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It is possible to talk about the étale homotopy equivalence of rational points
on algebraic varieties by using a relative version of the étale homotopy type.
We show that over p-adic fields rational points are homotopy equivalent in this
sense if and only if they are étale-Brauer equivalent. We also show that over the
real field rational points on projective varieties are étale homotopy equivalent
if and only if they are in the same connected component. We also study this
equivalence relation over number fields and prove that in this case it is finer than
the other two equivalence relations for certain generalised Châtelet surfaces.
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1. Introduction

For every field K, let K denote its separable closure. For every variety X defined
over a K as above and every field extension LjK, let XL denote the base change
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of X to L. Let K be a field, and let X be a variety defined over K. Harpaz and
Schlank [2013] defined a relative version Et=K.X/ of the étale homotopy type of X
by looking at the action of the absolute Galois group Gal.KjK/ of K on the étale
hypercoverings of XK . With the aid of the action of Gal.KjK/ on Et=K.X/, they
define a pro-object X.hK/ in the category of sets, which they call the homotopy
fixed point set of X , that serves as a certain homotopical approximation of the set
X.K/ of rational points. By slight abuse of notation we will use the same symbol
to denote the projective limit of X.hK/, which we will consider as a topological
space equipped with its pro-discrete topology. It is possible to define a natural map

�X=K WX.K/!X.hK/;

which can be thought of as a homotopy-theoretic version of the section map in
Grothendieck’s anabelian geometry, which it also happens to refine. We say that
x; y 2X.K/ are H -equivalent if �X=K.x/D �X=K.y/.

The aim of this paper is to describe the H -equivalence relation on X.K/ as
explicitly as possible for many K and X . Let us first turn to the case when K is a
finite extension of Qp . In this case, the map �X=K is not surjective in general; every
abelian variety of positive dimension is a counterexample (see Proposition 9.7).
However it is possible to describe the equivalence relation it induces on X.K/ in
rather concrete terms. For any smooth variety X over any field K of characteris-
tic zero, let Br.X/DH 2.X;Gm/ denote the cohomological Brauer group ofX . We
say that x; y 2X.K/ are Brauer equivalent if x�.b/D y�.b/ for all b 2Br.X/. We
say that x; y 2X.K/ are étale-Brauer equivalent if, for every finite, étale morphism
Y !X of varieties over K and each Qx 2 Y.K/ mapping to x, there is a Qy 2 Y.K/
which maps to y and which is Brauer equivalent to Qx. Then we have the following:

Theorem 1.1. Let K be a finite extension of Qp, and let X be a smooth quasi-
projective variety over K. Then étale-Brauer equivalence and H -equivalence
coincide on X.K/.

It is important to note that this claim is not true for more general fields; Châtelet
surfaces over number fields provide counterexamples (see the remark following
Theorem 14.8 below). The main ingredients of the theorem above, besides obstruc-
tion theory, are duality for the Galois cohomology of K and Gabber’s theorem on
the existence of Azumaya algebras. We also provide examples to show that the
theorem cannot be strengthened by substituting Brauer equivalence for étale-Brauer
equivalence; see Theorem 9.5 below. We can also characterise H -equivalence for
the field of real numbers:

Theorem 1.2. LetK be the field R of real numbers, and let X be a smooth affine or
projective variety overK. Then twoK-rational points of X areH -equivalent if and
only if they are in the same connected component of the topological space X.K/.
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The main tools of the proof of this result are a celebrated theorem of Mahé (see
[Houdebine and Mahé 1982; Mahé 1982]), the theory of Stiefel–Whitney classes
for quadratic bundles (see [Esnault et al. 1993; Milnor 1970]), and an equivariant
version of a basic comparison result of Artin and Mazur [1969]. The reader should
note that Quick [2011] developed a general theory of homotopy fixed point spaces
for simplicial pro-sets equipped with a continuous action of a profinite group,
which can be applied to Friedlander’s étale topological type functor [1982]. His
construction offers an alternative route for the foundations of our investigations.

Contents. In the next section, we review the relative étale homotopy type and
homotopy fixed points of varieties as defined by Harpaz and Schlank and their
relation to the Artin–Mazur construction. In the third section, we introduce a pointed
version of the relative étale homotopy type and compare it with the previously
defined constructions. In the fourth section, we study the relationship between the
étale homotopy groups of finite étale coverings. In the following section, we show
that the étale homotopy types of abelian varieties and smooth curves which are not
projective of genus zero are Eilenberg–MacLane spaces over algebraically closed
fields of characteristic zero. The fact presented in these two sections might be
well-known to the experts, but we could not find a convenient reference. In the sixth
section, we prove two useful lemmas about lifting a pair of rational points on certain
principal bundles. Then we prove the fundamental theorem of obstruction theory for
H -equivalence in the seventh section. We study the analogue of the Manin pairing
for homotopy fixed points in the eighth section. In the ninth section, we prove that
étale-Brauer equivalence is strictly finer than Brauer equivalence on X.K/ when K
is a p-adic field and X is a bielliptic surface over K, using a rather standard set of
tools. Theorem 1.1 is proved in the tenth section, while in the eleventh we prove
Theorem 1.2. In the twelfth section, we introduce a natural homotopy version of
Grothendieck’s section and the Shafarevich–Tate conjectures over number fields by
substituting the arithmetic fundamental group with the relative version of the étale
homotopy type, which we call the homotopy section principle (HSP), and prove
that it is equivalent to its well-established analogues in the special case of curves
and abelian varieties. We provide further examples of varieties which satisfy HSP
(see Theorems 13.3, 13.7 and 14.8) in the final two sections, including generalised
Châtelet surfaces.

2. Basic definitions

Definition 2.1. Let � be a profinite group. By a �-set we mean a set with a �-action
such that each element has an open stabiliser. Let �-Sets denote the category whose
objects are �-sets and whose morphisms are �-equivariant maps between them. By
a simplicial �-set we mean a simplicial object in �-Sets. These form a category
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�-SSets in the usual way. Note that, for every simplicial�-set S and every n2N, the
n-skeleton skn.S/, the n-coskeleton coskn.S/ and the Kan replacement Ex1.S/ are
all naturally equipped with a �-action. Since with respect to this action the stabiliser
of each simplex of skn.S/, coskn.S/ and Ex1.S/ is open, these constructions
furnish three functors: the n-skeleton skn W �-SSets! �-SSets, the n-coskeleton
coskn W �-SSets! �-SSets, and the Kan replacement Ex1 W �-SSets! �-SSets
functors. Moreover, let Pn W�-SSets!�-SSets denote the corresponding analogue
of the simplicial version of the n-th Postnikov piece given by the rule

Pn.S/D cosknC1.sknC1.Ex1 S//

for every simplicial �-set S .

Notation 2.2. For every category C let Pro -C be the category of pro-objects of C.
For every pair of categories C;D let C �D denote their direct product, and for
every category C let Cop denote its opposite category. Clearly there is a natural
equivalence between .C�D/op and Cop �Dop; for the sake of simplicity we will
not distinguish between these categories. We will consider every directed set, and
in particular every ordered set, to be a category in the usual way.

Definition 2.3. Goerss [1995] constructs a model category structure on �-SSets,
called the strict model structure. The corresponding homotopy category will be
denoted by Ho.�-SSets/ and will be called the homotopy category of simplicial
�-sets. Similarly to the construction in Chapter 4 of [Artin and Mazur 1969], we
may define a Postnikov tower functor

. � /\ W Pro-�-SSets! Pro-�-SSets

as follows: if I is a small filtering index category and … W I op ! �-SSets is a
pro-object of �-SSets, then the functor …\ W I op �Nop! �-SSets is given by

…\.˛; n/D Pn.….˛// for all ˛ 2 ob.I / and n 2 N:

We will denote by the same symbol the variant of the Postnikov tower functor in
the category Pro-Ho.�-SSets/, by the usual abuse of notation.

Definition 2.4. Next we recall the definition of the relative étale homotopy type,
following [Harpaz and Schlank 2013]. Let K be a field, let �K D Gal.KjK/
denote the absolute Galois group of K and let Sch=K denote the category of locally
Noetherian schemes over Spec.K/. Let

�0=K W Sch=K ! �K-Sets

denote the functor which takes the K-scheme X to the �K-set of connected com-
ponents of XK . By applying this functor level-wise and composing it with the
localisation functor �K-SSets!Ho.�K-SSets/, we get a functor from the category
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of étale hypercoverings of the K-scheme X to the homotopy category of simplicial
�K-sets. This construction furnishes, similarly to what is done in Chapter 9 of
[Artin and Mazur 1969], another functor

Et=K W Sch=K ! Pro-Ho.�K-SSets/;

which we will call the relative étale homotopy type of X over K. Note that by
functoriality we get a natural map

�X=K WX.K/! ŒEt=K.Spec.K//;Et=K.X/�! ŒEt=K.Spec.K//\;Et=K.X/
\�;

where the second map is furnished by applying the Postnikov tower functor. We
will call the pro-set ŒEt=K.Spec.K//\;Et=K.X/\� the homotopy fixed points of X
and we will denote it by the symbol X.hK/.

Our next aim is to describe the target of this map more explicitly (and to justify
the terminology which we have just introduced).

Definition 2.5. Let Sets and SSets denote the category of sets and the category of
simplicial sets, respectively. Let � be as above. The category �-SSets is equipped
with a natural concept of homotopy fixed points (see [Goerss 1995]); we will
denote this functor �-SSets! SSets by … 7!…h� . For every small filtering index
category I and pro-object … W I op ! Ho.�-SSets/, we define the �-homotopy
fixed point set of …, denoted by ….E�/, to be

….E�/D lim
˛2ob.I /

�0.….˛/
h�/:

We will frequently consider the limit ….E�/ as a topological space via its natural
pro-discrete topology. This structure is enough to reconstruct the underlying pro-set.
By a formula of Harpaz and Schlank there is a natural identification

Œ.E�/\;…\�D….E�/;

where E� is an analogue of the total space of the universal �-bundle in this setting
(see [Harpaz and Schlank 2013, Definition 2.3]). They also show that when �D�K
is the absolute Galois group of a field K then Et=K.Spec.K//DE�K , hence we
have X.hK/D Et=K.X/.E�K/ for every K-scheme X , justifying our terminology.

Notation 2.6. Let Ho.SSets/ denote the homotopy category of simplicial sets, let
Sch denote the category of locally Noetherian schemes, and let

Et W Sch! Pro-Ho.SSets/
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denote the Artin–Mazur étale homotopy type functor. For every X as above and
every n 2 N let Etn.X/ denote the n-th Postnikov piece Pn.Et.X// and let Et.X/\

denote the Postnikov tower of Et.X/. For every field K and every scheme X
over K let X denote the base change XK . Moreover, for every such K, every
X 2 ob.Sch=K/ and every n 2 N, let Etn

=K
.X/ denote the n-th Postnikov piece by

Pn.Et=K.X//.

Lemma 2.7. Let K be a field and X be a variety over K. Then there are natural
isomorphisms

f n.X/ W Etn.X/! Etn=K.X/ and f \.X/ W Et.X/\! Et=K.X/
\

in the category Pro-Ho.SSets/.

Proof. The first half of the claim is Proposition 2.14 of [Harpaz and Schlank 2013].
The second half is an immediate consequence of the first half and the compatibility
of the maps f n.X/. �

Notation 2.8. For every X 2 ob.Ho.SSets// let X^ 2 ob.Pro-Ho.SSets// denote
its profinite completion. The basic result about the homotopy type of complex
algebraic varieties is the following classical theorem of Artin and Mazur:

Theorem 2.9. LetX be a geometrically unibranch algebraic variety defined over C.
Then there is a canonical weak homotopy equivalence

�X W Et.X/\! .X.C/^/\

in Pro-Ho.SSets/.

Proof. This is [Artin and Mazur 1969, Corollary 12.10, p. 143]. �

Proposition 2.10. Assume that K is algebraically closed. Then �X=K is surjective.
Two points x; y 2 X.K/ are H -equivalent if and only if they lie in the same
connected component of X with respect to the Zariski topology.

Proof. WhenK is algebraically closed its absolute Galois group is trivial. Therefore
Ho.�K-SSets/ is the homotopy category of simplicial sets and Et=K.X/ is just the
usual Artin–Mazur étale homotopy type of X . Because K is algebraically closed,
Et=K.Spec.K// is contractible. Therefore there is a natural bijection

X.hK/Š Œ� ;Et=K.X/
\�Š �0.Et=K.X/

\/Š �0.X/;

where the third identification is the consequence of a fundamental comparison
theorem of Artin and Mazur [1969, Corollary 10.8, p. 122]. The claim now follows
from the naturality of �X=K . �
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3. The pointed relative étale homotopy type

Definition 3.1. Let � be as above. By a pointed simplicial �-set we mean a
simplicial �-set S� with a point p 2 S0 fixed by � . These form a category,
�-SSets�, in the usual way. Note that, for every pointed simplicial �-set S and
every n2N, the n-skeleton skn.S/, the n-coskeleton coskn.S/, the Kan replacement
Ex1.S/ and n-th Postnikov piece Pn.S/ are all naturally equipped with a point
fixed by � , and we will denote the corresponding four functors, the n-skeleton
skn W �-SSets� ! �-SSets�, the n-coskeleton coskn W �-SSets� ! �-SSets�,
the Kan replacement Ex1 W �-SSets�! �-SSets� and the n-th Postnikov piece
Pn W �-SSets�! �-SSets� by the same symbols by a slight abuse of notation.

Definition 3.2. The homotopy category of �-SSets� with respect to the pointed
version of weak equivalences of Goerss’ strict model structure, called the homotopy
category of pointed simplicial �-sets, will be denoted by Ho.�-SSets�/. Similarly
to the construction recalled in Definition 2.3, we may define a Postnikov tower
functor

. � /\ W Pro-�-SSets�! Pro-�-SSets�;

and we will denote by the same symbol the corresponding Postnikov tower functor
in the category Pro-Ho.�-SSets�/ by the usual abuse of notation. This is of course
justified as the formations of these invariants commute with the forgetful functor
Pro-Ho.�-SSets�/! Pro-Ho.�-SSets/.

Definition 3.3. Since �-SSets is a model category, it has all colimits, in particular
pushouts and equalisers. If Y� is a simplicial �-set and X� � Y� is a subsimplicial
�-set, then let Y�=X� denote the simplicial �-set which is the pushout of the
inclusion map X�!Y�. We call Y�=X� the contraction of Y� by X�. If X�; Y� are
simplicial �-sets and f� WX�! Y�, g� WX�! Y� are maps of simplicial �-sets,
then let Y�.f� D g�/ denote the simplicial �-set which is the coequaliser of f�
and g�.

Definition 3.4. Note that, for every pair of simplicial �-setsX� and Y�, the product
X� �Y� equipped with the natural (diagonal) �-action is also a simplicial �-set.
Similarly the coproduct (disjoint union) X� tY� of simplicial �-sets X� and Y� is
also a simplicial �-set equipped with the tautological �-action. Let I denote the
1-simplex�1D Œ0; 1� with the trivial �-action; this choice makes it into a simplicial
�-set. For every morphism f WX�! Y� of simplicial �-sets the mapping cylinder
Cyl.f / is the coequaliser of the two maps

f 0 WX ! Y� tX� � I and p WX ! Y� tX� � I;
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where f 0 is the composition of f and the tautological inclusion Y� � Y� tX� � I
and p is the composition of the map identifying X� with X� � f1g �X� � I and
the tautological inclusion X� � I � Y� tX� � I . We define the mapping cone
Cone.f / of an f WX�! Y� as above as the contraction of Cyl.f / by the image
of the map

q WX�! Cyl.f /;

where q is the composition of the map identifying X� with X� � f0g � X� � I
with the tautological inclusion X� � I � Y� tX� � I composed with the natural
surjection Y� tX� � I 7! Cyl.f /. Note that Cone.f / is canonically a pointed
simplicial �-set, where the base point is the image of q.X0/� Cyl.f /0 under the
contraction map Cyl.f /! Cone.f /.

Definition 3.5. By a pointed K-scheme .X; x/ we will mean a locally Noetherian
scheme X over K with a K-valued point x W Spec.K/! X on X . These form
the objects of a category Sch=K�, where a morphism f from an object .X; x/ to
another object .Y; y/ is a map f WX ! Y of schemes over K such that f .x/D y.
Now let .X; x/ be a pointed K-scheme and let H� be an étale hypercovering of X .
Then the pullback x�.H�/ is an étale hypercovering of Spec.K/, and the map x
induces a morphism x�.H�/ W �0=K.x

�.H�//! �0=K.H�/ of simplicial �-sets.
Let �0=K.H�; x/ denote the mapping cone of the composition of this map x�.H�/
and the canonical inclusion �0=K.H�/�Ex1.�0=K.H�//; it is a pointed simplicial
�-set. A map f W H� ! J� between étale hypercoverings of X induces a map
�0=K.f; x/ W �0=K.H�; x/! �0=K.J�; x/ between pointed simplicial �-sets, and
a homotopy between two maps f W H� ! J�; g W H� ! J� induces a pointed
�-equivariant homotopy between �0=K.f; x/ and �0=K.g; x/. Therefore we may
apply Corollary 8.13(i) of [Artin and Mazur 1969, p. 105] to conclude that the functor

H� 7! �0=K.H�; x/

above induces an object Et=K.X; x/ of Pro-Ho.�-SSets�/. We will call the latter
the pointed relative étale homotopy type of .X; x/.

