π and

p2 = α2 ◦π are compositions of

π : H2
→ X0,

the map from the universal cover to the Hilbert modular surface, with

α1, α2 : X0→ P1,

two algebraically independent rational functions on the Hilbert modular surface,
and Ci ∼= P1 and C ′j ∼= P1 for 1≤ i ≤ n and 1≤ j ≤ n.

Let q0, q1, r0, r1∈P1 be points. Let Q0, Q1, R0 and R1 be connected components
of p−1

1 (q0), p−1
1 (q1), p−1

2 (r0), and p−1
2 (r1), respectively.

Let V → H2 be a domain in H2 with boundary on the union

Q0 ∪ Q1 ∪ R0 ∪ R1,

but with interior disjoint from this union. We define the divisors Z0, Zn, Z ′0, Z ′n of
Yn as follows: Z0 will be the beginning of the integration of the t1 variable (t1 = 0),
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Zn will be the end of the integration of the tn variable (tn = 1), Z ′0 will be the
beginning of the integration of the s1 variable (s1 = 0), and Z ′n will be the end of
the integration of the sn variable (sn = 1). We define them as the fiber product

Z0 = Q0×C X2×C · · · ×C Xn, Zn = X1×C · · · ×C Xn−1×C Q1,

Z ′0 = R0×C ′ X ′2×C ′ · · · ×C ′ X ′n, Z ′n = X ′1×C ′ · · · ×C ′ X ′n−1×C ′ R1.

We will use the notation

V ρ
= Vρ1(1)ρ2(1)× · · ·× Vρ1(n)ρ2(n) and Xρ

= Xρ1(1)ρ2(1)× · · ·× Xρ1(n)ρ2(n).

Then the map I ′ becomes
I ′ : V ρ

→ Xρ .

Let
J ′ : Yn→ Xρ

be the composition of the natural inclusion Yn→ X11×· · ·×Xnn and the projection
Pρ1,ρ2 . Then we define the domain of integration to be

V ρ
Yn
= V ρ

×Xρ Yn,

which is the fiber product of the maps I ′ and J ′. Since I ′ :Uρ
→ Xρ is an inclusion,

we have that the induced map
V ρ

Yn
→ Yn

is an inclusion.
Then the divisors Z0, Z1, . . . , Zn−1, Zn and Z ′0, Z ′1, . . . , Z ′n−1, Z ′n cut out from

V Yn a product of two n-simplices, which corresponds to the region where the
product {0 ≤ s1 ≤ · · · ≤ sn ≤ 1} × {0 ≤ t1 ≤ · · · ≤ tn ≤ 1} is embedded. Denote
by V ρ

Yn
the connected components of V ρ

Yn
that contains the image of the product

{0≤ s1≤ · · · ≤ sn ≤ 1}×{0≤ t1≤ · · · ≤ tn ≤ 1} under the map g from Definition 3.5.

Proof of Theorem 4.7. We consider the type of iterated integrals defined in Definition
3.15. Using the above notation, the domain of integration is U ⊂ V . We define

Uρ
Yn
=Uρ

Yn
∩ V ρ

Yn
.

Then the boundary of Uρ
Yn

lies on the union of divisors

∂Uρ
Yn
⊂

( n⋃
i=1

Zi

)
∪

( n⋃
j=1

Z ′j

)
.

The normalized Hecke eigenforms of weight (2, 2) can be realized as algebraic
differential forms on the Hilbert modular variety. Then the iterated integrals on a
membrane of type c over the domain U are periods, since:
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(1) A Hilbert modular variety can be defined over a number field.

(2) The normalized Hecke eigenforms f1, . . . , fn of weight (2, 2) can be realized
as algebraic differential forms on the Hilbert modular variety.

(3) The boundary of the region of integration Uρ
Yn

is a divisor on Yn , namely,( n⋃
i=1

Zi

)
∪

( n⋃
j=1

Z ′j

)
. �

4D. Generating series and relations. In this subsection, we examine the generat-
ing series of iterated integrals on membranes (of types b′ or c′), evaluated at geodesic
triangles and geodesic diangles. We prove relations among them. Most importantly,
the generating series J will be used in Section 4E to define noncommutative Hilbert
modular symbols. Moreover, the relations that we prove in this subsection will be
interpreted as cocycles or as coboundaries of the noncommutative Hilbert modular
symbols satisfy in Section 4E.

Definition 4.11. Let f1, . . . , fm be m cusp forms with respect to a Hilbert modular
group 0. Let f1 dz1 ∧ dz2, . . . , fm dz1 ∧ dz2 be the corresponding differential
forms defining the generating series. Let J (p1, p2, p3) be the generating series J
evaluated at the geodesic triangle with vertices p1, p2, p3. Let J (p1, p2; p3, p4)

be the generating series J evaluated at the geodesic diangle {p1, p2; p3, p4}.

