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The Elliott–Halberstam conjecture
implies the Vinogradov least quadratic

nonresidue conjecture
Terence Tao

For each prime p, let n(p) denote the least quadratic nonresidue modulo p.
Vinogradov conjectured that n(p)= O(pε) for every fixed ε > 0. This conjecture
follows from the generalized Riemann hypothesis and is known to hold for
almost all primes p but remains open in general. In this paper, we show that
Vinogradov’s conjecture also follows from the Elliott–Halberstam conjecture on
the distribution of primes in arithmetic progressions, thus providing a potential
“nonmultiplicative” route to the Vinogradov conjecture. We also give a variant of
this argument that obtains bounds on short centered character sums from “Type II”
estimates of the type introduced recently by Zhang and improved upon by the
Polymath project or from bounds on the level of distribution on variants of the
higher-order divisor function. In particular, an improvement over the Burgess
bound would be obtained if one had Type II estimates with level of distribution
above 2

3 (when the conductor is not cube-free) or 3
4 (if the conductor is cube-free);

morally, one would also obtain such a gain if one had distributional estimates on
the third or fourth divisor functions τ3 or τ4 at level above 2

3 or 3
4 , respectively.

Some applications to the least primitive root are also given.

1. Introduction

For each prime p, let n(p) denote the least natural number that is not a quadratic
residue modulo p. Vinogradov [1985] established the asymptotic bound

n(p)� p1/2
√

e log2 p (1-1)

for all primes p and made the following conjecture:

Conjecture 1.1 (Vinogradov’s conjecture). For any fixed ε > 0, we have n(p)� pε.
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(See the end of the section for our conventions on asymptotic notation.) Lin-
nik [1942] showed that this conjecture follows1 from the generalized Riemann
hypothesis; Ankeny [1952] improved the bound further to

n(p)� log2 p

on this hypothesis. However, Conjecture 1.1 remains open unconditionally; the best
bound available (up to logarithmic factors) for general primes p is

n(p)� p1/4
√

e+ε (1-2)

for any fixed ε > 0, a well-known result of Burgess [1957]. It was also shown by
Linnik [1942] unconditionally that, for any fixed ε > 0, the number of p ≤ x with
n(p) > xε is bounded uniformly in x , and hence, the number of exceptions to the
inequality n(p) > pε with p ≤ x is bounded by O(log log x).

In this paper, we connect Vinogradov’s conjecture to a standard conjecture in sieve
theory, the Elliott–Halberstam conjecture [1970], as well as to a restricted fragment
of this conjecture recently introduced by Zhang [2014]. The basic phenomenon
being exploited here is that distribution estimates such as those given by the Elliott–
Halberstam conjecture allow one to control correlations of the form2∑

n

(α ∗β)(n)(γ ∗ δ)(n+ h) (1-3)

for various arithmetic sequences α, β, γ , and δ and nontrivial shifts h, as long
as all of the sequences α, β, γ , and δ vanish for very small values of n and
provided that at least one of the sequences α, β, γ , or δ is “smooth” (e.g., if one of
these sequences is an indicator function such as 1[N ,2N ]). On the other hand, by
combining the multiplicativity and periodicity properties of Dirichlet characters
with a hypothesis that the least quadratic residue is large (or that a character sum is
large), we will be able to construct sums of the form (1-3) that deviate substantially
from its expected value, giving the required contradiction. It is the periodicity
of Dirichlet characters χ that allow us to introduce the shift h, thus transferring
the problem from a multiplicative number theory problem (in which hypotheses

1In fact, the conjecture follows from even very weak fragments of this hypothesis; see, e.g.,
[Bateman and Diamond 2004, Theorem 10.6]. (Thanks to Kevin Ford for this reference.) The
strongest result in this direction comes from a very recent work of Granville and Soundararajan
[2015] (see also [Banks and Makarov 2014]), who showed (roughly speaking) that the only way this
conjecture can fail is if a positive proportion of low-lying zeros of an L-function lies extremely close
to the line Re s = 1.

2If only the original Elliott–Halberstam conjecture is available, rather than its variants, then one
of the convolutions α ∗ β or γ ∗ δ needs to be replaced by the von Mangoldt function 3. Also, for
technical reasons, it is convenient to ensure that one of the factors α, β, γ , or δ is supported on
numbers coprime to the shift h.
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such as the generalized Riemann hypothesis are useful) to a sieve theory problem
(in which hypotheses such as the Elliott–Halberstam conjecture are useful). The
arguments share some similarities with that of Burgess [1957] (which also relies
heavily on the multiplicativity and periodicity properties of Dirichlet characters)
but is ultimately powered by a somewhat different source of cancellation, namely
the equidistribution assumptions of Elliott–Halberstam type rather3 than the Weil
exponential sum estimates.

To describe the results more precisely, we need some notation. For any function
α : N→ C with finite support (that is, α is nonzero only on a finite set) and any
primitive residue class a (r), we define the (signed) discrepancy 1(α; a (r)) to be
the quantity

1(α; a (r)) :=
∑

n=a (r)

α(n)−
1
ϕ(r)

∑
(n,r)=1

α(n), (1-4)

where ϕ is the Euler totient function.

Conjecture 1.2 (Elliott–Halberstam conjecture). Let 0< ϑ < 1 be fixed. Then∑
r<xϑ

sup
a∈(Z/rZ)×

|1(31[1,x]; a (r))| � x log−A x (1-5)

for any fixed A > 1, where 3 is the von Mangoldt function. Equivalently, from the
prime number theorem, one has∑

r<xϑ
sup

a∈(Z/rZ)×

∣∣∣∣ ∑
n≤x :n=a (r)

3(n)−
x
ϕ(r)

∣∣∣∣� x log−A x

for any fixed A > 1.

The case ϑ < 1
2 of this conjecture is of course (a slightly weakened form of) the

Bombieri–Vinogradov theorem [Bombieri 1965; Vinogradov 1965].
Our first theorem is then:

Theorem 1.3 (Elliott–Halberstam implies Vinogradov). Conjecture 1.2 implies
Conjecture 1.1.

We prove this theorem in Section 2. The basic idea is to observe (from the general
theory of mean values of multiplicative functions) that, if n(q) > qε for some large
prime q, then the character sum

∑
n≤x χ(n)3(n) will be anomalously large for

3It is worth noting however that much of the recent partial progress on the Elliott–Halberstam
conjecture has proceeded by using Weil exponential sum estimates, although the precise estimates
used there are different from those used in the Burgess argument. In Section 5, though, we sketch a
version of the argument that allows for an improvement over the original bound (1-1) of Vinogradov
using only the elementary bound on Kloosterman sums [1927] and does not require the full strength
of the Weil conjectures.
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some large x = O(q O(1)), where χ is the quadratic character modulo q. As χ is
periodic modulo q , this forces

∑
n≤x χ(n)3(n+q) to be large also. But one can use

the Elliott–Halberstam conjecture (and an expansion of χ into divisor sums, using
once again the largeness of n(q)) to obtain good bounds for

∑
n≤x χ(n)3(n+ q)

and obtain a contradiction.
With some additional combinatorial argument, we can obtain a similar implica-

tion4 concerning the least primitive root modulo p, provided that p− 1 has only
boundedly many factors:

Theorem 1.4 (Elliott–Halberstam bounds least primitive roots). Assume Conjecture
1.2. Then for any fixed d ≥ 1 and fixed ε > 0 and any prime p for which p− 1 is
the product of at most d primes (counting multiplicity), the least primitive residue
modulo p is O(pε).

