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On the basepoint-free theorem
for log canonical threefolds over the
algebraic closure of a finite field

Diletta Martinelli, Yusuke Nakamura and Jakub Witaszek

We prove the basepoint-free theorem for big line bundles on a three-dimensional
log canonical projective pair defined over the algebraic closure of a finite field.
This theorem is not valid for any other algebraically closed field.

1. Introduction

A line bundle L is called semiample if some positive tensor power L⊗r is generated
by global sections. Semiample line bundles play an important role in algebraic
geometry, because they determine morphisms of a variety into projective spaces.
Therefore, one would like to find necessary and sufficient conditions for semi-
ampleness. A semiample line bundle is necessarily nef, but the converse is false
in general. However, if we assume that L is the canonical bundle and is nef, then
the abundance conjecture [Kollár and Mori 1998, Conjecture 3.12] states that L
must be semiample. Furthermore, the basepoint-free theorem [Kollár and Mori
1998, Theorem 3.3] asserts that a nef line bundle L on a Kawamata log terminal
projective pair (X,1) defined over an algebraically closed field of characteristic
zero is semiample when L − (K X +1) is nef and big.

In positive characteristic, questions regarding semiampleness are more difficult,
due to the absence of a proof of the resolution of singularities for varieties of
dimension greater than three and the failure of the Kawamata–Viehweg vanishing
theorem. As such, the basepoint-free theorem remains still unsolved in general.
However, many partial results for threefolds may be obtained by reductions to the
two-dimensional cases.

The basepoint-free theorem in positive characteristic is known for big line bundles
L when (X,1) is a three-dimensional Kawamata log terminal projective pair defined
over an algebraically closed field of characteristic larger than five (see [Birkar 2013;
Xu 2013]). Over Fp, the algebraic closure of a finite field, there is a stronger result,
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due to Keel [1999], who proved the basepoint-free theorem for big line bundles
L when (X,1) is a three-dimensional projective log pair defined over Fp with all
coefficients of 1 less than one.

In this paper, we generalize Keel’s result to the cases where the coefficients of
1 may be equal to one. Our main theorem is the following:

Theorem 1.1. Let (X,1) be a three-dimensional projective log pair defined over Fp.
Assume that one of the following conditions holds:

(1) (X,1) is log canonical.

(2) All the coefficients of 1 are at most one and each irreducible component of
Supp(b1c) is normal.

Let L be a nef and big line bundle on X. If L − (K X +1) is also nef and big, then
L is semiample.

The next corollary follows easily from Theorem 1.1.

Corollary 1.2. Let (X,1) be a three-dimensional log canonical projective pair
defined over Fp.

(1) If K X +1 is nef and big, then K X +1 is semiample.

(2) If −(K X +1) is nef and big, then −(K X +1) is semiample.

Remark 1.3. Theorem 1.1 does not hold over fields k 6= Fp even in the two-
dimensional case (Example 7.2). Corollary 1.2(2) also does not hold over alge-
braically closed fields k 6= Fp (Example 7.3).

In Example 7.1, we give a counterexample to Theorem 1.1 if one does not impose
any conditions on the effective Q-divisor 1. It is not clear whether the theorem
remains true if we only assume that all the coefficients of 1 are at most one.

We also prove the basepoint-free theorem for normal surfaces defined over Fp

without assuming bigness:

Theorem 1.4. Let X be a normal projective surface defined over Fp and let 1 be
an effective Q-divisor. Assume that we have a nef line bundle L on X such that
L − (K X +1) is also nef. Then L is semiample.

Remark 1.5. It is not true in general that nef line bundles on smooth surfaces over
Fp are semiample (see Totaro’s example [2009]).

Remark 1.6. Theorem 1.1 and Theorem 1.4 hold if we assume that L is only a
Q-Cartier Q-divisor. Note that if L and L − (K X +1) are big and nef, then

nL − (K X +1)= (n− 1)L + (L − (K X +1))

is also big and nef for any integer n ≥ 1.



On the basepoint-free theorem for log canonical threefolds over Fp 727

The paper is organized as follows: in Section 2, we review some definitions and
facts from minimal model theory and about the conductor scheme. Further, we
list some results from [Keel 1999] and show lemmas necessary for the proof of
the main theorem. In Section 3, we prove the basepoint-free theorem for surfaces
under weaker assumptions (Theorem 1.4). In Section 4, generalizing the proof
of [Keel 1999, Theorem 0.5], we reduce Theorem 1.1 to showing that the line
bundle L|Suppb1c is semiample (Theorem 4.1). If Suppb1c is irreducible, we know
that L|Suppb1c is semiample by Theorem 1.4. The nonirreducible case is treated
in Section 5. In order to generalize Theorem 1.4 to the nonirreducible surfaces,
we combine ideas from Fujino [2000] and Tanaka [2014], together with special
properties of varieties defined over Fp, which are proved in Section 2. In Section 6,
we complete the proof of Theorem 1.1 and of Corollary 1.2. In Section 7, we give
the counterexamples stated in Remark 1.3.

Notation and conventions. • When we work over a normal variety X , we often
identify a line bundle L with the divisor corresponding to L . For example, we use
the additive notation L + A for a line bundle L and a divisor A.

• Following the notation of [Keel 1999], for a morphism f : X→ Y , a line bundle
L on Y , and a section s ∈ H 0(Y, L), we denote by L|X and s|X the pullbacks f ∗L
and f ∗s, respectively.

• With the same notation as above, we say that a section t ∈ H 0(X, L|X ) descends
to Y if there exists a section s ∈ H 0(Y, L) such that f ∗s = t .

• Let X be a reduced scheme of finite type over a field, X =
⋃

X i the decomposition
into irreducible components, and X i → X i the normalizations. Then we define the
normalization of X as the composition

⊔
X i →

⊔
X i → X .

• Let X be a scheme and F ⊂ X a closed subscheme. Let L be a line bundle on X
and s ∈ H 0(X, L) its section. We say that s is nowhere-vanishing on F if s|{x} is
not zero as an element in the one-dimensional vector space H 0({x}, L|{x}) for any
closed point x ∈ F .

• We say that a line bundle L on X is semiample when the linear system |mL| is
basepoint-free for a sufficiently large and divisible positive integer m. When L is
semiample, the surjective map f : X→Y defined by |mL| satisfies f∗OX =OY for a
sufficiently large and divisible positive integer m. We call f the map associated to L .

