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Horrocks correspondence on
arithmetically Cohen–Macaulay varieties

Francesco Malaspina and A. Prabhakar Rao

We describe a vector bundle E on a smooth n-dimensional arithmetically Cohen–
Macaulay variety in terms of its cohomological invariants H i

�.E/, 1� i � n� 1,
and certain graded modules of “socle elements” built from E. In this way we give
a generalization of the Horrocks correspondence. We prove existence theorems,
where we construct vector bundles from these invariants, and uniqueness theorems,
where we show that these data determine a bundle up to isomorphism. The cases
of the quadric hypersurface in PnC1 and the Veronese surface in P5 are considered
in more detail.

Introduction

In a fundamental paper, Horrocks [1964] described all vector bundles on projec-
tive space Pn in terms of their intermediate cohomology modules. He described
these cohomology modules using what he called a Z-complex, and showed that
the category of vector bundles modulo stable equivalence was equivalent to the
category of all Z-complexes modulo exact free complexes. In particular, this
gives the well-known Horrocks criterion for a vector bundle to be a sum of line
bundles in terms of the vanishing of its intermediate cohomology. His results were
reformulated by Walters [1996] in the language of derived categories, and extended
to sheaves by Coandă [2010]. Beı̆linson [1978] described the derived category of
sheaves on a projective space using complexes built from an “exceptional sequence”
fOPn.�n/; : : : ;OPn.�1/;OPng of line bundles on Pn, and Kapranov [1988] gave a
similar description for smooth quadric hypersurfaces by enlarging the sequence to
include the spinor bundles† of the quadric. Ancona and Ottaviani [1991] used these
methods to extend the Horrocks splitting criterion to quadrics, with a theorem that
a vector bundle E on a quadric Qn (of dimension n) is a sum of line bundles if and
only if E has its intermediate cohomology modules H i

�.E/ all zero for 1� i � n�1
and also Hn�1

� .E˝†/D 0 for the spinor bundles †.
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In this paper, we copy Horrocks’ method on a smooth arithmetically Cohen–
Macaulay (ACM) subvariety X of projective space. Given a vector bundle E on X ,
we construct a Z-complex of free A-modules (where A is the coordinate ring of
X ). This complex, when sheafified, gives rise to a vector bundle F on X which we
call a Horrocks data bundle for E, since it comes with a map ˇ W F! E which is
an isomorphism on intermediate cohomology modules. When H 0

� .ˇ/ is surjective,
the kernel of ˇ is some ACM bundle on X .

These methods of Horrocks provide for ACM varieties a vector-bundle version
of results of Auslander and Bridger [1969, Proposition 4.26, Corollary 4.27], who
gave a structure theorem for a module M of finite Gorenstein dimension n over
a commutative ring, showing that M ˚P for some projective module P can be
expressed as an extension of a module Hn.M/ of projective dimension n by a
module of zero Gorenstein dimension, where the map M ! Hn.M/ satisfies a
universal property. In an unpublished preprint, Buchweitz [1986] proved a similar
result for finitely generated modules over strongly Gorenstein (noncommutative)
rings. We will see that the graded A-module F of global sections of the Horrocks
data bundle F will have F _ of finite projective dimension.

With this natural extension of Horrocks’ arguments to an ACM variety, we give
a generalization of the Horrocks correspondence in Section 1. Our goal in looking
at a Horrocks correspondence on X is to look for cohomological invariants that
determine E. We will take the Horrocks data bundle as encoding all the intermediate
cohomology for E, and view it as one of the invariants. So we will study the bundles
E with a fixed (minimal) Horrocks data bundle F. While for the map F! E the
induced map of first cohomology modulesH 1

� .F/!H 1
� .E/ is an isomorphism, for

various irreducible ACM bundles B on X , the map H 1
� .F˝B_/!H 1

� .E˝B_/

may have a kernel. These kernels will give more cohomological invariants and
we will call them modules of B-socle elements. In Theorems 1.10 and 1.11,
we see how these invariants determine E up to direct sums of ACM bundles.
We also give a splitting criterion for the bundle E to be a sum of line bundles
restricted from projective space. What is lacking in Section 1 is an understanding
of which modules of socle elements are obtained from a vector bundle for a general
ACM variety.

In Section 2 we describe the case of quadrics, on which ACM bundles are well
understood due to Knörrer [1987]. In particular, for the spinor bundles †i on a
quadric Qn, modules of †i -socle elements of a Horrocks data bundle F are just
graded vector spaces. We show that a vector bundle E exists for each choice of
Horrocks data bundle F and vector spaces Vi of †i -socle elements of F, and that
two vector bundles with the same data of F; Vi (up to obvious isomorphisms) are
isomorphic up to direct sums of ACM bundles. In this way we generalize the results
obtained in [Malaspina and Rao 2014] on Q2.
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In Section 3 we deal with the Veronese surface V � P5. The study of vector
bundles on V is trivial by Horrocks if we view V as P2. But, as another illustration
of the methods, it is an interesting example of an arithmetically Cohen–Macaulay
embedding which is not arithmetically Gorenstein and for which the ACM bundles
are easy to handle.

1. Horrocks data bundles on ACM varieties

Let X be a smooth ACM variety of dimension n in PnCr over a field k. For
any sheaf B on X , H i

�.B/ will denote
L
l2ZH

i .X;B.l//. The coordinate ring
of X , ADH 0

� .OX /, is a noetherian Cohen–Macaulay graded k-algebra. H i
�.B/

is a graded module over A. Let M be the category of graded, finitely generated
A-modules and graded homomorphisms. Any finitely generated projective graded
A module has the form

L
i A.ai / for some shifts ai 2 Z in grading, and will be

called a free A-module. Let P�M be the full subcategory of finitely generated
free A-modules. C�.M/ and C�.P/ will denote the categories of all complexes,
bounded above, of objects in M and P respectively, where morphisms are maps
between two complexes. Since M has enough projectives, given a complex C � of
objects in M, bounded above, one can find a free resolution, i.e., a complex P � in
C�.P/ with a quasi-isomorphism P �! C �.

Let E2VB be an object in the category of finite-rank vector bundles onX . H i
�.E/

is an A-module of finite length for 1� i � n�1. A vector bundle will be called free
if it has the form

L
i OX .ai /. A vector bundle E will be called ACM (arithmetically

Cohen–Macaulay) if H i
�.E/D 0 for all 1� i � n� 1. Since X is ACM, every free

bundle is ACM. By Serre duality, the line bundle !X is an ACM line bundle.
Given E, let E denote the graded A-module H 0

� .E/. Denoting duals by _ in the
categories VB and M, we have H 0

� .E
_/ Š .H 0

� .E//
_. Following Horrocks, we

choose a resolution of H 0
� .E
_/ by finitely generated free modules

: : : �! C 3_ �! C 2_ �! C 1_ �! C 0_ �!H 0
� .E
_/ �! 0: (1)

In [Horrocks 1964], this could be chosen as a finite resolution, but in our case it
may be infinite. However, if KD ker.C n�2_!C n�3_/, then K is an ACM vector
bundle on X , where KD zK is the sheaf obtained from K. Replacing the terms up
to and including C n�1_ by K and dualizing, we get the complex