We prove this theorem in Section 3.
Our proof of Theorem 1.3 does not easily allow one to convert partial progress

on the Elliott–Halberstam conjecture to partial progress on Vinogradov’s conjecture.
We now present a different argument that replaces the Elliott–Halberstam conjecture
by a conjecture on “Type II sums” of the type introduced5 by Zhang [2014] with
the feature that partial progress on the Type II conjecture implies partial progress on
Vinogradov’s conjecture. In particular, the Type II estimates in [Polymath 2014a]
can be used to improve slightly upon the Vinogradov bound (1-1) by a method
different from the Burgess argument, although the numerical exponent obtained is
inferior to that in [Burgess 1957].

Let us first state the Type II conjecture, in a formulation suited for the current
application.

Conjecture 1.5 (Type II conjecture). Let 0<$ < 1
4 , and let δ > 0 be a sufficiently

small fixed quantity depending on ϑ . Let x be an asymptotic parameter going to
infinity. Let P be any number that is the product of some subset of the primes
in [1, xδ]; equivalently, let P be a square-free number all of whose prime factors
are at most xδ. Let N and M be quantities such that

x1/2−2$
� N � M � x1/2+2$

with N M � x , and let α, β : N→ R be sequences supported on [M, 2M] and
[N , 2N ], respectively, such that one has the pointwise bounds

|α(n)| � 1 (1-6)

4We are indebted to Felipe Voloch for suggesting this variant.
5Zhang also considered “Type I” and “Type III” sums, which will not be of direct relevance in this

paper, although the τ3 distribution estimates mentioned in Section 5 are related to the Type III sums.
Similar sums had also been previously considered by Bombieri, Fouvry, Friedlander, and Iwaniec
[Bombieri et al. 1986; 1987; 1989; Fouvry 1984; 1985; Fouvry and Iwaniec 1980; 1983; 1992].
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for all natural numbers n. We also assume that β is simply the indicator function

β = 1[N ,2N ].

Then one has

sup
1≤a≤x :(a,P)=1

∑
r�x1/2+2$ :r |P

|1(α ? β; a (r))| � x log−A x (1-7)

for any fixed A > 0.

This conjecture is implied by the generalized Elliott–Halberstam conjecture in
[Polymath 2014b], which was in turn inspired by a similar conjecture in [Bombieri
et al. 1986]. In [Motohashi 1976] (see also [Gallagher 1968]), a generalization
of the Bombieri–Vinogradov theorem is obtained that roughly speaking implies
(up to logarithmic factors) the $ = 0 endpoint of this conjecture. The arguments
in [Zhang 2014] implicitly establish the above conjecture for 0<$ < 1

1168 , and
more explicitly, the estimate in [Polymath 2014a, Theorem 5.1(iv)] establishes the
conjecture for 0<$ < 1

68 . The estimates in those papers allow for more general
values of a and r and more general sequences α and β than those considered here;
however, the restricted version of Conjecture 1.5 stated above will suffice for our
application. It is likely that the additional restrictions imposed here (particularly
the requirement that β be the indicator function of an interval) allow for some
improvement in the exponent 1

68 obtained in [Polymath 2014a]; see also Section 5
below for a slightly different way to improve upon this exponent, from 1

68 to 1
28 .

Our next main result is then:

Theorem 1.6 (Type II sums bound character sums). Suppose that Conjecture 1.5
holds for a fixed choice of 0<$ < 1

4 . Then one has∣∣∣∣ ∑
n<q1/2−2$+ε

χ(n)
∣∣∣∣� q1/2−2$+ε log−A q (1-8)

for any sufficiently small fixed ε > 0, any fixed A > 0, and any natural number q
(not necessarily prime) whenever χ is a nonprincipal primitive Dirichlet character
of conductor q.

By the usual argument of Vinogradov, this gives:

Corollary 1.7. Suppose that Conjecture 1.5 holds for a fixed choice of 0<$ < 1
4 .

Then one has

n(q)� q(1/
√

e)(1/2−2$)+ε

for any fixed ε > 0 and any prime q.
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Proof. From the pointwise estimate

χ(n)≥ 1− 2
∑

p|n:p>n(q)

1

for the quadratic character χ(n) :=
( n

q

)
, we see that∑

n<x

χ(n)≥ x − 1− 2
∑

n(q)<p≤x

( x
p
+ 1

)
for any x > 1. Setting x := q1/2−2$+ε for some ε > 0 and using Theorem 1.6, we
see that

x − 2x
∑

n(q)<p≤x

1
p
≤ o(x)

as q→∞. From Mertens’ theorem, this implies that

log
log x

log n(q)
≥

1
2 + o(1),

and the claim follows. �

In particular, the Type II estimates in [Polymath 2014a] give the improvement

n(p)� p(1/
√

e)(1/2−1/34)+ε

to (1-1) for any fixed ε > 0. This is well short of the improvement in (1-2); however,
it represents a slightly different way to break the “square root barrier” from the
Burgess argument; for instance, the arguments can extend to more general moduli
than primes p without much difficulty, whereas the Burgess argument encounters
some additional technical issues when the modulus is not cube-free. One will be
able to surpass the Burgess bound as soon as one can establish a Type II estimate for
some $ > 1

8 (or $ > 1
12 in the non-cube-free case); thus, one needs to improve the

Type II exponents in [Polymath 2014a] by a factor of roughly eight. Interestingly, it
was noted in [Bombieri et al. 1986, Conjecture 3] that, if one assumed square root
cancellation in certain exponential sums, one could obtain Type II estimates for all
$ < 1

8 , thus falling barely short of being able to improve upon the Burgess bound.
Theorem 1.6, when combined with the Type II estimates in [Polymath 2014a],

establishes the short character sum bounds∑
n<q1/2−1/34+ε

χ(n)= q1/2−1/34+ε log−A q (1-9)

for any primitive character χ of conductor q. This bound is inferior to that of
Burgess [1957; 1963; 1986], which establishes∑

M≤n≤M+N

χ(n)= N 1−δ(ε)
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for arbitrary M when N � q1/3+ε (if q is not cube-free) or N � q1/4+ε (if q is
cube-free), and δ(ε) > 0 depends only on ε. With our methods, one would need
Type II estimates at level of distribution at least 2

3 (thus $ > 1
12 ) to improve upon

the Burgess bound in the non-cube-free setting or at least 3
4 (thus $ > 1/8) in the

cube-free setting. Note also the Burgess bound has also been improved for certain
types of modulus q, such as smooth numbers (see, e.g., [Graham and Ringrose
1990; Goldmakher 2010]) or prime powers (see, e.g., [Postnikov 1956]).

Remark 1.8. If one had the Type II estimates for all 0<$ < 1
4 , then (by combining

Corollary 1.7 with the Burgess bound) we would have∑
n≤x

χ(n)� x log−A x

for all x ≥ qε and fixed A, ε > 0, and hence (by summation by parts), one would
obtain a very slight improvement L(1, χ)= o(log q) to the standard upper bound
L(1, χ)= O(log q) for the sum L(1, χ)=

∑
n χ(n)/n. Furthermore, one obtains

the bound L(s, χ) = O(log2 q) (say) when |s − 1| ≤ A log log q/log q for any
fixed A. Using this and standard arguments (see, e.g., [Iwaniec and Kowalski 2004,
Chapter 8]), one can enlarge6 the classical zero-free region of L(s, χ) to include the
region |s−1| ≤ A/log q for any fixed A> 0, except possibly for a Siegel zero. This
in turn can be used to improve the prime number theorem of Gallagher [1970] and
hence also the constant in Linnik’s theorem on primes in an arithmetic progression,
assuming the Type II estimates and possibly excluding an exceptional modulus; we
omit the details.