Notation 3.6. Let .X; x/ be a pointed K-scheme. For every étale hypercovering
H� of X let

i.H�; x/ W �0=K.H�/! �0=K.H�; x/

be the composition of the natural inclusion map

�0=K.H�/! Cone.x�.H�//

and the map Cone.x�.H�//! �0=K.H�; x/ induced by the functoriality of map-
ping cones. This is a natural transformation between two functors from the category
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of étale hypercoverings over X into �-SSets, and hence it induces a map

i.X; x/ W Et=K.X; x/! Et=K.X/

of pro-objects of the homotopy category Ho.�-SSets/, where by slight abuse of
notation we let Et=K.X; x/ also denote the image of the pointed relative étale
homotopy type of .X; x/ with respect to the forgetful functor

Pro-Ho.�-SSets�/! Pro-Ho.�-SSets/:

The map i.X; x/ is obviously natural.

Proposition 3.7. The map i.X; x/ W Et=K.X; x/! Et=K.X/ induces a bijection on
homotopy fixed points.

Proof. Note that the functor �0=K induces an equivalence between the category
of étale coverings over Spec.K/ and �-Sets, so �0=K.x�.H�// is a contractible
simplicial �-set. Therefore i.H�; x/ is a weak equivalence for every étale hyper-
covering H� of X with respect to Goerss’ weak model structure (see Theorem A on
p. 189 and Definition 1.11 on p. 194 in [Goerss 1995]), and hence induces a bijection
�0.�0=K.H�/

h�/!�0.Cone.x�.H�//h�/. So the same holds for i.X; x/, too. �

Definition 3.8. Let Sch� be the category of pointed locally Noetherian schemes,
and, as usual, denote the objects of Sch� by pairs .X; x/, where X is a locally
Noetherian scheme and x is a geometric point of X . By slight abuse of notation let

Et W Sch�! Pro-Ho.SSets�/

denote the pointed version of the Artin–Mazur étale homotopy type functor. For
every object .X; x/ of Sch� and every n� 1, let �n.X; x/ denote the n-th homotopy
group of Et.X; x/ when X is connected.

Notation 3.9. For every pointed scheme .X; x/ and every n 2 N, let Etn.X; x/
denote the n-th Postnikov piecePn.Et.X; x// and let Et.X; x/\ denote the Postnikov
tower of Et.X; x/. Similarly, for every field K, every pointed K-scheme .X; x/ and
every n2N, let Etn

=K
.X; x/ denote the n-th Postnikov piece Pn.Et=K.X; x// and let

Et=K.X; x/\ denote the Postnikov tower of Et=K.X; x/. Since we fixed a separable
closure K of K, we may associate to every K-valued point x W Spec.K/!X of a
K-scheme X a K-valued point x W Spec.K/!X which is the composition of the
map Spec.K/! Spec.K/ induced by the inclusion K �K and x.

Similarly to above, by slight abuse of notation we let Et=K.X; x/ and Etn
=K
.X; x/

also denote respectively the image of the pointed relative étale homotopy type of
.X; x/ and of the n-th truncation of the latter with respect to the forgetful functor

Pro-Ho.�-SSets�/! Pro-Ho.SSets�/:
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Proposition 3.10. Let K be a field and .X; x/ a pointed K-scheme such that X is
a variety over K. Then there are natural isomorphisms

f n.X; x/ W Etn.X; x/! Etn=K.X; x/ and f \.X; x/ W Et.X; x/\! Et=K.X; x/
\

in the category Pro-Ho.SSets�/.

Proof. Since the second half is an immediate consequence of the first half and the
compatibility of the maps f n.X; x/, it will be enough to prove the former. Let
�0 denote the 0-simplex, as usual. Let .H�; h/ be a pointed étale hypercovering
of .X; x/. By definition h is a map �0! �0=K.x

�.H�// of simplicial sets. For
every .H�; h/ as above let �0=K.H�; h; x/ be the contraction of �0=K.H�; x/ by
the image of the map

ch W�
1
Š�0 ��1! �0=K.H�; x/

of simplicial sets, where ch is the composition �ı�ı.h�idI /, where � is the inclusion

�0=K.x
�.H�//��

1
� Ex1.�0=K.H�//t�0=K.x

�.H�//��
1

and � is the canonical surjection

Ex1.�0=K.H�//t�0=K.x
�.H�//��

1
! �0=K.H�; x/:

Let
a.H�; h/ W �0=K.H�; x/! �0=K.H�; h; x/

be the contraction map. We will consider �0=K.H�; h; x/ a pointed simplicial
set, where its distinguished point b.h/ 2 �0=K.H�; h; x/0 is the image of the base
point of the pointed simplicial �-set under a.H�; h/. Note that this map is a weak
equivalence in Pro�Ho.SSets�/, since we contracted a contractible subsimplicial
set. Therefore by [Artin and Mazur 1969, Corollary 8.13(i), p. 105] the functor

.H�; h/ 7! .�0=K.H�; h; x/; b.h//

induces an object Et0.X; x/ of Pro-Ho.SSets�/ which is isomorphic to Et=K.X; x/
in this category. For every .H�; h/ as above let �0=K.h/ 2 �0=K.H0/ be the point
corresponding to h, and let

b.H�; h/ W �0=K.H�/! �0=K.H�; x/

be the map of pointed simplicial sets which is the composition of the natural
inclusion map

�0=K.H�/� �0=K.H�/t�0=K.x
�.H�//��

1

with the natural surjection

�0=K.H�/t�0=K.x
�.H�//��

1
! Cone.x�/
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composed with the map Cone.x�/! �0=K.H�; x/ induced by the functoriality of
mapping cones. Let c.H�; h/ be the composition of b.H�; h/ with a.H�; h/; then
this map is a morphism

c.H�; h/ W .�0=K.H�/; �0=K.h//! .�0=K.H�; h; x/; b.h//

of pointed simplicial sets. Since �0=K.x�.H�// is a contractible simplicial �-set,
the map c.H�; h/ is a weak equivalence for every pointed étale hypercovering
.H�; h/ of X . Therefore by [Artin and Mazur 1969, Corollary 8.13(i), p. 105]
the functor

.H�; h/ 7! .�0=K.H�/; �0=K.h//

induces an object Et00.X; x/ of Pro-Ho.SSets�/ which is isomorphic to Et0.X; x/,
and hence to Et=K.X; x/ in this category. Therefore it will be sufficient to prove
that there are natural isomorphisms

gn.X; x/ W Etn.X; x/! Pn.Et00.X; x//

in the category Pro-Ho.SSets�/ which are compatible with each other and with
truncation.

Note that the inclusion of the indexing category of Et00.X; x/ in the indexing
category of Et.X; x/ furnishes a natural map

g.X; x/ W Et.X; x/! Et00.X; x/:

In order to prove that g.X; x/ is an isomorphism after taking n-th truncations, we can
argue the same way as in the proof of [Harpaz and Schlank 2013, Proposition 2.14].

�

4. Homotopy groups of finite étale covers

Recall that for every object X of Sch with a geometric point x and every n 2 N

the symbol �n.X; x/ denotes the homotopy group �n.Et.X/; x/. In this section
assume that K is an algebraically closed field.

Proposition 4.1. Let f W .X; x/! .Y; y/ be a finite étale map of pointed smooth
connected quasiprojective varieties over K. Then the induced map

�n.f / W �n.X; x/! �n.Y; y/

is an isomorphism for every n� 2.

Proof. Because �1.Y; y/ is topologically finitely generated, its open normal sub-
groups are cofinal, and hence there is a finite étale map g W .Z; z/! .X; x/ of
pointed smooth connected quasiprojective varieties over K such that the image
of �1.f ıg/ W �1.Z; z/! �1.Y; y/ is an open normal subgroup. In this case the
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image of �1.f / W �1.Z; z/! �1.X; x/ is an open normal subgroup, too. It will be
enough to show that the maps �n.f ı g/ and �n.f / are isomorphisms for every
n � 2. Since the composition f ı g is also a finite étale map, we’ve reduced the
claim to the special case when the image of �1.f / is an open normal subgroup.

In this case f is a finite Galois covering; let G denote the covering group and
let ˛ WG! Aut.X/ be the action corresponding to the deck transformations. Let
.H�; h/ be a pointed hypercovering of Y with respect to the étale site of Y pointed
with y. Let C� denote the étale Čech hypercovering

X
..
X �Y X

oo oo X �Y X �Y X
oo oooo � � �

oooooooo

generated by the cover X ! Y , and equip it with a point c with respect to the
same pointed site. Let .I�; i/ be the fibre product of .H�; h/ and .C�; c/ over Y ;
this pointed simplicial object is also a hypercovering. Let .J�; j / be the pullback
f �.I�; i/ of the pointed hypercovering .I�; i/ onto the étale site of X pointed with
x with respect to f and let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// be the map
induced by f between the pointed simplicial sets of connected components of J�
and I�.

The action ˛ induces an action of G on J�, and hence an action of G on �0.J�/.
If we equip �0.I�/ with the trivial action then f� is G-equivariant. Because f is a
finite étale cover the map f� is surjective. Moreover, for every n the étale cover
In! Y factors through f WX ! Y , and hence the action of G on the connected
components of the base change Jn ! X of this map to X is free. We get that
f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// is a G-cover and hence the induced maps

�n.f�/ W �n.�0.J�/; �0.j //! �n.�0.I�/; �0.i//

are isomorphisms for all n� 2.
Let .L�; l/ be a pointed hypercovering of X with respect to the étale site of

X pointed with x. By composing the structure maps with f we get a pointed
hypercovering of Y with respect to the étale site of Y pointed with y, which we will
denote by .H�; h/ by slight abuse of notation. By applying the same construction
to .H�; h/ as above we get a pointed hypercovering .J�; j / of the étale site of X
pointed with x which dominates .L�; l/. Therefore pointed hypercovers of X of
the form as .J�; j / above are cofinal, so the injectivity of the maps �n.f / for all
n� 2 follows.

Let 
 be an element of �n.Y; y/ (where n� 2). For every pointed hypercovering
.L�; l/ of X with respect to the étale site of X pointed with x we will construct an
element 
 0

.L�;l/
2�n.�0.L�/; �0.l// as follows. Let .H�; h/, .I�; i/ and .J�; j / be

the same as in the paragraph above. Let 
.I�;i/ 2�n.�0.I�/; �0.i// be the image of

 under the tautological map �n.Y; y/!�n.�0.I�/; �0.i//, let �n.f�/�1.
.I�;i//
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be the unique preimage of 
.I�;i/ under the isomorphism

�n.f�/ W �n.�0.J�/; �0.j //! �n.�0.I�/; �0.i//;

and let 
 0
.L�;l/

be the image of �n.f�/�1.
.I�;i// under the natural map

�n.�0.J�/; �0.j //! �n.�0.L�/; �0.l//:

It is easy to check that the elements 
 0
.L�;l/

glue together to an element 
 0 of
�n.X; x/ whose image under �n.f / is 
 . The surjectivity of the maps �n.f / for
all n� 2 follows. �

Notation 4.2. For every group � let y� be its profinite completion. For every object
X of Sch, for every n2N and for every pro-abelian groupA letHn.X;A/ denote the
homology group Hn.Et.X/; A/. For every object .X; x/ of Sch� and n as above let

hn.X; x/ W �n.X; x/!Hn.X; yZ/

denote the Hurewicz map. Let X be a smooth, geometrically irreducible, quasipro-
jective variety over K. Let x be a K-valued point of X and let Fet.X; x/ denote
the category of finite étale pointed connected covers .Y; y/ of .X; x/ such that the
image of the induced map �1.f / W �1.Y; y/! �1.Y; y/ is an open characteristic
subgroup for every object f W .Y; y/! .X; x/. Since for every f W .Y; y/! .X; x/

as above the induced map �2.f / W �2.Y; y/! �2.X; x/ is an isomorphism by
Proposition 4.1, the projective limit of the inverses of these maps is an isomorphism

aX W �2.X; x/! lim
.Y;y/2Fet.X;x/

�2.Y; y/:

Moreover, we may take the projective limit of the Hurewicz maps

bX W lim
.Y;y/2Fet.X;x/

�2.Y; y/! lim
.Y;y/2Fet.X;x/

H2.Y; yZ/:

Theorem 4.3. The map

bX ı aX W �2.X; x/! lim
.Y;y/2Fet.X;x/

H2.Y; yZ/

is an isomorphism.

Proof. First we are going to prove that bX is injective. Let 
 be a nonzero element
of �2.X; x/. Then there is a pointed hypercovering .H�; h/ of X with respect to
the étale site of X pointed with x such that the image of 
 under the natural map
�2.X; x/!�2.�0.H�/; �0.h// is nonzero. Let N be the kernel of the natural map
�1.X; x/!�1.�0.H�/; �0.h//; it is an open normal subgroup. Because �1.X; x/
is topologically finitely generated, its open characteristic subgroups are cofinal, and
hence there is an object f W .Y; y/! .X; x/ of Fet.X; x/ such that the image of
�1.f / W �1.Y; y/! �1.X; x/ lies in N .
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Note that f is a finite Galois covering; let G denote the covering group and let
˛ WG! Aut.X/ be the action corresponding to the deck transformations. Let C�
denote the étale Čech hypercovering generated by the cover Y ! X , and equip
it with a point c with respect to the same pointed site. Let .I�; i/ be the pointed
simplicial object which is the fibre product of .H�; h/ and .C�; c/ and let .J�; j / be
the pullback f �.I�; i/ of the pointed hypercovering .I�; i/ onto the étale site of X
pointed with x with respect to f . Let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// be
the map induced by f between the pointed simplicial sets of connected components
of J� and I�.

We may argue as above to conclude that f� W .�0.J�/; �0.j //! .�0.I�/; �0.i//

is a G-cover with respect to the action induced by ˛ on �0.J�/ and the trivial action
on �0.I�/. Therefore the induced map

�1.f�/ W �1.�0.J�/; �0.j //! �1.�0.I�/; �0.i//

is injective. There is a commutative diagram

�1.Y; y/ ����! �1.�0.J�/; �0.j //

�1.f /

??y �1.f�/

??y
�1.X; x/ ����! �1.�0.I�/; �0.i//:

By assumption the composition of �1.f / and the lower horizontal map has trivial
image. Since the upper horizontal map is surjective by [Artin and Mazur 1969,
Corollary 10.6, pp. 121–122], we get that �1.f�/ has trivial image, too, and hence
�1.�0.J�/; �0.j // is the trivial group. There is a similar commutative diagram

�2.Y; y/ ����! �2.�0.J�/; �0.j //

�2.f /

??y �2.f�/

??y
�2.X; x/ ����! �2.�0.I�/; �0.i//

for �2. The image of 
 , considered as an element of �2.Y; y/, is nonzero under the
composition of �2.f / and the lower horizontal map by assumption. Therefore its
image 
 0 under the upper horizontal map is also nonzero. Since �1.�0.J�/; �0.j //
is trivial, we get that the image of 
 0 under the Hurewicz map �2.�0.J�/; �0.j //!
H2.�0.J�/; yZ/ is nonzero. By naturality this implies that the image of 
 under the
Hurewicz map h2.Y; y/ W �2.Y; y/!H2.Y; yZ/ is nonzero, too.

Next we are going to prove that bX is surjective. For every .Z; z/ 2 Fet.X; x/
let C.Z; z/ be the category of morphisms .Y; y/! .Z; z/ in Fet.X; x/, and let

c.Z;z/ W lim
.Y;y/!.Z;z/2C.Z;z/

H2.Y; yZ/!H2.Z; yZ/
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be the tautological map. Because the preimage .bX ıaX /�1.Im.c.Z;z///��2.X; x/
is closed and �2.X; x/ is profinite, by compactness it will be enough to show that
for every object .Z; z/ as above .bX ıaX /�1.Im.c.Z;z/// is nonempty. Now fix an
element 
 2 Im.c.Z;z// and choose a


 0 2 lim
.Y;y/!.Z;z/2C.Z;z/

H2.Y; yZ/

such that c.Z;z/.
 0/ D 
 . For every pointed hypercovering .H�; h/ of Z with
respect to the étale site of Z pointed with z, we are going to construct an element

.H�;h/ 2 �2.�0.H�/; �0.h// as follows.

Let N be the kernel of the natural map �1.Z; z/! �1.�0.H�/; �0.h//. Using
that �1.Z; z/ is topologically finitely generated as above, we get that there is
a morphism f W .Y; y/ ! .Z; z/ of Fet.X; x/ such that the image of �1.f / W
�1.Y; y/ ! �1.Z; z/ lies in N . Let C� denote the étale Čech hypercovering
generated by the cover Y !Z, and equip it with a point c with respect to the same
pointed site. Let .I�; i/ be the pointed hypercovering which is the fibre product
of .H�; h/ and .C�; c/, and let .J�; j / be the pullback f �.I�; i/ of .I�; i/ onto
the étale site of Y pointed with y with respect to f . Let f� W .�0.J�/; �0.j //!
.�0.I�/; �0.i// be the map induced by f between the pointed simplicial sets of
connected components of J� and I�.

As we saw in the proof of injectivity, the group �1.�0.J�/; �0.j // is trivial
and hence the Hurewicz map �2.�0.J�/; �0.j //!H2.�0.J�/; yZ/ is an isomor-
phism. Therefore there is a unique 
f 2�2.�0.J�/; �0.j // whose image under this
Hurewicz map is the image of 
 0 under the composition of c.Y;y/ and the natural
map H2.Y; yZ/!H2.�0.J�/; yZ/. Let 
.H�;h/ 2 �2.�0.H�/; �0.h// be the image
of 
f under the composition of the functorial maps �2.f�/ W �2.�0.J�/; �0.j //!
�2.�0.I�/; �0.i// and �2.�0.I�/; �0.i//! �2.�0.H�/; �0.h//.