C �
f0;ng W0�!C 0

ı1
C�

����!C 1
ı2

C�

����!C 2
ı3

C�

����!� � �
ın�2

C�

�����!C n�2�!K_�!0: (2)

The exact sequence (1), when sheafified, gives an exact sequence of vector
bundles, and its dual gives the exact sequence of vector bundles

0�!E�! zC 0
ı1

C�

����! zC 1
ı2

C�

����! zC 2
ı3

C�

����!� � �
ın�2

C�

�����! zC n�2�!K_�! 0: (3)
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From this it becomes evident that E D H 0
� .E/ is given as H 0.C �

f0;ng
/, and

H i
�.E/ D H i .C �

f0;ng
/ for i D 1; : : : n � 1 (where C n�1

f0;ng
is understood to refer

to K_).
E itself has a free resolution (again possibly infinite). Splice C �

f0;ng
with a free

resolution L� of E and call the resulting complex C �. The complex C � is bounded
above and has the property that H i .C �/DH i

�.E/ for i D 1; : : : n� 1 and equals 0
for other values of i .

Choose a free resolution P � in C�.P/ of C �:

P � W � � � �! P�2 �! P�1 �! P 0
ı1
P�

��! P 1
ı2
P�

��! � � �

ın�2
P�

���! P n�2 �! P n�1 �! 0??y ??y ??y ??y ??y ??y
C � W � � � �! L�2 �! L�1 �! C 0

ı1
C�

��! C 1
ı2

C�

��! � � �
ın�2

C�

���! C n�2 �! K_ �! 0

Then P � is an element in C�.P/ with the property that H i .P �/ is an A-module of
at most finite length for 1� i � n� 1 and is zero for other i . In [Horrocks 1964]
the bounded version of such a free complex was called a Z-complex, while Walters
[1996] called the category of such complexes FinL.P/. In our setting, we will call
it a Horrocks data complex and use the notation of [Walter 1996]. We also define a
“Horrocks data bundle” for each such Horrocks data complex:

Definition 1.1. FinL�.P/ is the full subcategory of all complexes P � in C�.P/

with the property thatH i .P �/ is anA-module of at most finite length for 1� i�n�1
and is zero for other i . A complex P � in FinL�.P/ will be called a Horrocks data
complex. For such a complex, let F D ker.ı1P � WP

0!P 1/. Then the sheaf FD zF

will be called a Horrocks data bundle on X .

It should be clear that the above F is a vector bundle on X with the property that
H i
�.F/DH

i .P �/ for 1� i � n� 1.

Lemma 1.2 [Horrocks 1964, Theorem 7.2]. F _ has a finite free resolution.

Proof. Horrocks’ proof cited above is when A is a regular ring, but remains
valid when A is Cohen–Macaulay. Another proof (indicated by the referee) is:
0! .P n�1/_! .P n�2/_! � � � ! .P 0/_! F _! 0 is a complex in M, locally
free and exact away from the maximal ideal for the vertex of the cone over X , and
hence is exact by the Peskine–Szpiro acyclicity lemma. �

Since the modules of global sections of a nonfree ACM bundle and of its dual
bundle on X have infinite projective dimension over A, it follows that a Horrocks
data bundle F can have no nonfree ACM bundle or its dual as a summand.

Since any P � in C�.P/ decomposes as M �˚L�, where M � is a minimal free
complex and L� is an acyclic free complex, we get FD Fmin˚L, where F;Fmin,
and L are the Horrocks data bundles corresponding to P �;M �, and L� respectively.
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L is a free bundle and Fmin will be called a “minimal” Horrocks data bundle. The
projective space version of the following isomorphism theorem can be found in
[Horrocks 1964, Theorem 7.5, Proposition 9.5] or [Walter 1996, Lemma 2.11].

Proposition 1.3. Let � W F ! F0 be a homomorphism between two minimal
Horrocks data bundles on X such that � induces isomorphisms H i

�.F/!H i
�.F
0/

for 1� i � n� 1. Then � is an isomorphism.

Proof. The proofs of the results cited above work in our ACM setting as well. �

Returning to the vector bundle E, let P � be a free resolution of C � as described
above. Let P �

�0 denote the naive truncation of P � at the zeroth term. We get the
induced homomorphism of complexes

P ��0! C �
f0;ng:

For F defined as ker ı1P � , there is an induced homomorphism F ! E. For the
Horrocks data bundle FD zF , we get a homomorphism ˇ W F! E which induces
isomorphisms H i

�.F/!H i
�.E/ for 1� i � n� 1. Hence any vector bundle E has

a “Horrocks datum”, as we now define:

Definition 1.4. Let E be a vector bundle on X . A pair .F; ˇ/ will be called a
Horrocks datum for E if F is a Horrocks data bundle and ˇ is a homomorphism
ˇ W F! E which induces isomorphisms H i

�.F/!H i
�.E/ for 1� i � n� 1.

A point on terminology: Auslander’s approximation theorem [Auslander and
Bridger 1969, Proposition 4.26, Corollary 4.27] quoted in the introduction states that,
given a module M of finite Gorenstein dimension n, there exist a projective module
P , a module Hn.M/ of projective dimension n, a module Mn of zero Gorenstein
dimension and an exact sequence 0!Mn!M ˚P !Hn.M/! 0. Following
Auslander’s suggestion, Buchweitz [1986, Corollary 5.3.3] called Hn.M/ (with
the map M !Hn.M/) a “hull of finite projective dimension” for M , and Mn the
maximal Cohen–Macaulay approximation to M .

In the case where our variety X is arithmetically Gorenstein, Auslander’s se-
quence can be seen as coming from the dual of the �-sequence of Theorem 1.7 below:
givenE, the �-sequence 0!K!F!E!0 dualized gives 0!E_!F _!K_,
where F _ has finite projective dimension. When X is arithmetically Gorenstein,
K_ is a maximal Cohen–Macaulay module and F _!K_ is surjective. Pull back
the exact sequence by a surjection L!K_! 0, with L projective. It splits. This
induces an exact sequence 0!N !E_˚L! F _! 0, where N (the kernel of
L!K_) is a maximal Cohen–Macaulay module. This fits the above approximation
theorem for E_.
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However, we have chosen the notation “F is the Horrocks data bundle for E”
since F encodes all the intermediate cohomology data of E.

Theorem 1.5. Let E1;E2 be vector bundles on X with Horrocks data .F1; ˇ1/,
.F2; ˇ2/ respectively. Let � W E1! E2 be a homomorphism.

(1) There is a free bundle Z and a commuting square

F1 ����! F2˚Z??yˇ1

??y.ˇ2;�/

E1 ����!
�

E2

(2) If H 0
� .ˇ2/ WH

0
� .F2/!H 0

� .E2/ is surjective, the free bundle Z can be chosen
to be zero.

Proof. It is straightforward to see that the construction of the complex C � out of
the vector bundle E is functorial in the sense that, given � W E1 ! E2, there is
an induced morphism from C �1 ! C �2 with the property that the homomorphisms
H i .C �1/!H i .C �2/ coincide with H i .�/ WH i

�.E1/!H i
�.E2/ for 1 � i � n� 1.

