Vol. 9, No. 4, 2015

Download this article
Download this article For screen
For printing
Recent Issues

Volume 11, 1 issue

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
Cover
Editorial Board
Editors' Addresses
Editors' Interests
About the Journal
Scientific Advantages
Submission Guidelines
Submission Form
Subscriptions
Editorial Login
Contacts
Author Index
To Appear
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Motivic Donaldson–Thomas invariants of small crepant resolutions

Andrew Morrison and Kentaro Nagao

Vol. 9 (2015), No. 4, 767–813
Abstract

We compute the motivic Donaldson–Thomas theory of a small crepant resolution of a toric Calabi–Yau 3-fold.

Keywords
motivic Donaldson–Thomas invariants, small crepant resolutions
Mathematical Subject Classification 2010
Primary: 14N35
Milestones
Received: 5 November 2011
Revised: 26 April 2012
Accepted: 27 March 2015
Published: 30 May 2015
Authors
Andrew Morrison
ETH Zurich
CH-8092 Zurich
Switzerland
Kentaro Nagao
Graduate School of Mathematics
Nagoya University
Furu-cho, Chikusa-Ku
Nagoya 464-8602
Japan