First we are going to show that 
.H�;h/ is independent of the choice of the
morphism f . Let f 0 W .Y 0; y0/! .Z; z/ be another morphism of Fet.X; x/ such that
the image of �1.f 0/ W�1.Y 0; y0/!�1.Z; z/ lies in N . Then the fibre product of f
and f 0 over .Z; z/ is another morphism of Fet.X; x/ with this property. Moreover,
it can be factorised into a composition of a morphism g of Fet.X; x/ and f , and
into a composition of a morphism g0 of Fet.X; x/ and f 0 too. Therefore it will be
enough to show that this construction applied to the morphism f ıg of Fet.X; x/
will give the same element in �2.�0.H�/; �0.h// as f , where g W .V; v/! .Y; y/

is a morphism of Fet.X; x/.
Let .C�; c/ be the same Cech hypercovering as above, and let C 0� denote the

étale Čech hypercovering generated by the cover V !Z, and equip it with a point
c0 with respect to the same pointed site. Note that g furnishes a map ı W .C 0�; c

0/!

.C�; c/ of pointed hypercoverings. Let .C�; c/, .I�; i/ and .J�; j / be as above,
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let .I 0�; i
0/ be the fibre product of .H�; h/ and .C 0�; c

0/, and let .J 0�; j
0/ be the

pullback .f ıg/�.I 0�; i
0/. Let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// and .f ıg/� W

.�0.J
0
�/; �0.j

0// ! .�0.I
0
�/; �0.i

0// be the maps induced by f and by f ı g,
respectively. Note that g induces a map g� Wg�.�0.J�/; �0.j //! .�0.J�/; �0.j //.
Then there is a commutative diagram

�2.�0.J
0
�/; �0.j

0//
�2..f ıg/�/
��������! �2.�0.I

0
�/; �0.i

0// ����! �2.�0.H�/; �0.h//??y�2.g�ı.f ıg/�.ıH // ??y�2.ıH / 



�2.�0.J�/; �0.j //

�2.f�/
����! �2.�0.I�/; �0.i// ����! �2.�0.H�/; �0.h//;

where ıH W .I 0�; i
0/! .I�; i/ is the fibre product of ı with .H; h/, the morphism

.f ıg/�.ıH / W .�0.J
0
�/; �0.j

0//! g�.�0.J�/; �0.j //D .f ıg/
�.�0.I�/; �0.i//

is the base change of ıH with respect to f ıg; while the middle and left vertical
maps are induced by ıH and g� ı .f ıg/�.ıH /, respectively. Since the image of

f ıg under the left vertical map is 
f , the claim above follows.

In order to conclude the proof of the theorem itself, we only need to show
that, for every morphism ı W .H�; h/ ! .H 0�; h

0/ of pointed hypercoverings of
Z with respect to the étale site of Z pointed with z, the induced map �2.ı/ W
�2.�0.H�/; �0.h//! �2.�0.H

0
�/; �0.h

0// takes 
.H�;h/ to 
.H 0�;h0/. Indeed, in
this case these 
.H�;h/ glue together to an element of �2.Z; z/ whose image is

 under the Hurewicz map, by construction. Now let f W .Y; y/! .Z; z/ be a
morphism of Fet.X; x/ such that the image of �1.f / W �1.Y; y/! �1.Z; z/ lies in
the kernel of the natural map �1.Z; z/! �1.�0.H�/; �0.h//. Let .C�; c/; .I�; i/
and .J�; j / be as above. Note that the image of �1.f / lies in the kernel of the
natural map �1.Z; z/! �1.�0.H

0
�/; �0.h

0//, too. Let .I 0�; i
0/ be the fibre product

of .H 0�; h
0/ and .C�; c/ and let .J 0�; j

0/ be the pullback f �.I 0�; i
0/ onto the étale site

of Y pointed with y with respect to f . By slight abuse of notation let f� denote both
maps .�0.J�/; �0.j //! .�0.I�/; �0.i// and .�0.J 0�/; �0.j

0//! .�0.I
0
�/; �0.i

0//

induced by f . Then there is a commutative diagram

�2.�0.J�/; �0.j //
�2.f�/
����! �2.�0.I�/; �0.i// ����! �2.�0.H�/; �0.h//

�2.f
�.ıC //

??y �2.ıC /

??y �2.ı/

??y
�2.�0.J

0
�/; �0.j

0//
�2.f�/
����! �2.�0.I

0
�/; �0.i

0// ����! �2.�0.H
0
�/; �0.h

0//;

where the middle and left vertical maps are induced by the fibre product ıC of ı
with .C; c/ and the pullback f �.ıC / of ıC with respect to f , respectively. By
construction, the image of 
f 2 �2.�0.J�/; �0.j // constructed for .H; h/ under
�2.f

�.ıC // is the element denoted by the same symbol and constructed for .H 0; h0/.
The claim is now clear. �
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5. The homotopy type of curves and abelian varieties

Definition 5.1. Following [Serre 1997, p. 16], we will say that a group � is good
if the homomorphism of cohomology groups Hn.y�;M/!Hn.�;M/ induced by
the natural homomorphism �! y� is an isomorphism for every finite �-module
M . For every smooth, connected, quasiprojective variety X over any field K and
every n� 1, let �n.X/ denote the isomorphism class of the n-th homotopy group of
�n.X; x/ for some geometric point x. As the notation indicates, these isomorphism
classes do not depend on the choice of the base point.

Proposition 5.2. Let X be a smooth variety over C such that X.C/ has the homo-
topy type of the Eilenberg–MacLane space B�1.X.C// and the group �1.X.C// is
good. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

Proof. By [Artin and Mazur 1969, Corollary 6.6, p. 72] the profinite completion
.B�/^ of B� is weakly homotopy equivalent to B y� if and only if � is a good
group. Because we assumed thatX is smooth, Et.X/ is weakly homotopy equivalent
to B 3�1.X.C// by Theorem 2.9. On the other hand, the profinite completion of
�1.X.C// is isomorphic to �1.X/ by the Grauert–Remmert theorem. The claim is
now clear. �
Remark 5.3. It is important to note that the condition requiring the fundamental
group to be good is not only sufficient, but also necessary. In particular, there are
algebraic varietiesX over C such thatX.C/ has the homotopy type of the Eilenberg–
MacLane space B�1.X.C//, but the group �1.X.C// is not good, therefore Et.X/
is not an Eilenberg–MacLane space. For an important class of examples see
[Mochizuki 2003, Lemma 3.16, p. 146].

Proposition 5.4. Let X be a smooth geometrically irreducible quasiprojective
variety over an algebraically closed field K of characteristic zero, and let F be
another algebraically closed field containing K. Then Et.X/ is weakly homotopy
equivalent to Et.XF /.

Proof. This claim is a special case of [Artin and Mazur 1969, Corollary 12.12,
p. 144] when X is proper, using also [Artin and Mazur 1969, Theorem 11.1, p. 124].
We only need to add a little bit more whenX is not proper. By Hironaka’s resolution
of singularities, there is a projective variety Y over K which contains X as an open
subvariety such that the complement C � Y is a normal crossings divisor. By the
tame invariance theorem, the tame fundamental groups �C1 .Y / and �CF1 .YF / are
isomorphic. But since the base fields have characteristic zero we have

�C1 .Y /Š �1.X/ and �
CF
1 .YF /Š �1.XF /:

Therefore �1.X/Š �1.XF /, so the argument presented in [Artin and Mazur 1969]
can be applied in this case, too. �
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Corollary 5.5. (a) Let X be a smooth, geometrically connected curve over an
algebraically closed field K of characteristic zero which is not a projective
curve of genus zero. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

(b) Let X be an abelian variety over an algebraically closed field K of character-
istic zero. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

Proof. Recall that a smooth, geometrically connected curve Y defined over a field
has type .g; d/ if g is the genus of the smooth projective completion Y c of Y and
d is the number of geometric points in the complement of Y in Y c . Let X be a
smooth, geometrically connected curve of type .g; d/ such that .g; d/¤ .0; 0/ over
an algebraically closed field K of characteristic zero. There is a subfield F �K
which is finitely generated over Q with X already defined over F , that is, there
is a smooth, geometrically connected curve Y of type .g; d/ over F whose base
change to K is X .

Choose an embedding i WF !C of fields. Then the base change YC of the curve
YF to C with respect to this embedding is also a smooth, geometrically connected
curve of type .g; d/. The topological space YC.C/ has the homotopy type of the
Eilenberg–MacLane space B�1.YC.C//. The topological fundamental group of a
smooth, connected complex curve is good (this fact follows at once from [Serre
1997, Problem 1(a), p. 15]) so we get from Proposition 5.2 that Et.YC/ is weakly
homotopy equivalent to B�1.YC/. By a repeated application of Proposition 5.4
we get that Et.X/D Et.YK/ is weakly homotopy equivalent to Et.YC/, and hence
�1.X/Š �1.YC/, so Et.X/ is weakly homotopy equivalent to B�1.X/.

The proof of claim (b) is essentially the same as the proof of claim (a); we only
need to add that finitely generated free abelian groups are good (see [Serre 1997,
Problem 2(d), p. 16]), so Et.A/ is weakly homotopy equivalent to B�1.A/ for every
abelian variety A defined over C by Propositions 5.2 and 5.4. �

6. Grothendieck’s short exact sequence

Notation 6.1. Let X be a geometrically connected variety defined over K. Let
� be a K-valued point of X . Then Grothendieck’s short exact sequence of étale
fundamental groups for X is

1 �! �1.X; �/ �! �1.X; �/ �! �K �! 1; (6.1.1)

which is an exact sequence of profinite groups in the category of topological groups.
EveryK-rational point x 2X.K/ induces a section �K!�1.X; �/ of the sequence
(6.1.1), well-defined up to conjugation. Let Sec.X=K/ denote the set of conjugacy
classes of sections of (6.1.1) (in the category of profinite groups where morphisms
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are continuous homomorphisms). Then we have a map

sX=K WX.K/! Sec.X=K/

which sends every point x 2X.K/ to the corresponding conjugacy class of sections.

Definition 6.2. For every characteristic open subgroup N of �1.X; �/, consider
the short exact sequence

1 �! �1.X; �/=N �! �1.X; �/=N �! �K �! 1; (6.2.1)

obtained by dividing out (6.1.1) byN . Let Sec.X=K;N / denote the set of conjugacy
classes of sections of (6.2.1). Let

sX=K;N WX.K/! Sec.X=K;N /

denote the composition of sX=K;N and the natural forgetful map

�X=K;N W Sec.X=K/! Sec.X=K;N /:

Note that for every pair of characteristic open subgroups N 0 �N of �1.X; �/ the
composition of �X=K;N 0 and the forgetful map Sec.X=K;N 0/! Sec.X=K;N / is
�X=K;N . Therefore we may take the projective limit of the maps �X=K;N to get
a map

�X=K D lim
N
�X=K;N W Sec.X=K/! lim

N
Sec.X=K;N /:

where the limit is over the set of characteristic open subgroups of �1.X; �/ directed
with respect to reverse inclusion.

Proposition 6.3. The map �X=K is a bijection.

Proof. Let r; s be two sections �K ! �1.X; �/ such that for every characteristic
open subgroup N of �1.X; �/ the compositions of r and s with the quotient map
�1.X; �/! �1.X; �/=N are conjugates. Then for every such N the set

CN D fg 2 �1.X; �/ j g
�1r.h/gs.h/�1 2N for all h 2 �Kg

is nonempty. Since the sets CN are closed in the compact topological space
�1.X; �/, their intersection\

N

CN D

�
g 2 �1.X; �/

ˇ̌
g�1r.h/gs.h/�1 2

\
N

N for all h 2 �K

�
is also nonempty. Because in a topologically finitely generated profinite group, such
as �1.X; �/, the intersection of all characteristic open subgroups is the identity
element, we get that r and s are conjugates. Therefore �X=K is injective.
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Now let r be an element of limN Sec.X=K;N /, and for every N as above let
rN 2 Sec.X=K;N / be the image of r under the projection limM Sec.X=K;M/!

Sec.X=K;N /. For every positive integer m let N.m/ be the intersection of all
open subgroups of �1.X; �/ of index at most m. We are going to construct a
section sm W �K! �1.X; �/=N.m/ whose conjugacy class is rN.m/ for every m by
induction, as follows. When mD 1 this section is just the identity. Assume now
that sm�1 is already constructed. Let s0m be a section �K ! �1.X; �/=N.m/

whose conjugacy class is rN.m/. Because rN.m/ maps to rN.m�1/ under the
forgetful map Sec.X=K;N.m// ! Sec.X=K;N.m � 1//, we get that there is
a g 2 �1.X; �/=N.m/ such that the composition of g�1s0mg and the quotient map
�1.X; �/=N.m/!�1.X; �/=N.m�1/ is sm�1. Let sm be g�1s0mg. These sections
are compatible and their limit is a section

s W �K !
1

lim
mD1

�1.X; �/=N.m/D �1.X; �/

whose image is r under �X=K . So the latter is surjective, too. �

Definition 6.4. We say that X is well-equipped with K-rational points if the map
sX=K;N is surjective for every characteristic open subgroup N of �1.X; �/. Note
that for a different choice of a base point �0 there is an isomorphism between
�1.X; �/ and �1.X; �0/ which maps �1.X; �/ onto �1.X; �0/, canonical up to
conjugacy. Therefore the sets Sec.X=K/ and Sec.X=K;N / are independent of the
choice of the base point �, as the notation indicates.

Proposition 6.5. The algebraic groups GLn and PGLn are well-equipped with
K-rational points over any characteristic-zero field K and positive integer n.

Proof. Let 1 denote the unit of GLn.K/, and PGLn.K/ as well. The quotient map
p W GLn! PGLn by the centre of GLn induces a surjection

�1.p/ W �1.GLn; 1/! �1.PGLn; 1/;

and hence it will be enough to prove the claim for GLn only. Let i WGL1!GLn be
the map which embeds GL1 into GLn as diagonal matrices with 1 on the diagonal
except at the upper-left corner. This map induces an isomorphism

�1.i/ W �1.GL1; 1/! �1.GLn; 1/:

Therefore it will be enough to prove the claim for GL1 only. There is a natural
isomorphism

�1.GL1; 1/Š yZ;

and for every k 2 N there is a natural bijection

Sec.GL1 =K; kyZ/ŠH 1.K;�k/;
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where �k �K� is the module of k-th roots of unity. Moreover, under this identifi-
cation sGL1 =K;kyZ

corresponds to the coboundary map furnished by Kummer theory.
Since, by Hilbert’s theorem 90, H 1.K;K�/ is zero, the claim now follows. �

Proposition 6.6. Assume that K is an algebraically closed field of characteristic
zero. LetG be a geometrically connected algebraic group overK, and let f WX!Y

be a principal G-bundle over a geometrically connected smooth variety Y over K.
Let x 2X and set y D f .x/. Then the sequence

�1.f
�1.y/; x/! �1.X; x/

�1.f /
�����! �1.Y; y/! 1 (6.6.1)

is exact, where the first map is induced by the inclusion f �1.y/�X .

Proof. There is a subfield F �K which is finitely generated over Q and G;X; Y
and f are already defined over F . Therefore, by the invariance theorem for the
(tame) étale fundamental group, it will be sufficient to prove the claim for F . By
the axiom of choice there is an embedding F ! C of fields, and hence we may
assume that K is C without loss of generality, again by the invariance theorem.
Because the map X.C/! Y.C/ induced by f is a Serre fibration, there is a short
exact sequence

�1.f
�1.y/.C/; x/ �! �1.X.C/; x/ �! �1.Y.C/; y/ �! 1 (6.6.2)

of topological fundamental groups of complex analytic spaces. The profinite
completion functor is right-exact, so the completion of (6.6.2) is also exact. By the
Grauert–Remmert theorem the latter is the sequence (6.6.1). �

Proposition 6.7. LetG be a geometrically connected algebraic group well-equipped
withK-rational points over a fieldK of characteristic zero. Let f WX!Y be a prin-
cipal G-bundle over a smooth variety Y over K and let x; y 2 Y.K/ be such that:

(i) sY=K.x/D sY=K.y/.

(ii) The sets f �1.x/.K/ and f �1.y/.K/ are nonempty.

Then, for every characteristic open subgroup N of �1.X; �/ (where � 2 X.K/ is
arbitrary), there are two points xN 2 f �1.x/.K/ and yN 2 f �1.y/.K/ such that
sX=K;N .xN /D sX=K;N .yN /.

Proof. Pick two points x0 2 f �1.x/.K/, y0 2 f �1.y/.K/ and let � 2 f �1.x/.K/.
Let r 2 sX=K.x0/; s 2 sX=K.y0/ be two sections of the short exact sequence (6.1.1).
Because both x0 and � lie in f �1.x/.K/, we may assume that the image of r
is in �1.f �1.x/; �/ without loss of generality. Now let � D f .�/, and let r0; s0
be the composition of r; s and �1.f / W �1.X; �/ ! �1.Y; �/, respectively. As
r0 2 sY=K.x/ and s0 2 sY=K.y/, we get that these sections are conjugate. By
Proposition 6.6 the map �1.f / is surjective, and therefore we may assume that
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r0 and s0 are the same, by conjugating s if necessary. This implies that s lies in
�1.f

�1.x/; �/, just as r does, by Proposition 6.6. Let N be now a characteristic
open subgroup of �1.X; �/, and letM 0 be the preimage ofN with respect to the map
�1.f �1.x/; �/! �1.X; �/. As M 0 is open and �1.f �1.x/; �/ is topologically
finitely generated, there is a characteristic open subgroupM of �1.f �1.x/; �/ lying
in M 0. Because f �1.x/ has a K-rational point, it is isomorphic to G. Therefore it
is well-equipped with K-rational points, so there is an xN 2 f �1.x/.K/ such that
the composition of s and the quotient map �1.f �1.x/; �/! �1.f

�1.x/; �/=M

lies in sf �1.x/=K;M .xN /. If we set yN D y0 then it is clear that the pair xN ; yN
satisfies the required properties. �

Proposition 6.8. LetG be a geometrically connected algebraic group well-equipped
withK-rational points over a fieldK of characteristic zero such that �1.G/ is finite.
Let f W X ! Y be a principal G-bundle over a smooth variety Y over K and let
x; y 2 Y.K/ be such that:

(i) sY=K.x/D sY=K.y/.