In the special case of ˇk WFk!Ek , a Horrocks datum, we get a quasi-isomorphism
P �
k
!C�

k
, whereP �

k
is the Horrocks data complex associated to Fk , so thatP �

k
!C�

k

is a free resolution of C�
k

. Now given a morphism of complexes C �1 ! C �2 , we can
lift the morphism to their free resolutions, after adding a free acyclic complex to P �2 .
This gives the commuting square of part (1). The proof of part (2) is elementary. �

The following theorems (Theorems 1.6 and 1.7) are to be found in more general
form in [Buchweitz 1986] as the “syzygy theorem for Gorenstein rings”. The
diagram in Theorem 1.8 below is Buchweitz’s octahedron [1986, (5.3.1)].

Theorem 1.6 (
 sequence for E). Let E be a vector bundle on X and .F; ˇ/ a
Horrocks datum for E. From the Horrocks data complex P � for F, consider the
exact sequence ‰ W 0! F! P0 ! G! 0, where P0 D zP 0 and G D zG with
G D ker ı2P � . We define 
 as the pushout of ‰ by ˇ

‰ W 0 ����! F ����! P0 ����! G ����! 0??yˇ ??y 




 W 0 ����! E ����!

f
A ����!

g
G ����! 0

(1) Given two bundles E1;E2, a morphism � W E1 ! E2, and Horrocks data
.F1; ˇ1/, .F2; ˇ2/ for each bundle, we obtain a commuting box of short exact
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sequences (using obvious notation)

‰1 ����! ‰2˚�??yˇ1

??y.ˇ2;�/


1 ����!
�


2

where � is a short exact sequence 0! Z! Z! 0! 0 of free bundles. If
H 0
� .ˇ2/ is surjective onto H 0

� .E2/, � may be taken to be zero.

(2) Hn�1
� .G/D 0, and A is an ACM bundle on X .

(3) Up to a short exact sequence 0!0!Z!Z!0 of free bundles, the sequence

 depends only on E and not on the choice of Horrocks datum.

Proof. (1) � lifts to a map F1!F2˚Z to give a commuting square, by Theorem 1.5.
F2˚Z is a Horrocks data bundle for the Horrocks data complex, where P 0 is
replaced by P 0˚Z but with the same bundle G2. It is easy to see that the map
F1! F2˚Z extends to a map of sequences ‰1!‰2˚�. The pushouts of ‰2
and ‰2˚� give the same sequence 
2. Lastly, since we have a commuting square
from the first line of the proof, the pushouts of ‰1 and ‰2˚� give a commuting
box of exact sequences.

(2) By construction, Hn�1
� .G/ D Hn.P �/ D 0. Since we have isomorphisms

H i
�.G/ŠH

iC1
� .F/ŠH iC1

� .E/ for 1� i � n�2 andH 0
� .G/�H 1

� .F/ŠH
1
� .E/,

we conclude that A is ACM.

(3) This follows from the first part when we apply the previous theorem to the
identity morphism from E to E. Indeed, the theorem, together with Proposition 1.3,
shows that any two Horrocks data bundles for E are stably equivalent. �

Theorem 1.7 (� sequence for E). Let .F; ˇ/ be a Horrocks datum for the bundle E

such that H 0
� .ˇ/ is surjective. We define the � sequence for E to be

0 �! K �! F
ˇ
��! E �! 0;

where K is the kernel bundle.

(1) K is an ACM bundle.

(2) � is determined by E up to a short exact sequence 0! Z! Z! 0! 0 of
free bundles.

(3) Given a morphism � W E1! E2, there is an induced morphism of short exact
sequences �1! �2.
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Proof. The proof is easy. We just mention that the induced map �1! �2 depends on
the choice of a map from F1 to F2 that lifts � (as obtained from Theorem 1.5). �

Theorem 1.8 (diagram of E). Let .F; ˇ/ be a Horrocks datum for the bundle E

such that H 0
� .ˇ/ is surjective. The 
 and � sequences of E fit into a diagram for E

0 0??y ??y
K K??y˛ ??y

‰ W 0 ����! F ����!
g

P0 ����! G ����! 0??yˇ ??y 




 W 0 ����! E ����!

f
A ����! G ����! 0??y ??y

0 0

� �

Given a morphism � W E1! E2, there is an induced map from the diagram of E1 to
the diagram of E2.

Proof. While the existence of the diagram is clear, the map from diagram of E1 to
the diagram of E2 with appropriate commuting boxes exists because the choice of
a map from F1 to F2 that lifts � will determine �1! �2 and then allows a choice
of a map ‰1!‰2. This now gives the commuting box of short exact sequences
of Theorem 1.6. �

The following is a criterion for obtaining a map between two 
 -sequences:

Proposition 1.9. Let E;E0 be two vector bundles with the same (minimal) Horrocks
data bundle Fmin and Horrocks data .Fmin; ˇ/, .Fmin; ˇ

0/. Let B1;B2; : : : ;Bk be
the distinct nonfree irreducible ACM bundles (up to twists by OX .a/) that appear
as summands in the middle term AE of the 
-sequence of E. For each Bi , let Vi
be the kernel of the map H 1

� .ˇ ˝ 1B_
i
/ from H 1

� .Fmin ˝B_i / to H 1
� .E˝B_i /,

and let V 0i be the same with ˇ replaced by ˇ0. If Vi � V 0i for all i , then there
exists a map � W E! E0 such that the 
-sequence of E0 is the pushout by � of the

 -sequence for E.
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Proof. Since the 
 -sequences 
; 
 0 are pushouts by ˇ; ˇ0 of the‰-sequence for Fmin

‰ W 0 �! Fmin �! P0 �! Gmin �! 0

in the commutative diagram

Hom.P0;E0/ ���! Hom.Fmin;E
0/ ���!

ı.‰/
Ext1.Gmin;E

0/ ���! Ext1.P0;E0/x??ˇ 


 x??
Hom.E;E0/ ���!

ı.
/
Ext1.Gmin;E

0/ ���! Ext1.AE;E
0/

it suffices to show that 
 0 2 Ext1.Gmin;E
0/ maps to zero in Ext1.AE;E

0/, for then
there is an element � 2 Hom.E;E0/ such that � ıˇ differs from ˇ0 by a map that
factors through P0.

Let � WAE! Gmin be the map occurring in the 
 -sequence of E. Then under the
connecting homomorphism for 
 ˝A_E , � maps to zero under H 0

� .Gmin˝A_E /!

H 1
� .E˝A_E /. Hence, under the connecting homomorphism of ‰˝A_E , � maps

to the kernel of H 1
� .Fmin˝A_E /!H 1

� .E˝A_E /. By the assumption Vi � V 0i for
all i , � also maps to the kernel of H 1

� .Fmin˝A_E /! H 1
� .E
0˝A_E /. It follows

that the pullback of 
 0 by � splits, which was the desired result. �

This criterion leads to an isomorphism theorem on X :

Theorem 1.10 (isomorphism theorem). Let E;E0 be two vector bundles on X ,
with the same minimal Horrocks data bundle Fmin and Horrocks data .Fmin; ˇ/,
.Fmin; ˇ

0/. Let B1;B2; : : : ;Bk be the distinct nonfree irreducible ACM bundles
(up to twists by OX .a/) that appear as summands in either of the middle terms
AE;AE0 of the 
 -sequences of E, E0. If for each i the kernel ofH 1

� .ˇ˝1B_
i
/ equals

the kernel of H 1
� .ˇ
0˝ 1B_

i
/ and if E and E0 have no ACM summands, then EŠ E0.

