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We define the triangulated category of relative singularities of a closed subscheme
in a scheme. When the closed subscheme is a Cartier divisor, we consider
matrix factorizations of the related section of a line bundle, and their analogues
with locally free sheaves replaced by coherent ones. The appropriate exotic
derived category of coherent matrix factorizations is then identified with the
triangulated category of relative singularities, while the similar exotic derived
category of locally free matrix factorizations is its full subcategory. The latter
category is identified with the kernel of the direct image functor corresponding
to the closed embedding of the zero locus and acting between the conventional
(absolute) triangulated categories of singularities. Similar results are obtained for
matrix factorizations of infinite rank; and two different “large” versions of the
triangulated category of relative singularities, corresponding to the approaches
of Orlov and Krause, are identified in the case of a Cartier divisor. A version of
the Thomason–Trobaugh–Neeman localization theorem is proven for coherent
matrix factorizations and disproven for locally free matrix factorizations of finite
rank. Contravariant (coherent) and covariant (quasicoherent) versions of the
Serre–Grothendieck duality theorems for matrix factorizations are established,
and pull-backs and push-forwards of matrix factorizations are discussed at length.
A number of general results about derived categories of the second kind for
curved differential graded modules (CDG-modules) over quasicoherent CDG-
algebras are proven on the way. Hochschild (co)homology of matrix factorization
categories are discussed in an appendix.
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Introduction

A matrix factorization of an element w in a commutative ring R is a pair of square
matrices .ˆ;‰/ of the same size, with entries from R, such that both the products
ˆ‰ and ‰ˆ are equal to w times the identity matrix. In the coordinate-free
language, a matrix factorization is a pair of finitely generated free R-modules M 0

andM 1 together with R-module homomorphismsM 0!M 1 andM 1!M 0 such
that both the compositionsM 0!M 1!M 0 andM 1!M 0!M 1 are equal to the
multiplication with w. Matrix factorizations were introduced by Eisenbud [1980]
and used by Buchweitz [1986] for the study of the maximal Cohen–Macaulay
modules over hypersurface local rings.

Another name for this notion is “D-branes in the Landau–Ginzburg B model” (as
suggested by Kontsevich) [Kapustin and Li 2003]; in this context, the element w is
called the potential. One generalizes the above definition, replacing free modules
with projective modules [Kapustin and Li 2003; Orlov 2004], with locally free
sheaves [Orlov 2012], and finally with coherent sheaves [Lin and Pomerleano 2013].
The importance of the latter generalization is emphasized in the present paper.

Being particular cases of curved DG-modules over a curved DG-ring [Kapustin
and Li 2003; Positselski 2011b], matrix factorizations form a DG-category. So one
can consider the corresponding category of closed degree-zero morphisms up to
chain homotopy, which is a triangulated category. Generally speaking, however, the
homotopy category is “too big” for most purposes, and one would like to pass from
it to an appropriately defined derived category. One can use the homotopy category
in lieu of the derived one when dealing with projective modules [Kapustin and Li
2003; Orlov 2004]; for locally free matrix factorizations over a nonaffine scheme,
there is an option of working with the quotient category of the homotopy category
by the locally contractible objects [Polishchuk and Vaintrob 2011, Definition 3.13].
When dealing with coherent (analogues of) matrix factorizations, having some kind
of derived category construction is apparently unavoidable.

The relevant concept of a derived category is that of the derived category of
the second kind, as developed in [Positselski 2010; 2011b]. There are several
versions of this notion; the appropriate one for quasicoherent sheaves is called the
coderived category and for coherent sheaves it is the absolute derived category. The
absolute derived category of locally free matrix factorizations was studied in [Orlov
2012]; for coherent matrix factorizations over a smooth variety, it was considered
in [Lin and Pomerleano 2013]. These two absolute derived categories are equivalent
for regular schemes, but can be different otherwise (as we show with an explicit
counterexample).

The triangulated category of singularities of a Noetherian scheme was defined
by D. Orlov [2004] as the quotient category of the bounded derived category of
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coherent sheaves by its full triangulated subcategory of perfect complexes, i.e.,
the objects locally presentable as finite complexes of locally free sheaves. This
triangulated category vanishes if and only if the Noetherian scheme is regular. It
was shown in [Orlov 2004, Theorem 3.9], under mild assumptions on an affine
regular Noetherian scheme X and a potential (regular function) w on it, that the
homotopy category of locally free matrix factorizations of w over X is equivalent
to the triangulated category of singularities of the zero locus X0 of w in X .

Orlov [2012] showed that the affineness assumption on X can be dropped in this
result if one replaces the homotopy category of locally free matrix factorizations with
their absolute derived category. He also considers the general case of a nonaffine
singular scheme X , for which he obtains a fully faithful functor from the absolute
derived category of locally free matrix factorizations over X to the triangulated
category of singularities of X0. The problem of studying the difference between
these two triangulated categories was posed in the introduction to [Orlov 2012].

The first aim of the present paper is to provide an alternative proof of these results
of Orlov for regular schemes, an alternative generalization of them to singular
schemes, and a more precise version of Orlov’s original generalization. We replace
the triangulated category at the source of Orlov’s fully faithful functor by a “larger”
category (containing the original one) and the triangulated category at the target
by a “smaller” category (a quotient of the original one), thereby transforming this
functor into an equivalence of triangulated categories. We also describe the image
of Orlov’s fully faithful functor as the kernel of a certain other triangulated functor.

More precisely, we show that the absolute derived category of coherent matrix
factorizations of w over X is equivalent to what we call the triangulated category of
singularities of X0 relative to X . The latter category is a certain quotient category
of the triangulated category of singularities of X0; it measures, roughly speaking,
how much worse are the singularities of X0 compared to those of X . As to the
image of Orlov’s fully faithful embedding, it consists precisely of those objects
of the conventional (absolute) triangulated category of singularities of X0 whose
direct images vanish in the triangulated category of singularities of X .

The paper consists of three sections and two appendices. In Section 1, we prove
three rather general technical assertions about derived categories of the second
kind for curved differential graded modules (CDG-modules) over a quasicoherent
CDG-algebra with a restriction on the homological dimension. One of them, claim-
ing that certain embeddings of DG-categories of CDG-modules induce equivalences
of the derived categories of the second kind, is a generalization of [Polishchuk
and Positselski 2012, Theorem 3.2] based on a modification of the same argument,
originally introduced for the proof of [Positselski 2010, Theorem 7.2.2].

The idea of the proof of the other assertion, according to which certain natural
functors between derived categories of the second kind are fully faithful, is new.
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The third technical assertion explains when the coderived category coincides with
the absolute derived category of the same class of CDG-modules: e.g., for the
locally projective CDG-modules this is true.

A version of (the former two of) these results is used in Section 2 to extend
Orlov’s cokernel functor from the absolute derived category of locally free matrix
factorizations to the absolute derived category of coherent ones. This extension of the
cokernel functor admits a simple construction of a functor in the opposite direction,
suggested in [Lin and Pomerleano 2013]. We use these constructions to obtain a
new proof of Orlov’s theorem, and our own generalization of it to the singular case.

When X is regular, Orlov’s and our results amount to the same assertion since
the absolute derived categories of locally free and coherent matrix factorizations are
equivalent by our Theorem 1.4. When X is singular, the natural functor between
these two absolute derived categories is fully faithful by our Proposition 1.5, and
Orlov’s full-and-faithfulness theorem follows from ours by virtue of an appropriate
semiorthogonality property.

We also compare a “large” version of the triangulated category of relative singular-
ities with the coderived category of quasicoherent matrix factorizations, strengthen-
ing some results of Polishchuk and Vaintrob [2011]. A “large” version of the absolute
triangulated category of singularities, defined by Orlov [2004], is identified with
H. Krause’s stable derived category [2005] in the case of a divisor in a regular scheme.
A similar result is proven in the case of a Cartier divisor in a singular scheme, where
we extend Krause’s theory by defining the relative stable derived category. For
any closed subscheme of finite flat dimension in a separated Noetherian scheme,
the relative stable derived category is compactly generated by its full triangulated
subcategory equivalent to the triangulated category of relative singularities.

The homotopy categories of unbounded complexes of projective modules over
a ring and injective quasicoherent sheaves over a scheme were studied by Jør-
gensen [2005] and Krause [2005]; subsequently, Iyengar and Krause [2006] con-
structed an equivalence between these two categories for rings with dualizing com-
plexes. These results were extended to quasicoherent sheaves over schemes by Nee-
man [2008] and Murfet [2007], who found a way to define a replacement of the homo-
topy category of (nonexistent) projective sheaves in terms of the flat ones. The equiv-
alence between these two categories is a covariant version of Serre–Grothendieck du-
ality [Hartshorne 1966]. It is also very similar to the derived comodule-contramodule
correspondence theory, developed by the second author [Positselski 2010; 2011b].

Serre–Grothendieck duality for matrix factorizations in the situation of a smooth
variety X (and an isolated singularity of X0) was studied in [Murfet 2013]. In
this paper we extend the duality to matrix factorizations over much more general
schemes X , constructing an equivalence between two “large” exotic derived cate-
gories, namely, the coderived category of flat (or locally free) matrix factorizations



1164 Alexander I. Efimov and Leonid Positselski

of possibly infinite rank and the coderived category of quasicoherent matrix factor-
izations. Unless X is Gorenstein, this equivalence is not provided by the natural
functor induced by the embedding of DG-categories, but rather differs from it in
that the tensor product with the dualizing complex has to be taken along the way.
A contravariant Serre duality in the form of an auto-antiequivalence of the absolute
derived category of coherent matrix factorizations is also obtained.

There was some attention paid to pull-backs and push-forwards of matrix fac-
torizations recently [Polishchuk and Vaintrob 2011; 2014; Dyckerhoff and Murfet
2013]. In Section 3, we approach this topic with our techniques, constructing the
push-forwards of locally free matrix factorizations of infinite rank for any morphism
of finite flat dimension between schemes of finite Krull dimension, and the push-
forwards of locally free matrix factorizations of finite rank for any such morphism
for which the induced morphism of the zero loci of w is proper. At the price of
having to adjoin the images of idempotent endomorphisms, the preservation of
finite rank under push-forwards is proven assuming only the support of the matrix
factorization [Polishchuk and Vaintrob 2011] to be proper over the base.

Push-forwards of quasicoherent matrix factorizations are well-defined for any
morphism of Noetherian schemes, and push-forwards of coherent matrix factor-
izations exist under properness assumptions similar to the above. A general study
of category-theoretic and set-theoretic supports of quasicoherent and coherent
CDG-modules is undertaken in this paper in order to obtain an independent proof
of the preservation of coherence under the push-forwards not based on the passage
to the triangulated categories of singularities.

The compatibility with pull-backs and push-forwards is an organic part of
Serre–Grothendieck duality theory. The contravariant duality agrees with push-
forwards of coherent sheaves (or matrix factorizations) with respect to proper
morphisms [Hartshorne 1966], while the covariant duality transforms the conven-
tional inverse image of flat matrix factorizations into the extraordinary inverse
image of quasicoherent ones [Positselski 2012]. We use the latter result in order
to construct the extraordinary inverse image functor of Hartshorne and Deligne,
which is denoted by f Š in [Hartshorne 1966] and which we denote by f C, in the
case of quasicoherent matrix factorizations.

Appendix A contains proofs of some basic facts about flat, locally projective,
and injective quasicoherent graded modules which are occasionally used in the
main body of the paper. Appendix B can be viewed as a complement to the
paper [Polishchuk and Positselski 2012]. While Section B.1 contains some vari-
ations of and improvements on the results about Hochschild (co)homology of
(C)DG-categories and (locally free) matrix factorizations in [loc. cit.], Section B.2
presents an alternative approach to the Hochschild (co)homology of coherent matrix
factorizations based on the techniques developed in the main body of this paper.
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1. Exotic derived categories of quasicoherent CDG-modules

1.1. CDG-rings and CDG-modules. A CDG-ring (curved differential graded ring)
B D .B; d; h/ is defined as a graded ring B D

L
i2ZB

i endowed with an odd
derivation d W B ! B of degree 1 and an element h 2 B2 such that d2.b/ D
Œh; b� for all b 2 B and d.h/ D 0. So one should have d W B i ! B iC1 and
d.ab/D d.a/bC .�1/jajad.b/; the brackets Œ�;�� denote the supercommutator
Œa; b�D ab� .�1/jajjbjba. The element h is called the curvature element.

A morphism of CDG-rings B! A is a pair .f; a/, with a morphism of graded
rings f W B! A and an element a 2 A1 such that f .dBb/D dAf .b/C Œa; f .b/�
for all b 2 B and f .hB/ D hA C dAaC a2. The composition of morphisms of
CDG-rings is defined by the obvious rule .f; a/ ı .g; b/D .f ıg; aCf .b//. The
element a is called the change-of-connection element. A discussion of the origins
of these definitions can be found in the paper [Positsel0skiı̆ 1993], where the above
terminology first appeared (see also an earlier paper [Getzler and Jones 1990],
where the motivation was entirely different).

A left CDG-module M D .M; dM / over a CDG-ring B is a graded B-module
endowed with an odd derivation dM WM !M compatible with the derivation d
on B such that d2M .m/ D hm for all m 2M . Given a morphism of CDG-rings
.f; a/ WB!A and a CDG-module .M; d/ overA, the CDG-module .M; d 0/ overB
is defined by the rule d 0.m/D d.m/C am.

Given graded left B-modules M and N , homogeneous B-module morphisms
f WM !N of degree n are defined as homogeneous maps supercommuting with
the action of B; i.e., f .bm/D .�1/njbjbf .m/. When M and N are CDG-modules,
the homogeneous B-module morphisms M !N form a complex of abelian groups
with the differential d.f /.m/Dd.f .m//�.�1/jf jf .d.m//. The curvature-related
terms cancel out in the computation of the square of this differential, so one has
d2.f /D 0. Therefore, left CDG-modules over B form a DG-category.

Two aspects of the above definitions are worth pointing out. First, the CDG-rings
or modules have no cohomology modules, as their differentials do not square to
zero. Second, given a CDG-ring B , there is no natural way to define a CDG-module
structure on the free graded B-module B (though B is naturally a CDG-bimodule
over itself, in the appropriate sense).

We refer the reader to [Positselski 2011b, Section 3.1] or [Positselski 2010,
Sections 0.4.3–0.4.5] for more detailed discussions of the above notions. We will
not need to consider any gradings different from Z-gradings in this paper, though
all the general results will be equally applicable in the �-graded situation in the
sense of [Polishchuk and Positselski 2012, Section 1.1].

1.2. Quasicoherent CDG-algebras. Throughout this paper, unless specified other-
wise, X is a separated Noetherian scheme with enough vector bundles; in other
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words, it is assumed that every coherent sheaf on X is the quotient sheaf of a
locally free sheaf of finite rank. Note that the class of all schemes satisfying these
conditions is closed under the passages to open and closed subschemes [Orlov 2004,
Section 1.2] and contains all regular separated Noetherian schemes [Hartshorne
1977, Exercise III.6.8].

Recall the definition of a quasicoherent CDG-algebra from [Positselski 2011b,
Appendix B]. A quasicoherent CDG-algebra B over X is a graded quasicoherent
OX -algebra such that for each affine open subscheme U �X , the graded ring B.U /
is endowed with a structure of CDG-ring, i.e., a (not necessarily OX -linear) odd
derivation d W B.U /! B.U / of degree 1 and an element h 2 B2.U /. For each pair
of embedded affine open subschemes U �V �X , an element aUV 2B1.U / is fixed
such that the restriction morphism B.V /! B.U / together with the element aUV
form a morphism of CDG-rings. The obvious compatibility condition is imposed
for triples of embedded affine open subschemes U � V �W �X .

A quasicoherent left CDG-module M over B is an OX -quasicoherent (or, equiva-
lently, B-quasicoherent) sheaf of graded left modules over B together with a family
of differentials d WM.U /!M.U / defined for all affine open subschemes U �X
such that M.U / is a CDG-module over B.U / and the appropriate compatibility con-
dition holds with respect to the restriction morphisms of CDG-rings B.V /! B.U /.
Specifically, for a quasicoherent left CDG-module M, one should have

d.s/jU D d.sjU /C aUV sjU for any s 2M.V /:

Quasicoherent left CDG-modules over a quasicoherent CDG-algebra B form a
DG-category [Positselski 2011b]. The complex of morphisms between CDG-mod-
ules N and M is the graded abelian group of homogeneous B-module morphisms
f WN!M with the differential d.f / defined locally as the supercommutator of f
with the differentials in N .U / and M.U /. We denote this DG-category by B-qcoh.

We will call a quasicoherent graded algebra B over X Noetherian if the graded
ring B.U / is left Noetherian for any affine open subscheme U �X . Equivalently,
B is Noetherian if the abelian category of quasicoherent graded left B-modules is a
locally Noetherian Grothendieck category. In this case, the full DG-subcategory in
B-qcoh formed by CDG-modules whose underlying graded B-modules are coherent
(i.e., finitely generated over B) is denoted by B-coh.

Given a quasicoherent graded left B-module M and a quasicoherent graded right
B-module N , one can define their tensor product N˝BM, which is a quasicoherent
graded OX -module. A quasicoherent graded left B-module M is called flat if the
functor �˝B M is exact on the abelian category of quasicoherent graded right
B-modules. Equivalently, M is flat if the graded left B.U /-module M.U / is flat for
any affine open subscheme U �X . The flat dimension of a quasicoherent graded
module M is the minimal length of its flat left resolution.
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The full DG-subcategory in B-qcoh formed by CDG-modules whose underlying
graded B-modules are flat is denoted by B-qcohfl, and the full subcategory formed by
CDG-modules whose underlying graded B-modules have finite flat dimension is de-
noted by B-qcohffd. The similarly defined DG-categories of coherent CDG-modules
are denoted by B-cohfl and B-cohffd.

All the above DG-categories of quasicoherent CDG-modules (and the similar
ones defined below in this paper) admit shifts and twists, and, in particular, cones.
It follows that their homotopy categories H 0.B-qcoh/, H 0.B-qcohfl/, H 0.B-coh/,
etc. are triangulated. Besides, to any finite complex (of objects and closed mor-
phisms) in one of these DG-categories, one can assign its total object, which is an
object of (i.e., a CDG-module belonging to) the same DG-category [Positselski
2011b, Section 1.2].

The DG-categories B-qcoh and B-qcohfl also admit infinite direct sums. Hence
in these two DG-categories one can totalize even an unbounded complex by taking
infinite direct sums along the diagonals.

The DG-category B-qcoh also admits infinite products (which one can obtain us-
ing the coherator construction from [Thomason and Trobaugh 1990, Section B.14]),
but these are not well-behaved (neither exact nor local), so we will not use them.

1.3. Derived categories of the second kind. The nonexistence of the cohomology
groups for curved structures stands in the way of the conventional definition of the
derived category of CDG-modules, which therefore does not seem to make sense.
The suitable class of constructions of derived categories for CDG-modules is that
of the derived categories of the second kind [Positselski 2010; 2011b].

Let B be a quasicoherent CDG-algebra over X ; assume that the quasicoherent
graded algebra B is Noetherian. Then a coherent CDG-module over B is called
absolutely acyclic if it belongs to the minimal thick subcategory of the homotopy
category of coherent CDG-modules H 0.B-coh/ containing the total CDG-modules
of all the short exact sequences of coherent CDG-modules over B (with closed
morphisms between them). The quotient category of H 0.B-coh/ by the thick sub-
category of absolutely acyclic CDG-modules is called the absolute derived category
of coherent CDG-modules over B and denoted by Dabs.B-coh/ [Positselski 2011b].

For any quasicoherent CDG-algebra B over X , a quasicoherent CDG-module
over B is called coacyclic if it belongs to the minimal triangulated subcategory of
the homotopy category of quasicoherent CDG-modules H 0.B-qcoh/ containing the
total CDG-modules of all the short exact sequences of quasicoherent CDG-modules
over B and closed under infinite direct sums. The quotient category of H 0.B-coh/
by the thick subcategory of coacyclic CDG-modules is called the coderived category
of quasicoherent CDG-modules over B and denoted by Dco.B-qcoh/ [Positselski
2010; 2011b].
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Given an exact subcategory E in the abelian category of quasicoherent graded
left B-modules, one can define the absolute derived category of left CDG-modules
over B with the underlying graded B-modules belonging to E as the quotient cat-
egory of the corresponding homotopy category by its minimal thick subcategory
containing the total CDG-modules of all the exact triples of CDG-modules with the
underlying graded B-modules belonging to E. The objects of the latter subcategory
are called absolutely acyclic with respect to E (or with respect to the DG-category
of CDG-modules with the underlying graded modules belonging to E) [Polishchuk
and Positselski 2012].

In particular, one defines the absolute derived categories Dabs.B-cohffd/ and
Dabs.B-cohfl/ as the quotient categories of the homotopy categories H 0.B-cohffd/

and H 0.B-cohfl/ by the thick subcategories of CDG-modules absolutely acyclic
with respect to B-cohffd and B-cohfl, respectively.

When the exact subcategory E is closed under infinite direct sums, the thick
subcategory of CDG-modules coacyclic with respect to E is the minimal triangulated
subcategory of the homotopy category CDG-modules with the underlying graded
modules belonging to E, containing the total CDG-modules of all the exact triples
of CDG-modules with the underlying graded modules belonging to E and closed
under infinite direct sums. The quotient category by this thick subcategory is called
the coderived category of left CDG-modules over B with the underlying graded
modules belonging to E [Positselski 2010; Polishchuk and Positselski 2012].

Thus one defines the coderived category Dco.B-qcohfl/ as the quotient categories
of the homotopy category H 0.B-qcohfl/ by the thick subcategory of CDG-modules
coacyclic with respect to B-qcohfl. A little more care is needed for the definition
of the coderived category Dco.B-qcohffd/ since the class of graded modules of
finite flat dimension is not in general closed under infinite direct sums. An object
M 2H 0.B-qcohffd/ is said to be coacyclic with respect to B-qcohffd if there exists
an integer d � 0 such that M is coacyclic with respect to the exact category of
quasicoherent CDG-modules of flat dimension at most d . The coderived category
of quasicoherent CDG-modules of finite flat dimension is, by the definition, the
quotient category of H 0.B-qcohffd/ by the above-defined thick subcategory of
coacyclic CDG-modules [Polishchuk and Positselski 2012, Section 3.2].

Remark 1.3. One may wonder whether coacyclicity (absolute acyclicity) of quasi-
coherent CDG-modules (of a certain class) is a local notion. One general approach
to this kind of problem is to consider the Mayer–Vietoris/Čech exact sequence

0 �!M �!
M
˛

jU˛�j
�
U˛

M �!
M
˛<ˇ

jU˛\Uˇ�j
�
U˛\Uˇ

M �! � � � �! 0

for a finite affine open covering U˛ of X . Since the inverse and direct images with
respect to affine open embeddings are exact and compatible with direct sums, they
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preserve coacyclicity (absolute acyclicity). Hence if the restrictions of M to all U˛
are coacyclic (absolutely acyclic), then so is M itself.

Alternatively, one can base this kind of argument on the implications of the
Noetherianness assumption, rather than the separatedness assumption. For this
purpose, one replaces a quasicoherent CDG-module M with its injective resolution
(see Lemma 1.7(b)) before writing down its Čech resolution. In this approach, the
covering need not be affine, as injective coacyclic objects are contractible, and
direct images preserve contractibility; but it is important that the restrictions to
open subschemes should preserve injectivity of quasicoherent graded B-modules
(see [Hartshorne 1966, Theorem II.7.18] and Theorem A.3; cf. [Thomason and
Trobaugh 1990, Appendix B]).

When one is working with coherent CDG-modules, the Čech sequence argument
is to be used in conjunction with Proposition 1.5 below. (Cf. Sections 1.10 and 3.2.)

1.4. Finite flat dimension theorem. The next theorem is our main technical result
on which the proofs in Section 2 are based.

Though we generally prefer the coderived categories of (various classes of)
infinitely generated CDG-modules over their absolute derived categories, technical
considerations sometimes force us to deal with the latter (see Remark 1.5). Therefore,
let Dabs.B-qcohfl/, Dabs.B-qcohffd/, and Dabs.B-qcoh/ denote the absolute derived
categories of (flat, of finite flat dimension, or arbitrary) quasicoherent CDG-modules
over a quasicoherent CDG-algebra B.

Theorem 1.4. (a) For any quasicoherent CDG-algebra B over X , the functor

Dco.B-qcohfl/ �! Dco.B-qcohffd/

induced by the embedding of DG-categories B-qcohfl! B-qcohffd is an equiv-
alence of triangulated categories.

(b) For any quasicoherent CDG-algebra B over X , the functor

Dabs.B-qcohfl/ �! Dabs.B-qcohffd/

induced by the embedding of DG-categories B-qcohfl! B-qcohffd is an equiv-
alence of triangulated categories.

(c) For any quasicoherent CDG-algebra B over X such that the underlying quasi-
coherent graded algebra B is Noetherian, the functor

Dabs.B-cohfl/ �! Dabs.B-cohffd/

induced by the embedding of DG-categories B-cohfl! B-cohffd is an equiva-
lence of triangulated categories.
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Proof. The proof follows that of [Polishchuk and Positselski 2012, Theorem 3.2]
(see also [Positselski 2010, Theorem 7.2.2]) with some modifications. We will
prove part (a); the proofs of parts (b) and (c) are similar. (Alternatively, parts (b)
and (c) can be deduced from Proposition 1.5(a) and (b) below.)

Given an affine open subscheme U �X and a graded module P over the graded
ring B.U /, one can construct the freely generated CDG-module GC.P / over the
CDG-ring B.U / in the way explained in [Positselski 2011b, proof of Theorem 3.6].
The elements ofGC.P / are formal expressions of the form pCdq, where p, q 2P .
Given a quasicoherent graded module P over B, the CDG-modules GC.P.U //
glue together to form a quasicoherent CDG-module GC.P/ over B. For any
quasicoherent CDG-module M over B, there is a bijective correspondence between
morphisms of graded B-modules P!M and closed morphisms of CDG-modules
GC.P/!M over B. There is a natural short exact sequence of quasicoherent
graded B-modules P!GC.P/!PŒ�1�. The quasicoherent CDG-moduleGC.P/
is naturally contractible with the contracting homotopy tP given by the composition

GC.P/ �! PŒ�1� �!GC.P/Œ�1�:

Due to our assumption on X , for any quasicoherent OX -module K over X there
exists a surjective morphism E ! K onto K from a direct sum E of locally free
sheaves of finite rank on X . Hence for any quasicoherent graded B-module M
there is a surjective morphism onto M from a flat quasicoherent graded B-module
P D

L
n B˝OX EnŒn�, and for any quasicoherent CDG-module M over B there is

a surjective closed morphism onto M from the CDG-module GC.P/ 2 B-qcohfl.
(In fact, parts (a) and (b) of this theorem can be proven without the assumption
of enough vector bundles on X since there are always enough flat sheaves; see
Remark 2.6 and Lemma A.1.)

Now the construction from [loc. cit., proof of Theorem 3.6] provides for any
object M of B-qcohffd a closed morphism onto M from an object of B-qcohfl

with the cone absolutely acyclic with respect to B-qcohffd. To obtain this mor-
phism, one picks a finite left resolution of M consisting of objects from B-qcohfl

with closed morphisms between them, and takes the total CDG-module of this
resolution. By [loc. cit., Lemma 1.6], it follows that the triangulated category
Dco.B-qcohffd/ is equivalent to the quotient category of H 0.B-qcohfl/ by its inter-
section in H 0.B-qcohffd/ with the thick subcategory of CDG-modules coacyclic
with respect to B-qcohffd. It only remains to show that any object of H 0.B-qcohfl/

that is coacyclic with respect to B-qcohffd is coacyclic with respect to B-qcohfl.
Let us call a quasicoherent CDG-module M over B d -flat if its underlying

quasicoherent graded B-module M has flat dimension not exceeding d . A d -flat
quasicoherent CDG-module is said to be d -coacyclic if it is homotopy equivalent
to a CDG-module obtained from the total CDG-modules of exact triples of d -flat
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CDG-modules using the operations of cone and infinite direct sum. Our goal is to
show that any 0-flat d -coacyclic CDG-module is 0-coacyclic. For this purpose, we
will prove that any .d�1/-flat d -coacyclic CDG-module is .d�1/-coacyclic; the
desired assertion will then follow by induction.