Remark 1.9. By standard arguments (see, e.g., [Montgomery and Vaughan 2007,
Corollary 9.20]) starting from the observation that the sum∑

d|Q

ϕ(Q/d)µ(d)
Q

∑
χ(Q)

ordχ=d

∑
n≤x

χ(n)

counts the number of primitive roots modulo a prime p up to x , where Q is the
product of all the primes dividing p− 1, we see that Theorem 1.6 implies that, if
one has Type II estimates for a given 0<$ < 1

4 , then the least primitive root of
Z/pZ is O(p1/2−2$+ε) for any fixed ε and any prime p, provided that p− 1 has
at most O(log log p) prime factors; we leave the details to the interested reader. In
particular, we can strengthen the conclusion of Theorem 1.4 slightly if we replace
the Elliott–Halberstam conjecture by the Type II conjecture for $ arbitrarily close
to 1

4 . It may be possible7 to remove the requirement on the number of prime factors

6We thank James Maynard for this remark.
7We thank the anonymous referee for this suggestion.
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of p−1 by using zero-density estimates (together with a result of Rodosskiı̆ [1956]
linking L-function zeros with character sums; see also the recent preprints [Banks
and Makarov 2014; Granville and Soundararajan 2015]) to show that

∑
n≤x χ(n)

is small for most characters χ ; we will not pursue this in detail here.

Remark 1.10. Suppose Conjecture 1.5 holds for some fixed 0 < $ < 1
4 , and

suppose that q is a large prime such that the least prime quadratic residue is at
least8 q1/2−2$+ε. Then, letting χ be the quadratic character of conductor q, one
has χ(n) = λ(n) for all n ≤ q1/2−2$+ε, where λ is the Liouville function. From
the prime number theorem (for n ≤ q1/2−2$+ε) and Theorem 1.6, we conclude that∑

n χ(n)/n� log−A q and
∑

n χ(n) log n/n� 1, so |L ′(1, χ)/L(1, χ)|� logA q
for any fixed A. From standard arguments, this implies that one has a Siegel zero
L(σ, χ) = 0 with 1− σ � log−A q for any fixed A. Thus, if one could rule out
Siegel zeros, one could use Type II estimates to bound the least prime quadratic
residue. If one could improve the log−A q gain in (1-8) to a power saving q−ε, then
Siegel’s theorem could be used to remove the need to consider Siegel zeros; for
instance, this argument recovers the standard bound of q1/4+o(1) for the least prime
quadratic residue coming from the Burgess bound. However, our arguments would
require a similar power saving in the Type II estimates to achieve this, which may
be an overly ambitious hypothesis.

We prove Theorem 1.6 in Section 4. The idea here is to exploit the fact that,
if
∑

n∈[N/2,N ] χ(n) is large, then on an interval [1, x] with x = q1+O(ε), χ(n) will
exhibit large correlation with α∗β(n+ jq) for any j = O(qε), where β := 1[N/2,N ]
and α is the restriction of χ to smooth square-free numbers of magnitude close
to x/N and that are coprime to q. This is because of the multiplicativity and
periodicity properties of χ . An application of Cauchy–Schwarz (i.e., the dispersion
method) then shows that α ∗β(n+ jq) and α ∗β(n+ j ′q) correlate with each other
for some distinct j and j ′, but one can use Type II estimates to prevent this scenario
from occurring.

Remark 1.11. The above argument shares many similarities with the argument of
Burgess [1957]. Both arguments rely heavily on the periodicity and multiplicativity
of the Dirichlet character χ , which allows one to start with a hypothesis that a single
character sum

∑
n≤x χ(n) is large and deduce that χ is biased on many arithmetic

progressions. In the current argument, one exploits the bias of χ on medium-length
arithmetic progressions (of length about q1/2−2$ ) and varying modulus; in contrast,
the argument of Burgess exploits the bias of χ on many (close to q1/2) very short
progressions (of length qε for some small ε) and fixed modulus. Unfortunately, the
author was not able to combine the two methods together to obtain any improvement

8We thank John Friedlander for suggesting this problem.
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on (1-2) without assuming a large portion of the Elliott–Halberstam or Type II
conjectures.

Remark 1.12. The proof of Theorem 1.6 may possibly extend to cover the shifted
character sums

∑
M≤n≤M+N χ(n) appearing in the work of Burgess; however, the

way the argument is currently presented, this would require a shifted version of a
Type II estimate in which the convolution α ∗β is replaced by a shifted convolution.
As such, one can no longer directly quote the results from [Polymath 2014a] to
obtain a result for such shifted sums; however, it is plausible that some modification
of the proof of the Type II estimate in [Polymath 2014a] can still be adapted to this
shifted setting. We do not pursue this matter here (as with the centered sums, we
do not seem to directly improve upon the Burgess bounds at the current level of
technology for equidistribution estimates).

A variant of the argument used to prove Theorem 1.6, which we discuss in
Section 5 below, allows one to use distributional estimates for the higher divisor
functions

τk(n) :=
∑

n1,...,nk :n1···nk=n

1 (1-10)

(or more precisely, from dyadic components of such functions) in place of Type II
estimates to obtain similar results. Roughly speaking, a distributional estimate
on τk at level θ implies a bound of the form (1-8) with 1

2 − 2$ replaced by
max(1−θ, 1/(kθ+1)); thus, for instance, the classical distribution estimate of τ2 at
θ = 2

3 gives (1-8) with$ = 1
28 , slightly improving upon (1-9) though still short of the

Burgess bounds in both cube-free and non-cube-free cases. More recently, a level of
distribution 4

7 has been established (in a restricted averaged sense) for τ3 in [Fouvry
et al. 2014], which (morally at least) also recovers (1-8) with $ = 1

28 . To improve
upon the Burgess bound, one would need τk at level of distribution above 2

3 for
some k ≥ 3 (in the non-cube-free case) or above 3

4 for some k ≥ 4 (in the cube-free
case). Both results seem unfortunately to be out of reach of current methods.

A similar analysis, again discussed in Section 5 below, suggests that one should
be able to improve the exponent 1

2−2$ in (1-8) to 1/k−c for some c> 0 provided
that one can obtain good asymptotics for sums such as∑

n≤x

τk(n)τk(n+ q)

with q = o(x). In particular, controlling such sums for k = 3 would (morally, at
least) improve upon the non-cube-free Burgess bound and for k = 4 would improve
upon the cube-free Burgess bound. Unfortunately, rigorous asymptotics for these
sums have only been established for k = 2.
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Notation. We use the following asymptotic notation. We allow for an asymptotic
parameter (e.g., x or q) to go to infinity; quantities in this paper may depend on
this parameter unless they are explicitly labeled as fixed. We then write X � Y ,
X = O(Y ), or Y � X if one has |X | ≤ CY for some fixed C (in particular, C can
depend on other parameters as long as they are also fixed). We also write X =o(Y ) if
we have |X | ≤ cY for some quantity c that goes to zero as the asymptotic parameter
goes to infinity and write X � Y for X � Y � X .

Sums over p are understood to be over primes, and all other sums are over the
natural numbers N= {1, 2, 3, . . . } unless otherwise indicated.

Given two functions f, g :N→C, their Dirichlet convolution f ∗g is defined by

f ∗ g(n) :=
∑
d|n

f (d)g
(n

d

)
,

where d | n denotes the assertion that d divides n.
Given two natural numbers a and b, we use (a, b) to denote the greatest common

divisor of a and b and a (b) to denote the residue class of integers equal to a
modulo b. Given a natural number r , we use (Z/rZ)× = {a (r) : (a, r) = 1} to
denote the primitive residue classes modulo r .

We use 1E to denote the indicator function of E ; thus, 1E(n) equals 1 when
n ∈ E and equals 0 otherwise. Similarly, if S is a sentence, we write 1S to equal 1
when S is true and 0 otherwise; thus, for instance, 1E(n)= 1n∈E .