Proof. If F is free, E;E0 are ACM and the theorem does not apply. So we will assume
that Fmin is a nonfree minimal Horrocks data bundle. By applying Proposition 1.9,
there exists a homomorphism � WE!E0 and a commutative diagram of 
 -sequences

0 ����! E ����! AE ����! Gmin ����! 0??y� ??y�1





0 ����! E0 ����! AE0 ����! Gmin ����! 0

Tensor the diagram by B_, where B will stand for any of the distinct irreducible
ACM bundles (up to twists by OX .a/) that appear as summands in AE0 , including
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the possible free line bundle OX . In the induced diagram of cohomology, we get

0 0??y ??y
H 0
� .E˝B_/ ������!

�
H 0
� .E
0˝B_/??y ??y

H 0
� .AE˝B_/ ������!

�1

H 0
� .AE0 ˝B_/??y ??y

H 0
� .Gmin˝B_/ H 0

� .Gmin˝B_/??y ??y
H 1
� .E˝B_/ ������!

�
H 1
� .E
0˝B_/??y ??y

H 1
� .AE˝B_/ ������!

�1

H 1
� .AE0 ˝B_/

The mapH 0
� .Gmin˝B_/!H 1

� .E˝B_/ factors throughH 1
� .F˝B_/, since 


is the pushout of‰ by ˇ. The condition of equality of kernels forH 1
� .ˇ˝1B_/ and

H 1
� .ˇ
0˝ 1B_/ implies that the kernel in H 0

� .Gmin˝B_/ is the same for E and E0.
Therefore the mapping cone mapH 0

� .E
0˝B_/˚H 0

� .AE˝B_/!H 0
� .AE0˝B_/

is surjective. Viewing each summand B of AE0 , the identity global section in
H 0.B ˝ B_/ is in the image of this surjection. It cannot be in the image of
H 0
� .E
0˝B_/ since E0 does not have B as a summand. Hence it is in the image of

some B0 term in AE. This forces B0 to equal B, and the map �1 WAE!AE0 has
to split over this B term in AE0 .

It follows that �1 is a (split) surjection. Hence � W E! E0 is onto. The roles of
E;E0 can be interchanged, showing that they are bundles of the same rank. Hence
� W EŠ E0. �

The following theorem is in the same vein, and extends Proposition 1.3:

Theorem 1.11. Let � W E! E0 be a sheaf homomorphism between two vector bun-
dles on X , where E0 has no ACM summands. Suppose that � induces isomorphisms
H i
�.E/!H i

�.E
0/ for 1� i �n�1, and also, for each nonfree irreducible ACM bun-

dle B appearing in AE0 , suppose that the induced mapH 1
� .E˝B_/!H 1

� .E
0˝B_/

is an isomorphism. Then � is a split surjection decomposing E into E0˚C, where
C is an ACM bundle.
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Proof. By Theorem 1.5, � can be lifted to a map Q� W Fmin ! F0min of minimal
Horrocks data bundles. Since H i

�. Q�/ is an isomorphism for 1 � i � n� 1, Q� is
an isomorphism. So, for convenience, we may assume that Fmin D F0min, and,
according to Theorem 1.6, � induces a map of 
 -sequences

0 ����! E ����! AE ����! Gmin ����! 0??y� ??y�1





0 ����! E0 ����! AE0 ����! Gmin ����! 0

For each B appearing in AE0 , as in the proof of the previous theorem after ten-
soring by B_ we can look at the diagram of cohomology. Since H 1

� .E˝B_/!

H 1
� .E
0˝B_/ is an isomorphism, the kernel inH 0

� .Gmin˝B_/ is the same for E and
E0. The previous argument repeats to show that the homomorphism �1 WAE!AE0

is a split surjection, with a kernel C which is ACM. Hence � W E! E0 is also a split
surjection with kernel equal to C. �

Since the A-submodules Vi D ker.H 1
� .Fmin˝B_i /!H 1

� .E˝B_i // play such
an important role in the above description of a bundle E, it is worthwhile to make
the following definition describing its properties:

Definition 1.12. Let F be a sheaf on X and B an ACM bundle on X with a
minimal set of generators for H 0

� .B/ given by
L
j OX .aj /!B! 0. The kernel

of H 1
� .F˝B_/!H 1

� .F˝
L
j OX .�aj // will be called the A-module of B-socle

elements for F and denoted by H 1
� .F˝B_/soc. A homogeneous element in this

kernel in degree d will be a B-socle element in H 1.F.d/˝B_/.

Remark 1.13. (1) For a vector bundle F, the module of B-socle elements for F

has finite length over the field k.

(2) Suppose B_!OX .b/ is any map. Then, for any sheaf F, a B-socle element in
H 1
� .F˝B_/ maps to zero in H 1

� .F.b//, since B_! OX .b/ factors throughL
j OX .�aj /.

(3) Suppose E is a bundle on X with Horrocks datum .Fmin; ˇ/. Then, for any
ACM bundle B, the module V Dker.H 1

� .Fmin˝B_/!H 1
� .E˝B_// consists

of B-socle elements for Fmin. Indeed, the map H 1
�

�
Fmin˝

L
j OX .�aj /

�
!

H 1
�

�
E˝

L
j OX .�aj /

�
is an isomorphism.

Example 1.14. Any ACM variety X with a nondegenerate embedding into PN

has a Horrocks data bundle given by �1PjX with H 1
� .�

1
PjX /D k and with an exact

sequence

0 �!�1PjX �! OX .�1/
˚NC1

�! OX �! 0:
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For any ACM bundle B onX , without free summands and with B_ ,!
L
j OX .�aj /,

consider the diagram

H 0
� .OX ˝B_/ ����! H 1

� .�
1
PjX ˝B_/??y ??y

H 0
�

�
OX ˝

L
j OX .�aj /

�
����! H 1

�

�
�1PjX ˝

L
j OX .�aj /

�
Then any minimal generator of the moduleH 0

� .OX˝B_/maps to a nongenerator in
H 0
�

�
OX˝

L
j OX .�aj /

�
, and hence maps to zero in H 1

�

�
�1PjX˝

L
j OX .�aj /

�
DL

j k.�aj /. Thus the image of H 0
� .OX˝B_/ in H 1

� .�
1
PjX˝B_/ is nonzero and

consists of B-socle elements for �1PjX . So, for any ACM bundle B on X , without
free summands, the Horrocks data bundle �1PjX will have B-socle elements.

For a general ACM variety X , one would expect infinitely many families of
nonisomorphic and irreducible ACM bundles; hence this shows that even for a
fixed Horrocks data bundle Fmin, the number of bundles E with Horrocks datum
.Fmin; ˇE/ would get out of control, especially with the construction given below.
In later sections, we will limit our attention to the quadric hypersurface and the
Veronese surface, where there are only finitely many ACM bundles. In these sections,
we will also be able to deal with arbitrary submodules of B-socle elements, instead
of the entire B-socle module of the rather crude theorem below.