Both J (p1,p2,p3) and J (p1,p2; p3,p4)will be called noncommutative Hilbert mod-
ular symbols after the action of the arithmetic group is included (see Definition 4.13).

Theorem 4.12. The generating series J is one of the types b, c, b′ or c′. Note
that J (p1, p2; p3, p4) is defined for all types, while J (p1, p2, p3) is defined only
for types b′ or c′. Then the generating series J (p1, p2, p3) and J (p1, p2; p3, p4)

satisfy the following relations:

(1) If σ is a permutation of the set {1, 2, 3}, then

J (pσ(1), pσ(2), pσ(3))= J sign(σ )(p1, p2, p3).

(2) If p1, p2, p3, p4 are four points on the same holomorphic (or antiholomorphic)
curve of type γ ∗1, then

1= J (p1, p2, p3)J (p2, p3, p4)

× J (p2, p1, p4)J (p1, p4, p3) .

(3) If p1, p2, p3, p4 are four points on the same holomorphic (or antiholomorphic)
curve of type γ ∗1, then

1= J (p1, p2; p3, p4).
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(4) For every four points p1, p2, p3, p4, we have the following relation based on
the orientation of the domain:

J (p2, p1; p3, p4)= J (p1, p2; p4, p3)

= J−1(p2, p1; p4, p3)

= J−1(p1, p2; p3, p4).

(5) For every five points p1, p2, p3, p4, p5, we have

J (p1, p2; p3, p4)J (p1, p2; p4, p5)= J (p1, p2; p3, p5).

(6) For every four points p1, p2, p3, p4, we have the following relation, based on
the boundary of a thickened tetrahedron:

1= J (p1, p2, p3)J (p2, p3, p4)

× J (p2, p1, p4)J (p1, p4, p3)

× J (p1, p2; p3, p4)J (p2, p3; p1, p4)J (p3, p1; p2, p4)

× J (p3, p4; p1, p2)J (p1, p4; p2, p3)J (p2, p4; p3, p1).

Proof. For part (1), let σ be an odd permutation. Let U be the union of two triangles
along one of their edges. Let the first triangle have vertices p1, p2, p3 and the
second triangle have vertices p3, p2, p1 with the opposite orientation. We can glue
the two triangles along the edge p1 p2. (Gluing along any other edge would lead to
the same result for the corresponding generating series.) From the shuffle product
formula (Theorem 3.21(iii)), it follows that J (U ) = J (p1, p2, p3)J (p3, p2, p1).
(Note that the product is not the product in the ring R. It is induced by a shuffle
product of iterated integrals on membranes.) From the second homotopy invariance
theorem (Theorem 3.11) it follows that the generating series J (U ) depends on U up
to homotopy, which keeps the boundary components p2 p3, p3 p2, p1 p3 and p3 p1

on fixed unions of holomorphic curves. We can contract U to its boundaries ∂U so
that the contracting homotopy keeps the boundary components on a fixed union of
holomorphic curves. Therefore, J (U )= J (∂U )= 1.

Parts (2), (4) and (5) can be proven similarly.
For part (3), if p1, p2, p3, p4 belong to the same holomorphic (or antiholomor-

phic) curve, then the corresponding diangle has no interior, since the two edges
will coincide. Recall that the edges of the diangle are defined via unique geodesic
triangles lying on a holomorphic (or antiholomorphic) curve.

The proof of part (6) is essentially the same as the one for part (1); however, we
will prove it independently, since it is a key property of the noncommutative Hilbert
modular symbol. Consider a thickened tetrahedron with vertices p1, p2, p3, p4.
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The faces of the thickened tetrahedron are precisely the ones listed in the product
of part (6). The whole product is equal to J (V ), where V is the union of all faces
of the thickened tetrahedron. From the second homotopy invariance theorem it
follows that the generating series J (V ) depends on V up to homotopy, which keeps
the boundary components on a fixed union holomorphic curves. Since V bounds a
contractible 3-dimensional region (a thickened tetrahedron), from Theorem 3.11, it
follows that J (V )= J (point)= 1. �

4E. Definition of noncommutative Hilbert modular symbols. In this subsection,
we define noncommutative Hilbert modular symbols. They are analogues of Manin’s
[2006] noncommutative modular symbol, applicable to the Hilbert modular group.
Instead of the iterated path integrals that Manin uses, we use a higher-dimensional
analogue, defined in Section 3.

Usually, a modular symbol represents a cohomology class. Manin’s noncommu-
tative modular symbol represents a noncommutative first cohomology class. We
would like to say that the noncommutative Hilbert modular symbols represent non-
commutative cohomology classes; this is formulated in Conjectures 4.14 and 4.15.