It suffices to construct for any d -coacyclic CDG-module M a .d�1/-coacyclic
CDG-module L with a .d�1/-coacyclic CDG-submodule K such that the quotient
CDG-module L=K is isomorphic to M. Then if M is .d�1/-flat, it would follow
that both the cone of the morphism K! L and the total CDG-module of the exact
triple K! L!M are .d�1/-coacyclic, so M also is. The construction is based
on four lemmas similar to those in [Polishchuk and Positselski 2012, Section 3.2].

Lemma A. Let M be the total CDG-module of an exact triple of d -flat quasico-
herent CDG-modules M0 !M00 !M000 over B. Then there exists a surjective
closed morphism onto M from a contractible 0-flat CDG-module P with a .d�1/-
coacyclic kernel K.

Proof. Choose 0-flat quasicoherent CDG-modules P 0 and P 000 such that there
exist surjective closed morphisms P 0!M0 and P 000!M00. Then there exists a
surjective morphism from the exact triple of CDG-modules P 0! P 0˚P 000! P 000

onto the exact triple M0!M00!M000. The rest of the proof is similar to that
in [Polishchuk and Positselski 2012]. �

Lemma B. (a) Let K0 � L0 and K00 � L00 be .d�1/-coacyclic CDG-submodules
in .d�1/-coacyclic CDG-modules, and let L0=K0! L00=K00 be a closed mor-
phism of CDG-modules. Then there exists a .d�1/-coacyclic CDG-module L
with a .d�1/-coacyclic CDG-submodule K such that

L=K' cone.L0=K0! L00=K00/:

(b) In the situation of (a), assume that the morphism L0=K0! L00=K00 is injective
with a d -flat cokernel M0. Then there exists a .d�1/-coacyclic CDG-module
L0 with a .d�1/-coacyclic CDG-submodule K0 such that L0=K0 'M0.

Proof. The proof is similar to that in [Polishchuk and Positselski 2012]. �

Lemma C. For any contractible d -flat CDG-module M there exists a surjec-
tive closed morphism onto M from a contractible 0-flat CDG-module L with a
.d�1/-coacyclic kernel K.

Proof. Let p W P !M be a surjective morphism onto the quasicoherent graded
B-module M from a flat quasicoherent graded B-module P , and Qp WGC.P/!M
be the induced surjective closed morphism of quasicoherent CDG-modules. Let
t WM!M be a contracting homotopy for M and tP WGC.P/!GC.P/ be the
natural contracting homotopy for GC.P/. Then QuD QptP � t Qp W GC.P/!M is
a closed morphism of quasicoherent CDG-modules of degree �1. Denote by u
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the restriction of Qu to P � GC.P/. There exists a surjective morphism from a
flat quasicoherent graded B-module Q onto the fibered product of the morphisms
p WP!M and u WP!M. Hence we obtain a surjective morphism of quasicoherent
graded B-modules q WQ! P and a morphism of quasicoherent graded B-modules
v WQ! P of degree �1 such that uq D pv.

The morphism q induces a surjective closed morphism of quasicoherent CDG-
modules Qq W GC.Q/! GC.P/. The morphism Qq is homotopic to zero with the
natural contracting homotopy QqtQ D tP Qq. The morphism v induces a closed
morphism of CDG-modules Qv W GC.Q/! GC.P/ of degree �1. The morphism
tP Qq � Qv is another contracting homotopy for Qq. The latter homotopy forms a
commutative square with the morphisms Qp, Qp Qq, and the contracting homotopy t
for the CDG-module M.

Let N be the kernel of the morphism Qp Qq WGC.Q/!M and K be the kernel of the
morphism Qp WGC.P/!M. Then the natural surjective closed morphism r WN!K
is homotopic to zero; the restriction of the map tP Qq� Qv provides the contracting
homotopy that we need. In addition, the kernel GC.ker q/ of the morphism r is
contractible. So the cone of the morphism r is isomorphic to K˚N Œ1�, and on the
other hand, there is an exact triple GC.ker q/Œ1�! cone.r/! cone.idK/. Since K
is .d�1/-flat and ker q is flat, this proves that K is .d�1/-coacyclic. It remains to
take LDGC.P/. �
Lemma D. Let M ! M0 be a homotopy equivalence of d -flat CDG-modules
such that M0 is the quotient CDG-module of a .d�1/-coacyclic CDG-module by a
.d�1/-coacyclic CDG-submodule. Then M is also such a quotient.

Proof. The proof is similar to that in [Polishchuk and Positselski 2012]. �
It is clear that the property of a CDG-module to be presentable as the cokernel

of an injective closed morphism of .d�1/-coacyclic CDG-modules is stable under
infinite direct sums. This finishes our construction and the proof of Theorem. �
Remark 1.4. The assertion of part (c) of Theorem 1.4 can be equivalently rephrased
with flat modules replaced by locally projective ones. Indeed, a finitely presented
module over a ring is flat if and only if it is projective.

In the infinitely generated situation of parts (a) and (b), flatness of quasicoherent
sheaves is different from their local projectivity (which is a stronger condition), but
the assertions remain true after one replaces the former with the latter. The same
applies to Proposition 1.5(a) below. Indeed, by Theorem A.2, for any quasicoherent
graded algebra B over an affine scheme U , projectivity of a graded module over the
graded ring B.U / is a local notion. Taking this fact into account, our proof goes
through for locally projective quasicoherent graded modules in place of flat ones
and the locally projective dimension (defined as the minimal length of a locally
projective resolution) in place of the flat dimension.
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When B D OX , local projectivity of quasicoherent modules is equivalent to
local freeness [Bass 1963, Corollary 4.5]. Furthermore, in this case, assuming
additionally that X has finite Krull dimension, the classes of quasicoherent sheaves
of finite flat dimension and of finite locally projective dimension coincide [Raynaud
and Gruson 1971, Corollaire II.3.3.2].

1.5. Fully faithful embedding. The next proposition is stronger than Theorem 1.4
in some respects, and is proven by an entirely different technique.

Proposition 1.5. (a) For any quasicoherent CDG-algebra B over X , the functor
Dabs.B-qcohfl/! Dabs.B-qcoh/ induced by the embedding of DG-categories
B-qcohfl! B-qcoh is fully faithful.

Furthermore, let B be a quasicoherent CDG-algebra over X such that the
underlying quasicoherent graded algebra B is Noetherian. Then

(b) the functor Dabs.B-cohfl/!Dabs.B-coh/ induced by the embedding of DG-cat-
egories B-cohfl! B-coh is fully faithful;

(c) the functor Dabs.B-coh/!Dabs.B-qcoh/ induced by the embedding of DG-cat-
egories B-coh! B-qcoh is fully faithful;

(d) the functor Dabs.B-coh/! Dco.B-qcoh/ induced by the embedding of DG-cat-
egories B-coh! B-qcoh is fully faithful and its image forms a set of compact
generators for Dco.B-qcoh/.

Proof. The proof of part (d) in the case when X is affine can be found in [Positselski
2011b, Section 3.11] (the part concerning compact generation belongs to D. Arinkin).
The proof in the general case is similar, and part (c) can be also proven in the way
similar to [loc. cit., Theorem 3.11.1]. Part (b) in the affine case is easy and follows
from the semiorthogonality property of CDG-modules with projective underly-
ing graded modules and absolutely acyclic/contraacyclic CDG-modules [loc. cit.,
Theorem 3.5(b)] since finitely generated flat modules over a Noetherian ring are
projective. A detailed proof of part (b) in the general case is given below; and the
proof of part (a) (which does not automatically simplify in the affine case) is similar.

We will show that any morphism E! L from a CDG-module E 2H 0.B-cohfl/

to a CDG-module L 2H 0.B-coh/ absolutely acyclic with respect to B-coh can be
annihilated by a morphism P! E from a CDG-module P 2H 0.B-cohfl/ with a
cone of the morphism P! E being absolutely acyclic with respect to B-cohfl. By
the definition, the CDG-module L is a direct summand of a CDG-module homotopy
equivalent to a CDG-module obtained from the totalizations of exact triples of
CDG-modules in B-coh using the operation of passage to the cone of a closed
morphism repeatedly. It suffices to consider the case when L itself is obtained from
totalizations of exact triples using cones. We proceed by induction in the number
of operations of passage to the cone in such a construction of L.
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So we assume that there is a distinguished triangle K! L!M! K Œ1� in
H 0.B-coh/ such that M is the total CDG-module of an exact triple of CDG-modules
in B-coh, while the CDG-module K has the desired property with respect to mor-
phisms into it from all CDG-modules F 2H 0.B-cohfl/. If we knew that the object
M also has the same property, it would follow that the composition E!L!M can
be annihilated by a morphism F ! E with F 2H 0.B-cohfl/ and a cone absolutely
acyclic with respect to B-cohfl. The composition F ! E ! L then factorizes
through K, and the morphism F ! K can be annihilated by a morphism P! F
with P 2H 0.B-cohfl/ and a cone absolutely acyclic with respect to B-cohfl. The
composition P! F ! E provides the desired morphism P! E .

Thus it remains to construct a morphism F ! E with the required properties
annihilating a morphism E!M, where M is the total CDG-module of an exact
triple of CDG-modules U!V!W . For any graded module N over B, morphisms
of graded B-modules N!M of degree n are represented by triples .f; g; h/, where
f WN ! U is a morphism of degree nC 1, g WN ! V is a morphism of degree n,
and h WN !W is a morphism of degree n� 1. Denote the closed morphisms in
the exact triple U ! V!W by j W U ! V and k W V!W .

Lemma E. Let N be a CDG-module over B and M be the total CDG-module of
an exact triple of CDG-modules U ! V!W as above. Then

(a) the differential of a morphism of graded B-modules N !M of degree n
represented by a triple .f; g; h/ is given by the rule

d.f; g; h/D .�df; �jf C dg; kg� dh/I

(b) when .f; g; h/ is a closed morphism of CDG-modules of degree n and the
morphism of graded B-modules h W N ! W can be lifted to a morphism
of graded B-modules t W N ! V of degree n� 1, the morphism .f; g; h/ is
homotopic to zero.

Proof. We know that the complex of morphisms in the DG-category of CDG-modules
HomB.N ;M/ is the total complex of the bicomplex of abelian groups

HomB.N ;U/ �! HomB.N ;V/ �! HomB.N ;W/:

The formula in (a) is the formula for the differential of a total complex.
Furthermore, the sequence 0!HomB.N ;U/!HomB.N ;V/!HomB.N ;W/

is exact. Let Hom0B.N ;W/ denote the cokernel of the morphism of complexes
HomB.N ;U/!HomB.N ;V/; then Hom0B.N ;W/ is a subcomplex of HomB.N ;W/

and the total complex of the bicomplex

HomB.N ;U/ �! HomB.N ;V/ �! Hom0B.N ;W/
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is an acyclic subcomplex of HomB.N ;M/. Hence any cocycle in HomB.N ;M/

that belongs to this subcomplex is a coboundary.
To present the same argument using our letter notation for morphisms, assume

that kt D h. Then k.dt �g/D dh�kgD 0, so there exists a morphism of graded
B-modules s WN ! U of degree n such that dt�gD js. Then jdsD�dgD�jf ;
hence ds D�f and d.s; t; 0/D .f; g; h/. �

Recall the notation GC.Q/ for the CDG-module freely generated by a graded
B-module Q (see the beginning of the proof of Theorem 1.4).

Lemma F. Let M be the total CDG-module of an exact triple of CDG-modules
U ! V!W as above, and let Q be a graded B-module. Assume that a morphism
of graded B-modules p W Q !M of degree n with the components .f; g; h/ is
given such that the component h WQ!W can be lifted to a morphism of graded
B-modules t WQ! V of degree n� 1. Let Qp WGC.Q/!M be the induced closed
morphism of CDG-modules of degree n and . Qf ; Qg; Qh/ be its three components. Then
the morphism of graded B-modules Qh WGC.Q/!W can be lifted to a morphism
of graded B-modules Qt WGC.Q/! V of degree n� 1.

Proof. Notice that any closed morphism of CDG-modules GC.Q/!M is homo-
topic to zero since the CDG-module GC.Q/ is contractible. The conclusion of the
lemma is stronger, and we will need its full strength. The argument consists of a
computation in the letter notation for morphisms.

For any CDG-module N over B, morphisms of graded B-modules

Qr WGC.Q/ �!N

of degree n� 1 are uniquely determined by their restriction to Q and the restriction
to Q of their differential d Qr , which can be arbitrary morphisms of graded B-modules
Q!N of degrees n� 1 and n, respectively. Extend our morphism t WQ! V to a
morphism of graded B-modules Qt WGC.Q/!V of degree n�1 such that .d Qt /jQDg.
Then k Qt jQ D kt D hD QhjQ and .d.k Qt //jQ D k.d Qt /jQ D kgD k QgjQ D .d Qh/jQ by
Lemma E(a), and hence k Qt D Qh. �

Now represent a closed morphism E !M by a triple .f; g; h/ of morphisms
of degrees 1, 0, and �1, respectively. Let Q be a flat coherent graded B-module
mapping surjectively onto the fibered product of the morphisms k W V !W and
h W E!W (see the beginning of the proof of Theorem 1.4 again). Then there is a
surjective morphism of graded B-modules q WQ! E and its composition with the
morphism h W E!W can be lifted to a morphism of graded B-modules t WQ! V
of degree �1. Consider the induced morphism of CDG-modules Qq WGC.Q/! E .
By Lemma F, the composition h Qq WGC.Q/!W can be lifted to a morphism of
graded B-modules Qt WGC.Q/! V of degree �1.
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Let R denote the kernel of the closed morphism Qq. Then the cone F of the
embedding R!GC.Q/ maps naturally onto E with the cone absolutely acyclic
with respect to B-cohfl. As a graded B-module, the CDG-module F is isomorphic to
GC.Q/˚RŒ1�; the composition F!E!M factorizes through the direct summand
GC.Q/, where it is defined by the triple .f Qq; g Qq; h Qq/. Since the morphism h Qq

can be lifted to V , so can the corresponding component F !W of the morphism
F !M. Thus the latter morphism is homotopic to zero by Lemma E(b). �

In some cases, the use of Lemma F in the above proof of part (b) can be avoided.
Assume that X is a projective scheme over a Noetherian ring and the category of
coherent graded B-modules is equivalent to the category of coherent modules over
some coherent (graded) OX -algebra A. In this situation, one takes Q to be the
graded B-module corresponding to the (graded) A-module induced from a large
enough finite direct sum of (shifts of) copies of a sufficiently negative invertible
OX -module; then there is a surjective morphism of graded B-modules Q! E and
any morphism of graded B-modules GC.Q/!W lifts to V .

Remark 1.5. We do not know how to extend the proof of Proposition 1.5 (a) and (b)
to the coderived categories of quasicoherent CDG-modules. Instead, this argument
appears to be well-suited for use with the contraderived categories (see [Positselski
2011b, Section 3.3] for the definition). In particular, it allows to show that the
contraderived category of left CDG-modules over a CDG-ring B with a right
coherent underlying graded ring is equivalent to the contraderived category of
CDG-modules whose underlying graded B-modules are flat (cf. [loc. cit., paragraph
after the proof of Theorem 3.8]).

This is the main reason why we sometimes find it easier to deal with the absolute
derived rather than the coderived categories of infinitely generated CDG-modules
(cf. Remark 2.8). On the other hand, for the coderived category of quasicoherent
CDG-modules we have the compact generation result (part (d) of Proposition 1.5),
the results and arguments of Sections 1.7, 1.10, 2.5, 2.9, etc. The conditions under
which these two versions of the construction of the derived category of the second
kind for a given class of CDG-modules lead to the same triangulated category are
discussed below in Section 1.6.

1.6. Finite homological dimension theorem. Let B-qcohlp denote the DG-cate-
gory of quasicoherent CDG-modules over B whose underlying graded B-modules
are locally projective (see Remark 1.4 and Theorem A.2). Denote by Dco.B-qcohlp/

and Dabs.B-qcohlp/ the corresponding coderived and absolute derived categories.

Theorem 1.6. The triangulated categories Dco.B-qcohlp/ and Dabs.B-qcohlp/ coin-
cide; i.e., every CDG-module over B that is coacyclic with respect to B-qcohlp is
also absolutely acyclic with respect to B-qcohlp.
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Proof. The reason for this assertion to be true is that the exact category of lo-
cally projective graded B-modules has finite homological dimension [Orlov 2004,
Lemma 1.12] and exact functors of infinite direct sums. If this exact category also
had enough injectives, the simple argument from [Positselski 2011b, Theorem 3.6(a)
and Remark 3.6] would suffice to establish the desired Dco D Dabs isomorphism
for it (see also [Positselski 2010, Remark 2.1]). The lengthy argument below is
designed to provide a way around the injective objects issue in this kind of proof.

Our aim is to show that for any closed morphism P! L from a CDG-module
P 2 B-qcohlp to a CDG-module L absolutely acyclic with respect to B-qcohlp, there
exists an exact sequence 0!Qd!Qd�1!� � �!Q0!P! 0 of CDG-modules
and closed morphisms in B-qcohlp such that the induced morphism from the total
CDG-module of Qd ! � � � ! Q0 to L is homotopic to zero. Here d is a fixed
integer equal to the homological dimension of the exact category of locally projective
graded B-modules, which does not exceed the number of open subsets in an affine
covering of X minus one.

Taking P DL and the morphism P!L to be the identity, we will then conclude
that P is isomorphic to a direct summand of the total CDG-module of Qd ! � � �!
Q0! P in H 0.B-qcohlp/. Hence an object of H 0.B-qcohlp/ is absolutely acyclic
with respect to B-qcohlp if and only if it is isomorphic to a direct summand of
the total CDG-module of a .dC2/-term exact sequence of CDG-modules from
B-qcohlp with closed morphisms between them. It will immediately follow that the
class of CDG-modules absolutely acyclic with respect to B-qcohlp is closed under
infinite direct sums, so it coincides with the class of coacyclic CDG-modules.

We can suppose that there exists a sequence of distinguished triangles

Ki�1 �! Ki �!Mi �! Ki�1Œ1�

in H 0.B-qcohlp/ such that K0 D 0, Kn D L, and Mi is the total CDG-module of
an exact triple Ui ! Vi !Wi of CDG-modules from B-qcohlp for all 1 � i � n.
We will start with constructing an exact sequence 0!Q0n! � � � !Q00! P! 0

with the above properties, but of the length n rather than d . Then we will use the
finite homological dimension property of locally projective graded B-modules in
order to obtain the desired resolution Q� of a fixed length d from a resolution Q0

�
.

Lemma G. Let M be the total CDG-module of an exact triple U ! V !W of
CDG-modules from B-qcohlp and K! L!M!K Œ1� be a distinguished triangle
in H 0.B-qcohlp/. Then for any CDG-module P 2 B-qcohlp and a morphism P! L
in H 0.B-qcohlp/ there exists an exact triple R! Q! P of CDG-modules from
B-qcohlp and a morphism RŒ1�! K in H 0.B-qcohlp/ such that the composition
F ! P! L, where F is the cone of the closed morphism R!Q, is equal to the
composition F !RŒ1�! K! L in H 0.B-qcohlp/.
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Proof. The argument is based on Lemmas E and F from Section 1.5. We can assume
that L is the cone of a closed morphism MŒ�1�! K and fix a closed morphism
P ! L representing the given morphism in the homotopy category. Arguing as
in the proof of Proposition 1.5, we can construct a surjective closed morphism
Q0 ! P onto P from a CDG-module Q0 2 B-qcohlp such that the composition
Q0!P!L!M!WŒ�1� lifts to a morphism of graded B-modules Q0!VŒ�1�.
Here it suffices to apply the functor GC to the fibered product of the morphisms of
graded B-modules P!WŒ�1� and VŒ�1�!WŒ�1� and use Lemma F.

Then the morphism Q0!M is homotopic to zero with a natural contracting
homotopy (provided by the proof of Lemma E), so the morphism Q0!L factorizes,
up to a homotopy, as the composition of a naturally defined closed morphism
Q0! K and the closed morphism K! L. Set Q to be the cocone of the closed
morphism Q0! K; then we have a surjective closed morphism Q!Q0 such that
the composition Q!Q0! K is homotopic to zero.

Let R be kernel of the morphism Q! P and F be the cone of the morphism
R! Q; then there is a natural closed morphism F ! P . Using Lemma E and
arguing as in the end of the proof of Proposition 1.5 again, we can conclude that
the composition F ! P! L!M is homotopic to zero. Indeed, the composition
F !M!WŒ�1� lifts to a graded B-module morphism F ! VŒ�1� since F '
Q˚RŒ�1� as a graded B-module, the morphism F !M factorizes through the
projection of F onto Q, and the morphism Q! Q0 ! WŒ�1� lifts to a graded
B-module morphism Q!Q0! VŒ�1� by our construction.

Notice that the contracting homotopy that we have obtained for the closed
morphism F ! M forms a commutative diagram with the closed morphisms
Q! F , Q!Q0, and the contracting homotopy that we have previously had for
the closed morphism Q0!M (since so do the liftings F!VŒ�1� and Q0!VŒ�1�).
This allows to factorize, up to a homotopy, the closed morphism F ! L as the
composition of a closed morphism F ! K and the closed morphism K! L in
such a way that the morphism F ! K forms a commutative diagram with the
closed morphisms Q! F , Q! Q0, and the closed morphism Q0! K that we
have previously constructed. The composition Q! F ! K, being equal to the
composition Q! Q0 ! K, is homotopic to zero; hence the morphism F ! K
factorizes through the closed morphism F !RŒ1� in H 0.B-qcohlp/. �

Applying Lemma G to the morphism P ! L and the distinguished triangle
Kn�1!L!Mn!Kn�1, we obtain an exact triple R00!Q00!P and a morphism
R00Œ1�!Kn�1 in H 0.B-qcohlp/. Applying the same lemma again to the morphism
R00Œ1�!Kn�1 and the distinguished triangle Kn�2!Kn�1!Mn�1!Kn�2Œ1�,
we construct an exact triple R01 ! Q01 ! R00 and a morphism R01Œ2� ! Kn�2,
etc. Finally we obtain an exact triple R0n�1 ! Q0n�1 ! R0n�2 and a morphism
R0n�1Œn�! K0 D 0.
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Let us check that the natural morphism from the total CDG-module of the
complex 0! R0n�1 ! Q0n�1 ! � � � ! Q00 to the CDG-module L is homotopic
to zero. Denote this morphism by fn. It factorizes naturally through the cone
F0 of the closed morphism R00! Q00, and the morphism F0! L is homotopic
to the composition F0! R00Œ1�! Kn�1! L. Hence, up to the homotopy, the
morphism fn factorizes through the morphism fn�1 from the total CDG-module of
the complex 0!R0n�1!Q0n�1! � � � !Q01 to Kn�1 induced by the morphism
R00Œ1�!Kn�1. Continuing to argue in this way, we conclude that the morphism f

factorizes, up to a homotopy, through the morphism f0 WR0n�1Œn�! K0 D 0.
It remains to “cut” our exact sequence of an unknown length n to a fixed size d .

For this purpose, we will assume that n > d and construct from our exact sequence
of length n another exact sequence with the same properties, but of the length n�1.
This part of the argument is based on the following lemma.

Lemma H. For any CDG-module M 2 B-qcohlp, locally projective graded B-mod-
ule E , and a homogeneous surjective morphism of locally projective graded B-mod-
ules E!M, there exist a CDG-module Q2B-qcohlp, a surjective closed morphism
of CDG-modules Q !M, and a homogeneous surjective morphism of locally
projective graded B-modules Q! E such that the triangle Q! E!M commutes.

Proof. For any open subscheme U � X , one can simply define Qi .U / as the
abelian group of all pairs .e02E iC1.U /; e2E i .U // such that df .e/Df .e0 /, where
f denotes the morphism of graded B-modules E!M and d is the differential in M.
The action of B in Q is defined by the formula b.e0; e/D ..�1/jbjbe0Cd.b/e; be/;
the differential in Q is given by the obvious rule d.e0; e/D .he; e0/. The morphism
Q! E is defined as .e0; e/ 7�! e; the morphism Q!M, given by .e0; e/ 7�! f .e/,
obviously commutes with the differentials.

It remains to check that the graded B-module Q is locally projective. This can
be done by comparing the above construction with the constructions of the freely
(co)generated CDG-modules GC.E/ and G�.E/ from [Positselski 2011b, proof of
Theorem 3.6] (see the beginning of the proof of Theorem 1.4). One can simply
define G�.E/ as being isomorphic to GC.E/Œ1�. Since M is a CDG-module, there
is a natural closed morphism of CDG-modules M!G�.M/. The CDG-module Q
is the fibered product of the surjective closed morphism of CDG-modules G�.E/!
G�.M/ and the closed morphism M!G�.M/; hence the graded B-module Q
is locally projective. The morphism Q! E is induced by the natural morphism of
graded B-modules G�.E/! E . It forms a commutative diagram with the morphism
E!M, since the composition M!G�.M/!M is the identity morphism. �

The exact sequence of CDG-modules

0 �!R0n�1 �!Q0n�1 �! � � � �!Q00 �! P �! 0
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represents a certain Yoneda Ext class of degree n between the locally projective
graded B-modules P and R0n�1. Since the homological dimension of the exact
category of such B-modules is equal to d and we assume that n > d , this Ext class
has to vanish. This means that there exists an exact sequence of locally projective
graded B-modules 0 ! R0n�1 ! En�1 ! � � � ! E0 ! P ! 0 mapping to our
original exact sequence, with the maps on the rightmost and leftmost terms being
the identity maps, such that the embedding of B-modules R0n�1! En�1 splits.

As explained in [Positselski 2011a, proof of Lemma 4.4], one can assume the
morphisms Ei !Q0i to be surjective. Applying Lemma H, we obtain a surjective
closed morphism of CDG-modules Q0!Q00 and a morphism of graded B-modules
Q0! E0 forming a commutative triangle with the morphism E0!Q00. Applying
Lemma H to the surjective morphism of fibered products Q0�E0E1!Q0�Q00Q

0
1,

we obtain a surjective closed morphism Q1!Q01 and a closed morphism Q1!Q0
forming a commutative square with the closed morphisms Q0!Q00 and Q01!Q00.
Besides, the sequence Q1!Q0! P is exact at Q0. We also obtain a morphism
of graded B-modules Q1! E1 forming a commutative triangle with the morphisms
to Q01 and a commutative square with the morphisms to E0.

Proceeding in this way, we construct a sequence Qn�2! � � � !Q0! P! 0,
which is exact at all the middle terms, maps onto the sequence Q0n�2 ! � � � !
Q00! P by closed morphisms, and maps into the sequence En�2! � � � ! E0! P
so that the triangle of the maps of sequences commutes. Finally, notice that
En�1 ' En�2 �Q0n�2 Q

0
n�1, and set Qn�1 D Qn�2 �Q0n�2 Q

0
n�1. Then the exact

sequence of CDG-modules 0!R0n�1!Qn�1! � � � !Q0! P! 0 maps onto
the exact sequence 0!R0n�1!Q0n�1!� � �!Q00!P! 0 by closed morphisms,
and this map of exact sequences factorizes through the exact sequence of graded
B-modules 0! R0n�1 ! En�1 ! � � � ! E0 ! P ! 0. The composition of the
morphism Qn�1!En�1 with the splitting En�1!R0n�1 of the embedding R0n�1!
En�1 provides a graded B-module splitting Qn�1! R0n�1 of the embedding of
CDG-modules R0n�1!Qn�1.

Denote by Rn�2 the image of the morphism of CDG-modules Qn�1!Qn�2.
The morphism from the total CDG-module of the complex R0n�1!Q0n�1!���!Q00
to the CDG-module L is homotopic to zero; hence so is the morphism to L
from the total CDG-module of the complex R0n�1 ! Qn�1 ! � � � ! Q0. The
latter morphism factorizes naturally through the total CDG-module of the complex
Rn�2 ! Qn�2 ! � � � ! Q0. The cone of this closed morphism between two
total CDG-modules is homotopy equivalent to the total CDG-module of the exact
triple R0n�1 ! Qn�1 ! Rn�2. Since this exact triple splits as an exact triple
of graded B-modules, its total CDG-module is contractible. Consequently, the
morphism between the total CDG-modules of R0n�1 ! Qn�1 ! � � � ! Q0 and
Rn�2!Qn�2! � � � !Q0 is a homotopy equivalence.
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It follows that the natural morphism from the total CDG-module of the resolution
Rn�2 ! Qn�2 ! � � � ! Q0 of the CDG-module P to the CDG-module L is
homotopic to zero, and we are done. �

So far we have only considered flat coherent CDG-modules over quasicoherent
CDG-algebras B whose underlying quasicoherent graded algebras are Noetherian.
But the latter restriction is not necessary, as flat and locally finitely presented
(or, which is equivalent, locally projective and finitely generated) quasicoherent
graded B-modules always form an exact subcategory of flat (or locally projective)
graded B-modules. The notation B-cohlp (understood in the obvious sense as
the DG-category of CDG-modules over B with coherent and locally projective
underlying graded B-modules) is synonymous with B-cohfl (see Remark 1.4).

