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Let Dr
m,n and Pr

m,n denote the subschemes of Pmn−1 given by the r × r determi-
nants (respectively the r×r permanents) of an m×n matrix of indeterminates. In
this paper, we study the geometry of the Fano schemes Fk(Dr

m,n) and Fk(Pr
m,n)

parametrizing the k-dimensional planes in Pmn−1 lying on Dr
m,n and Pr

m,n , respec-
tively. We prove results characterizing which of these Fano schemes are smooth,
irreducible, and connected; and we give examples showing that they need not
be reduced. We show that F1(Dn

n,n) always has the expected dimension, and we
describe its components exactly. Finally, we give a detailed study of the Fano
schemes of k-planes on the 3× 3 determinantal and permanental hypersurfaces.
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1. Introduction

Fix an algebraically closed field K. For numbers r , m, n with 1< r ≤ m ≤ n, let
Dr

m,n and Pr
m,n denote the subschemes of Pmn−1

K defined by the r × r determinants
and, respectively, the r × r permanents of an m× n matrix




x1,1 · · · x1,n
...

. . .
...

xm,1 · · · xm,n



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filled with mn independent forms xi, j . Whenever we are dealing with Pr
m,n , we

will make the standard assumption that char K 6= 2. In this article, we study the
Fano schemes Fk(Dr

m,n) and Fk(Pr
m,n). These are subschemes of the Grassmannian

Gr(k+1,mn) parametrizing those k-dimensional planes in Pmn−1
K that are contained

in the schemes Dr
m,n and Pr

m,n , respectively.
We have three main reasons for studying these Fano schemes. First, we would

like to understand general Hilbert schemes better. In the case of classical Hilbert
schemes — those parametrizing subschemes of Pn — well-understood examples are
scarce, but we do know a number of general results; for example, classical Hilbert
schemes are always connected [Hartshorne 1966]. In the case of general Hilbert
schemes — those parametrizing subschemes of a fixed closed subscheme X ⊂ Pn

that have some fixed Hilbert polynomial — even less is known. Our Fano schemes
Fk(Dr

m,n) and Fk(Pr
m,n) provide an interesting family of Hilbert schemes whose

study is tractable but whose geometry is still very rich.
Our second reason for studying Fk(Dr

m,n) and Fk(Pr
m,n) comes from geometric

complexity theory. It is well known that permanents and determinants behave
completely differently from the perspective of complexity theory. Indeed, com-
puting the permanent of a square matrix is #P-hard [Valiant 1979], while the
determinant is computable in polynomial time. In fact, one of the central con-
jectures in complexity theory, due to Valiant [1979], posits that the permanent
of an n × n matrix cannot be computed by affine linear substitution from the
determinant of square matrix whose size is polynomial in n. Recently, Mulmuley
and Sohoni developed an interesting representation-theoretic approach to this con-
jecture which is being pursued by a number of authors; see, e.g., [Bürgisser et al.
2011] and the references there. This new approach suggests that it is worthwhile
to revisit the determinant and permanent from a geometric perspective. More
specifically, linear spaces lying in the determinantal and permanental hypersurfaces
in Pn2−1 play a particularly important role [Landsberg 2013, §5]. Indeed, the
spaces Fk(Dr

m,n) and Fk(Pr
m,n) do exhibit a number of interesting differences, as

we will see. (Actually, we began our study with the case r = m = n, which
is the most interesting case for complexity theorists. We then realized that we
could extend our techniques to Dr

m,n and Pr
m,n , and that their Fano schemes have

some interesting geometric features that cannot be seen just in the hypersurface
case.)

Third, we are interested in contributing to the study of permanental ideals, i.e.,
the ideals defined by the r×r permanents of an m×n matrix. These ideals are much
less well studied and behave very differently than determinantal ideals. For example,
they can have many primary components, including embedded components, and in
general their primary decompositions are not known, with a few nice exceptions,
e.g., [Kirkup 2008; Laubenbacher and Swanson 2000]. In our paper, we are able to
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get new information about the linear spaces in these permanental schemes without
computing their primary decompositions at all.

We next summarize the main results in this paper, starting with Dr
m,n in Section 1A

and turning to Pr
m,n in Section 1B.

1A. The Fano scheme Fk(Dr
m,n). First, let us define two quantities which appear

in our main theorems. Fix r , m, and n and, for 0≤ s ≤ r − 1, let

κ(s)= mn− (m− s)(s+ n− r + 1)− 1, (1)

and δ(s)= (s+ 1+ n− r)(r − s− 1)+ s(m− s). (2)

The interpretation of κ(s) is that it is the dimension of the linear space in Pmn−1 of
maps Kn→Km sending a fixed (s+n−r+1)-dimensional subspace V of Kn into a
fixed s-dimensional subspace W of Km . So, for example, κ(s)+1 is the dimension
of the space of matrices with a zero block as shown:




s+1+n−r r−s−1
0 0 0 0 0

m−s 0 0 0 0 0
0 0 0 0 0

s



. (3)

These linear spaces were studied first in [Eisenbud and Harris 1988] and are very
important to our analysis; see Definition 2.1. Next, δ(s) is simply the dimension of
the product of Grassmannians Gr(s + n− r + 1, n)×Gr(s,m) that parametrizes
our choices of V and W .

Our first theorem on Fano schemes of determinants is a natural generalization of
[Eisenbud and Harris 1988, Corollary 2.2] and gives the complete picture in the
case k = 1 of the Fano scheme of lines.

Theorem 1.1. The Fano scheme F1(Dr
m,n) has exactly r irreducible components,

of dimensions
δ(s)+ 2(κ(s)− 1) for 0≤ s ≤ r − 1.

In particular, if m = n, then all irreducible components of F1(Dr
n,n) have dimension

(n − r)(r − 2) + 2nr − n − 5 If r > 2, then all components intersect pairwise.
Furthermore, if m = n = r , then F1(Dn

n,n) has the expected dimension and is a
reduced local complete intersection.

We prove this theorem in Section 6. We also explicitly calculate the degree of
F1(Dn

n,n) as a subscheme of Gr(2, n2) in its Plücker embedding for n up to 6; see
Proposition 6.3.
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n 2 3 4 5 6 7 8 9 10

nonempty⇐⇒ k ≤ 1 5 11 19 29 41 55 71 89
singular⇐⇒ k ≤ – 3 8 15 24 35 48 63 80

connected⇐⇒ k ≤ – 3 8 13 21 29 40 51 65
or k = 24 35 46–48 57, 60–63 72, 73, 76–80

Table 1. Properties of the Fano scheme Fk(Dn
n,n) for n ≤ 10.

For higher values of k, we do not have a complete characterization of Fk(Dr
m,n),

but we can still say a lot about these schemes. The first thing we should note is that
the Fano scheme Fk(Dr

m,n) is nonempty if and only if k < (r − 1)n; this follows
from a result of Dieudonné [1949] (see also Section 2 for a quick proof). For these
values of k, we can say exactly which of the schemes Fk(Dr

m,n) are smooth and
irreducible.

Theorem 1.2. Let 1≤ k < (r − 1)n.

(a) The Fano scheme Fk(Dr
m,n) is smooth if and only if k > (r − 2)n.

(b) Fk(Dr
m,n) is irreducible if and only if m 6= n and k > (r − 2)n+m− r + 1.

See Section 5A for the proof.
Our next main result says exactly when Fk(Dm

m,n) is connected.

Theorem 1.3. Suppose that 1 ≤ k < (m− 1)n. Then Fk(Dm
m,n) is disconnected if

and only if either
m2− 2m < k ≤ κ(0)

or there exists an integer s with 0< s < m− 1 such that

κ(s)−min{m− s− 1, n−m+ s}< k ≤ κ(s).
See Section 5A for the proof. Table 1 illustrates the results of Theorems 1.2

and 1.3 for Fk(Dn
n,n) for n ≤ 10.

Theorem 1.3 is very surprising. It says that connectivity of Fk(Dm
m,n) can actually

be highly nonmonotonic as k varies from 1 to (m − 1)n − 1, since each of the
m− 2 values of s above cuts out an interval of values of k for which Fk(Dm

m,n) is
disconnected. The last row of Table 1 gives examples of this behavior. That said,
Fk(Dm

m,n) is always connected if k is sufficiently small, as we show in Corollary 5.5.
As for connectedness of Fk(Dr

m,n) when r < m, we can still give some neces-
sary conditions and sufficient conditions, although they are not strong enough to
completely characterize when Fk(Dr

m,n) is connected. See Theorem 5.3.
In the next section, we will define a family of special irreducible components

Ck(s) of Fk(Dr
m,n) that we call compression components. These components are

very important to our analysis of Fk(Dr
m,n). Indeed, we will see that if k = 1 or
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if k is sufficiently large then Fk(Dr
m,n) consists only of compression components

(Theorem 1.1 and Corollary 5.1, respectively).
For general k, however, other components may appear, as detected in [Eisenbud

and Harris 1988, Theorem 1.1]. For example, we will see in Section 7 that a
noncompression component already appears in F2(D3

3,3): it is the component C∗ of
2-planes of matrices (GL3×GL3)-equivalent to the space of 3× 3 antisymmetric
matrices. On the other hand, the compression components still have the desirable
property that every component of Fk(Dr

m,n) must meet one of them (Remark 2.5).
This fact makes it very useful to study local neighborhoods of points on these
components.

1B. The Fano scheme Fk(P r
m,n). The study of Fk(Pr

m,n) is slightly more delicate
due to the lack of GLm ×GLn symmetry. Nonetheless, we can prove several results
on Fk(Pr

m,n) that have a similar flavor to those for Fk(Dr
m,n). (When we discuss

Pr
m,n , we will always assume that char(K) 6= 2, since otherwise Pr

m,n = Dr
m,n and

our above results apply.)
For example, just as in the determinantal case, Fk(Pr

m,n) is nonempty if and only
if k < (r − 1)n (Proposition 2.6). Furthermore, in that range, we can completely
characterize when Fk(Pr

m,n) is smooth:

Theorem 1.4. Let 1 ≤ k < (r − 1)n. The Fano scheme Fk(Pr
m,n) is smooth if and

only if n = 2 or k > (r − 2)n+ 1.

However, if Fk(Pr
m,n) is nonempty, it is never irreducible, as we prove in

Proposition 4.6. See Table 2 for a summary of our results applied to the case
of the Pn

n,n for n ≤ 9.
We can also give necessary conditions and sufficient conditions for the connect-

edness of Fk(Pr
m,n); see Theorem 5.7. In particular, we show that if k is sufficiently

small, then Fk(Pr
m,n) is connected (Corollary 5.8). However, we do not know how

to completely characterize when Fk(Pr
m,n) is connected, even in the case r = m.

As in the case of the determinant, there is a family of compression subschemes
Ck(σ, τ ) of Fk(Pr

m,n), defined in Section 2, that again play an important role in our
analysis. For example, any irreducible component of Fk(Pr

m,n) must intersect a
subscheme of the form Ck(σ, τ ); see Remark 2.5. We prove in Proposition 4.4 that
these subschemes are (with a few necessary exceptions) actually components; and
we show (Corollary 5.6) that if k is large enough then Fk(Pr

m,n) is simply a disjoint
union of compression components.

In general, however, Fk(Pr
m,n) has more components than just those of the

form Ck(σ, τ ). In Section 7B, we consider in depth the example of Fk(P3
3,3) for

various values of k. In particular, we give a complete description of F4(P3
3,3): it

consists of nine copies of P1 × P1, six of P5, 18 Hirzebruch surfaces F1, and
36 embedded fat points, arranged into a total of three connected components;
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n 2 3 4 5 6 7 8 9

nonempty⇐⇒ k ≤ 1 5 11 19 29 41 55 71
singular⇐⇒ k ≤ – 4 9 16 25 36 49 64
connected if k ≤ – 3 8 13 21 29 40 51

or k = 24 34–35 46–48 57, 60–63
disconnected if k = 1 4, 5 10, 11 17–19 26–29 37–41 42, 43, 53–56,

45, 50–55 59, 65–71

Table 2. Properties of the Fano scheme Fk(Pn
n,n) for n ≤ 9.

see Proposition 7.4. In particular, we’ll see that F4(P3
3,3) has components not

of the form C4(σ, τ ), and that this Fano scheme can have embedded primary
components.

1C. Related work and organization. Let us now mention some related research.
Fano schemes have been studied in a variety of contexts. The first modern treatment
was given in [Altman and Kleiman 1977], where it was proven that the Fano scheme
of lines on a smooth cubic hypersurface of dimension at least three is smooth and
connected. Sufficient criteria for smoothness and connectedness of Fano schemes of
lines on hypersurfaces were given in [Barth and van de Ven 1978], and generalized
to higher-dimensional linear spaces in [Langer 1997]. While Fano schemes for
generic hypersurfaces X always have dimension equal to the so-called expected
dimension, it was proven in [Harris et al. 1998] that this is also true for all smooth
hypersurfaces of sufficiently low degree. General properties of Fano schemes of
linear spaces on complete intersections have been studied in [Debarre and Manivel
1998].

In the case r =m=n, Dn
n,n and Pn

n,n are both irreducible hypersurfaces. However,
the above-mentioned results do not apply to these hypersurfaces, since they are not
general, and their degrees are not sufficiently low.

There has also been considerable work classifying the (GLm ×GLn)-equivalence
classes of linear spaces of nonfull rank m× n matrices, i.e., the GLm ×GLn orbits
in the Fano schemes Fk(Dr

m,n). Such a classification exists for k large relative to
m, n, and r [Beasley 1987; de Seguins Pazzis 2013], and for r ≤ 4 [Atkinson 1983;
Eisenbud and Harris 1988]. These classifications only apply to a limited range
of k, m, n, and r , however, and do not fully describe the geometry of Fk(Dr

m,n).
See also, e.g., [Draisma 2006] for constructions of certain maximal linear spaces
of singular matrices. Linear spaces of skew-symmetric matrices have also been
studied; see, e.g., [Manivel and Mezzetti 2005], where 2-planes of 6× 6 rank four
skew-symmetric matrices have been classified. We do not know of any previous
work studying Fk(Pr

m,n).
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We use two main tools to study Fk(Dr
m,n) and Fk(Pr

m,n). First, there are natural
torus actions on both of these Fano schemes; we are able to get a lot of geometric
information by studying the local structure of these Fano schemes at torus fixed
points. Torus actions and fixed points are discussed in Section 2; some of our local
computations were carried out explicitly using the Macaulay2 package [Ilten 2012]
in Section 7. Our second main tool consists of using deformation theory to calculate
tangent space dimensions at select points of the Fano schemes. We carry out these
calculations in Section 3.

In Section 4, we study compression spaces in more detail. We put a lot of pieces
together in Section 5 to discuss irreducibility, smoothness, and connectedness, in
particular completing the proofs of Theorems 1.2, 1.3, and 1.4.

Section 6 is concerned with the Fano scheme of lines; we prove Theorem 1.1 and
compute the degrees of F1(Dn

n,n) for n ≤ 6. In Section 7, we discuss the explicit
examples of Fk(D3

3,3) and Fk(P3
3,3). In particular, we show that in general neither

Fk(Dr
m,n) nor Fk(Pr

m,n) are reduced. In Section 8, we conclude with a comparison
between the cases of determinants and permanents and present some conjectures
and further questions on the structure of our Fano schemes.

2. Compression spaces and torus fixed points

2A. Compression spaces. The first thing we would like to do is to define some
very important subschemes of Fk(Dr

m,n) and Fk(Pr
m,n) arising from compression

spaces.