After defining the noncommutative Hilbert modular symbols, we prove some
of their properties. These properties will be interpreted intuitively as cocycle or
coboundary conditions. The approach in this subsection is more geometric. The
purpose of presenting them here is to give many examples of relations and to help
establish a suitable cohomology theory that truly captures these relations in a more
structured way.

The cocycle interpretation is only for intuition; it is not precise. The formula
holds for geometric reasons. Note that the composition is not the multiplication in
the ring R; it is given by the shuffle product (see Theorem 3.21), which works for the
generating series on iterated integrals on membranes. The multiplication is written
linearly as we would multiply several elements in a group or in a ring; however,
the multiplication is two-dimensional among regions with common boundaries.

In the next subsection will give some intuition about higher categories, for the
purpose of giving more structure to the noncommutative Hilbert modular sym-
bols and for a possible approach to defining a first and second noncommutative
cohomology class.

For definitions of iterated integrals on membranes, see Definitions 3.4 and 3.5
for types b and c and Definition 4.9 for types b′ and c′.

Definition 4.13. We define noncommutative Hilbert modular symbols as generating
series of iterated integrals on membranes of types b, c, b′, or c′ over a geodesic
diangle by

c1
p1,p2;p3

(γ )= J (p1, p2; p3, γ p3).
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We also define noncommutative Hilbert modular symbols as generating series of
iterated integrals on membranes of types b′ or c′ over a geodesic triangle by

c2
p(γ, δ)= J (p, γ p, γ δp),

where p, p1, p2, p3 are cusp points in H2
∪P1(K ) and β, γ, δ ∈ SL2(OK ).

We are going to define an action of Mat2(OK )
+ on the generating series J c, where

Mat2(OK )
+ is the semigroup of 2× 2 matrices with totally positive determinant.

In order to interpret c1(γ ) and c2(γ, δ) as cocycles, we are going to define an
action of the semigroup Mat2(OK )

+ on the whole ring R where the generating
series take values. Such an action can be given via Hecke operators.

For simplicity, we shall assume that OK has narrow class number 1. We consider
all Hecke eigenforms of weight (2, 2) with respect to Mat2(OK )

+. Now, let u be a
unit such that u1 > 0 and u2 < 0, where u1 and u2 are the images of u under the
two real embeddings of K into R. It exists, since the narrow class group is trivial.
(For example, K =Q(

√
2) is such a field.) We define an action of γ ∈Mat2(OK )

on the ring R (Definition 3.13) where the generating series takes values. We define

γ • f 7→ Tγ ( f )

for γ ∈Mat2(OK )
+. Let f1, . . . , fm be a basis of Hecke eigenforms of the space of

cusp form of weight (2, 2). Let X1, Y1, . . . , Xm, Ym be generators of R, and to each
fi associate X i and Yi . Then the action of γ ∈Mat2(OK )

+ is given by Tγ (X i )=

c(γ, fi )X i and Tγ (Yi )= Yi , where c(γ, fi ) is the eigenvalue of the Hecke operator.
In this setting the group action, namely, the action of the Hilbert modular group,

is trivial. This trivial action extend to the action of T1 = id on the whole ring R.
In fact, for an element β ∈ SL2(OK ), the trivial action on c1

p1,p2;p3
and c2

p can be
realized as

(βc1
p1,p2;p3

)(γ )= c1
βp1,βp2;βp3

(βγ )

and

(βc2
p)(γ, δ)= c2

βp(βp, βγ p, βγ δp).

The last two relations hold because for a cusp form of weight (2, 2) the differential
form f dz1 ∧ dz2 is invariant under the action of the Hilbert modular group 0.
Algebraically, for any geodesic diangle, we have

β J (p1, p2; p3, p4)= J (p1, p2; p3, p4)= J (βp1, βp2;βp3, βp4).

Similarly, for a geodesic triangle,

β J (p1, p2, p3)= J (p1, p2, p3)= J (βp1, βp2, βp3).
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The relations among the symbols are based on two properties: composition
via shuffle product Theorem 3.21(iii) and homotopy invariance (Theorems 3.7
and 3.11).

Conjecture 4.14. The noncommutative Hilbert modular symbol c1
p1,p2;p3

is a 1-
cocycle. Moreover, if we change the point p3 to q3, then the cocycle changes by a
coboundary.

Property (5) of Theorem 4.12 can be interpreted as a 1-cocycle relation. Consider
the analogy with a noncommutative 1-cocycle of a group acting on a noncommuta-
tive ring; we define the boundary of c1

p1,p2;p3
by

dc1
p1,p2;p3

(β, γ )= c1
p1,p2;p3

(β)(βc1
p1,p2;p3

)(γ )(c1
p1,p2;p3

(βγ ))−1.

