
Algebra &
Number
Theory

msp

Volume 9

2015
No. 5

Factorially closed subrings
of commutative rings

Sagnik Chakraborty, Rajendra Vasant Gurjar and Masayoshi Miyanishi





msp
ALGEBRA AND NUMBER THEORY 9:5 (2015)

dx.doi.org/10.2140/ant.2015.9.1137

Factorially closed subrings
of commutative rings

Sagnik Chakraborty, Rajendra Vasant Gurjar and Masayoshi Miyanishi

We prove some new results about factorially closed subrings of commutative rings.
We generalize this notion to quasifactorially closed subrings of commutative rings
and prove some results about them from algebraic and geometric viewpoints. We
show that quasifactorially closed subrings of polynomial and power series rings
of dimension at most three are again polynomial (resp. power series) rings in a
smaller number of variables. As an application of our results, we give a short
proof of a result of Lê Dũng Tráng in connection with the Jacobian problem.

Introduction

We assume throughout the article that the base field k is an algebraically closed field
of characteristic 0. Whenever we use topological arguments, k is tacitly assumed to
be the field of complex numbers C. By assuming naturally that k is embedded into
C, we can see that the results proved over C can be proved over k. For an integral
domain S, the field of fractions of S is denoted by Q(S), and the multiplicative
group of units by S∗.

The present article grew out of the discussions we had during the workshop
Automorphisms of affine varieties, held at the Kerala School of Mathematics, India
(February 17–22, 2014). In particular, a part of our discussion was inspired by a
talk given by Neena Gupta [2014] and a question asked by A. Kanel-Belov.

Let A ⊆ B be integral domains. Then A is said to be factorially closed, or fc,
in B if for any two nonzero elements b1, b2 ∈ B, b1b2 ∈ A implies that b1, b2 ∈ A.
In some papers an fc subring is also called an inert subring. Factorially closed
subrings appear naturally as the rings of invariants of the action of the additive
group Ga , or a connected semisimple group on a polynomial ring.

The notion of fc subring is not well-behaved in the case of local rings due
to the existence of too many units. Hence we have introduced a weaker notion:
quasifactorially closed subrings. For any integral domains A ⊆ B, A is said to
be quasifactorially closed, or qfc, in B if, for any nonzero b ∈ B, if there exists
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some nonzero b′ ∈ B such that bb′ ∈ A, then there exists a unit u ∈ B such that
bu ∈ A. It turns out that quasifactorial closedness is more geometric and has several
interesting applications. For example, we have proved that a qfc subring of a power
series ring in at most three variables is again isomorphic to a power series ring in a
smaller number of variables.

The fc property is also related to the property of the existence of nonconstant
invertible regular functions on general fibers of the corresponding morphism of
schemes.

We now mention the main results proved in this paper (with some hypothesis):

(1) An inclusion of graded domains A ⊆ B is fc if and only if it is graded fc.
Further, A is fc in B if and only if the localization of A at its irrelevant maximal
ideal is fc in the corresponding localization of B (Theorems 2 and 3).

(2) For an inclusion of affine normal domains A ⊆ B the fc locus is always open
(Corollary 4.1).

(3) For an inclusion of affine UFDs A⊆ B the qfc locus is open if at most finitely
many prime elements of A split in B (Theorem 5). (An example in Section 3
shows that the reverse implication is false.)

(4) If an inclusion of complete local normal domains A⊆ B over k is qfc then A is
algebraically closed in B. Further, any irreducible element of A is irreducible
in B (Theorem 6 and its corollaries).

(5) An fc subring of a polynomial ring in at most three variables is again a
polynomial ring (Theorem 1). Similarly, a complete qfc subring of a power
series ring in at most three variables is again a power series ring (Theorem 8).

(6) If an inclusion of affine normal domains A ⊆ B (with a suitable hypothesis) is
fc, then a general fiber of the corresponding morphism of affine varieties does
not have any nonconstant invertible regular functions (Theorem 11).

Using this we give a new short proof of a result proved by many authors (M. Razar,
R. Heitmann, S. Friedland, L. D. Tráng, C. Weber, W. Neumann, P. Norbury) in
connection with the Jacobian problem [Neumann and Norbury 1998; Tráng 2008].

In Section 3 we give some examples of ring extensions which shed more light
on the fc (and qfc) property.

In Section 4 we have listed some open problems about fc and qfc extensions.

1. Factorially closed subrings

We start with some basic properties of factorial closedness. Some easy proofs have
been omitted.
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Lemma 1 (local properties of factorial closedness). The following statements are
equivalent for an inclusion of integral domains A ⊆ B:

(1) The ring A is fc in B.

(2) For any multiplicatively closed set S in A, S−1 A ⊆ S−1 B is fc.

(3) For any prime ideal p ∈ Spec A, Ap ⊆ Bp is fc.

(4) For any maximal ideal m ∈Max A, Am ⊆ Bm is fc.

(5) There exist finitely many nonzero elements a1, a2, . . . , an ∈ A, generating the
unit ideal, such that Aai is fc in Bai for each i = 1, 2, . . . , n.

Moreover, if A is normal, the above statements are equivalent to the following one:

(7) For each prime ideal p ∈ Spec A of height 1, Ap ⊆ Bp is fc.

Proof. Omitted. �

Lemma 2 (transitive and sandwich properties of factorial closedness). Let A ⊆
B ⊆ C be integral domains.

(1) If the ring A is fc in B and B is fc in C , then A is fc in C.

(2) If A is fc in C then it is fc in B. However, in this case B need not be fc in C.

The example k ⊆ k[t2
] ⊆ k[t] shows that B need not be fc in C .

Lemma 3. Let A be an fc subring of B.

(1) The ring A is algebraically closed in B.

(2) If Q(A) is the field of fractions of A, then Q(A)∩ B = A. This is the same
thing as saying that each principal ideal of A is a contracted ideal.

(3) If B is integrally closed (or a UFD), then so is A. In fact, in the case of Krull
domains, the natural homomorphism of divisor class groups Cl(A)→ Cl(B)
is an injection whenever it is defined.

(4) Any unit of B is in A.

Proof. The first assertion follows from the slightly more general fact that, for a
pair of integral domains A ⊆ B, if B \ A is closed under multiplication then A is
algebraically closed in B.

The other three statements follow from the first one and the next observation. �

Remark. For an inclusion of Krull domains A ⊂ B, there is a natural homomor-
phism Cl(A)→ Cl(B) if and only if no height 1 prime ideal of B contracts to a
prime ideal of height > 1 in A [Samuel 1964].
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If I is an ideal of A such that the ideal I B is principal, then, since A is fc in B,
I itself must be principal. This observation will be implicitly used later.

Lemma 4. Let A be an fc subring of B. Then the Jacobson radical of B, Jac B, is
contained in A. Moreover, if Jac B 6= 0 then A = B. In particular, if B is semilocal
then A = B.