(ii) The sets f �1.x/.K/ and f �1.y/.K/ are nonempty.

Then there are two points x02f �1.x/.K/ and y02f �1.y/.K/ such that sX=K.x0/D
sX=K.y

0/.

Proof. The proof is the same as above, except that we look at sections of the full
Grothendieck short exact sequence (6.1.1) for X . We leave the details to the reader.

�

Remark 6.9. By Proposition 6.5 we may apply Proposition 6.7 to principal GLn-
bundles. Note that SLn! PSLn is a finite étale cover and SLn is simply connected.
As PSLn and PGLn are isomorphic, we get that �1.PGLn/ is finite. Therefore by
Proposition 6.5 we may apply Proposition 6.8 to principal PGLn-bundles.

7. Basic consequences of obstruction theory

Definition 7.1. For every n 2 N, by functoriality we get a natural map

�nX=K WX.K/! ŒEt=K.Spec.K//;Et=K.X/�! ŒEt=K.Spec.K//\;Etn=K.X/�;

where the second map is furnished by applying the Postnikov tower functor and
composing with the n-th truncation map Et=K.X/\! Etn

=K
.X/. We will denote

ŒEt=K.Spec.K//\;Etn
=K
.X/� by the symbol Xn.hK/. The n-th truncation map

S \! Pn.S/ is natural, and hence induces a natural map

hnX=K WX.hK/!Xn.hK/
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such that �n
X=K
D hn

X=K
ı �X=K . For every positive integer n, let �n denote the

following equivalence relation on X.hK/: for every pair x; y 2 X.hK/ we have
x �n y if and only if hn

X=K
.x/D hn

X=K
.y/. It is clear that the equivalence relation

�nC1 is finer than the equivalence relation �n.

Definition 7.2. For every pointed K-scheme .X; x/, let

.X; x/.hK/D Et=K.X; x/.E�K/:

Let �.X; x/ W .X; x/.hK/ ! X.hK/ denote the bijection induced by the map
i.X; x/ (see Proposition 3.7). Then we have a unique natural map �.X;x/=K W
X.K/! .X; x/.hK/ such that the diagram

.X; x/.hK/

�.X;x/

��

X.K/

�.X;x/=K
88

�X=K &&
X.hK/

is commutative.

Definition 7.3. We are going to need a variant of the equivalence relations �n for
pointed relative étale homotopy types, too. Let .X; x/ be a pointed K-scheme as
above. We will denote Etn

=K
.X; x/.E�K/ by the symbol .X; x/n.hK/. The n-th

truncation map furnishes a natural map

hn.X;x/=K W .X; x/.hK/! .X; x/n.hK/:

By slight abuse of notation, for every positive integer n let �n denote the following
equivalence relation on .X; x/.hK/: for every pair x; y 2 .X; x/.hK/ we have
x �n y if and only if hn

.X;x/=K
.x/D hn

.X;x/=K
.y/.

This notation is justified because of the following:

Lemma 7.4. Under the map �.X; x/ the equivalence relation �n on .X; x/.hK/
corresponds to the equivalence relation �n on X.hK/.

Proof. For every étale hypercovering H� of X there is a natural commutative
diagram

�0=K.H�/
i.H�;x/ //

��

�0=K.H�; x/

��
Pn.�0=K.H�//

Pn.i.H�;x// // Pn.�0=K.H�; x//
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where we use Notation 3.6, and where the vertical maps are induced by truncation.
Since the upper horizontal map is a weak equivalence, so is the lower horizontal
map, so it induces a bijection on homotopy fixed points. The claim now follows by
taking the limit, similarly to the proof of Proposition 3.7. �

Notation 7.5. For every profinite group � and every pro-discrete �-module M ,
let Hk.�;M/ denote the projective limit of the (continuous) cohomology groups
Hk.�;N /, where N runs through the directed system of discrete quotients of M .
For the sake of simple notation, for the rest of the paper for every field K and
every pro-discrete �K-module M let Hk.K;M/ denote the group Hk.�K ;M/

introduced above. Note that these groups commute with projective limits.

Theorem 7.6. Assume that X is a smooth geometrically connected variety over K,
and assume that X.K/ is nonempty. For every x; y 2X.hK/:

(i) x D y if and only if x �n y for every n 2 N.

(ii) There is a natural bijection

jX=K WX
1.hK/! Sec.X=K/

such that for every p 2X.K/ we have jX=K.�1X=K.p//D sX=K.p/.

(iii) For every positive integer n, if x �n y then there exists a natural obstruc-
tion class ıXn .x; y/ 2H

nC1.K; �nC1.X// such that x �nC1 y if and only if
ıXn .x; y/D 0.

Proof. The first claim is an immediate consequence of the definition of Et=K.X/\.
Next we are going to prove (ii). Let f W Y ! X be a torsor under a finite étale
group G over K. Then the K-valued points G D G.K/ of G form a finite group
equipped with an action of �K . Let C� denote the étale Čech hypercovering

Y
..
Y �X Y

oo oo Y �X Y �X Y
oo oooo � � �

oooooooo

generated by the cover Y ! X . It is explained at the beginning of Section 9 of
[Harpaz and Schlank 2013] that there is a natural map

cY W �0=K.C�/.E�K/!H 1.�K ; G/:

Moreover, by [Harpaz and Schlank 2013, Lemma 9.1], for every p 2 X.K/ the
image of the corresponding homotopy fixed point in �0=K.C�/.E�K/ with respect
to cY is the element which classifies the G-torsor Yp D f �1.p/. When Y is
geometrically connected there is a weak equivalence ��.C�/! BG, where we
equip the latter with the tautological �K-action, and hence the map cY is a bijection
(see the discussion after Lemma 9.7 of [Harpaz and Schlank 2013]). Moreover,
the composition of the natural map X.hK/! �0=K.C�/.E�K/ and cY factors
through h1

X=K
.
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Let �2X.K/ be aK-rational point and let � denote theK-valued point associated
to � (see Notation 3.9). Fix an element s of sX=K.�/. For every characteristic open
subgroup N of �1.X; x/ let N 0 � �1.X; x/ be the subgroup generated by N and
the image of s. Since N 0 is an open subgroup, there is a connected finite étale cover
fN W YN ! X such that the image of �1.YN / with respect to �1.fN / is N 0. Let
GN denote the unique finite étale group over K such that GN .K/ is

�1.X; �/=N Š �1.X; �/=N
0;

equipped with its natural �K-action induced by conjugation. Then fN W YN !X

is a torsor under GN , and hence by applying the construction above to the étale
Čech hypercovering generated by fN we get a map

jX=K;N WX
1.hK/! Sec.X=K;N /

such that for every p 2X.K/ we have jX=K;N .�1X=K.p//D sX=K;N .p/. According
to Proposition 6.3, by taking the limit over every characteristic open subgroup N
of �1.X; �/ we get a continuous map

jX=K WX
1.hK/! Sec.X=K/

between compact Hausdorff topological spaces such that for every p 2X.K/ we
have jX=K.�1X=K.p// D sX=K.p/. By [Harpaz and Schlank 2013, Lemma 9.11]
this map is a bijection.

For every connected pointed �K-space S which has only finitely many nontrivial
homotopy groups, there is a natural spectral sequence for homotopy groups of
homotopy fixed points

E
s;t
2 DH

s.K; �t .S//) �t�s.S
h�K /

constructed by Goerss [1995, Theorem B, p. 189]. Therefore for objects of this
category there is a natural obstruction class of the type described in the last claim.
So claim (iii) follows from Lemma 7.4 and Proposition 3.10 by applying Goerss’
results to Et=K.X; �/. �

Lemma 7.7. Assume that X is a smooth geometrically connected variety over K
and Et.X/ is weakly homotopy equivalent toB�1.X/. Also suppose thatX.K/¤∅.
Then for every x; y 2X.hK/ we have x D y if and only if jX=K.x/D jX=K.y/.

Proof. All the higher homotopy groups of X vanish, so the claim is immediate from
the theorem above. �

We say that two points x; y 2X.K/ are directly A-equivalent if there is a map
f W A1K !X of K-varieties such that f .0/D x and f .1/D y. The A-equivalence
on X.K/ is the equivalence relation generated by direct A-equivalence.



840 Ambrus Pál

Proposition 7.8. Assume that K has characteristic zero. Then for every X over K
the map

�X=K WX.K/!X.hK/

factors through A-equivalence.

Proof. It will be sufficient to show that for every two points x; y 2 X.K/ which
are directly A-equivalent we have �X=K.x/ D �X=K.y/. Let f W A1K ! X be a
morphism of K-varieties such that f .0/ D x and f .1/ D y. Both �X=K.x/ and
�X=K.y/ lie in the image of the map f� W A1K.hK/! X.hK/. By Corollary 5.5
and Lemma 7.7 the set A1K.hK/ consists of one element, since A1

K
has trivial étale

fundamental group. The claim is now clear. �

Remark 7.9. The validity of a such a claim was already suggested by Toën [2004],
but his original claim is not true as stated in positive characteristic. In the special
case when K is a finite field it was observed in [Tamagawa 1997, Proposition 2.8,
pp. 151-152] that the map sA1K=K

, and hence the map �A1K=K , is injective. Thus it
is not true in general that for two points x; y 2X.K/which are directlyA-equivalent
we have �X=K.x/D �X=K.y/ when K has positive characteristic.

8. The Manin pairing

Notation 8.1. For every object X W I ! Ho.�-SSets/ of Pro-Ho.�-SSets/ such
that I is countable, letXh� 2 ob.Pro-Ho.SSets// denote the pro-homotopy quotient
defined at the beginning of Section 6.2 of [Harpaz and Schlank 2013]. Note that
this construction can be applied to the objects Et=K.X/;Etn

=K
.X/ and Et=K.X/\

when � D �K is the absolute Galois group of the field K.

Proposition 8.2. Let K be a field and X a variety over K. Then there are natural
isomorphisms

Et=K.X/h�K Š Et.X/; Etn=K.X/h�K Š Etn.X/; Et=K.X/
\

h�K
Š Et.X/\

in the category Pro-Ho.SSets/.

Proof. The second isomorphism is the content of Proposition 6.14 in [Harpaz
and Schlank 2013]. The third isomorphism follows from the naturality of this
isomorphism, and the first isomorphism is shown in the proof of the proposition
mentioned above. �

Definition 8.3. Let X be again a variety over K. Note that by functoriality we get
a natural map

�X=K WX.K/! ŒEt.Spec.K//;Et.X/�! ŒEt.Spec.K//\;Et.X/\�;
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where the second map is furnished by applying the Postnikov tower functor. By
applying the pro-homotopy quotient functor and the proposition above, we get that
there is a natural map

�X=K WX.hK/! ŒEt.Spec.K//\;Et.X/\�

such that �X=K D �X=K ı �X=K .

Definition 8.4. By [Artin and Mazur 1969, Corollary 10.8, pp. 122-123] there is a
natural equivalence between the category of locally constant étale sheaves of finite
abelian groups onX and local coefficient systems of finite abelian groups on Et.X/\,
and under this equivalence the étale cohomology of X with coefficients in a locally
constant étale sheaf F of finite abelian groups is the same as the cohomology of
Et.X/\ with coefficients in the local coefficient system corresponding to F. We will
not distinguish between these two categories in what follows. In particular for a finite,
étale group scheme G over K we will identify H�.Et.X/\; G/ and H�.X;G/.

A basic, but important, corollary of these observations is the following. Let G
and X be as above, and let c 2H i .X;G/ be a cohomology class for some i 2 N.

Lemma 8.5. Assume that x; y 2 X.K/ are H -equivalent. Then the cohomology
classes x�.c/; y�.c/ 2H i .K;G/ are equal.

Proof. The lemma follows from the commutativity of the diagram

X.K/ � H i .X;G/ ����! H i .K;G/

�X=K

??y 


 



ŒEt.Spec.K//\;Et.X/\��H i .Et.X/\; G/ ����! H i .Et.Spec.K//\; G/

where the horizontal maps are the pairings furnished by pullback. �

For every n 2 N not divisible by the characteristic of K, let . � ; � /n denote
the pairing

. � ; � /n WX.hK/�H
2.X; �n/!H 2.K;�n/

given by the rule .x; c/n D �X=K.x/�.c/.

Lemma 8.6. The diagram

X.K/ � Br.X/
. � ; � /
����! Br.K/

�X=K

??y x?? x??˛n
X.hK/�H 2.X; �n/

. � ; � /n
����! H2.K;�n/

(8.6.1)

commutes, where the middle and right vertical arrows are induced by the inclusion
�n � Gm of sheaves.
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Proof. This is immediate from the functoriality of the constructions involved. �

Lemma 8.7. Let X be a geometrically connected variety over K and x; y 2X.K/.
Then �X=K.x/ �1 �X=K.y/ if and only if for every finite, étale map f W Y ! X of
geometrically connected varieties over K such that there is an Qx 2 Y.K/ with the
property f . Qx/D x there is a Qy 2 Y.K/ such that f . Qy/D y.

Proof. By part (ii) of Theorem 7.6 we have �X=K.x/ �1 �X=K.y/ if and only if
sX=K.x/D sX=K.y/. It is well-known that the latter condition is equivalent to the
second condition of the claim (see for example [Tamagawa 1997]). �

Lemma 8.8. Let f W Y !X be a finite, étale map of varieties overK. Assume that
x; y 2X.K/ are H -equivalent and that there is an Qx 2 Y.K/ such that f . Qx/D x.
Then there is a Qy 2 Y.K/ such that Qx; Qy are H -equivalent and f . Qy/D y.

Proof. The connected component X 0 of X on which x lies is geometrically con-
nected. By Proposition 2.10 the point y must lie on the same component. The
connected component Y 0 of Y on which Qx lies is also geometrically connected, and
the restriction f jY 0 W Y 0 ! X 0 is a finite, étale map. Therefore we may assume
without loss of generality that X and Y are geometrically connected. Hence by
Lemma 8.7 there is a Qy 2 Y.K/ such that f . Qy/D y, and we may even assume that
�X=K. Qx/�1 �X=K. Qy/.

It will be enough to show that Qx and Qy are H -equivalent. We will prove that
�X=K. Qx/�n �X=K. Qy/ for every n� 2 by induction. Since the map �n.f / W�n.Y /!
�n.X/ is an isomorphism for every n � 2 by Proposition 4.1, we get that the
induced map

Hn.�n.f // WH
n.K; �n.Y //!Hn.K; �n.X//

is also an isomorphism. By naturality of the obstruction classes we have

Hn.�n.f //.ı
Y
n . Qx; Qy//D ı

X
n .x; y/:

Since the right-hand side is zero we get that ıYn . Qx; Qy/ is also zero. �

Proposition 8.9. Let X be a regular variety over K, and assume that x; y 2X.K/
are H -equivalent. Then x and y are étale-Brauer equivalent.

Proof. Let Y !X be a finite, étale morphism of varieties over K such that there
is an Qx 2 Y.K/ mapping to x. By Lemma 8.8 there is a Qy 2 Y.K/ such that
Qx; Qy are H -equivalent and f . Qy/ D y. It will be enough to show that Qx; Qy are
Brauer equivalent. Because Y is the finite étale cover of a regular variety, it is also
regular, so it will be enough show that, given a regular variety X over K, every
pair of points x; y 2 X.K/ which are H -equivalent are also Brauer equivalent.
Because X is regular, the group H 2.X;Gm/ is torsion (see [Grothendieck 1971,
Proposition 1.4, p. 291]). Therefore for every b 2 H 2.X;Gm/ there is a natural
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number n 2N and a c 2H 2.X; �n/ such that b is the image of c under the natural
map H 2.X; �n/!H 2.X;Gm/. The claim now follows from the commutativity
of the diagram (8.6.1). �

9. Brauer equivalence versus étale-Brauer equivalence

Definition 9.1. Let E;E 0 be two elliptic curves defined over a field K whose
characteristic is not two and let t 2E 0.K/ be a point of order two. Let � WE!E

be the multiplication by �1 map and let � WE 0!E 0 be the translation by t . Let X
denote the quotient of E�E 0 by the fixed-point-free involution .�; �/. Then X is a
smooth projective geometrically irreducible surface over K. We call such surfaces
bielliptic.

Proposition 9.2. LetK be a finite extension of Qp , and let X be a bielliptic surface
over K. Then the map sX=K is injective.

Proof. Let x; y 2X.K/ be two different points and let � be K-valued point of X .
Let K� �1.X; �/ be the characteristic subgroup such that the quotient �1.X; �/=K

is the maximal 2-torsion abelian quotient of �1.X; �/. Fix an element s of sX=K.x/
and let K0 � �1.X; �/ be the subgroup generated by K and the image of s; this is
an open subgroup. Let f W Y !X be the connected finite étale cover such that the
image of �1.Y / with respect to �1.f / is K0. Since Y is a finite étale cover of the
abelian variety E �E 0, where we use the notation of the definition above, it is also
an abelian variety. Therefore Y is a principal homogeneous space over an abelian
variety defined over K.