The action of β on the cocycle is given in Definition 4.13. In contrast to a first
noncommutative cocycle (see for example [Brown 1982]), here we have two-
dimensional composition of symbols, that is, one can compose the symbols as
two-morphisms in a two-category.

Then

dc1
p1,p2;p3

(β,γ )= J (p1, p2; p3,βp3)(β J (p1, p2; p3,γ p3))J−1(p1, p2; p3,βγ p3)

= J (p1, p2; p3,βp3)J (p1, p2;βp3,βγ p3)J−1(p1, p2; p3,βγ p3)

= 1. (26)

If we change p3 to q3 then the cocycle changes by a coboundary. Let b0
=

J (p1, p2; p3, q3) be a 0-cochain. Then

c1
p1,p2;q3

(γ )= J (p1, p2; p3, γ p3)

= J (p1, p2; p3, q3)J (p1, p2; q3, γ q3)J (p1, p2; γ q3, γ p3)

= J (p1, p2; p3, q3)J (p1, p2; q3, γ q3)(γ J (p1, p2; p3, q3))
−1

= b0c1
p1,p2;q3

(γ )(γ b0)−1 (27)

Conjecture 4.15. The noncommutative Hilbert modular symbol c2
p(β, γ ) satisfies

a 2-cocycle relation. Moreover, if we change the point p to q, then the cocycle
changes by a coboundary up to terms involving c1.

Recall

c2
p(β, γ )= J (p, βp, βγ p).
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Then c2
p satisfies a 2-cocycle condition up to a multiple of the 1-cocycle c1

q1,q2;q3

for various points q1, q2, q3. For the 2-cocycle relation, we compute dc2
p(β, γ, δ):

dc2
p(β, γ, δ)= c2

p(β, γ )c
2(β, γ δ)(c2(βγ, δ))−1(β · c2(γ, δ))−1

= J (p, βp, βγ p)J (p, βp, βγ δp)

× J (p, βγ p, βγ δp)−1 J (βp, βγ p, βγ δp)−1. (28)

In order to have dc2
p(β, γ, δ) = 1, we must multiply by suitable values of c1,

corresponding to edges of a certain thickened tetrahedron. Then

dc2
p(β, γ, δ)×

[
c1

p,βp;βγ p((βγ )δ(βγ )
−1)c1

βp,βγ p;p(βγ δ)c
1
βγ p,p;βp((β)γ δβ

−1)

× c1
βγ p,βγ δp;p(β)c

1
p,βγ δp;βp(βγβ

−1)c1
βp,βγ δp;βγ p((βγ )

−1)
]

= [c2
p(β, γ )c

2(β, γ δ)(c2(βγ, δ))−1(β · c2(γ, δ))−1
]

×
[
c1

p,βp;βγ p((βγ )δ(βγ )
−1)c1

βp,βγ p;p(βγ δ)c
1
βγ p,p;βp((β)γ δβ

−1)

× c1
βγ p,βγ δp;p(β)c

1
p,βγ δp;βp(βγβ

−1)c1
βp,βγ δp;βγ p((βγ )

−1)
]

= [J (p, βp, βγ p)J (p, βp, βγ δp)J (p, βγ p, βγ δp)−1 J (βp, βγ p, βγ δp)−1
]

×
[
J (p, βp;βγ p, βγ δp)J (βp, βγ p; p, βγ δp)J (βγ p, p;βp, βγ δp)

× J (βγ p, βγ δp; p, βp)J (p, βγ δp;βp, βγ p)J (βp, βγ δp;βγ p, p)
]

= 1.

The first equality follows from (28). The second equality follows from the definition
of the symbols. And the last equality follows from property (6) of Theorem 4.12 with
(p1, p2, p3, p4) = (p, βp, βγ p, β, γ δp). Therefore, we obtain that dc2

p(β, γ, δ)

is 1 up to values of the 1-cocycle c1.

Conjecture 4.16. The conjectural cocycles c2
p and c2

q are homologous:

c2
p(β, γ )= c2

q(β, γ )[db1
pq(β, γ )]

∏
i

J (Di ),

up to a product of J (Di ), where the Di are geodesic diangles.

Before we proceed, we would like to make an analogy between 1-dimensional
and 2-dimensional cocycles. For the 1-dimensional cocycle, the property that it
is a cocycle uses the geometry of a triangle, where the faces of the triangle are
essentially the 1-cocycle. We want commutativity of the triangular diagram. We
think of the commutativity of the diagram as follows: consider the interior of the
triangle as a homotopy of paths and think of the 1-cocycle as a homotopy-invariant
function. The 2-cocycle relation is represented by the faces of a tetrahedron. By
“commutativity” of the diagram, we mean a homotopy invariant 2-cocycle and a
homotopy from one of the faces to the union of the other three faces.



