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The Adams operators ‰n on a Hopf algebra H are the convolution powers of
the identity of H . They are also called Hopf powers or Sweedler powers. We
study the Adams operators when H is graded connected. The main result is a
complete description of the characteristic polynomial — both eigenvalues and
their multiplicities — for the action of the operator ‰n on each homogeneous
component of H . The eigenvalues are powers of n. The multiplicities are
independent of n, and in fact only depend on the dimension sequence ofH . These
results apply in particular to the antipode of H , as the case nD�1. We obtain
closed forms for the generating function of the sequence of traces of the Adams
operators. In the case of the antipode, the generating function bears a particularly
simple relationship to the one for the dimension sequence. In the case where H
is cofree, we give an alternative description for the characteristic polynomial
and the trace of the antipode in terms of certain palindromic words. We discuss
parallel results that hold for Hopf monoids in species and for q-Hopf algebras.
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Introduction

Let H be a Hopf algebra with antipode S W H ! H . If H is commutative or
cocommutative, then it is well known that S is an involution (S2D id). In particular,
its eigenvalues are ˙1. Alternatively, if H is finite-dimensional, then S has finite
even order (and its eigenvalues can be arbitrary even roots of unity). This paper
studies the behavior of the antipode when H is graded connected. We prove in
Corollary 5 that, in this case, the eigenvalues of S are always ˙1, even though S
may have infinite order on any homogeneous component of H .

It is both natural and convenient to consider a more general family of operators
on H : the convolution powers of the identity. These are the Adams operators ‰n,
and the antipode is ‰�1. Our main result, Theorem 3, provides a complete de-
scription of the characteristic polynomial for the operator ‰n acting on the m-th
homogeneous component of H . For each scalar n and nonnegative integer m,
the polynomial is uniquely determined by the dimension sequence of H . The
eigenvalues are powers of n. The multiplicities count samples with replacement
by length and weight, with the samples taken from a weighted set that arises,
numerically, as the inverse Euler transform of the dimension sequence of H , and
algebraically, as a basis of the graded Lie algebra of primitive elements of a Hopf
algebra canonically associated to H .

Corollaries 10 and 13 provide information on the trace of the antipode. The
former provides a semicombinatorial description for its values, and the latter the
following remarkable expression for the generating function:

X
m�0

trace.SjHm
/ tm D

h.t2/

h.t/
;

where h.t/ is the generating function for the dimension sequence of H . We derive
in Corollary 17 information about the asymptotic behavior of the sequence of traces.

To put these results into perspective, consider the Hopf algebra of symmetric
functions. Calculating the trace of the antipode on suitable linear bases yields a
simple proof of the interesting identity (see Section 5.1)

c.m/D e.m/� o.m/;

where c.m/ denotes the number of self-conjugate partitions of m, and e.m/ and
o.m/ denote the number of partitions of m with an even number of even parts, and
with an odd number of even parts, respectively. The generating function for the



Adams operators on graded connected Hopf algebras 549

trace of the antipode in the preceding paragraph may be seen as an extension of
this result to arbitrary graded connected Hopf algebras.

Consider now the Hopf algebra of quasisymmetric functions. Another quick
calculation reveals that the trace of the antipode on the m-th component is a signed
count of palindromic compositions of m; see Section 5.3. Corollary 22 provides a
similar result that applies to any graded connected Hopf algebra that, as a graded
coalgebra, is cofree.

Some of the main results admit extensions to certain graded connected q-Hopf
algebras. Among these, we highlight Corollary 34, which describes the trace of
the antipode as a polynomial in q, and Corollary 37, which involves appropriate
q-generating functions and replaces the above relationship between the sequence
of antipode traces and the dimension sequence.

The theory of Hopf monoids in species often runs in parallel to the theory of
graded connected Hopf algebras. The main results of the paper admit variants that
apply in this context. The sequence of antipode traces is now determined from the
dimension sequence as follows (Corollary 29): the exponential generating function
of the former is the reciprocal of that of the latter.

The paper is organized as follows. In Section 1, we discuss the necessary
preliminaries from Hopf algebra theory. The proof of Theorem 3 is carried out in
Section 2. Section 3 focuses on the trace of the Adams operators and the antipode
particularly. In Section 4, we give alternatives to our main results about the antipode
that hold in the presence of cofreeness assumptions. Section 5 provides illustrations
of the results and some simple calculations. In Appendix A we present the results for
Hopf monoids in species, and in Appendix B we treat the case of q-Hopf algebras.

The present paper supersedes and considerably expands on the results of our
extended abstract [Aguiar and Lauve 2013].

1. Preliminaries on Hopf algebras

Throughout, all vector spaces are over a field k of characteristic zero.
The structure maps of a bialgebra H are denoted by

� WH ˝H !H; � WH !H ˝H;

� W k!H; " WH ! k:

The antipode of a Hopf algebra H is denoted by

S WH !H:

1.1. Convolution. Let H be a bialgebra and let End.H/ denote the space of linear
maps T WH !H . The convolution product of P;Q 2 End.H/ is

P �Q WD � ı .P ˝Q/ ı�:
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This turns the space End.H/ into an associative algebra. The unit element is

� ı ":

The bialgebra H is a Hopf algebra if and only if the identity of H is convolution-
invertible. In this case, the antipode S is the convolution-inverse of the identity map:

S� idD id�SD � ı ":

Let H be a bialgebra. Put �.0/ WD id, �.1/ WD�, and

�.n/ WD .�˝ id˝.n�1// ı�.n�1/ for all n� 2:

The superscript is one less than the number of tensor factors in the codomain.
Similarly, �.n/ denotes the map that multiplies nC1 elements ofH , with �.0/ WD id.
The convolution powers of any T 2 End.H/ can be written as

T �0 D � ı " and T �n D �.n�1/ ıT˝n ı�.n�1/ for n� 1:

1.2. Adams operators. Let H be a Hopf algebra. The convolution powers id�n of
the identity of H are defined for any integer n. They are called Adams operators
and are denoted by

‰n WD id�n WH !H: (1)

For n� 1, we have
‰n D �

.n�1/
ı�.n�1/: (2)

Note that ‰0 D � ı " and ‰�1 D S. Also,

‰�n D S�n (3)

for all n.
This terminology is used in [Cartier 2007, §3.8] and [Loday 1992, §4.5]. Other

common terminology for these operators are Hopf powers [Ng and Schauenburg
2008], Sweedler powers [Kashina et al. 2006; 2012], and characteristic opera-
tions [Gerstenhaber and Schack 1991; Patras 1993]. The paper [Aguiar and Mahajan
2013, §13] studies analogous operators in the context of Hopf monoids in species.

The main goal of this paper is to analyze the characteristic polynomial of these
operators when the Hopf algebra H is graded connected.

1.3. Coradical filtration and primitive elements. For more details on the notions
reviewed in this section, see [Montgomery 1993, Chapter 5] or [Radford 2012,
Chapter 4].

Let H .0/ denote the coradical of a bialgebra H , and let

H .0/
�H .1/

�H .2/
� � � � �H
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denote its coradical filtration. We have

H D
[
m�0

H .m/:

We say that H is connected if H .0/ is spanned by the unit element 1 2H . In
this case, H is a Hopf algebra; see Section 1.4. In addition, H .1/ DH .0/˚P.H/,
where

P.H/ WD fx 2H j�.x/D 1˝ xC x˝ 1g

is the space of primitive elements of H . More generally, setting HC WD Ker."/ and
defining �C WHC!HC˝HC by

�C.x/ WD�.x/� 1˝ x� x˝ 1;

we have H .m/DH .0/˚Ker.�.m/
C
/, where the iterates of �C are defined as for �.

Let H be a bialgebra. Let grH denote the graded vector space associated to the
coradical filtration of H :

grH WDH .0/
˚ .H .1/=H .0//˚ .H .2/=H .1//˚ .H .3/=H .2//˚ � � � : (4)

A filtration-preserving map f WH !K induces a map

grf W grH ! grK:

The structure maps of H are filtration-preserving (when H ˝H is endowed with
the tensor product of the coradical filtrations of each factor). The induced maps
turn grH into a bialgebra. If H is a Hopf algebra, so is grH . If H is connected,
so is grH . More importantly:

Lemma 1. If the bialgebraH is connected, then the bialgebra grH is commutative.