2. Preliminaries

2A. Log pairs. A log pair (X,1) is a normal variety X and an effective Q-divisor
1 such that K X +1 is Q-Cartier.
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For a proper birational morphism f : X ′→ X from a normal variety X ′, we write

K X ′ +
∑

i

ai Ei = f ∗(K X +1),

where the Ei are prime divisors. We say that the pair (X,1) is log canonical if
ai ≤ 1 for any proper birational morphism f . Further, we say that the pair (X,1)
is Kawamata log terminal if ai < 1 for any proper birational morphism f .

2B. Conductor schemes. Let X be a reduced scheme of finite type over a field
and X→ X its normalization. We identify the sheaf of rings OX as a subring of OX .
Let I⊂ OX be the maximal ideal sheaf satisfying IOX ⊂ OX . The conductor of X
is the subscheme D⊂ X defined by I. By abuse of notation, the subscheme C⊂ X
defined by IOX will also be called the conductor.

The notion of conductor is important to descend sections, because of the following
remark:

Remark 2.1. Let C⊂ X , D⊂ X be conductors and let L be a line bundle on X :

C

��

� � // X

��

D �
�

// X

By definition of the conductor, we have the following exact sequence

0−→ H 0(X, L)−→ H 0(X , L|X )⊕ H 0(D, L|D)−→ H 0(C, L|C),

where the second map is defined by t 7→ (t |X , t |D) and the third map is defined by
(t, u) 7→ t |C−u|C. Therefore, a section s ∈ H 0(X , L|X ) descends to X if and only
if s|C descends to D.

2C. Adjunction formula. Let (X,1) be a log pair and S the union of the supports
of some of the divisors with coefficient one in1. Let p : S→ S be the normalization
of S. Then there exists an effective Q-divisor 1S on S such that

KS +1S = (K X +1)|S

holds (see for instance [Kollár 2013, Definition 4.2]).
We denote by C the possibly nonreduced divisor on S corresponding to the

codimension-one part of C, where C⊂ S is the conductor of S.
When X is Q-factorial, it follows that C ≤ 1S by [Keel 1999, Theorem 5.3].

In this paper, we use the following proposition, which only states Supp(C) ⊂
Supp(b1Sc), but is valid even for a non-Q-factorial variety X .
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Proposition 2.2. Let (X,1) be a log pair, and let S be the union of the supports of
some of the divisors with coefficient one in 1. Let p : S→ S be the normalization
of S, and let 1S be an effective Q-divisor on S defined by the adjunction as above.
Further, we denote by C the (possibly nonreduced) divisor on S corresponding
to the codimension-one part of C, where C ⊂ S is the conductor of S. Then the
following hold:

(1) Supp(C)⊂ Supp(b1Sc).

(2) Let D1, . . . , Dc be prime divisors with coefficient greater than or equal to
one in 1, and let T =

⋃
1≤i≤c Supp(Di ). Assume that each Di satisfies

Supp(Di ) 6⊂ S. Then, the codimension-one part of p−1(S ∩ T ) is contained in
Supp(b1Sc).

Proof. First we prove (1). Let V ⊂ S be a codimension-one subvariety such that
V ⊂ C. It is sufficient to show coeffV 1S ≥ 1. When (X,1) is not log canonical
at the generic point ηp(V ) of p(V ), we have coeffV 1S > 1 (see [Kollár 2013,
Proposition 4.5(2)]). Hence, we may assume that (X,1) is log canonical at ηp(V ).
In this case, S has a node at ηp(V ) and coeffV 1S = 1 (see the proof of [Kollár 2013,
Proposition 4.5(6)]).

Next, we prove (2). Let V ⊂ S be a codimension-one subvariety such that
V ⊂ p−1(S∩ T ). It is sufficient to show coeffV 1S ≥ 1. Since the problem is local
around V , we may assume that p(V ) ⊂ Supp(Di ) for all i . If coeffDi 1 > 1 for
some i , then (X,1) is not log canonical at the generic point ηp(V ) of p(V ). In this
case, we have coeffV 1S > 1 as above. Hence, we may assume that coeffDi 1= 1
for all i . Note that S∩T is contained in the conductor of the normalization of S∪T .
Therefore, we conclude the proof by applying (1) to S ∪ T . �

2D. Some properties of varieties over Fp. The following fact distinguishes Fp from
other fields of positive characteristic. For the proof, see for instance [Keel 1999,
Lemma 2.16].

Proposition 2.3. The Picard scheme Pic0 X is a torsion group when X is a projec-
tive scheme defined over Fp. In particular, any numerically trivial Cartier divisor is
Q-linearly trivial.

We need the following lemmas in Section 5:

Lemma 2.4. Let X be a proper scheme over Fp. Let s1, s2 ∈ H 0(X,OX ) be sections
of the structure sheaf. Assume that s1 and s2 are nowhere-vanishing on X. Then
there exists n ≥ 1 such that sn

1 = sn
2 in H 0(X,OX ).

Proof. Without loss of generality we may assume that X is connected. Set A :=
H 0(X,OX ). It is a finite-dimensional vector space over Fp, because X is proper.
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Since X is connected, A has a unique maximal ideal m, and it follows that A/m∼=
H 0(X red,OX red)∼= Fp.

Let ai be the element of A corresponding to si , and ai the image of ai in Fp.
Since si is nowhere-vanishing on X , the element ai ∈ Fp is not zero. Hence, there
exists e ≥ 1 for which a1

pe
−1
= a2

pe
−1
= 1. Take r ≥ 1 such that mpr

= 0. Then
we have

a pr (pe
−1)

1 − a pr (pe
−1)

2 =
(
a pe
−1

1 − a pe
−1

2

)pr

∈mpr
= 0.

Therefore, it is sufficient to set n = pr (pe
− 1). �

Lemma 2.5. Let X be a one-dimensional reduced scheme of finite type over Fp,
L a line bundle on X , and p : X → X the normalization of X. Let C ⊂ X be the
conductor of X , and s ∈ H 0(X , L|X ) a section nowhere-vanishing on C. Then sn

descends to X for some n ≥ 1.

Proof. Let D ⊂ X be the conductor. Note that C and D are either empty or have
dimension zero. By Remark 2.1, it is sufficient to prove that sn

|C descends to D

for some n ≥ 1. Let t ∈ H 0(D, L|D) be a section nowhere-vanishing on D. Then
t |C is nowhere-vanishing on C. Any line bundle is trivial on a zero-dimensional
scheme, and so, by Lemma 2.4, we get sn

|C = tn
|C for some n ≥ 1. In particular,

sn
|C descends to D. �

Lemma 2.6. Let C be a smooth proper connected curve over Fp. Then a finitely
generated subgroup of Aut(C) is finite.