By construction there is an x0 2Y.K/ such that f .x0/Dx. So Y has aK-rational
point, and hence it is also an abelian variety over K. If y does not have a lift to a
K-valued point of Y then sX=K.x/¤ sX=K.y/. So we may assume that there is a
y0 2 Y.K/ such that f .y0/D y. Let G D �1.X; �/=�1.Y; �/. Since we may take a
finite extension of K during the proof of injectivity of sX=K , we may assume that
the action of �K on G is trivial without loss of generality. In this case this finite
group is the Galois group of the connected finite étale cover f W Y !X . It also acts
on Sec.Y=K/, and two elements of Sec.Y=K/ are in the same G-orbit if and only
if they have the same image under the map Sec.Y=K/! Sec.X=K/ induced by f .
Moreover, the section map sY=K W Y.K/! Sec.Y=K/ is G-equivariant. Therefore,
if sX=K.x/D sX=K.y/ then sY=K.x0/D sY=K.g.y0// for some g 2G. For abelian
varieties over K the section map is injective, so x0 D g.y0/ in this case, which
implies that x D y. This is a contradiction, therefore sX=K.x/ is different from
sX=K.y/. �

We continue to use the notation which we introduced above. Let D denote the
quotient of E 0 by the fixed-point-free involution � , and let g W X ! D be the
quotient map.
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Proposition 9.3. Assume that K is a finite extension of Qp. Then the map g� W
H 2.D;Gm/!H 2.X;Gm/ induced by g has finite cokernel.

Proof. For every variety Y over K, the Hochschild–Serre spectral sequence

E2p;q DH
p.K;H q.Y ;Gm//)HpCq.Y;Gm/

furnishes on H 2.Y;Gm/ a natural filtration

0DE23 �E
2
2 �E

2
1 �E

2
0 DH

2.Y;Gm/ (9.3.1)

such that
E1p;2�p ŠE

2
p=E

2
pC1; p D 0; 1; 2:

The members E22 and E21 are usually denoted by Br0.Y / and Br1.Y /, respectively.
Because H 3.K;Gm/D 0 (see [Serre 1997, Proposition 15, p. 93]), the coboundary
map

d21;1 WE
2
1;1 DH

1.K;H 1.Y ;Gm//!H 3.K;Gm/

is zero and therefore

E11;1 DE
3
1;1 D Ker.d21;1/DH

1.K;H 1.Y ;Gm//:

In short, we have a natural exact sequence

0 �! Br0.Y / �! Br1.Y / �!H 1.K;H 1.Y ;Gm// �! 0:

The group Br0.Y / is the image of the natural map Br.K/! Br.Y /, therefore the
map g� W Br0.D/! Br0.X/ is surjective. The Hochschild–Serre spectral sequence
furnishes a natural injection

Br.Y /=Br1.Y /! Br.Y /:

Since Br.X/ is dual to the torsion subgroup of the Néron–Severi group NS.X/ in
our case (see [Skorobogatov 1999, p. 403]), which is finite, it will be enough to
show that the map

g� WH
1.K;H 1.D;Gm//!H 1.K;H 1.X;Gm//

induced by g has finite cokernel. Since g is the Albanese map for X (see [loc. cit.]),
the map Pic0.D/ ! Pic0.X/ induced by g is an isomorphism. Therefore, by
looking at the cohomological long exact sequence associated to the short exact
sequence of �K-modules

0 �! Pic0.X/.K/ �!H 1.X;Gm/ �! NS.X/ �! 0;

we are reduced to show that H 1.K;NS.X// is finite. The abelian group NS.X/
is finitely generated, so there is a finite Galois extension LjK such that the action
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of Gal.LjL/ on NS.X/ is trivial. The abelianisation of Gal.LjL/ is isomorphic to
the profinite completion of L�, so it is topologically finitely generated. Therefore

H 1.L;NS.X//Š Hom.Gal.LjL/;NS.X//

is finite. Therefore the inflation map

H 1.Gal.LjK/;NS.X//!H 1.K;NS.X//

has finite cokernel. Since Gal.LjK/ is finite we get thatH 1.K;NS.X// is finite. �

Let X be a smooth variety over a field K, and let b 2 H 2.X;Gm/. We say
that x; y 2X.K/ are b-equivalent if x�.b/D y�.b/. This defines an equivalence
relation of X.K/, which we will call b-equivalence.

Proposition 9.4. Assume that K is a finite extension of Qp. Then b-equivalence
classes are open in the p-adic topology.

Proof. Let x 2 X.K/. It will be enough to show that x has a p-adically open
neighbourhood U in X.K/ such that x and y is b-equivalent for every y 2 U . We
may assume that X is affine by taking a Zariski-open neighbourhood of x. By a
theorem of Gabber (see [de Jong 2013, Theorem 1.1]), there is an Azumaya algebra
A of some rank n on X which represents b. Let � W Y ! X be the PGLn-torsor
corresponding to A, that is, the torsor whose class in H 1.X;PGLn/ is the same
as the class of A. Let � 2H 1.K;PGLn/ be the class of the fibre of Y over x and
let �� W Y � ! X be the twist of � W Y ! X by � . Then the fibre of Y � over x
is a trivial PGLn-torsor. Therefore there is an x0 2 Y � .K/ such that �� .x0/D x.
Because �� is a submersion, there is an p-adically open neighbourhood U of x in
X.K/ and a p-adically analytical section s W U ! Y � .K/ of �� with s.x/D x0.
Therefore for every y 2 U the fibre of Y � over y has a K-rational point, so it is a
trivial PGLn-torsor. The claim is now clear. �

Theorem 9.5. Let K be as above, and let X be a bielliptic surface over K. Then
étale-Brauer equivalence is strictly finer than Brauer equivalence on X.K/.

Of course our choice of example is motivated by the classical paper [Skorobogatov
1999], and the result above can be considered its natural local counterpart. (Also
compare with [Harari 2000], which uses similar ideas.)

Proof. LetX be a bielliptic surface overK, and let g WX!D be the map introduced
above. By Proposition 9.2 the étale-Brauer equivalence-classes of X.K/ consists of
points, so it will be enough to show that the Brauer equivalence-classes of X.K/ are
infinite. Let r 2D.K/. Note that every x; y 2g�1.r/.K/ are b-equivalent for every
b2H 2.X;Gm/ in the image of the map g� WH 2.D;Gm/!H 2.X;Gm/. Therefore
finitely many Brauer equivalence classes intersect g�1.r/.K/ by Propositions 9.3
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and 9.4. By the inverse function theorem both D and g�1.r/ have infinitely many
K-valued points, so the claim holds. �

In the rest of this section we study the somewhat independent question of the
surjectivity of �X=K over p-adic fields.

Notation 9.6. Let Groups denote the category of groups. Let Nd denote the cate-
gory whose objects are positive integers and whose morphisms are the following:
for every pair of objects m, n 2 ob.Nd / the set of morphisms from m to n consists
of the ordered pair �m;nD .m; n/ if n jm, and otherwise is empty. For every abelian
group A and natural number n let AŒn� denote the subgroup of n-torsion elements
of A and let Ator denote the pro-group Ator W Nd ! Groups given by the rule

Ator.n/D AŒn�

such that, for every pair of positive integersm; n such that n jm, the homomorphism

Ator.�m;n/ W AŒm�! AŒn�

is the multiplication by m=n map.

Proposition 9.7. Let K be a finite extension of Qp. The following holds:

(a) For every smooth, geometrically connected projective curveX of genus at least
two over K the map �X=K is injective, and it is surjective if the local version of
Grothendieck’s section conjecture holds for X .

(b) For every abelian variety X over K the map �X=K is injective, and it is surjec-
tive if and only if X is zero-dimensional.

Proof. First assume that X is a smooth, geometrically connected projective curve of
genus at least two over K. Recall that the local version of Grothendieck’s section
conjecture claims that the map sX=K is a bijection. We also know that in this case
sX=K is injective. Therefore claim (a) follows at once from Corollary 5.5 and
Lemma 7.7. Assume now that X is an abelian variety over K. By Corollary 5.5
and Lemma 7.7 the map jX=K is a bijection. Moreover, there is a natural bijection

Sec.X=K/ŠH 1

�
K;

Y
l is prime

Tl.X/

�
; (9.7.1)

where Tl.X/ denotes the l-th Tate module of X , and under this identification sX=K
corresponds to the coboundary map furnished by Kummer theory. In particular
�X=K is injective, and the cokernel of sX=K is H 1.K;X/tor. By [Milne 1986,
Corollary 3.4, p. 53] the groups H 1.K;X/ and X_.K/^ are isomorphic, where
the latter is the Pontryagin dual of the compact group X_.K/ of K-valued points
of the dual X_ of X . Let OK denote the valuation ring of K. The profinite group
X_.K/ is the direct sum of a finite group and dim.X_/D dim.X/ copies of OK
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by the inverse function theorem. Therefore the group H 1.K;X/tor is zero if and
only if X is zero-dimensional. Hence claim (b) is true. �

10. Étale-Brauer equivalence versus H -equivalence

Definition 10.1. Assume now that K is a p-adic field, and for every n 2 N let
cK;n WH

2.K;�n/!Z=nZ be the isomorphism furnished by local Tate duality. For
every geometrically irreducible variety X defined over K let

f � ; � gn WH
2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//! Z=nZ

be the bilinear pairing given by the rule

fx; ygn D cK;n.x[y/

(for every x 2 H 2.K;H2.X;Z=nZ//; y 2 H 0.K;H 2.X; �n//), where the cup
product

[ WH 2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//!H 2.K;�n/

is induced by the evaluation pairing

H2.X;Z=nZ/�H 2.X; �n/! �n:

The following lemma is immediate from the functoriality of the constructions
involved:

Lemma 10.2. Let f WX! Y be a morphism of geometrically irreducible varieties
over K. Then the diagram

H 2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//
f � ; � gn
����! Z=nZ

H2.f /�

??y .f �/�

x?? 



H 2.K;H2.Y ;Z=nZ//�H 0.K;H 2.Y ; �n//

f � ; � gn
����! Z=nZ

(10.2.1)

commutes. �

Notation 10.3. LetX be a geometrically irreducible variety overK withX.K/¤∅.
For every positive integer n and every x; y 2X.hK/ such that x�1 y, let ıX1 .x; y/n
denote the image of the obstruction class ıX1 .x; y/ under the composition of the
natural map

H 2.K; �2.X//!H 2.K; �2.X/=n�2.X//

and the homomorphism

H�;n WH
2.K; �2.X/=n�2.X//!H 2.K;H2.X;Z=nZ//
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induced by the Hurewicz map

Hn W �2.X/=n�2.X/!H2.X;Z=nZ/:

Let

˛n WH
2.X; �n/!H 2.X;Gm/

denote the map induced by the inclusion �n! Gm, and finally let

�n WH
2.X; �n/!H 0.K;H 2.X; �n//

be the map induced by base change.

Lemma 10.4. Let X be a geometrically irreducible smooth quasiprojective variety
over K. For every n 2 N, every c 2H 2.X; �n/ and every x; y 2 X.K/ such that
˛n.c/D 0 and �X=K.x/�1 �X=K.y/, we have

fıX1 .�X=K.x/; �X=K.y//n; �n.c/gn D 0:

Proof. We will need to introduce analogues of the concepts in Definition 10.1 and
Notation 10.3 for hypercoverings. For every geometrically irreducible variety Z
defined over K and every étale hypercovering H� of Z let

f � ; � gn WH
2.K;H2.�0=K.H�/;Z=nZ//�H 0.K;H 2.�0=K.H�/; �n//! Z=nZ

also denote the bilinear pairing given by the rule

fa; bgn D cK;n.a[ b/

(for every a 2 H 2.K;H2.�0=K.H�/;Z=nZ//; b 2 H 0.K;H 2.�0=K.H�/; �n//),
where the cup product

[ WH 2.K;H2.�0=K.H�/;Z=nZ//�H 0.K;H 2.�0=K.H�/; �n//!H 2.K;�n/

is induced by the evaluation pairing

H2.�0=K.H�/;Z=nZ/�H 2.�0=K.H�/; �n/! �n:

Assume now that Z.K/ ¤ ∅ and pick a point z 2 Z.K/. In Definition 3.5
we introduced a pointed simplicial �K-set �0=K.H�; z/ such that there is a nat-
ural map �0=K.H�/ ! �0=K.H�; z/ which is a weak equivalence. Let a; b 2
�0.�0=K.H�/

�K / be such that their image is the same under the map

�0.�0=K.H�/
�K /! �0.P1.�0=K.H�//

�K /
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induced by the truncation morphism �0=K.H�/ ! P1.�0=K.H�//. By Theo-
rem B on p. 189 of [Goerss 1995] there is an obstruction class ıH�1 .a; b/ 2

H 2
�
K;�2.�0=K.H�; z//

�
. For every positive integer n and a; b as above let

ı
H�
1 .a; b/n denote the image of ıH�1 .a; b/ under the composition of the natural map

H 2
�
K;�2.�0=K.H�; z//

�
!H 2

�
K;�2.�0=K.H�; z//=n�2.�0=K.H�; z//

�
;

the homomorphism

H 2
�
K;�2.�0=K.H�;z//=n�2.�0=K.H�;z//

�
!H 2.K;H2.�0=K.H�;z/;Z=nZ//

induced by the Hurewicz map

�0=K.H�; z//=n�2.�0=K.H�; z//!H2.�0=K.H�; z/;Z=nZ/;

and the inverse of the isomorphism

H 2.K;H2.�0=K.H�/;Z=nZ//!H 2.K;H2.�0=K.H�; z/;Z=nZ//

induced by the weak equivalence �0=K.H�/! �0=K.H�; z/. Finally, for every
a 2X.hK/ let aH� 2 �0.�0=K.H�/�K / denote its image under the canonical map
X.hK/! �0.�0=K.H�/

�K /.
Now let us start the proof in earnest. Because ˛n.c/D 0 there is a line bundle

L on X such that the image of its isomorphism class under the coboundary map
Pic.X/DH 1.X;Gm/!H 2.X; �n/ is c. Let � W Y ! X denote the total space
of L with the zero section removed; then Y is a Gm-torsor over X whose class in
H 1.X;Gm/ is the same as the class of L. It will be enough to show that˚

ı
H�
1

�
�X=K.x/

H� ; �X=K.y/
H�
�
n
; d
	
n

is zero for every étale hypercovering H� of X and every

d 2H 0.K;H 2.�0=K.H�/; �n//

whose image is �n.c/ with respect to the homomorphism

H 0.K;H 2.�0=K.H�/; �n//!H 0.K;H 2.X; �n//

induced by the pullback map H 2.�0=K.H�/; �n/!H 2.X; �n/.
Fix such a hypercovering H�, and let ��.H�/ denote the pullback of H� onto

Y with respect to � . Note that �n.��.c//D 0; in fact even ��.c/D 0. Indeed, the
latter follows as the pullback of the torsor � W Y !X onto Y with respect to � is
trivial: the diagonal Y ! Y �X Y is a section. Let

d 0 2H 0.K;H 2.�0=K.�
�.H�//; �n//
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be the image of d with respect to the homomorphism

H 0.K;H 2.�0=K.H�/; �n//!H 0.K;H 2.�0=K.�
�.H�//; �n//

induced by � . As the image of d 0 is �n.��.c// under the pullback

H 0.K;H 2.�0=K.�
�.H�//; �n//!H 0.K;H 2.Y ; �n//

by naturality, we get that there is a morphism f W I�! ��.H�/ of étale hypercov-
erings of Y such that f �.d 0/ 2H 0.K;H 2.�0=K.I�/; �n// is zero.

Let z 2 Y.K/ be arbitrary. (There are such points; for example, the fibre above
x contains K-rational points.) Let z 2 Y.K/ denote the geometric point lying
above z, corresponding to the choice of algebraic closure K � K. Note that the
image of the canonical map from �1.Y ; z/! �0=K.I�; z/, which is well-defined
by Proposition 3.10, is finite. Therefore by Remark 6.9 there are two points
x0 and y0 in Y.K/ whose images under � are x and y, respectively, such that
�X=K.x

0/I�; �X=K.y
0/I� 2 �0.�0=K.I�/

�K / have the same image under the map

�0.�0=K.I�/
�K /! �0.P1.�0=K.I�//

�K /

induced by truncation. So by the above the obstruction class

ı
I�
1 .�Y=K.x

0/I� ; �Y=K.y
0/I�/ 2H 2

�
K;�2.�0=K.I�; z//

�
is well-defined. By naturality of obstruction classes it will be enough to show that˚

ı
I�
1 .�Y=K.x

0/I� ; �Y=K.y
0/I�/n; f

�.d 0/
	
n
D 0:

But this is clear since f �.d 0/ is zero. �

Lemma 10.5. Let X be a geometrically irreducible smooth quasiprojective variety
over K. For every n 2 N, every c 2H 2.X; �n/ and every x; y 2 X.K/ such that
�X=K.x/�1 �X=K.y/, we have

.�X=K.x/; c/n D .�X=K.y/; c/n D) fıX1 .�X=K.x/; �X=K.y//n; �n.c/gn D 0:

Proof. By a theorem of Gabber (see Theorem 1.1 of [de Jong 2013]) there is an
Azumaya algebra A on X which represents ˛n.c/ 2H 2.X;Gm/. Without loss of
generality we may assume that A has rank n by enlarging n if it is necessary, since
for every pair of positive integers n jm the mapH 2.K;�n/!H 2.K;�m/ induced
by the inclusion map �n � �m is injective. Let � W Y ! X be the PGLn-torsor
corresponding to A, that is, the torsor whose class in H 1.X;PGLn/ is the same
as the class of A. Let � 2 H 1.K;PGLn/ be the class of the fibre of Y over x
and let �� W Y � ! X be the twist of � W Y ! X by � . Then the fibre of Y �

over x is a trivial PGLn-torsor. Because .x; c/n D .y; c/n and the natural map
H 1.K;PGLn/! H 2.K;�n/ is injective, we get that the fibre of Y � over y is
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also a trivial PGLn-torsor. So there are points x0 and y0 in Y � .K/ whose images
under �� are x and y, respectively. By Remark 6.9 we may even assume that
�Y �=K.x

0/ �1 �Y �=K.y
0/. So by Lemma 10.2 and the naturality of obstruction

classes it will be enough to show that˚
ıY

�

1 .�Y �=K.x
0/; �Y �=K.y

0//n; �n..�
� /�.c//

	
n
D 0:

In order to do so, it will be enough to show that

˛n..�
� /�.c//D .�� /�.˛n.c//D 0

by Lemma 10.4. But this is clear since the pullback of the torsor � W Y � !X onto
Y � with respect to �� is trivial: the diagonal Y � ! Y � �X Y

� is a section. �

Notation 10.6. For every quasiprojective variety Y overK consider the Hochschild–
Serre spectral sequence

E2p;q DH
p.K;H q.Y ; �n//)HpCq.Y; �n/:

Because H 3.K;�n/D 0 (for example by local Tate duality), the coboundary map

d30;2 WE
3
0;2!E33;0 �H

3.K;�n/

is zero and therefore
E10;2 DE

3
0;2 D Ker.d20;2/:

Therefore the spectral sequence furnishes an exact sequence

H 2.Y; �n/
�n
���!H 0.K;H 2.Y ; �n//

dn
���!H 2.K;H 1.Y ; �n//;

which is functorial. Here dn is the coboundary map d20;2 W E
2
0;2 ! E22;1 and �n

is the quotient map H 2.Y; �n/ ! E10;2 Š Ker.d20;2/ by the highest step in the
filtration on H 2.Y; �n/ induced by the spectral sequence.