360 Ivan Horozov

The comparison that c1
p1,p2;p3

and c1
p1,p2;q3

are homologous is given by a square-
shaped diagram. The analogy with dimension 2 is that the cocycles c2

p and c2
q are

two faces of an octahedron. The vertices associated to c2
p(β, γ ) are (p, βp, βγ p)

and the vertices associated to c2
q are (q, βq, βγ q). The two faces will be opposite

to each other on the octahedron Oct so that the three pairs of opposite vertices are
(p, βγ q), (βp, q) and (βγ p, βq). The remaining six faces are combined into two
triples. Each of them corresponds to a coboundary of a 1-chain.

Let
b1

p,q(β)= [J (p, q, βp)J (q, βq, βp)][J (q, βp; p, βq)].

Consider the action of γ ∈ 0 on b1 by acting on each point in the argument of J ,
denoted as before by γ · b1. Then, we define

db1
p,q(β, γ )= b1

p,q(β)[β · b
1
p,q(γ )][b

1
p,q(βγ )]

−1,

where β · b1
p,q(γ )= [J (βp, βq, βγ p)J (βq, βγ q, βγ p)][J (βq, βγ p; p;βγ q)].

Consider the above octahedron Oct. Remove from it the tetrahedron T with
vertices (p, q, βγ q, βγ p). Then the triangles of the remaining geometric figure
are precisely the triangles in the definitions of c2

p(β, γ ), c2
q(β, γ ) and db1

p,q(β, γ ).
Now, consider thickenings of the edges, which are common for two triangles. It
can be done in the following way. Instead of any triangle, we can take a geodesic
triangle. The two triangles that had a common edge might have only two common
vertices. Then the region between the two geodesic, one for each of the geodesic
triangles, forms the induced diangle. Take J of the induces diangles from the
octahedron Oct and J−1 of the induced diangles from the tetrahedron T . Their
product gives

∏
i J (Di ). The equality holds because we apply J to the union of

the faces of the thickened Oct−T , which gives 1.

4F. A two-category. Why do we need a two-category? Is there an example of a
sheaf on this category/topology? How does the noncommutative Hilbert modular
symbols represents a sheaf?

The ideas presented in this subsection will be developed in a follow-up paper.
Here we present the basic constructions that give justification for the conjectures
that the noncommutative Hilbert modular symbols c1 and c2 are cocycles in some
categorical and sheaf-theoretic setting. For sheaves on 2-categories one may consult
[Street 1982]. Since our 2-morphisms are invertible one may also use Lurie’s
constructions [2009] of sheaves on higher categories.

We are going to construct a 2-category C and a sheaf J on C . We define p to be
an object of the 2-category C if p is a cusp point, that is p ∈ P1(K ). We define
1-morphisms in the following way. Let σ be the geodesic connecting 0 and ∞
that lies on the diagonal 1 = i(H) ⊂ H×H. There is unique such geodesic. All
geodesics γ ∗σ together with a choice of orientation are defined to be 1-morphisms,
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where γ ∈ PGL2(K ). We define the 1-morphisms of C to be finite concatenations
of geodesics of type γ ∗σ or the trivial path whose image coincides with a cusp
point. Consider ideal triangles and ideal diangles as cells from which we build
manifolds with corners. A 2-morphism is a finite union of manifolds with corners,
made from finitely many ideal diangles and ideal triangles, which is path-connected
and has orientation.

The boundary of a 1-morphism is a union of two objects — the starting point
and the ending point of the directed path. The boundary of a 2-morphism (a 2-
manifold with corners) is a finite union of 1-morphisms (oriented loops), where
the orientation of the loops on the boundary is induced by the orientation of the
2-manifold with corners.

Now we are going to define a 2-sheaf J , whose values on a 2-morphism will be
in a subset of the ring R and whose values on an object and on a 1-morphism will
be a subset of a countable product of the ring R with itself.

As always, S2,2(0) denotes the space of cusp forms of weight (2, 2) with respect
to the group 0. Here we will consider this space as the space of holomorphic
2-forms on H×H which vanish on the cusps and which can descend to the Hilbert
modular surface X0 = 0\(H2

∪ P1(K )). Every n-tuple of such holomorphic
forms � ∈ (S2,2(0))

n defines a value of a 2-morphism f in C . Let this value
be the generating series J f (�). Let J f be the collection of all values J f (�) for
� ∈ (S2,2(0))

n . Let e be a 1-morphism. We say that e is in the boundary of a
2-morphism f , denoted e⊂ ∂ f , if the image of the loop e is in the boundary of the
image of the membrane f together with the induced orientation on e from f . We say
that an object p is in the boundary of a 1-morphism e, denoted by p ∈ ∂e, if p is a
source or a target of e. We define the values of J on a 1-morphism e to be the product∏

e⊂∂ f

J f ⊂
∏

e⊂∂ f

R.