Proof. If g(C) ≥ 2, then Aut(C) is finite and the statement is trivial. If C = P1,
then Aut(C) ∼= PGL(2, Fp). A finitely generated subgroup G of PGL(2, Fp) is
always finite, because G is contained in PGL(2, Fpe) for some e ≥ 1. If C is an
elliptic curve, then we get Aut(C)∼= T o F , where T is the group of translations
and F is a finite group (see for instance [Silverman 2009, Section X.5]). Note
that each element of T has finite order, because C is defined over Fp. Hence, a
finitely generated subgroup of the abelian group T is always finite, and so a finitely
generated subgroup of Aut(C) is also finite.

For completeness, we note a general fact in group theory: any finitely generated
subgroup of G1 oG2 is finite, if we assume that any finitely generated subgroup of
Gi is finite for each i . �

2E. Keel’s theorems. The following theorem is crucial in reducing problems from
threefolds to surfaces:

Theorem 2.7 [Keel 1999, Proposition 1.6]. Let X be a projective scheme over a
field of positive characteristic. Let L be a nef line bundle on X , and let E be an
effective Cartier divisor on X such that L− E is ample. Then L is semiample if and
only if L|Ered is semiample.
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We note that Cascini, McKernan, and Mustat,ă [Cascini et al. 2014, Theorem 3.2]
gave a different proof of Theorem 2.7.

Theorem 2.8 [Artin 1962, Theorem 2.9; Keel 1999, Corollary 0.3]. Let X be a
projective surface over Fp, and let L be a nef and big line bundle on X. Then L is
semiample.

Proof. Since by Proposition 2.3 nef line bundles on curves over Fp are semiample,
the claim follows from Theorem 2.7. �

We say that a map f : X→ Y is a finite universal homeomorphism if it is a finite
homeomorphism under any base change. In this case, we have a correspondence,
up to taking powers, between the set of sections of a line bundle L on Y and the set
of sections of L|X .

Theorem 2.9 [Keel 1999, Lemma 1.4]. Let f : X→ Y be a finite universal homeo-
morphism between varieties defined over a field of characteristic p > 0, and let L
be a line bundle on Y . Then the following hold:

(1) For s ∈ H 0(X, L|X ), the section s pe
∈ H 0(X, L⊗pe

|X ) descends to Y for a
sufficiently large integer e ≥ 1.

(2) If t ∈ H 0(Y, L) satisfies t |X = 0, then t pe
= 0 holds for a sufficiently large

integer e ≥ 1.

In this paper, we frequently use the following theorems:

Theorem 2.10 [Keel 1999, Corollary 2.12]. Let X = X1∪X2 be a projective scheme
over Fp, where the X i are closed subsets. Let L be a nef line bundle on X such that
the L|X i are semiample. Let gi : X i → Zi be the map associated to L|X i . Assume
that all but finitely many fibers of g2|X1∩X2 are geometrically connected. Then L
is semiample.

Theorem 2.11 [Keel 1999, Corollary 2.14]. Let X be a reduced projective scheme
over Fp. Let p : X→ X be the normalization of X. Let D ⊂ X and C ⊂ X be the
reductions of the conductors. Let L be a nef line bundle on X such that L|X and
L|D are semiample. Let g : X→ Z be the map associated to L|X . Assume that all
but finitely many fibers of g|C are geometrically connected. Then L is semiample.

3. Basepoint-free theorem for normal surfaces

In this section, we prove Theorem 1.4. The key tool is the following theorem of
Tanaka. We say that a Q-divisor B on a variety X is Q-effective if h0(X,m B) 6= 0
for some m ≥ 1. Note that a normal surface over Fp is always Q-factorial (see
[Tanaka 2012, Theorem 11.1]).



732 Diletta Martinelli, Yusuke Nakamura and Jakub Witaszek

Theorem 3.1 [Tanaka 2012, Theorem 12.6]. Let X be a projective normal surface
over Fp and let D be a nef divisor. If q D − K X is Q-effective for some positive
rational number q ∈Q, then D is semiample.

We will use the following proposition to reduce the case of hyperelliptic surfaces
to abelian surfaces:

Proposition 3.2. Let p : Y → X be a proper surjection between varieties defined
over an algebraically closed field, and let L be a line bundle on X. Assume that X
is normal. Then L is semiample if and only if p∗(L) is semiample.

Proof. See for instance the proof of [Keel 1999, Lemma 2.10]. �

Proof of Theorem 1.4. Recall that we have the nef line bundle L and the Q-divisor
D := L − (K X +1) on the normal surface X over Fp.

Claim 3.3. We can assume that X is smooth.

Proof. Let f : Y → X be the minimal resolution of singularities of X . Define 1Y

so that KY +1Y = f ∗(K X +1). The divisor 1Y is an effective Q-divisor by the
negativity lemma (see [Kollár and Mori 1998, Corollary 4.3]). Note that f ∗L and
f ∗D= f ∗L−(KY +1Y ) are nef. By Proposition 3.2 we know that L is semiample
if and only if f ∗L is semiample. Thus, by replacing X by Y , we may assume that
the surface is smooth. �

We extensively use the following lemma:

Lemma 3.4. If D is Q-effective, then L is semiample.

Proof. Since D is Q-effective, L − K X = D+1 is also Q-effective, and so L is
semiample by Theorem 3.1. �

Claim 3.5. We can assume that all the following statements are true.

(1) L 6≡ 0 and D 6≡ 0, (2) L2
= 0, (3) D2

= 0,

(4) L ·1= 0, (5) L · K X = 0, (6) (K X +1) ·1= 0,

(7) (K X +1) · K X = 0, (8) χ(OX )≤ 0.

Proof. If L ≡ 0, then L ∼Q OX by Proposition 2.3, so L is semiample. Thus, we
may assume that L 6≡ 0. Analogously, we may assume that D 6≡ 0.

As L and D are nef, we get L2
≥ 0 and D2

≥ 0. If L2 > 0, then, by Theorem 2.8,
the line bundle L is semiample. Thus, we may assume that L2

= 0. If D2 > 0, then
D is big, and so Q-effective. In this case L is semiample by Lemma 3.4. Hence,
we may assume D2

= 0.
Since L 6≡ 0, we know that there exists a curve C on X satisfying L ·C > 0. Take

an ample divisor A such that A−C is effective. Then L ·A= L ·C+L ·(A−C)> 0.
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If m is sufficiently large that it satisfies (K X −mL) · A < 0, then h2(X,mL) =
h0(X, K X −mL)= 0. The Riemann–Roch theorem gives

h0(X,mL)= h1(X,mL)+ 1
2 mL · (mL − K X )+χ(OX )

= h1(X,mL)− 1
2 mL · K X +χ(OX ).