This is an immediate consequence of [Sweedler 1969, Theorem 11.2.5.a]. A
direct proof is given in [Aguiar and Sottile 2005a, Proposition 1.6]. We are thankful
to Akira Masuoka, Susan Montgomery and the referee for pointing out the reference
to Sweedler’s text.

The passage H 7! grH is functorial with respect to filtration-preserving maps.
It follows that convolution products are preserved: if f and g WH !H are linear
maps, then

gr.f �g/D .grf /� .grg/: (5)

A morphism of bialgebras f WH !K preserves the coradical filtrations. The
induced map grf W grH ! grK is a morphism of bialgebras.
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1.4. Antipode and Eulerian idempotents. Any connected bialgebra is a Hopf al-
gebra with antipode

SD
X
k�0

.� ı "� id/�k : (6)

This basic result can be traced back to Sweedler [1969, Lemma 9.2.3] and Takeuchi
[1971, Lemma 14]; see also [Montgomery 1993, Lemma 5.2.10] and [Radford
2012, Lemma 7.6.2]. It follows by expanding

x�1 D
1

1� .1� x/
D

X
k�0

.1� x/k

in the convolution algebra, with xD id and 1D �ı". Connectedness guarantees that
the sum in (6) is finite when evaluated on any h 2H . More precisely, if h 2H .m/,
then .id� � ı "/�k.h/D 0 for all k > m.

Assume for the remainder of the section that H is a connected Hopf algebra.
The binomial theorem yields the following expression for the n-th Adams operator

for all integers n:

‰n D
X
k�0

�n
k

�
.id� � ı "/�k : (7)

Moreover, the right-hand side of (7) is well-defined for all scalar values of n. In
this manner, the Adams operators ‰n are defined for all scalars n.

Similarly, the following series expansion defines an element log.id/ in the con-
volution algebra:

log.id/ WD �
X
k�1

1

k
.� ı "� id/�k : (8)

Additionally, consider the elements e.k/, for k � 0, given by

e.0/ WD � ı "; e.1/ WD log.id/; e.k/ WD
1

kŠ
.e.1//�k for k > 1: (9)

In the case where H is commutative or cocommutative, the e.k/ form a complete
orthogonal system of idempotent operators on H . That is,

idD
X
k�0

e.k/; e.k/ ı e.k/ D e.k/; e.j / ı e.k/ D 0 for j ¤ k: (10)

The e.k/ are the higher Eulerian idempotents; e.1/ is the first Eulerian idempotent.
It follows from (1), (9), and the identity x�n D exp.n log x/ that

‰n D
X
k�0

nk e.k/ (11)
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for all scalars n. In particular,

SD
X
k�0

.�1/k e.k/ :

If H is cocommutative, e.k/ projects onto the subspace spanned by k-fold
products of primitive elements of H . In particular, e.1/ projects onto P.H/.

For proofs of these results, see [Loday 1992, Chapter 4], [Patras 1993] or [Schmitt
1994, §9]. Some instances of these operators in the recent literature include [Diaco-
nis et al. 2014; Novelli et al. 2013; Pang 2014; Patras and Schocker 2006]. For refer-
ences to earlier work on Eulerian idempotents, see [Aguiar and Mahajan 2013, §14].

1.5. Hopf–Lie theory. Let H be a bialgebra. The space P.H/ is a Lie subalgebra
of H under the commutator bracket. Write g for the Lie algebra P.H/. If H is
connected and cocommutative, the Cartier–Milnor–Moore (CMM) theorem yields
a canonical isomorphism of Hopf algebras

H Š U.g/

between H and the enveloping algebra of g.
Let S.V / denote the symmetric algebra on a space V . It carries a unique Hopf

algebra structure for which the elements of V are primitive. The Poincaré–Birkhoff–
Witt (PBW) theorem furnishes canonical isomorphisms

U.g/Š S.g/ and grU.g/Š S.g/;

where g is an arbitrary Lie algebra. The former is an isomorphism of coalgebras,
the latter of Hopf algebras. Here S.g/ is the symmetric (Hopf) algebra on the vector
space underlying g.

Proofs of these classical results can be found in [Cartier 2007, §3.8], [Milnor
and Moore 1965, § 7] and [Quillen 1969, Appendix B]. For additional references,
see [Kassel 1995, Theorem V.2.5], [Loday 1992, §3.3.4 and Appendix A], and [Mont-
gomery 1993, Theorem 5.6.5].

Lemma 1 provides a construction of a commutative connected Hopf algebra grH
from an arbitrary connected Hopf algebra H . This will enable us to employ CMM
and PBW in a wider setting than that of (co)commutative Hopf algebras.

1.6. Graded bialgebras. The bialgebraH is graded if there is given a vector space
decomposition

H D
M
m�0

Hm
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such that

�.Hp˝Hq/�HpCq for all p; q � 0;

�.Hm/�
M

pCqDm

Hp˝Hq for all m� 0,

Im.�/�H0; and Hm � Ker."/ for all m> 0:

(The condition on the unit map � simply states that 1 2H0.) If H is Hopf and the
antipode satisfies

S.Hm/�Hm

for all m� 0, we say that H is a graded Hopf algebra.
If H is an arbitrary bialgebra, then grH is a graded bialgebra for which the

component of degree n is H .n/=H .n�1/.
Let H be a graded bialgebra. The space P.H/ is then graded with P.H/m D

P.H/ \ Hm. Moreover, P.H/ is then a graded Lie algebra. Similarly, each
subspace H .n/ is graded with .H .n//m D H .n/ \Hm. Hence, grH inherits a
second grading for which

.grH/m WD .H .0//m˚
�
.H .1//m=.H

.0//m
�
˚
�
.H .2//m=.H

.1//m
�
� � � : (12)

Moreover, H .0/ �H0.
We say that H is graded connected if dimH0 D 1. The preceding implies that

in this case H0 DH .0/, and therefore H is indeed connected.
Assume thatH is a graded connected bialgebra. One may show by induction that

Hm �H
.m/ for all m. It follows that the sum (12) stops at .H .m//m

ı
.H .m�1//m.

It also follows, from (6), that H is a graded Hopf algebra and

SjHm
D

mX
kD0

.� ı "� id/�k
ˇ̌̌̌
Hm

: (13)

More generally, it follows from (7) that

‰njHm
D

mX
kD0

�n
k

�
.id� � ı "/�k

ˇ̌̌̌
Hm

: (14)

2. Characteristic polynomials of the Adams operators

This section contains the main result (Theorem 3), which determines the character-
istic polynomials of the Adams operators on a graded connected Hopf algebra H .
These only depend on the dimension sequence of H . A number of consequences
about the antipode are also presented. Some preliminaries on enumeration of
multisets are reviewed first.
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2.1. Sampling with replacement and the symmetric algebra. Given a sequence
g D .gi /i�1 and a partition �D 1k12k2 � � � rkr , put�

g

�

�
WD

�g1Ck1�1
k1

�
� � �

�grCkr�1
kr

�
: (15)

Let j�j WD k1C2k2C� � �Crkr denote the size of �, and `.�/ WD k1Ck2C� � �Ckr
denote the number of parts of �. Given nonnegative integers k and m, set

mul.k;m/ WD
X
j�jDm
`.�/Dk

�
g

�

�
: (16)

In particular,

mul.0;m/D ı.0;m/ and mul.k;m/D 0 for all k > m. (17)

The numbers mul.k;m/ depend on the given sequence, although this is not reflected
in the notation.

If we sample with replacement from a set with gi elements of weight i , then
�g
�

�
counts the number of samples with weight distribution �; in other words, the
number of multisets of cardinality `.�/ containing exactly ki elements of weight i
for each i D 1; : : : ; r . The numbers mul.k;m/ then count the number of multisets
of cardinality k and total weight m.

Now letW be a positively graded vector space, and let gi WDdimWi for each i�1.
LetW k denote the k-th symmetric power ofW . In other words,W k is the subspace
of the symmetric algebra S.W / spanned by k-fold products of elements of W . It
inherits a grading from W , where .W k/m is spanned by products w1 � � �wk with
deg.w1/C � � �C deg.wk/Dm.