We define the values of J on objects p to be∏
p∈∂e
e⊂∂ f

J f ⊂
∏
p∈∂e
e⊂∂ f

R.

The sheaf conditions for 1- and 2-morphisms resemble the classical conditions
for a presheaf to be a sheaf.

Let fi : Ai →[0, 1]2 be a finite collection of disjoint 2-morphisms, whose union
is a morphism f : A→ [0, 1]2. We define a finite collection f k

i j of 1-morphisms
and 0-morphisms (objects) such that the union

⋃
k im( f k

i j )= im( fi )∩ im( f j ) is a
disjoint union of the intersection.
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Then the equalizer

J f →
∏

i

J fi ⇒
∏
i jk

J f k
i j

is exact (for a definition of equalizer one may consult [Borceux 1994]).
Similarly, let e be a 1-morphism and let {ei } be a finite set of disjoint 1-

morphisms such that the union
⋃

i im(ei ) is equal to im(e). We can write the
intersection im(ei )∩ im(e j ) as a finite union of 0-morphisms

⋃
k im(ek

i j ), for some
1-morphisms ek

i j .
Then the equalizer

Je→
∏

i

Jei ⇒
∏
i jk

Jek
i j

is exact.
The cochain is defined as∏

p: 0-morph

Jp→
∏

e: 1-morph

Je→
∏

f : 2-morph

J f →
∏

g: 2-morph
∂g=∅

Jg

The maps Je→ Jp and Jp→ J f are surjective when they are defined, resembling
flabby sheaves. Thus, we should have trivial zeroth and first cohomology set.
The only nontrivial cohomology will be the second cohomology set. The cocycle
conditions for both noncommutative Hilbert modular symbols c1 and c2 can be
interpreted as a particular case of maps∏

f : 2-morph

J f →
∏

g: 2-morph
∂g=∅

Jg.

For c1, the boundary condition is that a union of two diangles with a common
edge is a third diangle. One can think of the these three diangles as the boundary
of a degenerate 3-dimensional region. One can realize this cocycle condition as
a sheaf-theoretic one by modifying the above definition so that the 2-morphisms
consists of a finite union of ideal diangles (without using the ideal triangles). Then
the sheaf-theoretic second cocycle condition is the one for noncommutative Hilbert
modular symbol c1.

If we are able to quotient the 2-category described in the beginning of this
subsection by the 2-morphisms generated by diangles, then we have only two
morphisms generated by ideal triangles. The noncommutative Hilbert modular
symbol c2 is exactly the one that considers ideal triangles. Note that its cocycle
relation for c2 is satisfied up to 2-morphisms generated by diangles.
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4G. Explicit computations. Multiple Dedekind zeta values. In this subsection,
we make explicit computations of some ingredients in the noncommutative Hilbert
modular symbol. Manin [2006] compared explicit formulas of integrals in the
noncommutative modular symbol to multiple zeta values. The similarities are in
terms of both infinite series formulas and formulas via iterated path integrals. Here
we compare certain integrals in the noncommutative Hilbert modular symbol to
multiple Dedekind zeta values (for multiple Dedekind zeta values, see [Horozov
2014b]). Again the similarities are in terms of both infinite series formulas and
formulas via iterated integrals over membranes.

We are going to consider the Fourier expansion of two Hilbert cusp forms f and g.
Let ω f = f dz1 ∧ dz2, ωg = g dz1 ∧ dz2 and ω0 = dz1 ∧ dz2. We are going to
associate L-values to iterated integrals of the forms ω f and ωg. The L-values
will be iterated integrals over an union of diangles. One can think of a diangle
connecting 0 and∞ as a segment or as a real cone. The union will be a disjoint
union of all such real cones connecting 0 and∞ or simply Im(H)× Im(H). We
also recall the definition of a multiple Dedekind zeta values via (discrete) cones.
Finally, we prove analogous formulas for iterated L-values associated to Hilbert
cusp forms and for multiple Dedekind zeta values.

We will be mostly interested in the modular symbol associated to a diangle. Let
us recall what we mean by a diangle.