Corollary 1.6. The functor Dabs.B-cohlp/! Dco.B-qcohlp/ induced by the embed-
ding of DG-categories B-cohlp! B-qcohlp is fully faithful.

Proof. When B is Noetherian, one can show that the functor Dabs.B-cohlp/ !

Dabs.B-qcohlp/ is fully faithful by comparing parts (a)–(c) of Proposition 1.5 (with
the flatness condition replaced by the local projectivity). In the general case, one
proves this assertion directly, using an argument similar to the proof of Proposi-
tion 1.5(a) and (b). Then it remains to use Theorem 1.6. �

When every flat quasicoherent graded module over B has finite locally projective
dimension (see Remark 1.4), one has

Dco.B-qcohlp/' Dco.B-qcohfl/' Dco.B-qcohffd/;

Dabs.B-qcohlp/' Dabs.B-qcohfl/' Dabs.B-qcohffd/

by appropriate versions of Theorem 1.4. Consequently, it follows from Theorem 1.6
that Dabs.B-qcohfl/D Dco.B-qcohfl/ and Dabs.B-qcohffd/D Dco.B-qcohffd/ in this
case. Thus the functor Dabs.B-cohfl/! Dco.B-qcohfl/ is fully faithful; when B is
Noetherian, so is the functor Dabs.B-cohffd/! Dco.B-qcohffd/.

1.7. Gorenstein case. Here we establish a sufficient condition for the functor
Dco.B-qcohfl/! Dco.B-qcoh/ to be an equivalence of triangulated categories.

Let B-qcohinj denote the full DG-subcategory in B-qcoh consisting of the CDG-
modules whose underlying quasicoherent graded B-modules are injective. Fur-
thermore, let B-qcohfid be the full DG-subcategory in B-qcoh consisting of the
CDG-modules whose underlying quasicoherent graded B-modules have finite injec-
tive dimension (i.e., admit a finite right resolution by injective quasicoherent graded
B-modules). Let Dabs.B-qcohfid/ and Dco.B-qcohfid/ denote the corresponding
derived categories of the second kind. (The difficulty in the definition of the latter
category, similar to the difficulty in the definition of Dco.B-qcohffd/ discussed in
Section 1.3, does not actually arise, as it is clear from part (a) of the next lemma.)
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Lemma 1.7. (a) For any quasicoherent CDG-algebra B over X , the natural
functorsH 0.B-qcohinj/!Dabs.B-qcohfid/!Dco.B-qcohfid/ are equivalences
of triangulated categories.

(b) Let B be a quasicoherent CDG-algebra over X whose underlying quasico-
herent graded algebra B is Noetherian. Then the functor H 0.B-qcohinj/!

Dco.B-qcoh/ induced by the embedding B-qcohinj! B-qcoh is an equivalence
of triangulated categories.

Proof. Part (a) is provided by [Positselski 2011b, Theorem and Remark in Sec-
tion 3.6]. Part (b) is a particular case of [loc. cit., Theorem and Remark in Sec-
tion 3.7] since the class of injective quasicoherent graded B-modules is closed
under infinite direct sums in its assumptions. (Cf. [Lin and Pomerleano 2013,
Proposition 2.4].) �

Proposition 1.7. Let B be a quasicoherent CDG-algebra over X such that the
quasicoherent graded algebra B is Noetherian and the classes of quasicoherent
graded B-modules of finite flat dimension and of finite injective dimension coincide.
Then the functors Dabs.B-qcohfl/! Dco.B-qcohfl/! Dco.B-qcoh/ induced by the
embedding B-qcohfl! B-qcoh are equivalences of triangulated categories.

Proof. Since B-qcohffdDB-qcohfid, the isomorphism of categories Dabs.B-qcohffd/D

Dco.B-qcohffd/ follows from part (a) of Lemma 1.7. Applying Theorem 1.4, we
obtain the isomorphism of categories Dabs.B-qcohfl/! Dco.B-qcohfl/. Similarly, it
suffices to compare parts (a) and (b) of Lemma 1.7 in order to conclude that the
functor Dco.B-qcohfid/! Dco.B-qcoh/ is an equivalence of categories; hence so
are the functors Dco.B-qcohfl/! Dco.B-qcohffd/! Dco.B-qcoh/. (Cf. [Positselski
2011b, Section 3.9].) �

1.8. Pull-backs and push-forwards. Let f W Y !X be a morphism of separated
Noetherian schemes, BX be a quasicoherent CDG-algebra over X , and BY be a
quasicoherent CDG-algebra over Y . A morphism of quasicoherent CDG-algebras
BX!BY compatible with the morphism Y !X is the data of a CDG-ring morphism
BX .U /! BY .V / for each pair of affine open subschemes U � X and V � Y
such that f .V /� U . This data should satisfy the obvious compatibility condition:
for any affine open subschemes U 0 � U and V 0 � V such that f .V 0/ � U 0, the
square diagram of CDG-ring morphisms between the CDG-rings BX .U /, BX .U 0/,
BY .V /, and BY .V 0/ must be commutative.

Let BX ! BY be a morphism of quasicoherent CDG-algebras compatible with a
morphism of schemes Y !X . Then for any quasicoherent left CDG-module M
over BX , the quasicoherent graded left module f �MDBY f̋ �1BX f

�1M over BY
has a natural structure of quasicoherent CDG-module over BY . Similarly, for any
quasicoherent left CDG-module N over BY the quasicoherent graded left module
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f�N over BX has a natural structure of quasicoherent CDG-module over BX .
These CDG-module structures are defined in terms of the CDG-ring morphisms
BX .U /!BY .V /. The above constructions provide the underived direct and inverse
image functors, which can be viewed as triangulated functors f � WH 0.BX-qcoh/!
H 0.BY -qcoh/ and f� W H 0.BY -qcoh/! H 0.BX-qcoh/. The functor f� is right
adjoint to the functor f �.

The derived inverse image functor Lf � is in general only defined on CDG-mod-
ules satisfying certain finite flat dimension conditions. Restricting the functor f �

to flat CDG-modules, we obtain a triangulated functor

H 0.BX-qcohfl/ �!H 0.BY -qcohfl/;

which takes objects coacyclic with respect to BX-qcohfl to objects coacyclic with
respect to BY -qcohfl since the inverse image preserves infinite direct sums and short
exact sequences of flat quasicoherent graded modules. Hence there is the induced
triangulated functor Dco.BX-qcohfl/! Dco.BY -qcohfl/. Applying Theorem 1.4(a),
we construct the derived inverse image functor

Lf � W Dco.BX-qcohffd/ �! Dco.BY -qcohffd/:

Assuming that there are enough vector bundles on X and Y , and restricting
the functor f � to flat coherent CDG-modules, we obtain a triangulated functor
H 0.BX-cohfl/!H 0.BY -cohfl/, which induces a triangulated functor

Dabs.BX-cohfl/ �! Dabs.BY -cohfl/:

Assuming additionally that the quasicoherent graded algebras BX and BY are
Noetherian and applying Theorem 1.4(c), we construct the derived inverse image
functor

Lf � W Dabs.BX-cohffd/ �! Dabs.BY -cohffd/:

When f is an affine morphism, the direct image of quasicoherent sheaves is an ex-
act functor (preserving also infinite direct sums), so the functor f� WH 0.BY -qcoh/!
H 0.BX-qcoh/ induces a triangulated functor Dco.BY -qcoh/! Dco.BX-qcoh/. To
construct the derived direct image functor between the coderived categories in the
general case, we need to use injective resolutions.

From now on we assume that BX and BY are Noetherian; so Lemma 1.7(b) is ap-
plicable to BY . Restricting the functor f� to the full subcategoryH 0.BY -qcohinj/�

H 0.BY -qcoh/ and composing it with the localization functor H 0.BX-qcoh/ !
Dco.BX-qcoh/, we obtain the derived direct image functor

Rf� W D
co.BY -qcoh/ �! Dco.BX-qcoh/:
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Proposition 1.8. Assume that there are enough vector bundles on X and Y . Then
the functors Lf � W Dabs.BX-cohffd/! Dabs.BY -cohffd/ and Rf� W D

co.BY -qcoh/!
Dco.BX-qcoh/ are partially adjoint to each other in the following sense: for any
objects M2Dabs.BX-cohffd/ and N 2Dco.BY -qcoh/, there is a natural isomorphism
of abelian groups

HomDco.BX-qcoh/.�XM; Rf�N /' HomDco.BY -qcoh/.�Y Lf �M; N /;
where

�X W D
abs.BX-cohffd/ �! Dco.BX-qcoh/;

�Y W D
abs.BX-cohffd/ �! Dco.BY -qcoh/

are the natural fully faithful triangulated functors.

Proof. The functors �X and �Y are fully faithful by Theorem 1.4(c) and Proposi-
tion 1.5(b) and (d). Using Theorem 1.4(c), let us assume that M 2 Dabs.BX-cohfl/.
We can also assume that N 2H 0.BY -qcohinj/.

Then the left-hand side is the (filtered) inductive limit of

HomH0.BX-qcoh/.M
00; f�N /

over all morphisms M00!M inH 0.BX-qcoh/with a cone coacyclic with respect to
BX-qcoh. According to the proofs of Proposition 1.5(b) and [Positselski 2011b, The-
orem 3.11.1], any morphism from M to an object coacyclic with respect to BX-qcoh
factorizes through an object absolutely acyclic with respect to BX-cohfl. Thus the
above inductive limit coincides with the similar limit taken over all morphisms
M0!M in H 0.BX-cohfl/ with a cone absolutely acyclic with respect to BX-cohfl.

By [loc. cit., Theorem 3.5(a), Remark 3.5, and Lemma 1.3], the right-hand side
is isomorphic to HomH0.BY -qcoh/.f

�M;N / and to HomH0.BY -qcoh/.f
�M0;N /

since the objects of H 0.BY -qcohinj/ are right orthogonal to any coacyclic objects
in H 0.BY -qcoh/. So the assertion follows from the adjointness of the functors f �

and f� on the level of the homotopy categories of quasicoherent CDG-modules. �

Remark 1.8. It is not immediately obvious from the above construction that the
derived functor Rf� is compatible with the compositions; i.e., for g W Z ! Y

and f W Y ! X , one has R.fg/� ' Rf� ı Rg�. The problem is that the direct
image functor f� does not preserve injectivity of quasicoherent graded modules
in general. When the derived direct image functors are adjoint to appropriately
defined derived inverse images (see Section 1.9 below for some results of this kind),
the problem reduces to checking that the derived inverse images are compatible
with the compositions, which may be easier to see from our definitions.

One general approach to this problem is to replace injective quasicoherent graded
B-modules with quasicoherent graded B-modules that are flabby as sheaves of
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graded abelian groups in our construction of the derived direct images. The class
of flabby sheaves of abelian groups is closed under infinite direct sums since the
underlying topological space of the scheme is Noetherian; it is also always closed
under extensions and cokernels of injective morphisms. Whenever the quasicoherent
graded algebra B is Noetherian, all injective quasicoherent graded B-modules are
flabby by Theorem A.3. Therefore, the coderived category of flabby quasicoherent
CDG-modules over B is equivalent to the homotopy category H 0.B-qcohinj/ by a
version of Lemma 1.7(b); hence it is also equivalent to the coderived category of
all quasicoherent CDG-modules Dco.B-qcoh/ (cf. the proof of Proposition 1.7).

The direct images preserve exact triples of flabby sheaves, so derived direct
images can be defined using flabby resolutions. The direct images also take flabby
sheaves to flabby sheaves; hence the desired compatibility of their derived functors
with the compositions of scheme morphisms follows.

Moreover, assuming additionally that the scheme has finite Krull dimension, the
absolute derived category of flabby quasicoherent CDG-modules is equivalent to
Dabs.B-qcoh/ by a dual version of Theorem 1.4(b), as the “flabby dimension” of
any quasicoherent graded B-module is finite. This allows us to define the derived
direct images on the absolute derived categories of quasicoherent CDG-modules
(another approach to this question is to use the construction from the proof of
Proposition 1.9 below). Notice that all our constructions of derived inverse images
are also applicable to the categories Dabs.B-qcoh/.

Finally, let us point out that for any morphism of quasicoherent CDG-algebras
BX ! BY with Noetherian underlying quasicoherent graded algebras BX and BY
compatible with a morphism of separated Noetherian schemes f W Y ! X , the
functor Rf� has a right adjoint functor

f Š W Dco.BX-qcoh/ �! Dco.BY -qcoh/:

Indeed, the triangulated category Dco.BY -qcoh/ is compactly generated by Proposi-
tion 1.5(d), and the functor Rf� preserves infinite direct sums since the class of
injective quasicoherent graded BY -modules is closed under infinite direct sums, due
to Noetherianness of BY . So it remains to apply [Neeman 1996, Theorem 4.1].

There is a special situation when one can construct the above functor f Š explicitly.
Assume that f W Y !X is an affine morphism. Let us say that the quasicoherent
graded algebra BY is finite over BX if for any affine open subscheme U �X , the
graded BX .U /-module BY .f �1.U // is finitely generated, or in other words, if the
quasicoherent graded BX -module f�BY is coherent.

Let BX!BY be a morphism of Noetherian quasicoherent CDG-algebras compat-
ible with an affine morphism of separated Noetherian schemes f W Y !X such that
the quasicoherent graded algebra BY is finite over BX . Given a quasicoherent graded
left module M over BX , we set .f ŠM/.f �1.U // to be the graded left module of
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homogeneous morphisms (of various degrees) HomBX .U /.BY .f
�1.U //;M.U //

over the graded ring BY .f �1.U // for any affine open subscheme U �X . Due to
the finiteness condition on BY over BX , for any affine open subscheme V �U , there
are natural isomorphisms .f ŠM/.f �1.V //'OX .V /˝OX .U /.f

ŠM/.f �1.U //'

OY .f �1.V //˝OY .f �1.U // .f
ŠM/.f �1.U //, which allow us to extend the assign-

ment f �1.U / 7�! .f ŠM/.f �1.U // to a quasicoherent graded module f Š.M/

over the quasicoherent graded algebra BY .
Given a quasicoherent CDG-module M over BX , the conventional rule

d.g/.m/D d.g.m//� .�1/jgjg.d.m//

(with the usual change-of-connection modifications) defines the structure of a quasi-
coherent CDG-module over BY on the quasicoherent graded module f Š.M/. This
construction provides a triangulated functor f Š WH 0.BX-qcoh/!H 0.BY -qcoh/
right adjoint to the triangulated functor f� WH 0.BY -qcoh/!H 0.BX-qcoh/. Re-
stricting the functor f Š W H 0.BX-qcoh/! H 0.BY -qcoh/ to the full subcategory
of injective quasicoherent CDG-modules in H 0.BX-qcoh/ and taking into account
Lemma 1.7(b), we obtain the right derived functor

Rf Š W Dco.BX-qcoh/ �! Dco.BY -qcoh/;

which is right adjoint to the (underived, as the morphism f is affine) direct image
functor f� W Dco.BY -qcoh/ ! Dco.BX-qcoh/. In other words, the functor Rf Š

coincides with the above adjoint functor f Š WDco.BX-qcoh/!Dco.BY -qcoh/ in our
special case.

1.9. Morphisms of finite flat dimension. Let f W Y ! X be a morphism of
separated Noetherian schemes, and let BX ! BY be a compatible morphism of
quasicoherent CDG-algebras. We will say that the quasicoherent graded algebra BY
has finite flat dimension over BX if (the left derived functor of) the functor of
inverse image f � acting between the abelian categories of quasicoherent graded
modules over BX and BY has finite homological dimension. Equivalently, for any
affine open subschemes U �X and V � Y such that f .V /� U , the graded right
BX .U /-module BY .V / should have finite flat dimension.

A quasicoherent graded BX -module is said to be adjusted to f � if its derived
inverse image under f , as an object of the derived category of the abelian category
of quasicoherent graded BY -modules, coincides with the underived inverse image.
Denote the DG-category of quasicoherent CDG-modules over BX whose underlying
graded BX-modules are adjusted to f � by BX-qcohf-adj. When BX is Noetherian,
let BX-cohf-adj denote the similarly defined DG-category of coherent CDG-modules.
We will use our usual notation for the absolute derived and coderived categories of
these DG-categories of CDG-modules.
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Lemma 1.9. Assume that the quasicoherent graded algebra BY has finite flat
dimension over BX . Then

(a) the functor Dco.BX-qcohf-adj/ ! Dco.BX-qcoh/ induced by the embedding
of DG-categories BX-qcohf-adj! BX-qcoh is an equivalence of triangulated
categories;

(b) the functor Dabs.BX-qcohf-adj/! Dabs.BX-qcoh/ induced by the embedding
of DG-categories BX-qcohf-adj! BX-qcoh is an equivalence of triangulated
categories;

(c) if there are enough vector bundles on X and BX is Noetherian, the functor
Dabs.BX-cohf-adj/!Dabs.BX-coh/ induced by the embedding of DG-categories
BX-cohf-adj! BX-coh is an equivalence of triangulated categories.

Proof. This is a version of Theorem 1.4, provable in the same way (cf. Corollary 2.6
below). The assertions hold, because any quasicoherent graded BX -module has a
finite left resolution consisting of quasicoherent CDG-modules adjusted to f �, and
it is similar for coherent CDG-modules. �

The functor of inverse image f � WH 0.BX-qcoh/!H 0.BY -qcoh/ takes CDG-
modules coacyclic with respect to BX-qcohf-adj to CDG-modules coacyclic with
respect to BY -qcoh, and hence induces a triangulated functor Dco.BX-qcohf-adj/!

Dco.BY -qcoh/. Taking Lemma 1.9 into account, we construct the derived inverse
image functor

Lf � W Dco.BX-qcoh/ �! Dco.BY -qcoh/:

One shows that this functor is left adjoint to the functor Rf� constructed in Sec-
tion 1.8 in the way analogous to (but simpler than) the proof of Proposition 1.8.

When there are enough vector bundles on X , and BX and BY are Noetherian,
we construct the derived inverse image functor

Lf � W Dabs.BX-coh/ �! Dabs.BY -coh/

in a similar way.
Let Bop

X and Bop
Y denote the quasicoherent graded algebras with the opposite

multiplication to BX and BY .

Proposition 1.9. When Bop
Y has finite flat dimension over Bop

X , the derived inverse
image functor Lf � WDco.BX-qcohffd/!Dco.BY -qcohffd/ constructed in Section 1.8
has a right adjoint functor

Rf� W D
co.BY -qcohffd/ �! Dco.BX-qcohffd/:
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Proof. Let fU˛g be a finite affine covering of Y . To any object N 2 BY -qcohffd,
assign the total CDG-module RfU˛gf�N of the finite Čech complexM

˛

f jU˛�.N jU˛ / �!
M
˛<ˇ

f jU˛\Uˇ�.N jU˛\Uˇ / �! � � �

of CDG-modules over BX .
The terms of this complex belong to BX-qcohffd since the morphism f jV WV !X

is affine for any intersection V of a nonempty subset of affine open subschemes
U˛ �Y and the quasicoherent graded algebra Bop

Y has finite flat dimension over Bop
X .

Hence one has RfU˛gf�N 2 BX-qcohffd; it is clear that RfU˛gf� is a DG-functor
BY -qcohffd! BX-qcohffd taking coacyclic objects to coacyclic objects. So we have
the induced functor Rf� between the coderived categories.

It remains to obtain the adjunction isomorphism

HomDco.BX-qcohffd/
.M;Rf�N /' HomDco.BY -qcohffd/

.Lf �M;N /

for M 2 Dco.BX-qcohffd/. Denote by NC the total CDG-module of the finite
complex

C �
fU˛g

N D
�M

˛

jU˛�j
�
U˛

N �!
M
˛<ˇ

jU˛\Uˇ�j
�
U˛\Uˇ

N �! � � �
�

of CDG-modules over BY (where jV W V ! Y denotes the embedding of an affine
open subscheme). Then we have RfU˛gf�N ' f�NC. There is a natural closed
morphism N !NC of CDG-modules over BY with the cone coacyclic (and even
absolutely acyclic) with respect to BY -qcohffd.

For any CDG-module Q 2 BY -qcohffd such that f�Q 2 BX -qcohffd, there is a
natural map

 W HomDco.BX-qcohffd/
.M; f�Q/ �! HomDco.BY -qcohffd/

.Lf �M;Q/:

Indeed, by the proof of Theorem 1.4(a), any morphism M!f�Q in Dco.BX -qcohffd/

can be represented as a fraction formed by a morphism M0!M inH 0.BX-qcohffd/,
with M0 2 BX-qcohfl and a cone coacyclic with respect to BX-qcohffd, and a mor-
phism M0! f�Q in H 0.BX-qcohffd/. To such a fraction, the map  assigns the
related morphism Lf �MD f �M0!Q.

For a fixed M, the map  is a morphism of cohomological functors of the
argument Q 2H 0.BY -qcohffd/ with f�Q 2 BX -qcohffd. Thus in order to show that
it is an isomorphism for QDNC, it suffices to check that it is an isomorphism for
QD jV �P for every affine V � Y and P 2 BY jV -qcohffd. This follows from the
adjunction isomorphism

HomDco.BX-qcohffd/
.M; f jV �P/' HomDco.BY jV -qcohffd/

.Lf j�VM;P/
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and the similar isomorphism for the embedding jV , which hold because the functors
f jV � and jV � are exact, the morphisms f jV and jV being affine. �

Remark 1.9. One can also use the above Čech complex approach in order to
construct a version of the derived functor Rf� W D

co.BY -qcoh/! Dco.BX-qcoh/.
One can check that this construction agrees with the injective resolution construction
from Section 1.8, using the fact that the restrictions of injective quasicoherent
graded BY -modules to open subschemes are injective (Theorem A.3). Alternatively,
in the assumption of finite flat dimension of BY over BX , one checks that both
constructions provide functors right adjoint to Lf �, hence they are isomorphic.

This allows us to conclude that the derived functors Rf� acting on arbitrary qua-
sicoherent CDG-modules and quasicoherent CDG-modules of finite flat dimension
form a commutative diagram with the natural functors from the coderived categories
of the latter to the coderived categories of the former.

1.10. Supports of CDG-modules. LetX be a Noetherian scheme. The set-theoretic
support of a quasicoherent sheaf M on X is the minimal closed subset T �X such
that the restriction of M to the open subscheme XnT vanishes. Given a Noetherian
quasicoherent graded algebra B over X and a quasicoherent graded B-module M,
the set-theoretic support T D SuppM of M is defined similarly. It only depends
on the underlying quasicoherent OX -module of M.

Let B be a quasicoherent CDG-algebra over X whose underlying quasicoherent
graded algebra B is Noetherian. Fix a closed subset T �X . Denote by B-qcohT the
full DG-subcategory in B-qcoh consisting of all the quasicoherent CDG-modules
whose underlying quasicoherent graded B-modules have their set-theoretic supports
contained in T . The DG-category B-cohT of coherent CDG-modules with set-
theoretic support in T is defined similarly.

Let Dco.B-qcohT / and Dabs.B-cohT / denote the coderived and the absolute
derived category of these DG-categories of CDG-modules. Finally, let B-qcohT;inj

denote the DG-category of quasicoherent CDG-modules over B whose underlying
quasicoherent graded modules are injective objects of the abelian category of
quasicoherent graded B-modules with set-theoretic support contained in T .

Proposition 1.10. (a) The functor H 0.B-qcohT;inj/! Dco.B-qcohT / induced by
the embedding of DG-categories B-qcohT;inj! B-qcohT is an equivalence of
triangulated categories.

(b) The functor Dabs.B-cohT / ! Dco.B-qcohT / induced by the embedding of
DG-categories B-cohT ! B-qcohT is fully faithful and its image is a set of
compact generators of the target category.

(c) The functor Dco.B-qcohT / ! Dco.B-qcoh/ induced by the embedding of
DG-categories B-qcohT ! B-qcoh is fully faithful.
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(d) The functor Dabs.B-cohT /! Dabs.B-coh/ induced by the embedding of DG-
categories B-cohT ! B-coh is fully faithful.

Proof. Part (a) is essentially a particular case of [Positselski 2011b, Theorem and
Remark in Section 3.7]. It is only important here that there are enough injective
objects in the abelian category of quasicoherent graded B-modules supported set-
theoretically in T and the class of such injective objects is closed under infinite direct
sums. This is so because the abelian category in question is a locally Noetherian
Grothendieck category (since X and B are Noetherian). Part (b) can be proven
in the same way as the results of [loc. cit., Section 3.11]. Part (d) follows from
parts (b) and (c) and Proposition 1.5(d).

Finally, part (c) follows from part (a), Lemma 1.7(b), and the fact that any
injective object J in the category of quasicoherent graded B-modules supported
set-theoretically in T is also an injective object in the category of arbitrary qua-
sicoherent graded B-modules. The latter is essentially a reformulation of the
Artin–Rees lemma.

Indeed, it suffices to check that for any coherent graded B-module M and its
coherent graded B-submodule N , any morphism of quasicoherent graded B-modules
� WN ! J can be extended to M. Let Z be a closed subscheme structure on the
closed subset T � X . Then there is an integer n � 0 such that the morphism �

annihilates InZN (where IZ is the sheaf of ideals of the closed subscheme Z). By
Lemma A.3, there exists m � 0 such that ImZM\N � InZN . Then there exists
a morphism M=ImZM! J of quasicoherent graded B-modules supported set-
theoretically in T which extends the given morphism into J from the quasicoherent
graded B-submodule N=.ImZM\N /�M=ImZM. �

Let U �X denote the open subscheme X nT .

Theorem 1.10. (a) The functor of restriction to the open subscheme Dco.B-qcoh/!
Dco.BjU -qcoh/ is the Verdier localization functor by the thick subcategory

Dco.B-qcohT /� Dco.B-qcoh/:

In particular, the kernel of the restriction functor coincides with the subcategory
Dco.B-qcohT /.

(b) The functor of restriction to the open subscheme Dabs.B-coh/! Dabs.BjU -coh/
is the Verdier localization functor by the triangulated subcategory

Dabs.B-cohT /� Dabs.B-coh/:

In particular, the kernel of the restriction functor coincides with the thick envelope
of (i.e., the minimal thick subcategory containing) Dabs.B-cohT / in Dabs.B-coh/.
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Proof. Let j WU!X denote the natural open embedding. To prove part (a), consider
the functor Rj� W D

co.BjU -qcoh/ ! Dco.B-qcoh/ as constructed in Section 1.8.
Since the quasicoherent graded algebra BjU is flat over B, the functor Rj� is right
adjoint to the restriction functor j � WDco.B-qcoh/!Dco.BjU -qcoh/. Obviously, the
composition j �Rj� is the identity functor. It follows that the functor j � is a Verdier
localization functor by its kernel, which is the full subcategory consisting of all the
cones of the adjunction morphisms M! Rj�j

�M, where M 2 Dco.B-qcoh/.
Represent the object M by a CDG-module with an injective underlying quasico-

herent graded B-module. By Theorem A.3, the quasicoherent graded BjU -module
j �M is then also injective, so we have Rj�j

�MD j�j �M. Obviously, both the
kernel and the cokernel of the closed morphism of CDG-modules M! j�j

�M
belong to B-qcohT , and it follows, in view of Proposition 1.10(c), that the cone
also belongs to Dco.B-qcohT /.

To prove part (b), notice first that any coherent CDG-module over BjU can be
extended to a coherent CDG-module over B (because a coherent sheaf K on U can
be extended to a coherent subsheaf of j�K), so the restriction functor is essentially
surjective. Taking this observation into account, part (b) follows from part (a),
Proposition 1.10(b), Proposition 1.5(d), and the standard results about localization
of compactly generated triangulated categories [Neeman 1992, Lemma 2.5 to
Theorem 2.1]. �

Define the category-theoretic support suppM of a quasicoherent CDG-moduleM
over B as the minimal closed subset T � X such that the restriction MjU of M
to the open subscheme U D X n T is a coacyclic CDG-module over BjU . In
other words, X n suppM is the union of all open subschemes V � X such that
MjV is a coacyclic CDG-module over BjV (see Remark 1.3). Obviously, one has
suppM� SuppM.