Definition 2.1 (compare [Eisenbud and Harris 1988]). Fix a natural number 0≤ s≤
r − 1. An s-compression space is the space of all m× n matrices over K sending a
fixed (s+1+n−r)-dimensional subspace V of Kn to a fixed s-dimensional subspace
W of Km .

See (3) for an example. Now, every r-dimensional subspace of Kn meets V in
dimension at least s+ 1, so a matrix in an s-compression space “compresses” the
image of each r-dimensional subspace into an (r−1)-dimensional subspace. In
other words, every matrix in a compression space has rank less than r , and we may
view this compression space as a point of the Fano scheme Fκ(s)(Dr

m,n), where κ
was defined in (1). The set of all s-compression spaces forms a closed subscheme
C(s) of Fκ(s)(Dr

m,n) of dimension δ(s). In fact, we have that C(s) is isomorphic to

Gr(s+ n− r + 1, n)×Gr(s,m).

Indeed, the morphism sending a pair (A, B) of (s+n−r+1)- and s-dimensional
planes in Kn and Km to the space of matrices which map A to B is bijective, and
an inspection of the natural affine charts of Fκ(s)(Dr

m,n) shows that this map is
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an isomorphism. In Theorem 4.7, we will even compute the degree of C(s) as a
subscheme of the Grassmannian Gr(κ(s)+ 1,mn) in its Plücker embedding.

Next, for each k≤ κ(s), the subscheme C(s) of Fκ(s)(Dr
m,n) induces a subscheme

Ck(s) of Fk(Dr
m,n) whose points correspond to the k-planes sitting inside some

s-compression space. More precisely, let U(s) denote the restriction of the universal
bundle on Fκ(s)(Dr

m,n) to C(s). Then there is a natural morphism

ρk(s) : Gr(k+ 1,U(s))→ Fk(Dr
m,n)

from the Grassmann bundle Gr(k+ 1,U(s)) to Fk(Dr
m,n) sending a (k+1)-dimen-

sional subspace of Kmn to the corresponding point of Fk(Dr
m,n). We denote the im-

age of this map by Ck(s). We call Ck(s) an s-compression component of Fk(Dr
m,n).

We will see in Theorem 4.1 and Corollary 4.3 that Ck(s) is in fact an irreducible
component of Fk(Dr

m,n).

The permanental case. In contrast to the determinantal case, not every s-compression
space consists of matrices with vanishing r × r permanents. However, the ones that
actually correspond to matrices with a fixed (s+1+n−r)×(m−s) zero submatrix
do correspond to points of Fk(Pr

m,n). We call these standard compression spaces.
More precisely:

Definition 2.2. Let σ and τ be subsets of {1, . . . , n} and {1, . . . ,m} such that
|σ |− |τ | = n−r +1. Let C(σ, τ ) denote the compression space consisting of those
linear maps Kn→ Km which send the standard basis vectors indexed by elements
of σ to the subspace of Km generated by standard basis vectors indexed by elements
of τ . Such compression spaces are called standard compression spaces.

An example of a standard compression space is shown in (3). There, σ =
{1, . . . , s+ 1+ n− r} and τ = {m− s+ 1, . . . ,m}. A straightforward calculation
contained in Proposition 2.3 shows that every point of C(σ, τ ) lies in Pr

m,n , and
hence C(σ, τ ) corresponds to a point of Fk(Pr

m,n) for k = κ(|τ |).
Just as in the determinantal case, C(σ, τ ) induces subschemes of Fano schemes

Fk(Dr
m,n) for k ≤ κ(|τ |). Regarding C(σ, τ ) as a vector space, there is an obvious

map Gr(k + 1,C(σ, τ )) ∼= Gr(k + 1, κ(s) + 1) → Gr(k + 1,mn) which is an
isomorphism onto its image. We call this image Ck(σ, τ ). But the image of the
map is clearly contained in Fk(Pr

m,n); that is, Ck(σ, τ ) is a subscheme of Fk(Pr
m,n)

isomorphic to a Grassmannian. We will give conditions in Proposition 4.4 under
which Ck(σ, τ ) is actually a component of Fk(Pr

m,n).

2B. Torus fixed points. Next, we would like to take advantage of a natural torus
action on our Fano schemes. Let us view points of Pmn−1 as m×n matrices over K,
up to simultaneous rescaling. The group GLm ×GLn then acts naturally on Pmn−1:
the first factor by inverse matrix multiplication the right, and the second factor by
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matrix multiplication on the left. (We will assume throughout this paper that m ≥ 2,
since otherwise Dr

m,n and Pr
m,n become trivial.)

Dr
m,n is invariant under this action, but Pr

m,n is not. However, both are invariant
under the action of the subgroup Tm × Tn of GLm ×GLn . Here, Tm ∼= (K∗)m and
Tn ∼= (K∗)n are the standard diagonal tori of GLm and GLn that act by rescaling
the rows and columns, respectively, of an m × n matrix. This action of Tm × Tn

extends naturally to actions on the Grassmannian Gr(k+1,mn) and its subschemes
Fk(Dr

m,n) and Fk(Pr
m,n).

When is a closed point of Gr(k + 1,mn) a torus fixed point? Such a point Q
corresponds to a (k+1)-dimensional linear subspace of m× n matrices. But any
linear relation on the entries that has more than one term cannot be preserved under
all possible rescaling of rows and columns. So Q must consist of all matrices
obtained by setting all but k+1 specified entries to zero. We often represent such a
torus fixed point by a matrix with zeroes and ∗s (or zeroes and blanks), where a ∗
denotes an entry that can vary freely.

We now prove that, of the torus fixed points in Gr(k+ 1,mn), the ones that lie
in Fk(Dr

m,n) and in Fk(Pr
m,n) are precisely the ones that are subspaces of standard

compression spaces (Definition 2.1).

Proposition 2.3. Let Q be a (Tm × Tn)-fixed point of Gr(k + 1,mn). Then the
following are equivalent:

(a) Q is contained in Fk(Dr
m,n).

(b) Q is contained in Fk(Pr
m,n).

(c) The linear space of matrices corresponding to Q is a subspace of a standard
compression space.

Proof. Represent Q as a matrix of k+1 starred entries and mn− k−1 zero entries,
as explained above. Make a bipartite graph G on vertex sets V = {1, . . . ,m} and
V ′ = {1, . . . , n} with an edge from i ∈ V to j ∈ V ′ whenever entry i j is starred.
Now, let us prove that a series of statements are equivalent, the first one being that
Q is contained in Fk(Dr

m,n) (or Fk(Pr
m,n)) and the last being that Q is a subspace

of a standard compression space.
First, Q is contained in Fk(Dr

m,n) (respectively Fk(Pr
m,n)) if and only if, for

every subset W of V of size r , G fails to have a matching of W into V ′. After all,
if G fails to have such a matching, then every term from each r × r determinant
has a zero entry in it; whereas, if G has such a matching, then specializing the
r entries corresponding to the edges in that matching to 1, and setting all others to
zero, gives a nonzero r × r determinant (or permanent).

Second, by Lemma 2.4 below, G fails to have a matching of such a W ⊂V into V ′
if and only if there exist some m− s vertices in V with only r − s− 1 neighbors
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amongst the vertices in V ′. But the existence of some m− s vertices in V with only
r − s− 1 neighbors in V ′ means precisely that Q has an (m− s)× (n− r + s+ 1)
block of zeroes, i.e., Q is a subspace of a standard s-compression space. �

Lemma 2.4. Let G = (V, V ′, E) be a bipartite graph and r a number with
1≤ r ≤ |V |. Then the following are equivalent:

(a) There is no subset W ⊂ V with |W | = r which has a matching into V ′.
(b) There is a subset S ⊂ V having only r + |S| − |V | − 1 neighbors in V ′.

Proof. Add |V |− r vertices U to G, each of which is adjacent to every vertex in V .
Then condition (a) above is equivalent to V having no matching into U ∪ V ′. By
Hall’s marriage theorem, this is equivalent to the existence of a subset S of vertices
in V with fewer than |S| neighbors in U ∪ V ′. Now, these S vertices have |V | − r
neighbors in U , hence fewer than |S| + r − |V | neighbors in V ′. �

Remark 2.5. Proposition 2.3 implies that any irreducible component Z of Fk(Dr
m,n)

or Fk(Pr
m,n) must intersect a subscheme of the form Ck(s) or Ck(σ, τ ), respectively.

Indeed, our Fano schemes are projective, hence Z is as well, and thus must contain
a torus fixed point. But any torus fixed point is contained in a subscheme of the
desired form. This simple observation will play an important role in our proofs.

Finally, we can easily prove when Fk(Dr
m,n) and Fk(Pr

m,n) are nonempty just by
looking at torus fixed points. See [Dieudonné 1949] for the determinantal case.

Proposition 2.6. The Fano schemes Fk(Dr
m,n) and Fk(Pr

m,n) are nonempty if and
only if k < (r − 1)n.

Proof. The schemes Fk(Dr
m,n) and Fk(Pr

m,n) are nonempty if and only if k ≤ κ(s)
for some s ∈ {0, . . . , r − 1}. After all, if k ≤ κ(s) for some s, then Fk(Dr

m,n)

and Fk(Pr
m,n) each contain a torus fixed point that is a subspace of a standard

s-compression space; but, if not, then Fk(Dr
m,n) and Fk(Pr

m,n) have no torus fixed
points, so are empty.

Now, we have

κ(0)= (r − 1)m− 1 and κ(r − 1)= (r − 1)n− 1.

So, if k < (r − 1)n, then k ≤ κ(r − 1) as desired. For the converse, if k ≥ (r − 1)n
then k >κ(0) and k >κ(r−1). Then, by convexity of κ , we conclude that k >κ(s)
for all s. �

3. Tangent space calculations

The next thing we would like to do is to calculate the dimension of the tangent
space of Fk(Dr

m,n) and of Fk(Pr
m,n) at some carefully chosen points. The points

we will look at lie in Ck(s) or Ck(σ, τ ), i.e., they are k-planes inside compression
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spaces; and we will choose them to have a particular form that is favorable to
making explicit computations using deformation theory.

Our main results in this section (Theorem 3.1 for the determinant and Theorem 3.2
for the permanent) will each have two parts. First, the tangent space at a general
point of Ck(s) or Ck(σ, τ ) can be no larger than its dimension at the points we
study, since tangent space dimensions are upper semicontinuous. Second, we will
show that if certain additional inequalities hold, then every torus fixed point actually
has the special form that allows our computation to go through. We can therefore
conclude that tangent space dimension at every point of Ck(s) or Ck(σ, τ ) can be
no larger than the specified dimension.

This section is the technical heart of the paper, and we will reap the rewards in
Sections 4 and 5 when we use these tangent space calculations to prove theorems
on smoothness and connectedness of Fk(Dr

m,n) and Fk(Pr
m,n).

Here are the two main theorems.

Theorem 3.1. Fix integers k and s with 1≤ k ≤ κ(s) and 0≤ s ≤ r − 1.

(i) For a general point η ∈ Ck(s),

dim TηFk(Dr
m,n)≤ δ(s)+ (k+ 1)(κ(s)− k),

where κ(s) and δ(s) are defined in (1) and (2).

(ii) If furthermore both of the conditions

k > κ(s)− (m− s− 1) if s 6= r − 1, (4)

k > κ(s)− (n− r + s) if s 6= 0 (5)

hold, then the dimension bound holds for every point η ∈ Ck(s).

We have the following analogous result for the permanent:

Theorem 3.2. Fix integers k and s such that

s = 0, r − 1 and 2≤ k ≤ κ(s),
or 1≤ s ≤ r − 2 and 5≤ k ≤ κ(s).

Suppose further that

s+ 1+ n− r ≥ 3 if s 6= 0 and m− s ≥ 3 if s 6= r − 1.

Consider a standard compression space C(σ, τ ) (Definition 2.2) with |τ | = s.

(i) For a general point η ∈ Ck(σ, τ ),

dim TηFk(Pr
m,n)≤ (k+ 1)(κ(s)− k).
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(ii) If furthermore both of the conditions

k > κ(s)− (m− s− 2) if s 6= r − 1, (6)

k > κ(s)− (n− r + s− 1) if s 6= 0 (7)

hold, then the dimension bound holds for every point η ∈ Ck(σ, τ ).

Remark 3.3. For Theorem 3.1, the bounds on k in (4) and (5) are sharp. Indeed, if
k doesn’t satisfy both bounds, then there are torus fixed points in Ck(s) which also
lie in Ck(s− 1) or Ck(s+ 1). Since these schemes are not equal by Proposition 4.5,
and the dimension of Ck(s) is δ(s)+ (k+1)(κ(s)−k) by Corollary 4.3, the tangent
space dimension at such points must be higher.

We will prove our two main theorems in parallel below, because much of the
setup is the same.

We start by recalling a completely general characterization of tangent spaces
to Fano schemes. Suppose X ⊂ PN

K is any projective scheme with homogeneous
ideal I ⊂ S = K [x0, . . . , xN ], and 3⊂ PN is a k-plane contained in X defined by
the homogeneous ideal J ⊂ S. Write [3] for the corresponding point of Fk(X)
and let J be the ideal sheaf of 3. Then the tangent space T[3]Fk(X) is isomorphic
to the space of first-order deformations of 3 in X , which is well known to be
isomorphic to HomOX (J,O3); see, e.g., [Hartshorne 2010, Theorem 2.4]. In our
case, J is generated by linear forms, so J/I as well as S/J are saturated, graded
S/I -modules. So T[3]Fk(X) ∼= HomOX (J,O3) ∼= HomS/I (J/I, S/J )0, the space
of degree-preserving maps of S/I -modules.

In our specific situation, fix r , m, and n, and let S =K[x1,1, . . . , xm,n]. Suppose
that J ⊂ S is a linear ideal defining a k-plane 3⊂ Pmn−1 of matrices lying in the
standard s-compression space shown in (3). Let us choose standard linear monomials
z0, . . . , zk for S/J ; that is, we specify an isomorphism S/J ∼=K[z0, . . . , zk]. Then
we can regard 3 as a matrix whose entries are linear forms in z0, . . . , zk such that
the linear span of these forms has full dimension k+ 1. In other words, 3 has the
form

3=




0 B

C D


 , (8)

where the upper left block of zeroes has size (m−s)×(s+1+n−r) and the entries
of B, C , and D are in K[z0, . . . , zk]1. See Example 3.5 for a matrix of this form.

The next lemma tells us concretely how to compute the dimensions of the tangent
spaces of Fk(Dr

m,n) and Fk(Pr
m,n) at the point [3]. Call an r × r submatrix of an

m × n matrix anchored if it involves the last s rows as well as the last r − s − 1
columns.
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Lemma 3.4. For a k-plane 3 as above, let adet (respectively aperm) be the K-
dimension of the space of (m − s)× (s + 1+ n − r) matrices A with entries in
K[z0, . . . , zk]1 such that the r × r anchored determinants (respectively permanents)
of the m× n matrix

Q =




A B

C 0


 (9)

all vanish. Then

dim T[3]Fk(Dr
m,n)= adet+ (k+ 1)(κ(s)− k),

dim T[3]Fk(Pr
m,n)= aperm+ (k+ 1)(κ(s)− k).

Proof. Let Idet ⊂ S and Iperm ⊂ S be the ideals generated by the determinants and
permanents, respectively, of the r × r submatrices of the m× n matrix (xi, j ). We
will treat both cases simultaneously. Let I be Idet or Iperm, and let J ⊂ S be the
linear ideal of 3. Then J is generated by the coordinates xi, j with i ≤ m− s and
j ≤ s+ 1+ n− r , corresponding to the condition that the upper left block is zero,
along with κ(s)− k additional independent linear forms fi on the remaining xi, j

that determine the linear relations on the other entries of the matrix. We wish to
compute the dimension of HomS/I (J/I, S/J )0.