Fix a homogeneous basis ofW , and let it be our sample set. The set of monomials
of length k (that is, k-fold products of basis elements of W ) is then a basis of
W k . A multiset of cardinality k and total weight m corresponds to a monomial of
length k and degree m. Therefore,

dim.W k/m Dmul.k;m/:

The bivariate generating series for S.W / by length and degree is thenX
k;m�0

mul.k;m/ sktm D
Y
i�1

.1� st i /�gi : (18)

This follows by expanding the right-hand side with the aid of the binomial theorem
and employing (15) and (16).

The numbers mul.k;m/ enter in Theorem 3 below.
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2.2. Characteristic polynomial. We state some standard results from linear algebra.

Lemma 2. Let V be a finite-dimensional vector space and T 2 End.V / a linear
transformation.

(i) Let U be a T -invariant subspace of V . If T " 2 End.V=U / denotes the linear
transformation induced by T on the quotient, and T# 2 End.U / denotes the
restriction of T to U , then the characteristic polynomials of these three maps
satisfy

�T .x/D �T#.x/ �T ".x/:

(ii) The characteristic polynomials of T and of the dual map T � 2 End.V �/ are
equal. �

We are now ready for our main result. LetH be a graded connected Hopf algebra.
We assume from this point onwards that the homogeneous components Hm of H
are finite-dimensional. We let zH denote the graded dual of grH with respect to
the grading (12). It is a graded bialgebra with homogeneous components

zHm WD
�
.grH/m

��
:

If H is graded connected, zH is graded connected and cocommutative, by Lemma 1.
We let g WD P. zH/ denote the graded Lie algebra of primitive elements of zH . For
each i � 1, let

gi WD dim gi

denote the dimension of the homogeneous component of g of degree i . Consider
the corresponding numbers mul.k;m/, as in (16).

Theorem 3. Let H be as above. For every scalar n and nonnegative integer m, the
characteristic polynomial of the restriction ‰njHm

of the n-th Adams operator is

�.‰njHm
/.x/D

mY
kD0

.x�nk/mul.k;m/: (19)

Before the proof, a few remarks are in order. First, note that the factor indexed
by k D 0 is nontrivial only when mD 0, according to (17). Second, note that the
exponents mul.k;m/ do not depend on n. Additional information on the exponents
mul.k;m/ is provided in Proposition 4.

Proof. First of all, it suffices to establish (19) when n is a nonnegative integer.
Indeed, both sides depend polynomially on n— the left-hand side in view of (14).

We argue that we may replace H with grH . Indeed, since ‰n preserves both
the grading and the coradical filtration of H , it preserves the filtration

.H .0//m � .H
.1//m � � � � � .H

.m//m DHm
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for each m. By repeated application of Lemma 2(i), we deduce that

�.‰njHm
/D �

�
gr.‰n/j.grH/m

�
:

In addition, by (5),

gr.‰n/D gr.id�n/D .gr id/�n D id�n D‰n:

Therefore,
�.‰njHm

/D �.‰nj.grH/m
/:

Next, we may replace grH with zH . Indeed, the map T 7!T � is an isomorphism
of convolution algebras End.H/Š End.H�/ (where duals and endomorphisms are
in the graded sense). Together with Lemma 2(ii) this implies that

�.‰nj.grH/m
/D �.‰nj zHm

/:

Now let gDP. zH/. By CMM, zH Š U.g/, and by PBW, grU.g/Š S.g/ as Hopf
algebras. The same argument as above shows that we may replace zH with S.g/.

As S.g/ is cocommutative, the Eulerian idempotents are available. From (11)
we have that

�.‰njS.g/m/D
Y
k�0

�.nk e.k/ jS.g/m/:

It thus suffices to calculate the characteristic polynomial of the e.k/ on S.g/.
Finally, the action of e.k/ on S.g/ is simply a projection onto gk , the subspace

spanned by k-fold products of elements of g. It follows that

�.nk e.k/ jS.g/m/.x/D .x�n
k/mul.k;m/;

where
mul.k;m/D dim .gk/m:

This completes the proof. �

Remark. One may easily see that the Adams operators act on S.W / as follows:

‰n.w1 � � �wk/D n
kw1 � � �wk;

where wi 2 W , i D 1; : : : ; k. The proof of Theorem 3 can then be completed
without explicit mention of the Eulerian idempotents.

On the other hand, assume that H is a graded connected Hopf algebra that is
either commutative or cocommutative. The expression (11) for the Adams operators
in terms of the Eulerian idempotents shows that the former are simultaneously
diagonalizable. The thesis of Amy Pang [2014] contains a discussion of a common
eigenbasis for the Adams operators on such H .
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The exponents mul.k;m/ are determined by the dimension sequence of g, through
(15) and (16). In turn, this sequence is related to the dimension sequence of H by

1C
X
m�1

hmt
m
D

Y
i�1

.1� t i /�gi ; (20)

where hm WD dimHm. Indeed, the right-hand side is the generating series for S.g/,
and we have from the proof of Theorem 3 thatHmŠ zHmŠS.g/m as vector spaces.
It follows that the sequences .gi / and .hm/ determine each other. In particular:

Proposition 4. The exponents mul.k;m/ are determined by the dimension sequence
of H .

Remark. Equation (20) says that the sequence .hm/m�1 is the Euler transform
of .�gi /i�1, in the sense of [Sloane and Plouffe 1995, p. 20]. The nonnegativity
of the sequence .gi / restricts the class of sequences .hm/ that may be realized as
dimension sequences of graded connected Hopf algebras.

2.3. Eigenvalues of the antipode. Let H be a graded connected Hopf algebra
and S its antipode.

Applying Theorem 3 in the case nD�1 yields information about the antipode,
since SD‰�1. We obtain

�.SjHm
/.x/D .x� 1/emul.m/.xC 1/omul.m/; (21)

where

emul.m/ WD
X
k even

mul.k;m/ and omul.m/ WD
X
k odd

mul.k;m/:

In particular:

Corollary 5. The eigenvalues of the antipode are˙1.

Remark. Corollary 5 fails for general Hopf algebras. Let ! be a primitive cube
root of unity and consider Taft’s Hopf algebra T3.!/ [Taft 1971], with generators
fg; xg and relations fg3 D 1, x3 D 0, gx D ! xgg. The coproduct and antipode
are determined by �.g/ D g ˝ g, S.g/ D g�1, �.x/ D 1 ˝ x C x ˝ g, and
S.x/D�xg�1. Here x2C! x2g is an eigenvector of S with eigenvalue !.

From Corollary 5 we deduce:

Corollary 6. The antipode is diagonalizable if and only if it is an involution.

Remark. The antipode of a graded connected Hopf algebra need not be an in-
volution (or equivalently, diagonalizable). For example, consider the Malvenuto–
Reutenauer Hopf algebra of permutations (Example 8). Its antipode is of infinite
order already on the homogeneous component of degree 3; see Remark 5.6 in
[Aguiar and Sottile 2005b].
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2.4. Composition powers of the antipode. Consider S2, the composition of the
antipode S with itself. Corollary 5 implies that 1 is the only eigenvalue of S2, so
S2�id is nilpotent on each homogeneous component. We have a more precise result.

Proposition 7. The map .S2� id/jHm
is nilpotent of order at most m.

Proof. Since gr.H/ is commutative, S2 D id on gr.H/. Hence .S2� id/.H .m//�

H .m�1/ for all m � 1. On H .1/ D k ˚ P.H/, we have S D ˙id, and then
S2 � id D 0. By induction, .S2 � id/m.H .m// D 0 for all m � 1. The statement
follows by recalling that Hm �H .m/. �

Remark. Let dm be the order of nilpotency of .S2� id/jHm
, so that 1� dm �m

by Proposition 7. The lower bound dm D 1 is attained by any involutory Hopf
algebra for all m. Computations suggest that the Hopf algebra of signed permuta-
tions [Bonnafé and Hohlweg 2006] attains the upper bound dm Dm for all m� 1.

Example 8. Consider the Hopf algebra H D SSym introduced by Malvenuto
and Reutenauer [1995]. We claim that dm � m� 1 for m � 2 (and d1 D 1). Let
idm D 123 � � �m be the identity permutation, in one-line notation, and let !m be
the longest permutation of m elements, !m D m � � � 321. Let F and M denote
the fundamental and monomial bases of H , in the notation of [Aguiar and Sottile
2005b]. It follows from Corollary 6.3 of the same paper that

Hm D .Hm\H
.m�1//˚Km;

where Km is the one-dimensional space spanned by F!m
DM!m

. The proof of
Proposition 7 shows that on Hm\H .m�1/ the order of nilpotency is at most m�1.
On the other hand, it is easy to see that

S.F!m
/D .�1/mFidm

and S.Fidm
/D .�1/mF!m

:

Therefore, S2 is the identity on Km. The claim follows.