The category-theoretic support of a coherent CDG-module M over B can be
equivalently defined as the minimal closed subset T �X such that the restriction
MjU of M to the open subscheme U D X n T is absolutely acyclic. Indeed,
any CDG-module from BjU -coh that is coacyclic with respect to BjU -qcoh is also
absolutely acyclic with respect to BjU -coh by Proposition (d).

Corollary 1.10. (a) For any quasicoherent CDG-module M over B with category-
theoretic support suppM contained in T , there exists a quasicoherent CDG-
module M0 over B such that M is isomorphic to M0 in Dco.B-qcoh/ and
set-theoretic support SuppM0 is contained in T .

(b) For any coherent CDG-module M over B with category-theoretic support
suppM contained in T , there exists a coherent CDG-module M0 over B
such that M is isomorphic to a direct summand of M0 in Dabs.B-coh/ and
set-theoretic support SuppM0 is contained in T .
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Proof. Follows immediately from Theorem 1.10. �

Remark 1.10. One can prove that the restriction functor in Theorem 1.10(a) is a
Verdier localization functor without assuming the quasicoherent graded algebra
B to be Noetherian. Indeed, one can construct a right adjoint functor Rj� to the
restriction functor j � in the way similar to that of Proposition 1.9; then it is easy to
see that j �Rj� is the identity functor.

When B is Noetherian, Theorem 1.10 can be generalized as follows. Let S and T
be closed subsets inX ; set U DXnT . Then the restriction functor Dco.B-qcohS /!
Dco.BjU -qcohU\S / is the Verdier localization functor by the thick subcategory
Dco.B-qcohT\S /, and the restriction functor Dabs.B-cohS /! Dabs.BjU -cohU\S /
is the Verdier localization functor by the triangulated subcategory Dabs.B-cohT\S /.
The proof is similar to the above.

It is not difficult to deduce from the latter assertions, using the result of [Neeman
1996, Theorem 2.1(5)], that the property of an object of Dco.B-qcoh/ to belong to
the thick envelope of Dabs.B-coh/ is local in X . Using the Čech exact sequence as
in Remark 1.3, one can easily see that the property of an object of Dabs.B-qcoh/ to
belong to Dabs.B-qcohfl/ is also local.

We do not know whether the property of an object of Dabs.B-coh/ or Dabs.B-qcohfl/

to belong to Dabs.B-cohfl/ is local in general. In the particular case of matrix
factorizations, such results will be proven in Section 3.2 using the connection with
singularity categories (cf. Remark 3.6).

Notice that the theory of localization for compactly generated triangulated cate-
gories, on which the proof of Theorem 1.10(b) is based, was originally applied in
algebraic geometry for the purposes of the Thomason–Trobaugh localization theory
of perfect complexes. In this section we apply it to coherent CDG-modules. In fact,
we will see in Section 3.3 that the localization theory fails for locally free matrix
factorizations of finite rank.

2. Triangulated categories of relative singularities

2.1. Relative singularity category. Recall that X denotes a separated Noetherian
scheme with enough vector bundles. The triangulated category of singularities
Db

Sing.X/ of the scheme X is defined [Orlov 2004, Section 1.2] as the quotient
category of the bounded derived category Db.X-coh/ of coherent sheaves on X by
its thick subcategory Perf .X/ of perfect complexes on X .

The perfect complexes, in our assumptions, can be simply defined as bounded
complexes of locally free sheaves of finite rank, so Perf .X/D Db.X-cohlf/ is the
bounded derived category of the exact category X-cohlf of locally free sheaves of
finite rank on X . Equivalently, the perfect complexes are the compact objects of the
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unbounded derived category of quasicoherent sheaves D.X-qcoh/ on the scheme X
[Neeman 1996, Examples 1.10–1.11 and Corollary 2.3].

Let Z � X be a closed subscheme such that OZ has finite flat dimension as
an OX -module. In this case the derived inverse image functor Li� for the closed
embedding i WZ!X acts on the bounded derived categories of coherent sheaves,
Db.X-coh/! Db.Z-coh/. We call the quotient category of Db.Z-coh/ by the thick
subcategory generated by the objects in the image of this functor the triangulated
category of singularities of Z relative to X and denote it by Db

Sing.Z=X/.
Note that the triangulated category of relative singularities Db

Sing.Z=X/ is a
quotient category of the conventional (absolute) triangulated category of singularities
Db

Sing.Z/ of the scheme Z. Indeed, the thick subcategory Perf .Z/� Db.Z-coh/ is
generated by any ample family of vector bundles on Z since any such family is a set
of compact generators of the unbounded derived category of quasicoherent sheaves
D.Z-qcoh/ on Z [Neeman 1996]; in particular, it is generated by the restrictions
to Z of vector bundles from X (see also Lemma 2.8).

The functor Li� W Db.X-coh/! Db.Z-coh/ induces a triangulated functor

iı W Db
Sing.X/ �! Db

Sing.Z/:

Furthermore, since the sheaf i�OZ belongs to Perf .X/, the functor i� WDb.Z-coh/!
Db.X-coh/ takes Perf .Z/ to Perf .X/ (cf. [Orlov 2004, paragraphs before Propo-
sition 1.14]). Hence the functor i� induces a triangulated functor iı W Db

Sing.Z/!

Db
Sing.X/ right adjoint to iı. The triangulated category Db

Sing.Z=X/ is the quotient
category of Db

Sing.Z/ by the thick subcategory generated by the image of the
functor iı.

When X is regular, any coherent sheaf on X has a finite resolution by locally
free sheaves of finite rank. So Db

Sing.X/D 0, and hence the triangulated categories
Db

Sing.Z/ and Db
Sing.Z=X/ coincide. The converse is also true: the structure sheaf

of the reduced scheme structure on the closure of any singular point of X is not a
perfect complex on X , so Db

Sing.X/¤ 0 when X is not regular.

Remark 2.1. Roughly speaking, the triangulated category of relative singularities
Db

Sing.Z=X/ measures how much worse the singularities of Z are compared to the
singularities of X in a neighborhood of Z.

The basic formal properties of Db
Sing.Z=X/ are similar to those of Db

Sing.Z/.
When the OX -module OZ has finite flat dimension, the derived category Db.X-coh/
is generated by coherent sheaves adjusted to i�. Let EZ=X denote the minimal
full subcategory of the abelian category of coherent sheaves on Z containing the
restrictions of such coherent sheaves from X and closed under extensions and the
kernels of epimorphisms of sheaves. Then EZ=X is naturally an exact category and
its bounded derived category Db.EZ=X / is equivalent to the thick subcategory of
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Db.Z-coh/ generated by the derived restrictions of coherent sheaves from X , so
Db

Sing.Z=X/D Db.Z-coh/=Db.EZ=X /. One can define the E-homological dimen-
sion of a coherent sheaf (or bounded complex) on Z as the minimal length of a left
resolution consisting of objects from EZ=X . This dimension does not depend on
the choice of a resolution (in the same sense that the conventional flat dimension
doesn’t). The thick subcategory Db.EZ=X / consists of those objects of Db.Z-coh/
that have finite E-homological dimensions.

Unlike in the case of perfect complexes, we do not know whether the property
to belong to EZ=X or Db.EZ=X / is local, though. In the case when Z is a Cartier
divisor, locality can be established using Theorem 2.7 below and Remark 1.3.

2.2. Matrix factorizations. Following [Polishchuk and Vaintrob 2011], we will
consider matrix factorizations of a global section of a line bundle. So let L be a
line bundle (invertible sheaf) on X and w 2 L.X/ be a fixed section, called the
potential.

Let B D .X;L; w/ denote the following Z-graded quasicoherent CDG-algebra
over X . The component Bn is isomorphic to L˝n=2 for n 2 2Z and vanishes
for n 2 2ZC 1, the multiplication in B being given by the natural isomorphisms
L˝n=2˝OX L˝m=2 ! L˝.nCm/=2. For any affine open subscheme U � X , the
differential on B.U / is zero, and the curvature element is wjU 2 B2.U /D L.U /.
The elements aUV defining the restriction morphisms of CDG-rings B.V /!B.U /
all vanish.

The category of quasicoherent Z-graded B-modules is equivalent to the category
of quasicoherent Z=2-graded OX -modules, the equivalence assigning to a graded
B-module M the pair of OX -modules which we denote symbolically by U0 DM0

and U1 ˝ L˝1=2 DM1. Conversely, Mn ' Un mod 2 ˝OX L˝n=2 for all n 2 Z

(the meaning of the notation in the right-hand side being the obvious one). This
equivalence of abelian categories preserves all the properties of coherence, flatness,
flat dimension, local projectivity/local freeness, etc. that we were interested in in
Section 1.

Following [Lin and Pomerleano 2013], we will consider CDG-modules over
B D .X;L; w/ whose underlying graded B-modules correspond to coherent or qua-
sicoherent OX -modules, rather than just locally free sheaves (as in the conventional
matrix factorizations). A quasicoherent CDG-module over .X;L; w/ is the same
thing as a pair of quasicoherent OX -modules U0 and U1˝L˝1=2 endowed with
OX -linear morphisms U0! U1˝L˝1=2 and U1˝L˝1=2! U0˝OX L such that
both compositions

U0!U1˝L˝1=2!U0˝OXL and U1˝L˝1=2!U0˝OXL!U1˝OXL˝3=2

are equal to the multiplications with w.
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2.3. Exotic derived categories of matrix factorizations. The following corollary
is a restatement of the results of Section 1 in the application to the quasicoherent
CDG-algebra BD .X;L; w/. We will use the notation .X;L; w/-cohlf (instead of
the previously introduced B-cohfl) for the DG-category of locally free matrix factor-
izations of finite rank, and the notation .X;L; w/-qcohlf (instead of the previously
introduced B-qcohlp) for the DG-category of locally free matrix factorizations of
possibly infinite rank (see Remark 1.4). The rest of our notation system for various
classes of quasicoherent CDG-modules over B D .X;L; w/ remains in use.

In addition, we also denote by .X;L; w/-qcohlfd the DG-category of quasicoher-
ent CDG-modules of finite locally free/locally projective dimension over .X;L; w/
(see Remark 1.4 again). Let Dco..X;L; w/-qcohlfd/ and Dabs..X;L; w/-qcohlfd/ be
the corresponding derived categories of the second kind.

Corollary 2.3. (a) The functor Dco..X;L;w/-qcohfl/!Dco..X;L;w/-qcohffd/ in-
duced by the embedding of DG-categories .X;L; w/-qcohfl! .X;L; w/-qcohffd is
an equivalence of triangulated categories.

(b) The functor Dabs..X;L; w/-qcohfl/! Dabs..X;L; w/-qcohffd/ induced by the
embedding of DG-categories .X;L; w/-qcohfl ! .X;L; w/-qcohffd is an equiva-
lence of triangulated categories.

(c) The functors

Dco..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcohlfd/;

Dabs..X;L; w/-qcohlf/ �! Dabs..X;L; w/-qcohlfd/

induced by the embedding of DG-categories .X;L;w/-qcohlf ! .X;L;w/-qcohlfd

are equivalences of triangulated categories.

(d) The triangulated categories Dco..X;L; w/-qcohlf/ and Dabs..X;L; w/-qcohlf/

coincide, as do the categories Dco..X;L; w/-qcohlfd/ and Dabs..X;L; w/-qcohlfd/.
The natural functors between these four categories form a commutative square of
equivalences of triangulated categories.

(e) When the scheme X has finite Krull dimension, the functors

Dco..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcohfl/;

Dabs..X;L; w/-qcohlf/ �! Dabs..X;L; w/-qcohfl/

induced by the embedding of DG-categories .X;L; w/-qcohlf ! .X;L; w/-qcohfl

are equivalences of triangulated categories. The natural functors between these
four categories form a commutative square of equivalences.

(f) When the scheme X has finite Krull dimension, the triangulated category
Dco..X;L; w/-qcohfl/ coincides with Dabs..X;L; w/-qcohfl/ and the triangulated
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category Dco..X;L; w/-qcohffd/ coincides with Dabs..X;L; w/-qcohffd/. The natu-
ral functors between these four categories form a commutative square of equiva-
lences.

(g) The functor Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-cohffd/ induced by the em-
bedding of DG-categories .X;L; w/-cohlf ! .X;L; w/-cohffd is an equivalence of
triangulated categories.

(h) The triangulated functors

Dabs..X;L; w/-qcohlf/! Dabs..X;L; w/-qcohfl/! Dabs..X;L; w/-qcoh/

induced by the embeddings of DG-categories .X;L;w/-qcohlf!.X;L;w/-qcohfl!

.X;L;w/-qcoh are fully faithful.

(i) The triangulated functor Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-coh/ induced
by the embedding of DG-categories .X;L; w/-cohlf! .X;L; w/-coh is fully faithful.

(j) The triangulated functor Dabs..X;L; w/-cohlf/!Dco..X;L; w/-qcohlf/ induced
by the embedding of DG-categories .X;L; w/-cohlf ! .X;L; w/-qcohlf is fully
faithful.

(k) The triangulated functor Dabs..X;L; w/-coh/! Dabs..X;L; w/-qcoh/ induced
by the embedding of DG-categories .X;L; w/-coh! .X;L; w/-qcoh is fully faithful.

(l) The triangulated functor Dabs..X;L; w/-coh/! Dco..X;L; w/-qcoh/ induced
by the embedding of DG-categories .X;L; w/-coh! .X;L; w/-qcoh is fully faithful
and its image forms a set of compact generators for Dco..X;L; w/-qcoh/.

Proof. Parts (a), (b) and (g) are particular cases of Theorem 1.4, and the proof
of part (c) is similar (see Remark 1.4). Part (g) also essentially follows from
Proposition 1.5(b) (and part (b) can be proven similarly). Parts (h), (i), (k) and (l)
are particular cases of Proposition 1.5 (except for “locally free half” of part (h),
which is similar to the “flat half”). Part (d) is Theorem 1.6 together with part (c).
Part (j) is Corollary 1.6. Part (e) follows from parts (a)–(c) and Remark 1.4 (cf. the
discussion in the end of Section 1.6). Part (f) follows from parts (a), (b), (d) and (e);
alternatively, it can be proven directly in the way similar to part (d), using the fact
that the exact category of flat quasicoherent sheaves on X has finite homological
dimension when the Krull dimension of X is finite. �

2.4. Regular and Gorenstein scheme cases. When the scheme X is regular or
Gorenstein, the assertions of Corollary 2.3 simplify as follows.

Corollary 2.4. (a) When the scheme X is Gorenstein of finite Krull dimension,
the functors

Dabs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/
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induced by the embedding of DG-categories .X;L;w/-qcohfl!.X;L;w/-qcoh
are equivalences of triangulated categories.

(b) When the scheme X is regular of finite Krull dimension, the natural func-
tors between the categories Dabs..X;L; w/-qcohfl/, Dco..X;L; w/-qcohfl/,
Dabs..X;L; w/-qcoh/, and Dco..X;L; w/-qcoh/ form a commutative square of
equivalences of triangulated categories.

(c) When the scheme X is regular, the natural functor Dabs..X;L; w/-cohlf/!

Dabs..X;L; w/-coh/ is an equivalence of triangulated categories.

Proof. Part (a) is a particular case of Proposition 1.7. Part (c) follows from
Corollary 2.3(g) since any coherent sheaf on a regular scheme has finite flat di-
mension. In the assumptions of part (b), the functor Dabs..X;L; w/-qcoh/ !
Dco..X;L; w/-qcoh/ is an isomorphism of triangulated categories by [Positselski
2011b, Theorem 3.6(a) and Remark 3.6] since the abelian category of quasicoherent
sheaves on a regular scheme of finite Krull dimension has finite homological
dimension and enough injectives (cf. Theorem 1.6). The remaining assertions of
part (b) follow from Corollary 2.3(a) and (b), or alternatively from part (a). �

Assuming that X has finite Krull dimension, the assertions of Corollaries 2.3
and 2.4 may be summarized by the following commutative diagram of triangulated
functors. Here, as above, B denotes the quasicoherent CDG-algebra .X;L; w/:

Dabs.B-cohlf/ Dabs.B-cohffd/

Dabs.B-coh/

DcoDabs.B-qcohlfd/

DcoDabs.B-qcohlf/ DcoDabs.B-qcohffd/ Dco.B-qcoh/

DcoDabs.B-qcohfl/ Dabs.B-qcoh/

��

��

��

��

--

--

D whenX regular

��

��

comp.
gener.

{{

{{

//D whenX Gorenstein

++
++

D whenX
regular

33 33

D whenX
regular

The four categories in the left lower area are coderived categories coinciding with
absolute derived categories (of the same classes of quasicoherent CDG-modules).
The five double lines between these four categories are equivalences, as is the upper
left horizontal line. All the arrows going down are fully faithful functors. The
image of the rightmost vertical arrow is a set of compact generators in the target
category. The only arrow going up is a Verdier localization functor.

Nothing is claimed about the long horizontal arrow in the right lower area of
the diagram in general; but when X is Gorenstein, this functor is an equivalence
of categories. When X is regular, all the arrows going right are equivalences of
categories (so the whole diagram reduces to one triangulated category with infinite
direct sums, containing a full triangulated subcategory of compact generators).
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Recall also that, by Lemma 1.7, for any X we have a commutative diagram of
triangulated functors

H 0.B-qcohinj/ DcoDabs.B-qcohfid/ Dco.B-qcoh/

Dabs.B-qcoh/

**

**

44 44

with equivalences of categories in the upper line. The fully faithful embedding
Dabs.B-qcohfid/ ! Dabs.B-qcoh/, which in the Gorenstein case (of finite Krull
dimension) coincides with the embedding Dabs.B-qcohffd/ ! Dabs.B-qcoh/, is
always right adjoint to the localization functor Dabs.B-qcoh/! Dco.B-qcoh/.

Remark 2.4. When X is an affine Noetherian scheme of finite Krull dimen-
sion, the embeddings of DG-categories .X;L; w/-qcohlp ! .X;L; w/-qcohfl !

.X;L; w/-qcoh induce equivalencesH 0.B-qcohlp/'Dabs.B-qcohfl/'Dctr.B-qcoh/
between the homotopy category of (locally) projective matrix factorizations of
infinite rank, the absolute derived category of flat matrix factorizations, and the con-
traderived category of arbitrary quasicoherent matrix factorizations (see [Positselski
2011b, Section 3.8]; cf. Remark 1.5).

2.5. Serre–Grothendieck duality. The aim of this section is to show that the
somewhat mysterious long horizontal arrow in the above large diagram is actu-
ally a functor between two equivalent triangulated categories, for a rather wide
class of schemes X . The functor Dco..X;L; w/-qcohfl/ ! Dco..X;L; w/-qcoh/
in the above diagram, which is induced by the embedding of DG-categories
.X;L; w/-qcohfl ! .X;L; w/-qcoh, is not the equivalence that we have in mind,
however (unless the scheme is Gorenstein). Instead, the equivalence between the
categories Dco..X;L; w/-qcohfl/ and Dco..X;L; w/-qcoh/ is constructed using a
dualizing complex on X [Hartshorne 1966, Section V.2].

Before recalling the definition of a dualizing complex, let us discuss the no-
tion of the quasicoherent internal Hom. Given quasicoherent sheaves M and N
over X , the quasicoherent sheaf HomX-qc.M;N / is defined by the isomorphism
HomOX .�˝OX M; N / ' HomOX .� ;HomX-qc.M;N // of functors from the
category of quasicoherent sheaves to the category of abelian groups. Equiva-
lently, the quasicoherent sheaf HomX-qc.M;N / can be obtained by applying
the coherator functor [Thomason and Trobaugh 1990, Sections B.12–B.14] to
the sheaf of OX -modules HomOX .M;N /. Whenever M is a coherent sheaf,
the sheaf HomOX .M;N / of OX -module internal Hom is quasicoherent, and
HomX-qc.M;N /'HomOX .M;N /.

Notice that the construction of the sheaf HomX-qc.M;N / is not local in general;
i.e., it does not commute with the restrictions of quasicoherent sheaves to open
subschemes; when the sheaf M is coherent, it does.
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Lemma 2.5. (a) For any injective quasicoherent sheaf J over a separated Noe-
therian scheme X , the functor M 7�!HomX-qc.M;J / is exact.

(b) For any flat quasicoherent sheaf F and injective quasicoherent sheaf J overX ,
the quasicoherent sheaves F ˝OX J and HomX-qc.F ;J / are injective.

(c) For any injective quasicoherent sheaves J 0 and J over X , the quasicoherent
sheaf HomX-qc.J 0;J / is flat.

Proof. The second assertion of part (b) is obvious from the universal property defin-
ing HomX-qc. To prove the first one, notice that injectivity of quasicoherent sheaves
over a Noetherian scheme is a local property ([Hartshorne 1966, Lemma II.7.16 and
Theorem II.7.18] or Theorem A.3), a flat quasicoherent sheaf over an affine scheme
is a filtered inductive limit of locally free sheaves of finite rank [Bourbaki 1980,
Numéros 1.5–6], and injectivity of modules over a Noetherian ring is preserved by
filtered inductive limits.

The proof of parts (a) and (c) follows the argument in [Murfet 2007, Lemma 8.7].
Choose a finite affine covering U˛ of the scheme X and consider the morphism
J !

L
˛ jU˛�j

�
U˛

J . Being an embedding of injective quasicoherent sheaves, it
splits, so J is a direct summand of the direct sum of jU˛�j

�
U˛

J . Hence it suffices
to prove both assertions in the case when J D jV �J 00, where J 00 is an injective
quasicoherent sheaf on an affine open subscheme V �X .

Now we have HomX-qc.M; jV �J 00 /'jV �HomV -qc.j
�
VM;J 00 /. Since V !X

is a flat affine morphism, the functor jV � is exact and preserves the flatness of quasi-
coherent sheaves. This proves part (a) and reduces (c) to the case of an affine scheme
XDV . It remains to apply [Cartan and Eilenberg 1956, Proposition VI.5.3]. �

For our purposes, a dualizing complex D�X on X is a finite complex of injective
quasicoherent sheaves such that the cohomology sheaves of D�X are coherent and for
any coherent sheaf M over X , the natural morphism of finite complexes of quasi-
coherent sheaves M!HomX-qc.HomX-qc.M;D�X /;D

�

X / is a quasi-isomorphism.
Note that it follows from the former two conditions on D�X that the complex
HomX-qc.M;D�X / has coherent cohomology sheaves. This makes the conditions
imposed on D�X actually local in X , so the restriction D�U D D�X jU of the complex
of sheaves D�X to an open subscheme U �X is a dualizing complex on U .

Given a quasicoherent CDG-algebra B over X , a quasicoherent left CDG-module
M over B, and a complex of quasicoherent sheaves F � onX , consider the complexes
of quasicoherent left CDG-modules F � ˝OX M and HomX-qc.F �;M/ over B.
Taking their totalizations (formed, if necessary, by taking infinite direct sums along
the diagonals), construct two triangulated functors H 0.B-qcoh/! H 0.B-qcoh/
depending on a complex F �. Given a right CDG-module N over B (see [Positselski
2011b, Sections 3.1 and B.1]), similarly construct a complex of quasicoherent left
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CDG-modules HomX-qc.N ;F �/ over B, obtaining a triangulated functor from the
homotopy category of right CDG-modules H 0.qcoh-B/ to H 0.B-qcoh/.

In the particular case of matrix factorizations, we conclude that the covariant
functors F �˝OX � and HomX-qc.F �;� / take quasicoherent matrix factorizations
of a potential w 2 L.X/ to (complexes of) quasicoherent matrix factorizations
of w, while the contravariant functor HomX-qc.� ;F �/ transforms quasicoherent
matrix factorizations of the opposite potential �w 2 L.X/ into (complexes of) qua-
sicoherent matrix factorizations of w. Of course, the quasicoherent CDG-algebras
.X;L; w/ and .X;L;�w/ over a scheme X are naturally isomorphic, but we prefer
to keep the distinction between the two.

The next proposition provides the matrix factorization version of the conventional
(contravariant) Serre–Grothendieck duality for bounded complexes of coherent
sheaves. We assume that X is a separated Noetherian scheme with a dualizing
complex D�X . Recall that any such scheme has finite Krull dimension [Hartshorne
1966, Corollary V.7.2]. We denote by Dop the opposite category to a category D.

Proposition 2.5. The triangulated functor

HomX-qc.� ;D�X / WH
0..X;L;�w/-qcoh/op

�!H 0..X;L; w/-qcoh/

induces a well-defined triangulated functor between the absolute derived categories
Dabs..X;L;�w/-qcoh/op and Dabs..X;L; w/-qcoh/ taking the full triangulated sub-
category Dabs..X;L;�w/-coh/op � Dabs..X;L;�w/-qcoh/op into the full subcate-
gory Dabs..X;L; w/-coh/� Dabs..X;L; w/-qcoh/. The composition of the duality
functors Dabs..X;L; w/-coh/!Dabs..X;L;�w/-coh/op!Dabs..X;L; w/-coh/ is
the identity functor.

Proof. The functor HomX-qc.� ;D�X / preserves absolute acyclicity, because D�X
is a complex of injective quasicoherent sheaves, so Lemma 2.5(a) applies. Given
a coherent matrix factorization M, the finite complex of matrix factorizations
HomX-qc.� ;D�X / has coherent cohomology matrix factorizations, so one can use
its canonical truncations in order to prove by induction that its totalization belongs
to the triangulated subcategory Dabs..X;L; w/-coh/.

Finally, for any quasicoherent matrix factorization M, consider the bicomplex of
matrix factorizations HomX-qc.HomX-qc.M;D�X /;D

�

X / and take its totalization in
the two directions where it is a complex, obtaining a complex of matrix factorizations.
Then there is a natural morphism of finite complexes of matrix factorizations M!
HomX-qc.HomX-qc.M;D�X /;D

�

X /, which is a quasi-isomorphism of complexes of
matrix factorizations when M is coherent. The induced closed morphism of the
total matrix factorizations is an isomorphism in Dabs..X;L; w/-qcoh/ since the to-
talization of a finite acyclic complex of matrix factorizations is absolutely acyclic. It
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remains to use the fact that the functor Dabs..X;L; w/-coh/!Dabs..X;L; w/-qcoh/
is fully faithful (see Corollary 2.3(k)) again. �

The next result is our covariant Serre–Grothendieck duality theorem for matrix
factorizations. It is the matrix factorization analogue of the similar results for
complexes of projective and injective modules [Iyengar and Krause 2006, The-
orem 4.2] and sheaves [Murfet 2007, Theorem 8.4]. It also strongly resembles
the derived comodule-contramodule correspondence theory (see [Positselski 2010,
Corollaries 5.4 and 6.3; 2011b, Theorem 5.2]; cf. Remark 2.4 above). Notice that
our proof is more akin to the arguments in [Positselski 2010; 2011b] than those
of [Iyengar and Krause 2006; Murfet 2007] in that we give a direct proof of the
covariant duality independent of both the contravariant duality and any descriptions
of the compact objects in the categories to be compared.

Theorem 2.5. The functors

D�X ˝OX � WH
0..X;L; w/-qcohfl/ �!H 0..X;L; w/-qcohinj/;

HomX-qc.D�X ;� / WH
0..X;L; w/-qcohinj/ �!H 0..X;L; w/-qcohfl/

induce mutually inverse equivalences between the coderived categories

Dco..X;L; w/-qcohfl/ and Dco..X;L; w/-qcoh/:

Proof. Recall that H 0..X;L; w/-qcohinj/' Dco..X;L; w/-qcoh/ by Lemma 1.7(b)
and Dabs..X;L; w/-qcohfl/DDco..X;L; w/-qcohfl/ by Corollary 2.3(f) (though we
will reprove the latter fact rather than use it in the following argument; see also
Remark 2.6 below and Lemma A.1). The functor

D�X ˝OX � WH
0..X;L; w/-qcohfl/ �!H 0..X;L; w/-qcohinj/

obviously takes matrix factorizations coacyclic with respect to .X;L; w/-qcohfl

to matrix factorizations coacyclic with respect to .X;L; w/-qcohinj, which are all
contractible. It remains to check that the induced functors are mutually inverse.