To give an element of HomS/I (J/I, S/J )0, we must specify an element of (S/J )1,
i.e., a linear form in z0, . . . , zk , for each generator xi, j and fi . This choice of
elements of (S/J )1 is subject to the condition that all the relations among the xi, j

and the fi are preserved among their images. Let’s examine these relations.
Assume for a moment that r = m = n, and suppose we have a map φ in

HomS/I (J/I, S/J )0. Among the relations on generators of J/I , there are the
Koszul relations of the form a1(a2)− a2(a1) for ai ∈ J , which φ obviously sends
to 0 mod J . Apart from these, then, the only nontrivial relation among generators
of J/I comes from writing the determinant or permanent of the r × r matrix (xi, j )

as an S-linear combination of the generators of J . In fact, it is easy to choose such
an S-linear combination (uniquely up to the Koszul relations), since every term of
the r × r determinant (or permanent) contains at least one position in the 0 block
and hence one generator of J . Then the fact that φ sends the r × r determinant or
permanent to zero means that

∑

i, j

±(bi c j )φ(xi, j )= 0, (10)

where the sum above has one term for each entry (i, j) in the upper left zero block.
Here, bi is the determinant or permanent of the submatrix of B gotten by deleting
the i-th row, and c j is the determinant or permanent of the submatrix of C gotten
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by deleting the j-th column. The reason that no other terms of the determinant or
permanent appear is that every other term contains at least two positions in the 0
block, and hence, after factoring out some generator of J , will still vanish modulo J .
So (10) is the only constraint on the images of the generators of J .

If instead r < n, we simply note that the nontrivial relations among the images
of the xi, j are just the relation (10) obtained by replacing (8) by each of its r × r
anchored submatrices. (The nonanchored submatrices do not add any constraints,
because each term of a nonanchored r×r determinant or permanent contains at least
two positions in the 0 block and so is necessarily sent to 0 in S/J .) Then condition
(10) applied to the r × r submatrices of 3 can be rewritten as the condition that the
determinants or permanents of the r × r anchored submatrices of the m× n matrix
in (9) vanish, where A = (φ(xi, j )).

Now we can easily count dimensions for HomS/I (J/I, S/J )0. We have just
shown that the dimension of the space of choices of φ(xi, j ) for i ≤ m − s and
j ≤ s+ 1+ n− r is precisely adet (respectively aperm). Next, we have exactly k+ 1
dimensions for choosing each φ( fi ), since after all the fi do not appear at all in (10)
and dim(S/J )1 = k + 1. So the dimension of space of choices for the φ( fi ) is
(k+ 1)(κ(s)− k). Adding, we have proved Lemma 3.4. �

We now prove part (i) of each theorem by applying Lemma 3.4 to some carefully
chosen points [3].
Proof of Theorem 3.1(i). We need to exhibit, for any k and s as in the statement
of Theorem 3.1, a matrix of the form (8) such that the dimension adet defined in
Lemma 3.4 is exactly δ(s). Then Theorem 3.1(i) would follow by upper semiconti-
nuity.

First, some notation: for distinct variables zi and z j , define matrices

B(zi , z j )=




zi

z j
. . .

. . . zi

z j

0




and C(zi , z j )=




zi z j
. . .

. . .

zi z j

0


 (11)

of dimensions (m− s)× (r − s− 1) and s× (s+ 1+ n− r), respectively. (Thus,
by slight abuse of notation, the dimensions will depend on s.) Now let’s specify
the form that 3 should take, in four cases.

If s = 0, so the matrices C and D don’t appear, we let B = B(z0, z1)+ B ′, where
B ′ is any matrix whose entries are linear forms not involving z0 or z1 and such that
the linear span of the forms appearing in B has full dimension k+ 1.
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Similarly, if s = r − 1, so that the matrices B and D don’t appear, then we let
C = C(z0, z1)+ C ′, where C ′ is any matrix whose entries are linear forms not
involving z0 or z1 and such that the linear span of the forms appearing in C has full
dimension k+ 1.

Next, if s 6= 0, r − 1, and k = 1, we let B = B(z0, z1) and C = C(z0, z1). There
are no restrictions on D.

Finally, if s 6=0, r−1, and k≥2, we let B= B(z0, z1)+B ′ and C=C(z1, z2)+C ′,
for any matrices B ′ and C ′ that do not involve z0, z1, or z2, and furthermore do not
involve any variables in common. There are again no restrictions on D, except that
B ′, C ′, and D must be chosen so that the linear span of the forms appearing in 3
has full dimension k+ 1.

Example 3.5. For k = 4, s = 2, r = m = 5, and n = 6, the following 5× 6 matrix
over K=C, say, has the desired form. The ∗ entries represent arbitrary linear forms
in z0, z1, z2, z3, and z4.




0 0 0 0 z0 z3

0 0 0 0 z1−z3 z0+3z3

0 0 0 0 5z3 z1+11z3

z1 z2 0 0 ∗ ∗
0 z1 z2 z4 ∗ ∗



.

Now, in each case, we are done if we can show that the space of matrices A
satisfying that the r×r anchored minors of the matrix Q in (9) vanish has dimension
exactly δ(s). In fact, we can identify a space of dimension δ(s): take A to be any
sum of a matrix in the K-column span of B and a matrix in the K-row span of C . The
resulting matrix Q still has rank less than r . Furthermore, B and C have full rank,
but on the other hand no nonzero matrix is both in the K-column span of B and the
K-row span of C . So the space of matrices A obtained in this way forms a K-vector
space of dimension exactly (r−s−1)(s+1+n−r)+s(m−s)= δ(s). We have thus
reduced to proving the converse: if the anchored r×r minors of Q vanish, then A is
the sum of a matrix in the K-column span of B and a matrix in the K-row span of C .

The degenerate cases s = 0, r − 1 are thus an immediate consequence of the
lemma below, whose proof we postpone to the end of the section.

Lemma 3.6. Let 2≤ m ≤ n. Consider an m× n matrix

P =




Ea

C



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whose entries are linear forms z0, . . . , zk , where Ea = (ai ) is a 1× n matrix and
C is an (m − 1)× n matrix. Suppose C = C(z0, z1)+C ′, where C(z0, z1) is an
(m− 1)× n matrix as shown in (11), and C ′ only involves z2, . . . , zk .

If the maximal minors of P vanish, then Ea must lie in the K-linear row span of C.

Thus, we may now assume 1≤ s ≤ r − 2. We have two remaining cases: k = 1
and k ≥ 2. Let us first assume k ≥ 2.

By subtracting columns of B from A, we may assume that, in the first r − s− 1
rows of A, no z0 appears. Also, let us add a copy of the (r − s) row to each row
r − s+ 1, . . . ,m− s. Then we may assume that each row r − s+ 1, . . . ,m− s in
the matrix B has no z0 or z1 appearing except for a single z1 in the last column.
We now claim that each row of A is in the K-linear span of the rows of C .

First, let Q′ be any r ×n submatrix of Q obtained by choosing the first r − s−1
rows, one middle row, and the last s rows of Q. Consider any maximal submatrix Q̃
of Q′ that involves the last r − s− 1 columns of Q′. Write

Q̃ =
(

Ã B̃
C̃ 0

)
, (12)

where Ã, B̃, and C̃ are submatrices of A, B, and C , respectively. For i=1, . . . , r−s,
let bi be the determinant of the matrix gotten from B̃ by deleting its i-th row, and
let c̃i be the determinant of the matrix gotten by stacking the i-th row of Ã to C̃ .
Let us show that each c̃i equals 0.

Since Q had rank at most r − 1 by assumption, we have det(Q̃)= 0. Note that

0= det(Q̃)= b1c̃1− b2c̃2+ · · ·± br−s c̃r−s .

Now, each bi is of the form zi−1
0 zr−s−i

1 plus terms that have lower total degree
in z0 and z1. Also, each c̃i , except possibly c̃r−s , has no z0 term appearing, by
assumption. Then by inspecting the degree in z0, we conclude that c̃r−s = 0.

Next, we claim that no other c̃i has z1 appearing: if z1 appears with highest
degree d in c̃i , then the factor zi−1

0 zr−s−i+d
1 would appear in the summand bi c̃i

but nowhere else. So z0 and z1 do not appear in any c̃i . Finally, by inspecting the
(z0, z1)-degree of each summand, we conclude that each c̃i equals 0.

By ranging over all possible choices of Q′ and Q̃, we have that

rank
(

A
C

)
= rank C.

Then we may apply Lemma 3.6 to conclude that the rows of A′ are actually K-linear
combinations of the rows of C .

Finally, assume 1≤ s≤r−2 and k=1. Again, we want to show that any matrix A
satisfying that the r ×r anchored minors of (9) vanish must be a sum of a matrix in
the K-column span of B = B(z0, z1) and one in the K-row span of C = C(z0, z1).
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First, note that rows r − s + 1, . . . ,m − s of B are zero. So we will start by
showing that, for any i with r − s + 1 ≤ i ≤ m − s, the i-th row of A is in the
K-row span of C . Indeed, let Q′ be the r ×n submatrix of Q obtained by choosing
the first r − s− 1 rows, the i-th row, and the last s rows of Q. So the lower right
(s + 1)× (r − s − 1) block of Q′ is zero. Now the first r − s − 1 rows of Q′ are
K(z0, z1)-linearly independent and their span intersects the span of the last s+ 1
rows trivially. Thus, the last s+ 1 rows have rank at most s. Applying Lemma 3.6
to these last s+ 1 rows, we are done. Furthermore, the same argument shows that
columns s+ 2, . . . , s+ 1+ n− r of A are K-combinations of the columns of B.

After deleting rows r−s+1, . . . ,m−s and columns s+2, . . . , s+1+n−r , we
are left with a singular r×r matrix Q′. Let A′ denote the upper left (r−s)×(s+1)-
submatrix of Q′. After adding multiples of the columns of B and the rows of C ,
we may assume that z0 appears only in the lower right entry of A′. But z0 cannot
appear there either, for otherwise the monomial zr

0 would appear in det(Q′) with
nonzero coefficient, contradicting that det(Q′)= 0. So A′ has only z1.

Next, we claim we may reduce to the case that z1 only appears in the first row
and the last column of A′. This is because, if ai, j = λz1, say, is a nonzero entry
elsewhere in A′, then we can alternately add λ-multiples of rows of C and subtract
λ-multiples of columns of B to move λz1 to any other entry in the same antidiagonal.

But in this case, z1 doesn’t appear at all, since each one would contribute a
unique nonzero monomial in zi

0, zr−i
1 to det(Q′), but Q′ is singular. Thus, after

adding rows of C and columns of B, we have arrived at an equality A′ = 0, so we
are done. This finishes the proof of Theorem 3.1(i). �

Proof of Theorem 3.2(i). Just as in the determinantal case, we need to exhibit, for
any k and s as in Theorem 3.2, a matrix of the form (8) such that aperm = 0 in
Lemma 3.4. Then Theorem 3.2(i) would follow by upper semicontinuity: we need
only invoke the natural (Sm×Sn)-action on Fk(Pr

m,n) gotten by permuting rows and
columns that sends any standard compression component Ck(σ, τ ) to the particular
one shown in (3).

First, for distinct variables zi , z j , and zk , define matrices B(zi , z j , zk) and
C(zi , z j , zk), respectively, as




zi zk

z j
. . .

zk
. . . zi
. . . z j zi

zk z j

0




and




zi z j zk
. . .

. . .
. . . 0

zi z j zk

zk zi z j


 , (13)
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of dimensions (m− s)× (r − s− 1) and s× (s+ 1+ n− r), respectively.
Let us clarify the degenerate cases of this definition:

s = 1 H⇒ C(zi , z j , zk)= ( zi z j zk 0 · · · 0 );
s = r − 2 H⇒ B(zi , z j , zk)= ( zi z j zk 0 · · · 0 )T .

If s = 2 then

C(zi , z j , zk)=
(

zi z j zk 0 · · · 0
zk zi z j 0 · · · 0

)
;

and similarly for B(zi , z j , zk) when r − s− 1= 2.
In particular, in each case C(zi , z j , zk) has to have at least 3 columns whenever

it is defined; in other words, if s 6= 0, we will always assume that s+ 1+n− r ≥ 3.
Similarly, B(zi , z j , zk) has to have at least 3 rows whenever it is defined; in other
words, if s 6= r − 1, we will always assume that m− s ≥ 3. This accounts for the
conditions in the statement of Theorem 3.2. We treat each case in turn.

First, suppose s = 0, so m ≥ 3 and the matrices C and D don’t appear. Then
let B = B(z0, z1, z2)+ B ′, where B ′ is any matrix whose entries are linear forms
not involving z0, z1, or z2. Similarly, if s = r − 1 — so n ≥ 3 and B and D don’t
appear — then we let C = C(z0, z1, z2)+C ′, where C ′ is any matrix whose entries
are linear forms not involving z0, z1, or z2. In both of these cases, Theorem 3.2(i)
is an immediate consequence of the following lemma, whose proof we postpone to
the end of the section.

Lemma 3.7. Let 2≤ m ≤ n but not m = n = 2. Consider an m× n matrix

P =




Ea

C




whose entries are linear forms z0, . . . , zk , where Ea = (ai ) is a 1× n matrix and
C = C(z0, z1, z2)+C ′ is an (m−1)×n matrix, where C(z0, z1, z2) is as shown in
(13) and C ′ does not involve z0, z1, or z2.

If the maximal permanents of P vanish, then Ea = 0.

Thus, we are done with the cases s = 0 and s = r − 1 modulo the lemma.
So we may assume for the rest of the proof that 1 ≤ s ≤ r − 2. We let

B = B(z0, z1, z2)+ B ′ and C = C(z3, z4, z5)+ C ′, for any matrices B ′ and C ′
that do not involve z0, . . . , z5, and furthermore do not involve any variables in
common. Let D be any s× (r − s− 1) matrix of linear forms. Again, we want to
show A = 0 if the r × r anchored permanents of Q in (9) are zero.
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Here is the matrix Q:

s+ 1 n− r r − s− 1





z0 z2

r − s
z1 z0

z2 z1 z0

z2 z1

m− r
z3 z4 z5

s z3 z4 z5 0
z5 z3 z4

(14)

In this picture, A has been broken into four submatrices. If B or C have only one
or two columns or rows, respectively, then they should be interpreted as having the
degenerate forms described above. (We have also suppressed B ′ and C ′ for clarity.)

We break into the following two cases:

• s = 1 or s = r − 1, and

• 1< s < r − 2.

First, suppose s = 1. So C is a row matrix. For this case, we need the following
lemma, which we will prove at the end of the section.

Lemma 3.8. Let r ≥ 3, and suppose Q′ is an m × r matrix with entries in
K[z0, . . . , zk]1 of the form

Q′ =




A′ B

`1 `2 0


 .

Here `1 and `2 are nonzero linear forms in z3, . . . , zk that are not scalar multiples
of each other, and B = B(z0, z1, z2)+ B ′, where B(z0, z1, z2) is as in (13) and B ′
does not contain z0, z1, or z2.

If the r×r permanents of Q′ vanish then, for each i = 1, . . . ,m−1, the i-th row
of A′ is of the form (ai`1 −ai`2) for some ai ∈ K.

Assuming the lemma holds, let us prove that A = 0. By applying Lemma 3.8 to
each m× r submatrix of Q gotten by choosing any two of the first three columns
and the last r − 2 columns, we see that each pair of the first three columns has
entries that satisfy the sign relation as in Lemma 3.8. But that is impossible unless
each entry in the first three columns of A is zero.