2. Vinogradov from Elliott–Halberstam

We now prove Theorem 1.3. We will in fact prove a slightly stronger implication,
in which Conjecture 1.1 is replaced by:

Conjecture 2.1. For any Dirichlet character χ , let nχ be the first natural number
with χ(nχ ) 6= 1. For any fixed ε > 0, we have nχ � qε for any primitive Dirichlet
character χ of prime conductor q.

Clearly, Conjecture 1.1 is the special case of Conjecture 2.1 in which χ is a
quadratic character.

Assume the Elliott–Halberstam conjecture. Suppose for sake of contradiction
that Conjecture 1.1 failed; then we can find a fixed κ > 0 and a sequence q of
primes going to infinity, as well as a character χ of modulus q, such that

nχ > qκ .

Without loss of generality, we may take κ to be small, e.g., κ < 1
2 . We view q as an

asymptotic parameter for the purposes of asymptotic notation and reserve the right
to refine q to subsequences as necessary.
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We will need some basic results from the theory of mean values of multiplicative
functions in order to produce some anomalous distribution for χ(n)3(n) at large
scales. This could be accomplished using the results of Granville and Soundararajan
[2001] (or even the earlier work of Wirsing [1967]), but we do not need the
full strength of their theory here since we will be satisfied with an analysis of
logarithmic densities such as (1/ log x)

∑
n≤x χ(n)/n instead of natural densities

such as (1/x)
∑

n≤x χ(n). As such, we give a self-contained treatment here.
It will be technically convenient to work in the asymptotic limit in which we

extract the mean value after sending q to infinity (this is a luxury available in the
logarithmic density setting that is not easily achievable for natural densities, at least
if one is not willing to use the tools of nonstandard analysis). For any fixed t ≥ 0,
we consider the logarithmic densities

Aq(t) :=
1

log q

∑
n<q t

χ(n)
n
,

Bq(t) :=
1

log q

∑
n<q t

χ(n)3(n)
n

.

From Mertens’ theorem, we have the Lipschitz bounds

|Aq(t)− Aq(s)|, |Bq(t)− Bq(s)| ≤ |t − s| + o(1) (2-1)

for all fixed t, s ≥ 0; also we clearly have Aq(0)= Bq(0)= 0. From the Arzelà–
Ascoli theorem, and refining q to a subsequence as necessary, we may thus find
fixed Lipschitz functions A, B : [0,+∞)→ C such that

Aq(t)= A(t)+ o(1), Bq(t)= B(t)+ o(1) (2-2)

for all fixed t ≥ 0; that is to say that Aq and Bq converge locally uniformly to A
and B, respectively. (The traditional form of the Arzelà–Ascoli theorem allows
one to pass to a subsequence on which one has uniform convergence on [0, n] for
each natural number n, and then a further diagonalization gives locally uniform
convergence on [0,+∞).) From (2-1), we have

|A(t)− A(s)|, |B(t)− B(s)| ≤ |t − s|

for all fixed t, s ≥ 0. By the Rademacher differentiation theorem, we can thus find
Lebesgue-measurable functions a, b : [0,+∞)→ C bounded in magnitude by 1,
defined up to almost-everywhere equivalence, such that

A(t)=
∫ t

0
a(u) du, B(t)=

∫ t

0
b(u) du

for all t ∈ [0,+∞).
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We now establish some bounds on A and B. Since χ has mean zero on intervals
of length q , it is easy to see that

Aq(t)= Aq(t ′)+ o(1)

for all fixed t, t ′ > 1; in fact, one can extend this to t, t ′ > 1
4 using the Burgess

bound [1957], but we will not need to do so here. This implies that a is supported
on [0, 1] (modulo null sets).

Next, since χ(n)= 1 for n ≤ qκ , we have from Mertens’ theorem that

Aq(t), Bq(t)= t + o(1)

for t < κ . Thus, A(t)= B(t)= t for t < κ , and so a(t)= b(t)= 1 for t < κ (again
up to null sets).

Next, we claim that a and b obey the integral equation of Wirsing [1967]:

Lemma 2.2 (Wirsing equation). We have

ta(t)=
∫ t

0
a(u)b(t − u) du

for almost all t > 0.

This equation also holds for means other than logarithmic densities (replacing
a and b by suitable substitutes, such as the functions t 7→ (1/q t)

∑
n≤q t χ(n) and

t 7→ (1/q t)
∑

n≤q t χ(n)3(n), respectively), but the arguments are more complicated,
and one has to work nonasymptotically and admit some o(1) errors; see [Wirsing
1967; Granville and Soundararajan 2001].

Proof. We start with the Dirichlet convolution identity

χ(n) log n = (χ3) ∗χ(n)

and conclude for any fixed t > 0 that

1

log2 q

∑
n≤q t

χ(n) log n
n

=
1

log q

∑
d≤q t

χ(d)3(d)
d

1
log q

∑
m≤q t/d

χ(m)
m

. (2-3)

To estimate this expression, we use a Riemann sum argument. Let J > 0 be a
large fixed natural number. If q( j−1)t/J

≤ d < q j t/J for some 1 ≤ j ≤ J , then
(1/ log q)

∑
m≤q t/d χ(m)/m= A(t− j t/J )+O(1/J )+o(1) (with implied constant

uniform in J ), and so the expression (2-3) may be written (after using Mertens’
theorem to estimate error terms) as( J∑

j=1

A
(

t −
j t
J

)
1

log q

∑
q( j−1)t/J≤d<q j t/J

χ(d)3(d)
d

)
+ O

(
1
J

)
+ o(1).
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One has
1

log q

∑
q( j−1)t/J≤d<q j t/J

χ(d)3(d)
d

= B( j t/J )− B(( j − 1)t/J )+ o(1)

=

∫ j t/J

( j−1)t/J
b(u) du+ o(1),

and so (by the Lipschitz nature of A), the previous expression becomes∫ 1

0
A(t − u)b(u) du+ O

(
1
J

)
+ o(1).

As J can be arbitrarily large, we conclude that

1

log2 q

∑
n≤q t

χ(n) log n
n

=

∫ t

0
A(t − u)b(u) du+ o(1).

On the other hand, from the identity log n/log q = t −
∫ t

0 1n≤qu du and (2-2), we
see (after a Riemann sum argument as before) that

1

log2 q

∑
n≤q t

χ(n) log n
n

= t A(t)−
∫ t

0
A(u) du+ o(1)

and hence

t A(t)−
∫ t

0
A(u) du =

∫ t

0
A(t − u)b(u) du

for all t . Differentiating using the Lebesgue differentiation theorem, we conclude
that

ta(t)=
∫ t

0
a(t − u)b(u) du

almost everywhere, as desired. �

We will use this equation, together with some complex analysis and the previously
established compact support of a, to derive the following consequence:

Corollary 2.3. b is not compactly supported (up to null sets).

Proof. Suppose for contradiction that b is compactly supported (modulo null sets).
Now consider the Fourier–Laplace transforms

La(s) :=
∫
∞

0
a(t)e−ts dt,

Lb(s) :=
∫
∞

0
b(t)e−ts dt;

as a and b are both bounded and compactly supported, the functions La and Lb
are entire and of at most exponential growth and are not identically zero since a
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and b are not identically zero. On the other hand, from Lemma 2.2 and standard
computations, we have

−
d
ds

La = La×Lb. (2-4)

As Lb has no poles, La cannot have any zeros; in particular, log La is entire and
grows at most linearly and must therefore be a linear function so that La is an
exponential function, and hence, by (2-4), Lb is a constant function. But this is
absurd (it contradicts the Riemann–Lebesgue lemma). �

Remark 2.4. The above argument shows that a and b cannot both be compactly
supported while still obeying Lemma 2.2, except in trivial cases. A stronger result
in this regard, in which a and b are allowed to decay exponentially, can be found in
[Granville and Soundararajan 2007]. Note that the argument used to establish this
corollary would have been significantly messier if one had to contend with o(1)
errors in the Wirsing integral equation as one would need quantitative approximate
versions of various basic qualitative facts about entire functions. This is the main
reason why we took the asymptotic limit q→∞ previously. However, Andrew
Granville (private communication) has informed me that such an approximate
version of this observation was obtained in an unpublished work of Granville and
Soundararajan. (See also the recent paper [Granville and Soundararajan 2015] for
some related results.)