We turn to higher composition powers of the antipode. Since H op is another
graded connected Hopf algebra, it possesses an antipode, and this is the inverse
of S by [Montgomery 1993, Lemma 1.5.11] or [Aguiar and Mahajan 2013, Propo-
sition 1.23]. In particular, S is invertible, and we may consider powers Sn for any
integer n.

Proposition 9. For any integer n,

�.SnjHm
/.x/D

�
�.idjHm

/.x/ if n is even,
�.SjHm

/.x/ if n is odd.
(22)

Proof. As in the proof of Theorem 3, we may assume that H is commutative. In
this case, S2 D id and hence Sn D id for even n and Sn D S for odd n. �
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3. The trace of the Adams operators

We study the trace of the Adams operators on H . The generating functions for
their sequences of traces admit closed expressions in terms of the inverse Euler
transform of the dimension sequence of H . The generating function for the trace
of the antipode is particularly remarkable.

3.1. Generating functions for the trace. We return to the situation of Theorem 3.
Thus, H is a graded connected Hopf algebra, and the integers mul.k;m/ are deter-
mined by its dimension sequence through (15), (16), and (20).

As an immediate consequence of this theorem, we have:

Corollary 10. For all scalars n and nonnegative integers m,

trace.‰njHm
/D

mX
kD0

nk mul.k;m/: (23)

In particular,

trace.SjHm
/D

mX
kD0

.�1/k mul.k;m/D emul.m/� omul.m/: (24)

We turn to generating functions for the trace. First we consider the n-th Adams
operator. Recall that the sequence .gi / is determined by the dimension sequence
of H through (20).

Corollary 11. For all scalars n,X
m�0

trace.‰njHm
/ tm D

Y
i�1

.1�nt i /�gi : (25)

Proof. This follows at once from (18) and (23). �

For each scalar n, let

hn.t/ WD
X
m�0

trace.‰njHm
/ tm

denote the generating function for the sequence of traces of ‰n. As a consequence
of Corollary 11, these functions satisfy certain interesting relations. In order to
state them, let

�k WD f! 2 C j !k D 1g

denote the group of complex k-th roots of unity.

Proposition 12. For each scalar n and positive integer k,

hnk .tk/D
Y
!2�k

h!n.t/: (26)
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In particular,
hn2.t2/D hn.t/ h�n.t/: (27)

Proof. We employ the factorization

1� tk D
Y
!2�k

.1�!t/:

Then, from (25), we have

hnk .tk/D
Y
i�1

.1�nktki /�gi D

Y
i�1

Y
!2�k

.1�!nt i /�gi D

Y
!2�k

h!n.t/: �

The generating function for the trace of the antipode takes a special form. Let

h.t/ WD 1C
X
m�1

hm t
m

denote the generating function for the dimension sequence of H .

Corollary 13.
X
m�0

trace.SjHm
/ tm D

h.t2/

h.t/
: .28/

Proof. Since ‰1 D id and ‰�1 D S, we have h.t/D h1.t/ andX
m�0

trace.SjHm
/ tm D h�1.t/:

Thus, (28) is the case nD 1 of (27). �

Remark. Corollary 13 shows that the sequence of antipode traces is determined by
the dimension sequence in a simple manner. The result also shows that, conversely,
the dimension sequence is determined by the sequence of antipode traces since the
relation (28) can be solved for h.t/.

Example 14. Suppose the dimension sequence ofH is given by hm WD rm, where r
is a fixed nonnegative integer. Then h.t/D 1=.1� rt/ and

h.t2/

h.t/
D
1� rt

1� rt2
D

X
n�0

rn t2n�
X
n�0

rnC1 t2nC1:

It follows from (28) that

trace.SjHm
/D

�
rm=2 if m is even,
�r.mC1/=2 if m is odd.

We have computed the trace of the antipode without knowing anything other than
the dimension sequence of H . A Hopf algebra with the given dimension sequence
is the free algebra on r primitive generators of degree 1; a direct computation of the
trace can then be carried out. We do this for the dual Hopf algebra in Example 23.
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We record the generating function for the trace of the composition powers of the
antipode.

Corollary 15. For any integer n,X
m�0

trace.SnjHm
/ tm D

�
h.t/ if n is even,
h.t2/=h.t/ if n is odd.

(29)

Proof. This follows from Proposition 9 and Corollary 13. �

3.2. The trace of the antipode versus the dimension sequence. We write

am WD trace.SjHm
/

for each nonnegative integer m. Let a.t/ be its generating function.
We analyze the behavior of the sequence .am/ in relation to the dimension

sequence .hm/.

Corollary 16. If the sequence .hm/ satisfies a linear recursion with constant coeffi-
cients, then so does .am/.

Proof. We employ [Stanley 2012, Theorem 4.1.1]. In this situation, the series h.t/
is rational, and hence so is a.t/ by (28). �

We turn to asymptotics. We assume there exists a meromorphic function h.z/
of a complex variable z, holomorphic on a neighborhood of 0, and such that its
Taylor expansion is the generating function h.t/. It then follows from Pringsheim’s
theorem [Flajolet and Sedgewick 2009, Theorem IV.6] that a dominant singularity
occurs at a positive real number R. Moreover, R � 1. Indeed, if R > 1, the
coefficients hm would approach 0 by the exponential growth formula [ibid., Theo-
rem IV.7], and this would force the integers hm to be 0 from a point on. (As we
remark at the end of Section 3.3, this can only happen if H is the one-dimensional
Hopf algebra, a triviality which we exclude from consideration.)

Corollary 17. Suppose thatR is the unique singularity of h.z/ in the disk jzj �R1=4.
Let 
 be the order of this singularity. Suppose further that h.z/ is nonzero in the
disk jzj �R1=2, and

h.�R1=2/¤˙h.R1=2/:

Then
am

hm
�
Rm=2

2


�
1

h.R1=2/
C .�1/m

1

h.�R1=2/

�
: (30)

Proof. The hypotheses guarantee that R is the unique dominant singularity for h.z/
and also that ˙R1=2 are the unique dominant singularities for a.z/D h.z2/=h.z/.
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We then have the standard approximations [Flajolet and Sedgewick 2009, §B.IV;
Wilf 2006, §5.2]

hm �
1

�.
/
m
�1R�mh�.R/

and

am �
2


�.
/
m
�1R�m=2h�.R/

�
1

h.R1=2/
C .�1/m

1

h.�R1=2/

�
;

where � is the gamma function and h�.R/D lim
z!R

.1� z=R/
 h.z/. The result
follows. �
Example 18. Suppose the dimension sequence is given by

h0 D h1 D h2 WD 1 and hm WD hm�1C hm�2 for all m� 3.

Thus, for m� 1, the hm are the Fibonacci numbers. In this case,

h.z/D
z2� 1

z2C z� 1
D .z2� 1/.zC�/�1.z� 1=�/�1;

where � D .1C
p
5/=2 is the golden ratio. The hypotheses of Corollary 17 are

satisfied with RD 1=� and 
 D 1. We obtain from (30) the approximation

am

hm
�

�
��m=2 if m is even,
��.�mC3/=2 if m is odd.

A Hopf algebra with this dimension sequence is discussed in Section 5.4, and the
sequence am is computed explicitly; see (52). The above may then be seen to follow
from the well-known approximation hm � �m=

p
5 for the Fibonacci numbers.