Let Qm,1 denote the matrix gotten by deleting the m-th row and first column of Q.
Since the first column, say, of Q is zero except for the last entry, which is nonzero,
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and Q has vanishing r×r anchored permanents, if follows that the (r−1)×(r−1)
anchored permanents of the matrix Qm,1 vanish. Applying Lemma 3.7 to (the
transpose of) each (m− 1)× (r − 1) submatrix of Qm,1 that involves the last r − 2
columns shows that each column of A is zero.

The case s = r − 2 is exactly analogous. In this case, the roles of B and C are
simply reversed: now B is a column matrix with at least three nonzero entries. Then
we apply Lemma 3.8 again to conclude that the first three rows of A must be zero,
and then apply Lemma 3.7 to each (m − 1)× (r − 1) submatrix of Q1,n to show
that every row of A is zero.

For the final case, let 1< s < r − 2. In this case, our assumptions imply that B
(respectively C) has at least two columns (respectively rows); see (14). We will call
the m− r rows and n− r columns in (14), if they are present, the middle rows and
columns. In the diagram, A has been broken into four blocks, and we will show
one by one that they are 0.

First suppose r = m = n, so the middle rows and columns don’t appear. As in
the determinantal case, for i = 1, . . . ,m− s let bi be the permanent of the matrix
gotten by deleting the i-th row of B, and let c̃i be the permanent of the matrix
gotten by stacking the i-th row of A to C . Then

0= perm(Q)= b1c̃1+ b2c̃2+ · · ·+ bm−s c̃m−s .

Considering the terms of this equation of the form

zi−1
0 zr−s−i

1 · γ,
where γ is any monomial not involving the variables appearing in B, shows that,
after zeroing out the variables in A that appear in B, c̃i = 0. Then, by Lemma 3.7,
A only contains variables from B.

But a symmetric argument shows that A only contains variables from C . Since
no variables appear in both B and C by assumption, we must have A = 0.

Now let us drop the assumption that r=m=n. Let Q′ be the r×r submatrix of Q
gotten by removing the middle m− r rows and n− r columns. Then the r =m = n
argument applied to Q′ immediately shows that the upper left (r − s)× (s + 1)
block of A is zero. Next, we claim that every entry in the first r − s rows of A is
zero. Indeed, if in Q′ we replace the (s+1)-st column with any middle column,
we get an r × r matrix whose upper left (r − s)× s block is zero and whose lower
left s × s block has nonzero permanent. Then the permanent of the upper right
(r − s)× (r − s) block is zero so, by Lemma 3.7 again, the chosen middle column
of A is zero, proving the claim. A symmetric argument shows that every entry in
the first s+ 1 columns of A is zero.

Finally, for any middle row i and middle column j , we want to show that ai j = 0.
But this is immediate from considering the matrix obtained from Q′ by replacing
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the r − s row by i and the s + 1 column by j , and noting that the permanent
of this matrix is zero yet is a nonzero multiple of ai j . This finishes the proof of
Theorem 3.2(i). �

Proof of Theorems 3.1(ii) and 3.2(ii). We will show that, if k is sufficiently large,
the proofs of Theorems 3.1(i) and 3.2(i) can be applied to any torus fixed point
of Ck(s) or Ck(σ, τ ). When we say k is sufficiently large, we mean that conditions
(4) and (5) are fulfilled in the determinantal case, or that conditions (6) and (7) are
fulfilled in the permanental case.

Part (ii) of each theorem would then follow, because if the conditions (4)
and (5) or the conditions (6) and (7) hold, then the bounds in Theorem 3.1(i)
and Theorem 3.2(i) would apply to any torus fixed point of Ck(s), respectively
Ck(σ, τ ). But the Zariski closure of the torus orbit of any point of Ck(s) or Ck(σ, τ )

certainly contains a torus fixed point. So the bounds would hold for arbitrary points
of Ck(s), respectively Ck(σ, τ ).

By the discussion in Section 2, we know that any torus fixed point P of Ck(s)
or Ck(σ, τ ) comes from zeroing out entries in the matrix of forms representing a
standard compression space. Thus, after permuting rows and columns, we may
assume that P has the form (8), and the entries of B, C , and D are either zeroes
or ∗s representing distinct variables zi . Furthermore, the number of zero entries
among B, C , and D is exactly κ(s)− k.

The proofs in both the determinant and permanent cases reduce to the following
combinatorics:

Lemma 3.9. Let c ≤ p and p ≥ q, and suppose we have a p× q array B = (bi j )

filled with at most p− c zeroes and the rest ∗s. Then we may permute rows and
columns so that every entry bi, j with i − j < c is a ∗.

Assuming the lemma, let us prove Theorem 3.1(ii). Suppose s 6= r − 1, so B is
nonempty. Then κ(s)−k<m−s−1 by assumption, so B is an (m−s)×(r−s−1)
matrix with at most m−s−2 zeroes. Then, by Lemma 3.9 applied with c= 2, after
permuting rows and columns of B = (bi, j ), the entries bi,i and bi+1,i are nonzero
for all i . Then a linear change of coordinates brings B into the form required
for Theorem 3.1(i). (The lemma shows that all entries above the diagonal bi,i are
nonzero as well, but we don’t need this.)

If instead s 6= 0, so that the matrix C is nonempty, and k > κ(s)− (s+ n− r),
the same argument shows that there is a permutation of the rows and columns of C
so that each of the entries ci,i , ci,i+1 are nonzero for i = 1, . . . , s. Again, a linear
change of coordinates then brings C into the form required for Theorem 3.1.

The proof of Theorem 3.2(ii) is almost identical, except that we apply Lemma 3.9
with c = 3 instead of c = 2, since the matrices in our special permanental form
were tridiagonal instead of bidiagonal. Namely: if s 6= r − 1, so that the matrix B
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appears, the assumption that κ(s)−k <m− s−2 says that B has at most m− s−3
zeroes. Then Lemma 3.9 shows that, after permuting, every entry bi, j with i− j < 3
is nonzero. Similarly, if s 6= 0, so that the matrix C appears, the assumption that
κ(s)− k < n− r + s− 1 and Lemma 3.9 again imply that, after permuting, every
entry ci, j with j − i < 3 is nonzero. Then we are again done after a linear change
of coordinates. So we have proved part (ii) of each theorem, and we are done, apart
from the proofs of the supporting lemmas below. �

Proof of Lemma 3.6. Let us write ai =∑ λi, j z j for λ∈K. Consider the determinant
of the submatrix of P consisting of its first m columns. Inspection of the coefficient
of the monomial zi

0zm−i
1 for 1≤ i ≤ m− 1 gives the equation

λi,0 = λi+1,1.

Likewise, inspection of the monomials zm
0 and zm

1 give equations λ1,1 = λm,0 = 0.
Hence, after applying K-linear row operations to the first row of P , we may assume
that λi, j = 0 for i ≤ m and j = 0, 1.

We now show that, under this assumption, Ea = 0. Indeed, consider again the
determinant of the submatrix of P consisting of its first m rows. Inspection of the
coefficient of the monomial zi−1

0 zm−i
1 z j shows that λi, j = 0 for i ≤m and j ≥ 2. So

we have proved a1 = · · · = am = 0. Finally, for any i >m, consider the determinant
of the submatrix of P consisting of columns 2, . . . ,m, i . Expanding by the first
row, this determinant is ± ai · (zm−1

1 + terms of lower degree in z1). The product
is zero and the second factor is nonzero, so ai = 0. �

Before proving Lemma 3.7, we need the following calculation of the coefficients
of the maximal permanents of a tridiagonal matrix:

Lemma 3.10. Let p ≥ 2 and consider the p× (p+ 1) matrix

Q =




u v w

. . .
. . .

. . .

u v w

w u v




for independent linear forms u, v, w, with 0 at every other position. Denote
the permanent of the submatrix obtained by deletion of the i-th column by qi .
For 1≤ j ≤ p− 1, the coefficient of u jv p−( j+1)w in qi is equal to

coeffu jv p−( j+1)w(qi )=
{

p− j i = j,
0 i 6= j.

Here, p− j just means the integer p− j reduced modulo the characteristic of K.

Proof. Fix i , and let y be any monomial appearing in qi of the form u jv p−( j+1)w

for some 1 ≤ j ≤ p− 1. We claim that y must select u from each column to the
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left of the i-th column. If i = 1, there is nothing to prove. For i > 1, first note
that y selects u from the first column. Indeed, if y selects w in the first column,
then y must be at least quadratic in w if i 6= p+ 1, or would have the form v p−1w

if i = p+ 1. Since y selects u from the first column, it cannot select anything else
from the first row of P , forcing it to select u from column 2 if i > 2. Continuing in
this fashion, we see that y must select u in all columns to the left of the i-th column.

Now, inspection of Q shows that, for each u which y selects to the right of the
i-th column, it must select a w lying diagonally to the upper right. Likewise, for y
to select a w entry, it must also select a u lying diagonally to the lower left and to
the right of the i-th column. Hence, the only monomial of the desired form which
appears in qi is uiv p−(i+1)w, and it may be created by p− j different choices of
the position of w. �

Proof of Lemma 3.7. Write ai =∑ λi, j z j for λ ∈K. First suppose m = 2, so n > 2
by assumption. In this case, we appeal to the explicit primary decomposition of
the 2× 2 permanents of a 2× n matrix over any field proved by Laubenbacher and
Swanson [2000]. Each component is isolated in this case, and the components are
as follows: there are two components that correspond to zeroing out each row; and
there are

(n
2

)
components that correspond to zeroing out a given 2×2 permanent as

well as all of the other 2(n−2) entries. It immediately follows from this classification
that, if at least three entries of the 1× n matrix C are nonzero, then Ea must be 0.

Now suppose m > 2. We begin by considering the permanent of the submatrix
of P consisting of its first m columns. Inspection of monomials of the form zi

0zm−i
1

and zi
1zm−i

2 gives equations

λi,0+ λi+1,1 = 0 for 1≤ i ≤ m− 1,

λi,1+ λi+1,2 = 0 for 2≤ i ≤ m− 1,

λm,1+ λ1,2 = 0,

along with λ2,2 = λ1,1 = λm,0 = 0. On the other hand, inspection of the monomials
of the form zi

0zm−1−i
1 z2 gives equations

(m−1−i)λi,0+ (m−2−i)λi+1,1+ λi+2,2 = 0 for 1≤ i ≤ m− 2

by Lemma 3.10. Likewise, inspection of the monomial z0zm−3
1 z2

2 gives the equation
m− 2λ1,2 + m− 3λm,1 + λm−1,0. Since char(K) 6= 2, this system of equations
implies that λi, j = 0 for 1≤ i ≤m and j = 1, 2, 3. For k =m+ 1, . . . , n, consider
the first m− 1 columns and the k-th column of P . The permanent of this m×m
matrix is zero, and all of the entries in the first row are zero except possibly ak .
Expanding the permanent by the first row, we have ak = 0. �

Proof of Lemma 3.8. First, let’s prove that, for i = 1, 2, each form in column i is
a scalar multiple of `i . Let Q′m1 be the matrix obtained from Q′ by deleting the
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last row and first column. Let z j be any form in the support of `2, and consider the
image in K[z0, . . . , zk]/`2∼= S=K[z0, . . . , ẑ j , . . . , zk] of each r×r subpermanent
of Q′ that involves the last row of Q′. By expanding along the last row, this image
is `1 · perm(P), where P is an (r − 1)× (r − 1) submatrix of Q′m1.

Since `1 6= 0 by assumption, perm(P) = 0 as an element of S. Then, by
Lemma 3.7 applied over the ring S to Q′m1, the first column of Q′m1 is zero. In other
words, every entry in the second column of Q′ is a scalar multiple of `2. Similarly,
every entry in the first column of Q′ is a scalar multiple of `1.

Let Q̃ be the r × r submatrix consisting of the first r − 1 rows along with the
last row of Q̃. Factoring out `1 and `2 from the first two columns of Q̃, we see

0= perm(Q̃)= `1`2 ·β,
where β is a K-linear combination of the maximal subpermanents of B; and in fact
these maximal subpermanents are K-linearly independent, since, for example, they
each contain a distinct term of highest total (z0, z1)-degree. So the coefficients are
zero. In other words, for i = 1, . . . , r − 1, the 2× 2 permanent consisting of the
i-th row of A′ along with (`1 `2) is zero.

Similarly, for i = r, . . . ,m − 1, let Q̃ be the r × r submatrix consisting of the
first r − 2 rows, the i-th row, and the last row of Q̃. Then, since the uppermost
(r − 2)× (r − 2) subpermanent of B is the unique maximal subpermanent of B
with a nonzero monomial zr−2

0 , but perm(Q̃) = 0, it follows again that the 2× 2
permanent consisting of the i-th row of A′ along with (`1 `2) is zero. We conclude
that each row of A′ is of the form (a`1 −a`2) for some a ∈ K. �

Proof of Lemma 3.9. The proof is by induction on p+q with trivial base case. First,
if c > p− q then, by the pigeonhole principle, there is a column of all ∗s. Moving
that column to be the rightmost one and inducting on the remaining p× (q − 1)
matrix, we are done. So we may assume c ≤ p− q. Let z be the smallest number
of zeroes in any column of B. We claim that z ≤ p− c− q + 1. If z ≤ 1 this is
clear, because p− c−q+ 1≥ 1. Otherwise, since there are at least qz zeroes in B,
we have p− c ≥ qz ≥ q + z− 1, implying the claim.

Then we can permute rows and columns so that the last column of B has ∗s for
its first p− z entries and zeroes for its last z entries. The claim we just proved
above says precisely that the last column satisfies the hypotheses of the lemma.
Furthermore, the upper left (p− z)× (q− 1) submatrix of B has at most p− z− c
zeroes, so we are done by induction. �

4. Results on compression spaces

In this section, we will prove a number of results on compression spaces that will
be used in Section 5 to prove results on smoothness and connectedness of our Fano
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schemes. We will start by proving that the subschemes Ck(s) of Fk(Dr
m,n) are

actually irreducible components. This result relies on the tangent space dimension
at a general point of Ck(s), computed in Theorem 3.1. Similarly, we will prove
that, when the conditions on k and s in Theorem 3.2 hold, Ck(σ, τ ) is a component,
where |τ | = s. Finally, we will prove a theorem describing precisely the embedding
in projective space of the components C(s) of Fκ(s)(Dr

m,n), including a computation
of their degrees.

As discussed in Section 2, for each k ≤ κ(s) there is a natural map

ρk(s) : Gr(k+ 1,U(s))→ Fk(Dr
m,n),

where U(s) is the pullback to C(s) of the universal bundle on Fκ(s)(Dr
m,n); the

image of this map is Ck(s). The next theorem says that ρk(s) is generically finite.
Since the dimension of the space Gr(k + 1,U(s)) is exactly the general tangent
space dimension calculated in Theorem 3.1, it will follow that Ck(s) is a component
(Corollary 4.3).

Theorem 4.1. The map ρk(s) is generically finite. Furthermore, it is a closed
embedding if and only if

k > κ(s)− (m− s) if s 6= r − 1,

and k > κ(s)− (n− r + s+ 1) if s 6= 0.

Furthermore, the image of ρk(s) is smooth if and only if the above bounds on k hold.