Proof. If b ∈ Jac B, 1+ b ∈ B∗. So, by Lemma 3(4), 1+ b ∈ A implies that b ∈ A.
Now, if b is a nonzero element in Jac B, for any x ∈ B, xb is also in Jac B and
consequently in A. So x ∈ A. If B is semilocal, and not a field, then Jac B 6= 0 and
the rest of the assertion follows. If B is a field then every nonzero element in B is
a unit, and since A is fc in B we again get A = B. �

Lemma 5. If A1 ⊆ A2 ⊆ A3 ⊆ · · · and B1 ⊆ B2 ⊆ B3 ⊆ · · · are two sequences of
integral domains, such that Ai ⊆ Bi is an fc subring for each i , then

⋃
i Ai ⊆

⋃
i Bi

is also factorially closed.

Lemma 6. If A ⊆ B ⊆ C are integral domains with A an fc subring of B, then, for
any subring D of C , D ∩ A ⊆ D ∩ B is also factorially closed.

Before looking into the ring-theoretic properties of factorial closedness, we would
like to describe the structure of a factorially closed subalgebra of the polynomial
ring R = k[x1, . . . , xn]. This question can be answered if n ≤ 3, and the answer is
simply a polynomial subalgebra. We consider only the case where n = 3. The case
n = 2 has a similar answer and is easier.

Theorem 1. Let A be a factorially closed subring of R = k[x, y, z].

(1) If dim A = 3, then A = R.

(2) If dim A = 2, then A is a polynomial ring in two variables.

(3) If dim A = 1, then A = k[ f ], where f − c is irreducible in k[x, y, z] for
every c ∈ k.

Proof. (1) In this case, the transcendence degree of A over k is 3. So A, being
algebraically closed in k[x, y, z] by Lemma 3(1), must be equal to k[x, y, z].

In the other two cases, since A is a UFD (by Lemma 3(3)) of transcendence
degree ≤ 2, by a result of Zariski [Nagata 1965, p. 52, Theorem 4] A is affine.

So the assertion (3) follows from the fact that, when A has dimension 1, A is an
affine PID with trivial units.

(2) Note that A is a normal affine domain of dimension 2. We assume for simplicity
that k = C. Let Y = Spec R and X = Spec A. The inclusion A ↪→ R defines a
dominant morphism p : Y → X . Then every fiber of p is either the empty set or is
1-dimensional. For, if there exists a fiber component D of dimension 2, let it be
defined by f = 0 with f ∈ R. Since p(D) is a closed point of X corresponding to
a maximal ideal m of A, we have m⊆mR ⊆ f R. This implies that any nonzero
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element of m is divisible by f , whence f ∈ A. This is a contradiction since A is
2-dimensional. Furthermore, a general fiber of p is irreducible since A is factorially
closed in R. By [Miyanishi 1986, Theorem 3], X is isomorphic to either A2 or
an affine hypersurface x2

1 + x3
2 + x5

3 = 0 in A3. But, arguing as in the proof of
[Miyanishi 1986, Theorem 4], we can show that the latter case cannot occur. �

Let B :=
⊕

i Bi be a Z-graded domain and A :=
⊕

i Ai a graded subring of B,
i.e., Ai ⊆ Bi for each i . We say that A is graded factorially closed or gfc, in short,
in B if, given any two nonzero homogeneous elements bi , b j ∈ B, bi b j ∈ A implies
that bi , b j ∈ A. First, the following lemma shows that gfc is a local property:

Lemma 7. Let A ⊆ B be Z-graded domains. Then the following statements are
equivalent:

(1) The ring A is gfc in B.

(2) For any multiplicative set S in A, generated by homogeneous elements, S−1 A⊆
S−1 B is gfc.

(3) For any homogeneous prime ideal p ∈ Spec A, A(p) ⊆ B(p), where A(p) and
B(p) denote the localizations of A and B respectively at the multiplicative set
consisting of all homogeneous elements of A not contained in p, is gfc.

If , moreover, A happens to be positively graded, the above statements are equivalent
to the following:

(4) For any homogeneous maximal ideal m ∈ Max A, A(m) ⊆ B(m) is graded
factorially closed.

Proof. We only show (3) =⇒ (1). Let x, y ∈ B be homogeneous elements such
that xy ∈ A. So, x, y ∈ A(p) for every homogeneous prime ideal p. But the set
(A : x) := {a ∈ A | ax ∈ A} is a homogeneous ideal in A. So, if x /∈ A, then (A : x)
must be proper ideal and hence contained in a homogeneous prime ideal, leading
to a contradiction. For positively graded rings, note that any homogeneous ideal is
actually contained in a homogeneous maximal ideal. �

Note that properties analogous to the fc property as expressed in Lemmas 1, 2
and 3 also hold for graded factorially closed subrings. The reader is invited to come
up with the precise formulations and their proofs.

Next we take our first step in building a bridge between factorial closedness and
graded factorial closedness.

Lemma 8. Let A⊆ B be Z-graded domains and p a homogeneous prime ideal of A.
If Ap ⊆ Bp is fc then A(p) ⊆ B(p) is gfc.
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Proof. Let x, y ∈ B(p) be homogeneous elements such that xy ∈ A(p). Let x = x ′/s
and y = y′/t with x ′, y′ ∈ B and s, t ∈

⋃
i Ai − p. Since Ap ⊆ Bp is factorially

closed, x, y ∈ Ap. So there exist nonzero elements in A, a =
∑

j a j and α=
∑

j α j

with α /∈ p such that x ′/s = a/α. Again, α being outside p implies that α j∗ /∈ p

for some j∗. So x ′α j∗ ∈ A and consequently x ∈ A(p). Similarly y ∈ A(p), and this
finishes the proof. �

It is natural to ask whether gfc implies fc. Our next few results show that this
is indeed true. We first treat the easy case of polynomial ring extensions and then
show that the general case, under minor restrictions, reduces to this special case.

Lemma 9. Let A be a factorially closed subring of an integral domain B. Then the
polynomial ring A[x] is also factorially closed in B[x].

Proof. Let f (x), g(x) ∈ B[x] − {0} be such that f (x)g(x) ∈ A[x]. It is enough to
show that f (x) ∈ A[x]. We consider the following two possible cases:

Case 1: A is infinite. Since f and g can have only finitely many roots, there
exist infinitely many a ∈ A such that f (a), g(a) are nonzero elements of B and
f (a)g(a)∈ A, and consequently f (a)∈ A, since A is factorially closed in B. In par-
ticular, if f has degree n, there exist n+1 distinct values in A, say a1, a2, . . . , an+1,
such that f (ai ) ∈ A for each i = 1, 2, . . . , n+ 1. So, treating the coefficients of f
as variables, and plugging in the values ai , we get n+ 1 linear equations in n+ 1
variables. The simultaneous linear equations have a solution in B. If we look at the
corresponding Vandermonde matrix, it is obvious that the solution actually lies in
Q(A). Since Q(A)∩ B = A by Lemma 3(2), f (x) ∈ A[x].