As L and D are nef, it follows that

0≤ L · D =−L · K X − L ·1.

Since 1 is effective and L is nef, we find 0 ≤ L · D ≤ −L · K X . If −L · K X > 0,
then κ(X, L)= 1 by the calculation of h0(X,mL) above. A nef line bundle L with
κ(X, L) = 1 is always semiample (see for instance [Fong and McKernan 1992,
Theorem 11.3.1]). Thus, we may assume that L ·1= 0 and L · K X = 0.

As above, h2(X,m D)= 0 holds for sufficiently large m, and so the Riemann–
Roch theorem gives

h0(X,m D)= h1(X,m D)− 1
2 m D · K X +χ(OX )

= h1(X,m D)+ 1
2 m D · (D− L +1)+χ(OX )

= h1(X,m D)+ 1
2 m D ·1+χ(OX )

= h1(X,m D)− 1
2 m(K X +1) ·1+χ(OX ).

If −(K X +1) ·1 > 0, then D is Q-effective and by Lemma 3.4 the line bundle
L is semiample. Since 0 ≤ D ·1 = −(K X +1) ·1 holds by the nefness of D,
we may assume (K X +1) ·1 = 0. Given D2

= L2
= D · L = 0, it follows that

(K X +1) · K X = 0.
By the Riemann–Roch theorem, we get h0(X,m D)= h1(X,m D)+χ(OX ). If

χ(OX )> 0, then D is Q-effective and by Lemma 3.4 the line bundle L is semiample.
Hence, we may assume that χ(OX )≤ 0. �

We divide the proof into cases depending on the Kodaira dimension.

Case 1: Assume κ(X)≥ 0.

Claim 3.6. We may assume that K X is nef.

Proof. Let π : X → Xmin be the minimal model of X . By π∗L we denote the
pushforward of L as a divisor.

By the assumption κ(X) ≥ 0, we have that K X is Q-linearly equivalent to an
effective Q-divisor containing every π-exceptional curve in its support. Since
L · K X = 0 and L is nef, it follows that L · E = 0 for every π-exceptional curve
E . Hence, we get L = π∗π∗L by the negativity of the intersection form on the
exceptional locus (see [Kollár and Mori 1998, Lemma 3.40]).
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Since L = π∗π∗L , it is sufficient to show the semiampleness of π∗L . Note
that π∗L and π∗D are nef, because L and D are nef. Further, we have π∗D =
π∗L − (K Xmin + π∗1). Therefore, we can reduce the problem to the case of the
minimal model Xmin. �

In what follows, we assume that X is minimal. We use the classification of mini-
mal surfaces in positive characteristic (see for instance [Mumford 1969; Bombieri
and Mumford 1977; 1976; Liedtke 2013]).

Case 1.1: Assume κ(X)= 2.
We can write K X = A+ E for an ample Q-divisor A and an effective Q-divisor

E , because K X is big. Since L , D are nef and L · K X = D · K X = 0, it follows that
L · A = D · A = 0. Thus, (L − D) · A = (K X +1) · A = 0. We get a contradiction

0< A2
≤ (K X +1) · A = 0.

Hence, there are no line bundles L satisfying the assumptions in Claim 3.5.

Case 1.2: Assume κ(X)= 1.
In our case, K X is semiample and it gives an elliptic or quasielliptic fibration

f : X → B. Let F be its general fiber. Then K X ≡ aF holds for some positive
rational number a.

Since D · K X = 0, it follows that D · F = 0. Therefore, D is f -numerically
trivial by the nefness of D. Since D is nef and f -numerically trivial, it satisfies
D≡ bF for some b≥ 0, by Lemma 3.7. Hence, D is Q-effective by Proposition 2.3.
Therefore, L is semiample by Lemma 3.4.

Lemma 3.7. Let f : X→ B be a surjective morphism satisfying f∗(OX )= OB from
a smooth projective surface X to a smooth projective curve B. Suppose that L is
an f -numerically trivial nef Q-Cartier Q-divisor. Then L ≡ bF for some b ≥ 0,
where F denotes a general fiber of f .

Proof. See for instance [Lehmann 2012, Lemma 2.4]. �

Case 1.3: Assume κ(X)= 0.
By the classification of minimal surfaces, there are five possibilities: a K3 surface,

an Enriques surface, an abelian surface, a hyperelliptic surface, or a quasihyperel-
liptic surface.

If X is a K3 surface or an Enriques surface, then χ(OX ) = 2 or χ(OX ) = 1,
respectively, which contradicts Claim 3.5.

If X is an abelian surface, then every nef divisor is numerically equivalent
to a semiample divisor (see Proposition 3.10). Therefore, L is semiample by
Proposition 2.3.
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If X is a hyperelliptic surface, then X is a finite quotient of an abelian surface by
a finite group. Therefore, we have a surjective morphism A→ X from an abelian
surface A. Since L|A is a nef line bundle on an abelian surface, it is semiample
(see Proposition 3.10). Hence, L is also semiample by Proposition 3.2.

If X is a quasihyperelliptic surface, then X can be written as a finite quotient
E ×C → X , where E is an elliptic curve and C is a rational curve with a cusp.
Therefore, we have a surjective morphism X ′ := E ×P1

→ X . Any divisor on X ′

is numerically equivalent to aF1+ bF2 with a, b ∈Q, where F1 is the fiber class
of X ′→ E and F2 is the fiber class of X ′→ P1. Hence, any nef divisor on X ′ is
numerically equivalent to a semiample divisor. Thus, we can conclude that L is
semiample by Proposition 2.3 and Proposition 3.2.

Case 2: Assume κ(X)=−∞.
Since χ(OX )≤0, the surface X is irrational. Thus, we can assume that f : X→ B

is a birationally ruled surface, where B is a curve with g(B)≥ 1.
We need the following lemma, which can be found in the proof of [Tanaka 2012,

Theorem 12.4].

Lemma 3.8. Let C be an f -horizontal curve on X such that D ·C = 0. Then D is
Q-effective.