Before proving the theorem, we will need the following lemma:

Lemma 4.2. Consider compression spaces P1 and P2 ∈ C(s) with P1 6= P2. Write
P1 ∩ P2 for their intersection as κ(s)-planes in Pmn−1. Then

dim(P1 ∩ P2)≤ κ(s)−min{m− s, s+ 1+ n− r}.
Furthermore, if s = 0 or s = r − 1 then we can say which term in the minimum to
take: we have

dim(P1 ∩ P2)≤ κ(s)− (m− s) if s = 0,

and dim(P1 ∩ P2)≤ κ(s)− (s+ 1+ n− r) if s = r − 1.

Proof. Write a= s+1+n−r for convenience. For i = 1, 2, Pi can be characterized
as the space of matrices that sends an a-dimensional subspace Vi ⊆ Kn into an
s-dimensional subspace Wi ⊆ Km . Then P1 ∩ P2 is the space of matrices that:

(i) send V1 to W1;

(ii) send V2 to W2.

As a consequence of (i) and (ii), we also have that elements of P1 ∩ P2:

(iii) send V1 ∩ V2 to W1 ∩W2.
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We will show that dim(P1 ∩ P2) is maximized when V1 ∩ V2 and W1 ∩W2 are as
large as possible.

Let b= dim V1∩V2. Then (iii) gives b ·codim(W1∩W2) linear conditions on the
matrices in Pi , and (i) and (ii) each give (a−b)(m− s) additional linear conditions.
So, because of (iii), if we fix V1 and V2, then choosing W1 and W2 to have as large
intersection as possible gives dim(P1 ∩ P2) as large as possible. Similarly, suppose
we fix W1 and W2 and increase the dimension of V1 ∩ V2 by one. This adds only
codim(W1 ∩W2)≤ 2(m− s) conditions in (iii), but removes 2(m− s) conditions
arising from (i) and (ii). Thus, dim(P1 ∩ P2) attains its maximum when V1 ∩ V2

and W1 ∩W2 are as large as possible.
The only constraint, of course, is that P1 6= P2, i.e., we don’t have both V1=V2 and

W1=W2. Thus, dim(P1∩P2) is largest if either V1= V2 and dim(W1∩W2)= s−1,
or dim(V1∩V2)=a−1 and W1=W2. In the first case, by counting linear constraints
on the points of Pmn−1, we have

dim(P1 ∩ P2)= (mn− 1)− 2(m− s)− (a− 1)(m− s)= κ(s)− (m− s),

and in the second case we have

dim(P1 ∩ P2)= (mn− 1)− a(m− s+ 1)= κ(s)− (s+ 1+ n− r).

We conclude that, for any P1 6= P2, dim(P1∩P2)≤ κ(s)−min{m−s, s+1+n−r}.
Furthermore, if s = 0 then dim(W1∩W2)= s−1 is not possible, and similarly if

s = r −1 then dim(V1∩V2)= a−1= n−1 is not possible (since if s = r −1 then
V1 and V2 are both n-dimensional, so necessarily dim(V1 ∩ V2)= n as well). This
accounts for the stronger bounds in the second part of the lemma in these special
cases. �

Proof of Theorem 4.1. We first show that, if the lower bounds on k hold, the map
ρk(s) is injective. Indeed, consider any two distinct points x , y ∈ Gr(k+ 1,U(s))
whose image under ρk(s) is the same. For any value of k, it is clear that these points
must project to distinct points P , Q ∈ C(s). Furthermore, the fact that the images
of x and y are equal implies that P and Q contain a common (k+1)-dimensional
subspace. If we assume that the lower bounds on k hold, then this is impossible by
Lemma 4.2. Hence, if the lower bounds on k hold, ρk(s) is injective.

We now consider the differential dρk(s) of ρk(s). We will show that this is
injective everywhere if the bounds on k hold. Then, since ρk(s) is injective with
injective differential, it is a closed embedding. In particular, if the bounds on k hold,
Ck(s) is smooth, since it is isomorphic to a Grassmann bundle over a product of
Grassmannians. Furthermore, we will show that, for arbitrary k, dρk(s) is injective
at certain points. Hence ρk(s) must be generically finite.

To start, we describe the map dρk(s). Let Q be the standard compression space
compressing the first s+n−r+1 standard basis vectors into the subspace generated
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by the last s standard basis vectors; see (3). In a neighborhood of the fiber over Q,
Gr(k+ 1,U(s)) trivializes as Aδ(s)×Gr(k+ 1, κ(s)+ 1), and the tangent space of
any point q in the fiber decomposes as a direct sum of

TQC(s)∼= Kδ(s) ∼= (Ks+1+n−r ⊗Kr−s−1)⊕ (Km−s ⊗Ks)

(tangent directions on the base) and K(k+1)(κ(s)−k) (tangent directions in the fiber).
Recall the definition of δ(s) in (2).

Let p ∈ Ck(s) be the image of q ∈ Gr(k + 1,U(s)). We may represent p by
a matrix P as in (8). The ideal I of this point in Dr

m,n is thus given by xi, j for
i ≤m− s and j ≤ s+ 1+ n− r , along with κ(s)− k additional independent linear
forms fi as in Theorem 3.1. The tangent space TpCk(s) is contained in the tangent
space Tp Fk(Dr

m,n). As in the proof of Lemma 3.4, tangent vectors to Fk(Dr
m,n)

at p may be described by mapping the xi, j and fi to linear forms modulo J . There
are no restrictions on the choice of the images of fi , but the images of the xi, j may
be constrained; denote these images by yi, j .

Now, the summand K(k+1)(κ(s)−k) ⊂ Tq Gr(k+ 1,U(s)) maps isomorphically to
the subspace of TpCk(s) with all yi, j = 0. Indeed, deforming q within the fiber
over Q amounts to perturbing the fi . On the other hand, a tangent vector of the
form

(t ⊗ u, v⊗w) ∈ (Ks+1+n−r ⊗Kr−s−1)⊕ (Km−s ⊗Ks)

maps to a tangent vector with the image yi, j of xi, j given by

yi, j = (Bu)i t j + vi (wC) j .

Here, we have chosen a basis for TQC(s) exactly as in the proof of Theorem 3.1(i):
we may deform Q within C(s) by performing (m − s)m independent row and
(s + 1+ n − r)(r − s − 1) independent column operations. It follows from our
description of the differential dρk(s) that dρk(s) is injective at q if the rows of B, as
well as the columns of C , are linearly independent. This latter condition is clearly
the case if either the requisite bounds on k hold or q is a generic point in the fiber
over Q. Furthermore, if the bounds on k hold, then applying the (GLm ×GLn)-
action on Gr(k + 1,U(s)) induced by the natural action on C(s) shows that the
differential is injective everywhere. We conclude that ρk(s) is generically finite,
and is furthermore a closed embedding if the bounds on k hold.

Finally, if the bounds on k fail to hold, Ck(s) must be singular. Indeed, we will
exhibit points P in Ck(s) with tangent space dimension equal to

dim TPCk(s)= (k+ 1)(κ(s)− k)+ (k+ 1)(m− s)(s+ n− r + 1). (15)

This exceeds the dimension of Gr(k + 1,U(s)), which equals the dimension of
Ck(s). Thus, Ck(s) is singular at these points.
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Suppose that k ≤ κ(s)− (m− s) and s 6= r − 1. Consider any point p ∈ Ck(s)
represented by a matrix P as in (8) with the first column of B identically 0. We may
describe tangent vectors of Ck(s) at p as above. There is a point q ∈Gr(k+1,U(s))
mapping to p which lies in the fiber over the standard compression space in C(s),
which compresses the subspace generated by the standard basis vectors in positions
2, . . . , s+n−r+2 into the subspace generated by the last s standard basis vectors.
Inspecting the differential of ρk(s) at q shows that its image contains all tangent
vectors with yi, j = 0 for j 6= 1, that is, the yi,1 may be arbitrary. Considering
preimages of p in other fibers over Ck(s) shows that all yi, j may be arbitrary and,
hence, the tangent space dimension at p is as in (15).

If instead k ≤ κ(s)− (n− r + s + 1) and s 6= 0, a similar argument involving
zeroing out the first row of C completes the proof. �

Corollary 4.3. For each k ≤ κ(s), the variety Ck(s) is an irreducible component
of Fk(Dr

m,n), of dimension δ(s)+ (k + 1)(κ(s)− k). If conditions (4) and (5) in
Theorem 3.1 are satisfied, then every point of Ck(s) is a smooth point of Fk(Dr

m,n).

Proof. Since the map ρk(s) is generically finite by Theorem 4.1, the variety Ck(s)
has the same dimension as the Grassmann bundle Gr(k+ 1,U(s)) over C(s). The
dimension of C(s) is δ(s) (see (2)) and the rank of U(s) is κ(s)+ 1; hence, the
dimension of Ck(s) is δ(s)+ (k + 1)(κ(s)− k). But, by Theorem 3.1(i), this is
an upper bound on the tangent space dimension of Fk(Dr

m,n) at a general point of
Ck(s). Hence, Ck(s) must be an irreducible component of Fk(Dr

m,n).
Furthermore, if the bounds (4) and (5) on k are satisfied, it follows from

Theorem 3.1(ii) that the tangent space dimension of any point of Fk(Dr
m,n) equals

the dimension of Ck(s). �

By the same token, for numbers k and s satisfying the conditions in Theorem 3.2,
the subscheme Ck(σ, τ ) is actually a component of Fk(Pr

m,n).

Proposition 4.4. Fix integers k and s with 0 ≤ s ≤ r − 1, k ≤ κ(s). Let σ and τ
be subsets of {1, . . . , n} and {1, . . . ,m} of sizes s + 1+ n− r and s, respectively.
Suppose that

s = 0, r−1 and 2≤ k ≤ κ(s), or 1≤ s ≤ r−2 and 5≤ k ≤ κ(s),
and that

s+ 1+ n− r ≥ 3 if s 6= 0 and m− s ≥ 3 if s 6= r − 1.

Then Ck(σ, τ ) is an irreducible component of Fk(Pr
m,n).

Proof. By definition (see the discussion in Section 2), Ck(σ, τ ) is isomorphic to
Gr(k+ 1, κ(s)+ 1) and thus has dimension (k+ 1)(κ(s)− k). If the assumptions
hold, we can apply the first part of Theorem 3.2 to conclude that the tangent space
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dimension of Fk(Pr
m,n) at a general point of Ck(σ, τ ) is at most (k+ 1)(κ(s)− k).

But this is the dimension of Ck(σ, τ ), hence it must be an irreducible component
of Fk(Pr

m,n). �

The next result ensures that the compression components Ck(s) and Ck(σ, τ ),
respectively, of Fk(Dr

m,n) and Fk(Pr
m,n) that we have now identified are distinct.

Proposition 4.5. Let k ≥ 1.

(i) Ck(s)= Ck(s ′) if and only if s = s ′.
(ii) For any σ , σ ′ ⊂ {1, . . . , n} and τ , τ ′ ⊂ {1, . . . ,m} with

|σ | − |τ | = |σ ′| − |τ ′| = n− r + 1,

we have Ck(σ, τ )= Ck(σ
′, τ ′) if and only if σ = σ ′ and τ = τ ′.

Proof. Part (ii) is more or less immediate, since we can certainly find a k-plane in
the standard compression space C(σ, τ ) with points having nonzero entries in all
but the (|τ | + 1+ n−m)(m− |τ |) required entries. Such a k-plane clearly cannot
lie inside some other standard compression space C(σ ′, τ ′), since the matrices in
C(σ ′, τ ′) must have some new entries that are required to be zero.

Let us prove (i). For every pair of numbers s ′ and s with 0 ≤ s ′ < s < r , we
will show that there is a line in an s-compression space that doesn’t lie in any s ′-
compression space. That will show that C1(s ′) and C1(s) are distinct. Furthermore,
it would follow that any k-plane inside that s-compression space that contains that
line doesn’t lie in any s ′-compression space, thus showing that Ck(s) and Ck(s ′)
are distinct for all k > 1 too.

Indeed, for any 1≤ s ≤ r−1, consider the line in Pmn−1 of matrices P(z0, z1) of
the form given in (8), setting D = 0 and setting B = B(z0, z1) and C = C(z0, z1).
These matrices are defined in (11).

We now show that this point of C1(s) does not lie in C1(s ′) for any s ′< s. In other
words, we wish to show that, for all subspaces A of Kn of dimension s ′+1+n−r ,
there is a choice of z0 and z1 such that A meets the kernel of the matrix P(z0, z1)

in dimension at most n− r .
Indeed, the kernel of P(z0, z1) is the (n−r+1)-dimensional space spanned by

the rows of the matrix
(

zs
1 −z0zs−1

1 · · · ±zs
0

In−r

∣∣∣∣ 0
)
.

So, if A does not already contain the span of the last n− r vectors, we are done. If
it does then, since the rational normal curve of the first row sweeps out an (s+1)-
dimensional space but A is only (s ′+1+n−r)-dimensional, a general choice of z0

and z1 will have the property that A meets the kernel of P(z0, z1) in dimension at
most n− r , as desired. �
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Proposition 4.6. If Fk(Pr
m,n) is nonempty, then it is reducible.

Proof. We may assume that n>3, since the case of n=2 is just F1(P2
2,2)
∼= F1(D2

2,2),
which has two components, each a copy of P1.

Suppose first that k > 1. Then the reducibility follows from Propositions 4.4
and 4.5. Indeed,

Ck({1, . . . , n}, {1, . . . , r − 1}) and Ck({1, . . . , n}, {2, . . . , r})
are distinct irreducible components.

Suppose next that k = 1 and r > 2. We will consider subschemes

Z = C1({1, . . . , n}, τ ) and Z ′ = C1({1, . . . , n}, τ ′),
where |τ | = |τ ′| = r − 1 and we take τ , τ ′ to have smallest possible nonempty
intersection, that is, |τ ∩ τ ′| = max{1, 2(r − 1) − m)}. Each of these schemes
has dimension 2(κ(r − 1)− 1), and their intersection has codimension 2(r − 2)n
or 2(m − (r − 1))n in Z , Z ′. Applying Lemma 3.4 to a point in Z or Z ′ whose
r − 1 nonzero rows form the matrix C(z0, z1) in (11) shows that the tangent
space dimension of Fk(Pr

m,n) at general points of Z and Z ′ is bounded above by
2(κ(r − 1)− 1)+ δ(r − 1). Indeed, a straightforward calculation shows that the
permissible matrices A in Lemma 3.4 are precisely those matrices whose m− r +1
rows are linear combinations of the r−1 vectors obtained from the rows of C(z0, z1)

by flipping the sign of z1, yielding a total dimension of δ(r − 1).
Now, suppose that Y = F1(Pr

m,n) is irreducible. Then the codimension of Z , Z ′
in Fk(Pr

m,n) is bounded above by δ(r − 1)= (r − 1)(m− (r − 1)). Since we must
have

codimZ Z ∩ Z ′ ≤ codimY Z ′,
we get

2(r − 2)n ≤ (r − 1)(m− (r − 1)) if |τ ∩ τ ′| = 1,

2(m− (r − 1))n ≤ (r − 1)(m− (r − 1)) if |τ ∩ τ ′| = 2(r − 1)−m.

But both of these are impossible if r > 2, so Fk(Pr
m,n) cannot be irreducible.