3.3. Schur indicators. A theme occurring in the recent Hopf algebra literature
involves a generalization of the Frobenius–Schur indicator function of a finite group.
If � WG! End.V / is a complex representation of G, then the (second) indicator is

�2.G; �/ WD
1

jGj

X
g2G

trace �.g2/:

The only values this invariant can take on irreducible representations are 0; 1;�1,
and this occurs precisely when V is a complex, real, or quaternionic representation,
respectively [Serre 1977, Proposition 39]. In [Linchenko and Montgomery 2000],
a reformulation of the definition was given in terms of convolution powers of the
integral1 in CG. This extended the notion of (higher) Schur-indicators to all finite-
dimensional Hopf algebras, and has since become a valuable tool for the study of
these algebras [Kashina et al. 2002; Ng and Schauenburg 2008; Sage and Vega

1This construct, present for finite-dimensional Hopf algebras, is unavailable for general graded
connected Hopf algebras.
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2012; Shimizu 2012]. In the case where � is the regular representation (and H is
semisimple), it is shown in [Kashina et al. 2006] that the higher Schur indicators can
be reformulated further, removing all mention of the integral: for all nonnegative
integers n,

�nC1.H/D trace.S ı‰n/:

See also [Kashina et al. 2012]. Our results lead to the following formula for these
invariants in the case where H is graded connected (instead of finite-dimensional).

Corollary 19. Let H be a graded connected Hopf algebra. Then, for all scalars n
and nonnegative integers m,

trace.S ı‰n/D
mX
kD0

.�n/k mul.k;m/;

where mul.k;m/ is as in Theorem 3.

Proof. As in the proof of Theorem 3, we may assume that H is commutative.
Then S is a morphism of algebras, and, using (2) and (3), we have

S ı‰n D S ı�.n�1/ ı�.n�1/ D �.n�1/ ıS˝n ı�.n�1/ D S�n D‰�n:

The result follows from (23). �

Remark. We mention in passing that the only Hopf algebra H that is at the same
time connected and finite-dimensional is the (unique) one-dimensional Hopf algebra.
Indeed, combining Lemma 1 with CMM and PBW (as in the proof of Theorem 3), we
haveH Š S.V / as vector spaces for some space V . But the only space V for which
the symmetric algebra is finite-dimensional is V D 0. Hence H Š k. The situation
is of course different over fields of positive characteristic or for .�1/-Hopf algebras.

4. The case of cofree graded connected Hopf algebras

We study the characteristic polynomial and the trace of the antipode of a graded
connected Hopf algebra that, as a graded coalgebra, is cofree. Since the former are
invariant under duality, the results apply as well to graded connected Hopf algebras
that are free as algebras. (We make no further mention of this point as we proceed.)

4.1. Cofreeness. A graded connected Hopf algebra H is cofree if, as a graded
coalgebra, it is isomorphic to a deconcatenation coalgebra T _.V / on a graded
vector space V . The underlying space of the latter is

T _.V / WD
M
k�0

V ˝k
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(the same as that of the tensor algebra T .V /). The coproduct on a k-fold tensor is

�.x1 � � � xk/D 1˝ .x1 � � � xk/C

k�1X
iD1

.x1 � � � xi /˝ .xiC1 � � � xk/C .x1 � � � xk/˝ 1:

For more details, see [Aguiar and Mahajan 2010, §2.6] or [Radford 2012, §4.5].
In this situation, we have

H .m/
Š

mM
kD0

V ˝k and P.H/Š V

as graded vector spaces.
The shuffle product of two tensors x1 � � � xi and xiC1 � � � xk is the following

element of T _.V /: X
�

x��1.1/ � � � x��1.k/;

where the sum is over all permutations � 2 Sk such that

�.1/ < � � �< �.i/ and �.i C 1/ < � � �< �.k/:

The shuffle product turns the deconcatenation coalgebra T _.V / into a commutative
graded connected Hopf algebra. The antipode acts on a tensor by reversing the
components:

S.x1x2 � � � xk/D .�1/
kxk � � � x2x1: (31)

Under the assumption of cofreeness, there exists a stronger version of Lemma 1.

Lemma 20. Let H be a graded connected Hopf algebra that is cofree as a graded
coalgebra. Then

grH Š T _.V /

as graded Hopf algebras, where V D P.H/.

This result appears in [Aguiar and Sottile 2005b, Proposition 1.5].

4.2. Palindromes and Lyndon words. A (weighted) alphabet is a set that is graded
by the positive integers and whose homogeneous components are finite. The
elements of degree n are called letters of weight n. A word is a sequence of letters
in the alphabet and a palindrome is a word that coincides with its reversal. The
length of a word is the number of letters in the word, and the weight of a word is
the sum of the weights of its letters.

Given an alphabet, let

pal.m/ and npal.m/
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denote the number of palindromes of weight m and the number of nonpalindromic
words of weight m. Also, let

epal.m/ and opal.m/

denote the number of palindromes of weight m of even and odd length, and let

pal.k;m/

denote the number of palindromes of length k and weight m.
Assume now that a cofree graded connected Hopf algebra H is given. Thus,

H Š T _.V / as graded coalgebras, with V D P.H/. Let

vn WD dimVn

denote the dimension of the space of homogeneous primitive elements of degree n.
Let hn and gn be as in Proposition 4, so .hn/ is the dimension sequence of H and
.gn/ is the dimension sequence of P. zH/. Since H Š T _.V / as graded vector
spaces, we have

1C
X
m�1

hmt
m
D

1

1�
P
n�1 vnt

n
: (32)

Together with (20), this yields

1�
X
n�1

vnt
n
D

Y
i�1

�
1� t i

�gi : (33)

In particular, the sequences .hn/, .gn/, and .vn/ determine each other.
Fix a homogeneous basis of V , and let it be our alphabet. Thus, there are vn

letters of weight n. Equation (32) then says that hm is the total number of words of
weight m. In particular,

npal.m/D hm� epal.m/� opal.m/:

Equation (33) says that gi is the number of Lyndon words of weight i in the given
alphabet. Then (16) says that mul.k;m/ counts the number of multisets of Lyndon
words of cardinality k and total weight m. Witt’s formula [Kang and Kim 1996,
Theorem 2.2] provides an explicit formula for .gn/ in terms of .vn/:

gn D
X
d jn

�.d/

d

X
�`n=d

.`.�/� 1/Š

�Š
v�; (34)

where �.d/ is the classical Möbius function, the inner sum is over all partitions
�D 1k12k2 � � � rkr of n=d , `.�/D k1C k2C � � �C kr , �ŠD k1Šk2Š � � � kr Š, and

v� WD v
k1

1 v
k2

2 � � � v
kr
r :
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(The special case of (34) in which all letters are of weight 1 appears in [Lothaire
1997, Corollary 5.3.5] and [Reutenauer 1993, Corollary 4.14].)

4.3. Characteristic polynomial and trace of the antipode in the cofree case. As
an alternative to (19) and (24), we have the following expressions for the character-
istic polynomial and the trace of the antipode of a cofree graded connected Hopf
algebra H .

Theorem 21. For H as above and any nonnegative integer m,

�.SjHm
/.x/D .xC 1/opal.m/.x� 1/epal.m/.x2� 1/npal.m/=2: (35)

Proof. By Lemma 20, grH is isomorphic to the Hopf algebra T _.V /, where the
latter is equipped with the shuffle product and the deconcatenation coproduct. As
in Theorem 3, it suffices to analyze the antipode S of this Hopf algebra.

Now, it follows from (31) that each palindrome yields an eigenvector of S. The
eigenvalue is ˙1 according to the parity of the length. This explains the first two
factors in (35). The nonpalindromic words pair up with their reversals and organize
in 2� 2 blocks of the form

˙

�
0 1

1 0

�
;

where the sign again depends on the parity of the length. This accounts for the
remaining factor. �

As an immediate consequence, we have:

Corollary 22. For H as above and any nonnegative integer m,

trace.SjHm
/D epal.m/� opal.m/D

mX
kD0

.�1/kpal.k;m/: (36)

Since there are no palindromes of even length and odd weight, (35) and (36) imply

�.SjHm
/.x/D .xC 1/pal.m/.x2� 1/npal.m/=2

and
trace.SjHm

/D�pal.m/

for all odd m.

Example 23. Let V be an r-dimensional vector space. We view it as a graded
vector space concentrated in degree 1 and consider the Hopf algebra T _.V /. Our
alphabet consists of r letters of weight 1, and the palindrome distribution is

pal.k;m/D

8<:
rk if mD 2k,
rkC1 if mD 2kC 1,
0 otherwise.
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It follows from (36) that

trace.SjHm
/D

�
rm=2 if m is even,
�r.mC1/=2 if m is odd.

We arrived at the same conclusion by different means in Example 14.