Theorem 1.15 (existence). Let Fmin be a minimal Horrocks data bundle on X , and
let B1;B2; : : : ;Bk be a finite collection of irreducible, nonfree ACM bundles on X .
Then there is a vector bundle E on X with Horrocks datum .Fmin; ˇ/ and with
kerH 1

� .ˇ˝ 1B_
i
/DH 1

� .Fmin˝B_i /soc for 1� i � k.

Proof. Each H 1
� .Fmin ˝B_i /soc is an A-module, and we can pick a collection

of minimal generators for the module. Let Ki be the vector subspace spanned
by this collection inside H 1

� .Fmin˝B_i /soc. Let B D
L
.Ki ˝k Bi /. The data

Ki ; 1� i � k, can be viewed as a B-socle element in H 1
� .Fmin˝B_/, and hence

gives an extension (that defines a bundle E)

0 �! Fmin
ˇ
��! E

�
��!B �! 0:

Since the element is a socle element, the pullback of the sequence under any map
OX .b/!B will split. Hence H 0

� .�/ is surjective, giving .Fmin; ˇ/ the Horrocks
datum for E.

By construction, the subspace Ki � IBi
in H 0

� .B˝B_i / maps isomorphically to
Ki�H

1
� .Fmin˝B_i /soc. Hence the image of the map ofA-modulesH 0

� .B˝B_i /!

H 1
� .Fmin˝B_i /soc is onto. �
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Remark 1.16. (1) The same construction can be done for an arbitraryA-submodule
Vi of H 1

� .Fmin˝B_i /soc. We would choose Ki to be the subspace spanned
by a set of minimal generators for Vi . In the last step of the above proof, we
find that image of the map of A-modules H 0

� .B˝B_i /!H 1
� .Fmin˝B_i /soc

contains Vi , and could possibly be larger. Hence the Horrocks invariants of E,
kerH 1

� .ˇ˝ 1B_
i
/, may not be precisely recognizable in this case.

(2) In the above theorem, for the E so constructed, it is possible to identify AE

in the case when X is arithmetically Gorenstein, or when the dual of each
of the ACM bundles Bi ; 1 � i � k, is also ACM: since the 
-sequence of
E is the pushforward of the ‰-sequence for Fmin, we get the exact sequence
0! P0 ! AE ! B! 0, which is forced to split by the extra hypotheses.
Once the ACM bundles in AE are identified, it is possible to compare E with
other bundles via the uniqueness theorems (Theorems 1.10, 1.11).

(3) However, in the non-arithmetically Gorenstein case, a clear description of AE

may not be apparent at the end of the construction of the theorem. We will
give an example later (Example 3.3) where an identification of AE requires
more work.

It is easy to obtain a splitting criterion for a vector bundle E on X to be free,
which gives for example the criterion for quadrics in [Ancona and Ottaviani 1991]
that was cited in the introduction. Once again, in the theorem below, note that the
condition invoking any ACM bundle is not very useful when there are too many
ACM bundles on X . It is more interesting (see the proof below) in the case where
the choices for B are limited, for example, if one could limit the possible ACM
bundles that might appear as a summand in the diagram of E.

Theorem 1.17 (a splitting criterion). Let E be a vector bundle of rank � r on
X , a smooth ACM variety of dimension n, such that H i

�.E
_/ D 0 for 1 � i �

minfr � 1; n� 1g and also H 1
� .E
_˝B/D 0 for any ACM bundle B on X . Then E

is free.

Proof. Now the �-sequence (Theorem 1.7) of E, 0! K! F! E! 0, gives an
element inH 1.E_˝K/ which is zero by hypothesis. Hence K and E are summands
of F. Since F is a Horrocks data bundle, it can have no nonfree ACM summand,
so K must be free. Thus E itself is a Horrocks data bundle.

If r � n, E_ is ACM. But the dual of a Horrocks data bundle has finite resolution,
so E_ must be free.

If r < n, consider the sequence (3) with E replaced by E_. From the vanishing
of cohomologies of E_, when we look at the complex of global sections of the
sequence, we conclude that the module E_ is an .r C 1/-th syzygy, and E_ has
finite projective dimension since E is a Horrocks data bundle. By the Evans–Griffith
syzygy theorem [1981], E_ is free. �
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Remark 1.18. IfX is a smooth quadric hypersurface, the above splitting criterion is
also equivalent to Corollary 4.3 of [Ballico and Malaspina 2009]. Splitting criteria
have been established on other varieties. For a Grassmannian of lines G.1; n/,
which supports infinitely many irreducible ACM bundles when n� 4, it is possible
to prove a splitting criterion (see Theorem 2.6 of [Arrondo and Malaspina 2010])
with a finite number of cohomological vanishing conditions involving only the
ACM bundles S iQ, where i D 1; : : : ; n� 2 and Q is the tautological rank-two
bundle. Similarly, on multiprojective spaces Pn1 � � � � �Pns , there is a splitting
criterion (see Theorem 3.9 of [Ballico and Malaspina 2011]) with a finite number of
cohomological vanishing conditions involving only the ACM bundles O.k1; : : : ; ks/,
where �nj � kj � 0. These results are much stronger than Theorem 1.17. Due
to the generality of our setting, we are unable to prove a splitting criterion with
conditions involving only a finite number of ACM bundles.

However, when there is additional analysis of the ACM bundles, more can be
said. For example, Arrondo and Graña [1999] identified a list of six specific ACM
bundles on G.1; 4/, and showed that any other ACM bundle B is a summand
of a bundle that appears in the middle of a short exact sequence of bundles,
where the bundles on either side are built from direct sums of twists of these
six bundles. Hence in our Theorem 1.17, applied to G.1; 4/, it suffices to consider
only these six specific bundles for B. It is now straightforward to check that
Ottaviani’s splitting criterion on G.1; 4/ (which is just one case of [Ottaviani
1987, Théorème 1]) follows from Theorem 1.17. (He assumed that H i

�.E
_/D 0

for 1 � i � 5 and his other hypotheses imply that H 1
� .E
_ ˝B/ D 0 for these

six ACM bundles.)

2. Quadric hypersurfaces

Let Qn � PnC1 be a smooth quadric hypersurface. We will work over a field of
characteristic not two. The quadratic form defining Qn descends to a quadratic form
on the tangent bundle of Qn. Hence one can define spinor bundles on Qn [Karrer
1973]. Set l WD b.nC 1/=2c. If n is even, then Qn has two distinct spinor bundles
†1 and †2 of rank 2l�1. If n is odd, then Qn has a unique spinor bundle, which
we denote †1, of rank 2l�1. Algebraic properties of these bundles were studied
by Ottaviani [1988], who obtained them using the geometry of the variety of all
maximal linear subspaces of Qn to construct morphisms from Qn toG.2l�1; 2l/. He
shows that these spinor bundles on Qn are ACM bundles. Kapranov [1988] showed
how these bundles were crucial in describing the derived category of sheaves on
the quadric. Meanwhile, Knörrer [1987], classifying maximal Cohen–Macaulay
modules over isolated quadratic hypersurface singularities, described these bundles
as the fundamental ACM bundles on Qn (see [Buchweitz et al. 1987] for the
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interpretation of Knörrer’s results in terms of bundles). Knörrer’s classification of
ACM bundles on Qn was proved also in [Ancona and Ottaviani 1991].