Lemma 10.7. Let X be a geometrically irreducible smooth quasiprojective variety
over K and let x; y 2X.K/ be étale-Brauer equivalent. Then there is a connected
finite étale cover f W Y !X such that:

(i) There are Qx; Qy 2 Y.K/ such that f . Qx/D x; f . Qy/D y, and Qx; Qy are Brauer-
equivalent.

(ii) For every c 2H 0.K;H 2.X; �n// we have dn.f �.c//D 0.

Proof. Let � be aK-valued point ofX . Let K be the intersection of the kernels of all
continuous homomorphisms �1.X; �/!Z=nZ. Because �1.X; �/ is topologically
finitely generated, the subgroup K is open and characteristic. Let K0 � �1.X; �/ be
the subgroup generated by K and by the image of an element of sX=K.x/; this is an
open subgroup. Let f W Y ! X be the connected finite étale cover such that the
image of �1.Y / with respect to �1.f / is K0. By construction there is an Qx 2 Y.K/
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such that f . Qx/D x. Because x and y 2X.K/ are étale-Brauer equivalent, there is
a Qy 2 Y.K/ such that f . Qy/D y, and Qx; Qy are Brauer-equivalent. Recall that by the
universal coefficient theorem

0�!Ext1.Hn.V; yZ/;Z=nZ/�!Hn.V;Z=nZ/
en
���!Hom.Hn.V; yZ/;Z=nZ//!0

for every variety V over K, where the map en is induced by the evaluation pairing
and the Ext groups are for the category of pro-groups. In particular there is a natural
isomorphism H 1.V;Z=nZ/ Š Hom.H1.V; yZ/;Z=nZ//. Therefore the pullback
map f � WH 1.X;Z=nZ/!H 1.Y ;Z=nZ/ is zero. Because the map dn is functorial,
the claim now follows. �

Assume that X.K/¤∅. For every x; y 2X.hK/ such that x�1 y, let �X1 .x; y/
denote the image of the obstruction class ıX1 .x; y/ under the homomorphism

H� WH
2.K; �2.X//!H 2.K;H2.X; yZ//

induced by the Hurewicz map

H W �2.X/!H2.X; yZ/:

Proposition 10.8. Let X be a geometrically irreducible smooth quasiprojective
variety over K, and let x; y 2X.K/ be étale-Brauer equivalent. Then we have

�X1 .�X=K.x/; �X=K.y//D 0:

Note that the claim is meaningful because �X=K.x/�1 �X=K.y/ by Lemma 8.7.

Proof. It will be enough to show that

ıX1 .�X=K.x/; �X=K.y//n D 0

for every n 2 N. By the universal coefficient theorem quoted above and by local
Tate duality, every element of H 2.K;H2.X;Z=nZ// annihilated by the pairing
f � ; � gn must be zero. So it will be enough to show that

fıX1 .�X=K.x/; �X=K.y//n; cgn D 0

for every c 2 H 0.K;H 2.X; �n//. Let f W Y ! X and Qx; Qy 2 Y.K/ be as in
Lemma 10.7. By Lemma 10.2 and the naturality of obstruction classes it will be
enough to show that

fıY1 .�Y=K.x
0/; �Y=K.y

0//n; f
�.c/gn D 0

for every c 2 H 0.K;H 2.X; �n//. Because dn.f �.c// D 0, this claim follows
from Lemmas 8.6 and 10.5. �

The following result is Theorem 1.1 of the introduction:
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Theorem 10.9. Let K be a finite extension of Qp , and let X be a smooth quasipro-
jective variety over K. Then étale-Brauer equivalence and H -equivalence coincide
on X.K/.

Proof. Let x; y 2 X.K/ be étale-Brauer equivalent. We need to show that they
are H -equivalent. We may assume without loss of generality that X is geomet-
rically irreducible. We already noted that �X=K.x/ �1 �X=K.y/. Also note that
by Theorem 7.6 it will be enough to show that ıX1 .�X=K.x/; �X=K.y// D 0 since
the cohomological dimension of K is 2, so in this case the obstruction classes
ıXn .�X=K.x/; �X=K.y// will be zero for every n� 2, too.

Fix an element s of sX=K.x/. For every open characteristic subgroup K of
�1.X; �/ let K0 � �1.X; �/ be the subgroup generated by K and the image of s;
this is an open subgroup. Moreover, for every such K let fK W YK ! X be the
connected finite étale cover such that the image of �1.Y / with respect to �1.fK/

is K0. By construction there is an xK 2 YK.K/ such that fK.xK/ D x. Because
x and y are étale-Brauer equivalent, there is a yK 2 YK.K/ such that fK.yK/D y,
and xK; yK are étale-Brauer equivalent. By the naturality of the obstruction classes,
the cohomology classes

�
YK
1 .xK; yK/ 2H

2.K;H2.Y K; yZ//

furnish an element of lim.Y;y0/2Fet.X;x0/H
2.K;H2.Y; yZ//, where x0 is a K-valued

point of X , which is the image of ıX1 .x; y/ with respect to the map

H 2.K; �2.X//ŠH
2

�
K; lim

.Y;y0/2Fet.X;x0/
H2.Y; yZ/

�
�! lim

.Y;y0/2Fet.X;x0/
H 2.K;H2.Y; yZ//

furnished by the map bX ı aX , which is an isomorphism by Theorem 4.3. By
Proposition 10.8 the classes �YK

1 .xK; yK/ are zero, and hence the theorem holds. �

11. H -equivalence over the field of real numbers

Definition 11.1. Let X be any scheme. Recall that a quadratic space over X is a
vector bundle E over X , that is, a locally free OX -module of finite rank, and an
isomorphism h W E! E�, where E� denotes the dual of E, which is symmetric, that
is, the composition

E �! E��
h�

���! E�

is equal to h, where the first map is the natural isomorphism of E with its bidual,
and h� is the dual of h. In the special case when X D Spec.K/, for K a field, this
concept is the same as the concept of a nondegenerate quadratic form over K.
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Definition 11.2. Consider the case when K D R. By Sylvester’s theorem every
nondegenerate quadratic form q over R is isomorphic to a diagonal form

h1; 1; : : : ; 1„ ƒ‚ …
m

;�1; : : : ;�1„ ƒ‚ …
n

i;

and the ordered pair .m; n/ only depends on the isomorphism class of q. Let
�.q/DmCn denote the rank of q and let �.q/Dm�n denote the signature of q,
respectively. By the above, nondegenerate forms over R are classified by their rank
and signature. Let X be a smooth variety over R, let U � X.R/ be a connected
component, and let qD .E; h/ be a quadratic space overX . Then for every x2U the
pullback x�.q/ has the same signature, which we will call the signature of q on U .

Theorem 11.3. LetX be a smooth variety over R which is either affine or projective.
Let U; V �X.R/ be two different connected components. Then there is a quadratic
space q D .E; h/ over X such that the signature of q on U is zero and the signature
of q on V is nonzero.

Proof. See Theorem 1.1.1 in [Mahé 1982] for the affine case, and the main result
of [Houdebine and Mahé 1982] for the projective case. �

Definition 11.4. LetK be a field whose characteristic is not 2. Every nondegenerate
quadratic form q is isomorphic to a diagonal form

ha1; a2; : : : ; ani:

The Stiefel–Whitney classes of the form q above are defined as the cup product
(see [Milnor 1970])

w.q/D 1Cw1.q/C � � �Cwn.q/D .1C ı.a1//.1C ı.a2// � � � .1C ı.an//;

where wi .q/ 2H i .K;Z=2Z/ and

ı WK�!H 1.K;Z=2Z/

is the boundary map of the Kummer exact sequence

0 �! Z=2Z �! Gm
x 7!x2

�����! Gm �! 0:

The Stiefel–Whitney classes are independent of the diagonalisation of q.

Remark 11.5. Assume again that K is the field of real numbers. Then as a graded
algebra

H�.R;Z=2Z/Š F2Œt �;
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where t is the generator of the group H 1.R;Z=2Z/ of order two. Let q be a
nondegenerate quadratic form q over R isomorphic to a diagonal form

h1; 1; : : : ; 1„ ƒ‚ …
m

;�1; : : : ;�1„ ƒ‚ …
n

iI

then by the above

w.q/D .1C t /n D 1Cnt C � � �C tn:

Esnault, Kahn and Viehweg [Esnault et al. 1993] constructed Stiefel–Whitney
classes for any quadratic space q D .E; h/ over a ZŒ1=2�-scheme X , which lives in
mod-2 étale cohomology

wi .q/ 2H
i .X;Z=2Z/;

is functorial over the category of ZŒ1=2�-schemes, and specialises to the construction
above when X is the spectrum of a field. We will use these classes to separate
connected components of real points of varieties defined over R.

Proposition 11.6. Let X be a smooth variety over R which is either affine or
projective. Let U; V � X.R/ be two different connected components. Then there
is a natural number i and a cohomology class c 2H i .X;Z=2Z/ over X such that
for every x 2 U the pullback x�.c/ 2H i .R;Z=2Z/ is zero and for every x 2 V the
pullback x�.c/ 2H i .R;Z=2Z/ is nonzero.

Proof. By Theorem 2.9 and Proposition 2.10, there is a c 2 H 0.X;Z=2Z/ such
that x�.c/ 2H 0.R;Z=2Z/ is zero for every x 2 U and y�.c/ 2H 0.R;Z=2Z/ is
nonzero for every y 2 V if U and V lie on two different connected components of
X.C/. Therefore we may assume that X is geometrically connected without loss of
generality. Let q D .E; h/ be a quadratic space over X such that the signature of
q on U is zero and the signature of q on V is nonzero. We may assume that the
signature of q on V is negative by taking .E;�h/ instead, if necessary. Because X
is connected, the rank of the vector bundle E is constant on X . This rank is even,
say 2m, because the signature of q on U is zero. Then the signature of q on V is
2m�2n, where n is a positive integer bigger thanm. By Remark 11.5 above, we have
x�.wn.q//D wn.x

�.q//D 0 for every x 2 U and x�.wn.q//D wn.x�.q//D tn

for every x 2 V . The claim follows. �

Definition 11.7. For every morphism of sites m W C! C0, let m� W C0! C denote
the functor underlying m. Let C be a Grothendieck site. A left action ˛ of a group
� on C is a morphism ˛.g/ W C! C of sites for each g 2 � such that ˛.1/ is
the identity map of C and ˛.gh/ D ˛.g/ ı ˛.h/ for every g; h 2 � . When � is
profinite, we say that the action ˛ is continuous if for every morphism h W U ! V

in C there is an open subgroup � of � such that ˛.g/�.U /D U; ˛.g/�.V /D V
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and ˛.g/�.h/D h for every g 2�. Assume now that � is a profinite group. By a
�-site .C; ˛/ we mean a Grothendieck site C with a continuous left action ˛ of �
on C. As usual we will drop ˛ from the notation whenever this is convenient.

Example 11.8. A basic example of a �-site is the Grothendieck site �-Sets,
where the coverings are surjective maps, equipped with the left action ˛ such
that ˛.g/�.U /D U for every object U of �-Sets and every g 2 � , and for every
morphism h W U ! V and g 2 � the map ˛.g/�.h/ W U ! V is given by the rule
x 7! gh.x/. By a slight abuse of notation we will let �-Sets denote this �-site, too.

Definition 11.9. Let .C; ˛/ be a �-site. A �-invariant object of .C; ˛/ is an object
U of C such that ˛.g/�.U /D U for every g 2 � . A �-equivariant morphism of
.C; ˛/ is a morphism h W U ! V of C such that U and V are �-invariant objects
and h ı˛.g/�.idU /D ˛.g/�.idV / ıh for every g 2 � . Let C� denote the category
whose objects are �-invariant objects of C and whose morphisms are �-equivariant
maps between these. Since the composition of �-equivariant morphisms are �-
equivariant, with these morphisms C� is indeed a category. Let T denote the
Grothendieck topology of the site C; that is, for every object U of C let T .U /

denote the collection of covering sieves of U . We say that a sieve S on U 2 ob.C�/
is �-invariant if for every V 2 ob.C/ and every h 2 S.V / there is a W 2 ob.C�/, a
morphism h0 2 S.W / which is �-equivariant, and a morphism h00 W V !W such
that hD h0 ıh00. For every �-invariant S as above, let S� denote the sieve on U in
the category C� given by the rule

S�.V /D S.V /\HomC� .V; U /:

For every U 2 ob.C�/ let T �.U / denote the following collection of sieves S in
the category C� :

T �.U /D fS� j S is in T .U / and is �-invariantg:

Example 11.10. Let K be a field and let �K D Gal.KjK/ denote the absolute
Galois group of K as above. Let X be a locally Noetherian scheme over K and
let C denote the small étale site of the base change of X to K. Then C is naturally
equipped with the structure of a �K-site, induced by the action of �K on K. By
étale descent the category C�K is equivalent to the small étale category of X and
T �K is the étale topology of X on it. In particular T �K is a Grothendieck topology.

Definition 11.11. Assume now that C satisfies the conditions in Chapters 8 and 9
of [Artin and Mazur 1969] and T � is a Grothendieck topology on C� . In particular
we suppose that C is closed under finite coproducts and that it is locally connected
in the sense of [Artin and Mazur 1969, Sections 9.1–9.2, pp. 111–112]. Let U
be a �-invariant object of .C; ˛/. Then � acts on the set �0.U / of connected
components of U and this action makes �0.U / into a �-set. Let ��.U / denote
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this �-set. We say that a simplicial object of C is �-invariant if it is a simplicial
object of C� . If X� is a �-invariant simplicial object of .C; ˛/, then the face and
degeneracy maps of X� induce �-equivariant maps between the �-set ��.Xn/
which makes the collection f��.Xn/g1nD1 into an object of �-SSets, which we will
denote by ��.X�/. Since the site .C� ;T �/ inherits the good properties of the site
C, we may apply [Artin and Mazur 1969, Corollary 8.13(i), p. 105] to conclude
that the functor

X� 7! ��.X�/

above induces an object of Pro-Ho.�-SSets/. We will call the later the�-equivariant
homotopy type of C and denote it by ….C/.

Remark 11.12. Let K;�K and X be as in Example 11.10, and let C denote the
small étale site of the base change of X to K, as above. Then the �K-equivariant
homotopy type of C is just the relative étale homotopy type Et=K.X/ of X as
defined by Harpaz and Schlank.

Example 11.13. Assume now that � is a finite group and let X be a locally con-
nected, Hausdorff, paracompact topological space equipped with a continuous left
�-action. Let C be the ordinary site on the coproducts of open subsets of X . Then
C is naturally equipped with the structure of a �-site, induced by the action of
� on X . Moreover, the quotient �nX of X by the action of � is also a locally
connected, Hausdorff, paracompact topological space, and the category C� is the
category of coproducts of open subsets of �nX and T � is the ordinary site of �nX
on it. In particular T � is a Grothendieck topology.

Definition 11.14. Let � and X be as above. We say that X is �-contractible if
there is a subgroup �� � such that the quotient �=�, equipped with the discrete
topology and the natural left �-action, is �-equivariantly homotopy-equivalent
to X . Assume now that every open subset of X is paracompact, and that X is
locally �-equivariantly contractible; that is, for every (finite) orbit O 2X and every
�-invariant open U �X containing O there an open �-invariant and �-contractible
V �X such that V � U and O � V .

Note that when � is finite �-SSets is just the usual category of simplicial sets
with a �-action, and moreover Goerss’ notion of homotopy fixed point spaces
coincides with the usual one. Also note that the singular complex S�X of X is
equipped with an action of � which makes it an object of �-SSets.

Theorem 11.15. Let U� be a �-invariant hypercovering of C such that every �-
orbit of connected components of every Un is �-contractible. Then the simplicial
�-set ��.U�/ is isomorphic to the simplicial �-set S�X in Ho.�-SSets/.
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Proof. Let S�Un denote the singular complex of Un. Then S�U� is a bisimplicial
object in �-Sets. We denote by .DU /� its diagonal simplicial �-set .DU /n D
SnUn. Then we have obvious maps of simplicial �-sets

.DU /�
˛

yy

ˇ

$$
��.U�/ S�X

and we claim that these two maps are homotopy equivalences in Ho.�-SSets/,
which will prove the theorem.