We return to the general discussion. From (24) and (36), we deduce

epal.m/� opal.m/D emul.m/� omul.m/; (37)

or equivalently,

mX
kD0

.�1/kpal.k;m/D

mX
kD0

.�1/k mul.k;m/: (38)

In general, the pairs .epal; opal/ and .emul; omul/, as well as the triangular arrays
pal and mul, are different.

Example 24. Consider again the Malvenuto–Reutenauer Hopf algebra SSym. We
compare the integers mul.k;m/ and pal.k;m/ for low values of k and m.

Now, SSym is cofree and the relevant alphabet is the set of permutations with no
global descents; see [Aguiar and Sottile 2005b, Corollary 6.3]. On the component
of degree mD 3, we have the following distribution of palindromes.

length (k) 1 2 3

permutations 123; 132; 213 231; 312 321

words on alphabet 123; 132; 213 12j1; 1j12 1j1j1

pal.k; 3/ 3 0 1

Beneath each permutation, we recorded its expression as words in the alphabet.
Counting those words that are palindromic we obtained the integers pal.k; 3/.

The integer vm is the number of permutations of m elements with no global
descents. The integers .gm/ are calculated from either (20) or (33). The first few
values are as follows.

m 1 2 3 4 5 6

vm 1 1 3 13 71 461

gm 1 1 4 17 92 572

The sequences .vm/ and .gm/ are A003319 and A112354 in [OEIS�2015]. Finally,
the integers mul.k;m/ are computed from (16). For mD 3, we find the following:

k 1 2 3

mul.k; 3/ 4 1 1
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k n m 1 2 3 4 5 6

1 1 1 4 17 92 572
2 1 1 5 21 119
3 1 1 5 22
4 1 1 5
5 1 1
6 1

k n m 1 2 3 4 5 6

1 1 1 3 13 71 461
2 1 0 1 0 3
3 1 1 4 14
4 1 0 2
5 1 1
6 1

Figure 1. The arrays mul.k;m/ (left) and pal.k;m/ (right) for SSym.

Beyond mD 3, the integers mul.k;m/ and pal.k;m/ differ more drastically; see
Figure 1. However, the alternating sum of the entries in each column is the same
for both arrays, as predicted by (38).

4.4. Generating functions. We continue to employ the notation of Section 4.2. Let

v.t/ WD
X
n�1

vnt
n

be the generating function for the dimension sequence of V .
We have the following generating functions for even and odd palindromes. The

functions are bivariate to account for length and weight.

Proposition 25. X
k;m�0

pal.2k;m/ sktm D
1

1� sv.t2/
; (39)

X
k;m�0

pal.2kC 1;m/ sktm D
v.t/

1� sv.t2/
: (40)

Proof. Consider a palindrome of even length 2k. Removing the first and last letters
(which are equal) yields a palindrome of length 2k � 2. The weights of the two
palindromes differ by twice the weight of this letter. Therefore,

pal.2k;m/D v1pal.2k� 2;m� 2/C v2pal.2k� 2;m� 4/C � � � :

This recursion leads at once to (39). A similar argument establishes (40). �

Corollary 26.
X
m�0

trace.SjHm
/ tm D

1� v.t/

1� v.t2/
: .41/

Proof. This follows by subtracting (40) from (39), letting s D 1, and using (36). �
Remark. Corollary 26 is a special case of Corollary 13, in view of (32). The above
may be regarded as a semicombinatorial proof of this result, which is possible under
the cofreeness assumption.
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5. Examples

We carry out explicit calculations for the Hopf algebra of symmetric functions and a
few related Hopf algebras, focusing on the trace of the antipode. They offer no diffi-
culty, as explicit formulas for the antipodes of these Hopf algebras are known. Our
purpose here is simply to illustrate some of the results from the preceding sections.

The paper [Aguiar et al. 2006] contains a concise description of each of the Hopf
algebras discussed in this section. Other references are given as we proceed.

5.1. Symmetric functions. Consider the Hopf algebra of symmetric functions
H D Sym. See [Macdonald 1995, Chapter I] for the results used below. On
the basis of Schur functions, the antipode acts by S.s�/D .�1/j�js�0 , where �0 is
the partition conjugate to �. Therefore,

trace.SjHm
/D .�1/mc.m/; (42)

where c.m/ is the number of self-conjugate partitions of m.
We turn to Corollary 10. For this Hopf algebra, gi D 1 for all i � 1. Hence�g

�

�
D 1 for all �, and mul.k;m/ D pk.m/, the number of partitions of m into k

parts. From (24) we deduce

.�1/mc.m/D

mX
kD0

.�1/kpk.m/: (43)

(Note that po.m/D 0 for m> 0.) The number of odd parts in a partition of m has
the same parity as m. Hence, the previous identity is equivalent to

c.m/D e.m/� o.m/; (44)

where e.m/ and o.m/ denote the number of partitions of m with an even number of
even parts and with an odd number of even parts. This identity appears in [Aigner
2007, Exercise 1.60] and [Stanley 2012, Chapter 1, Exercise 22(b)].

It is possible to obtain this result more directly as follows. Consider the power
sum basis of Sym. Since S.p�/D .�1/`.�/p�, we have

trace.SjHm
/D pe.m/�po.m/; (45)

where pe.m/ and po.m/ are the number of partitions of m of even length and of
odd length. Equating (42) and (45) gives (43) again.

We further illustrate Corollary 10 by deriving certain identities involving the
Littlewood–Richardson coefficients c ��;� . Recall that the latter are the structure
constants for both the product and coproduct on the Schur basis of Sym,

s� � s� D
X
�

c ��;� s� and �.s�/D
X
�;�

c ��;� s�˝ s� :
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Formula (23) (with nD˙2) yields the following identities, for all m� 1:X
�;�;�`m

.c ��;�/
2
D

mX
kD1

2k pk.m/ (46)

and X
�;�;�`m

c ��;�c
�
�0;�0 D

mX
kD1

.�1/m�k 2k pk.m/: (47)

Incidentally, the fact that the antipode preserves (co)products says that c ��;� D c
�0

�0;�0 .

5.2. Schur P-functions. A partition of an integer is strict if its parts are all distinct.
It is odd if each of its parts is odd.

Let � be a strict partition andP�2Sym the corresponding SchurP -function, as in
[Macdonald 1995, Section III.8]. LetH be the subspace of Sym spanned by the P�,
as � runs over all strict partitions. Then H is a Hopf subalgebra of Sym. We have

S.P�/D .�1/
j�jP�: (48)

Therefore,
trace.SjHm

/D .�1/mpd .m/;

where pd .m/ is the number of strict partitions of m.
It is known that H is the subalgebra of Sym generated by the odd power sums

p2iC1 for i � 0. Therefore,

trace.SjHm
/D .�1/mpo.m/; (49)

where po.m/ is the number of odd partitions of m. Equating (48) and (49) recovers
the classical fact that odd and strict partitions are equinumerous [Stanley 2012,
Proposition 1.8.5].

Regarding the quantities in Proposition 4, we have that gi D 1 if i is odd and 0
otherwise. It follows that

�g
�

�
D 1 when � is odd and

�g
�

�
D 0 otherwise. Therefore,

mul.k;m/ is the number of odd partitions of m of length k. In an odd partition, the
parities of m and k are the same. Thus, identity (24) simply counts odd partitions
according to their length.

5.3. Quasisymmetric functions. Let us turn to the Hopf algebra H D QSym of
quasisymmetric functions. Consider the fundamental and monomial quasisymmetric
functions, denoted by F˛ and M˛, respectively. As ˛ runs over the compositions
of m, both fF˛g and fM˛g constitute bases of Hm.

The antipode has the following descriptions:

S.F˛/D .�1/mF Q̨ 0 and S.M˛/D .�1/
`.˛/

X
ˇ�˛

M Q̌ ;
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where Q
 is the reversal of 
 , 
 0 is its conjugate (obtained by reflecting the ribbon
diagram of 
 across the main diagonal), and � is the refinement partial order on
compositions. Note that ˛ D Q̨ 0 if and only if ˛ is symmetric with respect to
reflection across the antidiagonal. There are precisely 2.m�1/=2 of these when m is
odd and zero when m is even. Calculating the trace on the fundamental basis we
thus obtain

trace.SjHm
/D

�
�2.m�1/=2 if m is odd,
0 otherwise.