Case 2: A is a field. Without any loss of generality we may assume that f and g
are monic polynomials. Let L be a splitting field of f g over Q(B). The roots of
f g, and hence in particular the roots of f , are integral over Q(A). Consequently,
the coefficients of f , being symmetric functions of the roots, are integral over
Q(A) and hence algebraic over A. But since A is algebraically closed in B by
Lemma 3(1), the coefficients are actually in A, and hence f (x) ∈ A[x]. �

For the general case, let A be a graded factorially closed subring of a Z-graded
domain B such that Ai 6= 0 and Ai+1 6= 0 for some integer i . We want to show that
A⊆ B is factorially closed. Let S be the multiplicative set consisting of all nonzero
homogeneous elements of A. Note that if S−1 A ⊆ S−1 B is factorially closed then
so is A ⊆ B. If K := (S−1 A)0 and B̃ := (S−1 B)0, then K is a field which is
factorially closed in B̃. Choose any nonzero elements ai ∈ Ai , ai+1 ∈ Ai+1, and let
t := ai+1/ai . Then t ∈ (S−1 A)1 and S−1 A = K [t, t−1

]. To show that K [t, t−1
] is

factorially closed in S−1 B, let b := bi0+bi1+· · ·+bir and c := c j0+c j1+· · ·+c js ,
with bi0, bir and c j0, c js nonzero, be elements of S−1 B such that bc∈ S−1 A. Writing
biα := biα t−iα for α= 0, 1, . . . , r and c jβ := c jβ t− jβ for β = 0, 1, . . . , s, we get that



Factorially closed subrings of commutative rings 1143

b= bi0 t i0+bi1 t i1+· · ·+bir t ir , c= c j0 t j0+c j1 t j1+· · ·+c js t
js ∈ B̃[t, t−1

]. But since
K is factorially closed in B̃, so is K [t] ⊆ B̃[t], and consequently, by Lemmas 1
and 2, K [t, t−1

] is factorially closed in B̃[t, t−1
]. So b, c ∈ S−1 A, proving that

S−1 A ⊆ S−1 B is factorially closed, and hence A ⊆ B is also factorially closed.
Therefore, we have proved the following result:

Theorem 2. Let A ⊆ B be Z-graded domains with Ai 6= 0 and Ai+1 6= 0 for some
integer i . Then A is factorially closed in B if it is graded factorially closed.

Question. Is the hypothesis that Ai , Ai+1 are nonzero for some i necessary?

We do not know the answer to the above question in general. But we sketch
below a different proof of Theorem 2 without assuming the condition that Ai and
Ai+1 are nonzero for some i . However it works only when B is a UFD.

Let A⊆ B be Z-graded domains with B a UFD. Now, assuming that A is graded
factorially closed in B, we would like to show that A is factorially closed in B.
After inverting all nonzero homogeneous elements of A, we may assume that A is
of the form k[t, t−1

], where t is a homogeneous prime element of positive degree
in B. Further, since k[t] is factorially closed in B0[t] by Theorem 9, it suffices to
prove that B0[t] is factorially closed in B+ :=

⊕
i≥0 Bi . So, if f, g ∈ B+ are such

that f g ∈ B0[t], we want to show that f, g ∈ B0[t]. Let f = f0+ f1+· · ·+ fm and
g = g0+ g1+ · · ·+ gn , with fm and gn nonzero. We can write f and g as

f = f ′0tα0 + f ′1tα1 + · · ·+ f ′m tαm and g = g′0tβ0 + g′1tβ1 + · · ·+ g′m tβm ,

where fi = f ′i tαi and t does not divide f ′i unless it is zero, in which case we also take
αi to be zero, and similarly for g. If either f ′i ∈ B0 for each i or g′j ∈ B0 for each j ,
we are done. Otherwise, we define α∗ and β∗ to be the minimums of the αi for fi 6=0
and the β j for g j 6= 0, respectively. Let us also define i∗ :=max{i | αi = α∗} and
j∗ :=max{ j | β j = β∗}. Note that i∗<m and j∗< n. Looking at the homogeneous
component of degree i∗+ j∗ in f g, we get

( f g)i∗+ j∗ = f ′i∗g
′

j∗ t
α∗+β∗ + (elements divisible by tα∗+β∗+1).

But that means f ′i∗g
′

j∗ must be divisible by t , which is a contradiction.
Finally, we put together the results connecting factorial closedness and graded

factorial closedness in the form of the following theorem:

Theorem 3. For positively graded domains A ⊆ B, if we assume that A1 6= 0, then
the following statements are equivalent:

(1) A ⊆ B is fc.

(2) For any homogeneous prime ideal p, A(p) ⊆ B(p) is gfc.

(3) For any homogeneous prime ideal p, Ap ⊆ Bp is fc.

(4) For any homogeneous maximal ideal m, A(m) ⊆ B(m) is gfc.
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(5) For any homogeneous maximal ideal m, Am ⊆ Bm is fc.

Proof. Follows directly from Lemmas 7 and 8 and Theorem 2. �

In particular, if A0 is a field, A is positively graded, A1 6= (0) and m is the
irrelevant maximal ideal of A, then A ⊆ B will be factorially closed if Am ⊆ Bm is
factorially closed.

Given a subring A of an integral domain B, we define the factorially closed locus
or fc locus of A in B to be FC(A : B) := {p∈Spec A | Ap⊆ Bp is factorially closed}.
We intend to investigate the nature of this fc locus in the Zariski topology. We start
with a few definitions: let A/B := {b ∈ B | bb′ ∈ A for some b′ ∈ B−{0}}, which
is an A-module. If A denotes the algebraic closure of A in B, it is easy to see that
A⊆ Q(A)∩ B ⊆ A⊆ A/B ⊆ B. Taking A to be the ring of integers Z and B to be
Z[
√

2, x, y, 1/2y], one can see that the inclusions can be proper at each stage. By
Lemma 1(2), factorial closedness is preserved under localization. So FC(A : B) is
closed under generalization. The following lemma gives a necessary and sufficient
condition for the nonemptiness of the fc locus.

Lemma 10. With notation as above, the following statements are equivalent:

(1) There exists a prime ideal p ∈ Spec A such that Ap ⊆ Bp is fc.

(2) The inclusion Q(A)⊆ S−1 B is fc, where S := A−{0}.

(3) There is an equality Q(A)∗ = (S−1 B)∗.

(4) There is an equality A/B = Q(A)∩ B.

Proof. We will only give the proof that (4) implies (2). The other implications are
similar and easy.

Assume that A/B = Q(A)∩ B. We will show that Q(A) is fc in S−1 B.
Let (b1/s1) ·(b2/s2)∈ Q(A), where the si are nonzero elements of A. Then there

is a nonzero element α ∈ A such that b1b2α ∈ A. This implies that bi ∈ A/B, and
hence bi ∈ Q(A). �

Note that Q(A)∗ = (S−1 B)∗ implies that B∗ ⊆ Q(A). But the converse is false
as the example K [xz, yz] ⊆ K [x, y, z] with K a field shows.