Let E be a matrix factorization from .X;L; w/-qcohfl. As in the previous proof,
consider the bicomplex of matrix factorizations HomX-qc.D�X ; D

�

X ˝OX E/ and
take its total complex of matrix factorizations. Then there is a natural morphism
E!HomX-qc.D�X ; D

�

X ˝OX E/ of finite complexes of matrix factorizations from
.X;L; w/-qcohfl. To prove that the induced morphism of the total matrix factoriza-
tions is an isomorphism in Dco..X;L; w/-qcohfl/, we once again use the fact that
the totalization of a finite acyclic complex of matrix factorizations is absolutely
acyclic. So it suffices to check that for any flat quasicoherent sheaf F over X ,
the natural morphism F !HomX-qc.D�X ; D

�

X ˝OX F / is a quasi-isomorphism of
complexes of flat quasicoherent sheaves. This will be done below.
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Similarly, let M be a matrix factorization from .X;L; w/-qcohinj. Consider
the morphism of finite complexes of injective matrix factorizations given by
D�X ˝OX HomX-qc.D�X ;M/!M. To prove that the cone of the induced morphism
of the total matrix factorizations is contractible, it suffices to check that for any
injective quasicoherent sheaf J over X , the natural morphism of complexes of
injective sheaves D�X ˝OX HomX-qc.D�X ;J /! J is a quasi-isomorphism.

Let 0D�X denote a finite complex of coherent sheaves over X endowed with a
quasi-isomorphism 0D�X!D�X . Then the morphism HomX-qc.D�X ; D

�

X˝OX F /!
HomX-qc.

0D�X ; D
�

X ˝OX F / is a quasi-isomorphism for any flat quasicoherent
sheaf F . The construction of the composition

F �!HomX-qc.D�X ; D
�

X ˝OX F / �!HomX-qc.
0D�X ; D

�

X ˝OX F /

is local in X , so it suffices to check that the composition is a quasi-isomorphism
when X is affine. Then, using the passage to the filtered inductive limit, we may
assume that F is locally free of finite rank, and further that F DOX . It remains to
recall that the morphism OX !HomX-qc.

0D�X ;D
�

X / is a quasi-isomorphism by the
definition of D�X .

Let 00D�X be a bounded-above complex of flat quasicoherent sheaves mapping
quasi-isomorphically to 0D�X . Then for any injective quasicoherent sheaf J over X
there are quasi-isomorphisms

00D�X ˝OX HomX-qc.D�X ;J / �! D�X ˝OX HomX-qc.D�X ;J /;
00D�X ˝OX HomX-qc.D�X ;J / �!

00D�X ˝OX HomX-qc.
0D�X ;J /

forming a commutative diagram with the evaluation morphisms into J . Hence
it remains to check that the morphism 00D�X ˝OX HomX-qc.

0D�X ;J / ! J is a
quasi-isomorphism, which is a local question. Assume further that 00D�X is a
bounded-above complex of locally free sheaves of finite rank. Then there is a
natural isomorphism of complexes of sheaves

00D�X ˝OX HomX-qc.
0D�X ;J /'HomX-qc.HomX-qc.

00D�X ;
0D�X /;J /:

The related morphism

HomX-qc.HomX-qc.
00D�X ;

0D�X /;J / �! J

is induced by the natural morphism of complexes OX!HomX-qc.
00D�X ;

0D�X /. The
latter is again a quasi-isomorphism essentially by the definition of D�X . �

From this point on we resume assuming that X has enough vector bundles.
Notice that the equivalence functor

D�X ˝OX � W D
co..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcoh/
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that we constructed takes the full triangulated subcategory Dabs..X;L; w/-cohlf/�

Dco..X;L; w/-qcohlf/ into the full triangulated subcategory Dabs..X;L; w/-coh/�
Dco..X;L; w/-qcoh/. This is so because the dualizing complex D�X has bounded
coherent cohomology sheaves.

Now we will use Proposition 2.5 and Theorem 2.5 in order to construct compact
generators of the triangulated category Dco..X;L; w/-qcohlf/ (cf. [Jørgensen 2005;
Neeman 2008]).

Consider the abelian category Z0..X;L;�w/-coh/ of coherent matrix factor-
izations of �w and closed morphisms of degree 0 between them, and its exact
subcategory of locally free matrix factorizations of finite rankZ0..X;L;�w/-cohlf/.
The natural functor between the bounded-above derived categories of our abelian
category and its exact subcategory

D�.Z0..X;L;�w/-cohlf// �! D�.Z0..X;L;�w/-coh//

is an equivalence of triangulated categories. The vector bundle duality functor
HomX-qc.� ;OX / W Z0..X;L;�w/-cohlf/

op! Z0..X;L; w/-cohlf/ induces a tri-
angulated functor D�.Z0..X;L;�w/-cohlf//

op!DC.Z0..X;L; w/-cohlf// taking
bounded-above complexes to bounded-below ones.

Let DC.Z0..X;L; w/-qcohlf// denote the bounded-below derived category of the
exact category of locally free matrix factorizations of possibly infinite rank. Since the
bounded-below acyclic complexes over any exact category with infinite direct sums
are coacyclic [Positselski 2010, Lemma 2.1], there is a well-defined, triangulated
direct sum totalization functor DC.Z0..X;L; w/-qcohlf//!Dco..X;L; w/-qcohlf/.
Consider the composition

Z0..X;L;�w/-coh/op
�! D�.Z0..X;L;�w/-coh//op

' D�.Z0..X;L;�w/-cohlf//
op
�! DC.Z0..X;L; w/-cohlf//

�! DC.Z0..X;L; w/-qcohlf// �! Dco..X;L; w/-qcohlf/;

where two of the functors are the duality and the totalization discussed above, while
the other two are the natural embedding and the functor induced by such.

One easily checks that this composition takes cones of closed morphisms in
Z0..X;L;�w/-coh/ to cocones in Dco..X;L; w/-qcohlf/; hence it induces a triangu-
lated functorH 0..X;L;�w/-coh/op!Dco..X;L; w/-qcohlf/. Similarly, the above
composition takes the totalizations of short exact sequences in .X;L;�w/-coh to ob-
jects corresponding to the totalizations of short exact sequences in .X;L; w/-qcohlf ;
one checks this by considering a left locally free resolution of a short exact sequence
of coherent matrix factorizations. Thus we obtain a triangulated functor

� W Dabs..X;L;�w/-coh/op
�! Dco..X;L; w/-qcohlf/:
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Corollary 2.5. The functor � is fully faithful, and its image forms a set of compact
generators in Dco..X;L; w/-qcohlf/. The following diagram of triangulated functors
is commutative:

Dabs..X;L;�w/-cohlf/
op Dabs..X;L;�w/-coh/op

Dabs..X;L; w/-cohlf/ Dabs..X;L; w/-coh/

Dco..X;L; w/-qcohlf/ Dco..X;L; w/-qcoh/

// //�op

HomX-qc.� ;OX / HomX-qc.� ;D�X /

ww

ww

�

// //
D�X˝OX�

��

��

�

��

��


comp.
gener.

D�X˝OX�

HomX-qc.D�X ;� /

Here � , �, and  denote the fully faithful functors induced by the natural embeddings
of DG-categories of CDG-modules. The two upper vertical lines are the natural
contravariant dualities (antiequivalences) on the (absolute derived) categories of
locally free matrix factorizations of finite rank and coherent matrix factorizations.
The lower horizontal line is the equivalence of categories from Theorem 2.5, and
the middle horizontal arrow is the fully faithful functor discussed after the proof of
Theorem 2.5.

The above diagram is to be compared with the following subdiagram of the large
diagram in the end of Section 2.4:

Dabs..X;L; w/-cohlf/ Dabs..X;L; w/-coh/

Dco..X;L; w/-qcohlf/ Dco..X;L; w/-qcoh/

// //�

��

��

�

��

��


comp.
gener.

//�

Here � denotes the triangulated functor induced by the embedding of DG-categories
of CDG-modules .X;L; w/-qcohlf ! .X;L; w/-qcoh.

Notice that it is clear from these two diagrams that the functor � is an equiv-
alence of triangulated categories whenever the functor � is. Indeed, if � is an
equivalence of categories, then the image of � is a set of compact generators in
the target category, and � is an infinite direct sum-preserving triangulated functor
identifying triangulated subcategories of compact generators, and hence � is an
equivalence. In this case, the functor D�X ˝OX � becomes an autoequivalence of
the triangulated category Dco..X;L; w/-qcoh/ and restricts to an autoequivalence
of its full subcategory of compact generators Dabs..X;L; w/-coh/.

Proof of Corollary 2.5. The assertions in the first sentence follow from the second
one, as we know  to be fully faithful and its image to be a set of compact generators
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by Corollary 2.3(l). The commutativity of both squares and the upper left triangle is
clear. To check commutativity of the lower right triangle, consider a coherent matrix
factorization M of the potential �w; let E� be its left resolution in the abelian
category Z0..X;L;�w/-coh/ whose terms En belong to Z0..X;L;�w/-cohlf/.
Then the finite complex of matrix factorizations HomX-qc.M;D�X / maps quasi-
isomorphically to the bounded-below complex of injective matrix factorizations
HomX-qc.E�;D�X /' D�X ˝OX HomX-qc.E�;OX /, so the cone of the corresponding
morphism of the total matrix factorizations is coacyclic. �

2.6. w-flat matrix factorizations. From now on we will assume that for any affine
open subscheme U �X the element wjU is not a zero divisor in the O.U /-module
L.U /; in other words, the morphism of sheaves w WOX ! L is injective.

The following results will be used in the proof of the main theorem and its
analogues below. Let us call a quasicoherent OX -module E w-flat if the map
w W E ! E ˝OX L is injective. Notice that any submodule of a w-flat module is
w-flat, so the “w-flat dimension” of a quasicoherent sheaf over X never exceeds 1.

Denote by .X;L; w/-cohw-fl the DG-category of coherent CDG-modules over
.X;L; w/ withw-flat underlying graded OX -modules and by .X;L; w/-qcohw-fl the
similar DG-category of quasicoherent CDG-modules. Let Dabs..X;L; w/-cohw-fl/,
Dabs..X;L; w/-qcohw-fl, and Dco..X;L; w/-qcohw-fl/ denote the corresponding de-
rived categories of the second kind.

Furthermore, denote by .X;L; w/-cohw-fl\ffd the DG-category of coherent CDG-
modules over .X;L; w/ whose underlying graded OX -modules are both w-flat
and of finite flat dimension, and by .X;L; w/-qcohw-fl\lfd the DG-category of
w-flat quasicoherent CDG-modules of finite locally free dimension. Let the cor-
responding exotic derived categories be denoted by Dabs..X;L; w/-cohw-fl\ffd/,
Dabs..X;L; w/-qcohw-fl\lfd/, and Dco..X;L; w/-qcohw-fl\lfd/.

Corollary 2.6. (a) The functor Dco..X;L;w/-qcohw-fl/!Dco..X;L;w/-qcoh/ in-
duced by the embedding of DG-categories .X;L;w/-qcohw-fl! .X;L;w/-qcoh is
an equivalence of triangulated categories.

(b) The functor Dabs..X;L; w/-qcohw-fl/! Dabs..X;L; w/-qcoh/ induced by the
embedding of DG-categories .X;L; w/-qcohw-fl ! .X;L; w/-qcoh is an equiva-
lence of triangulated categories.

(c) The functor Dabs..X;L; w/-cohw-fl/! Dabs..X;L; w/-coh/ induced by the em-
bedding of DG-categories .X;L; w/-cohw-fl! .X;L; w/-coh is an equivalence of
triangulated categories.

(d) The functor Dco..X;L; w/-qcohw-fl\lfd/! Dco..X;L; w/-qcohlfd/ induced by
the embedding of DG-categories .X;L; w/-qcohw-fl\lfd! .X;L; w/-qcohlfd is an
equivalence of triangulated categories.
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(e) The functor Dabs..X;L; w/-qcohw-fl\lfd/! Dabs..X;L; w/-qcohlfd/ induced by
the embedding of DG-categories .X;L; w/-qcohw-fl\lfd! .X;L; w/-qcohlfd is an
equivalence of triangulated categories.

(f) The functor Dabs..X;L; w/-cohw-fl\ffd/ ! Dabs..X;L; w/-cohffd/ induced by
the embedding of DG-categories .X;L; w/-cohw-fl\ffd ! .X;L; w/-cohffd is an
equivalence of triangulated categories.

Proof. The proofs are analogous to those of Corollary 2.3(a)–(c) and (g) (except
that no induction in d is needed, as it suffices to consider the case d D 1). Parts (d),
(e), (f) are analogous to parts (a), (b), (c), respectively. Parts (b), (c), (e), and (f)
can be also proven in the way similar to Corollary 2.3(h) and (i). �

Remark 2.6. The assertions of parts (a) and (b) hold under somewhat weaker
assumptions than above: namely, one does not need to assume the existence of
enough vector bundles on X . And one can make parts (d) and (e) hold without
vector bundles by replacing the finite locally free dimension condition in their
formulation with the finite flat dimension condition. The reason is that there are
enough flat sheaves on any reasonable scheme (see Lemma A.1).

In fact, even part (c) does not depend on the existence of vector bundles since a
surjective morphism onto a given coherent sheaf M from a w-flat coherent sheaf
can be easily constructed, e.g., by starting from a surjective morphism onto M
from a flat quasicoherent sheaf F and picking a large enough coherent subsheaf
in F . Accordingly, one does not need vector bundles to prove the equivalence of
categories in the lower horizontal line in Theorem 2.7 below and the other two
equivalences in Theorem 2.8. Replacing locally free sheaves with flat ones in the
relevant definitions and assuming the Krull dimension to be finite, one can have the
whole of Proposition 2.8 hold without vector bundles as well.

Another alternative is to use very flat quasicoherent sheaves, which there are
always enough of and which always form a category of finite homological dimension
on a quasicompact semiseparated scheme [Positselski 2012, Section 4.1]. Similarly,
the existence of vector bundles is not needed for the validity of Theorem 1.4(a)
and (b), Proposition 1.5(a), (c), and (d), all the assertions of Sections 1.7 and 1.10,
Corollary 2.3(a), (b), (f), (k), and (l), Corollary 2.4(a) and (b), Proposition 2.5,
Theorem 2.5, and some other results.

2.7. Main theorem. Let X0 �X be the closed subscheme defined locally by the
equation wD 0, and i WX0!X be the natural closed embedding. The next theorem
is the main result of this paper.

Theorem 2.7. There is a natural equivalence of triangulated categories

Dabs..X;L; w/-coh/ ' Db
Sing.X0=X/:
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Together with the functor † W Dabs..X;L; w/-cohlf/! Db
Sing.X0/ constructed in

[Orlov 2012], this equivalence forms the following diagram of triangulated functors:

Db
Sing.X/

0 Dabs..X;L; w/-cohlf/ Db
Sing.X0/

Dabs..X;L; w/-coh/ Db
Sing.X0=X/

0

::

zz

i�; iı

iı

// // //†

��

�� ����
L„

‡

��

where the upper horizontal arrow † is fully faithful, the left vertical arrow is
fully faithful, the right vertical arrow is a Verdier localization functor, and the
lower horizontal line L„ D ‡�1 is an equivalence of categories. The square is
commutative; the three diagonal arrows i�, iı, iı (the middle one pointing down
and the two other ones pointing up) are adjoint.

Furthermore, the image of the functor † is precisely the full subcategory of ob-
jects annihilated by the functor iı, or equivalently, by the functor i�. In other words,
the image of † is equal both to the left and to the right orthogonal complements to
the thick subcategory generated by the image of the functor iı; that is, an object
F 2 Db

Sing.X0/ is isomorphic to †.M/ for some M 2 Dabs..X;L; w/-cohlf/ if and
only if for every E 2 Db

Sing.X/, one has

HomDb
Sing.X0/

.iıE ;F /D 0;

or equivalently, for every E 2 Db
Sing.X/, one has HomDb

Sing.X0/
.F ; iıE/D 0.

The thick subcategory generated by the image of the functor iı is the kernel of
the right vertical arrow. So the upper horizontal arrow and the right vertical arrow
are included into “exact sequences” of triangulated categories (as marked by the
zeros at the ends; there is no exactness at the uppermost rightmost end).

When X is a regular scheme, the functor

Dabs..X;L; w/-cohlf/ �! Dabs..X;L; w/-coh/

is an equivalence of categories by Corollary 2.4(c), and so is the functor Db
Sing.X0/!

Db
Sing.X0=X/ (as explained in Section 2.1). Hence it follows that the functor † is
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an equivalence of categories, too. Thus we recover the result of Orlov [2012, Theo-
rem 3.5] claiming the equivalence of triangulated categories Dabs..X;L; w/-cohlf/'

Db
Sing.X0/ for a regular X .
A counterexample in Section 3.3 will show that whenX is not regular, the functor

Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-coh/ does not have to be an equivalence,
and indeed, the thick subcategory generated by Dabs..X;L; w/-cohlf/ can be a
proper strictly full subcategory in Dabs..X;L; w/-coh/.

Proof of the lower horizontal equivalence. To obtain the equivalence of triangulated
categories in the lower horizontal line, we will construct triangulated functors in
both directions and then check that they are mutually inverse. Given a bounded
complex of coherent sheaves F � over X0, consider the CDG-module ‡.F �/ over
.X;L; w/ with the underlying coherent graded module given by the rule

‡n.F �/ D
L
m2Z i�Fn�2m˝OX L˝m

and the differential induced by the differential on F �. Since d2 D 0 on F � and w
acts by zero in i�Fj , this is a CDG-module. It is clear that ‡ is a well-defined
triangulated functor Db.X0-coh/! Dabs..X;L; w/-coh/ since the derived category
of bounded complexes over an abelian category coincides with their absolute
derived category.

Let us check that ‡ annihilates the image of the functor Li�. It suffices to
consider a w-flat coherent sheaf E on X and check that ‡.cokerw/ D 0, where
w WE˝OX L˝�1!E . Indeed, ‡.cokerw/ is the cokernel of the injective morphism
of contractible coherent CDG-modules N ! M, where N 2nC1 D M2nC1 D

E ˝OX L˝n and N 2n D E ˝OX L˝n�1, while M2n D E ˝OX L˝n for n 2 Z.
This provides the desired triangulated functor

‡ W Db
Sing.X0=X/ �! Dabs..X;L; w/-coh/:

The functor in the opposite direction is a version of Orlov’s cokernel functor, but in
our situation it has to be constructed as a derived functor since the functor of the
cokernel of an arbitrary morphism is not exact. Recall the equivalence of triangulated
categories Dabs..X;L; w/-cohw-fl/! Dabs..X;L; w/-coh/ from Corollary 2.6(c).

Define the functor „ WZ0..X;L; w/-cohw-fl/!Db
Sing.X0=X/ from the category

of w-flat coherent CDG-modules over .X;L; w/ and closed morphisms of degree 0
between them to the triangulated category of relative singularities by the rule

„.M/ D coker.d WM�1!M0/ D coker.i�d W i�M�1! i�M0/;

where the former cokernel, which is by definition a coherent sheaf on X annihilated
by w, is considered as a coherent sheaf on X0. One can immediately see that the
functor „ transforms morphisms homotopic to zero into morphisms factorizable
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through the restrictions to X0 of w-flat coherent sheaves on X . Hence the functor„
factorizes through the homotopy category H 0..X;L; w/-cohw-fl/.

It is explained in [Polishchuk and Vaintrob 2011, Lemma 3.12] that the functor„
is triangulated (see also Lemma 3.6 below) and in [Orlov 2012, Proposition 3.2] that
the functor „ factorizes through Dabs..X;L; w/-cohw-fl/. The latter assertion can
be also deduced by considering the complex (1.3) from [Polishchuk and Vaintrob
2011]. Indeed, the complex i�M corresponding to the total CDG-module M of
an exact triple in B-cohw-fl is the total complex of an exact triple of complexes
in the exact category EX0=X from Remark 2.1; hence the complex i�M is exact
with respect to EX0=X and the cokernels of its differentials belong to this exact
subcategory in the abelian category of coherent sheaves over X0. So we obtain the
triangulated functor

„ W Dabs..X;L; w/-cohw-fl/ �! Db
Sing.X0=X/;

and consequently, the left derived functor

L„ W Dabs..X;L; w/-coh/ �! Db
Sing.X0=X/:

Let us check that the two functors ‡ and L„ are mutually inverse. For any
w-flat coherent CDG-module M over .X;L; w/, there is a natural surjective closed
morphism of CDG-modules � WM!‡„.M/ with a contractible kernel. Clearly,
� W Id! ‡L„ is an (iso)morphism of functors.

Conversely, any object of Db
Sing.X0=X/ can be represented by a coherent sheaf

onX0, and any morphism in Db
Sing.X0=X/ is isomorphic to a morphism coming from

the abelian category of such coherent sheaves. Indeed, the bounded-above derived
category D�.X0-coh/ of coherent sheaves over X0 is equivalent to the bounded-
above derived category D�.X0-cohlf/ of locally free sheaves; using a truncation far
enough to the left, one can represent any object or morphism in Db

Sing.X0=X/ by
a long enough shift of a coherent sheaf or a morphism of coherent sheaves. Now
for any coherent sheaf F on X0, there is a natural distinguished triangle

F ˝OX0 i
�L˝�1Œ1� �! Li�i�F �! F �! F ˝OX0 i

�L˝�1Œ2�

in Db.X0-coh/, which provides a natural isomorphism F ' F ˝OX0 i
�L˝�1Œ2� in

Db
Sing.X0=X/.
Let F be a coherent sheaf on X0; pick a vector bundle E on X together with a

surjective morphism E! i�F with the kernel E 0. Then the CDG-module M over
.X;L; w/with the components M2nDE˝OXL˝n and M2n�1DE 0˝OXL˝n maps
surjectively onto ‡.F / with a contractible kernel, and L„‡.F /D„.M/D F
(cf. [Lin and Pomerleano 2013, Lemma 2.18]). Denote the isomorphism we
have constructed by  W L„‡.F /! F . The composition ‡ ı �‡ W ‡.F /!
‡L„‡.F /!‡.F / is clearly the identity morphism. It is obvious that commutes
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with any morphism of coherent sheaves F on X0, but checking that it commutes
with all morphisms, or all isomorphisms, in Db

Sing.X0=X/ is a little delicate (cf.
Remark 2.7 below).

Notice that ‡ is an (iso)morphism of functors since �‡ is, and consequently
L„‡ is an (iso)morphism of functors. Thus it remains to check that the functor
L„‡ is faithful, i.e., does not annihilate any morphisms. Indeed, any morphism
in Db

Sing.X0=X/ is isomorphic to a morphism coming from the abelian category
of coherent sheaves on X0, and the functor L„‡ transforms such morphisms into
isomorphic ones. The construction of the equivalence of categories in the lower
horizontal line is finished. One still has to check that the isomorphisms � commute
with the isomorphisms ‡„.MŒ1�/' ‡„.M/Œ1�, but this is straightforward.

Alternatively, one can use w-flat coherent sheaves on X or objects of the exact
category EX0=X of coherent sheaves on X0 (as applicable) instead of the locally
free sheaves everywhere in the above argument. �

Proof of “exactness” in the upper line. We start with a discussion of the three
adjoint functors in the right upper corner. The functor iı right adjoint to the functor
iı W Db

Sing.X/! Db
Sing.X0/ was constructed in Section 2.1.

To construct the left adjoint functor to iı, notice that the right derived functor of
the subsheaf with scheme-theoretic support in the closed subscheme

Ri Š W Db.X-coh/ �! Db.X0-coh/

only differs from the functor Li� by a shift and a twist; Ri ŠE� ' Li�E� ˝OX0
LjX0 Œ�1�. One can check this first for w-flat coherent sheaves E , when both objects
to be identified are shifts of sheaves, so it suffices to compare their direct images
under i , which are both computed by the same two-term complex E! E ˝OX L;
then replace a complex E� with a finite complex of w-flat coherent sheaves (for a
general result of this kind, see [Neeman 1996, Theorem 5.4]).

Hence the functor Ri Š takes Perf .X/ to Perf .X0/ and induces a triangulated
functor i� W Db

Sing.X/! Db
Sing.X0/ right adjoint to iı. It follows that the functor

i�.F /D iı.F /˝OX LŒ�1� is left adjoint to the functor iı.
To prove the vanishing of the composition of functors in the upper line and the

orthogonality assertions, notice that

HomDb
Sing.X0/

.iıE ; †M/ ' HomDb
Sing.X/

.E ; iı†M/

and i�†.M/D coker.M�1!M0/2Perf .X/ for any M2Dabs..X;L; w/-cohlf/

since the morphism M�1!M0 of locally free sheaves onX is injective. Similarly,

HomDb
Sing.X0/

.†M; iıE/ ' HomDb
Sing.X/

.i�†M; E/

and i�†.M/D iı†.M/˝OX LŒ�1�D 0 in Db
Sing.X/.
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Obviously, our derived cokernel functor L„ makes a commutative diagram with
the cokernel functor † from [Orlov 2012]. The left vertical arrow is fully faithful
by Corollary 2.3(i). The assertion that the upper horizontal arrow is fully faithful is
due to Orlov [2012, Theorem 3.4]. We have just obtained a new proof of it with
our methods. Indeed, it follows from orthogonality that the functor Db

Sing.X0/!

Db
Sing.X0=X/ induces isomorphisms on the groups of morphisms between any

two objects, one of which comes from Dabs..X;L; w/-cohlf/. Conversely, Orlov’s
theorem together with the orthogonality argument and the equivalence of categories
in the lower horizontal line imply that the left vertical arrow is fully faithful.

Now assume that iıF D 0 for some F 2 Db
Sing.X0/. Clearly, there exists m� 0

and a coherent sheaf K on X0 such that F ' KŒm� in Db
Sing.X0/. Then i�K is a

perfect complex, i.e., a coherent sheaf of finite flat dimension on X . Let us view it
as an object of .X;L; w/-cohffd; i.e., consider the CDG-module N over .X;L; w/
with the components N 2n D i�K˝OX L˝n and N 2nC1 D 0.

The construction of the cokernel functor † can be straightforwardly extended to
w-flat coherent matrix factorizations of finite flat dimension, providing a triangulated
functor

z† W Dabs..X;L; w/-cohw-fl\ffd/ �! Db
Sing.X0/:

The functor z† is well-defined since one has i�M2Perf .X0/ for anyw-flat coherent
sheaf M of finite flat dimension on X . Using the equivalence of triangulated cate-
gories Dabs..X;L; w/-cohw-fl\ffd/' Dabs..X;L; w/-cohffd/ from Corollary 2.6(f),
one constructs the derived functor

Lz† W Dabs..X;L; w/-cohffd/ �! Db
Sing.X0/

in the same way as it was done above for the derived functor L„. Since the functor
Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-cohffd/ is an equivalence of categories by
Corollary 2.3(g), the (essential) images of the functors † and Lz† coincide.

Let us check that Lz†.N / ' K as an object of Db
Sing.X0/. We argue as above,

picking a vector bundle E on X together with a surjective morphism E ! i�K
with the kernel E 0. Then the CDG-module M over .X;L; w/ with the components
M2n D E ˝OX L˝n and M2n�1 D E 0˝OX L˝n maps surjectively onto N with
a contractible kernel. Hence the object M 2 .X;L; w/-cohw-fl\ffd is isomorphic
to N in Dabs..X;L; w/-cohffd/, and we have Lz†.N / D z†.M/ D K. Therefore,
the object K 2 Db

Sing.X0/ belongs to the (essential) image of the functor †, and it
follows that so does the object F ' KŒm�.

One can strengthen the above argument so as to obtain a construction of the
(partial) inverse functor � to the functor † similar to the above construction of the
functor ‡ inverse to the functor L„. Consider the full subcategory FX0=X �X0-coh
in the abelian category of coherent sheaves on X0 consisting of all the sheaves F
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such that the sheaf i�F has finite flat dimension (i.e., is a perfect complex) on X .
The category FX0=X contains all the locally free sheaves on X0 and is closed under
the kernels of surjections, the cokernels of embeddings, and the extensions.

Hence FX0=X is an exact subcategory in X0-coh. The natural functor

Db.FX0=X / �! Db.X0-coh/

is fully faithful; its image coincides with the kernel of the composition of the direct
image and Verdier localization functors Db.X0-coh/! Db.X-coh/! Db

Sing.X/.
Accordingly, the quotient category Db.FX0=X /=D

b.X0-cohlf/ is identified with the
kernel of the direct image functor iı W Db

Sing.X0/! Db
Sing.X/.