We use a unified notation †i for spinor bundles on Qn, where for even n, i can
take on the values 1; 2, while if n is odd, i can be only 1. We follow the notation
of [Kapranov 1988], whose spinor bundles differ from those in [Ottaviani 1988]
by a twist of 1. Hence †i is generated by its global sections and †i .�1/ has no
sections.

We will call a bundle of the form †i .a/ a twisted spinor bundle on Qn. The
fundamental theorem of [Knörrer 1987] is:

Theorem 2.1. Any ACM bundle on Qn is a direct sum of line bundles and twisted
spinor bundles.

The spinor bundles on Qn satisfy some dualities [Ottaviani 1988]: when n is odd
or n� 0 .mod 4/, †_i Š †i .�1/, while if n� 2 .mod 4/, †_i Š †j .�1/, where
j ¤ i .

In addition, the spinor bundles on Qn satisfy canonical sequences. To further
unify the notation, when n is odd or when n� 2 .mod 4/, define i 7! Ni to be the
identity on indices, and when n� 0 .mod 4/, define i 7! Ni to be the transposition
of the indices 1 and 2. With this notation, we have the canonical sequences

0 �!†_Ni

ui
���! O˚2

l vi
���!†i �! 0 (4)

(see [Ottaviani 1988, Theorem 2.8]).
Ottaviani [1988, Lemma 2.7] proved that, for any spinor bundle †i , End.†i /D

H 0.†i ˝†
_
i / D k and Hom.†i ; †j / D 0 for i ¤ j . Using this, and tensoring

the sequence above with †_i , we get H 1.†_
Ni
˝†_i /D k, where Id†i

maps to a
generator of H 1.†_

Ni
˝†_i /. For completeness, the following lemma is also easy

to prove:

Lemma 2.2. H 1
� .†

_
Ni
˝†_i /D k;

H 1
� .†

_
j ˝†

_
i /D 0 if j ¤ Ni :

.5/

.6/

Recall the definition of socle elements.

Definition 2.3. Let F be a sheaf on Qn. The sequence dual to (4) tensored by F

gives

0 �! F˝†_i �! F˝O˚2
l

�! F˝†Ni �! 0

and a natural map H 1
� .F˝†

_
i /!H 1

� .F˝O˚2
l

/.
An element in H 1.F.d/˝ †_i / will be called a †i -socle element for F in

degree d if it is annihilated by the map H 1.F.d/˝†_i /!H 1
� .F˝O˚2

l

/.
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The terminology “socle” comes from the case of a quadric surface studied in
[Malaspina and Rao 2014], where socle elements were annihilated by multiplication
by the forms lifted from one of the P1 factors of Q2. We have extended this
terminology to all ACM bundles in Section 1.

Lemma 2.4. Let F be a sheaf on Qn. Let V be a finite-dimensional graded subspace
consisting of †i -socle elements in H 1

� .F˝†
_
i /. Then there is a homomorphism

˛ W V ˝†_
Ni
! F such that H 1

� .˛˝ 1†_i
/ has image V .

Proof. Consider the dual canonical sequence (4) tensored by F

0 �! F˝†_i �! F˝O˚2
l

�! F˝†Ni �! 0:

We get

H 0.F˝†Ni /!H 1.F˝†_i /!H 1.F˝O˚2
l

/:

There is a graded subspace V 0 of H 0
� .F˝†Ni / which is mapped isomorphically to

V �H 1
� .F˝†

_
i /. This induces a map ˛ W V 0˝k†_Ni !F. Thus we can construct

the commuting diagram

0 0??y ??y
F˝†_i  ����˛˝1

�
V 0˝k †

_
Ni

�
˝†_i??y1˝v_i ??y1˝v_i

F˝O˚2
l

 ����
˛˝1

�
V 0˝k †

_
Ni

�
˝O˚2

l??y1˝u_i ??y1˝u_i
F˝†Ni  ����

˛˝1

�
V 0˝k †

_
Ni

�
˝†Ni??y ??y

0 0

Then H 1
� .˛˝ 1/ WH

1
� ..V

0˝k †
_
Ni
/˝†_i /!H 1

� .F˝†
_
i / gives V 0 Š V . �

Corollary 2.5. Let F be a vector bundle on Qn. Then any graded vector subspace
V of †i -socle elements in H 1

� .F˝†
_
i /soc is an A-submodule of H 1

� .F˝†
_
i /soc.

Proof. In the proof above H 1
� .˛˝ 1†_i

/ is an A-module homomorphism, and by
Lemma 2.2 theA-moduleH 1

� ..V
0˝k†

_
Ni
/˝†_i / has the trivialA-module structure,

where multiplication by graded elements in A of positive degree is zero. �

For any vector bundle E on Qn, we will define invariants as follows:
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Definition 2.6 (Horrocks invariants of E). Let E be a vector bundle on Qn. It has a
minimal associated Horrocks datum .Fmin; ˇ/. Let

Vi D kerH 1.ˇ˝ Id†_
i
/ WH 1

� .Fmin˝†
_
i /!H 1

� .E˝†
_
i /:

Then Vi is a graded subspace of H 1
� .Fmin ˝†

_
i /soc. The collection .Fmin; Vi /

will be called Horrocks invariants for E. (As usual, when n is even, this means
.Fmin; V1; V2/ and when n is odd, it means .Fmin; V1/.)

Remark 2.7. (1) E is ACM if and only if Fmin is the zero bundle. Vi D 0 as well.

(2) In general, Vi D 0 for all i if and only if E is a direct sum of a Horrocks data
bundle and an ACM bundle.

(3) If B is an ACM bundle, then E and E˚ B will have the same Horrocks
invariants.

(4) If .Fmin; ˇ; Vi / is a collection of Horrocks invariants for E and � is an auto-
morphism of Fmin, then � can be used to change ˇ WFmin! E and hence also
Vi to get a new collection of Horrocks invariants for E.

(5) The definition could have used an arbitrary Horrocks data bundle F for E

instead of the minimal one Fmin, since H 1
� .†

_
i /D 0 and hence the description

of Vi would not change.

A stronger existence theorem for quadrics can now be stated than was proved in
Theorem 1.15. Below we have a statement that deals with arbitrary subspaces of
socle elements:

Theorem 2.8 (existence). Let Fmin be a minimal Horrocks data bundle on Qn and
let Vi be a graded vector subspace of H 1

� .Fmin ˝ †
_
i /soc. Then there exists a

vector bundle E with the Horrocks invariants .Fmin; V1; V2/ (when n is even) and
invariants .Fmin; V1/ (when n is odd).