From the above corollary and the Lebesgue differentiation theorem, we can find
fixed 1< t1 < t2 such that |B(t2)− B(t1)|> 0, and so∣∣∣∣ 1

log q

∑
q t1<n<q t2

χ(n)3(n)
n

∣∣∣∣� 1

for q sufficiently large. By the pigeonhole principle, we may thus find q t1� x� q t2

such that ∣∣∣∣ ∑
n∈[x/2,x]

χ(n)3(n)
∣∣∣∣� x .

Of course, x will depend on q. Since q = o(x), we may shift n by q, using the
periodicity of χ , to conclude that∣∣∣∣ ∑

n∈[x/2,x]

χ(n)3(n+ q)
∣∣∣∣� x .

On the other hand, as χ has mean zero on intervals of length q, we have∑
n∈[x/2,x]

χ(n)= o(x).
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Thus, if we let
X :=

∑
n∈[x/2,x]

χ(n)(3(n+ q)− 1),

then we have
|X | � x (2-5)

for sufficiently large q .
We now upper-bound X in order to contradict (2-5). The first step is to expand

out χ in terms of Dirichlet convolutions. By Möbius inversion, we can express

χ = 1 ∗ f = 1+ 1 ∗ f̃ ,

where
f̃ (n) := f (n)− 1n=1

and
f = χ ∗µ;

in other words, f is the multiplicative function with

f (p j )= χ(p) j−1(χ(p)− 1)

whenever p is a prime and j ≥ 1, with the convention that 00
= 1. In particular, we

see that f (n) is only nonzero when n is qκ -rough, by which we mean that n has no
prime factor less than or equal to qκ ; this implies furthermore that f̃ (n) vanishes
unless n > qκ and that

| f̃ (n)| � 1 (2-6)

whenever n = O(q O(1)).
Let ν > 0 be a small fixed constant to be chosen later. We expand X using the

identity

χ1[x/2,x] = 1[x/2,x]+ (1[1,xν) ∗ f̃ )1[x/2,x]+ (1[xν ,q−κ x] ∗ f̃ )1[x/2,x], (2-7)

where we have used the fact that f̃ (n) vanishes for n < qκ . This gives the splitting

X = X1+ X2+ X3

where
X1 =

∑
n∈[x/2,x]

(3(n+ q)− 1),

X2 =
∑

n∈[x/2,x]

(1[1,xν) ∗ f̃ )(n)(3(n+ q)− 1),

X3 =
∑

n∈[x/2,x]

(1[xν ,q−κ x] ∗ f̃ )(n)(3(n+ q)− 1).
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From the prime number theorem, we have

X1 = o(x).

For X2, we use the triangle inequality to bound

|X2| ≤
∑
d<xν

∑
x/2d≤m≤x/d

| f̃ (m)|(3(dm+ q)+ 1).

We claim that ∑
x/2d≤m≤x/d

| f̃ (m)|3(dm+ q)�
x

ϕ(d) log x
(2-8)

and ∑
x/2d≤m≤x/d

| f̃ (m)| �
x

d log x
(2-9)

for all d < xν , and hence,
X2� νx

with implied constant independent of ν.
We first prove (2-8). From (2-6), we have | f̃ (m)|3(dm + q) = O(log x), and

this expression vanishes unless m and dm+q are both qκ -rough, except for a small
exceptional contribution (coming from when dm+q is the power of a small prime)
that can easily be seen to be negligible. Removing this exceptional contribution,
we see that we are removing two residue classes modulus p from the interval of m
for each prime p < xκ not dividing d. Using a standard upper-bound sieve (see,
e.g., [Friedlander and Iwaniec 2010]), we conclude that the number of surviving
summands m is O(x/(ϕ(d) log2 x)), and the claim follows. The bound (2-9) is
established similarly, except now we bound | f̃ (m)| = O(1) and we remove just a
single residue class for each prime p, rather than two.

Finally we turn to X3. We expand

X3 =
∑

qκ�r�x1−ν

f̃ (r)
∑

m∈[x/2r ,x/r ]∩[xν ,q−κ x]

(3(rm+ q)− 1).

The contribution when r � qκ or r � x1−ν can be seen to be O(x/log x) using the
Brun–Titchmarsh inequality (and upper-bound sieve bounds on qκ -rough numbers,
as in the estimation of X2). The contribution when r is divisible by q can be treated
similarly (in fact one has the better bound of O(x/q) in this case). So we may write

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
∑

x/2r≤m≤x/r

(3(rm+ q)− 1)+ o(x)

or equivalently (since q is significantly smaller than x)

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
∑

n∈[x/2,x]:n=q (r)

(3(n)− 1)+ o(x).
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Invoking the Elliott–Halberstam conjecture and the prime number theorem, we then
have

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
(

1
ϕ(r)

x
2
−

1
r

x
2

)
+ o(x).

If r contributes to the above sum, then it is the product of O(1) primes of size at
least qκ , and so 1/ϕ(r)= 1/r + O(q−κ/r). From this, we see that

X3 = o(x).

Putting all this together, we conclude that

|X | � (ν+ o(1))x,

contradicting (2-5) for ν small enough. This completes the proof of Theorem 1.3.

Remark 2.5. Our arguments here do not easily give any effective quantitative bound
on n(p) due to our use of asymptotic limits; in particular, the fixed quantities t1
and t2 appearing above were obtained by what is essentially a compactness argument
and thus not obviously effective. It is likely that a more carefully quantitative
version of the above argument (perhaps using the estimates from [Granville and
Soundararajan 2001]) can make this portion of the argument effective, thus allowing
one to derive partial progress on the Vinogradov conjecture from sufficiently strong
partial progress on the Elliott–Halberstam conjecture; however, the dependence of
constants will be far worse than in Theorem 1.6. We will not pursue this question
further here.

Remark 2.6. Suppose the Burgess bound (1-2) was sharp up to epsilon factors,
in the sense that one could find a sequence of primes q going to infinity with
n(q) = q1/4

√
e+o(1). Then by extracting a limit to obtain the functions a and b

as above, we see that a(t) = b(t) = 1 for t ≤ 1/4
√

e and (from the Burgess
character sum bounds) a(t)= 0 for t > 1

4 . As was first observed by Heath-Brown
(see, e.g., Appendix 2 of [Diamond et al. 2006]), this information allows one in
this case to determine the functions a and b completely. Indeed, in the range
1/4
√

e ≤ t < 1/2
√

e, one has from Lemma 2.2 that

ta(t)=
∫ t

0
a(u) du−

∫ t−1/4
√

e

0
(1− b(t − u)) du.