(50)

The compositions ˛ that contribute to the trace on the monomial basis satisfy Q̨ � ˛.
Since reversal is an order-preserving involution, this happens if and only if Q̨ D ˛,
that is, when ˛ is palindromic. Let pal.m/ denote the number of palindromic
compositions of m. If m is even, exactly half of the palindromic compositions of m
have odd length; if m is odd, all of them do. We conclude that

trace.SjHm
/D

�
�pal.m/ if m is odd,
0 otherwise.

(51)

One may arrive at the same identity from (36).
Equating (50) and (51) we deduce that, for all odd m,

pal.m/D 2.m�1/=2:

It is easy to give a direct proof of this fact (and of pal.m/D 2bm=2c for all m� 0).
Since QSym is cofree, Theorem 21 applies. The space of primitive elements is

spanned by the monomials M.n/ for n� 1. One finds that

pal.k;m/D

(�
dm=2e�1
dk=2e�1

�
if m is even, or if m is odd and k is odd;

0 if m is odd and k is even:

Formula (36) boils down in this case to the basic identities 2h D
Ph
jD0

�
h
j

�
and

0h D
Ph
jD0.�1/

j
�
h
j

�
.

Regarding the quantities in Proposition 4, we have by (33) that gi is the number
of Lyndon words of weight i in an alphabet with one letter of weight n for each n�1.
This number is given by g1 D 1 and

gi D
1

i

X
d ji

�.d/ 2i=d

for i � 2 [Kang and Kim 1996, Proposition 2.3].

5.4. Peak quasisymmetric functions. Let H be the Hopf algebra of peak qua-
sisymmetric functions [Stembridge 1997]. It is a Hopf subalgebra of QSym, with a
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basis �˛ indexed by compositions ˛ into odd parts (odd compositions). The number
of odd compositions of m is the Fibonacci number fm (with f0 D f1 D f2 D 1).

A formula for the antipode of H is given in [Billera et al. 2003]:

S.�˛/D .�1/m� Q̨ :

It follows that

trace.SjHm
/D

�
fm=2 if m is even,
�fdm=2eC1 if m is odd

(52)

(as palindromic odd compositions of m arise from odd compositions of m=2). One
may arrive at the same identity from (36).

As for QSym, H is cofree. There is one primitive element of degree n for each
odd n. One finds that

pal.k;m/D

8̂̂̂<̂
ˆ̂:
�.mCk/=4�1
.m�k/=4

�
if m is even and 4 j .m� k/,�

b.mCk�1/=4c
b.m�kC1/=4c

�
if m and k are odd,

0 otherwise.

Information about these numbers can be found in [OEIS � 2015, A046854 and
A168561].

Formula (36) yields the following basic identities:

fh D

bh=2cX
jD0

�h�j�1
j

�
for h� 0 and fh D

h�2X
jD0

 
b
hCj
2
c� 1

b
h�j
2
c� 1

!
for h� 2.

Appendix A. Hopf monoids in species

The results from the earlier sections admit variants for Hopf monoids in species.
We list the main ones in this section, along with indications for the proofs, which
are similar to the ones for graded connected Hopf algebras.

This section assumes familiarity with the notion of Hopf monoid in species, as
developed in [Aguiar and Mahajan 2010; 2013] and with the notation employed
there. For the most part, the latter (shorter) reference suffices. The antipode is
discussed in [Aguiar and Mahajan 2013, §5] and the Adams operators (convolution
powers of the identity) appear in [loc. cit., §14.4].

All Hopf monoids H are assumed to be connected and finite-dimensional. That
is, H Œ∅� is one-dimensional, and for each finite set I , the vector space H ŒI � is
finite-dimensional.

A.1. Characteristic polynomial. The starting point is the following result, whose
proof is similar to that of [Aguiar and Sottile 2005a, Proposition 1.6].
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Lemma 27. The Hopf monoid gr H (associated to the coradical filtration of H ) is
commutative.

Let hm WD dim H Œm�, and let

h.t/ WD 1C
X
m�1

hm
tm

mŠ

denote the exponential generating function for the dimension sequence of H .

Theorem 28. For every scalar n and finite set I , the characteristic polynomial of
the restriction ‰n

ˇ̌
H ŒI �

of the n-th Adams operator is of the form

�.‰njH ŒI �/.x/D

mY
kD0

.x�nk/xmul.k;m/; (53)

where mD jI j. The nonnegative integers xmul.k;m/ are independent of n and are
determined by the dimension sequence of H , as follows:X

k;m�0

xmul.k;m/ sk
tm

mŠ
D h.t/s: (54)

Proof. As in the proof of Theorem 3, a combination of Lemma 27 with the PBW
and CMM theorems (for Hopf monoids in species [Aguiar and Mahajan 2013, §15])
shows that we can assume that

H D S.P/

for a certain positive species P . Here, S.P/ is the free commutative monoid on P

with its canonical Hopf monoid structure [loc. cit., §7].
Let p.t/ be the exponential generating function for the dimension sequence of P .

Since S.P/DE ıP , where E is the exponential species, we have

h.t/D exp.p.t// and h.t/s D exp.sp.t//:

On the other hand, a direct calculation of the Adams operators on S.P/ shows
that the characteristic polynomial is as in (53) and that the integers xmul.k;m/ are
determined by X

k;m�0

xmul.k;m/ sk
tm

mŠ
D exp.sp.t//:

The result follows. �
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A.2. Trace of the antipode. Let

a.t/ WD 1C
X
m�1

trace.SjH Œm�/
tm

mŠ

denote the exponential generating function for the trace of the antipode of a Hopf
monoid H . This is none other than the reciprocal of the exponential generating
function for the dimension sequence.

Corollary 29. a.t/D
1

h.t/
: .55/

Proof. This follows from Theorem 28, taking nD�1 in (53) and sD�1 in (54). �

Example 30. Let H D † be the Hopf monoid of set compositions [Aguiar and
Mahajan 2013, §11.1]. We have

h.t/D
1

2� exp t
:

Therefore, a.t/D 2� exp t D 1�
P
m�1 t

m=mŠ, and we obtain

trace.SjH Œm�/D�1 (56)

for all m� 1. This result can also be obtained by a direct calculation, starting from
either of the expressions for the antipode of † given in [loc. cit., Proposition 59 or
Theorem 60].

For an extension of this result, assume that there is a positive species P such that

H ŠL ıP

as species, where L is the species of linear orders. Not every Hopf monoid H is of
this form, but this is the case if H is free or cofree [loc. cit., §6]. In this situation,
we have

trace.SjH Œm�/D� dim P Œm�: (57)

Note that if P DE , then H Š†, and (57) recovers (56).

Example 31. Let H D… be the Hopf monoid of set partitions [Aguiar and Mahajan
2013, §9.3]. We have

h.t/D exp.exp t � 1/:

Therefore,

a.t/D exp.1�exp t /D 1� tC
t3

3Š
C
t4

4Š
�2

t5

5Š
�9

t6

6Š
�9

t7

7Š
C50

t8

8Š
C267

t9

9Š
C� � � :

It follows that
trace.SjH Œm�/D…e.m/�…o.m/; (58)
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where …e.m/ and …o.m/ denote the number of set partitions of Œm� into an even
and an odd number of blocks, respectively. This result can also be obtained by
a direct calculation, starting from either of the expressions for the antipode of …

given in [loc. cit., Theorem 33 or Proposition 35].

Remark. The Hopf monoid … is in many ways parallel to the Hopf algebra Sym
of symmetric functions (Section 5.1). A consequence of the preceding calculation,
however, is that … does not admit a linear basis that behaves under the antipode
in the same manner as the Schur basis of Sym. More precisely, there is no basis
fs� j � ` Œm�g of the space …Œm� with the property that

S.s�/D .�1/m s� 0

for some map � ! � 0 on the set of set partitions of Œm�. Indeed, if this were the
case, the sequence of antipode traces would alternate in sign.

For an extension of the calculation in Example 31, let H be a Hopf monoid
and P a positive species such that

H ŠE ıP

as species. (The first part of the proof of Theorem 28 shows that every connected
Hopf monoid is of this form.) In this situation, an H -structure on a finite set I is an
assembly of P-structures, in the sense of [Bergeron et al. 1998, §1.4]. Conversely,
one may regard a P-structure as a connected H -structure. We then have

trace.SjH Œm�/D he.m/� ho.m/; (59)

where he.m/ and ho.m/ denote the number of H -structures with an even and odd
number of connected components, respectively. If P DE , then (59) recovers (58).