Now the functor

� W Db.FX0=X /=D
b.X0-cohlf/ �! Dabs..X;L; w/-cohffd/

is constructed in the way similar to the construction of the functor ‡ , by taking the
direct image from X0 to X and applying the periodicity summation. That is,

�n.F �/ D
L
m2Z i�Fn�2m˝OX L˝m

for any F � 2Db.FX0=X /. One checks that the functor� is inverse to the functor Lz†,
the latter being viewed as a functor taking values in the triangulated subcategory
Db.FX0=X /=D

b.X0-cohlf/� Db
Sing.X0/, in the same way as it was done above for

the functors‡ and L„. This provides yet another proof of the fact that the functor†
is fully faithful, together with another proof of our description of its image. It is also
obvious from the constructions that the functor � makes a commutative diagram
with the functor ‡ . �

Remark 2.7. The somewhat tricky technical argument in the first part of the above
proof can be clarified and generalized using the approach developed by the first
author in [Efimov 2013, Appendix A].

Let C be an abelian category, L W C! C be its covariant autoequivalence, and
w W Id! L be a natural transformation commuting with L (that is for any object
B 2 C, one has wL.B/ D L.wB/). Let MF.C; L;w/ denote the abelian category of
“matrix factorizations of w in C”, i.e., pairs of objects U 0, L1=2.U 1/ 2 C endowed
with pairs of morphisms U 0 ! L1=2.U 1/, L1=2.U 1/ ! L.U 0/ such that the
compositions

U 0 �! L1=2.U 1/ �! L.U 0/ and L1=2.U 1/ �! L.U 0/ �! L3=2.U 1/

are equal to wU 0 and wL1=2.U 1/, respectively. Given a matrix factorization M D
.U 0; U 1/, one sets

M n
D Ln=2.U n mod 2/:
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Passing to the quotient category by the ideal of morphisms homotopic to zero,
one obtains the homotopy category of matrix factorizations of w in C, and their
absolute derived category, denoted by Dabs.C; L;w/, is produced by the Verdier
localization procedure similar to the one discussed in Section 1.3. (Cf. [Positselski
2011a, Remark 4.3].)

Let C0� C denote the full subcategory formed by all the objects A2 C for which
wA D 0; so C0 is an abelian subcategory in C closed under subobjects and quotient
objects. An object B 2 C is said to have no w-torsion if the morphism wB is
injective; and one says that the potential (natural transformation) w does not divide
zero in C if every object of C is the quotient object of an object without w-torsion.
Let i� W C0 ! C denote the exact identity embedding functor and i� W C! C0
be the functor left adjoint to i�, so i�.B/ D coker.wL�1.B/ W L

�1.B/ ! B/.
Assuming that w does not divide zero (as we do in the sequel), one can construct
the left derived functor Li� W Db.C/! Db.C0/ with Lsi

�.B/D 0 for all s ¤ 0, 1
and any object B 2 C. The functor Li� is left adjoint to the triangulated functor
i� W D

b.C0/! Db.C/ induced by the identity embedding i� W C0! C.
Similarly, let �n W C0!MF.C; L;w/ denote the exact functor assigning to an

object A 2 C0 the matrix factorization M with M n D A and M nC1 D 0, and
let �n WMF.C; L;w/! C0 be the functor left adjoint to �n, assigning the object
coker.M n�1!M n/ 2 C0 to a matrix factorization M . Considering the bounded
derived category DbMF.C; L;w/ of the abelian category MF.C; L;w/, one can
construct the left derived functor

L�n W DbMF.C; L;w/ �! Db.C0/I

once again, the functor L�n is left adjoint to �n WDb.C0/!DbMF.C; L;w/ and one
has Ls�

n.M/D 0 for all s ¤ 0, 1 and any matrix factorization M 2MF.C; L;w/.
Then the composition of the functor �n W Db.C0/! DbMF.C; L;w/ with the

totalization functor DbMF.C; L;w/! Dabs.C; L;w/ induces an equivalence of
triangulated categories

‡n W Db.C0/=hLi
�Db.C/i �! Dabs.C; L;w/

between the quotient category of the derived category Db.C0/ by the thick subcate-
gory generated by the image of the functor Li� and the absolute derived category
of matrix factorizations. The composition of the functor L�n W DbMF.C; L;w/!
Db.C0/ with the Verdier localization functor Db.C0/! Db.C0/=hLi

�Db.C/i factor-
izes through the totalization functor DbMF.C; L;w/! Dabs.C; L;w/, providing
the triangulated functor

L„n W Dabs.C; L;w/ �! Db.C0/=hLi
�Db.C/i

inverse to ‡n.
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Indeed, let F n WMF.C; L;w/! C denote the forgetful functor taking a matrix
factorization M to the object M n 2 C, and let Gn� W C!MF.C; L;w/ denote the
functor left adjoint to F n�1 (and right adjoint to F n); so the functor Gn� takes an
object B 2 C to a contractible matrix factorization M with M n�1 DM n D B (cf.
the constructions of the functors GC and G� in the proofs in Sections 1.4 and 1.6).
It is claimed that the induced triangulated functors Gn� WDb.C/!DbMF.C; L;w/
and �n W Db.C0/ ! DbMF.C; L;w/ are fully faithful and their images form a
semiorthogonal decomposition of the derived category DbMF.C; L;w/.

To check the first assertion, it suffices to notice that the triangulated functor Gn�

is left adjoint to the functor F n�1 WDbMF.C; L;w/!Db.C/, and their composition
F n�1 ıGn� is the identity endofunctor on Db.C/. Similarly, the composition of
triangulated functors L�n ı �n is the identity endofunctor on Db.C0/, so �n is
fully faithful as a functor between the derived categories. Furthermore, one has
F n�1 ı �n D 0 D L�n ıGn�, implying the semiorthogonality. Finally, for any
matrix factorization M whose terms are objects without w-torsion, there is a short
exact sequence

0 �!Gn�F.M/ �!M �! �n�nM �! 0

in MF.C; L;w/ and L�nM D �nM , proving the decomposition claim.
Now we notice that for any object B 2 C having no w-torsion, there is a short

exact sequence

0 �!G.nC2/�.B/ �!G.nC1/�.B/ �! �nj �B �! 0

in MF.C; L;w/. According to (the proof of) [Efimov 2013, Proposition A.3(1)
and (2)], the totalization functor DbMF.C; L;w/! Dabs.C; L;w/ is the Verdier
localization functor by the thick subcategory generated by the objects of the form
Gn�.B/ D G.nC2/�L.B/ and G.nC1/�.B/ 2 MF.C; L;w/ � DbMF.C; L;w/.
The assertions about the existence of triangulated functors ‡n and L„n and their
being mutually inverse equivalences of categories follow from these observations.

Returning to a separated Noetherian scheme X with enough vector bundles and
the Cartier divisor X0�X of a global section w of a line bundle L on X , the above
approach based on [loc. cit., Proposition A.3] provides an elegant construction of
Orlov’s triangulated cokernel functor† WDabs..X;L; w/-cohlf/!Db

Sing.X0/ in addi-
tion to a proof of our equivalence of categories Dabs..X;L; w/-coh/' Db

Sing.X0=X/.

2.8. Infinite matrix factorizations. Following [Orlov 2004, paragraphs after Re-
mark 1.9], one can define a “large” version of the triangulated category of singular-
ities D0Sing.X/ of a scheme X as the quotient category of the bounded derived cate-
gory of quasicoherent sheaves Db.X-qcoh/ by the thick subcategory Db.X-qcohlf/

of bounded complexes of locally free sheaves (of infinite rank). When X has
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finite Krull dimension, the latter subcategory coincides with the thick subcategory
Db.X-qcohfl/ of bounded complexes of flat sheaves (see Remark 1.4).

Similarly, letZ�X be a closed subscheme such that OZ has finite flat dimension
as an OX -module. Let us define a “large” triangulated category of relative singular-
ities D0Sing.Z=X/ as the quotient category of Db.Z-qcoh/ by the minimal thick sub-
category containing the image of the functor Li� W Db.X-qcoh/! Db.Z-qcoh/ and
closed under those infinite direct sums that exist in Db.Z-qcoh/. The quotient cate-
gory of Db.Z-qcoh/ by the minimal thick subcategory containing Li�Db.X-qcoh/
(without the direct sum closure) will be also of interest to us; let us denote it
by D00Sing.Z=X/.

Lemma 2.8. The triangulated categories D0Sing.Z=X/ and D00Sing.Z=X/ are quo-
tient categories of D0Sing.Z/. When the schemeX is regular of finite Krull dimension,
these three triangulated categories coincide.

Proof. To prove the first assertion, let us show that any locally free sheaf on Z,
considered as an object of Db.Z-qcoh/, is a direct summand of a bounded complex
whose terms are direct sums of locally free sheaves of finite rank restricted from X .
Indeed, pick a finite left resolution of a given locally free sheaf onZ with the middle
terms as above, long enough compared to the number of open subsets in an affine cov-
ering ofZ. Then the corresponding Ext class between the cohomology sheaves at the
rightmost and leftmost terms has to vanish in view of the Mayer–Vietoris sequence
for Ext groups between quasicoherent sheaves [Orlov 2004, Lemma 1.12]. Hence
the rightmost term is a direct summand of the complex formed by the middle terms.

The second assertion holds for the categories D00Sing.Z=X/ and D0Sing.Z/ since
any quasicoherent sheaf on a regular scheme of finite Krull dimension has a finite
left resolution consisting of locally free sheaves. To identify these two categories
with D0Sing.Z=X/, one needs to know that the subcategory of bounded complexes
of locally free sheaves on Z is closed under those infinite direct sums that exist
in Db.Z-qcoh/. The latter is true for any Noetherian scheme Z of finite Krull
dimension with enough vector bundles since the finitistic projective dimension of
a commutative ring of finite Krull dimension is finite [Raynaud and Gruson 1971,
Théorème II.3.2.6]. �

Now let L be a line bundle on X , w 2 L.X/ be a global section corresponding
to an injective morphism of sheaves OX ! L, and X0 �X be the locus of w D 0.

Proposition 2.8. There is a natural equivalence of triangulated categories

Dabs..X;L; w/-qcoh/ ' D00Sing.X0=X/:

Together with the infinite-rank version †0 W Dabs..X;L; w/-qcohlf/! D0Sing.X0/ of
Orlov’s cokernel functor † from [Orlov 2012], this equivalence forms the following
diagram of triangulated functors:
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D0Sing.X/

0 Dabs..X;L; w/-qcohlf/ D0Sing.X0/

Dabs..X;L; w/-qcoh/ D00Sing.X0=X/

0

::

zz

i�; iı

iı

// // //†0

��

�� ����

��

where the upper horizontal arrow †0 is fully faithful, the left vertical arrow is fully
faithful, the right vertical arrow is the Verdier localization functor by the thick
subcategory generated by the image of the diagonal down arrow iı, and the lower
horizontal line is an equivalence of categories. The square is commutative; the three
diagonal arrows i�, iı, iı are adjoint.

Furthermore, the image of the functor †0 is precisely the full subcategory of ob-
jects annihilated by the functor iı, or equivalently, by the functor i�. In other words,
the image of †0 is equal both to the left and to the right orthogonal complements to
(the thick subcategory generated by) the image of the functor iı.

Proof. The proof is completely similar to that of Theorem 2.7. It uses Corollar-
ies 2.6(b), 2.3(h), 2.6(e), and 2.3(c). The first assertion can be also obtained as a
particular case of the result of Remark 2.7.

Alternatively, one can prove that the functor †0 is fully faithful in the same way
as it was done for the functor † in [Orlov 2012, Theorem 3.4], and deduce the
assertion that the left vertical arrow is fully faithful from the orthogonality.

Note that one can check in a straightforward way that the functor †0 annihilates
the objects coacyclic with respect to .X;L; w/-qcohlf . This provides another proof
of Corollary 2.3(d), working in the assumption that w is a local nonzero-divisor. �

The functors † and †0 together with the direct image functors iı form the com-
mutative diagram of an embedding of “exact sequences” of triangulated functors:

0 Dabs..X;L; w/-cohlf/ Db
Sing.X0/ Db

Sing.X/

0 Dco..X;L; w/-qcohlf/ D0Sing.X0/ D0Sing.X/

// // //†

��

��

//
iı

��

��

��

��

// // //†0 //
iı

The leftmost vertical arrow is fully faithful by Corollary 2.3(j). The other two ver-
tical arrows are fully faithful by Orlov’s theorem [2004, Proposition 1.13] claiming
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that the functor Db
Sing.X/! D0Sing.X/ is fully faithful for any separated Noetherian

scheme X with enough vector bundles. The leftmost nontrivial terms in both lines
are the kernels of the rightmost arrows by Theorem 2.7 and Proposition 2.8.

Theorem 2.8. There is a natural equivalence of triangulated categories

Dco..X;L; w/-qcoh/ ' D0Sing.X0=X/

forming a commutative diagram of triangulated functors:

��

��

comp.
gener.

Dabs..X;L; w/-coh/ Db
Sing.X0=X/

Dabs..X;L; w/-qcoh/ D00Sing.X0=X/

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

��

��

��

��

����
����

��

��

comp.
gener.

with the equivalences of categories from Theorem 2.7 and Proposition 2.8. The
upper vertical arrows are fully faithful, the lower ones are Verdier localization
functors, and the vertical compositions are fully faithful. The categories in the lower
line admit arbitrary direct sums, and the images of the vertical compositions are
sets of compact generators in the target categories.

Proof. The construction of the desired equivalence of categories is very similar to
the construction of the equivalence of categories in Theorem 2.7 and Proposition 2.8.
Using Corollary 2.6(a), one defines the infinite-rank version of the functor L„, then
shows that the obvious infinite-rank version of the functor ‡ is inverse to it. Notice
that the functor „ W Z0..X;L; w/-qcohw-fl/ ! Db.X0-qcoh/ preserves infinite
direct sums and the functor ‡ W Db.X0-qcoh/! Dco..X;L; w/-qcoh/ preserves
those infinite direct sums that exist in Db.X0-qcoh/, so the functors

„ W Dco..X;L; w/-qcohw-fl/ �! D0Sing.X0=X/;

‡ W D0Sing.X0=X/ �! Dco..X;L; w/-qcoh/

are well-defined.
The upper left vertical arrow is fully faithful by Corollary 2.3(k); it follows that

the upper right vertical arrow is fully faithful, too. The assertions about the vertical
compositions are proved similarly. The category D0Sing.X0=X/ admits arbitrary
direct sums, since the category Dco..X;L; w/-qcoh/ does. By Corollary 2.3(l), the
left vertical composition is fully faithful and its image is a set of compact generators
in the target, so the right vertical composition has the same properties. �
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The following square diagram of triangulated functors is commutative:

Dco..X;L; w/-qcohlf/ D0Sing.X0/

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

// //†0

��
����

The upper horizontal arrow †0 is fully faithful; the right vertical arrow is a Verdier
localization functor. The lower line is an equivalence of triangulated categories.
Nothing is claimed about the left vertical arrow in general.

When the scheme X is Gorenstein of finite Krull dimension, the left vertical
arrow is an equivalence of categories by Corollary 2.4(a). When X is also regular,
the right vertical arrow is an equivalence of categories by Lemma 2.8. So †0 is an
equivalence of categories Dabs..X;L; w/-qcohlf/'D0Sing.X0/ and we have obtained
a strengthened version of [Polishchuk and Vaintrob 2011, Theorem 4.2] (in the
scheme case).

Remark 2.8. It is well-known that the Verdier localization functor of a triangulated
category with infinite direct sums by a thick subcategory closed under infinite
direct sums preserves infinite direct sums [Neeman 2001, Lemma 3.2.10]. This
result is not applicable to the localization functors Db.X-qcoh/! D0Sing.X/ and
Db.Z-qcoh/! D0Sing.Z=X/, as the category Db.X-qcoh/ does not admit arbitrary
infinite direct sums.

Using the equivalence of categories from Theorem 2.8 and the observation that
the functor ‡ preserves infinite direct sums, one can show that the localization
functor Db.X0-qcoh/! D0Sing.X0=X/ takes those infinite direct sums that exist in
Db.X0-qcoh/ into direct sums in the triangulated category of relative singularities
D0Sing.X0=X/ of the zero locus of w in X . However, there is no obvious reason
why the localization functor Db.X0-qcoh/! D0Sing.X0/ should take those infinite
direct sums that exist in Db.X0-qcoh/ into direct sums in the absolute triangulated
category of singularities D0Sing.X0/.

That is the problem one encounters attempting to prove that the kernel of the
localization functor D0Sing.X0/! D0Sing.X0=X/ is semiorthogonal to the image of
the functor †0.

2.9. Stable derived category. Following Krause [2005], we define the stable de-
rived category of a Noetherian scheme X as the homotopy category of acyclic
unbounded complexes of injective quasicoherent sheaves on X . As explained below,
this is another (and in some respects better) “large” version of the triangulated
category of singularities of X ; for this reason, we denote it by Dst

Sing.X/.
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In view of Lemma 1.7(b) (see also [Positselski 2010, Remark 5.4]), one can
equivalently define Dst

Sing.X/ as the quotient category of the homotopy category
of acyclic complexes of quasicoherent sheaves over X by the thick subcategory
of coacyclic complexes, or as the full subcategory of acyclic complexes in the
coderived category Dco.X-qcoh/ of (complexes of) quasicoherent sheaves over X .
It is the latter definition that will be used in the sequel.

Clearly, the category Dst
Sing.X/ has arbitrary infinite direct sums. Krause [2005,

Corollary 5.4] constructs a fully faithful functor Db
Sing.X/! Dst

Sing.X/ and proves
that its image is a set of compact generators of the target category.

Theorem 2.9. For any separated Noetherian schemeZ with enough vector bundles,
there is a natural triangulated functor D0Sing.Z/!Dst

Sing.Z/ forming a commutative
diagram with the natural functors from Db

Sing.Z/ into both these categories. The
composition

Db.Z-qcoh/ �! D0Sing.Z/ �! Dst
Sing.Z/

preserves those infinite direct sums that exist in Db.Z-qcoh/. When Z D X0 is a
divisor in a regular separated Noetherian scheme of finite Krull dimension, the
functor D0Sing.X0/! Dst

Sing.X0/ is an equivalence of triangulated categories.

Proof. The construction of the functor Db
Sing.Z/! Dst

Sing.Z/ in [Krause 2005] is
given in terms of the Verdier localization functor Q W Dco.Z-qcoh/! D.Z-qcoh/
by the triangulated subcategory Dst

Sing.Z/� Dco.Z-qcoh/ and its adjoint functors
on both sides, which exist according to [loc. cit., Corollary 4.3]. The proof of
our theorem is based on explicit constructions of the restrictions of these adjoint
functors to some subcategories of bounded complexes in D.Z-qcoh/.

It is well known that the Verdier localization functor H 0.Z-qcoh/!D.Z-qcoh/
from the homotopy category of (complexes of) quasicoherent sheaves on Z to their
derived category has a right adjoint functor D.Z-qcoh/!H 0.Z-qcoh/. The objects
in the image of this functor are called homotopy injective complexes of quasicoherent
sheaves on Z. The composition D.Z-qcoh/!H 0.Z-qcoh/! Dco.Z-qcoh/ pro-
vides the functor Q� W D.Z-qcoh/! Dco.Z-qcoh/ right adjoint to Q. In particular,
any bounded-below complex in D.Z-qcoh/ has a bounded-below injective resolution
and any bounded-below complex of injectives is homotopy injective. Furthermore,
any bounded-below acyclic complex is coacyclic [Positselski 2010, Lemma 2.1].
It follows that any bounded-below complex from DC.Z-qcoh/, considered as an
object of Dco.Z-qcoh/, represents its own image under the functor Q�.

On the other hand, any bounded-above complex from D.Z-qcoh/ has a locally
free left resolution defined uniquely up to a quasi-isomorphism of complexes in
the exact category of locally free sheaves; i.e., there is an equivalence of bounded
above derived categories D�.Z-qcohlf/' D�.Z-qcoh/. Since the exact category
Z-qcohlf has finite homological dimension, any acyclic complex in it is coacyclic
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(and even absolutely acyclic [loc. cit., Remark 2.1]), so there are natural functors
D�.Z-qcohlf/! D.Z-qcohlf/' Dco.Z-qcohlf/! Dco.Z-qcoh/.

Lemma 2.9. The composition of the embedding D�.Z-qcoh/! D.Z-qcoh/ with
the functor Q� W D.Z-qcoh/! Dco.Z-qcoh/ left adjoint to Q is isomorphic to the
functor D�.Z-qcoh/! Dco.Z-qcoh/ constructed above.

Proof. We have to show that HomDco.Z-qcoh/.L�; E�/D 0 for any bounded-above
complex of locally free sheaves L� and any acyclic complex E� of quasicoherent
sheaves on Z. Let us check that any morphism L�! E� in H 0.Z-qcoh/ factorizes
through a coacyclic complex of quasicoherent sheaves. Clearly, we can assume
that the complex E� is bounded above, too. Let K� be the cocone of a closed
morphism of complexes L�! E�; then K� is bounded above and the composition
K�! L�! E� is homotopic to zero. Pick a bounded-above complex of locally
free sheaves F � together with a quasi-isomorphism F �!K�. Then the cone of the
composition F �! K�! L�, being a bounded-above acyclic complex of locally
free sheaves, is coacyclic. Since the composition F �! L�! E� is homotopic to
zero, the morphism L�! E� factorizes, up to homotopy, through this cone. �

Now we can describe the action of the functor I� WDco.Z-qcoh/!Dst
Sing.Z-qcoh/

left adjoint to the embedding Dst
Sing.Z-qcoh/! Dco.Z-qcoh/ on bounded-above

complexes in Dco.Z-qcoh/. If K� is a bounded-above complex of quasicoherent
sheaves and F � is its locally free left resolution, then the cone of the closed
morphism F � ! K� represents the object I�.K�/ 2 Dst

Sing.Z-qcoh/. In view of
Lemma 2.9, this cone is functorial and does not depend on the choice of F � for the
usual semiorthogonality reasons.

The embedding of compact generators Db
Sing.Z/ ! Dst

Sing.Z/ is constructed
in [Krause 2005] as the functor induced by the restriction of the composition
I� ıQ� W D.Z-qcoh/! Dst

Sing.Z/ to the full subcategory Db.Z-coh/� D.Z-qcoh/.
Let us explain why this is so. By Proposition 1.5(d) (cf. [loc. cit., Proposition 2.3
and Remark 3.8]), the natural functor Db.Z-coh/! Dco.Z-qcoh/ is fully faithful
and its image is a set of compact generators in the target. This is the image of
Db.Z-coh/ � D.Z-qcoh/ under the functor Q�, as constructed above. It is clear
from the above construction of the functor Q� that it preserves compactness (and
in fact coincides with the functor Q� on perfect complexes in D.Z-qcoh/ [loc. cit.,
Lemma 5.2]). Since the functors Q� and I�, being left adjoints, preserve infinite
direct sums, and I� is a Verdier localization functor by the image of Q�, it follows
that the image of any set of compact generators of Dco.Z-qcoh/ under I� is a set
of compact generators of Dst

Sing.Z/ [Neeman 1996, Theorem 2.1(4)].
In order to define the desired functor

D0Sing.Z/ �! Dst
Sing.Z/;
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restrict the same composition I� ı Q� to the full subcategory Db.Z-qcoh/ �
D.Z-qcoh/. According to the above, this restriction assigns to any bounded complex
of quasicoherent sheaves K� on Z the cone of a morphism F �! K� into it from
its locally free left resolution F �. Clearly, the functor

Db.Z-qcoh/ �! Dst
Sing.Z/

that we have constructed preserves those infinite direct sums that exist in Db.Z-qcoh/
and annihilates the triangulated subcategory Db.Z-qcohlf/� Db.Z-qcoh/. So we
have the induced functor D0Sing.Z/! Dst

Sing.Z/, and the first two assertions of the
theorem are proven.

To prove the last assertion, we use the results of Section 2.8. Assume that
Z D X0 is the zero locus of a section w 2 L.X/ of a line bundle on X ; as usual,
w W OX ! L has to be an injective morphism of sheaves. Then by Theorem 2.8
and Lemma 2.8, the category D0Sing.Z/ admits infinite direct sums and the image of
the fully faithful functor Db

Sing.X0/! D0Sing.X0/ is a set of compact generators in
the target. Furthermore, it follows from the proof of Theorem 2.8 that any object
of D0Sing.X0/ can be represented by a quasicoherent sheaf on X0 and the direct
sum of an infinite family of such objects is represented by the direct sums of such
sheaves (see Remark 2.8). Thus the functor D0Sing.Z/! Dst

Sing.Z/, being an infinite
direct sum-preserving triangulated functor identifying triangulated subcategories of
compact generators, is an equivalence of triangulated categories. �

We keep the assumptions of Theorem 2.9 and the notation of the last paragraph of
its proof; i.e., X is a regular separated Noetherian scheme of finite Krull dimension
with enough vector bundles and X0 �X is the divisor of zeros of a locally nonzero-
dividing section w 2 L.X/. The closed embedding X0!X is denoted by i .

Corollary 2.9. The functor

ƒ W Dco..X;L; w/-qcohlf/' Dco..X;L; w/-qcoh/ �! Dst
Sing.X0/

assigning to a locally free (or just w-flat) quasicoherent matrix factorization M
the acyclic complex of locally free (or quasicoherent) sheaves i�M on X0 is an
equivalence of triangulated categories.

Proof. Given a w-flat matrix factorization M, the complex of sheaves i�M on X0
is acyclic by [Polishchuk and Vaintrob 2011, Lemma 1.5]. Clearly, the assignment
M 7�! i�M defines a triangulated functor Dco..X;L; w/-qcohw-fl/! Dst

Sing.X0/.
To prove that this functor is an equivalence of categories, it suffices to identify it,

up to a shift, with the composition of the equivalences

Dco..X;L; w/-qcohlf/ �! D0Sing.X0/ �! Dst
Sing.X0/:
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Here one simply notices that for any M 2 Dco..X;L; w/-qcohlf/ the complex
i�M is isomorphic in Dst

Sing.X0/ to its canonical truncation ��1i�M, and the latter
complex is the cocone of the morphism into †.M/ from one of its left locally free
resolutions. So the functor ƒ is identified with †Œ�1�. �

2.10. Relative stable derived category. The goal of this section is to generalize
the results of the previous one to the case of a singular Noetherian scheme X .
The relative version of stable derived category, defined for a closed embedding of
finite flat dimension i WZ! X , is equivalent to the categories D0Sing.X0=X/ and
Dco..X;L; w/-qcoh/ in the case of the Cartier divisor Z DX0 corresponding to a
locally nonzero-dividing section w of a line bundle L on X .

Let X be a separated Noetherian scheme of finite Krull dimension and i WZ!X

be a closed embedding of schemes such that i�OZ has finite flat dimension as an
OX -module. According to Section 1.9, there is a left derived inverse image functor
Li� W Dco.X-qcoh/! Dco.Z-qcoh/. This functor forms a commutative diagram
with the similar functor Li� W D.X-qcoh/! D.Z-qcoh/, and consequently, takes
acyclic complexes in Dco.X-qcoh/ to acyclic complexes in Dco.Z-qcoh/.

Proposition 2.10. The following four triangulated categories are naturally equiva-
lent:

(a) the full subcategory in Dco.Z-qcoh/ consisting of all the objects annihilated by
the direct image functor i� W Dco.Z-qcoh/! Dco.X-qcoh/;

(b) the quotient category of the homotopy category of complexes overZ-qcoh whose
direct images are coacyclic complexes over X-qcoh by the thick subcategory of
coacyclic complexes over Z-qcoh;

(c) the quotient category of Dco.Z-qcoh/ by its minimal triangulated subcategory,
containing the objects in Li�Dco.X-qcoh/ and closed under infinite direct sums;

(d) the quotient category of the full subcategory of acyclic complexes in Dco.Z-qcoh/
by its minimal triangulated subcategory, containing the left derived inverse images
of acyclic complexes in Dco.X-qcoh/ and closed under infinite direct sums.

Proof. The equivalence of (a) and (b) is obvious. To show that the natural functor
from the category (d) to the category (c) is an equivalence, notice that the minimal
triangulated subcategory containing flat quasicoherent sheaves and closed under
infinite direct sums together with the triangulated subcategory of acyclic complexes
form a semiorthogonal decomposition of Dco.X-qcoh/, and similarly forZ [Positsel-
ski 2012, Corollary A.4.7]. Since flat quasicoherent sheaves onZ belong to the thick
subcategory in Db.Z-qcoh/� Dco.Z-qcoh/ generated by the inverse images of flat
quasicoherent sheaves from X (see the proof of Lemma 2.8), the assertion follows.