Bounding 1− b(t − u) by 2, we thus have

ta(t)≥
∫ t

0
a(u) du− 2(t − 1/4

√
e)

and thus by Gronwall’s inequality

a(t)≥ 1− 2 log(4
√

et).
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(Indeed, one can verify that the difference f (t) := a(t)−1+2 log(4
√

et) obeys the
inequality t f (t) ≥

∫ t
1/4
√

e f (u) du for 1/4
√

e ≤ t < 1/2
√

e with f (1/4
√

e) = 0.)
Since equality is attained for t = 1

4 (note from Lemma 2.2 that a is continuous), we
must have 1− b(t − u)= 2 whenever t ≤ 1

4 and 0≤ u < t − 1/4
√

e; that is to say
b(t)=−1 for 1/4

√
e< t ≤ 1

4 ; also a(t)= 1−2 log(4
√

et) in this range. For t > 1
4 ,

Lemma 2.2 gives

0=
∫ t

0
a(t − u)b(u) du,

which on differentiation gives the integral equation

b(t)= 2
∫ 1/4

1/4
√

e
b(t − u)

du
u
,

which can then be used to complete the description of b, for instance via Laplace
transforms. For instance, we see that b(t) = 1 for 1

4 < t ≤ 1/2
√

e. One can
compute that b does not vanish near t = 1, in which case the argument above shows
that some improvement upon (1-2) can be made provided one can establish the
Elliott–Halberstam conjecture for some ϑ > 1− 1/4

√
e ≈ 0.8484.

3. From Elliott–Halberstam to the least primitive root

We now prove Theorem 1.4. The key new tool is the following combinatorial
statement. Given a subset A of an additive group G = (G,+) and a natural
number k, define the iterated sumset k A to be the set of all sums a1 + · · · + ak ,
where a1, . . . , ak are elements in A (allowing repetition).

Proposition 3.1 (escape from cosets). Let d,m ≥ 1 be fixed integers. Then there
exists a natural number k with the following property: whenever G is a finite
additive group whose order is the product of at most d primes (counting multiplicity)
and A is a subset of G containing 0 for which one has inclusions of the form

k A ⊂
m⋃

i=1

xi + Hi ( G

for some cosets xi + Hi of subgroups Hi of G, then A is contained in a proper
subgroup of G.

In the contrapositive, Proposition 3.1 asserts that, if A generates G and contains 0,
then the iterated sumsets k A for k large enough cannot be covered by a small number
of cosets of subgroups of G, unless these cosets of subgroups already covered all
of G. Thus, the sumsets k A “escape” all nontrivial unions of boundedly many
cosets. This result can be viewed as a simple abelian variant of the nonabelian
“escape from subvarieties” lemma that first appeared in [Eskin et al. 2005].
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Let us assume this proposition for the moment and see how it implies Theorem 1.4.
Assume the Elliott–Halberstam conjecture, and assume for sake of contradiction
that the conclusion of Theorem 1.4 failed. Carefully negating the quantifiers, this
means that we can find a sequence of primes p going off to infinity, with p− 1
being the product of O(1) primes, and a fixed κ > 0, with the property that the
least primitive root of Z/pZ is at least pκ .

Using a discrete logarithm, we have an isomorphism log : (Z/pZ)×→ G from
the multiplicative group (Z/pZ)× to the additive cyclic group G := Z/(p− 1)Z.
If n is a natural number less than pκ , then by hypothesis n is not a primitive root
of (Z/pZ)×, which implies that

log(n)⊂
⋃

r |p−1:r<p−1

{x ∈ G : r x = 0}( G.

In particular, for any natural number k, if we set A := {log(n) : 1≤ n < pκ/k
}, then

k A ⊂
⋃

r |p−1:r<p−1

{x ∈ G : r x = 0}( G.

Since log(1)= 0, A contains 0. Applying Proposition 3.1 (and using the hypothesis
that p−1 is the product of O(1) primes), we conclude (for k large enough) that A is
contained in a proper subgroup of G. Equivalently, A lies in the kernel of a primitive
character χ of conductor p; thus, χ(n)= 1 for all n < pκ/k . But this contradicts
Conjecture 2.1, which as we saw in the previous section was a consequence of the
Elliott–Halberstam conjecture.

It remains to prove Proposition 3.1. To illustrate the proposition, let us first give
a simple case when G is a direct product H1× H2 and we are given that 0 ∈ A and

2A ⊂ (H1×{0})∪ ({0}× H2).

We claim that this forces either A ⊂ H1×{0} or A ⊂ {0}× H2. Indeed, if neither
of these statements were true, then either there would exist a ∈ A that was outside
both H1×{0} and {0}×H2 or else there would exist a1, a2 ∈ A with a1 ∈ H1×{0},
a2 ∈ {0} × H2, and a1, a2 6= 0. In either case, we could find an element of 2A
(a+ 0 or a1+ a2, respectively) that was outside of (H1×{0})∪ ({0}× H2), giving
the desired contradiction. This simple special case is already sufficient to handle
the case of Theorem 1.4 in which p − 1 is the product of just two primes (that
is, p− 1 = 2q for some prime q) although in this case it turns out that the least
primitive root is also the least quadratic nonresidue (for p large enough, at least),
so the claim in this case is already immediate from Theorem 1.3.

The general case can be obtained by a rather complicated induction on the
“complexity” of the covering set

⋃m
i=1 xi + Hi , as follows. Fix a natural number d .
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Define a configuration to be a tuple

(k,G, A,m, (xi + Hi )
m
i=1), (3-1)

where k and m are natural numbers, G is a finite additive group with |G| the
product of d primes, A is a subset of G containing 0 and not contained in any
proper subgroup of G, and the xi + Hi are distinct cosets in G, such that

k A ⊂
m⋃

i=1

xi + Hi ( G. (3-2)

In particular, this implies that Hi 6= G for each i . Our task is to show that, for any
configuration (3-1), k is bounded by a quantity depending only on d and m.

Suppose for contradiction that this claim failed. Then we can find a sequence of
configurations (3-1) in which m stays constant but k goes to infinity. (The other
data G, A, xi , and Hi in the sequence may vary arbitrarily.)

Now we define a measure of complexity of a configuration (3-1). Given a
subgroup H of G, define the dimension dim H of H to be the quantity such that
the order |H | of H is the product of dim H primes (counting multiplicity). This is
a natural number between 0 and d , and any proper subgroup of G has dimension at
most d − 1.

Given a configuration (3-1), define the complexity of the configuration to be
the tuple (m0, . . . ,md−1), where, for each j = 0, . . . , d − 1, m j is the number of
cosets xi + Hi in the configuration such that Hi has dimension j . Since all the Hi

have dimensions between 0 and d − 1, we see that the m0, . . . ,md−1 are natural
numbers that sum to m. In particular, if m is constant, there are only finitely many
possible complexities. Thus, by passing to a subsequence if necessary, we can
find a sequence of configurations (3-1) whose complexity (m0, . . . ,md−1) stays
constant, but k goes to infinity.

We give the space of tuples (m0, . . . ,md−1) ∈ Nd the lexicographical ordering:
we write (m0, . . . ,md−1) < (n0, . . . , nd−1) if there exists 0≤ i ≤ d − 1 such that
mi < ni and m j = n j for i < j ≤ d − 1. As is well-known, this makes Nd a
well-ordered set.

Call a tuple (m0, . . . ,md−1) good if there exists a sequence of configurations
(3-1) with constant complexity (m0, . . . ,md−1), for which k goes to infinity. We
have seen that there is at least one good tuple; by the well-ordering of Nd , we may
thus find a minimal good tuple (m0, . . . ,md−1).

By rounding k down to an even number and then dividing by two, we may thus
find a sequence of configurations

(2k,G, A,m, (xi + Hi )
m
i=1) (3-3)

of complexity (m0, . . . ,md−1) with k going to infinity.
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Let d∗ be the largest j for which m j is nonzero; thus, 0≤ d∗ ≤ d − 1 (note that
at least one of the m j must be nonzero; otherwise, the first inclusion in (3-2) could
not hold). By relabeling, we may assume without loss of generality that H1 has
dimension d∗ for any configuration (3-3) in the above sequence.

Consider a configuration (3-3) in the above sequence; then

2k A ⊂
m⋃

i=1

xi + Hi .