Let p1, p2, p3, p4 be four cusp points. Let γ1 ∈ GL2(K ) be a linear fractional
transformation that sends γ1(p1) to 0, γ1(p2) to∞, and γ1(p3) to 1. Let 1 be the
image of the diagonal embedding of H1 into H2. Then 0, 1 and∞ are boundary
points of1. Let λ(0,∞) be the unique geodesic in1 that connects 0 and∞. And let

λ1(p1, p2)= γ
−1
1 λ(0,∞)

be the pullback of the geodesic λ to a geodesic connecting p1 and p2.
Now consider the triple p1, p2 and p4. Let γ2 ∈ GL2(K ) be a linear fractional

transformation that sends γ2(p1) to 0, γ2(p2) to∞ and γ2(p4) to 1. Let 1 be the
image of the diagonal embedding of H1 into H2. Then 0, 1 and∞ are boundary
points of1. Let λ(0,∞) be the unique geodesic in1 that connects 0 and∞. And let

λ2(p1, p2)= γ
−1
2 λ(0,∞)

be the pullback of the geodesic λ to a geodesic connecting p1 and p2.
By a diangle, we mean a region in H2

∪P1(K ) with the homotopy type of a disc,
bounded by the geodesics λ1(0,∞) and λ2(0,∞).

We are going to present a computation for the diangle Du defined by the points
(0,∞, u1, u−1), where u is a generator for the group of units modulo ±1 in K .
Let (1) be the trivial permutation.
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Lemma 4.17. Let u be a totally positive unit. Then∫∫ (1)(1)

Du

e2π i(α1z1+α2z2) dz1 ∧ dz2 =
1

(2π i)2
u2

2− u2
1

(α1u1+α2u2)(α1u2+α2u1)
.

Proof. Let u1 and u2 be the two embeddings of u into R. Then (0,∞, u) can be
mapped to (0,∞, 1) by γ1 =

(
u−1 0

0 1

)
. The geodesic λ(0,∞) can be parametrized

by (i t, i t) for t ∈R. Then the geodesic λ1(0,∞) on the geodesic triangle (0,∞, u)
can be parametrized by {(iu1t, iu2t) | t > 0}. Similarly, the geodesic λ2(0,∞)
on the geodesic triangle (0,∞, u−1) can be parametrized by {(iu2t, iu1t) | t > 0}.
Then the diangle Du can be parametrized by{
(z1, z2)∈H2

| Re(z1)=Re(z2)=0, Im(z1)∈

(
u1

u2
t,

u2

u1
t
)
, Im(z2)= t ∈ (0,∞)

}
.

Then we have∫∫ (1)(1)

Du

e2π i(α1z1+α2z2) dz1 ∧ dz2 =

∫ 0

∞

(∫ u1
u2

t

u2
u1

t
e2π i(α1z1+α2t) dz1

)
dt

=
1

2π iα1

∫ 0

∞

(
eα1

u1
u2

t+α2t
− eα1

u2
u1

t+α2t
)

dt

=
1

(2π i)2
1
α1

(
1

α1
u1
u2
+α2

−
1

α1
u2
u1
+α2

)
=

1
(2π i)2

u2
2− u2

1

(α1u1+α2u2)(α1u2+α2u1)
�

Therefore, one term of the Fourier expansion of a Hilbert cusp form paired with
a symbol given by one diangle does not resemble a norm of an algebraic integer.
However, if we integrate over an infinite union of diangles, then a similarity with
Dedekind zeta and multiple Dedekind zeta values occurs.

Consider the limit of Dun when n→∞. It is the product of the two imaginary
axes of the two upper half-planes. Set

Im(H2)= Im(H)× Im(H).

One can think of this region as an infinite union of diangles.
Denote by αz the sum of products α1z1+α2z2. Using the methods of [Horozov

2014b, Section 1], we obtain

(2π i)−2

N (α)N (α+β)
=

∫ (1)(1)

Im(H2)

e2π iαz dz1 ∧ dz2 · e2π iβz dz1 ∧ dz2
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and

1
(2π i)2

1
N (α)3 N (α+β)2

=

∫ (1)(1)

Im(H2)

e2π iαz dz1∧dz2 ·(dz1∧dz2)·(dz1∧dz2)·e2π iβz dz1∧dz2 ·(dz1∧dz2).

Let f and g be two cusp forms of weights (2k, 2k) and (2l, 2l), respectively.
Consider the Fourier expansion of both of the cusp forms. Let

f =
∑
α�0

aαe2π iαz and g =
∑
β�0

bβe2π iβz.

Since f is of weight (2k, 2k), we have that auα = aα , where u is a unit. For such a
modular form the modular factor with respect to the transformation z→ uz is 1.
The L-values of f are

L f (n)=
∫ (1)(1)

Im(H2)

∑
α∈O+K /U+

aαe2π iαz dz1 ∧ dz2 · (dz1 ∧ dz2)
·(n−1)

=
1

(2π i)2n

∑
α∈O+K /U+

aα
N (α)n

.

Here O+K denotes the totally positive algebraic integers in K and U+ denotes the
totally positive units.