Finally, the functor Li� preserves infinite direct sums and compactness of objects
since its right adjoint functor i� preserves infinite direct sums. Hence the minimal
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triangulated subcategory in Dco.Z-qcoh/ containing Li�Dco.X-qcoh/ and closed
under infinite direct sums is compactly generated by some objects which are compact
in Dco.Z-qcoh/. By Brown representability, the quotient category in (c) is equivalent
to the right orthogonal complement to this triangulated subcategory, which is the
kernel category in (a). �

We call any of the equivalent triangulated categories in Proposition 2.10 the rela-
tive stable derived category of Z over X and denote it by Dst

Sing.Z=X/ (cf. [Becker
2014, Section 2]). In particular, defining the relative stable derived category by the
construction (c), we have natural triangulated functors

Db.Z-qcoh/ �! Dco.Z-qcoh/ �! Dst
Sing.Z=X/:

Clearly, the composition Db.Z-qcoh/! Dst
Sing.Z=X/ factorizes through the rela-

tive singularity category D0Sing.Z=X/, providing a natural functor D0Sing.Z=X/!

Dst
Sing.Z=X/.

Lemma 2.10. The composition of triangulated functors

Db
Sing.Z=X/ �! D0Sing.Z=X/ �! Dst

Sing.Z=X/

is fully faithful and its image forms a set of compact generators for the triangulated
category Dst

Sing.Z=X/.

Proof. By Proposition 1.5(d), the full triangulated subcategory Dabs.Z-coh/ com-
pactly generates the triangulated category Dco.Z-qcoh/, and similarly this holds
for X . In view of the construction (c) and the argument in the proof of Proposi-
tion 2.10, the assertion follows from [Neeman 1992, Theorem 2.1]. �

Now let L be a line bundle on X , let w 2 L.X/ be a locally nonzero-dividing
section of L, and let i WX0!X be closed embedding of the zero locus ofw. Defining
the category Dst

Sing.X0=X/ by the construction (d), let Lƒ W Dco..X;L; w/-qcoh/!
Dst

Sing.X0=X/ be the triangulated functor assigning to a w-flat quasicoherent matrix
factorization M the acyclic complex i�M over X0-qcoh.

Since any bounded-below acyclic complex over X0-qcoh is coacyclic, and
any bounded-above complex belongs to the minimal triangulated subcategory in
Dco.X0-qcoh/ generated by its terms and closed under infinite direct sums, the
following diagram of triangulated functors is commutative (cf. Corollary 2.9):

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

Dst
Sing.X0=X/

//
L„Œ�1�

))Lƒ uu
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Theorem 2.10. For any locally nonzero-dividing section w of a line bundle L on a
separated Noetherian scheme X of finite Krull dimension, all the three functors on
the above diagram are equivalences of triangulated categories.

Proof. The functor L„ is an equivalence by Theorem 2.8. To show that the functor
Lƒ is an equivalence, let us check that it identifies compact generators. By Propo-
sition 1.5(d), the category Dco..X;L; w/-qcoh/ is compactly generated by its full
triangulated subcategory Dabs..X;L; w/-coh/, while according to Lemma 2.10 the
category Dst

Sing.X0=X/ is compactly generated by its full triangulated subcategory
Db

Sing.X0=X/. The restriction of the functor Lƒ being an equivalence between these
two subcategories (in view of commutativity of the diagram and) by Theorem 2.7,
it follows that the functor Lƒ itself is an equivalence, too. �

Remark 2.10. Another proof of Theorem 2.10 can be obtained using the approach
based on [Efimov 2013, Appendix A]. In the notation and assumptions of Re-
mark 2.7, suppose that C is an abelian category with exact functors of arbitrary
infinite direct sums. Then so is the abelian category MF.C; L;w/; the full abelian
subcategory C0�C is closed under infinite direct sums; and the triangulated functors
i�, Li�, �n, L�n, F n, Gn� act between the coderived categories Dco.C/, Dco.C0/,
and DcoMF.C; L;w/.

As in Remark 2.7, one proves that the functors Gn� WDco.C/!DcoMF.C; L;w/
and �n W Dco.C0/! DcoMF.C; L;w/ are fully faithful and their images form a
semiorthogonal decomposition of the coderived category DcoMF.C; L;w/. By (the
proof of) [loc. cit., Proposition A.3(3) and (4)], the totalization functor

DcoMF.C; L;w/ �! Dco.C; L;w/

acting between the coderived category of the abelian category MF.C; L;w/ and the
coderived category of matrix factorizations Dco.C; L;w/ (defined as in Section 1.3)
is the Verdier localization by the minimal triangulated subcategory containing the
objectsGn�.B/ andG.nC1/�.B/ for allB 2C and closed under infinite direct sums.

It follows that the composition of the functor �n W Dco.C0/! DcoMF.C; L;w/
with the totalization functor DcoMF.C; L;w/! Dco.C; L;w/ induces an equiva-
lence of triangulated categories

Dco.C0/=hLi
�Dco.C/i˚ �! Dco.C; L;w/

between the quotient category of the coderived category Dco.C0/ by its minimal
triangulated subcategory containing the image of the functor Li� WDco.C/!Dco.C0/

and closed under infinite direct sums, and the coderived category of matrix fac-
torizations. The composition of the functor L�n W DcoMF.C; L;w/ ! Dco.C0/

with the Verdier localization functor Dco.C0/! Dco.C0/=hLi
�Dco.C/i˚ factorizes
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through the totalization functor, providing the inverse equivalence Dco.C; L;w/!

Dco.C0/=hLi
�Dco.C/i˚.

Returning to quasicoherent matrix factorizations of a global section w 2L.X/ of
a line bundle L on a separated Noetherian scheme X with the zero locus X0 �X ,
we obtain direct constructions of two mutually inverse triangulated equivalences
between the coderived category Dco..X;L; w/-qcoh/ and the relative stable derived
category Dst

Sing.X0=X/ as defined in part (c) of Proposition 2.10.

3. Supports, pull-backs, and push-forwards

3.1. Supports. This section paves the ground for the results about preservation of
finite rank or coherence by the push-forwards of matrix factorizations with proper
supports, which will be proven in Sections 3.5–3.6.

Let X be a separated Noetherian scheme and T �X be a Zariski closed subset.
Denote by X-cohT the abelian category of coherent sheaves on X with set-theoretic
support in T ; and we will use similar notation for quasicoherent sheaves.

It is a well-known fact (essentially, a reformulation of the Artin–Rees lemma)
that the embedding of abelian categories X-qcohT ! X-qcoh takes injectives to
injectives. It follows that the functor Db.X-cohT /! Db.X-coh/ is fully faithful.
Clearly, its image is a thick subcategory and the corresponding quotient category
can be naturally identified with Db.U -coh/, where U DX nT (cf. Section 1.10).

Assume additionally thatX has enough vector bundles. Let Perf T .X/�Perf .X/
denote the full subcategory of perfect complexes with the cohomology sheaves set-
theoretically supported in T . By the above result, Perf T .X/ can be considered as a
thick subcategory in Db.X-cohT /. According to [Orlov 2011, Lemma 2.6], the func-
tor Db.X-cohT /=Perf T .X/!Db

Sing.X/ induced by the embedding Db.X-cohT /!
Db.X-coh/ is fully faithful. We denote the source (or the image) category of this
functor by Db

Sing.X; T /.
By [Chen 2010, Theorem 1.3], the restriction functor Db

Sing.X/! Db
Sing.U / is

the Verdier localization functor by the triangulated subcategory Db
Sing.X; T /. In

particular, the kernel of the restriction functor coincides with the thick envelope of
(i.e., the minimal thick subcategory containing) Db

Sing.X; T / in Db
Sing.X/.

Now we are going to establish the similar results for the triangulated cate-
gories of relative singularities. Let i W Z ! X be a closed subscheme such that
i�OZ 2 Perf .X/, and let Perf .Z=X/ D Db.EZ=X / (see Remark 2.1) denote the
thick subcategory in Db.Z-coh/ generated by Li�Db.X-coh/. Let T � Z be a
Zariski closed subset; put U DX nT and V DZ nT . We denote by Perf T .Z=X/
the full subcategory of all objects of Perf .Z=X/ with the cohomology sheaves
set-theoretically supported in T . Consider it as a thick subcategory in Db.Z-cohT /,
and denote by Db

Sing.Z=X; T / the quotient category Db.Z-cohT /=Perf T .Z=X/.
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Lemma 3.1. (a) The functor Db
Sing.Z=X; T /! Db

Sing.Z=X/ induced by the em-
bedding Db.Z-cohT /! Db.Z-coh/ is fully faithful.

(b) The restriction functor Db
Sing.Z=X/ ! Db

Sing.V=U / is the Verdier localiza-
tion functor by the triangulated subcategory Db

Sing.Z=X; T /. In particular,
the kernel of the restriction functor coincides with the thick envelope of
Db

Sing.Z=X; T / in Db
Sing.Z=X/.

Proof. The proof of (a) is similar to that of [Orlov 2011, Lemma 2.6]. One only needs
to notice that the tensor product of an object of Perf .Z=X/with an object of Perf .Z/
belongs to Perf .Z=X/. This follows from the fact that Perf .Z/ as a thick subcat-
egory in Db.Z-coh/ is generated by the restrictions of vector bundles from X (see
Section 2.1). Part (b) is true since the thick subcategory Perf .V=U /�Db.V -coh/ is
generated by the image of the restriction functor Perf .Z=X/! Perf .V=U /, which
is true because any coherent sheaf onU can be extended to a coherent sheaf onX . �

Let L be a line bundle over X and w 2L.X/ be a section; set X0DfwD 0g�X .
The definitions of the set-theoretic and category-theoretic supports SuppM and
suppM of a coherent matrix factorization M 2 .X;L; w/-coh were given (in a
greater generality of coherent CDG-modules) in Section 1.10.

Given a locally free matrix factorization of finite rank M 2 .X;L; w/-cohlf ,
define the (category-theoretic) support suppM�X as the minimal closed subset
T � X such that the restriction MjU of M to the open subscheme U D X nT
is absolutely acyclic with respect to .U;LjU ; wjU /-cohlf . By Corollary 2.3(i), the
definitions of category-theoretic supports of coherent matrix factorizations and of
locally free matrix factorizations of finite rank agree when they are both applicable.

Equivalently, for a locally free matrix factorization M of finite rank over X , the
open subscheme XnsuppM is the union of all affine open subschemes U �X such
that the matrix factorization MjU is contractible (see Remark 1.3). For any coherent
matrix factorization M, one has suppM�X0 since any matrix factorization of an
invertible potential is contractible (cf. [Polishchuk and Vaintrob 2011, Section 5]).

Let T � X be a closed subset. Denote by Dabs
T ..X;L; w/-cohlf/ (respectively

Dabs
T ..X;L; w/-coh/) the quotient category of the homotopy category of locally free

matrix factorizations of finite rank (resp. coherent matrix factorizations) supported
category-theoretically inside T by the thick subcategory of matrix factorizations
absolutely acyclic with respect to .X;L; w/-cohlf (resp. .X;L; w/-coh). Clearly, the
functors Dabs

T ..X;L; w/-cohlf/!Dabs..X;L; w/-cohlf/ and Dabs
T ..X;L; w/-coh/!

Dabs..X;L; w/-coh/ are fully faithful [loc. cit.].
By the definition, the thick subcategories

Dabs
T ..X;L; w/-cohlf/� Dabs..X;L; w/-cohlf/;

Dabs
T ..X;L; w/-coh/� Dabs..X;L; w/-coh/



Coherent analogues of matrix factorizations and relative singularity categories 1227

only depend on the intersection X0 \ T (rather than the whole of T ). Equiv-
alently, they can be defined as the full subcategories of objects annihilated by
the restriction functors Dabs..X;L; w/-cohlf/ ! Dabs..U;LjU ; wjU /-cohlf/ and
Dabs..X;L; w/-coh/! Dabs..U;LjU ; wjU /-coh/, where U DX nT .

As in Section 1.10, we denote by Dabs..X;L; w/-cohT / the absolute derived
category of coherent matrix factorizations with set-theoretic support in T . The
functor Dabs..X;L; w/-cohT /! Dabs..X;L; w/-coh/ is fully faithful by Proposi-
tion 1.10(d). By Corollary 1.10(b), the full subcategory

Dabs
T ..X;L; w/-coh/� Dabs..X;L; w/-coh/

is the thick envelope of the full subcategory Dabs..X;L; w/-cohT /.
Now assume that w WOX ! L is an injective morphism of sheaves.

Proposition 3.1. (a) The equivalence of categories

Dabs..X;L; w/-coh/' Db
Sing.X0=X/

identifies the triangulated subcategory Dabs..X;L; w/-cohT / with the triangu-
lated subcategory Db

Sing.X0=X; X0\T /. In particular, the former triangulated
subcategory only depends on the intersection X0\T .

(b) The full preimage of the thick envelope of the triangulated subcategory

Db
Sing.X0; X0\T /� Db

Sing.X0/

under the fully faithful functor† WDabs..X;L; w/-cohlf/!Db
Sing.X0/ coincides

with the triangulated subcategory Dabs
T ..X;L; w/-cohlf/.

Proof. Part (b) follows from the fact that the thick envelope of Db
Sing.X0; X0\T / is

the kernel of the restriction functor Db
Sing.X0/! Db

Sing.X0 nT /, the similar fact for
Dabs
T ..X;L; w/-cohlf/, and the compatibility of the functors † with the restrictions

to open subschemes, together with their full-and-faithfulness.
To prove part (a), notice first that the functor ‡ obviously takes Db

Sing.X0=X;

X0 \ T / into Dabs..X;L; w/-cohT /. Let us check that the functor L„ takes
Dabs..X;L; w/-cohT / into Db

Sing.X0=X; X0 \ T /. Let M be a coherent matrix
factorization supported set-theoretically in T . Present M as the cokernel of an in-
jective morphism of w-flat coherent matrix factorizations K!N . Since the functor
L„ is triangulated, the object L„.M/ 2 Db

Sing.X0=X/ is isomorphic to the cone of
the morphism „.K/!„.N / (cf. Lemma 3.6). The morphism „.K/!„.N / of
coherent sheaves on X0 is an isomorphism outside T , so its kernel and cokernel are
supported in X0\T . Thus the cone is quasi-isomorphic to a two-term complex of
coherent sheaves on X0 with the terms supported set-theoretically in X0\T . �
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3.2. Locality of local freeness. The aim of this section is to show that the property
of an object of Dabs..X;L; w/-qcohfl/ or Dabs..X;L; w/-coh/ to be a direct sum-
mand of an object from Dabs..X;L; w/-cohlf/ is local in a separated Noetherian
scheme X with a dualizing complex and enough vector bundles, assuming that the
potential w 2 L.X/ is not locally zero-dividing.

Let Z be a Noetherian scheme of finite Krull dimension with enough vector
bundles. Recall that the natural functor Db

Sing.Z/!D0Sing.Z/ is fully faithful [Orlov
2004, Proposition 1.13] (cf. Section 2.8).

Proposition 3.2. Let Z DU [V be a covering by two open subschemes. Then any
object of D0Sing.Z/ whose restrictions to U and V belong to the full subcategories
Db

Sing.U /� D0Sing.U / and Db
Sing.V /� D0Sing.V /, respectively, is a direct summand

of an object belonging to the full subcategory Db
Sing.Z/� D0Sing.Z/.

Proof. Consider the bounded derived category of quasicoherent sheaves Db.Z-qcoh/
on Z and two full triangulated subcategories Db.Z-coh/ and Db.Z-qcohfl/ in it.
Clearly, the intersection Db.Z-coh/\Db.Z-qcohfl/ coincides with the full subcate-
gory of perfect complexes Perf .Z/D Db.Z-cohlf/� Db.Z-qcoh/.

Lemma 3.2. Any morphism from an object of the full subcategory Db.Z-qcohfl/

into an object of the full subcategory Db.Z-coh/� Db.Z-qcoh/ factorizes through
an object belonging to Db.Z-cohlf/.

Proof. See the proof of [Orlov 2004, Proposition 1.13]. �

It follows from Lemma 3.2 ( by the way of the octahedron axiom) that any object
K� of the full triangulated subcategory Db.Z-qcoh/fl-c generated by Db.Z-qcohfl/

and Db.Z-coh/ in Db.Z-qcoh/ can be included in a distinguished triangle

F � �! K� �!M�
�! F �Œ1�;

with F � 2 Db.Z-qcohfl/ and M� 2 Db.Z-coh/. Besides, the natural functor
Db.Z-qcohfl/=D

b.Z-cohlf/! Db.Z-qcoh/=Db.Z-coh/ is fully faithful.
To prove Proposition 3.2, one has to show that any object K� 2 Db.Z-qcoh/

whose restrictions to U and V belong to the subcategories Db.U -qcoh/fl-c and
Db.V -qcohfl-c/, respectively, is a direct summand of an object from Db.Z-qcoh/fl-c�

Db.Z-qcoh/. According to the above, there exist two objects F �U 2 D
b.U -qcohfl/

and F �V 2 D
b.V -qcohfl/ and two morphisms F �U ! K�jU and F �V ! K�jV whose

cones belong to Db.U -coh/ and Db.V -coh/, respectively.
SetW DU \V �Z; then the restrictions of F �U and F �V toW are isomorphic in

Db.W -qcoh/=Db.W -coh/, and consequently, in Db.W -qcohfl/=D
b.W -cohlf/, too.

Notice that the category Perf .W / D Db.W -cohlf/ is idempotent complete, and
therefore, a thick subcategory in Db.W -qcohfl/. It follows that there exists a finite
complex of flat quasicoherent sheaves F �W on W together with two morphisms
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F �U jW ! F �W and F �V jW ! F �W whose cones are perfect complexes. Denote the
cocones of these morphisms by G�W and H�W .

For any object A of a triangulated category D, let us denote by 0A the object
A˚AŒ1�. For any triangulated subcategory C� D, whenever an object A 2 D is
a direct summand of an object from C, the object 0A belongs to C, as A˚B 2 C
implies A˚AŒ1� 2 C in view of the distinguished triangle A˚B ! A˚B !

A˚AŒ1�! AŒ1�˚BŒ1� [Thomason 1997, Theorem 2.1].
By the Thomason–Trobaugh theorem [1990, Section 5], the objects 0G�W and 0H�W

can be extended to perfect complexes on U and V , respectively. Moreover, these
extensions G�U 2 D

b.U -cohlf/ and H�V 2 D
b.V -cohlf/ can be chosen in such a way

that the morphisms 0G�W !
0F �U jW and 0H�W !

0F �V jW would be extendable to
morphisms G�U !

0F �U and H�V !
0F �V [Neeman 1996, Theorem 2.1(4) and (5)].

Furthermore, the objects 0G�U and 0H�V can be extended to perfect complexes G�

and H� on the whole scheme Z so that the compositions of morphisms

0G�U �!
00F �U �!

00K�jU and 0H�V �!
00F �V �!

00K�jV

would be extendable to morphisms G�! 00K� and H�! 00K�. Denote by K�
.1/

a cone
of the morphism G�˚H�!00K�, by F �

U;.1/
a cone of the morphism 0G�U !

00F �U ,
and by F �

V;.1/
a cone of the morphism 0H�V !

00F �V . We have come back to the orig-
inal situation with an object K�

.1/
2Db.Z-qcoh/, two objects F �

U;.1/
2Db.U -qcohfl/

and F �
V;.1/
2 Db.V -qcohfl/, and two morphisms

F �U;.1/ �! K�.1/jU and F �V;.1/ �! K�.1/jV

whose cones belong to Db.U -coh/ and Db.V -coh/, respectively. In addition, the
objects F �

U;.1/
jW and F �

V;.1/
jW are now isomorphic in Db.W -qcohfl/.

The construction does not guarantee commutativity of the diagram formed by
the isomorphism

F �U;.1/jW D F �W;.1/ ' F �V;.1/jW

and the restrictions of the morphisms F �
U;.1/

! K�
.1/

and F �
V;.1/

! K�
.1/

to W .
However, the original choice of the morphisms

F �U jW �! F �W and F �V jW �! F �W

makes this diagram commute in the quotient category Db.W -qcoh/=Db.W -coh/.
Hence the difference of two morphisms F �

W;.1/
� K�

.1/
jW factorizes through a

bounded complex of coherent sheaves on W , and consequently (according to
Lemma 3.2) also through a perfect complex on W . Denote the latter by E� 2
Db.W -cohlf/.



1230 Alexander I. Efimov and Leonid Positselski

Now let j W U ! Z, k W V ! Z, and h W W ! Z denote the natural open
embeddings. Consider the square diagram formed by the morphisms

Rj�F �U;.1/˚Rk�F �V;.1/ �! Rh�F �U;.1/jW ;
Rj�K�.1/jU ˚Rk�K�.1/jV �! Rh�K�.1/jW :

According to the above, this diagram is not necessarily commutative; but it can
be made commutative by adding the new direct summand Rh�E� to the term
Rj�K�.1/jU ˚ Rk�K�.1/jV with the morphism Rh�E� ! Rh�K�.1/jW induced by
the morphism E�!K�

.1/
jW and the morphism Rj�F �U;.1/˚Rk�F �V;.1/ equal to zero

on the first direct summand and induced by the morphism F �
V;.1/
jW 'F �

W;.1/
! E�

on the second one.
Let F � denote a cocone of the morphism

Rj�F �U;.1/˚Rk�F �V;.1/ �! Rh�F �U;.1/jW

and L� denote a cocone of the morphism

Rj�K�.1/jU ˚Rk�K�.1/jV ˚Rh�E� �! Rh�K�.1/jW :

Then the commutative square can be extended to a morphism of distinguished
triangles, so we obtain a morphism F � ! L�. Since K�

.1/
is a cocone of the

morphism
Rj�K�.1/jU ˚Rk�K�.1/jV �! Rh�K�.1/jW ;

there is also a distinguished triangle K�
.1/
! L�! Rh�E! K�

.1/
Œ1�.

Notice that the complexes F � and Rh�E� belong to Db.Z-qcohfl/ (since the class
of bounded complexes of flat quasicoherent sheaves is preserved by the derived direct
images with respect to flat morphisms of Noetherian schemes; cf. Proposition 1.9).
Furthermore, the complex Rh�E� is perfect overW . Restricting toW our morphism
of distinguished triangles, and recalling that cones of the morphisms

F �U;.1/ �! K�.1/jU and F �V;.1/ �! K�.1/jV

are coherent complexes over U and V , one easily concludes that a cone of the
morphism F �! L� is a coherent complex over W .

Denote this cone temporarily by K�
.2/

. Clearly, in order to show that the original
complex K� is a direct summand of an object from Db.Z-qcoh/fl-c in Db.Z-qcoh/
(which is our goal), it suffices to check that the complex K�

.2/
is as well. It also

follows from the constructions that the restrictions of the complex K�
.2/

to U and
V belong to Db.U -qcoh/fl-c and Db.V -qcohfl-c/, respectively. Dropping the lower
index and redenoting K�

.2/
simply by K�, we are coming back to the situation in the

beginning of the proof with the new knowledge that K� may be assumed to be a
coherent complex over W .
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The next segment of our proof is based on the localization theory for coderived cat-
egories of quasicoherent sheaves on Noetherian schemes (similar to the Thomason–
Trobaugh–Neeman theorem for the conventional derived categories, the difference
being that arbitrary bounded complexes of coherent sheaves play the role of per-
fect complexes). What we need is a particular case of the theory developed in
Section 1.10 (corresponding to the choice of the quasicoherent CDG-algebra OZ
over Z).

Specifically, it follows from Proposition 1.5(d) and Theorem 1.10 together with
[Neeman 1996, Theorem 2.1(5)] that any morphism from an object of Db.W -coh/
into a restriction toW of an object K� from Db.Z-qcoh/ (or even from Dco.Z-qcoh/)
can be extended to a morphism to K� from an object of Db.Z-coh/. Applying this
assertion to the identity morphism K�jW !K�jW in the above situation, we obtain
a morphism M�!K� into K� from a coherent complex M� over Z that is a quasi-
isomorphism over W . Passing to a cone of this morphism, we may assume K� to
be acyclic over W .

By Corollary 1.10, such a complex K� is quasi-isomorphic to a (bounded) com-
plex of quasicoherent sheaves on Z whose terms are concentrated set-theoretically
in the complement Z nW . The latter is a disjoint union of two nonintersecting
closed subsets in Z, namely, the complements S D Z nU and T D Z nV . Now
the complex K� decomposes into a direct sum of two complexes with set-theoretic
supports inside S and T , respectively.

One can consider the two direct summands separately. We have to show that
any bounded complex of quasicoherent sheaves K� on Z, which is supported
set-theoretically in T and whose restriction to U belongs to Db.U -qcoh/fl-c, itself
belongs to Db.Z-qcoh/fl-c. Arguing as in the beginning of this proof, we have
an object G� 2 Db.U -qcohfl/ together with a morphism G�! K�jU whose cone
belongs to Db.U -coh/. The restriction G�jW then belongs to both Db.W -qcohfl/

and Db.W -coh/, and is, therefore, a perfect complex on W .
Again by the Thomason–Trobaugh theorem, the object 0G�jW can be extended

to a perfect complex H� on V . A cocone of the morphism

Rj�
0G�˚Rk�H� �! Rh�

0G�jW

provides an object F � 2 Db.Z-qcohfl/ isomorphic to 0G� over U and to H� over V .
Now the morphism 0G�! 0K�jU over U extends uniquely to a morphism F �! 0K�

over Z since the set-theoretic support of 0K� is contained in a closed subset lying
inside U . A cone of the morphism F �! 0K� is a coherent complex on Z since it
is so in restrictions to U and V . Thus, the proposition is proven. �

Now let X be a separated Noetherian scheme of finite Krull dimension with
enough vector bundles, L be a line bundle on X , and w 2 L.X/ be a locally
nonzero-dividing potential. Let X0 �X be the zero locus of w.
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Corollary 3.2. Let X D U \V be a covering by two open subschemes. Then any
object of Dco..X;L; w/-qcohfl/ whose restrictions to U and V belong to the full
triangulated subcategories

Dabs..U;LjU ; wjU /-cohlf/� Dco..U;LjU ; wjU /-qcohfl/;

Dabs..V;LjV ; wjV /-cohlf/� Dco..V;LjV ; wjV /-qcohfl/;

respectively, is a direct summand of an object from the full triangulated subcategory
Dabs..X;L; w/-cohlf/� Dco..X;L; w/-qcohfl/.

Proof. By Proposition 2.8, the category Dco..X;L; w/-qcohfl/ is a full triangulated
subcategory of the triangulated category D0Sing.X0/. The (essential) intersection
of the full subcategories Dco..X;L; w/-qcohfl/ and Db

Sing.X0/ in D0Sing.X0/ is the
triangulated category Dabs..X;L; w/-cohlf/.

Indeed, an object of F 2 Db
Sing.X0/ belongs to Dabs..X;L; w/-cohlf/ if and only

if the object iıF vanishes in Db
Sing.X/ (Theorem 2.7); an object F 2 D0Sing.X0/

belongs to Dco..X;L; w/-qcohfl/ if and only if the object iıF vanishes in D0Sing.X/

(Proposition 2.8); and the functor Db
Sing.X/! D0Sing.X/ is fully faithful.

Moreover, the (essential) intersection of Dco..X;L; w/-qcohfl/ with the thick
envelope of Db

Sing.X0/ in D0Sing.X0/ is the thick envelope of Dabs..X;L; w/-cohlf/

in D0Sing.X0/. Indeed, let M be an object of the intersection; then M˚MŒ1� belongs
to both Dco..X;L; w/-qcohfl/ and Db

Sing.X0/, hence also to Dabs..X;L; w/-cohlf/,
and consequently M belongs to the thick envelope of Dabs..X;L; w/-cohlf/.

Now let K be our object of Dco..X;L; w/-qcohfl/; it can be also viewed as an ob-
ject of D0Sing.X0/. If its restrictions to U and V belong to Dabs..U;LjU ; wjU /-cohlf/

and Dabs..V;LjV ; wjV /-cohlf/, they also belong to Db
Sing.U0/ � D0Sing.U0/ and

Db
Sing.V0/� D0Sing.V0/ (where we set U0 D U \X0 and V0 D V \X0).
Applying Proposition 3.2, we can conclude that K belongs to the thick envelope of

Db
Sing.X0/ in D0Sing.X0/. The assertion of Corollary 3.2 follows from the above. �
Assume additionally that the scheme X admits a dualizing complex D�X .