For every subgroup � � � and every �-set Y , let Y � denote the subset of Y
fixed by �. Similarly, for every simplicial �-set Y� let Y �� denote the simplicial
set fY �n g

1
nD1 such that the face and degeneracy maps are the restrictions of such

maps of the simplicial set Y�. By the definition of the strict model structure we
need to show that the maps

.DU /��
˛j
.DU/��

yy

ˇ j
.DU/��

%%
��.U�/

� .S�X/
�

of simplicial sets are homotopy equivalences in Ho.SSets/ for every � as above.
Note that for every �-invariant hypercovering V� of X the simplicial object

V �� in the category of disjoint unions of open sets of the closed subspace X� of
X is a hypercovering, too, since it is the pullback of the hypercovering V� onto
X� with respect to the inclusion map. Because the Un are �-contractible we
have ��.U�/� D �0.U�� /. Moreover, every �-invariant singular simplex of X
must lie in X�, so .S�X/� is the singular complex S�X� of X�. Similarly let
S�U

�
n denote the singular complex of U�n . Then S�U�� is a bisimplicial set. We

denote by .DU�/� its diagonal simplicial set .DU�/n D SnU�n . Then we have
.DU /�� D .DU

�/�, so we only need to show that the analogues

.DU�/�

˛�

yy

ˇ�

$$
�0.U

�
� / S�X

�

of the maps ˛ and ˇ for the topological space X� are homotopy equivalences in
Ho.SSets/ for every � as above. Since every �-orbit of connected components
of every Un is �-contractible, the connected components of U�n are contractible.
Similarly, X� is locally contractible, since X is locally �-contractible. Because
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X� is a closed subspace of a paracompact topological space, it is also paracompact.
The claim now follows from [Artin and Mazur 1969, Theorem 12.1, p. 129]. �

Corollary 11.16. Let C be the ordinary site on the coproducts of open subsets of a
Hausdorff topological space X equipped with a continuous left �-action. Assume
that every open subset of X is paracompact and that X is locally �-equivariantly
contractible. Then the pro-object ….C/ is canonically isomorphic to the element
S�X in Pro-Ho.�-SSets/.

Proof. Because those �-invariant hypercoverings U� of C such that every connected
component of every Un is �-contractible are cofinal by assumption, the claim
follows immediately. �

Definition 11.17. Let again � be an arbitrary profinite group. A morphism m W

.C; ˛/! .C0; ˛0/ of �-sites is a morphism of sites m W C! C0 such that for every
g 2 � and every morphism h W U ! V of C0 we have

˛.g/�.m�.U //Dm.˛0.g/�.U //;

˛.g/�.m�.V //Dm�.˛0.g/�.V //;

˛.g/�.m�.h//Dm�.˛0.g/�.h//:

For every such m, the underlying functor m� carries �-invariant hypercoverings to
�-invariant hypercoverings, and so it furnishes a map

….m/ W….C/!….C0/

in Pro-Ho.�-SSets/ (when these are defined). The map….m/ in turn induces a map

….m/.E�/ W….C/.E�/!….C0/.E�/

of homotopy fixed points.

Definition 11.18. A �-invariant point (or more conveniently �-point) of a �-site
.C; ˛/ is a morphism p W �-Sets! C� of �-sites. Note that the composition of
p� and the functor �-Sets! Sets forgetting the �-action is a point of the site
C in the sense of [Artin and Mazur 1969, Sections 8.3-8.4, pp. 95–96], which
perhaps justifies our terminology. We will let C.�/ denote the set of �-points
of .C; ˛/. Note that the homotopy type ….�-Sets/ is contractible (this is clear
from Corollary 11.16, too), so the set ….�-Sets/.E�/ has one element. For every
p 2C.�/ let �C.p/2….C/.E�/ denote the image of….�-Sets/.E�/ with respect
to ….p/. Clearly

�C W C.�/!….�-Sets/.E�/

is a natural transformation.
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Example 11.19. Let K, �K DGal.KjK/, X and C be as in Example 11.10. Since
the small étale site of Spec.K/ is isomorphic to �K-Sets as a �K-site, every K-
valued point ofX supplies a �K-point of the site C. Therefore the map �C introduced
above is a generalisation of the map �X=K . Similarly, if � is a finite group, X is
a locally connected, Hausdorff, paracompact topological space equipped with a
continuous left �-action and C is as in Example 11.13, then every point of X fixed
by � furnishes a �-point of the site C, and hence the restriction of �C onto X� is a
map X� !….C/.E�/.

Proposition 11.20. Let K be the field R of real numbers, and let X be a variety
over K. Then two K-rational points of X are H -equivalent if they are in the same
connected component of the topological space X.K/.

Proof. Let � D �K D Gal.KjK/ be the group of two elements, and let C0 denote
the small étale site of the base change of X to K. Moreover, let C be the ordinary
site on the coproducts of open subsets of X.K/ with respect to its usual topology.
In addition to these �-sites we also introduce the �-site C00 whose objects are
topological spaces X 0 lying over the topological space of X.K/ such that the
map X 0 ! X is a local isomorphism, i.e., such that every point x 2 X 0 has a
neighbourhood which is isomorphic onto its image. Since any étale map of schemes
X 0!X over K is a local isomorphism on the underlying topological spaces, and
since an open set is in C00, we have morphisms of �-sites

C00

m

~~

m0

  
C C0

Now it is clear from the definition of local isomorphisms that every �-invariant
hypercovering of C00 is dominated by a �-invariant hypercovering of C. Thus the
map….m/ W….C00/!….C/ is a homotopy equivalence in Pro-Ho.�-SSets/, and so

….m/.E�/ W….C00/.E�/!….C/.E�/

is a bijection. Therefore by the naturality of the maps �C; �C0 and �C00 it will be enough
to show that for every pair x; y ofK-rational points ofX lying in the same connected
component of the topological space X.K/ we have �C.x/D �C.y/. Let f W Œ0; 1�!
X.K/ be a continuous path connecting x with y; that is, we have f .0/D x and
f .1/Dy. By naturality again it will be enough to show that �D.0/D �D.1/, where D

is the ordinary site on the coproducts of open subsets of Œ0; 1�with respect to its usual
topology, equipped with the trivial �-action. But the interval Œ0; 1� is contractible to
a point �-equivariantly, so ….D/.E�/ is a one-element set by Corollary 11.16. �
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Remark 11.21. It is not difficult to push the arguments of this proof a little bit
further to prove an equivariant version of [Artin and Mazur 1969, Theorem 12.9,
p. 142], using an equivariant analogue of the profinite completion functor, but we
will not pursue this further since it would take us too far away from our original
project. However in a forthcoming publication we will in fact prove such a claim
in a much more general context.

The following result is Theorem 1.2 of the introduction:

Theorem 11.22. Let K be the field R of real numbers, and let X be a smooth affine
or projective variety over K. Then two K-rational points of X are H -equivalent if
and only if they are in the same connected component of the topological spaceX.K/.

Proof. By Lemma 8.5 and Proposition 11.6, two H -equivalent real points of X
must be in the same component. On the other hand, by Proposition 11.20 two real
points of X in the same connected component must be H -equivalent. �

12. The homotopy section principle

Notation 12.1. Recall that for every field of characteristic zero the topological
Gal.KjK/-module yZ.1/ is defined as the projective limit lim

 ��n2N
�n, where the

directed set structure on N is furnished by divisibility and for every m; n 2 N such
that m j n the transition map �n!�m is multiplication by n=m. For every number
fieldK let jKj denote the set of places ofK, and for every v 2 jKj letKv denote the
completion ofK with respect to v. For every v 2 jKj fix an embedding jv WK!Kv
of K-extensions. For every k 2 N and every discrete Gal.KjK/-module M let
Xk.K;M/ denote the subgroup

Xk.K;M/D Ker
� Y
v2jKj

jv� WH
k.K;M/!

Y
v2jKj

Hk.Kv;M/

�
of Hk.K;M/, where jv� denotes the restriction map induced by jv for every
v 2 jKj. For every topological Gal.KjK/-module M which is a projective limit
lim
 ��i2I

Mi of discrete Gal.KjK/-modules let Xk.K;M/ denote lim
 ��i2I

Xk.K;Mi /.

Lemma 12.2. We have X2.K; yZ.1//D 0 for every number field K.

Proof. By [Milne 1986, Theorem 4.10(a), p. 70] the group X2.K; yZ.1// is zero if
and only if X1.K;Q=Z/ is, where we equip Q=Z with the discrete topology and the
trivial Gal.KjK/-action. We may identify X1.K;Q=Z/ with the kernel of the map

Hom.�K ;Q=Z/!
Y
v2jKj

Hom.�Kv ;Q=Z/

furnished by restriction onto the family of subgroups �Kv of �K for all v 2 jKj.
The claim now follows from the Chebotarev density theorem. �
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Proposition 12.3. Assume that K is a number field and X.K/ is nonempty. For
every x; y 2X.hK/ such that x �2 y we have

x D y () rv�.x/D rv�.y/ .v 2 jKj, v is real/:

Proof. The product of the restriction mapsY
v2jKj
v is real

jv� WH
n.K;M/!

Y
v2jKj
v is real

Hn.Kv;M/

is injective for every integer n � 3 and every discrete Galois module M over K
by [Milne 1986, Theorem 4.10(c), p. 70]. Hence for every n� 2 and every pair of
sections x; y 2X.hK/ such that x �n y we get that

ıXn .x; y/D 0 () ıXvn .rv�.x/; rv�.y//D 0 .v 2 jKj, v is real/

from naturality of the obstruction classes. The claim now follows from Theorem 7.6.
�

Definition 12.4. Let K be for a moment any field of characteristic zero. Recall
that two points x; y 2X.K/ are called directly R-equivalent if there is a rational
map f W P1KÜ X of K-varieties such that f .0/ D x and f .1/ D y. The R-
equivalence on X.K/ is the equivalence relation generated by direct R-equivalence.
LetX.K/=R denote the equivalence classes of this relation. Note thatA-equivalence
coincides with R-equivalence when X is projective by the valuative criterion of
properness. In this case let

�X=K;R WX.K/=R!X.hK/

be the map furnished by Proposition 7.8.

Notation 12.5. It is particularly interesting to study X.K/=R through the map
�X=K;R when K is a number field. For every variety X defined over K and every
v 2 jKj let Xv denote the base change of X to Spec.Kv/. For every v 2 jKj the
embedding jv furnishes a map

rv� WX.hK/!Xv.hKv/

by functoriality. Let AK D
Q0
v2jKjKv denote the ring of adèles of K. Let X.hAK/

denote the image of X.AK/ with respect to the mapY
v2jKj

�Xv=Kv WXv.Kv/!
Y
v2jKj

Xv.hKv/:
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We define the set Sel.X=K/ of Selmer homotopy fixed points of X to be

Sel.X=K/D
� Y
v2jKj

rv�

��1
.X.hAk//�X.hK/:

We are interested in the following natural generalisation of the Shafarevich–Tate
conjecture:

Homotopy section principle (HSP). Assume thatX is smooth and projective. Then
the map

X.K/=R
�X=K;R
������! Sel.X=K/ (12.5.1)

is injective and its image is dense with respect to the pro-discrete topology of
Sel.X=K/.

The claim above is obviously true ifX does not have local points everywhere, and
hence HSP should be considered as a new form of the local-global principle. The
next proposition shows that HSP is indeed a generalisation of standard conjectures
of this sort:

Proposition 12.6. Let K be a number field.

(a) HSP holds for Brauer–Severi varieties and for nonsingular quadratic hyper-
surfaces H � PnK of positive dimension.

(b) Let X be a smooth, geometrically connected projective curve X of genus at
least two over K. Then HSP holds for X if and only if a weak (local-global)
form of Grothendieck’s section conjecture holds for X .

(c) Let X be an abelian variety over K. Then HSP holds for X if and only if the
Shafarevich–Tate conjecture holds for X .

Proof. First assume that X is either a Brauer–Severi variety or a nonsingular
quadratic hypersurface of positive dimension. When Sel.X=K/ is empty there
is nothing to prove. Assume now that Sel.X=K/ is nonempty: then X.AK/ is
nonempty, too. Because the local-global principle holds for X we get that X.K/ is
also nonempty. In this case X.K/=R consists of one element, and hence it will be
enough to show that Sel.X=K/ also has one element. Let x; y2Sel.X=K/. Because
for every v 2 jKj the set Xv.Kv/=R has one element, we get that rv�.x/D rv�.y/
for every such v.

By [Artin and Mazur 1969, Corollary 12.13, p. 144] we know that XK is weakly
homotopy equivalent to XC. Because �1.X.C// D f1g (either because XC is
isomorphic to Pn

C
for nD dim.X/ or by the Lefschetz hyperplane section theorem),

we get �1.XK/D f1g by Theorem 2.9. Therefore x �1 y. Moreover,

�2.XK/DH2.XK ;
yZ/D Hom.H 2.XK ;

yZ/; yZ/
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by [Artin and Mazur 1969, Corollary 6.2, p. 70]. WhenX is a Brauer–Severi variety,
since it has a rational point it is isomorphic to PnK . Therefore H 2.XK ;

yZ/Š yZ.�1/,
and hence �2.XK/Š yZ.1/. Because rv�.x/D rv�.y/ for every v 2 jKj, we have
ıX2 .x; y/ 2X2.K; �2.XK//, so this obstruction class vanishes by Lemma 12.2.
So we get that x �2 y.

When X is a quadratic hypersurface of dimension at least 3, its embedding
X ! PnC1K as such a hypersurface induces an isomorphism

H 2.XK ;
yZ/ŠH 2.PnC1

K
; yZ/Š yZ.�1/

by the Lefschetz hyperplane section theorem, and hence we may conclude as above
that x �2 y. The only remaining case is of a quadratic surface. In this case either

H 2.XK ;
yZ/Š yZ.�1/˚ yZ.�1/;

when both pencils of lines on X are defined over K, or it is the induction of yZ.�1/
from a quadratic extension ofK. Clearly in the first case the group X2.K; �2.XK//

still vanishes by Lemma 12.2, while in the second case this claim follows from
Shapiro’s lemma and Lemma 12.2. Again we get that x �2 y. Claim (a) now
follows from Proposition 12.3.

Assume now that X is a smooth, geometrically connected projective curve of
genus at least two over K. Then there is a commutative diagram

X.K/
sX=K
����! Sec.X=K/??y ??yQ

v2jKj

Xv.Kv/

Q
v2jKj

sXv=Kv

���������!
Q
v2jKj

Sec.Xv=Kv/

where the vertical maps are the obvious maps. The weak local-global form of
Grothendieck’s section conjecture asserts that the diagram above is cartesian. We
also know that in this case sX=K is injective and by Faltings’ theorem X.K/ is finite.
In particular, in this case the map in (12.5.1) has dense image if and only if it is
surjective.

Let’s assume first that the weak local-global form of Grothendieck’s section con-
jecture holds for X , and show that HSP holds for X . This is trivial when Sel.X=K/
is empty, so we may assume that Sel.X=K/ is nonempty. Then Sec.X=K/ has an
element whose image in

Q
v2jKj Sec.Xv=Kv/ lies in the image of

Q
v2jKj sXv=Kv ,

and hence X.K/ is nonempty, by our assumption. The claim now follows from
Corollary 5.5 and Lemma 7.7. Let us prove the converse. We may assume that
Sec.X=K/ has an element whose image in

Q
v2jKj Sec.Xv=Kv/ lies in the image

of
Q
v2jKj sXv=Kv without loss of generality. By the main theorem of [Harpaz and



Étale homotopy equivalence of rational points on algebraic varieties 865

Schlank 2013] for smooth projective varieties, the set Sel.X=K/ is nonempty if
and only if the étale-Brauer set of X is. In our case the latter is nonempty (see [Stix
2011]), so we get that Sel.X=K/ is nonempty, too. So by our hypothesis X.K/
is nonempty, so the claim follows from Corollary 5.5 and Lemma 7.7. Claim (b)
is settled.

Finally, consider the case when X is an abelian variety over K. By Corollary 5.5
and Lemma 7.7 the map jX=K is a bijection. Moreover, there is a natural bijection

Sec.X=K/ŠH 1

�
K;

Y
l is prime

Tl.X/

�
; (12.6.1)

where Tl.X/ denotes the l-th Tate module of X , and under this identification sX=K
corresponds to the coboundary map furnished by Kummer theory. In particular
�X=K is injective.

The image of Sel.X=K/�X.hK/ with respect to the composition of jX=K and
the isomorphism of (12.6.1) is Sel.K;X/tor, where Sel.K;X/ is the Selmer group of
X over K. The quotient of Sel.K;X/tor by the closure of the image of X.K/ under
the coboundary map is X.K;X/tor, where X.K;X/ is the Tate–Shafarevich group
of X over K. Since the group X.K;X/Œn� is finite for every positive integer n, the
group X.K;X/tor is trivial if and only if X.K;X/ is finite. So claim (c) holds. �

Remark 12.7. It is tempting to believe that HSP should hold for every smooth pro-
jective variety because of its very general form, but this is not true. The fundamental
reason is the Harpaz–Schlank theorem quoted above, which implies that if HSP
holds for X then the Brauer–Manin obstruction applied to étale covers is the only
obstruction for the Hasse principle. Since now there are many counterexamples
to this claim (see [Poonen 2010; Harpaz and Skorobogatov 2014; Colliot-Thélène
et al. 2013]) we get that there are two- and three-dimensional counterexamples to
HSP. However we can offer some positive results; see Theorems 13.3, 13.7 and 14.8
in the next two sections.

13. Geometrically rational and birational surfaces

Lemma 13.1. LetX be a smooth, projective, geometrically rational surface defined
over a number field K. Then the group X2.K; �2.X// is finite.