Proof. We follow the approach in Theorem 1.15. For notational convenience,
assume n is even, so i D 1; 2. Let BD .V1˝k†1/˚ .V2˝k†2/. As in the earlier
proof, we obtain a short exact sequence (defining E):

0 �! Fmin
ˇ
��! E

�
��! .V1˝k †1/˚ .V2˝k †2/ �! 0;

where .Fmin; ˇ/ is a Horrocks datum for the bundle E so obtained. Our goal is now
to show that the image of H 0

� .B˝†
_
i /!H 1

� .Fmin˝†
_
i / is Vi , whereas in the

earlier proof we showed that it contained Vi . Let †j .a/ be any summand in B, and
pick a nonzero section s 2 H 0.†j .a/˝†

_
i .b//, or a map s W †i .�b/! †j .a/.

Then aCb � 0. The section s 2H 0.B˝†_i .b// maps to zero in H 1
� .Fmin˝†

_
i /

if and only if the pullback of the short exact sequence by the map s W†i .�b/!B

is a split sequence. If aC b > 0, by Lemma 2.2 the map s W †i .�b/! †j .a/
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factors through O˚2
l

.a/. The pullback of the short exact sequence by the map
O˚2

l

.a/ ! †j .a/ � B splits since the extension is defined by socle elements.
Hence so does the pullback by the map †i .�b/!†j .a/�B.

It follows that the only nonzero contribution from this summand †j .a/ to the
image of H 0.B˝†_i .b// occurs when aC b D 0. If i ¤ j , Hom.†i ; †j / D 0
and so no section s can be found. If i D j , End.†i /D k and it follows that the
image of s lies in Vi . Thus the image of H 0

� .B˝†
_
i / is exactly Vi . �

As pointed out after Theorem 1.15, if Fmin has a ‰-sequence 0!Fmin!P0!

Gmin! 0, then the E constructed in the above theorem has 
 -sequence given as

0 �! E �!
M

i
.Vi ˝k †i /˚P0 �! Gmin �! 0:

It is also easy to see that since Fmin has no summands of type †i , neither does E.
Conversely, suppose E is a vector bundle on Qn with Horrocks invariants .Fmin; Vi /

and with no summands of type †i . It will follow from the next theorems that E has
a 
 -sequence with AE D

L
i .Vi ˝k †i /˚P0, where P0 is free.

The following two uniqueness results follow easily from the general theorems of
Section 1.

Theorem 2.9 (uniqueness). Given two bundles E;E0 on Qn without ACM sum-
mands and with Horrocks invariants .Fmin; Vi /, .F0min; V

0
i /, suppose that there

exists � W Fmin �!
� F0min such that the induced isomorphisms H 1

� .Fmin˝†
_
i / Š

H 1
� .F

0
min˝†

_
i / carry Vi to V 0i for each i . Then E and E0 are isomorphic.

Proof. We may assume that E and E0 have the same minimal Horrocks data bundle
Fmin. If Fmin is zero, E;E0 are ACM and the theorem does not apply. So we
will assume that Fmin is a nonfree minimal Horrocks data bundle. If Vi is 0 for
i D 1; 2, then E is stably equivalent to Fmin, and, being without ACM summands,
it must be isomorphic to Fmin. Since V 0i will also be zero, the same is true for E0

and we conclude that EŠ E0. So assume Vi is nonzero for some i . If there is an
automorphism � of Fmin which carries Vi to V 0i , in the diagram of Theorem 1.8 for
E0, we may replace ˇ0 W Fmin! E0 by ˇ0 ı��1 and so on, and assume that ˇ and
ˇ0 give the same kernel Vi in H 1

� .Fmin˝†
_
i /.

We can now apply Theorem 1.10 to conclude the result. �

Theorem 2.10. Let E;E0 be vector bundles on Qn with no ACM summands. Suppose
� W E! E0 is a homomorphism such that � induces H j

� .E/ŠH
j
� .E
0/ for 1� j �

n� 1 and also isomorphisms H 1
� .E˝†

_
i /ŠH

1
� .E
0˝†_i / for all i . Then � is an

isomorphism.

Proof. This is just Theorem 1.11 with the additional condition that E has no
ACM summands. �
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3. The Veronese surface

The Veronese surface V � P5 is an arithmetically Cohen–Macaulay embedding
which is not arithmetically Gorenstein. The study of vector bundles on V is trivial
if we view V as P2. Below we discuss how the techniques of Section 1 apply to
the embedded variety V. With its polarization from the embedding, V has two
irreducible, nonfree ACM bundles (up to twists). Hence, as in the case of quadric
hypersurfaces of even dimension, we can define Horrocks invariants .Fmin; V;W /

for any vector bundle E on V. But unlike in the case of the quadric, where V;W
were independent of each other, here there is a dependency between them.

In the following discussion, we will write OV.1/ for OP5.1/jV and OV.n/ for
OV.1/

˝n. We will write L for OP2.1/ and U for �1V˝L. Then the only irreducible
ACM bundles on V (with respect to the polarization OV.1/) are OV.n/, L.n/ and
U.n/. In the diagram of a bundle E on V in Theorem 1.8, the terms AE and KE are
built out of these three types of irreducible ACM bundles. The vector bundle G is a
free bundle and the ‰-sequence is the sheafification of a free presentation of the
A-module H 1

� .E/. The connection between AE and KE, given by the �-sequence
in the diagram of E, is controlled by the canonical sequences

0 �!U
u
��! 3OV

v
��! L �! 0 (7)

and
0 �! 3U.�1/˚OV.�1/ �! 9OV.�1/ �!U �! 0; (8)

where the second can be simplified noncanonically to

0 �! 3U.�1/
u0

���! 8OV.�1/
v0

���!U �! 0: (9)

In addition, there is the canonical sequence

0 �! OV.�1/ �! 3L.�1/ �!U �! 0: (10)

The two uniqueness theorems of Section 1 apply in this setting, where given a
bundle E on V we can construct Horrocks invariants for E as .Fmin; V;W /, where
.Fmin; ˇ/ is a Horrocks datum for E, V D ker.H 1

� .Fmin˝L_/!H 1
� .E˝L_//

andW D ker.H 1
� .Fmin˝U_/!H 1

� .E˝U_//. Thus to complete the classification
of bundles on V by this method it remains to get a description of any constraints
on V � H 1

� .F˝L_/ and W � H 1
� .Fmin˝U_/, and to finally show that given

.Fmin; V;W / with these constraints, there exists a bundle E with those invariants.
By Remark 1.13, V is anA-submodule of L-socle elements inH 1

� .Fmin˝L_/soc

and W is an A-submodule of U-socle elements in H 1
� .Fmin˝U_/soc. By the next

lemma, there is no distinction between the concepts of graded A-submodules and
graded vector subspaces of socle elements:
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Lemma 3.1. For any vector bundle F on V, in the A-module structures of both
H 1
� .F˝L_/soc andH 1

� .F˝U_/soc, multiplication by graded elements of positive
degree in A is zero.

Proof. Let �2H 1.F.d/˝L_/soc, giving a short exact sequence 0!F.d/!A!

L! 0. Consider multiplication by x 2A of degree one, �x WL.�1/!L. The pull-
back by this map of the short exact sequence (7) is split since H 1.U˝L_.1//D 0.
So �x WL.�1/!L factors through 3OV. By the definition of L-socle elements, the
pullback of � by 3OV! L splits, hence also the pullback of � by �x W L.�1/! L.
Thus x � �D 0.