To give conditions for the openness of the fc locus, we need a few auxiliary
lemmas.

Lemma 11. Let A ⊆ B be integral domains. If p ∈ Spec A is a prime ideal of
height 1 which is not in the image of Spec B, then V (p) := {q ∈ Spec A | p ⊆ q}

does not meet FC(A : B).
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Proof. Otherwise, if q ∈ V (p)∩FC(A : B), then Ap ⊆ Bp is factorially closed by
Lemma 1. But, since p is not in the image of Spec B, each prime ideal of Bp contracts
to (0) in Ap. Consequently, every nonzero element of Ap is a unit in Bp which is a
contradiction by Lemma 3. Hence we must have that V (p)∩FC(A : B)=∅. �

Lemma 12. Let A ⊆ B be integral domains with A noetherian and normal. If the
image of Spec B contains all prime ideals p ∈ Spec A of height 1, then either the fc
locus FC(A : B) is empty or A is factorially closed in B.

Proof. If A/B 6= Q(A)∩ B, we know that the factorially closed locus will be empty.
So we are interested in showing that, if A/B = Q(A)∩ B, then A is factorially
closed in B. In order to prove factorial closedness, first note that it suffices to prove
that any principal ideal of A is contracted from some ideal of B, or, equivalently,
that x B ∩ A = x A for any x ∈ A. For, if it is true, let us consider b1, b2 ∈ B−{0}
such that b1b2 = a ∈ A. Since A/B = Q(A)∩ B, b1 ∈ Q(A). Let b1 = α/β, with
α, β ∈ A−{0}. Now α ∈ βB ∩ A= βA, implying that b1 ∈ A, and consequently A
is factorially closed in B. So all we need to show is that any principal ideal of A
is contracted from some ideal of B. But since A is a noetherian normal domain,
any prime ideal associated to a principal ideal has height 1, and, as a result, using
primary decomposition any principal ideal of A can be written as a finite intersection
of primary ideals of height 1. So it is enough to prove that any height-1 primary
ideal of A is a contracted ideal. Now, given any prime ideal p ∈ Spec A of height 1,
let us consider the commutative diagram

B Bp

A Ap

The local ring Ap is a DVR and pAp is a contracted ideal. So each pAp-primary
ideal is also contracted. Again, p-primary ideals of A are in a one-to-one corre-
spondence with the pAp-primary ideals of Ap. So we conclude that each p-primary
ideal of A is contracted from some ideal in B, and this completes the proof. �

Note. Let A ⊆ B be integral domains with A noetherian. We have proved that if
Ap is a DVR for some p ∈ Spec A then p ∈ FC(A : B) if and only if it is in the
image of Spec B.

Now we are in a position to characterize the openness of the fc locus:

Theorem 4. Let A ⊆ B be integral domains with A noetherian and normal. Then
FC(A : B), if nonempty, is open in Spec A if and only if the image of Spec B misses
only finitely many height-1 prime ideals.
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Proof. If FC(A : B) is open, its complement contains at most finitely many prime
ideals of height 1. So, by Lemma 12, the image of Spec B misses at most finitely
many height-1 prime ideals. Conversely, assume that p1, p2, . . . , pn are the only
prime ideals of height 1 lying outside the image of Spec B. In view of Lemma 12, it
is enough to show that any q ∈ Spec A not contained in

⋃n
i=1 V (pi ) is in FC(A : B).

So, let us choose any q ∈ Spec A −
⋃n

i=1 V (pi ). We can find x ∈
⋂n

i=1 pi − q.
Considering the inclusion Ax ⊆ Bx , all height-1 prime ideals of Ax are in the image
of Spec Bx . Since we are only interested in the case when FC(A : B) 6=∅, we may
assume by Lemma 10 that A/B = Q(A)∩ B. Consequently Ax/Bx = Q(Ax)∩ Bx .
Therefore, Lemma 11 applies to show that Ax is factorially closed in Bx . Hence
FC(A : B)= Spec A−

(⋃n
i=1 V (pi )

)
is open. �

Corollary 4.1. With notation as in Theorem 4, if B is a finitely generated algebra
over A then FC(A : B) is always open.

Proof. This follows from Theorem 4, since the corresponding dominant morphism of
affine schemes Spec B→ Spec A always contains a nonempty open set in its image,
and consequently the image of Spec B can miss at most finitely many height-1
primes of Spec A. �

2. Quasifactorially closed subrings

If we attempt to generalize Lemma 9 to the case of formal power series rings
A[[x]]( B[[x]] the attempt fails quite badly. For, suppose that A ( B is factorially
closed. If b ∈ B − A, then the element 1+ bx + x2

+ x3
+ x4
+ · · · is a unit in

B[[x]] which is not in A[[x]]. So the extension A[[x]] ⊆ B[[x]] is never factorially
closed unless A= B. The presence of ‘extra units’ in the bigger ring turns out to be
an obvious obstruction. To rectify this problem, we come up with a weaker notion
of quasifactorially closedness.

Recall that, given an inclusion of integral domains A ⊆ B, A is said to be
quasifactorially closed, or qfc for short, in B if, for any nonzero b ∈ B, if there
exists some nonzero b′ ∈ B such that bb′ ∈ A, then there exists a unit u ∈ B such
that bu ∈ A.

If A and B have the same units then the notions of factorial closedness and
quasifactorial closedness coincide. Also note that A ⊆ B is quasifactorially closed
whenever either A or B is a field. But quasifactorial closedness, in general, is
more of a geometric notion and does not behave well with algebraic operations.
For example, although it is closed under localization, we are not yet sure if global
information can be retrieved from local data as in Lemma 1. The sandwich property,
as in Lemma 2, also fails, as any integral domain is always quasifactorially closed
in any field containing it. The following example shows that the transitive property
need not hold true either.
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Example. Factorial closedness holds for K [x] ⊆ K [x, y, z, w]/(xy − zw), and
A := K [x, y, z, w]/(xy− zw) is qfc in A[1/y]. But K [x] is not qfc in A[1/y], as
there is no unit u in A[1/y] such that uz ∈ K [x].

Note that the above example also shows that in the definition of quasifactorial
closedness it may not be possible to get a unit u ∈ B such that bu, b′u−1

∈ A. In
fact, if it were true then one can check that, for integral domains A ⊆ B ⊆ C , if
A ⊆ B is fc and B ⊆ C is qfc then A ⊆ C would also be qfc, which is clearly not
true, as the above example shows.

The following example shows that A ⊆ B being qfc does not imply that A[x] ⊆
B[x] is qfc:

Example. Take any nontrivial algebraic field extension L/K . Then K ⊆ L is qfc
but K [x] ⊆ L[x] is not qfc. If K = R and L = C, take b = i x − 1 and b′ = i x + 1.
Then bb′ ∈ R[x], but there is no unit u ∈ C[x] such that bu ∈ R[x].