In particular, for any y ∈ k A, we have

k A ⊂ 2k A∩ (2k A− y)⊂
m⋃

i=1

m⋃
j=1

(xi + Hi )∩ (x j − y+ H j ).

Note that the set (xi + Hi )∩ (x j − y+ H j ) is either empty or a coset of Hi ∩ H j ,
which has dimension at most d∗, with equality if and only if Hi = H j has dimension
d∗. In particular, since all the cosets x j+H j are assumed distinct, we see that, if Hi

has dimension d∗, there is at most one set (xi+Hi )∩(x j−y+H j ) that is a coset of a
d∗-dimensional subgroup. In particular, at most md∗ of the (xi+Hi )∩(x j− y+H j )

arise as cosets of d∗-dimensional subgroups.
Now suppose that we can find y ∈ k A such that

y /∈
⋃

1≤ j≤m:H j=H1

x j − x1+ H1. (3-4)

Then we see that x1+ H1 6= x j − y+ H j for any j = 1, . . . ,m. As such, now at
most md∗ − 1 of the (xi + Hi )∩ (x j − y + H j ) arise as cosets of d∗-dimensional
subgroups. Collecting all the cosets of the form (xi + Hi ) ∩ (x j − y + H j ) and
eliminating duplicates, we obtain a new configuration

(k,G, A,m′, (x ′i + H ′i )
m′
i=1),

which has strictly lower complexity than (m0, . . . ,md−1). By the minimality of
(m0, . . . ,md−1), this situation can only occur for finitely many of the sequence of
configurations (3-3). Thus, after discarding finitely many terms, we may assume
that the situation (3-4) does not occur for any y ∈ k A; that is to say, we have

k A ⊂
⋃

1≤ j≤m:H j=H1

x j − x1+ H1.

This gives rise to a configuration of strictly lower complexity than (m0, . . . ,md−1),
unless (m0, . . . ,md−1)= (0, . . . , 0,m, 0, . . . , 0) (with m in the d∗ position), and
all of the H j are equal to H1. Thus, after discarding finitely many terms in the
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sequence, we may assume that H j = H1 for all j , and so

k A ⊂
m⋃

j=1

x j − x1+ H1.

Intersecting this with the inclusion k A ⊂
⋃m

j=1 x j + H1, we again obtain a con-
figuration of lower complexity, unless the set of cosets {x j + H1 : 1 ≤ j ≤ m} is
invariant with respect to translation by x1; so by discarding another finite number of
terms in the sequence, we may assume that this is the case. By permuting indices,
we can then assume that {x j + H1 : 1≤ j ≤ m} is invariant under translation by xi

for any 1 ≤ i ≤ m. In other words, {x j + H1 : 1 ≤ j ≤ m} is a subgroup of the
quotient group G/H1, so

⋃m
j=1 x j + H1 is a subgroup of G. But this has to be a

proper subgroup by (3-2), and so A is in a proper subgroup of G, a contradiction.

4. Character sums from Type II sums

We now prove Theorem 1.6. Suppose that Conjecture 1.5 holds for a fixed choice
of 0<$ < 1

4 . Let δ > 0 be as in Conjecture 1.5; we may assume that δ is small,
e.g., δ < 1

4 . Let ε > 0 be a sufficiently small fixed quantity depending on δ. If
the claim (1-8) failed, then we could find a sequence of nonprincipal primitive
characters χ with conductor q going to infinity such that∣∣∣∣ ∑

n<q1/2−2$+ε

χ(n)
∣∣∣∣� q1/2−2$+ε log−A q

for some fixed A > 0. From the pigeonhole principle, we have∣∣∣∣ ∑
n∈[N/2,N ]

χ(n)
∣∣∣∣� N log−A q (4-1)

for some N = q1/2−2$+ε log−O(A) q (of course, N will depend on q).
Set x := N 1/(1/2−2$) and M := x/N ; thus,

N = x1/2−2$ , M = x1/2+2$

and
x ≥ q1+2ε. (4-2)

Let D be the set of square-free natural numbers in [(1− log−10A−10 x)M,M] whose
prime factors all lie in [qε, xδ] not dividing q. Note that the number of primes
dividing q may be crudely bounded by O(log q) and are thus a negligible proportion
of the primes in [qε, xδ]. If ε is small enough, then the prime number theorem
gives the cardinality bound

|D| � M log−10A−11 x . (4-3)
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(We allow implied constants to depend on the fixed quantities ε, δ, and A.)
We now set

α(m) := 1D(m)χ(m)

and
β(n) := 1[N/2,N ](n) (4-4)

and consider the quantity ∑
j≤qε

∑
n≤x

χ(n)α ∗β(n+ jq).

Shifting n by jq and using the periodicity of χ , we may write this as∑
j≤qε

∑
jq<n≤x+ jq

χ(n)α ∗β(n).

Since α ∗β is supported on [M N/4,M N ] = [x/4, x], this is equal (by (4-2)) to∑
j≤qε

∑
n

χ(n)α ∗β(n),

which factorizes as ∑
j≤qε

(∑
m

χ(m)α(m)
)(∑

n

χ(n)β(n)
)
,

and hence, by (4-1) and (4-3), we have∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

α ∗β(n+ jq)
∣∣∣∣� xqε log−11A−11 x .

We now “disperse” the α ∗β factors and eliminate the χ factors by a Cauchy–
Schwarz argument. Let γ denote the quantity

γ :=
1

x/2

∑
n

α ∗β(n), (4-5)

which (since
∑

n β(n)= (1+ o(1))N/2) factorizes as

γ =
1+ o(1)

M

∑
m

α(m). (4-6)

In particular, from (4-3) we have

γ = O(log−10A−11 x). (4-7)

Since χ has mean 0 on intervals of length q , we have∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

γ 1[x/2,x](n+ jq)
∣∣∣∣� γ qqε = o(xqε log−11A−11 x)
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and thus ∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

(α ∗β − γ 1[x/2,x])(n+ jq)
∣∣∣∣� xqε log−11A−11 x .

Applying the Cauchy–Schwarz inequality, we conclude that

∑
n≤x

∣∣∣∣∑
j≤qε

(α ∗β − γ 1[x/2,x])(n+ jq)
∣∣∣∣2� xq2ε log−22A−22 x,

which we rearrange (using the support of α ∗β−γ 1[x/2,x] to remove the restriction
n ≤ x) as∣∣∣∣ ∑

j, j ′≤qε

∑
n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n+ ( j ′− j)q)
∣∣∣∣

� xq2ε log−22A−22 x . (4-8)

From the divisor bound, we have α ∗β = xo(1), and the inner sum∑
n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n+ ( j ′− j)q)

may then be crudely bounded as x1+o(1). From this, we may remove the diagonal
contribution j = j ′ from (4-8); by symmetry, we may then reduce to the case j ′< j .
By the pigeonhole principle, we thus have∣∣∣∣∑

n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n− jq)
∣∣∣∣� x log−22A−22 x (4-9)

for some 1≤ j ≤ qε.
Let j be as above. We have∑

n

γ 1[x/2,x](n)× γ 1[x/2,x](n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

Also, the quantity α∗β is supported in [(1− log−10A−10 x)x/2, x]. Standard divisor
sum calculations using (4-3) give∑

n

|α ∗β(n)|1
[(1−O(log−10A−10 x))x/2,x/2](n)= O(x log−20A−21 x) (4-10)

and similarly∑
n

|α ∗β(n)|1
[x,x(1+O(log−10A−10 x))](n)= O(x log−20A−21 x) (4-11)
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while from (4-5) one has ∑
n

α ∗β(n)γ = γ 2 x
2
.