Finally, suppose that k = 1 and r = 2. Then P2
m,n is reducible by [Laubenbacher

and Swanson 2000], so F1(P2
m,n) must be as well. Indeed, it is immediate from the

classification of minimal primary components of P2
m,n [Laubenbacher and Swanson

2000, Theorem 4.1] that every point of P2
m,n is contained in a line in P2

m,n . So there
is a surjective map from the universal bundle U over F1(P2

m,n) to P2
m,n . Hence, if

F1(P2
m,n) were irreducible, then U and P2

m,n would be too. �

The last result in this section studies the degrees of the components C(s) of
Fκ(s)(Dr

m,n) for s = 0, . . . , r − 1.
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Theorem 4.7. The s-compression spaces form a subscheme C(s) of the Fano
scheme Fκ(s)(Dr

m,n) isomorphic to Gr(s + n − r + 1, n) × Gr(m − s,m). The
embedding is via the Segre product of the (m−s)-fold Veronese of Gr(s+n−r+1, n)
in its Plücker embedding, and the (s+n−r+1)-fold Veronese of Gr(m− s,m) in its
Plücker embedding, possibly up to a linear projection. Thus, C(s) has degree

(
δ(s)

s(m− s)

)
d1 · (m− s)(s+n−r+1)(r−s−1) · d2 · (s+ n− r + 1)s(m−s),

where

d1 = ((s+ n− r + 1)(r − s− 1))!∏
1≤i≤r−s−1< j≤n( j − i)

and d2 = (s(m− s))!∏
1≤i≤s< j≤m( j − i)

.

Proof. Let t = s + n − r + 1. An s-compression space consists of the matrices
that send the row span of some full-rank t × n matrix A = (ai, j ) to the orthogonal
complement of the row span of a full-rank (m − s)×m matrix B = (bi, j ). We
would like to express the Plücker coordinates of this point of C(s) in terms of the
Plücker coordinates of A and of B.

The condition that a linear map M= (xi, j ) sends A to the orthogonal complement
of B is precisely the condition B M AT = 0; that is,

(B M AT )i, j =
m∑

u=1

n∑

v=1

bi,ua j,vxu,v = 0

for 1≤ i ≤ m− s and 1≤ j ≤ t . Thus, the compression space defined by A and B
can be represented by the t (m−s)×mn matrix C whose rows are indexed by (i, j)
and columns by (u, v), and whose ((i, j), (u, v)) entry is bi,ua j,v.

Write {pI }|I |=t and {qJ }|J |=m−s for the maximal minors of A and B, respectively.
The maximal minors of C are polynomials of bidegree (t (m− s), t (m− s)) in the
entries of A and in the entries of B and, by construction, they are invariant under
the action of GLt and GLm−s on A and B, respectively. It follows that they are
polynomials of bidegree m − s and t in the Plücker coordinates of A and of B,
respectively (whenever they are nonzero), since the Plücker coordinates generate
the rings of GL-invariants.

We do not have a general formula for the maximal minors of C , but can describe
the minors in special cases, and this will be enough to prove the theorem. Recall
that a maximal minor of C corresponds to choosing exactly t (m− s) entries xu,v

of M . Call a choice of exactly m− s entries in each of t columns of M A-pure; call
a choice of exactly t entries in each of m− s rows of M B-pure. In the following,
we will give a formula expressing A-pure and B-pure minors as monomials in the
pI and qJ .
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Suppose we have an B-pure choice of entries, which after permuting columns
can be described as follows. Let I1, . . . , Im−s be order-t subsets of {1, . . . , n}. Then
the t (m− s) entries of M

{(u, v) : u = 1, . . . ,m− s, v ∈ Ii } (16)

are B-pure. In other words, we choose t entries in each of the first m− s rows of
M as given by the sets I1, . . . , Im−s .

We claim in Lemma 4.8 below that the maximal minor of C that corresponds to
the choice of sets I1, . . . , Im−s in the way we just described is exactly

±pI1 · · · pIm−s q{1,...,m−s}t .

Of course, the argument applies, after permuting columns, to any B-pure maximal
minor; and a symmetric argument, which we omit, applies to any A-pure maximal
minor. Call a monomial in the pI and qJ pure if it involves a unique pI or if it
involves a unique qJ . Then it would follow immediately from the claim that every
pure monomial appears as a maximal minor of C.

Now, by the above discussion, we see that the map

X = Gr(t, n)×Gr(m− s,m)→ Fκ(s)(Dr
m,n)

taking a pair of subspaces A, B to the compression space mapping A into the
orthogonal complement of B is given by a linear system L which is a subspace
of the complete linear system |OX (m− s, t)|. Since every pure monomial appears
in L , it immediately follows that the map determined by L is an embedding.

The degree of Gr(a, b) in its Plücker embedding is known classically as

(a(b− a))!/
∏

1≤i≤a< j≤b

( j − i);

see, e.g., [Mukai 1993]. Thus, d1 and d2 are just the degrees of Gr(s+n−r+1, n)
and Gr(m − s,m) in their Plücker embeddings. It follows that the degree of X
embedded by |OX (m−s, t)| is given by the formula in the theorem, since the Hilbert
polynomial of a Segre product is the product of the Hilbert polynomials. But since
L is a subspace of |OX (m − s, t)| that also gives an embedding, the degree of X
embedded via L is the same. �

Lemma 4.8. The maximal minor of C corresponding to the sets I1, . . . , Im−s as in
(16) is

±pI1 · · · pIm−s q{1,...,m−s}t .

We give a running illustration of the proof that follows in Example 4.9.

Proof of Lemma 4.8. The rows of the t (m − s)× t (m − s) submatrix C ′ of C
in question are indexed by pairs (i, j) with i = 1, . . . ,m − s and j = 1, . . . , t .
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Order them lexicographically. The columns of C ′ are indexed by entries (i, j)
with i = 1, . . . , t , j ∈ Ii . Order these lexicographically as well; the determinant
is of course preserved up to sign. Then C ′ can be regarded as a block matrix with
(m− s)2 blocks Gi, j of size t × t ,

C ′ =




G1,1 · · · G1,m−s
...

. . .
...

Gm−s,1 · · · Gm−s,m−s


 ,

where Gi, j is the t × t matrix

Gi, j =




bi, j a1,I j,1 · · · bi, j a1,I j,t
...

. . .
...

bi, j at,I j,1 · · · bi, j at,I j,t


 .

Here, I j,l denotes the l-th element of I j in order.
But then C ′ evidently factors into the product of two matrices which can again

be regarded as having (m− s)2 blocks of size t× t . The first matrix has (i, j)-block
equal to bi, j · Idt . In the second matrix, each diagonal block (i, i) equal to the
Ii -submatrix of A, and every off-diagonal block is zero. Thus the determinant of C ′
is

pI1 · · · pIm−s q{1,...,m−s}t . �

Example 4.9. Let r = m = n = 4 and s = 1, so t = 2. A maximal submatrix C ′
of C corresponds to a choice of 6 entries of the 4× 4 matrix X . Suppose we pick
the B-pure submatrix given by




∗ ∗ · ·
∗ · ∗ ·
· ∗ ∗ ·
· · · ·


 ,

i.e., the entries (1, 1), (1, 2), (2, 1), (2, 3), (3, 2), (3, 3). Then C ′ is




(1, 1) (1, 2) (2, 1) (2, 3) (3, 2) (3, 3)
(1, 1) b11a11 b11a12 b12a11 b12a13 b13a12 b13a13

(1, 2) b11a21 b11a22 b12a21 b12a23 b13a22 b13a23

(2, 1) b21a11 b21a12 b22a11 b22a13 b23a12 b23a13

(2, 2) b21a21 b21a22 b22a21 b22a23 b23a22 b23a23

(3, 1) b31a11 b31a12 b32a11 b32a13 b33a12 b33a13

(3, 2) b31a21 b31a22 b32a21 b32a23 b33a22 b33a23






662 Melody Chan and Nathan Ilten

and it factors as the product



b11 b12 b13

b11 b12 b13

b21 b22 b23

b21 b22 b23

b31 b32 b33

b31 b32 b33







a11 a12

a21 a22

a11 a13

a21 a23

a12 a13

a22 a23



.

This shows that det C ′ = p12 p13 p23q2
123, as claimed in Lemma 4.8.

5. Smoothness and connectedness

5A. Smoothness and connectedness for Fk(Dr
m,n). Now we are equipped to de-

scribe which Fano schemes Fk(Dr
m,n) are smooth and irreducible. We restate the

theorem:

Theorem 1.2. Let 1≤ k < (r − 1)n.

(i) The Fano scheme Fk(Dr
m,n) is smooth if and only if k > (r − 2)n.

(ii) Fk(Dr
m,n) is irreducible if and only if m 6= n and k > (r − 2)n+m− r + 1.

Proof. For part (i), suppose that k > (r − 2)n. Then, for 0 ≤ s ≤ r − 2, we have
k > κ(s)− (m − s − 1). Indeed, the function κ(s)− (m − s − 1) is convex as
a function of s, and yields (r − 2)n and (r − 2)m when evaluated at s = r − 2
and s = 0, respectively. Since

κ(s)− (n− r + s)= κ(s− 1)− (m− (s− 1)− 1),

it follows that conditions (4) and (5) of Theorem 3.1 hold for all 0≤ s ≤ r − 1. By
Corollary 4.3, we may conclude that all torus fixed points of Fk(Dr

m,n) are smooth,
so Fk(Dr

m,n) must be smooth.
If on the other hand k ≤ (r−2)n, consider any point of Fk(Dr

m,n) corresponding
to an m×n matrix of linear forms whose first (m−r)+2 rows contain at most one
nonzero entry. This is a point of both Ck(r − 1) and Ck(r − 2), which are distinct
irreducible components by Corollary 4.3 and Proposition 4.5. Hence Fk(Dr

m,n) is
not smooth there.

For part (ii), assume k>(r−2)n+(m−r)+1 and m 6= n. Then we claim that the
only compression component appearing in Fk(Dr

m,n) is Ck(r − 1). Indeed, we have
that κ(r −2)= (r −2)n+m−r +1 and κ(r −2)−κ(0)= (r −2)(n−m−1)≥ 0.
Since κ(s) is a convex function, we have k > κ(s) for s = 0, . . . , r − 2. Now
Proposition 2.3 shows that all torus fixed points of Fk(Dr

m,n) must lie in Ck(r − 1).
Since these points are smooth by part (i), Ck(r−1) is the only irreducible component
of Fk(Dr

m,n).
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On the other hand, if k ≤ (r−2)n+(m−r)+1, then k ≤ κ(r−2) so Ck(r−2) is
also a component. Likewise, if n=m then both Ck(0) and Ck(r−1) are components,
since k ≤ (r − 1)n− 1 by assumption, and κ(0)= κ(r − 1)= (r − 1)n− 1. �

Corollary 5.1. If k > (r − 2)n, then Fk(Dr
m,n) is the disjoint union of compression

space components Ck(s).

Proof. The Fano scheme Fk(Dr
m,n) is smooth by Theorem 1.2(i). Let Z be any

irreducible component of Fk(Dr
m,n). By Remark 2.5, Z intersects a compression

space component Ck(s). But since Fk(Dr
m,n) is smooth, we must have Z = Ck(s).

�

Remark 5.2. It also follows from [Beasley 1987] that, under the assumption
k≥ κ(r−2), the only components of Fk(Dr

m,n) are Ck(s) for s ∈ {r−1, r−2, 1, 0}.
Furthermore, [de Seguins Pazzis 2013, Theorem 10] implies that if k≥κ(r−3), then
the only components of Fk(Dr

m,n) are Ck(s) for s ∈ {r − 1, r − 2, r − 3, 2, 1, 0}.
We can also give a near-complete description of when Fk(Dr

m,n) is connected.

Theorem 5.3. Suppose that 1≤ k < (r − 1)n.

(i) If there is some s= 0, . . . , r−2 such that k ≤ κ(s) and such that the conditions
(4) and (5) in Theorem 3.1 hold, then Fk(Dr

m,n) is disconnected.

(ii) If not, then Fk(Dr
m,n) is either connected or has exactly two connected compo-

nents. Furthermore, Fk(Dr
m,n) is connected if

k > κ(0) or k ≤ κ(0)− (m− r + 1)(r − 1).

In particular, if r = m and either condition (4) or condition (5) fails to hold
for every s = 0, . . . , r − 2 such that k ≤ κ(s), then Fk(Dr

m,n) is connected.

Proof. Given s ∈ {0, . . . , r − 2} such that k ≤ κ(s) and (4) and (5) hold, we want
to show that Fk(Dr

m,n) is disconnected. Since k ≤ κ(s), the scheme Fk(Dr
m,n)

contains an irreducible component Ck(s). Since (4) and (5) hold by assumption, all
of the points of Ck(s) are smooth by Corollary 4.3. Thus Ck(s) is itself a connected
component of Fk(Dr

m,n). On the other hand, since k ≤ (r − 1)n− 1= κ(r − 1), the
scheme Fk(Dr

m,n) also has an irreducible component Ck(r −1), distinct from Ck(s)
by Proposition 4.5. Hence Fk(Dr

m,n) is disconnected.
We now prove part (ii). Suppose instead that, for every s = 0, . . . , r − 2 such

that k ≤ κ(s), at least one of conditions (4) and (5) holds. Let us first show that
the compression components Ck(s) form either one or two connected components;
since all irreducible components of Fk(Dr

m,n) meet some compression component
by Remark 2.5, the same would be true for Fk(Dr

m,n).
Since k ≤ κ(r − 1), we again have that Ck(r − 1) is an irreducible compo-

nent of Fk(Dr
m,n). Now let S ⊆ {0, . . . , r − 2} be the set of numbers s such that
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κ(s)− (m− s− 1)≥ k. We claim that a number s belonging to S means precisely
that both Ck(s) and Ck(s + 1) appear as components of Fk(Dr

m,n), and the two
components meet. Indeed, they would intersect at a torus fixed point of the form




0 · · · 0 0
...
. . .

...
...

0 · · · 0 0
0 · · · 0



,

where the upper left (m − s)× (s + 1+ n − r) block, along with the top upper
left (m− s− 1)× (s+ 2+ n− r) block, is zero, and furthermore all but k+ 1 of
the unmarked entries are zero. (The point is that the number of blank entries in
the matrix above is κ(s)− (m− s− 1)+ 1 ≥ k+ 1, i.e., we can actually fit k+ 1
independent forms into the blanks.)

Furthermore, the only compression space components appearing in Fk(Dr
m,n),

apart from Ck(r − 1), have the form Ck(s) and Ck(s+ 1) for s ∈ S. This is because,
if k ≤ κ(s) for some 0< s < r −1 with s 6∈ S then, since (4) doesn’t hold, (5) must
hold. Then we must have

k ≤ κ(s)− (n− r + s)= κ(s− 1)− (m− (s− 1)− 1),

so s− 1 ∈ S.
One can check that κ(s)− (m − s − 1) is a convex function of s and that it

always takes a value when s = r − 2 at least as large as that when s = 0. We have
three cases: If S is empty, then Ck(r − 1) is the only compression component, so
Fk(Dr

m,n) is connected. Next, S could be a single interval S= {a, a+1, . . . , r−2}.
In that case, by our characterization of S, the compression components are precisely
Ck(a), . . . ,Ck(r−1), and they are again all connected. Otherwise, S must have the
form s = {0, . . . , a}t {b, . . . , r−2}. In this last case, the compression components
are Ck(0), . . . ,Ck(a+1),Ck(b), . . . ,Ck(r−1), and they form at most two connected
components.

Now we prove that the extra conditions specified in (ii) show that the union of
the compression components is connected (and so Fk(Dr

m,n) is connected). First,
if k > κ(0), then the last case above can’t occur, so Fk(Dr

m,n) is connected. If
instead k≤ κ(0)−(m−r+1)(r−1), then Ck(0) and Ck(r−1) both appear, and they
must intersect. Indeed, they meet at a torus fixed point in which the first 1+ n− r
columns and first m− (r − 1) rows are zero. Together with the previous paragraph,
this implies that Fk(Dr

m,n) actually has only one connected component.
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In particular, if m = r , then Fk(Dr
m,n) is always connected. We have already

proved this if k>κ(0). If k ≤ κ(0) then, by the assumption of part (ii), condition (4)
holds, i.e., k ≤ κ(0)− (m− 1)= κ(0)− (m− r + 1)(r − 1), so we are again done
by the previous analysis. �

Theorem 1.3, which characterizes exactly when Fk(Dm
m,n) is connected, follows

immediately from specializing Theorem 5.3 to the case r = m.