Let A⊆ B be fc. Then any irreducible element of A remains irreducible in B. If
A is a UFD but B is not, then prime elements of A need not remain prime in B,
as the example k[x] ⊆ k[x, y, z]/(xy − z2

− 1) shows, where the prime element
x of k[x] does not remain a prime in k[x, y, z]/(xy − z2

− 1). But if B is also a
UFD then A⊆ B is fc if and only if each prime element of A remains a prime in B
and A∗ = B∗. For UFDs A ⊆ B, primes of A remaining primes in B is a sufficient
condition for qfc. But it is not necessary, as the first example in Section 4 will show.
However, it follows from Theorem 6 and its corollaries that the converse is also
true in the case of complete local UFDs.

For integral domains A⊆ B, we define the qfc locus of A in B by QFC(A : B) :=
{p∈Spec A | Ap⊆ Bp is qfc}. Just like the fc locus, the qfc locus is also closed under
generalization. Note that QFC(A : B) is always nonempty since (0) ∈QFC(A : B).
For, let S = A−{0}. If (b1/s1).(b2/c2) ∈ Q(A) then bi/si are units in S−1 B. Then
(bi/si ).(si/bi ) ∈ Q(A), implying that Q(A) is qfc in S−1 B.

Next, we prove an openness criterion, analogous to Theorem 4, for the qfc locus,
albeit for a somewhat restricted class of rings.

Theorem 5. Let A⊆ B be affine UFDs. Assume that A and B have the same group
of units and Q(A) is algebraically closed in Q(B). Then QFC(A : B) is a nonempty
open set if one, and hence all, of the following equivalent conditions hold:

(1) Given any prime ideal p ∈ Spec A of height ≥ 2, pB has height ≥ 2.

(2) No prime element of B divides two distinct prime elements of A.

(3) Any two coprime elements of A continue to be coprime in B.

(4) There are only finitely many prime elements of A which either split in B or are
units in B.
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Proof. Since A and B are UFDs, the proof of the equivalence of (1), (2) and (3) in
the above statement is easy. This part does not need openness of QFC(A : B).

Let V and W denote the irreducible affine varieties corresponding to A and B
respectively, and let f :W → V be the induced morphism.

First we consider the case when dim A = 1.
By assumption, Q(A) is algebraically closed in Q(B). Then it is well-known (by

a suitable application of Bertini’s theorem) that only finitely many scheme-theoretic
fibers of the morphism W → V are either empty or not reduced and irreducible.
This shows that (4) is also always true, so that conditions (1)–(4) are equivalent.

Now we will assume that dim A ≥ 2.
Assume now that the equivalent conditions (1), (2) and (3) hold. We will show

that (4) holds.
Again, since Q(A) is algebraically closed in Q(B), there is a proper closed

subvariety S ⊂ V such that the inverse image of any point p 6∈ S is scheme-
theoretically reduced and irreducible. By (1), the inverse image of any closed
subvariety of V of codim ≥ 2 does not contain any divisor in W . Now we can
see that the only possible irreducible divisors D ⊂ V which split in W are those
contained in S.

The image f (W ) contains a nonempty Zariski-open subset since f is dominant.
Hence f (W ) can miss at most finitely many divisors in V . This shows that (4) is true.

Next, we will show that (4) implies (1). Suppose that this is not true. Then there is
a closed irreducible subvariety S⊂V of codimension>1 such that the inverse image
of S in W contains an irreducible divisor1, defined by a prime element q . Now, if D
is any irreducible divisor in V which contains S then the prime element defining D
will split in B. Since dim B > 1, there are infinitely many such prime elements in A.

This proves the equivalence of (1)–(4).
Now we will assume that the equivalent conditions (1)–(4) hold. We will show

that QFC(A : B) is a nonempty open set.
Let p1, . . . , pr be the prime elements in A such that pi is a non-unit in B and

not a prime element in B.
We will show that QFC(A : B)=Spec A\

⋃r
i=1 V (pi A), and hence QFC(A : B)

is nonempty and open.
First we will show that if a prime element p ∈ A is not a unit in B and does not

remain a prime element in B, then V (p A)∩QFC(A : B)=∅.
So, let p ∈ A be such a prime element and let q ∈ V (p A). If Aq ⊆ Bq is qfc then

so is Ap ⊆ Bp, where p := p A. Since p is not a prime element in B, there exists
b1, b2 ∈ B − B∗ such that p = b1b2. But Ap ⊆ Bp being qfc implies that either
b1 or b2 must be a unit in Bp. Without any loss of generality, let us assume that
b1 ∈ B∗p . So b1 divides some element s ∈ A−p. But s and p are coprime in A, and
hence in B by (3). So b1 must be a unit in B, which is a contradiction.
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By assumption, there are only finitely many prime elements pi ∈ A such that
pi is a non-unit in B and not a prime element in B. We have already seen that⋃n

i=1 V (pi A) ⊆ QFC(A : B)c. So it suffices to show that any prime ideal of A
which does not contain any of the pi is in QFC(A : B). Let q ∈ Spec A be such a
prime ideal. Choose any a ∈

⋂n
i=1 pi A− q. Then Aa ⊆ Ba is qfc since each prime

element in Aa continues to be a prime element in Ba . Consequently, Aq ⊆ Bq is
also qfc, and this completes the proof. �

Remark. In Section 3, we will give an example to show that QFC(A : B) can be
open and nonempty even when there are infinitely many prime elements in A which
are not units in B and are not prime elements in B.

The following theorem shows that the qfc property has some nice consequences
in the case of complete local domains:

Theorem 6. Let (A,mA)⊆ (B,mB) be local domains such that mA =mB ∩ A and
A/mA = B/mB . Moreover, assume that A is complete in the mA-adic topology and⋂
∞

n=1 m
n
B = (0). If A is qfc in B then A is algebraically closed in B.

Proof. Let b ∈ B be algebraic over A. We will construct a sequence (an) ∈ AN

such that, for each n, an+1 = an + α1α2 · · ·αnαn+1 and b = an + α1α2 · · ·αnβn

for some α1, α2, . . . , αn, αn+1 ∈ mA and βn ∈ mB . Any such sequence will be a
Cauchy sequence in the mA-adic topology of A which converges to b in the mB-adic
topology of B, implying that b ∈ A.

Since b is algebraic over A, there exist elements c0, c1, . . . , cr ∈ A, with c0 and
cr nonzero, such that

c0+ c1b+ · · ·+ cr br
= 0,

implying that b(c1+c2b+· · ·+cr br−1)∈ A. Since A is qfc in B, there exists a unit
u ∈ B∗ such that bu= a ∈ A or, equivalently, b= au−1. We can write u−1

= u′1+b1

for some u′1 ∈ A∗ and b1 ∈ mB , so that b = a(u′1 + b1). Setting a1 := au′1, the
induction hypothesis is satisfied for n = 1.