Proof. Since C is a horizontal curve, it holds that g(B) ≤ h1(C,OC). By the
Riemann–Roch theorem, we get

h0(X,m D)= h1(X,m D)+χ(OX )= h1(X,m D)+ 1− g(B),

so it is sufficient to show h1(X,m D)≥ h1(C,OC) for some m > 0.
Since D ·C = 0, we have D|C ≡ 0. Hence, by Proposition 2.3 we can conclude

that m D|C is trivial for a sufficiently divisible m > 0. Therefore, we get an exact
sequence

0−→ OX (m D−C)−→ OX (m D)−→ OC −→ 0.

By the same reason as before, h2(X,m D−C)= 0 holds for sufficiently large
m. Hence, we get h1(X,m D)≥ h1(C,OC). �

For any irreducible component C of1, it follows that D ·C = 0, because D is nef
and D ·1= 0. In particular, if 1 has an f -horizontal component, then the lemma
above implies that D is Q-effective, and hence L is semiample by Lemma 3.4.
Thus, in what follows, we may assume that 1 has only f -vertical components.

Claim 3.9. Under these assumptions, it follows that 1= 0, g(B)= 1, and X is a
minimal ruled surface.
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Proof. Let π : X→ Xmin be a minimal model of X . We have K X ∼ π
∗K Xmin + E ,

where E is an exceptional divisor. We refer the reader to [Hartshorne 1977, Chap-
ter V, Section 2] for properties of ruled surfaces. It holds that

K Xmin ≡−2C0+ (2g(B)− 2− e)F

for C0 a normalized section, e =−C2
0 , and F a general fiber of Xmin→ B. Note

that K 2
Xmin
= 8(1− g(B)).

Since (K X +1) ·1= 0 and (K X +1) · K X = 0, we get

12
=−K X ·1= K 2

X .

As 1 has only f -vertical components, we have π∗F ·1= 0, and so

0= (K X +1) ·1=−2π∗C0 ·1+ (E +1) ·1.

Since π∗C0 ·1≥ 0, it follows that E ·1≥−12. Therefore,

(E+1)2= E2
+2E ·1+12

≥ E2
−12

= E2
−K 2

X =−K 2
Xmin
= 8(g(B)−1)≥ 0.

By the Zariski lemma [Liu 2002, Section 9, Theorem 1.23], the intersection form
on f -vertical fibers is seminegative-definite with one-dimensional radical equal to
the span of a general fiber, so (E +1)2 = 0 and E +1≡ π∗ pF for some p ∈Q.

Since all the inequalities must be equalities, it follows that E ·1 = −12 and
g(B)= 1. Furthermore, we have 2π∗C0 ·1= (E +1) ·1, and thus

0= π∗C0 ·1= π
∗C0 · (E +1)= p.

This implies that E +1 = 0. Since 1 and E are both effective divisors, we get
1= 0 and E = 0. Hence, X is minimal. �

By this claim, we can assume that X is a minimal ruled surface over an el-
liptic curve. In this case, it is well-known that NEF(X) ⊂ NE(X) holds (see
Proposition 3.13). We can conclude that the nef divisor D is Q-effective and L is
semiample by Lemma 3.4. �

For completeness, we prove two propositions which were used in the above proof:

Proposition 3.10. Let A be an abelian variety defined over an algebraically closed
field. Then any nef line bundle on A is numerically equivalent to a semiample line
bundle.

Remark 3.11. Note that any effective divisor on an abelian variety is always
semiample (see the proof of Application 1((i)⇒(iii)) in [Mumford 2008, Section 6]).

Proof. Let L be a nef line bundle on A. Define K (L) to be the maximal subscheme
of A such that

(m∗L − p∗1 L − p∗2 L)|K (L)×A = OK (L)×A
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as in [Mumford 2008, Section 13], where m : A× A→ A is the multiplication map
and p1 and p2 are the first and second projections.

By the above remark, we may assume that L is not big, so that Lg
= 0, where

g=dim A. By the Riemann–Roch theorem [loc. cit., Section 16], we have χ(L)=0.
Hence, it follows that dim K (L) > 0 by the vanishing theorem [loc. cit., Section 16].

Set X := K (L)0red. This is a subabelian variety of A. Thus, there exists a
subabelian variety Y ⊂ A such that the morphism m : X ×Y → A, (x, y) 7→ x + y
defined by the group law on A is an isogeny [loc. cit., Section 19, Theorem 1]).
Note that L|X ∈ Pic0(X), because it is invariant under translations by any element
of X (see Remark 3.12).

First, we prove m∗L ≡ p∗Y (L|Y ), where pY : X×Y→ Y is the second projection.
By definition of K (L), we get m∗L = p∗X (L|X )+ p∗Y (L|Y ). Since L|X ∈ Pic0(X),
we have L|X ≡ 0, which proves m∗L ≡ p∗Y (L|Y ).

Since dim Y < dim A, we may assume that L|Y is numerically equivalent to
a semiample line bundle by induction on dim A. By Proposition 3.2, in order to
complete the proof, it is sufficient to show that p∗Y (L|Y ) descends to A. This is true,
because Pic0(A)→ Pic0(X×Y ) is surjective [loc. cit., Section 15, Theorem 1]). �

Remark 3.12. Mumford [2008, Section 8] defines Pic0(X), for an abelian variety X ,
to be the subgroup of Pic(X) consisting of line bundles invariant under translations
by any element of X . The existence of the dual abelian variety and the Poincaré line
bundle [loc. cit., Section 13] shows that this definition is equivalent to the standard
definition of Pic0(X) as the identity component of the Picard functor.

Proposition 3.13. Let X be a minimal ruled surface over an elliptic curve B. Then
it follows that NEF(X)⊂ NE(X).

Proof. Let C0 ⊂ X be a normalized section and F a fiber of X→ B. Set e := −C2
0 .

When e ≥ 0, we get

NEF(X)= Cone(F,C0+ eF),

and so nef line bundles are effective.
In what follows, we may assume e=−1 by [loc. cit., Chapter V, Theorem 2.15].