Remark 5.4. In the special case r = m, the proof of Theorem 5.3 implies the
following statement: if Fk(Dm

m,n) is disconnected, then it has an irreducible com-
ponent which is its own connected component. This statement is not always true
when r <m. Indeed, consider the example n=m=8, r =7, k=40. Then Fk(Dr

m,n)

consists only of the components Ck(0), Ck(1), Ck(r − 2), Ck(r − 1) by Remark 5.2.
The components Ck(0) and Ck(1) intersect, as do Ck(r−2) and Ck(r−1), and there
are no other intersections. Hence the Fano scheme is disconnected, but there is no
irreducible connected component. This makes it difficult to detect disconnectedness
of Fk(Dr

m,n) without complete knowledge of its irreducible components.
In fact, we don’t know if there is a situation in which the compression components

form two distinct connected components but some other component of Fk(Dr
m,n)

connects them. The first case that is unknown to us is n =m = 5, k = 10, and r = 4.
In this case, the compression components split into two connected components as in
the proof of Theorem 5.3, but k is not large enough to use Remark 5.2 to guarantee
that no other types of components appear.

We have seen that connectedness of Fk(Dr
m,n) can be nonmonotonic with k

(Table 1). But it is nevertheless true that, if k is sufficiently small, then Fk(Dr
m,n) is

connected.

Corollary 5.5. If

k ≤ m(r − 2)− ((n−m)− (r − 2))2

4
,

then the Fano scheme Fk(Dr
m,n) is connected.

Proof. If we pick k such that k ≤ κ(s)− (m− s−1) for all s, then we would ensure
that the set S in the proof of Theorem 5.3 is {0, . . . , r − 2} and hence Fk(Dr

m,n) is
connected. Now,

κ(s)− (m− s− 1)= s2+ s(n−m− r + 2)+m(r − 2)

is minimized when s =−(n−m− r + 2)/2, when it takes on value

m(r − 2)− ((n−m)− (r − 2))2

4
. �
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5B. Smoothness and connectedness for Fk(P r
m,n). We can now determine exactly

when Fk(Pr
m,n) is smooth, as stated in Theorem 1.4.

Theorem 1.4. Let k ≥ 1. The Fano scheme Fk(Pr
m,n) is smooth if and only if n = 2

or k > (r − 2)n+ 1.

Proof. If n = 2, then Fk(Pr
m,n) is either empty or the Fano scheme of lines on a

smooth quadric surface, which is the union of two disjoint copies of P1. Suppose
instead that n > 2 and k > (r − 2)n + 1. Suppose there is an s-compression
component Ck(σ, τ ) appearing in Fk(Pr

m,n), i.e., suppose k ≤ κ(s). We would like
to apply Theorem 3.2 to show that all the points of Ck(σ, τ ) are smooth points
of Fk(Pr

m,n). That would mean that all torus fixed points of Fk(Pr
m,n) are smooth

by Proposition 2.3, and so Fk(Pr
m,n) must be smooth.

First, let’s check that the hypotheses of Theorem 3.2 hold for our choice of k, r ,
and s. If r = 2, then k ≥ 2 by our assumption on k, and s = 0 or s = r − 1 are the
only possibilities. On the other hand, if r > 2, then we have k ≥ 5 as desired. Next,
we claim that s+1+n−r ≥ 3 if s 6= 0, and m−s≥ 3 if s 6= r−1. The first condition
could only fail if s = 1 and r = m = n; but in this case κ(1) = (r − 2)n+ 1 < k,
contradicting that k≤κ(1). Similarly, the second condition could only fail if s=r−2
and r = m, but in this case κ(r − 2)= (r − 2)n+ 1< k, again a contradiction.

Next, we always have that for 0≤ s ≤ r −2, k > κ(s)− (m− s−2). Indeed, the
function κ(s)− (m−s−2) is convex as a function of s, and yields (r−2)n+1 and
(r−2)m+1 when evaluated at s= r−2 and s= 0, respectively. Furthermore, since

κ(s)− (n− r + s− 1)= κ(s− 1)− (m− (s− 1)− 2),

it follows that conditions (6) and (7) of Theorem 3.2 hold for all 0≤ s ≤ r − 1.
Hence, we can apply Theorem 3.2 to all compression components appearing

in Fk(Pr
m,n). By Theorem 3.2, at any torus fixed point of Fk(Pr

m,n) which is
an s-compression space, the tangent space has dimension bounded above by
(k + 1)(κ(s)− k). But, by Proposition 4.4, this point is in a compression space
component of exactly this dimension. We conclude that all torus fixed points of
Fk(Pr

m,n) are smooth, so Fk(Pr
m,n) must be smooth.

Suppose instead that k ≤ (r −2)n+1 and n 6= 2; we must show that Fk(Pr
m,n) is

singular. First, let us assume that k > 1. Then, by Proposition 4.4, Ck(r − 1) is an
irreducible component and has dimension (k+1)(κ(r−1)−k). Consider a point P of
Ck(r−1) corresponding to an m×n matrix whose first m−r+2 rows have the form




0 · · · 0 0 0
...
. . .

...
...
...

0 · · · 0 0 0
0 · · · 0 z0 z1


 , (17)
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that is, the first m− r + 1 rows are zero, and in the (m−r+2)-nd row, all entries
vanish except the two on the right. Now, perturbing the relations among the entries
of P not in the first m− r + 1 rows gives (k+ 1)(κ(r − 1)− k) tangent directions
as in the proof of Lemma 3.4. However, we may also perturb P by changing its
first m− r + 2 rows to 



0 · · · 0 0 0
...
. . .

...
...

...

0 · · · 0 εz0 −εz1

0 · · · 0 z0 z1




to get an additional tangent vector. Hence, Fk(Pr
m,n) is not smooth at this point.

To conclude, we must deal with the case k = 1, still supposing that n 6= 2 and
k ≤ (r − 2)n+ 1. First, suppose that r > 2 and consider the point P ∈ C1(r − 1)
corresponding to the m× n matrix whose bottom row is ( z0 z1 0 · · · 0 ), with
0 entries everywhere else. Then by Lemma 3.4, the dimension of the tangent
space to Fk(Pr

m,n) at P is 2(mn− 2). Consider instead the point P ′ ∈ C1(r − 1)
corresponding to the m× n matrix

(
A
C

)

with A an (m−r+1)×n block of zeroes and C =C(z0, z1) (for s= r−1); see (11).
A straightforward calculation with Lemma 3.4 gives dim TP ′Fk(Pr

m,n) < 2(mn−2).
Hence, Fk(Pr

m,n) must be singular at P .
Finally, we now assume that k = 1 and r = 2. Let P ∈ Fk(Pr

m,n) correspond to
the m × n matrix of (17). There is a first-order deformation of this linear space
given by perturbing P to




0 · · · 0 0 0
...
. . .

...
...

...

0 · · · 0 εz0 −εz1

0 · · · εz0 z0 z1


 .

This cannot be lifted to second order: there are obstruction terms ε2z2
0 and −ε2z0z1

which cannot simultaneously be canceled out. Indeed, the only possibility for
canceling either obstruction is by including an order-two term at the upper left of
the lower 2× 3 block of the above matrix, and these terms do not agree. Hence,
F1(Pr

m,n) is not smooth at P . �

Corollary 5.6. If k > (r − 2)n + 1, then all components of Fk(Pr
m,n) are of the

form Ck(σ, τ ).
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Proof. If k > (r − 2)n + 1 then, by Theorem 1.4, Fk(Pr
m,n) is smooth. By the

arguments in the proof of Theorem 1.4 above, each Ck(σ, τ ) is actually an irreducible
component. Since any irreducible component of Fk(Pr

m,n) intersects some Ck(σ, τ ),
all components must have this form. �

Our result on the connectedness of Fk(Pr
m,n) is similar to the case for Fk(Dr

m,n):

Theorem 5.7. Suppose that 1≤ k < (r − 1)n.

(i) Suppose there is some s= 0, . . . , r−1 satisfying the conditions of Theorem 3.2
and satisfying (6) and (7) as well. Then Fk(Pr

m,n) is disconnected.

(ii) Conversely, Fk(Pr
m,n) is connected if k ≤max{κ(0), κ(r − 2)} and:

(a) for each integer s with 0 < s < r − 1 satisfying k ≤ κ(s), we have
k ≤ κ(s)−min{m− s− 1, n− r + s}; and

(b) if k ≤ κ(0), then k ≤ κ(0)− (m− r + 1)(r − 1).

Proof of Theorem 5.7. If the hypotheses in (i) are met then, by Theorem 3.2
and Proposition 4.4, Ck(σ, τ ) is an irreducible component whose points are all
smooth points of Fk(Pr

m,n) for any σ ⊂ {1, . . . , n}, τ ⊂ {1, . . . ,m} with |τ | = s
and |σ | = s+ 1+ n− r . Each of these irreducible components Ck(σ, τ ) is thus a
connected component of Fk(Pr

m,n), so this Fano scheme is not connected.
Suppose on the other hand that the hypotheses in (ii) hold. Then, as in the proof

of Theorem 5.3, we may connect any irreducible component of Fk(Pr
m,n) to some

Ck(σ, τ ), where |τ |= r−1. Hence, to show connectedness, we must simply connect
all subschemes of the form Ck(σ, τ ) with |τ | = r − 1.

If k ≤ κ(0), then we may consider the subscheme Ck({1, . . . , n− r + 1}, {}). By
assumption (ii)(b), this clearly intersects every subscheme of the form Ck(σ, τ )

where |τ | = r − 1. Likewise, if k ≤ κ(r − 2), we may assume r > 2 for otherwise
we are done by the previous case. Then, by assumption (ii)(a), we have

k ≤ κ(r − 2)−min{m− r + 1, n− 2} ≤ κ(r − 2)− (m− r + 1).

Then we may connect subschemes of the form Ck(σ, τ ), where |τ | = r − 1, via
subschemes of the form Ck(σ

′, τ ′), where |τ ′| = r − 2. Hence, in both cases,
Fk(Pr

m,n) is connected. �

Corollary 5.8. If

k ≤ m(r − 2)− ((n−m)− (r − 2))2

4
,

then the Fano scheme Fk(Pr
m,n) is connected.

Proof. Similarly to the proof of Corollary 5.5, the bound on k implies that k ≤
κ(s)− (m − s − 1) for all s. Thus all compression components Ck(σ, τ ) appear.
Further, just as in the proof of Theorem 5.7, for each s=0, . . . , r−2, the components
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of the form Ck(σ, τ ) with |τ | = s+1 are connected via the components of the form
Ck(σ

′, τ ′) with |τ ′| = s. �

6. Fano schemes of lines

To start out this section, we will prove Theorem 1.1, giving a complete descrip-
tion of the components of F1(Dr

m,n), expanding on [Eisenbud and Harris 1988,
Corollary 2.2].

Theorem 1.1. The Fano scheme F1(Dr
m,n) has exactly r irreducible components,

of dimensions
δ(s)+ 2(κ(s)− 1) for 0≤ s ≤ r − 1.

In particular, if m = n, then each irreducible component of F1(Dr
n,n) has dimension

(n − r)(r − 2)+ 2nr − n − 5. If r > 2, then all components intersect pairwise.
Furthermore, if r = m = n, then F1(Dn

n,n) is a reduced local complete intersection.

Remark 6.1. To clarify, we are claiming in Theorem 1.1 that F1(Dr
m,n) has exactly

r minimal primary components; there may well be embedded components in addition
to these. On the other hand, in the hypersurface case r =m= n, our theorem implies
that F1(Dr

m,n) is reduced, so in that case there can’t be any embedded components.

Proof of Theorem 1.1. By considering the Kronecker canonical form of a pencil of
matrices [Gantmacher 1959, Section XII.4], it follows that every point of F1(Dr

m,n)

is contained in a subscheme of the form C1(s) for s = 0, . . . , r − 1. These form ex-
actly r distinct components of F1(Dr

m,n) of the desired dimension, by Corollary 4.3
and Proposition 4.5. In particular, if m = n, then each of the r components has
dimension δ(s)+ 2(κ(s)− 1)= (n− r)(r − 2)+ 2nr − n− 5. It is also easy to see
that, unless r = 2, any two components C1(s) and C1(s ′) intersect at a torus fixed
point that has all zero entries in its upper left (m − s)× (s + 1+ n− r) block as
well as in its upper left (m− s ′)× (s ′+ 1+ n− r) block.

If m = n = r , then Dr
m,n is a hypersurface of degree n, and F1(Dn

n,n) is the
zero locus of a global section of a rank n+ 1 vector bundle on Gr(2, n2); see, e.g.,
[Eisenbud and Harris 2013, Proposition 8.4]. Moreover, each of the n components
F1(Dr

m,n) has dimension 2n2−n−5, implying that F1(Dn
n,n) has codimension n+1

in Gr(2, n2). Therefore, F1(Dr
m,n) is a local complete intersection. Furthermore, it

must be reduced, since it is a local complete intersection and is generically reduced
by Theorem 3.1. �

Remark 6.2. We would like to prove a similar result for the Fano scheme F1(Pr
m,n),

especially in the case r = m = n. A modification of the argument used to prove
Theorem 3.2 may be used to show that, for a general point η of any C1(σ, τ ),

dim TηF1(Pr
m,n)≤ δ(s)+ 2(κ(s)− 1).
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n Degree of F1(Dn
n,n)

2 4
3 2754
4 97943936
5 91842552457500
6 1905481100678765027040

Table 3. Degrees of Fano schemes of lines.

In the special case r = m = n, the right-hand side again simplifies to 2n2− n− 5,
which, as above is the expected dimension of F1(Pn

n,n). To complete the argument
that F1(Pn

n,n) has the expected dimension (and is thus a reduced local complete
intersection) one would need to show that every irreducible component of F1(Pn

n,n)

contains one of the subschemes C1(σ, τ ).
Our computer calculations show that F1(Pn

n,n) indeed has the expected dimension
for n = 3 and 4. We conjecture that in fact F1(Pn

n,n) has the expected dimension
for all n; see Conjecture 8.1.

Proposition 6.3. The Fano scheme F1(Dn
n,n) has degree equal to

∫

Gr(2,n2)

cn+1(Symn S∗) ·L2n2−n−5,

where S denotes the tautological rank-2 subbundle and L the tautological line
bundle of Gr(2, n2). For n ≤ 6, these values are recorded in Table 3.

Proof. By Theorem 1.1, F1(Dn
n,n) has the expected codimension of n+1 in Gr(2, n2).

Hence, [Eisenbud and Harris 2013, Proposition 8.4] implies that the Chow class
of F1(Dn

n,n) in the Chow ring of Gr(2, n2) is just cn+1(Symn S∗), and the claim
follows.

The degrees for n ≤ 6 may now be explicitly computed using Schubert calculus.
We do this using the Schubert2 package of Macaulay2 [Grayson and Stillman
1996]:

loadPackage "Schubert2"
G = flagBundle({2,n^2-2});
(S,Q)=G.Bundles;
c= chern(n+1,symmetricPower(n,dual S));
L=chern_1 tautologicalLineBundle G;
integral (c*L^(2*n^2-n-5))

These are shown in Table 3. �
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Component Dimension Smooth?