Next, suppose that we have already found elements a1, a2, . . . , an ∈ A satisfying
the required conditions. To find an+1, note that b = an +α1α2 · · ·αnβn , implying
that α1α2 · · ·αnβn is also algebraic over A, and consequently there exists a unit
un+1 ∈ B∗ such that βn = αn+1un+1 for some αn+1 ∈mA. Writing un+1 as un+1 =

u′n+1+βn+1, where u′n+1 ∈ A∗ and βn+1 ∈mB , we get

b = an +α1α2 · · ·αnαn+1(u′n+1+βn+1).

It is obvious that an+1 := an+α1α2 · · ·αnαn+1u′n+1 satisfies the required properties.
This, together with induction, completes the proof. �

With notation as in Theorem 6, we have the following easy corollaries:

Corollary 6.1. There is an equality Q(A)∩ B = A.
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Corollary 6.2. If B is normal, then so is A.

Corollary 6.3. If B satisfies the ascending chain condition for principal ideals,
then so does A.

Corollaries 6.1, 6.2 and 6.3 are immediate consequence of Theorem 6.

Corollary 6.4. Any irreducible element of A remains irreducible in B.

This can be proved in the same way as the proof of Theorem 6. We leave the
details to the reader.

Corollary 6.5. If a ∈ A is a prime element of B, then it is already a prime element
in A.

Corollary 6.6. Let a, a′ ∈ A. Then a A= a′A if and only if aB= a′B. In particular,
if two elements of A are not associates in A, they cannot become associates in B.

This follows easily from Corollary 6.1. For, if a′ ∈ aB, then, writing a′ = ab
with b ∈ B, by Corollary 6.1 we have b ∈ Q(A)∩ B = A.

Corollary 6.7. If B is a UFD, then so is A.

Proof. Corollary 6.3 shows that any element in A can be written as a product of
irreducible elements in A. By Corollary 6.4, any irreducible element in A remains
irreducible and hence a prime in B. Now Corollary 6.5 finishes the proof. �

Corollary 6.8. If two elements of A have no common factor in A, they cannot have
a common factor in B.

Proof. If b ∈mB is a common factor of a, a′ ∈mA, then there is a unit u ∈ B∗ such
that bu ∈mA. But then, by Corollary 6.1, bu is a common factor of a and a′ in A,
leading to a contradiction. �

Corollary 6.9. If B is a UFD, then, for any prime ideal p ∈ Spec A of height ≥ 2,
pB has height ≥ 2.

Now we prove an analogue of Theorem 1 for power series rings. First, we
consider the 2-dimensional case.

Theorem 7. Let k ( A ( B := k[[x, y]] be a noetherian complete (with respect to
its maximal ideal) local qfc subring of B, the power series ring in two variables.
Then A is isomorphic to a power series ring in one variable over k.

Proof. By Corollary 6.7, A is a UFD. Let p∈ A be a prime element. By Corollary 6.4,
p is a prime element in B, and since A is qfc in B we have pB ∩ A = p A. This
gives an inclusion of integral domains A/p A ⊆ B/pB. Now dim B/pB = 1, and
hence any two elements in B/pB are analytically dependent. Thus, dim A/p A≤ 1.
Now dim A ≤ 2. If dim A = 1, then A is clearly isomorphic to a power series ring
in one variable over k.
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Now assume that dim A=2. We will show that A= k[[x, y]]. For that, choose any
two relatively prime elements u, v from the maximal ideal of A. By Corollaries 6.4
and 6.6, u and v are nonassociate prime elements of k[[x, y]]. So, in particular,
the extension of the maximal ideal of A to B is (x, y)-primary. Since A, B are
complete, we infer that B is integral over A. But then by Theorem 6 A must be
equal to k[[x, y]]. �

Next we consider the case when dim B = 3.

Theorem 8. Let k ⊆ A⊆ B := k[[X, Y, Z ]], where A is a 2-dimensional noetherian
complete (with respect to its maximal ideal) local qfc subring of B. Then A is
isomorphic to a power series ring in two variables over k.

Proof. The proof is similar to the proof of Theorem 7.
Note that A is a UFD by Corollary 6.7.
By Brieskorn’s theorem [1968], either A is isomorphic to a power series in two

variables over k, or A∼= k[[u, v, w]]/(u2
+v3
+w5). We have to show that A cannot

be isomorphic to k[[u, v, w]]/(u2
+ v3
+ w5). By the argument in the proof of

Theorem 7, the extended ideal (u, v, w)B has height > 1. We know that A is the
ring of invariants of the binary icosahedral group of order 120 acting on a power
series ring k[[s, t]]. The morphism Spec k[[s, t]] \ {(s, t)} → Spec A \ {(u, v, w)} is
finite unramified. Since Spec B \ V ((u, v, w)) is simply connected, by covering
space theory we have a factorization

Spec B \ V ((u, v, w))→ Spec k[[s, t]] \ {(s, t)} → Spec A \ {(u, v, w)}.

By Hartog’s theorem, we have A ⊂ k[[s, t]] ⊆ B. But then A is not algebraically
closed in B, contradicting Theorem 6. This shows that A is isomorphic to a power
series ring in two variables over k. �

Question. In Theorem 8, is the assumption dim A = 2 necessary, i.e., can a proper
qfc subring of k[[x, y, z]] have dimension > 2?

It is well-known that, if A ⊆ B are affine normal domains over an algebraically
closed field of characteristic 0 such that Q(A) is algebraically closed in Q(B), then a
general fiber of the morphism Spec B→Spec A is irreducible. By Theorem 6, if A⊆
B are complete normal domains over an algebraically closed field of characteristic 0
such that A is qfc in B, then Q(A) is algebraically closed in Q(B). In view of the
above observation we can ask the following question:

Question. Let (V, p), (W, q) be normal complex analytic germs and f : (W, q)→
(V, p) a complex analytic morphism such that the analytic local ring of V is
algebraically closed in that of W . Is a general fiber of f irreducible?

We have the following modest result as an affirmative answer to this question:
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Theorem 9. Let (W, q) be a normal complex analytic germ and f : W → C a
complex analytic morphism of germs. Assume that the ring C{ f } ⊂ OW,q is qfc.
Then a general fiber of f is connected.

Proof. We will use a result of Tráng [1977] on the topology of singular points,
which generalizes Milnor’s results.

Tráng [1977] proved that there are positive numbers 0< δ� ε� 1 such that if
D is a disc of radius δ in C then the morphism Bε ∩W ∩ f −1(D−{0})→ D−{0}
is a topological fiber bundle, where Bε is a ball of radius ε with center q in Cn , such
that (W, q)⊆ (Cn, 0) is a closed embedding of germs. Since C{ f } ⊂ OW,q is qfc,
the fiber { f = 0} is irreducible by Corollary 6.4. We have a long exact sequence of
homotopy groups

π1(F)−→ π1(Bε ∩W ∩ f −1(D−{0}))−→ π1(D−{0})−→ π0(F)

−→ π0(Bε ∩W ∩ f −1(D−{0}))−→ π0(D−{0})−→ (1).