We know that

NEF(X)= NE(X)= Cone(F, 2C0− F)

by [loc. cit., Chapter V, Proposition 2.21]. Further, there exists a rank-two indecom-
posable vector bundle E of degree one on C such that X ∼=PC(E) holds. We denote
the projection by p : PC(E)→C . It is sufficient to show H 0(X,OX (2C0− p∗Q)) 6=
0 for some point Q ∈ C , because then NE(X)= NE(X). Note that

H 0(X,OX (2C0− p∗Q))∼= H 0(C, S2(E)⊗OC(−Q))
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and S2(E) has both rank and degree equal to three (see [loc. cit., Chapter II,
Example 5.16] and the proof of [loc. cit., Chapter V, Theorem 2.15]). When S2(E)
is indecomposable, we can complete the proof by using the following proposition:

Proposition 3.14 [Atiyah 1957, Lemma 11]. Let F be an indecomposable vector
bundle of rank r and degree d on an elliptic curve. If r = d, then F contains a
degree-one line bundle as a subbundle.

When S2(E) is decomposable, it can be written as S2(E)∼= E1⊕ E2, where E1

is a line bundle and E2 is a vector bundle of rank two. If deg E1 ≥ 1, then

H 0(C, S2(E)⊗OC(−Q))⊃ H 0(C, E1⊗OC(−Q)) 6= 0

for some point Q ∈ C , which finishes the proof in this case. If deg E1 < 1, then
deg E2 ≥ 3, and so deg(E2⊗OC(−Q))≥ 1 for any point Q ∈ C . Therefore,

H 0(C, S2(E)⊗OC(−Q))⊃ H 0(C, E2⊗OC(−Q)) 6= 0

by the Riemann–Roch theorem. �

4. Reduction to surfaces

The first step in the proof of Theorem 1.1 is to reduce the problem to the case
of surfaces.

Theorem 4.1. Let (X,1) be a three-dimensional projective log pair defined over
Fp, and L a line bundle on X. If we assume that

• L and L − (K X +1) are nef and big,

• L|Suppb1c is semiample,

then L is semiample.

Here, we adopt the convention that, when b1c=0, then L|Suppb1c is automatically
semiample.

Remark 4.2. Under the assumption b1c = 0, Theorem 4.1 was proved by Keel
[1999, Theorem 0.5].

Proof of Theorem 1.1. Set S := b1c. Since L is a big line bundle, we can decompose
it as L ∼Q A+ E , where A is an ample and E is an effective Q-Cartier Q-divisor.
By Theorem 2.7, it is enough to show that L|Ered is semiample.

We write Ered = T +
∑m

i=1 Ei , where Supp(T )⊂ Supp(S) and the Ei are prime
divisors not contained in Supp(S). Define λi ∈Q so that 1+λi E contains Ei with
coefficient one. Then, by definition of λi , there exists an effective Q-divisor 0i

such that
1+ λi E = Ei +0i
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and Ei 6⊂ Supp(0i ). Since Ei 6⊂ Supp(S), it follows that λi > 0. By rearranging
indices, we may assume without loss of generality that

λ1 ≤ λ2 ≤ · · · ≤ λm,

so we have
T +

∑
1≤ j≤i−1

E j ≤ 0i

for each i .
We define U0 := Supp(T ) and Ui := Ui−1 ∪ Ei for i > 0. Recall that it is

sufficient to show that L restricted to Um = Supp(Ered) is semiample. We prove it
by induction on i .

Observe that L|U0 is semiample, because U0 = Supp(T )⊂ Supp(S) and L|S is
semiample by hypothesis. Let us assume that L|Ui−1 is semiample. In order to prove
the semiampleness of L|Ui , we first prove the semiampleness of L|Ei .

We consider the normalization pi : Ei → Ei . By adjunction (see Section 2C),
there exists an effective Q-divisor 1Ei

such that

(K X + Ei +0i )|Ei
∼ KEi

+1Ei
.

Lemma 4.3. L|Ei
is semiample.

Proof. We define auxiliary divisors Di by

Di := (1+ λi )L − (K X +1+ λi E).

Observe that

Di = L − (K X +1)+ λi (L − E)∼Q (L − (K X +1))+ λi A,

and so Di is ample, because L − (K X +1) is nef and λi A is ample. Hence,

Di |Ei
= (1+ λi )L|Ei

− (KEi
+1Ei

)

is nef. Since (1+ λi )L|Ei
is also nef, the semiampleness of L|Ei

follows from
Theorem 1.4 and Remark 1.6. �

Assume κ(L|Ei
) is equal to 0 or 2. Then the assumptions of Theorem 2.11

are satisfied, and so L|Ei is semiample. Using Theorem 2.10 for X1 = Ui−1 and
X2 = Ei , we get that L|Ui is semiample.

In what follows, we assume κ(L|Ei
)= 1.

Lemma 4.4. Let πi : Ei → Zi be the map associated to the semiample line bundle
L|Ei

, and let F be a general fiber of πi . Further, let Ci ⊂ Ei be the reduction of the
conductor of the normalization pi : Ei → Ei . Then F and Ci intersect in at most
one point.
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Proof. Let Di be the Q-divisor on Ei as in the proof of Lemma 4.3. Then, Di is
ample, so we have F · Di |Ei

> 0. Since F · L|Ei
= 0, we get

F · KEi
+ F ·1Ei

< 0.

Hence
F ·1Ei

<−F · KEi
= 2− 2h1(F,OF )≤ 2.

By the adjunction formula (Proposition 2.2), the one-dimensional part of Ci is
contained in Supp(b1Ei

c). Hence, we get #(F ∩Ci )≤ F ·1Ei
< 2. �

By this lemma, the assumptions of Theorem 2.11 are satisfied, and so L|Ei

is semiample. Let ρi : Ei → Z ′i be the map associated to L|Ei , and let G be a
general fiber of ρi . Since πi is the Stein factorization of ρi ◦ pi , there exists a finite
map Zi → Z ′i such that the following diagram commutes [Keel 1999, Definition-
Lemma 1.0(4)]:

Ei

πi

��

pi
// Ei

ρi

��

Zi // Z ′i

We want to apply Theorem 2.10 to X1 =Ui−1 and X2 = Ei to show that L|Ui is
semiample. It is sufficient to prove that G intersects Ui−1∩ Ei in at most one point.

Recall that

T +
∑

1≤ j≤i−1

E j ≤ 0i , Ui−1 = Supp
(

T +
∑

1≤ j≤i−1

E j

)
.