A similar proof works for an element � 2H 1.F.d/˝U_/soc. One notices that
the pullback by �x W U.�1/! U of the short exact sequence (9) is split because
H 1
� .U˝U_/D 3k supported in H 1.U˝U_.�1//. �

In the definition of U-socle elements for F, the noncanonical inclusion U_ ,!

8OV.1/ can be replaced by a canonical composite inclusion U_ ,! 3L_.1/ ,!

9OV.1/. For any bundle F, this gives a canonical map

�F WH
1
� .F˝U_/soc! 3H 1

� .F.1/˝L_/soc:

When E is a vector bundle with Horrocks invariants .Fmin; V;W /, it is immediate
to see that V andW are related by �Fmin.W /�3V.1/. This is a dependency between
V and W . In fact, this is the only requirement on the pair .V;W / for proving an
existence theorem on the Veronese surface:

Theorem 3.2. Let Fmin be a minimal Horrocks data bundle on V, and let V;W
be graded vector subspaces of H 1

� .Fmin ˝ L_/soc, H 1
� .Fmin ˝U_/soc with the

property that �Fmin.W / � 3V.1/. Then there is a vector bundle E on V with
Horrocks invariants .Fmin; V;W /.

Proof. Construct E as an extension of Fmin by BD .V ˝k L/˚ .W ˝k U/:

0 �! Fmin
ˇ
��! E �!B �! 0: (�)

Since V , W are subspaces of socle elements, E has .Fmin; ˇ/ as its Horrocks
datum. We wish to understand the images of H 0

� .B˝L_/! H 1
� .Fmin˝L_/

and H 0
� .B˝U_/ ! H 1

� .Fmin ˝U_/. End.L/ D End.U/ D k and the image
of V � IL � H

0.V ˝L˝L_/ and W � IU � H
0.W ˝U˝U_/ give V and W

in H 1
� .Fmin ˝ L_/soc and H 1

� .Fmin ˝U_/soc. It remains to analyze any other
contributions to the two images inside H 1

� .Fmin˝L_/soc and H 1
� .Fmin˝U_/soc,

and prove that the images are just V and W respectively.
Let L.b/;U.b/ be any summands in .V ˝k L/˚ .W ˝k U/. Consider maps

�1 W L.a/! L.b/, �2 W L.a/!U.b/, �3 WU.a/!U.b/, �4 WU.a/! L.b/. For
�1, assume a < b since we wish to omit endomorphisms of L. Likewise for �3. In
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the sequence (7) tensored by L_.b� a/ we have H 1.U˝L_.b� a//D 0, and in
the sequence (9) tensored by U_.b� a/ we have H 1.3U.�1/˝U_.b� a//D 0.
Hence �1 factors through 3OV.b/ and �3 factors through 8OV.b� 1/. By the socle
nature of the extension (�), pullbacks of (�) by �1 and �3 split; hence the element
�1 2H

0.L.b/˝L_.�a// maps to zero in H 1
� .Fmin˝L_/, and likewise �3 maps

to zero in H 1
� .Fmin˝U_/.

For �4 to be nonzero, we require that a<bC1. We knowH 1.U˝U_.b�a//D0.
Hence the same argument applies to show that �4 factors through 3OV.b/, and
we are done. The arguments for �3; �4 show that the image of H 0

� .B˝U_/!

H 1
� .Fmin˝U_/ equals W .
For �2 to be nonzero we require that a < b, and we know that

H 1.3U.�1/˝L_.b� a//D 0

except when b � a D 1. Hence the only situation of difficulty is when we have
�2 W L.b � 1/! U.b/. Suppose the pullback of our short exact sequence (�) by
L.b � 1/ �2�!U.b/ ,! B is nonsplit. The pullback of (�) by U.b/ ,! B gives a
nonzero element w of degree �b inW �H 1

� .Fmin˝U_/soc. The nonsplit pullback
by L.b�1/!B gives a nonzero element v inH 1.Fmin˝L_.�bC1//soc which is
the image of w under �_2 . Since �_2 is one component in U_.�b/ ,! 3L_.�bC1/,
the assumption that �Fmin.W / � 3V.1/ tells us that v 2 V . Thus, the image of
H 0
� .B˝L_/!H 1

� .Fmin˝L_/ equals V . �
We conclude with an example:

Example 3.3. The simplest non-ACM bundle on V is E D �1V D U˝L_, with
H 1
� .E/D k and 
 -sequence 0!E! 3L_! OV! 0, while its minimal Horrocks

data bundle is FDFminD�
1
P5 jV, with ‰ sequence 0!F! 6OV.�1/! OV! 0.

The map ˇ W F! E is the standard map �1
P5 jV!�1V, which is a surjective map

of vector bundles but not surjective on the module of global sections. The Horrocks
invariants .F; V;W / of E are easy to work out and are described below.
H 1
� .F˝L_/DH 1.F.1/˝L_/D 3k, and H 1

� .E˝L_/D 0, hence V D 3kD
H 1.F.1/˝L_/, where all elements in H 1

� .F˝L_/ are L-socle.
There is a commutative diagram that shows the only nonzero parts ofH 1

� .F˝U_/

and H 1
� .E˝U_/

H 0.U_/ ,�! H 1.F˝U_/ ����! H 1.6U_.�1// ����! 0


 ??yˇ˝IU_

??y
H 0.U_/ Š H 1.E˝U_/ ����! 0

Hence H 1
� .F˝U_/ D H 1.F˝U_/ is nine-dimensional, and the kernel W

of H 1
� .ˇ˝ IU_/ is a six-dimensional subspace (of U-socle elements) that maps

isomorphically to H 1.6U_.�1//.
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When we apply the construction of the existence theorems (Theorems 1.15, 3.2)
to the data .F; V;W /, we obtain a vector bundle zE and a pushout diagram (refer to
the discussion after Theorem 1.15)

0 0??y ??y
0 ��! F ��! 6OV.�1/ ��! OV ��! 0??y Q̌ ??y jj

0 ��! zE ��! AzE ��! OV ��! 0??y ??y
B Š B??y ??y
0 0

where BD .V ˝k L/˚ .W ˝k U/.
According to the uniqueness theorems, E is a rank-two summand of the rank-20

bundle zE, with the remaining summand of zE consisting of ACM bundles. In this
example, even AzE is not obvious because the middle short exact sequence is not
split. Indeed, the middle sequence is the pushout of the left sequence, hence it is
split if and only if, under F! 6OV.�1/, the image of the element � 2H 1.F˝B_/

is zero in H 1.6OV.�1/˝ B_/. However, the components of � in each of the
U-summands of B generate the vector space W � H 1.F˝U_/, and W maps
isomorphically to H 1.6U_.�1//. Hence the image of � is nonzero.

To understand zE and AzE, a little more work is needed. The fact that W maps
isomorphically to H 1.6U_.�1// tells us that the middle short exact sequence
contains six copies of the canonical sequence (10). Hence AzE D 21L_. The map
AzE! OV is now easy to understand and shows that zED E˚ 18L_.
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