Proof. There is a finite Galois extension LjK such that the action of Gal.LjL/ on
Pic.X/ is trivial. Hence X1.L;Pic.X/˝Q=Z/ D 0 by the Chebotarev density
theorem (see the proof of Lemma 12.2), where we equip Q=Z with the discrete
topology and the trivial Gal.KjK/-action. As the image of X1.K;Pic.X/˝Q=Z/

lies in X1.L;Pic.X/˝Q=Z/ with respect to the restriction map

H 1.K;Pic.X/˝Q=Z/!H 1.L;Pic.X/˝Q=Z/;



866 Ambrus Pál

the group X1.K;Pic.X/˝Q=Z/ lies in the image of the inflation map

H 1.Gal.LjK/;Pic.X/˝Q=Z/!H 1.K;Pic.X/˝Q=Z/:

Since H 1.Gal.LjK/;Pic.X/˝Q=Z/ is finite, we get that X1.K;Pic.X/˝Q=Z/

is finite too. We have �1.X/D �1.P2
K
/D f1g because the étale fundamental group

is a birational invariant. Hence

�2.X/DH2.X; yZ/D Hom.H 2.X;Q=Z/;Q=Z/

D Hom.Pic.X/˝Q=Z;Q=Z˝yZ
yZ.1//

by [Artin and Mazur 1969, Corollary 6.2, p. 70] and the fact that for a geometrically
rational surface X the étale Chern class map

c1 W Pic.X/˝Q=Z!H 2.X;Q=Z˝yZ
yZ.1//

is an isomorphism. Hence by [Milne 1986, Theorem 4.10(a), p. 70] there is a
perfect duality between X2.K; �2.X// and X1.K;Pic.X/˝Q=Z/. The claim is
now clear. �

For every s 2 Sel.X=K/, let Sel0.s/ � Sel.X=K/ denote the preimage ofQ
v2jKj rv�.s/ with respect to the map

Q
v2jKj rv�.

Lemma 13.2. LetX be a smooth, projective, geometrically rational surface defined
over a number field K such that X.K/ ¤ ∅, and let s 2 Sel.X=K/. Then the
cardinality of Sel0.s/ is at most the order of X2.K; �2.X//.

Proof. By Proposition 12.3 it will be enough to show that the number of equivalence
classes of the relation �2 in Sel0.s/ is at most the order of X2.K; �2.X//. For
every x; y 2 Sel0.s/ at least we have x �1 y by Theorem 7.6, since �1.X/D f1g,
and so jSec.X=K/j D 1. Moreover, ıX1 .x; y/ 2X2.K; �2.X// by the naturality
of obstruction classes. But

ıX1 .x; y/D ı
X
1 .x; s/� ı

X
1 .y; s/;

so the claim follows from the pigeonhole principle. �

Theorem 13.3. Let X be a smooth, projective, geometrically rational surface
defined over a number field K such that X.K/¤∅. Then Sel.X=K/ is finite.

Because we expect that X.K/=R is finite for such an X and K, this result should
be also expected, assuming that HSP holds for X .

Proof. Because for every archimedean v 2 jKj the topological space Xv.Kv/ has
only finitely many connected components, the set Xv.Kv/=H is finite for such v by
Theorem 1.2. Since �1.X/Df1gwe get that Brauer equivalence andH -equivalence
coincide on Xv.Kv/ for every nonarchimedean v 2 jKj by Theorem 1.1. Hence by
[Bloch 1981, Corollary A.2, p. 55] the set Xv.Kv/=H is finite for every v 2 jKj.
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Moreover, Xv.Kv/=H has at most one element when v is nonarchimedean and X
has good reduction at v by [Bloch 1981, Corollary A.3, p. 55]. Hence we may
conclude that the set

Q
v2jKjXv.Kv/=H is finite. So we only need to show that

the map Y
v2jKj

rv� W Sel.X=K/!
Y
v2jKj

Xv.Kv/=H

is finite-to-one. This follows from Lemmas 13.1 and 13.2. �

Lemma 13.4. Let X and Y be smooth projective surfaces over a field K, and let
� WX ! Y be a composition of monoidal transformations over K. Then the map
�� WX.K/=R! Y.K/=R induced by � is a bijection.

Proof. We may immediately reduce to the case when � is the blow-up of an
irreducible subvariety S � Y of dimension zero by induction on the number of
blow-ups in some sequence of contractions X ! X1 ! � � � ! Xn D Y whose
composition is � . If S has no K-valued points then ��1.S/ has no K-valued
points either and the map �� is obviously a bijection. Otherwise S consists of one
K-valued point. In this case ��1.S/ is isomorphic to P1K and the claim is clear. �

Lemma 13.5. Let X and Y be smooth projective surfaces over the field R, and let
� W X ! Y be a composition of monoidal transformations over R. Then the map
�� W �0.X.R//! �0.Y.R// induced by � is a bijection.

Proof. The argument is the same as above. �

Proposition 13.6. Let X and Y be smooth geometrically irreducible projective
surfaces over a number field K and let � WX ! Y be a composition of monoidal
transformations over K. Assume that Y is simply connected and Y.K/¤∅. Then
the map �� W Sel.X=K/! Sel.Y=K/ induced by � is injective.

Proof. Note that X.K/ ¤ ∅, since X is birational to Y . Again we may assume
without loss of generality that � is the blow-up of an irreducible subvariety of
dimension zero. Let x; y 2 Sel.X=K/ be such that ��.x/D ��.y/. Because the
map induced by � between the fundamental groups is an isomorphism, we get that
x�1 y. Also note that by Theorem 7.6 it will be enough to show that ıX1 .x; y/D 0,
since by Lemma 13.5 and Theorem 1.2 we have rv�.x/ D rv�.y/ for every real
place v of K, so the higher obstruction classes ıXn .x; y/ will vanish for every n� 2
by Proposition 12.3.

By the Hurewicz theorem

�2.X/ŠH2.X; yZ/ŠH2.Y ; yZ/˚Ker.H2.�//Š �2.Y /˚Ker.H2.�//;

where
H2.�/ WH2.X; yZ/!H2.Y ; yZ/
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is induced by � . Because � is the blow-up of a single closed point, the module
Ker.H2.�// is the induction of yZ.1/ from a finite extension of K. Therefore
X2.K;Ker.H2.�// vanishes by Lemma 12.2 and Shapiro’s lemma. Therefore
ıX1 .x; y/ is zero by the naturality of obstruction classes. �

Theorem 13.7. Let � W X ! Y be a composition of monoidal transformations
between geometrically irreducible smooth projective surfaces over K. Assume that
Sel.Y=K/ is finite, Y is simply connected, the set Y.K/ is nonempty, and HSP
holds for Y over K. Then Sel.X=K/ is finite and HSP holds for X over K, too.

This result can be used to supply many examples of surfaces satisfying HSP, for
example blow-ups of Châtelet surfaces; see Theorem 14.8 below.

Proof. By Proposition 13.6 the set Sel.X=K/ injects into Sel.Y=K/, so it is finite.
Let x; y 2X.K/ be H -equivalent. Then �.x/ and �.y/ are H -equivalent elements
of Y.K/, so they are R-equivalent, since HSP holds for Y . Therefore x and y are
also R-equivalent by Lemma 13.4. We get that the map

�X=K WX.K/=R! Sel.X=K/ (13.7.1)

is injective. Let s be an element of Sel.X=K/. Because Sel.Y=K/ is finite, the
topology on it is discrete. Therefore there is a y 2 Y.K/ such that �Y=K.y/D��.s/.
Let x 2X.K/ be such that �.x/Dy. Then ��.�X=K.x//D �Y=K.y/D��.s/, so by
Proposition 13.6 we get that �X=K.x/D s, so the map in (13.7.1) is also surjective. �

14. Generalised Châtelet surfaces

Notation 14.1. For every torus S defined over a field K of characteristic zero let
C.S/ denote the Gal.KjK/-module of its cocharacters, and for every scheme X
over K let

ı WH 1.X; S/!H 2.X; C.S/˝ yZ.1//

be the projective limit of the coboundary maps

ın WH
1.X; S/!H 2.X; SŒn�/

furnished by the corresponding Kummer exact sequences, where SŒn� denotes the
n-torsion subgroup scheme of S . Note that, when K is a number field, ı maps
X1.K; S/ into X2.K;C.S/˝ yZ.1//. Let

ı0 WX
1.K; S/!X2.K;C.S/˝ yZ.1//

be the restriction of ı onto X1.K; S/.
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Lemma 14.2. Let S be a torus defined over a field K of characteristic zero.

(i) The map ı WH 1.K; S/!H 2.K;C.S/˝ yZ.1// is injective.

(ii) The map ı0 WX1.K; S/!X2.K;C.S/˝ yZ.1// is bijective when K is a
number field.

Proof. First note that for every field K of characteristic zero and for every torus S
defined over K the cohomology group H 1.K; S/ has finite exponent. In fact there
is a finite Galois extension LjK such that the action of Gal.LjL/ on C.S/ is trivial.
Hence H 1.L; S/D 0 by Hilbert’s theorem 90. Therefore H 1.K; S/ is the image
of H 1.Gal.LjK/; S/ under the inflation map. But the group H 1.Gal.LjK/; S/ is
annihilated by the order of Gal.LjK/. The first claim also follows.

Now we prove that ı0 is also surjective when K is a number field. Let LjK
be a finite Galois extension of the type above and assume that the degree of this
extension ism. By the Albert–Brauer–Hasse–Noether theorem the group X2.L; S/

is trivial, and hence X2.K; S/ is annihilated by multiplication by m, since it is a
subquotient of H 2.Gal.LjK/; S/. The cokernel of the restriction

ınjX1.X;S/ WX
1.X; S/!X2.X; SŒn�/ (14.2.1)

of ın onto X1.X; S/ is a subgroup of X2.X; S/. Therefore the map in (14.2.1)
surjects onto mX2.X; SŒn�/ by the above. Claim (ii) now follows by taking
the limit. �

Definition 14.3. We say that a smooth geometrically irreducible projective surface
X defined over a field K of characteristic zero is a generalised Châtelet surface if
there is an a 2K� and a separable polynomial P 2KŒx� of degree 4 such that X
is a smooth compactification of the affine surface given by the equation

y2� az2 D P.x/

over K. For the sake of brevity we will frequently drop the adjective ‘generalised’
when we talk about generalised Châtelet surfaces.

Proposition 14.4. LetX be a Châtelet surface defined over a number fieldK. Then
for every s 2 Sel.X=K/ there is an x 2X.K/ such that �Xv=Kv .iv.x//D rv�.s/ for
every v 2 jKj.

Proof. Let S be a finite subset of jKj which contains every archimedean place of
K and every nonarchimedean place of K where X does not have good reduction.
For every v 2 jKj choose an xv 2 Xv.Kv/ such that �Xv=Kv .xv/ D rv�.s/. By
[Colliot-Thélène et al. 1987b, Theorem 8.6(b), p. 87] for every v 2 jKj there is
an open neighbourhood Uv �Xv.Kv/ of xv contained by the R-equivalence class
of xv in Xv.Kv/. Because

Q
v2jKj xv 2 X.AK/

Br by the easy direction of the
Harpaz–Schlank theorem, there is an x 2 X.K/ such that iv.x/ 2 Uv for every
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v 2 S by [ibid., Theorem 8.11(c), p. 92]. Clearly �Xv=Kv .iv.x//D rv�.s/ for every
v 2 S . Because for every v 2 jKj � S the set X.K/=R consists of one element
by [ibid., Theorem 8.6(c), p. 87], we get that �Xv=Kv .iv.x// D rv�.s/ for every
v 2 jKj �S as well. �

Definition 14.5. For every smooth projective geometrically irreducible variety X
defined over a field K let CH0.X/ denote the Chow group of zero-dimensional
cycles on X , and let A0.X/ denote the kernel of the degree map deg WCH0.X/!Z.
Fix a point x 2X.K/. Then there is a map‰x WX.K/=R!A0.X/ which for every
y 2 X.K/ maps the R-equivalence class of y to Œy�� Œx�. When K is a number
field let X1A0.X/ denote the subgroup of those elements c of A0.X/ such that
the base change of c to Kv is the zero element of A0.Xv/ for every v 2 jKj. Now
let X be a Châtelet surface, let S be a torus over K whose group of characters
is isomorphic to Pic.X/ as a Gal.KjK/-module and let T be a universal torsor
over X . Then we have a map

�T WX.K/!H 1.K; S/

which associates to every P 2X.K/ the class of the fibre of T at P . Moreover, there
is a unique homomorphismˆT WA0.X/!H 1.K; S/ such that for every y 2X.K/
we haveˆT.Œy��Œx�/D �T.y/��T.x/ (see [ibid., p. 88]). In particular the map �T

factors through R-equivalence; let �T;R WX.K/=R!H 1.K; S/ be the map which
sends the R-equivalence class of every y 2X.K/ to �T.y/. When K is a number
field, ˆT maps X1A0.X/ into X1.K; S/. Let ˆ0 WX1A0.X/!X1.K; S/ be
the restriction of ˆT onto X1A0.X/.

Theorem 14.6 (Colliot-Thélène, Sansuc, Swinnerton-Dyer). Let X be a Châtelet
surface, let T be a universal torsor over X and let x 2X.K/.

(i) The map �T;R is an injection.

(ii) The map ‰x is a bijection.

(iii) When K is a number field the map ˆ0 is a bijection.

Proof. The map �T;R is injective by [Colliot-Thélène et al. 1987b, Theorem 8.5(a),
p. 86]. Claim (ii) is true by [ibid., Theorem 8.8, p. 89] while claim (iii) holds by
[ibid., Theorem 8.10, p. 91]. �

Let X be a Châtelet surface over a number field K. Then for every x 2 X.K/
let R0.x/ � X.K/=R denote the set of those R-equivalences classes s such that
for every y 2 s the points x; y 2Xv.Kv/ are R-equivalent for every v 2 jKj.

Corollary 14.7. For every X , K and x as above, the set R0.x/ has the same
cardinality as X1.K; S/.
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Proof. Note that ‰x maps R0.x/ into X1A0.X/. Therefore it will be enough to
show that the induced map

‰xjR0.x/ WR0.x/!X1A0.X/ (14.7.1)

is a bijection by part (iii) of Theorem 14.6. It is injective by part (ii) of Theorem 14.6.
Let s 2X1A0.X/ be arbitrary; by part (ii) of Theorem 14.6 there is a y 2X.K/
such that Œy�� Œx� is s. Because ‰x is a bijection over Kv for every v 2 jKj by
part (ii) of Theorem 14.6, we get that the points x; y 2Xv.Kv/ are R-equivalent
for every v 2 jKj. Therefore the map in (14.7.1) is surjective, too. �

Theorem 14.8. LetK be a number field and letX be a generalised Châtelet surface
over K. Then HSP holds for X .

Remark 14.9. According to [Colliot-Thélène et al. 1987a, Remark 8.10.2, p. 91]
there is a Châtelet surfaceX defined over a number fieldK on which R-equivalence
is strictly finer than Brauer equivalence. Hence by Theorem 14.8 we get that H -
equivalence is finer than étale-Brauer equivalence over number fields. Moreover,
there are two rational points x; y 2X.K/ such that x; y 2Xv.Kv/ areH -equivalent
for every v 2 jKj, but x and y are not H -equivalent over K. The theorem above is
also interesting because it covers a whole class of varieties X for which HSP holds,
but which are not homogeneous spaces; moreover, every R-equivalence class of
X.K/ is Zariski-dense (see [Colliot-Thélène et al. 1987b, Theorem 8.5(b), p. 86])
and, by [Colliot-Thélène et al. 1987b, Theorem 8.13, p. 95], the set X.K/=R could
be arbitrarily large for X defined over Q.

Proof of Theorem 14.8. Because Châtelet surfaces are geometrically rational it will
be both necessary and sufficient to show that the map

�X=K;R WX.K/=R! Sel.X=K/

is a bijection by Theorem 13.3. Let c 2 H 1.X; S/ be the cohomology class
corresponding to the universal torsor � W T ! X . Let x; y 2 X.K/ be in two
different R-equivalence classes. By part (i) of Theorem 14.6 the pullback classes
x�.c/; y�.c/ 2H 1.K; S/ are different. Therefore the classes

ı.x�.c//D x�.ı.c//; ı.y�.c//D y�.ı.c// 2H 2.K;C.S/˝ yZ.1//

are also different by part (i) of Lemma 14.2. Therefore x and y are notH -equivalent
by Lemma 8.5. The injectivity of �X=K;R follows.

Now we prove that it is surjective, too. Let s 2 Sel.X=K/. By Proposition 14.4
there is an x 2 X.K/ such that �Xv=Kv .iv.x// D rv�.s/ for every v 2 jKj. Note
that �X=K;R maps R0.x/ into Sel0.s/. Therefore it will be enough to show that the
induced map

�X=K;RjR0.x/ WR0.x/! Sel0.s/ (14.9.1)
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is a bijection. By the above this map is injective, so it will be enough to show that the
cardinality of Sel0.s/ is at most X2.K;C.S/˝ yZ.1// by part (ii) of Lemma 14.2
and Corollary 14.7. By the definition of S we have that

C.S/˝ yZ.1/D Hom.Pic.X/;Z/˝ yZ.1/D Hom.Pic.X/˝ yZ; yZ.1//:

We already noted in the proof of Lemma 13.1 that

�2.X/D Hom.Pic.X/˝ yZ; yZ.1//; so �2.X/D C.S/˝ yZ.1/:

Therefore it will be enough to show that the cardinality of Sel0.s/ is at most
X2.K; �2.X//. But this is the content of Lemma 13.2. �
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