Hence, the one-dimensional part of p−1
i (Ui−1 ∩ Ei ) is contained in Supp(b1Ei

c)

by the adjunction formula (Proposition 2.2). By the proof of Lemma 4.4, we
can conclude

#((Ui−1 ∩ Ei )∩G)= #
(

pi (p−1
i (Ui−1 ∩ Ei )∩ F)

)
≤ #(p−1

i (Ui−1 ∩ Ei )∩ F)

≤ F ·1Ei
< 2,

which completes the proof. �

5. Semiampleness on nonirreducible surfaces

In this section, we prove Theorem 5.2. Before stating it, we need to introduce some
notation. Let S be a pure two-dimensional reduced projective scheme over Fp, and let
S=

⋃n
i=1 Si be its irreducible decomposition and S→ S its normalization. Let D⊂ S

and C⊂ S be the conductors of S. Let C
norm.
−−−−→Cred−→C and D

norm.
−−−−→Dred−→D
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be the compositions of the reduction map and the normalization. Then we have a
natural morphism f : C→ D such that the following diagram commutes:

C

f
��

normalization
// Cred // C �

�
//

��

S

��

D
normalization

// Dred // D �
�

// S

Consider the one-dimensional part C (1) of C and the restriction f : C (1)
→D. We

say that S satisfies the condition (?) when the restriction of f to any one-dimensional
connected component of C is an isomorphism onto its image. Further, we say that
S satisfies the condition (??) when any fiber of the restriction f : C (1)

→ D has
length at most two.

Remark 5.1. If each Si is normal, then S satisfies the condition (?). If S is regular
or nodal in codimension one, then S satisfies the condition (??). See the proof of
Theorem 1.1.

Theorem 5.2. Let S be a pure two-dimensional reduced projective scheme over Fp,
and let S =

⋃n
i=1 Si be its irreducible decomposition. Let L be a nef line bundle

on S. Suppose that S satisfies the condition (?) or (??) defined above and that there
exists an effective Q-divisor 1S on the normalization S of S such that:

• L|S − (KS +1S) is nef.

• Supp(C(1)) is contained in Supp(b1Sc), where C(1)⊂ S is the one-dimensional
part of the conductor scheme of the normalization of S.

Then L is semiample.

Proof. We use the same notation as above. Let ν : S :=
⊔

Si→ S be the normaliza-
tion of S. Set1Si

:=1S|Si
. We know that the L|Si

are semiample from Theorem 1.4.
Let gi : Si → Zi be the map associated to L|Si

. Set g : S→ Z , where g :=
⊔

gi

and Z :=
⊔

Zi . If dim Zi 6= 1, then gi satisfies the conditions of Theorem 2.10.
Hence, we may assume that dim Zi = 1 for any i by the inductive argument in the
proof of Theorem 4.1.

C

f2

++

f1
��

normalization
// Cred // C �

�
//

��

S g
//

ν

��

Z

D normalization
// Dred // D �

�
// S
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By Remark 2.1, it is sufficient to show that, for any point p ∈ S, there exist m ≥ 1
and a section s ∈ H 0(S, L⊗m

|S) such that s|C descends to D and s|p 6= 0. To obtain
this, we prove the following claim:

Claim 5.3. For any finite set F ⊂ S of closed points of S, we can find m ≥ 1 and a
section s ∈ H 0(S, L⊗m

|S) such that s|C descends to D and s is nowhere-vanishing
on F.

First, we assume this claim and complete the proof of Theorem 5.2. Let F ′⊂Dred

be the conductor corresponding to the normalization D → Dred. Let F ′′ be the
image of F ′ in S. Set F := ν−1(F ′′)∪ {p}. Then F is a finite set.

By Claim 5.3, we can take s ∈ H 0(S, L⊗m
|S) and sD ∈ H 0(D, L⊗m

|D) such that
s|C = sD|C and s is nowhere-vanishing on F . By Lemma 2.5, if we replace sD by
some power of it, then sD descends to a section sDred on Dred. Since Dred→ D is a
universal homeomorphism, sDred descends to a section sD on D, if we replace sD by
some power of it (see Theorem 2.9).

It is sufficient to show that s|C = sD|C. By construction, (s|C)|C = (sD|C)|C
holds. Since C→ Cred is surjective, we get (s|C)|Cred = (sD|C)|Cred . As Cred→ C

is a universal homeomorphism, if we replace s by some power of it, then we get
s|C = sD|C (see Theorem 2.9). This completes the proof of Theorem 5.2.

Proof of Claim 5.3. Let f1 and f2 be as in the above diagram. For a one-dimensional
scheme X , we write X = X (0)

t X (1), where X (i) is the i-dimensional part. Further,
we write C (1)

=C h
tCv, where C h is the f2-horizontal part and Cv is the f2-vertical

part.
First, we claim that, for any closed point p ∈ Z , the inverse image of p by

C h
→ Z has length at most two. This can be proved as follows: by the nefness of

L − (KSi
+1Si

), we have

0≤ Gi · (L − (KSi
+1Si

))=−Gi · (KSi
+1Si

)≤ 2−Gi ·1Si
,

where Gi is a general fiber of gi : Si → Zi . Since the one-dimensional part of C|Si

is contained in Supp(b1Si
c), we have

#(Gi ∩C|Si
)≤ Gi ·1Si

≤ 2.

Hence, f2 : C h
→ Z satisfies the assumption of Lemma 5.4. Further, by condi-

tions (?) and (??), f1 : C h
→ D′ also satisfies the assumption of Lemma 5.4, where

we define D′ := f1(C h).

C = C h
tCv
tC (0)

f1
��

f2
// Z C h

f1
��

f2
// Z

D = D′ t (D \ D′) D′
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By Lemma 5.4, we can find sections sD∈H 0(D, L⊗m
|D) and sZ ∈H 0(Z , L⊗m

|Z )

such that sD|C h = sZ |C h holds, the section sZ is nowhere-vanishing on the finite set
g(F)∪ f2(Cv

tC (0)), and the section sD is nowhere-vanishing on D \ D′. Since
L|CvtC (0) is trivial, we have sn

D
|CvtC (0) = sn

Z |CvtC (0) for some n ≥ 1 by Lemma 2.4.
Therefore, we get sn

D
|C = sn

Z |C and this completes the proof of Claim 5.3. �

Finally, we show the next lemma, which was used in the proof of Theorem 5.2.

Lemma 5.4. Let X, Z1, Z2 be disjoint unions of smooth proper curves and f1 : X→
Z1, f2 : X→ Z2 finite surjective morphisms. Let L1 and L2 be line bundles on Z1

and Z2, respectively, such that f ∗1 L1 = f ∗2 L2. Suppose that L := f ∗1 L1 = f ∗2 L2 is
semiample. Further, assume that each fi satisfies either of the following conditions:

• The restriction of fi to any connected component of X is an isomorphism onto
its image.

• Any fiber of fi has length at most two.