The combination of (55) and (59) provide a semicombinatorial description for
the reciprocal of any power series arising as the exponential generating function for
the dimension sequence of a connected Hopf monoid in species.

Appendix B. q-Hopf algebras

Fix a scalar q. A q-Hopf algebra is a Hopf monoid in the lax braided monoidal
category of graded vector spaces, with lax braiding V ˝W !W ˝V given by

x˝y 7! qmn y˝ x;

where x 2 V and y 2W are homogeneous elements of degrees m and n. If q D 1,
a q-Hopf algebra is just a graded Hopf algebra as in Section 1.6. For information
on q-Hopf algebras, see [Aguiar and Mahajan 2010, §2.3].

In this section we discuss extensions of some of the main results from earlier
sections to the context of connected q-Hopf algebras.
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B.1. Cofreeness for connected q-Hopf algebras. Let V be a graded vector space.
When x 2 Vn, we write jxj D n. The deconcatenation coalgebra on V (Section 4.1),
endowed with the q-shuffle product, is a connected q-Hopf algebra. The q-shuffle
product of two homogeneous tensors x1 � � � xi and xiC1 � � � xk is the following
element of T _.V /: X

�

qinvx.�/ x��1.1/ � � � x��1.k/;

where the sum is over all permutations � 2 Sk such that

�.1/ < � � �< �.i/; �.i C 1/ < � � �< �.k/;

and

invx.�/ WD
X
a<b

�.a/>�.b/

jxajjxbj:

We denote the resulting q-Hopf algebra by T _q .V /. The antipode is given by

S.x1x2 � � � xk/D .�1/
kqinvx.k/ xk � � � x2x1; (60)

where

invx.k/ WD
X
a<b

jxajjxbj:

The following is an extension of Lemma 20. The proof of the latter result given
in [Aguiar and Sottile 2005b, Propositions 1.4 and 1.5] yields its extension as well.

Lemma 32. Let H be a connected q-Hopf algebra that is cofree as a graded
coalgebra. Then

grH Š T _q .V /

as q-Hopf algebras, where V D P.H/.

B.2. Characteristic polynomial and trace of the antipode. Let H be a connected
q-Hopf algebra that is cofree as a graded coalgebra. We lay the groundwork for a
description of the characteristic polynomial of such a Hopf algebra. Let a weighted
alphabet be given, with vn letters of weight n, as in Section 4.2. The multiweight of
a word is the sequence of letter weights. If the word has weight m, its multiweight
is a composition of m, and we write ˛ �m.

Given a composition ˛, let

pal.˛/ and npal.˛/
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denote the number of palindromes and nonpalindromes, respectively, of multi-
weight ˛. If ˛ D .a1; : : : ; ak/, then

pal.˛/D

(Qdk=2e
iD1 vai

if ˛ D Q̨ ,

0 otherwise,
and npal.˛/D

� kY
iD1

vai

�
� pal.˛/:

(Recall that Q̨ D .ak; : : : ; a1/ denotes the reversal of ˛.) Let `.˛/ denote the
length k of ˛, and let

inv.˛/ WD
X

1�i<j�k

aiaj :

Let H be as above. Fix a homogeneous basis of V D P.H/ and take it as our
alphabet. Thus, vn D dimVn.

Theorem 33. For each nonnegative integer m, the characteristic polynomial of the
antipode is

�.SjHm
/.x/D

Y
˛�m

�
x� .�1/`.˛/qinv.˛/

�pal.˛/
.x2� q2 inv.˛//npal.˛/=2: (61)

Proof. Lemma 32 allows us to assume that H D T _q .V /. The result follows
from (60), as in the proof of Theorem 21. �

In particular, the eigenvalues of the antipode of such a q-Hopf algebra are positive
or negative powers of q. We record the resulting expression for the trace.

Corollary 34. trace.SjHm
/D

X
˛�m

.�1/`.˛/pal.˛/ qinv.˛/: .62/

We recover (35) and (36) as the case q D 1 of (61) and (62).

Example 35. Let V be an r-dimensional vector space. View it as a graded vector
space concentrated in degree 1 and consider the q-Hopf algebra T _q .V /. Then

pal.˛/D

�
rdm=2e if ˛ D .1m/,
0 otherwise.

Therefore,
trace.SjHm

/D .�1/mrdm=2eq.
m
2/:

This generalizes the conclusion of Example 14.

B.3. Generating functions. We continue to assume that H is a connected q-Hopf
algebra that is cofree as a graded coalgebra, and V D P.H/. We also assume
that q ¤ 0.

Let

vq.t/ WD
X
n�1

vn
tn

q.
n
2/
:
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All generating functions in this section will be of this form.
For each pair of nonnegative integers k and m, let

palq.k;m/ WD
X
˛�m
`.˛/Dk

pal.˛/ qinv.˛/:

Then (62) may be rewritten as

trace.SjHm
/D

mX
kD0

.�1/kpalq.k;m/: (63)

We have the following q-generating functions for even and odd palindromes,
generalizing Proposition 25.

Proposition 36. X
k;m�0

palq.2k;m/ s
k tm

q.
m
2/
D

1

1� svq2.t2/
; (64)

X
k;m�0

palq.2kC 1;m/ s
k tm

q.
m
2/
D

vq.t/

1� svq2.t2/
: (65)

Proof. Consider a palindrome of even length 2k and weightm>0. Its multiweight ˛
is a palindromic composition of m, necessarily of the form

˛ D .a; ˇ; a/;

where a is a positive integer and ˇ is a palindromic composition ofm�2a. We have

inv.˛/D inv.ˇ/C a2C 2a.m� 2a/ and pal.˛/D va pal.ˇ/:

The former is equivalent to

inv.˛/�
�m
2

�
D inv.ˇ/�

�m�2a
2

�
� 2

�a
2

�
:

Therefore,

palq.2k;m/

q.
m
2/

D

X
˛�m
`.˛/Dk

pal.˛/ qinv.˛/�.
m
2/

D

X
a�1

X
ˇ �m�2a
`.ˇ/D2k�2

va pal.ˇ/ q
inv.ˇ/�.m�2a

2 /�2 .a
2/

D

X
a�1

va

q2 .
a
2/

palq.2k� 2;m� 2a/

q.
m�2a

2 /
:
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This recursion leads to (64). A similar argument establishes (65). �

We arrive at a generalization of Corollary 26:

Corollary 37.
X
m�0

trace.SjHm
/
tm

q.
m
2/
D

1� vq.t/

1� vq2.t2/
: .66/

Proof. This follows by subtracting (65) from (64), letting s D 1, and using (63). �

B.4. q-deformations. The results in the Sections B.2 and B.3 apply only under the
assumption of cofreeness. For q-Hopf algebras, this hypothesis is less restrictive
than it may seem, as we now argue.

Suppose our q-Hopf algebra is obtained by deforming the product of an ordinary
Hopf algebra and leaving the unit and the coalgebra structure unchanged. Thus,
we have a family of products �q on a coalgebra H , turning it into a connected
q-Hopf algebra for each q, which we denote byH.q/. Assume also that �q depends
polynomially on q. An example is T _q .V /, which is a deformation of T _.V /. More
generally, the q-Hopf algebras constructed from Hopf monoids in species by means
of the functor K_V;q , as in [Aguiar and Mahajan 2010, §19.7], are all of this form.

In this situation, we may consider the 0-Hopf algebraH.0/. A result of Loday and
Ronco [2006, Theorem 2.6] (see also [Aguiar and Mahajan 2010, Theorem 2.13])
guarantees that H.0/ is cofree as a graded coalgebra. Since the coproduct has not
been deformed, we have that our q-Hopf algebra H.q/ is cofree for all q.

In particular, the preceding results apply to such Hopf algebra deformations. By
duality, they also apply in situations where the coproduct has been polynomially
deformed while the rest of the structure has been kept.

B.5. .�1/-Hopf algebras. The results of Section 2 relied on the PBW and CMM
theorems for graded connected Hopf algebras. While these results are not available
for general q-bialgebras, they are for q D˙1. In particular, the eigenvalues of the
antipode of a .�1/-Hopf algebra are still ˙1, and the characteristic polynomials
of the Adams operators take the form (19). (The multiplicities mul.k;m/ are no
longer given by (16).)
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