Here F is a general fiber of Bε ∩W ∩ f −1(D−{0})→ D−{0}. Both Bε ∩W ∩
f −1(D−{0}) and D−{0} are connected. Since { f = 0} is reduced and irreducible,
a small transverse loop in Bε ∩W ∩ f −1(D−{0}) maps onto the generator of the
fundamental group of D−{0}, hence the homomorphism

π1(Bε ∩W ∩ f −1(D−{0}))→ π1(D−{0})

is surjective. It follows that F is connected, and this proves the result. �

The next result is an interesting consequence of the property of being factorially
closed. To state the result, we need a definition. Let f : Y → X be a dominant
morphism of smooth algebraic varieties such that the general fibers are irreducible
and reduced. Then there exist an open immersion ι : Y ↪→ W and a projective
morphism f :W → X such that f = f ◦ ι, where W is a smooth algebraic variety
and D :=W \Y is a divisor with simple normal crossings. Let D = D1+· · ·+ Dr

be the irreducible decomposition. We further assume that D intersects transversally
the fiber FP = f −1(P) for every closed point P ∈ X . We say that f is an SNC-
completion of f . Suppose that for every P ∈ X and every 1≤ i ≤ r the intersection
Di ·FP is irreducible and reduced. If there exists such an SNC-completion of f , we
say that f is fiberwise integral at infinity. If there is an open set U of X such that
f : f −1(U )→U has a completion which is fiberwise integral at infinity, then we
say that f is generically fiberwise integral at infinity. This condition is equivalent
to saying that the generic fiber Yη, with η the generic point of X , can be embedded
into a projective smooth variety Wη defined over the field k(η) in such a way that
Dη =Wη \ Yη is a divisor consisting of geometrically integral smooth components
with simple normal crossings.
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Theorem 10. Let A be an affine domain of dimension 1 over k. Assume that A is fc
in a regular affine domain R over k. Let X =Spec A, Y =Spec R and f :Y→ X be
the induced morphism. Assume that f has an SNC-completion which is generically
fiberwise integral at infinity. Then there is a maximal ideal m of A such that the
affine domain R/mR is regular and has no nontrivial units.

Proof. Since A is fc in R and R is normal, it follows that A is normal, and
hence regular as dim A = 1. A general fiber of the morphism f is reduced and
irreducible. In particular, by Bertini’s theorem, R/mR is a regular affine domain
for all but finitely many maximal ideals in A. Removing from X the closed points
corresponding to these maximal ideals, we may assume that f is a smooth morphism.
Let f :W → X be an SNC-completion which is fiberwise integral at infinity. Here
we may have to replace X by a suitable open set. Let D =W \Y be the divisor at
infinity and let D = D1+ D2+ · · ·+ Dr be the irreducible decomposition of D. If
the result is not true, then we may assume that R/mR has a nontrivial unit for every
maximal ideal m of A. Note that, by definition, each Di meets each fiber FP of f
transversally and the intersection Di · FP is integral, i.e., irreducible and reduced.

Let P be a closed point of X . The fiber f −1(P) has a nonconstant unit u P , and
the divisor (u P) in FP := f −1(P) has the form

∑
i a(P)i Di |FP with a(P)i ∈ Z.

Note that the subgroup
∑

i ZDi of Pic(W ), which is generated by the irreducible
components of D, is a countable group. Choosing a nonconstant unit u P for every
P ∈ X (k), we have a mapping P 7→ (u P) from X (k) to the group

∑
i ZDi , where

X (k) is the set of closed points of X and (u P) is identified with
∑

i a(P)i Di . Since
each Di ∩FP is irreducible and reduced for each i , such an identification is possible.
Then we can find a fixed divisor D0 =

∑
i ai Di and an infinite set 3 of X (k) such

that D0 · FP = (u P) for each P of 3. This means that the line bundle O(D0) on W
restricts to a trivial line bundle on FP for each P ∈3. By the upper-semicontinuity
theorem [Hartshorne 1977, Chapter III, Theorem 12.8], the set of points in X such
that the restriction of D0 to FP is trivial is a closed subvariety T of X containing the
infinite set 3. (Use the theorem for L and L−1 so that dimk H 0(FP ,L|FP )≥ 0 and
dimk H 0(FP ,L−1

|FP )≥ 0.) Since dim X = 1, T = X and D0 restricts to a trivial
line bundle on every fiber of f . By [Hartshorne 1977, Chapter III, Exercise 12.4],
D0 is linearly equivalent to the pullback by f of a divisor of the form

∑s
j=1 b j Q j

on X . Thus, the restriction of D0 to f −1(X \{Q1, . . . , Qs}) is linearly equivalent to
zero. Write D0 as the divisor of a rational function (ϕ) on f −1(X \ {Q1, . . . , Qs}).
Then ϕ gives a nonconstant unit of f −1(X \ {Q1, . . . , Qs}). Since the units on
f −1(X \ {Q1, . . . , Qs}) and X \ {Q1, . . . , Qs} are the same by the assumption of
factorial closedness, ϕ is constant on each fiber of f . However, ϕ restricts onto the
unit u P up to a nonzero constant for every P ∈3. This is a contradiction because
u P is not a constant. �
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Without the assumption that f has an SNC-completion which is fiberwise integral
at infinity, Theorem 10 does not hold.

Example. Let W be the Hirzebruch surface P1
×P1 with vertical and horizontal P1-

fibrations. Let p1 :W→P1 be the vertical one with a fiber L , and let the horizontal
one p2 be given by a linear system |M |. Let D1 be an irreducible curve such that
D1 ∼ 2M + L . Then the restriction p1|D1 : D1 → P1, being a double covering,
has two branch points. Let L1, L2 be two fibers of p1 over these branch points.
Let D = D1 + L1 + L2, and let Y := W \ D and X := P1

− {two branch points}.
Let f = p1|Y . Then every fiber of f : Y → X is irreducible; hence k(X) is
algebraically closed in k(Y ) and it is easy to see that A is factorially closed in
R, where X = Spec A and Y = Spec R, because A = k[t, t−1

] and every prime
element of A is t − c with some nonzero constant c ∈ k. Then the fiber over t = c
is irreducible. Hence t − c is a prime element in R. Furthermore, the units of R are
the same as the units of A because the only linear relation among the components
of D is the one between L1 and L2. But every closed fiber of f has a nontrivial unit
because it is isomorphic to A1

∗
. Note that R is not factorial since Pic(R)= Z/2Z.

Remark. In this example, the fibration f : Y→ X is a twisted A1
∗
-fibration. Let X ′

be the curve D1 with two ramifying points for p1|D1 removed, and let f ′ : Y ′→ X ′

be the base change of f by X ′ → X . Then Y ′ ∼= A1
∗
× A1

∗
. Write Y = Spec R,

X = Spec A and X ′ = Spec A′. Then A is fc in R, but A′ is not fc in R′ := R⊗A A′.
In fact, R′∗/k∗ ∼= Z×Z and A′∗/k∗ ∼= Z. If A′ were fc in R′, then we must have
R′∗= A′∗. Note that A′/A is a finite étale extension. Hence the factorial closedness
is not preserved even by an étale base change.