Then, for any finite set F ⊂ X of closed points of X , we can take m ≥ 1 and a
section s ∈ H 0(X, L⊗m) such that s is nowhere-vanishing on F and s descends to
both Z1 and Z2.

Proof. First, we prove that there exists a finite group Gi acting on X such that
X → Zi decomposes into the quotient morphism X → X/Gi and a universal
homeomorphism X/Gi → Zi :

X

~~

f1

tt
  

f2

**Z1 X/G1universal homeomorphism
oo X/G2universal homeomorphism

// Z2

This is trivial when the restriction of fi to any connected component of X is an
isomorphism. Indeed, it is sufficient to take Gi such that it identifies the components
with the same image under fi . Then X→ Zi is isomorphic to the quotient morphism
X→ X/Gi .

For the second case, assume that any fiber of fi has length at most two. Let Z ′i
be a connected component of Zi . Set X ′ = f −1

i (Z ′i ). There are four possibilities:

(1) X ′ is connected and X ′→ Z ′i is an isomorphism.

(2) X ′ is connected and X ′→ Z ′i is the Frobenius map (this case may only occur
for characteristic p = 2).

(3) X ′ is connected and every fiber of X ′→ Z ′i has length two. There exists an
involution ι : X ′→ X ′ such that X ′→ Z ′i is the quotient by ι.



744 Diletta Martinelli, Yusuke Nakamura and Jakub Witaszek

(4) X ′ has two connected components X ′1 and X ′2. Further, X ′1→ Z ′i and X ′2→ Z ′i
are isomorphisms. In this case, we have X ′1 ∼= X ′2.

In the cases (3) and (4), we have a finite group G ′ acting on X ′ such that the
morphism X ′→ Z ′i is isomorphic to the quotient morphism X ′→ X ′/G ′.

Hence, we have a finite group Gi acting on X such that the morphism X→ Zi

decomposes as X→ X/Gi→ Zi , where X→ X/Gi is the quotient morphism and
X/Gi→ Zi is a universal homeomorphism (actually, if we restrict it to a connected
component, it is either an isomorphism or the Frobenius map).

Note that L = g∗L for any g ∈ Gi . We claim that if s ∈ H 0(X, L⊗m) is Gi -
equivariant, then s pe

descends to Zi for sufficiently large e. This is because s de-
scends to X/Gi and X/Gi→ Zi is a universal homeomorphism (see Theorem 2.9).

Let G := G1G2 ⊂ Aut(X) be a composition of the groups, and let S ⊂ X be the
G-orbit of the set F . By Lemma 2.6, G is a finite group, and therefore S is a finite set.

Take m ≥ 1 and a section s ∈ H 0(X, L⊗m) such that s is nowhere-vanishing
on S. Set

sG
:=

∏
σ∈G

σ ∗s ∈ H 0(X, L⊗m|G|).

The section sG is Gi -invariant for each i and nowhere-vanishing on F . Hence,
(sG)pe

satisfies the statement of the lemma for sufficiently large e ≥ 1. �

The main issue of this section is related to the following question, discussed by
Keel [2003].

Question 5.5. Let L be a line bundle on a variety X and let p : X → X be the
normalization of X . Assume that p∗L is semiample. What additional assumptions
are necessary for L to be semiample?

6. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using Theorem 4.1 and Theorem 5.2.

Proof of Theorem 1.1. Let S := b1c. By Theorem 4.1, it is sufficient to show that
L|Supp(S) is semiample. Note that in both case (1) and case (2), all the coefficients
of 1 are at most one.

By the adjunction formula (Proposition 2.2), if we define 1S on S so that
(K X + 1)|S = KS + 1S , then 1S satisfies the conditions in the statement of
Theorem 5.2.

In the case (2), that is, the case when each component Si of S is normal, S clearly
satisfies the condition (?). In the case (1), that is, the case when (X,1) is log
canonical, the surface S is regular or nodal in codimension one (see [Kollár 2013,
Corollary 2.32]), and so S satisfies condition (??) (see [Kollár 2013, Claim 1.41.1]
or [Tanaka 2014, Lemma 3.4, 3.5]).
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Thus, we can complete the proof by using Theorem 5.2. �

We easily deduce Corollary 1.2:

Proof of Corollary 1.2. It is enough to take L = 2(K X +1) and L =−(K X +1),
respectively. �

7. Examples

Theorem 1.1 does not hold if we do not impose any conditions on 1. It is in fact
possible to construct a nef and big line bundle L on a smooth threefold X such that
L− (K X +1) is nef and big for 1≥ 0, but L is not semiample. We construct such
L and 1 in the following way:

Example 7.1. Let L be a nef and big line bundle on a smooth threefold which is
not semiample (see an example in [Totaro 2009, Theorem 7.1]). Since L is big, we
can write L = A+E for an ample Q-Cartier Q-divisor A and an effective Q-Cartier
Q-divisor E . Take 1 = m E for m ∈ N big enough. Then mL − (K X +1) is an
ample Cartier divisor, and so the pair L ′ := mL and 1 is an example which we
were looking for.

Theorem 1.1 does not hold over algebraically closed fields k 6= Fp even in the
two-dimensional case:

Example 7.2 [Tanaka 2012, Example 19.3]. Let C0 ⊂ P2 be an elliptic curve in
P2, and let p1, . . . , p10 ∈ C0 be ten general points on C0. Let X be the blowup of
P2 along these ten points, and C the proper transform of C0. Note that K X +C ∼ 0
and C2

=−1.
Take an ample divisor H on X , and set L := H+aC , where a := H ·C > 0. Note

that L is a nef and big divisor. Further, (X,C) is log canonical, and L − (K X +C)
is also nef and big. Nevertheless, L is not semiample if the base field is not Fp.
This is because L ·C = 0, but the elliptic curve C is not contractible.

Corollary 1.2(2) also does not hold over algebraically closed fields k 6= Fp:

Example 7.3 [Gongyo 2012, Example 5.2]. Let S be the blowup of P2 along nine
general points. Note that −KS is nef but not semiample if the base field is not Fp.
Take a very ample divisor H on S, and set X := PS(OS ⊕OS(−H)). Let E be the
tautological section of OS ⊕ OS(−H). Since E ∼= S, it follows that −KE is not
semiample.

Then, (X, E) is log canonical, and L :=−(K X+E) is nef and big by the nefness
of −KS (for details, see [Gongyo 2012, Example 5.2]). Nevertheless, L is not
semiample, because L|E =−KE is not semiample.
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