We recall some of the definitions from [Horozov 2014b]. We fix a positive cone
C in OK , by which we mean

C = N∪ {α ∈ OK | a+ bε, a, b ∈ N},

where ε is a generator of the group of totally positive units. By εkC , we mean the
collection of products εkα, where α varies in the cone C .

The following infinite sum is an example of a multiple Dedekind zeta value:

ζK ;C,εkC(m, n)=
∑
α∈C

∑
β∈εkC

1
N (α)m N (α+β)n

.

Let Z(m, n)=
∑

k∈Z ζK ;C,εkC(m, n), where C is any set representing the totally
positive algebraic integers O+K modulo totally positive units U+.

Lemma 4.18. The values Z(m, n) are finite for m > n > 1.
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Proof. Let ε be a generators of the group of totally positive units U+ in K . For the
two real embeddings ε1 and ε2 of ε, we can assume that ε1 > 1> ε2. Otherwise we
can take its reciprocal.

Z(m, n)=
∑
k∈Z

∑
α,β∈C

1
N (α)m N (α+ εkβ)n

(29)

<
∑
α,β∈C

1
N (α)m

(
1

N (α+β)n
+

∞∑
k=1

2n

εk
1

(
1

αn
1β

n
2
+

1
αn

2β
n
1

))
(30)

<
∑
α,β∈C

1
N (α)m

(
1

N (α+β)n
+

∞∑
k=1

2
εk

1

(
N (α+β)n − N (α)n

N (α+β)n

))
(31)

=

∑
α,β∈C

1
N (α)m

(
1

N (α+β)n
+

2
ε1− 1

(
N (α+β)n − N (α)n

N (α+β)n

))
(32)

=

∑
α,β∈C

1
N (α)m N (α+β)n

+
2

ε1−1
1

N (α)n
−

2
N (α)m−n N (α+β)n (33)

= ζK (C;m, n)−
2

ε1− 1
(ζK (C; n)+ ζK (C;m− n, n)). (34)

Equation (29) is the definition. Inequality (30) is based on the following: ε2 < 1
is replaced with 1 when k > 0. For k < 0 we use εk

2 = ε
−k
1 . We put 1 for εk

1 for
k < 0. The case k = 0 is treated separately. Finally we group the terms with equal
powers of ε1. In inequality (31) we estimate the mixed terms in the brackets. In
(32) we take the sum of the geometric series in ε−1

1 . Then in (33) we open the
brackets. And finally, in (34), we express the sums as a finite linear combinations
of a Dedekind zeta value and multiple Dedekind zeta values. �

The following definition of an iterated L-value is a coefficient of one monomial
from the noncommutative Hilbert modular symbol of type b:

Definition 4.19. For a pair of Hilbert cusp forms f and g with Fourier expansions

f =
∑
α�0

aαe2π iαz and g =
∑
β�0

bβe2π iβz,

we define iterated L-values

L f,g(m, n)=
∫ (1)(1)

Im(H2)

∑
(α,β)∈(O+K ,O

+

K )/U

(aαe2π iαz dz1 ∧ dz2) · (dz1 ∧ dz2)
·(m−1)

· (bβe2π iβz dz1 ∧ dz2) · (dz1 ∧ dz2)
·(n−1).
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Theorem 4.20. Using the above definition, we have

L f,g(m, n)=
∑
k∈Z

∑
α∈C,β∈εkC

aαbβ
N (α)m N (α+β)n

.

Proof.

L f,g(m, n)=
∫ (1)(1)

Im(H2)

∑
(α,β)∈(O+K ,O

+

K )/U

(aαe2π iαz dz1 ∧ dz2) · (dz1 ∧ dz2)
·(m−1)

· (bβe2π iβz dz1 ∧ dz2) · (dz1 ∧ dz2)
·(n−1)

=

∑
(α,β)∈(O+K ,O

+

K )/U

aαbβ
N (α)m N (α+β)n

=

∑
k∈Z;α,β∈C

aαbβ
N (α)m N (α+ εkβ)n

=

∑
k∈Z,

∑
α∈C

∑
β∈εkC

aαbβ
N (α)m N (α+β)n

. �

We would like to bring to the attention of the reader Definition 4.19, the definition
of the multiple L- values. More specifically, we would like to point out that the
region of integration is an infinite union of diangles (or equivalently an infinite union
of real cones; see the beginning of this section). Note also that in Theorem 4.20 the
values of the multiple L-functions are expressed as an infinite sums over different
discrete cones, namely, over εkC for k ∈ Z. However, a single real cone Du ,
as in Lemma 4.18, does not correspond to a single discrete cone. Only a good
union of real cones Im(H)× Im(H) corresponds to a good union of discrete cones⋃

k∈Z(C, ε
kC) as a fundamental domain of (O+K ,O+K )/U+.
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