C1(0) 10 No
F1(D3

3,3) C1(1) 10 No
C1(2) 10 No

C2(0) 11 No

F2(D3
3,3)

C2(1) 10 No
C2(2) 11 No
C∗ 8 Yes

C3(0) 10 Yes
F3(D3

3,3) C3(1) 8 Yes
C3(2) 10 Yes

C4(0) 7 Yes
F4(D3

3,3) C4(1) 4 Yes
C4(2) 7 Yes

F5(D3
3,3)

C5(0) 2 Yes
C5(2) 2 Yes

Table 4. Irreducible components of Fk(D3
3,3) for 1≤ k ≤ 5.

Remark 6.4. We cannot use these methods to compute the degree of Fk(Dn
n,n)

for k > 1. Indeed, the dimension of Fk(Dn
n,n) is larger than the expected dimension,

as a quick computation shows.

Remark 6.5. If one can show that dim F1(Pn
n,n) = dim F1(Dn

n,n), then the above
degree computations hold for the Fano scheme F1(Pn

n,n) as well. In particular, they
hold for the cases n = 3 and 4, as in Remark 6.2.

7. Fano schemes for 3 × 3 matrices

7A. The Fano schemes Fk(D3
3,3). Using the results of the previous sections, we

may glean quite a bit of information about Fk(D3
3,3), 1≤k≤5. It is never irreducible,

it is smooth if and only if k= 4 or 5, and it is disconnected again if and only if k= 4
or 5. Furthermore, the degree of F5(D3

3,3) is 18, and the degree of F1(D3
3,3) is 2754.

We may use the results of [Atkinson 1983] to actually describe all nonembedded
irreducible components of Fk(D3

3,3). Let C∗ be the GL3×GL3-orbit closure of a
general 3× 3 antisymmetric matrix in F2(D3

3,3). It follows from [Atkinson 1983]
that any point of Fk(D3

3,3) is either a subspace of a compression space or, in the
case k = 2, a point of C∗; see also [Eisenbud and Harris 1988, Theorem 1.1].

Proposition 7.1. The irreducible components of Fk(D3
3,3) are exactly the ones

described in Table 4.
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Proof. That these are exactly the components follows from the above discussion,
Corollary 4.3, and Proposition 4.5. The dimension calculations, with the exception
of C∗, follow from Corollary 4.3 as well. The dimension of C∗ follows from a
straightforward calculation of the stabilizer of GL3×GL3 at the point corresponding
to a general antisymmetric matrix, which has dimension 10.

Regarding smoothness, the components Ck(s) are smooth if and only if k ≥ 3,
by Theorem 4.1. To show that the component C∗ is smooth, it suffices to show
that it is smooth at its torus fixed points. We claim that the only fixed points in C∗
are (S3× S3)-equivalent to the point P in Example 7.3 below. Indeed, let Q be a
general 3× 3 antisymmetric matrix. A straightforward calculation shows that, for
any A, B ∈ GL3, the space of linear forms spanned by the first row of A · Q · B is
at most two-dimensional. Hence, the GL3×GL3 orbit of Q does not intersect the
Plücker chart containing the torus fixed point

P ′ =


∗ ∗ ∗
0 0 0
0 0 0


 ,

so the orbit closure C∗ does not contain this fixed point, or any fixed point (S3× S3)-
equivalent to it. Furthermore, C∗ cannot contain a fixed point (S3× S3)-equivalent
to

P ′′ =


∗ ∗ 0
0 0 ∗
0 0 0


 .

Indeed, P ′′ is in the same GL3×GL3 orbit as



z0 z1 z2

0 0 z2

0 0 0


 ,

whose T -orbit closure contains P ′. The same argument excludes any torus fixed
points (S3× S3)-equivalent to P ′T or P ′′T . Hence, all fixed points in C∗ are of the
desired form.

Now, an explicit calculation as in the example below shows that C∗ is smooth
at P . Hence, C∗ is smooth at all its torus fixed points, and thus smooth. �

Remark 7.2. Even though all irreducible components of F3(D3
3,3) are smooth, the

Fano scheme itself is not smooth, since the components have nonempty intersection.

Example 7.3 (a formal neighborhood in F2(D3
3,3)). We will analyze a neighborhood

of the torus fixed point

P =


∗ ∗ 0
∗ 0 0
0 0 0



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in F2(D3
3,3). In this case, it is advantageous to consider a formal neighborhood,

since the defining equations are easier to calculate.
First, let us assume that char K = 0. Using Macaulay2 [Grayson and Stillman

1996] and the package VersalDeformations [Ilten 2012], we calculate a formal
neighborhood of this fixed point:

loadPackage "VersalDeformations";
A=QQ[x_1..x_9];
M=genericMatrix(R,3,3);
S=A/ideal det M;
J=ideal(x_3,x_5..x_9);
(F,R,G,C)=localHilbertScheme(gens J);

Primary decomposition of the obstruction equations gives two 11-dimensional
components, one 10-dimensional component, four 8-dimensional components, and
one 7-dimensional component:

decomp=primaryDecomposition(sub(ideal sum G,QQ[gens ring G_0]));
apply(decomp,i->dim i)

Closer inspection shows that the 11- and 10-dimensional components are non-
embedded, as is one 8-dimensional component. Furthermore, these components
are all smooth. The other three 8-dimensional components are embedded in the
10-dimensional component, and the 7-dimensional component is embedded in the
two 11-dimensional components.

We draw two conclusions. First, F2(D3
3,3) is nonreduced. Second, all irreducible

components of F2(D3
3,3) (with their reduced structure) are smooth at P . In particular,

C∗ is smooth at P .
Even if char K> 0, the above calculation shows that C∗ is smooth at P . Indeed, it

still follows from the calculation that F2(D3
3,3) contains a 10-dimensional subscheme

Z contained in C∗ and smooth at P . But, since dimC∗ = 10, this is just C∗.

7B. The Fano schemes Fk(P3
3,3). Using the results of the previous sections, we

may also say quite a bit about Fk(P3
3,3) for 1≤ k ≤ 5. It is never irreducible, and it

is smooth if and only if k = 5. It is disconnected if k = 5 and connected if k ≤ 3.
By the discussion below, we will see that it is disconnected if k = 4. Furthermore,
F5(P3

3,3) consists just of 6 points, and hence has degree 6, while, by Remark 6.5,
the degree of F1(P3

3,3) is 2754.

4-planes on the 3×3 permanental hypersurface. As an example of the rich geometry
that can occur, we will now give a detailed description of F4(P3

3,3). We will do
this by looking at the local structure of F4(P3

3,3) around torus fixed points. For
simplicity, we assume char K = 0, although we expect the calculation to hold in
arbitrary characteristic.
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Let’s start by considering the fixed point

P =



0 0 ∗
0 0 ∗
∗ ∗ ∗


 .

There are nine fixed points in the S3 × S3 orbit of P . Explicit calculation on
the corresponding Plücker chart shows that, around P , F4(P3

3,3) is cut out by the
equations r1r2 = s1s2 = 0 in Spec K[r1, r2, s1, s2], with a parametrization given by




s1z0+ r1z2− r1s1z4 s2z0− r1z3+ r1s2z4 z0

−s1z1+ r2z2+ r2s1z4 −s2z1− r2z3− r2s2z4 z1

z2 z3 z4


 .

On this chart, F4(P3
3,3) thus decomposes into four copies of A2.

Each copy of A2 compactifies in F4(P3
3,3) to a P1 × P1, as can be seen by

considering transition maps to the charts containing the other fixed points in the
S3× S3 orbit of P . In fact, one can parametrize these components explicitly. For
example, for the component given locally by r2 = s2 = 0, we can identify a point
((u0 : u1), (v0 : v1)) with the space of matrices that are orthogonal to the four
matrices




0 0 0
0 1 0
0 0 0


 ,




0 0 0
u0 0 u1

0 0 0


 ,




0 v0 0
0 0 0
0 v1 0


 ,




u0v0 0 −u1v0

0 0 0
−u0v1 0 u1v1




with respect to the entrywise inner product. On the affine chart of this P1 ×P1

given by u0 6= 0, v0 6= 0, there is an isomorphism with the r2 = s2 = 0 copy of A2

from above, gotten by setting s1 = u1/u0 and r1 = v1/v0. The other three standard
affine charts of this P1×P1 ⊂ F4(P3

3,3) are just copies of A2 containing other fixed
points in the S3× S3 orbit of P .

The S3× S3 action on rows and columns gives a total of nine copies of P1×P1;
these are exactly the irreducible components containing a fixed point equivalent
to P . The previous parametrization shows that they are all embedded in a linear
subspace of Gr(5, 9) by O(2, 2), and hence each has degree 8. Together, they
form a connected component of F4(P3

3,3). Its dual intersection complex, drawn
on the fundamental domain of a torus, is pictured in Figure 1. The fixed points,
corresponding to the nine squares, are labeled.

Next, consider the fixed point

Q =



0 0 0
0 ∗ ∗
∗ ∗ ∗


 .
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


0 ∗ 0
∗ ∗ ∗
0 ∗ 0







∗ 0 0
∗ ∗ ∗
∗ 0 0







0 0 ∗
∗ ∗ ∗
0 0 ∗







0 ∗ 0
0 ∗ 0
∗ ∗ ∗







∗ ∗ ∗
0 ∗ 0
0 ∗ 0







∗ 0 0
∗ 0 0
∗ ∗ ∗







∗ ∗ ∗
∗ 0 0
∗ 0 0







∗ ∗ ∗
0 0 ∗
0 0 ∗







0 0 ∗
0 0 ∗
∗ ∗ ∗




Figure 1. Dual intersection complex for the first connected com-
ponent of F4(P3

3,3).

There are 18 fixed points in the S3 × S3 orbit of Q and, after transposition, one
gets 18 more fixed points. Together with the orbit of P above, this covers all fixed
points in F4(P3

3,3).
Explicit calculation on the Plücker chart containing Q shows that Q is contained

in 4 components of F4(P3
3,3). One component is just C4({1, 2, 3}, {2, 3}), which

is isomorphic to Gr(5, 6)∼= P5, linearly embedded and hence of degree 1. There
is an embedded component which is just a fat point supported on Q. The other
two components are two-dimensional, locally cut out by the equation t1t2 = 0 in
Spec K[t1, t2, t3], with a parametrization given by



−t1z2 t2t3z3+ t1z3− t3z0 −t2t3z4+ t1z4+ t3z1

−t2z2 z0 z1

z2 z3 z4


 .

By again considering transition maps to other charts, one sees that both of these
components compactify in F4(P3

3,3) to F1, the first Hirzebruch surface.
As above, we can parametrize these components explicitly. Consider the Cox

ring K[u0, u1, v, w] of F1, with the degrees of u0, u1, v, w given by the columns
of the matrix

(1
0

1
0

1
1

0
1

)
. For the component given locally by t2 = 0, we can identify

a point (u0 : u1 : v : w) with the space of matrices orthogonal to the four matrices



0 0 0
1 0 0
0 0 0


 ,




u0 0 0
0 0 0
u1 0 0


 ,




0 u0w 0
0 v 0
0 u1w 0


 ,




0 0 u0w

0 0 −v
0 0 −u1w



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Connected component Type # Degree

I P1×P1 9 8

P5 3 1
II and III F1 9 8

Fat point 18 −

Table 5. Primary decomposition for the connected components of F4(P3
3,3).

with respect to the entrywise inner product. A parametrization of the other com-
ponent is gotten by an appropriate permutation of the above. It follows from this
parametrization that both copies of F1 are embedded by a divisor of type (3, 2)
in the given basis of the Picard group, which is simply the anticanonical class. In
particular, each of these components has degree 8.

By letting S3× S3 act, we get a total of nine copies of F1, each of which contains
four fixed points in the S3× S3 orbit of Q. The dual intersection complex is the
simplicial complex which is the union of the boundary complexes of three disjoint
2-simplices, with intersections taking place in torus invariant divisors with self-
intersection zero. The S3 × S3 action also gives us 3 copies of P5, and each F1

intersects exactly one of these in a line and the other two in a point. Together, these
form a second connected component of F4(P3

3,3).
Finally, transposing all matrices gives a third connected component, isomorphic

to the second. We conclude that F4(P3
3,3) is neither reduced nor connected though,

in their reduced structures, every irreducible component is smooth. Summing this
all up, we have the following:

Proposition 7.4. The Fano scheme F4(P3
3,3) has exactly three connected compo-

nents. Their primary decompositions are as described in Table 5.

8. Comparisons and further questions

In our study of Fano schemes of determinants and permanents, we have seen that a
good understanding of the components Ck(s) and Ck(σ, τ ) induced by compression
spaces can already say a lot about the geometry of the entire Fano scheme. One
striking difference between Fk(Dr

m,n) and Fk(Pr
m,n) is that, while the components

C(s) are positive-dimensional, the components C(σ, τ ) are isolated points. This has
the following consequences:

• For large values of k, the dimension of Fk(Dr
m,n) is greater than that of Fk(Pr

m,n).
In other words, Dr

m,n contains “more” high-dimensional linear spaces than Pr
m,n .

• For large values of k, Fk(Dr
m,n) has fewer irreducible components than Fk(Pr

m,n).
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For the case of lines on the determinantal and permanental hypersurfaces, how-
ever, we conjecture that Pn

n,n behaves exactly as Dn
n,n does; we have verified that

this is the case for n = 3, 4.

Conjecture 8.1. The Fano scheme F1(Pn
n,n) has dimension 2n2−n−5, that is, the

expected dimension, and is a reduced local complete intersection.

Even though the compression subschemes Ck(s) and C(σ, τ ) give a surprising
amount of information about the global structure of our Fano schemes, one way
in which they fail to tell the whole story is that they don’t by themselves detect
connectedness, as far as we know. See Remark 5.4 for a detailed discussion. In
particular, we would like to know:

Question 8.2. Is the Fano scheme F10(D4
5,5) connected? (See Remark 5.4.) More

generally, is there a Fano scheme Fk(Dr
m,n) which is connected but whose com-

pression components Ck(s) are not by themselves connected?

A frequently asked question regarding a moduli space is whether it is rational
or unirational. The components Ck(s) of Fk(Dr

m,n) are, by construction, unira-
tional; furthermore, the single exotic component C∗ of F2(D3

3,3) is also obviously
unirational. We suspect that all irreducible components of Fk(Dr

m,n) may well
be unirational. Rationality is more delicate: we do not even know if the compo-
nents Ck(s) are rational, although we can prove that they are for the cases s = 0
and r − 1.

Question 8.3. Are the irreducible components of Fk(Dr
m,n) unirational? Are they

rational?

Finally, our choice of the schemes Dr
m,n and Pr

m,n was motivated by Valiant’s
conjecture. They can be simultaneously generalized, however, in the following
interesting way. Fix any character χ of the symmetric group Sr on r letters. The
χ -immanant of an r × r matrix (xi j ) is the degree-r polynomial with r ! terms,

Immχ =
∑

σ∈Sr

χ(σ)x1σ(1) · · · xrσ(r).

Thus the χ -immanant specializes to the determinant and permanent by choosing χ to
be the sign or trivial character, respectively. Now consider the scheme Dχ,r

m,n⊂Pmn−1

cut out by the r × r χ -immanants of a general m× n matrix. As χ varies, we have
a family of schemes that interpolate between Dr

m,n and Pr
m,n .

Question 8.4. What is the structure of the Fano scheme Fk(D
χ,r
m,n)? Does Fk(D

χ,r
m,n)

behave like Fk(Dr
m,n) or Fk(Pr

m,n)?
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