We conclude (using (4-7)) that∑
n

α ∗β(n)× γ 1[x/2,x](n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

A similar argument gives∑
n

γ 1[x/2,x](n)×α ∗β(n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

Inserting these bounds into (4-9), we conclude that, if X denotes the quantity

X :=
∑

n

α ∗β(n)α ∗β(n− jq), (4-12)

then we have ∣∣∣X − γ 2 x
2

∣∣∣� x log−22A−22 x (4-13)

for q large enough.
Now we estimate X using Type II estimates in order to contradict (4-13). Ex-

panding out the convolution α ∗β(n), we have

X =
∑

r

α(r)
∑

N/2≤m≤N

α ∗β(rm− jq)

or equivalently
X =

∑
r

α(r)
∑

r N/2− jq≤n≤r N− jq
n= jq (r)

α ∗β(n).

Note from the support of α that r N/2 − jq = x/2 + O(x log−10A−10 x) and
r N − jq = x+O(x log−10A−10 x) if α(r) is nonzero. A modification of (4-10) and
(4-11) then shows that∑

r N/2+ jq≤n≤r N+ jq
n= jq (r)

α ∗β(n)=
∑

n:n= jq (r)

α ∗β(n)+ O
( x

r
log−20A−21 x

)
,

and thus (by (4-3)),

X =
∑

r

α(r)
∑

n:n= jq (r)

α ∗β(n)+ o(x log−22A−22 x).

From construction, we see that jq is coprime to every prime between xε and xδ

that does not divide q and is in particular coprime to r . From the Type II estimate
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hypothesis, we have

∑
r

|α(r)|
∣∣∣∣ ∑
n:n= jq (r)

α ∗β(n)−
1
ϕ(r)

∑
n:(n,r)=1

α ∗β(n)
∣∣∣∣� x log−A′ x

for any fixed A′ > 0. We conclude that

X =
∑

r

α(r)
ϕ(r)

∑
n:(n,r)=1

α ∗β(n)+ o(x log−22A−22 x).

If α(r) is nonzero, then r is the product of O(1) primes between qε and xδ, and
so 1/ϕ(r) = 1/r + O(q−ε/r); the contribution of the error O(q−ε/r) is then
o(x log−22A−22 x) by (4-7). Also, from standard divisor bound bounds, one has∑

n:p|n

α ∗β(n)�
x
p

for any prime p between qε and xδ, and so∑
n:(n,r) 6=1

α ∗β(n)� q−εx .

We conclude that

X =
∑

r

α(r)
r

∑
n

α ∗β(n)+ o(x log−22A−22 x),

and hence, by (4-5), (4-6), (4-7), and the estimate 1/r=1/M+O((log−10A−10 x)/M)
on the support of α, one has

X = γ 2 x
2
+ o(x log−22A−22 x),

which contradicts (4-13) for x large enough. This concludes the proof of Theorem 1.6.

Remark 4.1. If we have n(q) > xδ , then the sequence α in the above argument is
simply α = 1D. Thus, for the purposes of establishing Vinogradov’s conjecture, it
suffices to consider Type II sums when α is a sequence of the form 1D; there is also
considerable flexibility in how to choose the set D, and other choices than the one
given here are available. For similar reasons, one can relax (1-7) by moving the
absolute values outside of the r summation. This leads to some further numerical
improvements in the 1

68 exponent in [Polymath 2014a] for the purposes of the
applications to Vinogradov’s conjecture; see Section 5 below.
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5. A variant of the method

In this section, we sketch how to modify the arguments in Section 4 to be able to
utilize distributional estimates for (components of) the divisor functions τk .

We start with a setup similar to that in Section 4; namely, (4-1) holds for some N
(and some character χ of conductor q going off to infinity) and some fixed A ≥ 1.
We set x := q1+2ε for some small fixed ε > 0. Let k ≥ 2 be a fixed natural number,
and suppose first that N ≤ x1/k . Then the quantity M := bx/N k

c is at least 1. If we
set α(m) := χ(m)1

[(1−log10A x)M,M](m) and β(n) := 1[N/2,N ](n), a brief calculation
similar to that in the previous section reveals that∣∣∣∣∑

j≤qε

∑
n≤x

χ(n)α ∗β∗k(n+ jq)
∣∣∣∣� xqε log−(10+k)A x,

where β∗k denotes the Dirichlet convolution of k copies of β; one should think
of β∗k here as a component of the divisor function τk = 1∗k defined on (1-10). We
then approximate α ∗β∗k by γψ(n/x), where

ψ(t) :=
∫

t1···tk=t
1[1/2,1](t1) · · · 1[1/2,1](tk)

dt1 · · · dtk−1

t1 · · · tk

is the multiplicative convolution of k copies of 1[1/2,1] and

γ :=
1

M(N/2)k
∑

n

α ∗β∗k(n).

A repetition of the arguments of the previous section (with α ∗β∗(k−1) playing the
role of α) then shows that there is 1≤ j ≤ qε for which one has∣∣∣∣X − γ 2x

∫
R

ψ2(t) dt
∣∣∣∣� x log−(20+2k)A x,

where
X :=

∑
n

α ∗β∗k(n)α ∗β∗k(n− jq).

However, a somewhat tedious calculation (similar to that in the preceding section)
shows that, if one has an Elliott–Halberstam-type distributional estimate for β∗k on
residue classes to moduli up to M N k−1

� q1+2ε/N , one can obtain an asymptotic
of the form

X = γ 2x
∫

R

ψ2(t) dt + o(x log−(20+2k)A x)

giving the desired contradiction. If τk has a level of distribution θ for some
0< θ < 1, this suggests we can establish cancellation in sums such as

∑
n≤N χ(n)

whenever N ≤ q1/k and q1+2ε/N ≤ (N k)θ−ε, which suggests that N can be as
low as q1/(1+kθ)+ε if θ > 1− 1/k. For instance, using the well-known level of
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distribution θ = 2
3 for the divisor function τ2 or for the variant β ∗ β (an old

observation of Linnik and Selberg, arising from the Weil bound on Kloosterman
sums), this argument gives (1-8) with $ = 1

28 (in fact, one can replace log−A q by
a power savings because the Linnik–Selberg argument provides such a savings in
the equidistribution estimate). Using only the elementary bound of Kloosterman
[1927], one gets a level of distribution θ = 4

7 , corresponding to the value $ = 1
60 ,

thus giving a slight improvement over the Pólya–Vinogradov bound (or even the
currently best known consequence of Theorem 1.6) that requires no knowledge of
the Weil conjectures.

If instead N <q1/k , one can repeat the above analysis with the convolution α∗β∗k

replaced by β1 ∗ · · · ∗βk , where βi = 1[Ni/2,Ni ] and N1, . . . , Nk ≥ 1 are quantities
with N = N1 ≥ N2, . . . , Nk and N1 · · · Nk = x . If (4-1) holds for all N1, . . . , Nk ,
then the above analysis again leads to a contradiction if q1+2ε/N ≤ xθ−ε, which
suggests that N can be as low as q1−θ+ε if θ ≤ 1−1/k. By a numerical coincidence,
the best known distribution results (at θ = 4

7 ) on τ3, due to Fouvry, Kowalski, and
Michel, correspond to the same value of $ , namely 1

28 , as the Linnik–Selberg
distribution result discussed above.

In the endpoint case N = x1/k , α becomes trivial and the quantity X discussed
above is analogous to the sum∑

n≤x

τk(n)τk(n+ jq),

with jq being slightly smaller than x . Thus, if one were able to obtain good
asymptotics for such sums (with error terms that were smaller than the main term by
an arbitrary power of the logarithm), one would expect to be able to obtain bounds
such as (1-8) with q1/2−2$+ε replaced by a quantity slightly smaller than q1/k .
Unfortunately, asymptotics for such sums are currently only known for k = 2.
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