Using Theorem 10 we can now give a very short proof of a result of [Neumann
and Norbury 1998].

Theorem 11. Let f, g ∈ C[X, Y ] be a pair of polynomials in two variables with
nonzero constant Jacobian determinant. Suppose that the following conditions are
satisfied:

(a) For all c ∈ C, the polynomial f − c is irreducible and defines a rational curve.

(b) Let C2
⊂ Y be an open embedding in a smooth quasiprojective surface such

that f : C2
→ C extends to a proper morphism Y → C and Y \C2 is a simple

normal crossing divisor such that each irreducible component of Y \C2 is a
cross-section of the morphism Y → C.

Then { f = 0} ∼= C, and hence the Jacobian Conjecture is true for the pair ( f, g).

Remark. In [Neumann and Norbury 1998] f is called a simple rational polynomial.
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Proof. By assumption, f−c is an irreducible polynomial for all constants c. Also, C2

has no nonconstant invertible regular functions. Hence the morphism C2
→ C is an

fc morphism. Condition (b) implies that f :C2
→C is generically fiberwise integral

at infinity. By Theorem 10 and condition (a), for all but finitely many c∈C the affine
curve { f = c} is smooth rational irreducible with no nonconstant invertible regular
functions. Hence it is isomorphic to C. By the Abhyankar–Moh–Suzuki theorem,
after a suitable automorphism of C[X, Y ] the polynomial f is mapped onto X . It
is well-known that this implies that the Jacobian Conjecture is true for ( f, g). �

The next result is another interesting example of qfc subrings.

Theorem 12. Let A = C{z1, z2, . . . , zn}/P be an analytic local domain which is a
UFD. Then A is qfc in Â.

Proof. We use Artin’s approximation theorem [1968].
It is known that Â is also a UFD. To show that A is qfc in Â, it follows easily

from the definition of a qfc subring that it is enough to show that any prime element
of A remains a prime element in Â.

Suppose that f ∈ A is a prime element. Assume that there are non-units g, h
in Â such that f = gh. Let P be generated by f1, f2, . . . , fr . Let w1, w2, . . . , wr ,
wr+1, wr+2 be new indeterminates. Consider the system of equations in the variables
z1, . . . , zn, w1, w2, . . . , wr+2

f1−w1 = 0= f2−w2 = · · · = fr −wr = f −wr+1wr+2.

This system has solutionsw1= f1,. . .,wr= fr ,wr+1=g,wr+2=h in C[[z1,. . .,zn]].
By Artin’s theorem, we can find solutions g0,h0 in C{z1, . . . , zn} such that f = g0h0

modulo P and g0, h0 approximate g, h to any order. In particular, g0 and h0 cannot
be units. Thus, every prime element in A remains a prime element in Â, and
consequently A is qfc in Â. �

Corollary 12.1. Any element of C[[z1,. . .,zn]]which is algebraic over C{z1,. . .,zn}

is itself convergent. (Here, z1, z2, . . . , zn are indeterminates over C.)

Question. Is Theorem 12 valid without assuming that A is a UFD?

3. Examples

We give some examples which shed more light on fc and qfc extensions.

(1) The following example shows that a qfc extension A ⊆ B of local domains can
be quite strange if A is not complete.

Let k be any field. Consider A := k[x, ex
− 1](x,ex−1) and B := k[[x]]. Then

A ⊆ B is a local inclusion of local UFDs. Note that A is a regular local ring of
dimension 2, whereas B has only one nonzero prime ideal, namely (x). From these
observations we can easily deduce the following properties:
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(a) Infinitely many primes of A split in B.

(b) Infinitely many distinct primes of A become associates in B.

(c) The dimension of A is bigger than the dimension of B.

(d) A prime element of B, namely x , divides infinitely many distinct prime ele-
ments of A.

(2) The properties of being a qfc extension and a flat extension are independent.
For, a ring of invariants A of a semisimple group acting on a polynomial ring B

is fc in B, but the extension is not flat in general.
On the other hand, the extension k[t2

] ⊆ k[t] is flat but not qfc.

(3) For an extension of normal affine domains A ⊆ B, the set of points m ∈Max B
such that Am∩A ⊆ Bm is qfc is in general not Zariski-open in Max B.

An example of this is the inclusion A := k[x] ⊆ B := k[x, y, z]/(xy− z2). If m0

is the maximal ideal corresponding to the origin (0, 0, 0) in B, then A(x) is qfc in
Bm0 , but for maximal ideals corresponding to nearby points (0, λ, 0) this is not true.

Remark. One may ask a similar question for fc extensions. But at least in the case
of affine domains it is not very interesting, for then by Lemma 4 Am∩A = Bm. So
A and B must be birational where the set of such points is clearly open.

(4) The ring extension A := k[xy] ⊆ B := k[x, y] is such that A is algebraically
closed in B and A∗ = B∗, but the fc locus FC(A : B) is empty.

(5) The ring extension A := k[x] ⊂ B := k[x, y, z]/(x2
+ y2

+ z2
− 1) has the

property that any irreducible element of A remains irreducible in B, the extension
is faithfully flat and both rings have same units, but A is not fc in B. Note that B is
not factorial.

(6) Let A := k[x, xy] ⊂ B := k[x, y], where x, y are indeterminates. Then Q(A)⊂
Q(B) is maximally algebraic. Any element of the form x+axy is a prime element
in A but not a prime element in B, where a ∈ k∗.

If q is any prime ideal in A other than (x, xy), then either x or xy is a unit in Aq.
Hence both x, y are units in Bq. It follows that any prime element in Aq is either a
prime element in Bq or a unit in Bq. This shows that FC(A : B)= Spec A\{(x, xy)}
is nonempty and open, but infinitely many prime elements in A are non-units in B
and are not prime elements in B.

If p is any height-1 prime ideal in A, then at least one of x, xy does not lie in p.
Hence, in Bp, x is always a prime element. From this we see that Ap ⊂ Bp is qfc.

Clearly A is not fc in B. Since A, B are UFDs and have the same units, A is not
qfc in B.

This shows that the local analogue of Lemma 1(6) does not hold for the qfc
property.



Factorially closed subrings of commutative rings 1157

4. Open problems

(1) Let A ⊆ B be normal complete local domains over k such that A is qfc in B.
Is the power series ring in one variable A[[x]] qfc in B[[x]]?

(2) Suppose that A⊆ B are normal affine domains such that for any maximal ideal
m⊂ A the extension Am ⊆ Bm is qfc. Is A qfc in B?

(3) Let A ⊆ B be an qfc inclusion of normal complete domains over k. Is
dim A ≤ dim B?

(4) Is any fc subring of a PID also a PID?
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