Theorem 3.2. Let X D U \V be a covering by two open subschemes. Then any
object of Dabs..X;L; w/-coh/ whose restrictions to U and V belong to the thick
envelopes of the triangulated subcategories

Dabs..U;LjU ; wjU /-cohlf/� Dabs..U;LjU ; wjU /-coh/;
Dabs..V;LjV ; wjV /-cohlf/� Dabs..V;LV ; wjV /-coh/

itself belongs to the thick envelope of the triangulated subcategory

Dabs..X;L; w/-cohlf/� Dabs..X;L; w/-coh/:

Proof. The argument is based on the Serre–Grothendieck duality theory for matrix
factorizations as developed in Section 2.5, which allows us to reduce the question to
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the result of Corollary 3.2. Specifically, let M be our coherent matrix factorization
overX . Replacing, if necessary, M with M˚MŒ1�, we may assume the restrictions
of M to U and V to be isomorphic to locally free matrix factorizations of finite rank.

Let us apply the construction of functor

� W Dabs..X;L; w/-coh/op
�! Dco..X;L;�w/-qcohfl/

from Section 2.5 to the matrix factorization M. That is, we pick a left res-
olution of M by locally free matrix factorizations of finite rank, dualize by
applying HomX-qc.� ;OX /, and totalize using infinite direct sums. By Corol-
lary 2.5, the functor � is fully faithful; it also identifies Dabs..X;L; w/-cohlf/

op

with Dabs..X;L;�w/-cohlf/. Hence it suffices to check that the matrix fac-
torization �.M/ belongs to the thick envelope of Dabs..X;L;�w/-cohlf/ in
Dco..X;L;�w/-qcohlf/. But we know as much from Corollary 3.2. �

3.3. Nonlocalization of local freeness. The lack of a workable notion of the con-
ventional derived category (as opposed to the coderived category) for quasicoherent
matrix factorizations stands in the way of a direct extension of the Thomason–
Trobaugh–Neeman localization theorem for perfect complexes [Thomason and
Trobaugh 1990; Neeman 1992; 1996] to locally free matrix factorizations of finite
rank. We have seen in Section 1.10 how the localization theory can be developed
for coherent matrix factorizations. In this section we demonstrate a counterexample
showing that the localization theory, in its conventional form, actually does not
hold for locally free matrix factorizations.

In other words, the restriction

Dabs..X;L; w/-cohlf/ �! Dabs..U;LjU ; wjU /-cohlf/

for an open subscheme U � X is not always a Verdier quotient functor, even up
to the direct summands. Moreover, the triangulated category Dabs..X;L; w/-cohlf/

may fail to be generated by a single object, unlike in the case of the categories of
perfect complexes on quasicompact quasiseparated schemes.

All the potentials in our example will be simply regular functions, i.e., sections of
the trivial line bundle OX or OU , etc.; so we drop the line bundle L from our notation
in the rest of the section and write simply Dabs..X;w/-cohlf/ or Dabs..X;w/-coh/,
etc. For simplicity, we will work over the basic field of complex numbers C.

Consider the 3-dimensional affine quadratic cone

X D fxy D zwg � A4 D Spec CŒx; y; z; w�:

Further, let us take the open subset

U D fz ¤ 0g �X:
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Clearly, we have an isomorphism of pairs (algebraic variety, regular function on it)

.U;w/ �!� .A2t1;t2 �Gm; t1t2/; .x; y; z; w/ 7�!
��
x;
y

z

�
; z
�
; (1)

where we denote A2t1;t2 D Spec CŒt1; t2� and, as usual, Gm D A1 nf0g.

Lemma 3.3. (a) We have a natural equivalence of triangulated categories

Dabs..U;w/-coh/' Dabs..Gm; 0/-coh/:

(b) The restriction functor

Dabs..X;w/-coh/ �! Dabs..U;w/-coh/

is an equivalence.

Here the category of matrix factorizations of the zero potential Dabs..Y; 0/-coh/
is, of course, simply the derived category of 2-periodic complexes of coherent
sheaves on a smooth variety Y .

Proof. Part (a): By (1), we have the equivalence

Dabs..U;w/-coh/' Dabs..A2t1;t2 �Gm; t1t2/-coh/:

By Knörrer periodicity (cf. [Orlov 2006, Theorem 3.1]), we have the equivalence

Dabs..A2t1;t2 �Gm; t1t2/-coh/' Dabs..Gm; 0/-coh/:

Part (b): Let us put D D X nU . By Theorem 1.10(b) (see also Section 3.1), we
have the short exact sequence of triangulated categories

0 �! Dabs
D ..X;w/-coh/ �! Dabs..X;w/-coh/ �! Dabs..U;w/-coh/ �! 0

Thus, we need to show that the category Dabs
D ..X;w//-coh/ is zero. It suffices to

check that the category Dabs..D;w/-coh/ is zero.
Let us put S D fxy D 0g � A2. Then we have the isomorphism

.D;w/ �!� .S �A1t ; t /; .x; y; 0; w/ 7�! ..x; y/; w/:

Since Dabs..A1t ; t /-coh/D 0, it follows that

Dabs..D;w/-coh/' Dabs..S �A1t ; t /-coh/D 0: �

Since U is smooth, we have the equivalence

Dabs..U;w/-cohlf/' Dabs..U;w/-coh/:

Now we turn to the category Dabs..X;w/-cohlf/. As usual, we put

X0 D fw D 0g � X:
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According to Theorem 2.7, the triangulated category Dabs..X;w/-cohlf/ is equiv-
alent to the kernel of the direct image functor iı W Db

Sing.X0/! Db
Sing.X/ acting

between the triangulated categories of singularities of the schemes X0 and X . This
can be rephrased by saying that Dabs..X;w/-cohlf/ is equivalent to the quotient cate-
gory of the category of bounded complexes of coherent sheaves on X0 whose direct
images are perfect complexes on X by the category of perfect complexes on X0.
Denoting the triangulated category of coherent complexes on X0 whose direct
images are perfect on X by Perf .X0; X/� Db.X0-coh/, we have the equivalence
of triangulated categories

Dabs..X;w/-cohlf/' Perf .X0; X/=Perf .X0/: (2)

Note that we have the natural isomorphism

X0 ' S �A1; .x; y; z; 0/ 7�! ..x; y/; z/:

It follows immediately that

Db
Sing.X0/' Dabs..A1; 0/-coh/: (3)

Proposition 3.3. (a) We have the natural equivalence of triangulated categories

Perf .X0; X/=Perf .X0/' Dabs..Gm; 0/-coh/0-dim;

where Dabs..Gm; 0/-coh/0-dim � Dabs..Gm; 0/-coh/ is the subcategory of complexes
with zero-dimensional support.

Moreover, we have a commutative diagram of fully faithful triangulated functors:

Perf .X0; X/=Perf .X0/ Db
Sing.X0/

Dabs..Gm; 0/-coh/0-dim Dabs..A1; 0/-coh/;

// //

// //
j�

where j W Gm! A1 is the open embedding.

(b) We have a commutative diagram of fully faithful triangulated functors and
equivalences:

Dabs..X;w/-cohlf/ Dabs..U;w/-cohlf/

Dabs..Gm; 0/-coh/0-dim Dabs..Gm; 0/-coh/;

// //

// //�

where � is the tautological embedding.
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Proof. Part (a): Indeed, from the equivalence (3) we have the natural fully faithful
triangulated functor

Perf .X0; X/=Perf .X0/ �! Dabs..A1; 0/-coh/:

Let us denote by T � Dabs..A1; 0/-coh/ the essential image of this functor. For
each z0 2 C n f0g we have a line lz0 WD fy D 0; z D z0g � X0: Since lz0 � U
and U is smooth, the coherent sheaf Olz0 is contained in Perf .X0; X/: Further,
its image in Db

Sing.X0/ corresponds to the skyscraper Oz0 2 Dabs..A1; 0/-coh/
under the equivalence (3). It follows that the triangulated category T contains
j�.D

abs..Gm; 0/-coh/0-dim/ as a full subcategory.
Suppose that T is strictly bigger than j�.Dabs..Gm; 0/-coh/0-dim/. Then it con-

tains an object F0 D O0˚O0Œ1� 2 Dabs..A1; 0/-coh/, where O0 is the structure
sheaf of the origin. Denote by O 2 X0 the origin .0; 0; 0; 0/. Then the image
of the coherent sheaf OO 2 X0-coh in Db

Sing.X0/ corresponds to F0 under the
equivalence (3). But the object OO 2Db.X0-coh/ is not relatively perfect under the
inclusion X0!X (i.e., it does not belong to Perf .X0; X/) since O is the singular
point of X . We get a contradiction.

Thus, we have an equivalence T' j�.D
abs..Gm; 0/-coh/0-dim/. This proves (a).

Part (b) follows immediately from part (a) and the equivalence (2). �
In particular, we see that the functor Dabs..X;w/-cohlf/! Dabs..U;w/-cohlf/ is

not essentially surjective, even up to the direct summands. Moreover, the triangu-
lated category Dabs..X;w/-cohlf/ does not even have a countable set of generators.

3.4. Pull-backs and push-forwards in singularity categories. Let f W Y !X be
a morphism of separated Noetherian schemes with enough vector bundles. The
morphism f is said to have finite flat dimension if the derived inverse image functor
Lf � W D�.X-qcoh/! D�.Y -qcoh/ takes Db.X-qcoh/ to Db.Y -qcoh/.

In this case, the functor Lf � induces the inverse image functors on the triangu-
lated categories of singularities

f ı W D0Sing.X/ �! D0Sing.Y /

f ı W Db
Sing.X/ �! Db

Sing.Y /:

Under the same assumption of finite flat dimension, the derived direct image
functor Rf� W D

b.Y -qcoh/! Db.X-qcoh/ takes Db.Y -qcohfl/ to Db.X-qcohfl/, as
one can see by computing Rf� in terms of an affine covering of Y in the spirit of the
proof of Proposition 1.9. When the scheme X has finite Krull dimension, one has
Db.X-qcohfl/D Db.X-qcohlf/, so the functor Rf� induces the direct image functor

fı W D
0
Sing.Y / �! D0Sing.X/;

which is right adjoint to f ı.
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Whenever the morphism f is proper of finite type and has finite flat dimension, the
functor Rf� takes Db.Y -coh/ to Db.X-coh/ [Grothendieck 1961, Théorème 3.2.1]
and induces the direct image functor

fı W D
b
Sing.Y / �! Db

Sing.X/;

which is right adjoint to f ı [Orlov 2004, paragraphs before Proposition 1.14]. More
generally, for a morphism f of finite flat dimension and any closed subset T � Y
such that (a closed subscheme structure on) T is proper of finite type over X , the
functor Rf� takes Db.Y -cohT / to Db.X-coh/ and induces the direct image functor

fı W D
b
Sing.Y; T / �! Db

Sing.X/:

Indeed, the intersection of Db.X-qcohfl/ and Db.X-coh/ in Db.X-qcoh/ is equal
to Db.X-cohlf/, as any complex of finite flat dimension with bounded coherent
cohomology is easily seen to be perfect.

Let Z � X and W � Y be closed subschemes such that OZ is a perfect
OX -module, OW is a perfect OY -module, and f .W / � Z. Assume that both
morphisms f W Y ! X and f jW WW ! Z have finite flat dimensions. Then the
derived inverse image functor Lf j�W W D

b.Z-qcoh/! Db.W -qcoh/ induces the
inverse image functors on the triangulated categories of relative singularities

f ı W D0Sing.Z=X/ �! D0Sing.W=Y /

f ı W Db
Sing.Z=X/ �! Db

Sing.W=Y /:

Now let Z � X be a closed subscheme; set W D Z �X Y . Denote the closed
embeddings Z!X and W ! Y by i and i 0, respectively; also let f 0 denote the
morphism f jW WW !Z. Assume that W coincides with the derived product of Z
and Y over X ; i.e., Lf �i�OZ D i 0�OW . Assume further that i�OZ is a perfect
OX -module; then also i 0�OW is a perfect OY -module.

For any M 2 Db.Y -qcoh/, there is a natural morphism

�M W Li
�Rf�M �! Rf 0�Li 0�M

in Db.Z-qcoh/. Using the projection formula for tensor products with perfect
complexes, one easily checks that the morphism i��M is an isomorphism. Hence,
so is the morphism �M since the functor i� does not annihilate any objects of the
derived category. Hence we obtain the induced functor of direct image

fı W D
0
Sing.W=Y / �! D0Sing.Z=X/:

When the morphism f is proper of finite type, there is also the induced functor

fı W D
b
Sing.W=Y / �! Db

Sing.Z=X/:
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Assume additionally that the morphism f has finite flat dimension; then so does
the morphism f 0. In this case, the functor fı WD0Sing.W=Y /!D0Sing.Z=X/ is right
adjoint to the functor f ı W D0Sing.Z=X/! D0Sing.W=Y /. When the morphism f is
proper of finite type, the functor fı W Db

Sing.W=Y /! Db
Sing.Z=X/ is right adjoint

to the functor f ı W Db
Sing.Z=X/! Db

Sing.W=Y /.

Remark 3.4. In the case when Z is a Cartier divisor in X , we will construct the
functor fı W Db

Sing.W=Y / ! Db
Sing.Z=X/ under somewhat weaker assumptions

below in Section 3.5. Namely, it will suffice that the morphism f 0 WW ! Z be
proper of finite type, while the morphism f W Y !Z need not be. A generalization
to the case of proper support will also be obtained.

3.5. Push-forwards of matrix factorizations. Let f W Y ! X be a morphism of
separated Noetherian schemes with enough vector bundles, L be a line bundle on X ,
and w 2 L.X/ be a section.

Set BX D .X;L; w/ and BY D .Y; f �L; f �w/; then there is a natural morphism
of CDG-algebras BX ! BY compatible with the morphism of schemes f W Y !X .
Therefore, according to Section 1.8, there are the derived inverse image functors

Lf � W Dco..X;L; w/-qcohffd/ �! Dco..Y; f �L; f �w/-qcohffd/;

Lf � W Dabs..X;L; w/-cohffd/ �! Dabs..Y; f �L; f �w/-cohffd/

and the derived direct image functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/:

The latter two functors are “partially adjoint” to each other.
Given a triangulated category D, we denote by D its idempotent completion.

By [Balmer and Schlichting 2001, Section 1], the category D has the natural structure
of a triangulated category.

Lemma 3.5. For any closed subset T � Y such that ( for a closed subscheme
structure on T ) the morphism f jT W T !X is proper of finite type, the functor Rf�
takes the full subcategory Dabs..Y; f �L; f �w/-cohT /�Dco..Y; f �L; f �w/-qcoh/
into the full subcategory Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/, thus defining
a triangulated functor of direct image

Rf� W D
abs..Y; f �L; f �w/-cohT / �! Dabs..X;L; w/-coh/:

Consequently, there is the triangulated functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/:

Proof. We will use the construction of the functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/
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similar to the one in the proof of Proposition 1.9 (see Remark 1.9). According
to this construction, given a matrix factorization M 2 .Y; f �L; f �w/-qcoh, the
object Rf�M 2 Dco..X;L; w/-qcoh/ is represented by the total matrix factoriza-
tion RfU˛gf�M of the finite Čech complex f�C �fU˛gM of matrix factorizations
on X . The derived functor of direct image of complexes of quasicoherent sheaves
Rf� W D

b.Y -qcoh/! Db.X-qcoh/ can be constructed in the same way.
By [Grothendieck 1961, Théorème 3.2.1], the latter functor takes Db.Y -cohT /

into Db.X-coh/. Hence the cohomology matrix factorizations of the finite complex
of matrix factorizations f�C �fU˛gM belong to .X;L; w/-coh when the matrix fac-
torization M belongs to .Y; f �L; f �w/-cohT . It follows that the object Rf�M
belongs to Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/ in this case.

To prove the last assertion, it remains to apply Corollary 1.10(b). �
Now assume that both morphisms of sheaves w WOX!L and f �w WOY !f �L

are injective. Let X0�X and Y0� Y denote the closed subschemes defined locally
by the equations w D 0 and f �w D 0, respectively. In this setting, we will
compare the constructions of direct image functors for matrix factorizations and
for the triangulated categories of relative singularities, and prove the assertions of
Lemma 3.5 in a different way. Recall that in Section 3.4 we constructed the functor
of direct image fı W D0Sing.Y0=Y /! D0Sing.X0=X/.

Proposition 3.5. (a) Whenever the morphism f0 D f jY0 W Y0! X0 is proper of
finite type, the functor Rf� takes the full subcategory

Dabs..Y; f �L; f �w/-coh/� Dco..Y; f �L; f �w/-qcoh/

into the full subcategory

Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/;

thus defining a triangulated functor

Rf� W D
abs..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/:

(b) For any closed subset T � Y0 such that ( for a closed subscheme structure
on T ) the morphism f0jT W T ! X0 is proper of finite type, the functor fı
takes the full subcategory Db

Sing.Y0=Y; T /� D0Sing.Y0=Y / into the full subcategory
Db

Sing.X0=X/� D0Sing.X0=X/, thus defining a triangulated functor

fı W D
b
Sing.Y0=Y; T / �! Db

Sing.X0=X/:

(c) The equivalences of categories Dabs..Y; f �L; f �w/-cohT /' Db
Sing.X0=X; T /

from Proposition 3.1(a) and Dabs..X;L; w/-coh/'Db
Sing.X0=X/ from Theorem 2.7

transform the direct image functor

Rf� W D
abs..Y; f �L; f �w/-cohT / �! Dabs..X;L; w/-coh/

from Lemma 3.5 into the direct image functor fı from part (b).
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Proof. Part (a) follows from Lemma 3.5 and Proposition 3.1(a), or alternatively,
from part (b) and the proof of part (c) below. In part (b), the fact of key im-
portance is that the functor Db

Sing.X0=X/ ! D0Sing.X0=X/ is fully faithful (by
Theorem 2.8). The functor fı takes Db

Sing.Y0=Y; T / into Db
Sing.X0=X/ because the

functor Rf0� W D
b.Y0-qcoh/! Db.X0-qcoh/ takes Db.Y0-cohT / into Db.X0-coh/

[Grothendieck 1961]. To prove part (c), we will check that the equivalences of cate-
gories from Theorem 2.8 transform the functor Rf� WD

co..Y; f �L; f �w/-qcoh/!
Dco..X;L; w/-qcoh/ into the functor fı W D0Sing.Y0=Y / ! D0Sing.X0=X/. (To-
gether with part (b) and Proposition 3.1(a), this will also provide another proof of
Lemma 3.5.)

For this purpose, extend the functor

‡Y W D
b.Y0-qcoh/ �! Dco..Y; f �L; f �w/-qcoh/

to the functor z‡Y W DC.Y0-qcoh/! Dco..Y; f �L; f �w/-qcoh/ in the obvious way
(taking infinite direct sums of quasicoherent sheaves in the construction of the
matrix factorization z‡Y .F �/). The functor z‡Y is well-defined since any bounded-
below acyclic complex of quasicoherent sheaves is coacyclic [Positselski 2010,
Lemma 2.1]. Furthermore, the functor z‡Y can be presented as the composition of the
“periodicity summation” functor DC.Y0-qcoh/!Dco..Y0; i

0�f �L; 0/-qcoh/ taking
values in the coderived category of quasicoherent matrix factorizations of the zero
potential on Y0, and the functor of direct image i 0� W D

co..Y0; i
0�f �L; 0/-qcoh/!

Dco..Y; f �L; f �w/-qcoh/ with respect to the closed embedding i 0.
The functors

Rf0� W D
C.Y0-qcoh/ �! DC.X0-qcoh/;

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

form a commutative diagram with the functors z‡X and z‡Y . Indeed, the “periodicity
summations” of bounded-below complexes of quasicoherent sheaves on Y0 and X0,
taking injective resolutions to injective resolutions, obviously commute with the
derived direct images with respect to f 0, as the direct image preserves infinite direct
sums. Furthermore, the derived direct images of quasicoherent matrix factorizations
are compatible with the compositions of morphisms of schemes (see Remark 1.8),
and hence also commute with each other. It follows that the functors Rf� and fı
agree as they should. (Alternatively, one can prove this in the way similar to the
proof of Proposition 3.6 below.) �

3.6. Push-forwards for morphisms of finite flat dimension. Let f W Y ! X be
a morphism of finite flat dimension between separated Noetherian schemes with
enough vector bundles, L be a line bundle on X , and w 2 L.X/ be a section. As
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in Section 3.5, we have a natural morphism of CDG-algebras BX D .X;L; w/!
BY D .Y; f �L; f �w/ compatible with the morphism of schemes Y !X .

The quasicoherent graded algebra BY has finite flat dimension over BX . There-
fore, according to Section 1.9, there are derived inverse image functors

Lf � W Dco..X;L; w/-qcoh/ �! Dco..Y; f �L; f �w/-qcoh/

Lf � W Dabs..X;L; w/-coh/ �! Dabs..Y; f �L; f �w/-coh/;

the former of which is left adjoint to the functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

from Section 3.5.
Furthermore, according to Proposition 1.9, there is a derived direct image functor

Rf� W D
co..Y; f �L; f �w/-qcohffd/' Dco..Y; f �L; f �w/-qcohfl/

�! Dco..X;L; w/-qcohffd/' Dco..X;L; w/-qcohfl/;

which is right adjoint to the functor

Lf � W Dco..X;L; w/-qcohffd/ �! Dco..Y; f �L; f �w/-qcohffd/

from Section 3.5.
Now assume that X and Y have finite Krull dimensions. Recall that the

natural triangulated functors Dabs..X;L; w/-cohlf/ ! Dco..X;L; w/-qcohfl/ and
Dabs..Y; f �L; f �w/-cohlf/ ! Dco..Y; f �L; f �w/-qcohfl/ are fully faithful by
Corollary 2.3(e) and (j).

As in the second half of Section 3.5, assume that both morphisms of sheaves
w W OX ! L and f �w W OY ! f �L are injective, and denote by f0 W Y0! X0
the induced morphism between the zero loci schemes of f �w and w. Since the
morphism f has finite flat dimension, so does the morphism f0.

Proposition 3.6. (a) Whenever the morphism f0 is proper of finite type, the functor

Rf� W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

takes the full subcategory Dabs..Y;f �L;f �w/-cohlf/�Dco..Y;f �L;f �w/-qcohfl/

into the full subcategory Dabs..X;L; w/-cohlf/ � Dco..X;L; w/-qcohfl/. Besides,
the functor

f0ı W D
b
Sing.Y0/ �! Db

Sing.X0/

takes the full subcategory Dabs..Y; f �L; f �w/-cohlf/ � Db
Sing.Y0/ into the full

subcategory Dabs..X;L; w/-cohlf/� Db
Sing.X0/. Both restrictions define the same

triangulated functor

Rf� W D
abs..Y; f �L; f �w/-cohlf/ �! Dabs..X;L; w/-cohlf/:
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(b) For any closed subset T � Y0 such that ( for a closed subscheme structure on T )
the morphism f0jT W T !X0 is proper of finite type, the functor

Rf� W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

takes the full subcategory Dabs
T ..Y;f �L;f �w/-cohlf/�Dco..Y;f �L;f �w/-qcohfl/

into the thick envelope of the full subcategory

Dabs..X;L; w/-cohlf/� Dco..X;L; w/-qcohfl/:

Besides, the triangulated functor

f0ı W D
b
Sing.Y0; T / �! Db

Sing.X0/

takes the full subcategory Dabs
T ..Y; f �L; f �w/-cohlf/� Db

Sing.Y0; T / into the thick
envelope of the full subcategory

Dabs..X;L; w/-cohlf/� Db
Sing.X0/:

Both restrictions define the same triangulated functor

Rf� W D
abs
T ..Y; f �L; f �w/-cohlf/ �! Dabs..X;L; w/-cohlf/:

Proof. Both categories Dco..X;L; w/-qcohfl/ and Db
Sing.X0/ are full triangulated

subcategories of the triangulated category D0Sing.X0/ (see Proposition 2.8 and [Orlov
2004, Proposition 1.13]). According to the proof of Corollary 3.2, the intersection
of Dco..X;L; w/-qcohfl/ with (the thick envelope of) Db

Sing.X0/ in D0Sing.X0/ (is
the thick envelope of) the subcategory Dabs..X;L; w/-cohlf/� D0Sing.X0/.

Thus it suffices to show that the direct image functor

Rf� W D
co..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

agrees with the direct image functor f0ı W D0Sing.Y0/ ! D0Sing.X0/. The latter
assertion does not depend on any properness assumptions.

Recall that the derived functor Rf� was constructed in the proof of Proposition 1.9
in terms of the Čech complex whose terms are direct sums of the CDG-modules
f jV �MjV , where M 2 Dco..Y; f �L; f �w/-qcohffd/ and V � Y . The derived
direct image Rf0� WD

b.Y0-qcoh/!Db.X0-qcoh/ can be constructed in the similar
way; moreover, one can use for this purpose the restriction to Y0 of an affine open
covering U˛ of the scheme Y .

We will make use of the flat dimension analogue of Corollary 2.6(d). Let z†0X and
z†0Y denote the obvious extensions of the functors†0 from .X;L; w/-qcohlf to the cat-
egory of w-flat matrix factorizations of finite flat dimension .X;L; w/-qcohw-fl\ffd

and from .Y; f �L; f �w/-qcohlf to .Y; f �L; f �w/-qcohf �w-fl\ffd (see the proofs
of Proposition 2.8 and Theorem 2.7). Notice that the direct image functors f jV �
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take f �w-flat sheaves to w-flat sheaves and .V; f �LjV ; f �wjV /-qcohf �w-fl\ffd

to .X;L; w/-qcohw-fl\ffd.
Let N be a matrix factorization from .Y; f �L; f �w/-qcohf �w-fl\ffd. Since the

open subschemes V are presumed to be affine, there are natural isomorphisms

z†0X .f jV �N jV /' f0jV\Y0 � z†
0
Y .N /jV\Y0

of quasicoherent sheaves on X0. Now it remains to use the next lemma. �

Lemma 3.6. Let M�n ! � � � ! MN be a finite complex of matrix factoriza-
tions from .X;L; w/-qcohw-fl\ffd and M be its totalization. Then the complex
z†0.M�n/! � � � ! z†0.MN / and the quasicoherent sheaf z†0.M/ on X0 represent
naturally isomorphic objects in the triangulated category of singularities D0Sing.X0/.
The same applies to a finite complex of matrix factorizations from .X;L; w/-qcohw-fl,
the functor „, and the triangulated category of relative singularities D00Sing.X0=X/.

Proof. For each �n � p � N , the restriction of the matrix factorization Mp to
the closed subscheme X0 �X is an unbounded complex of quasicoherent sheaves
i�Mp;�. By [Polishchuk and Vaintrob 2011, Lemma 1.5], this complex is acyclic.

The complex z†0.M�n/ ! � � � ! z†0.MN / of quasicoherent sheaves on X0
is quasi-isomorphic to the total complex of the bicomplex K�;� with the terms
Kp;0 D i�Mp;0, Kp;�1 D i�Mp;�1, Kp;�2 D ker.i�Mp;�1 ! i�Mp;0/, and
Kp;q D 0 for q ¤ 0, �1, �2. Similarly, the quasicoherent sheaf z†0.M/ on X0
is quasi-isomorphic to the total complex of the bicomplex E�;� with the terms
Ep;p D i�Mp;p, Ep;p�1 D i�Mp;p�1, Ep;p�2 D ker.i�Mp;p�1! i�Mp;p/,
and Ep;q D 0 for q�p ¤ 0, �1, �2.

We can assume that N; n � 0. Consider the bicomplex F�;� with the terms
Fp;q D i�Mp;q for �n� 1� q �N , Fp;�n�2 D ker.i�Mp;�n�1! i�Mp;�n/,
and Fp;qD 0 for q <�n�2 or q >N . Then there are natural surjective morphisms
of bicomplexes F�;� ! K�;� and F�;� ! E�;�. The kernels of both morphisms
are the direct sums of a finite bicomplex of quasicoherent sheaves of finite flat
dimension on X0 and a finite bicomplex of quasicoherent sheaves on X0 with
acyclic columns. Thus both morphisms become isomorphisms in D0Sing.X0/. �

Remark 3.6. One would like to have a theory of set-theoretic supports for locally
free matrix factorizations of finite rank that would allow us to prove Proposition 3.6
in the way similar to the proof of Lemma 3.5. However, we do not know how to do
this. In particular, we do not know whether every locally free matrix factorization
of finite rank with category-theoretic support in T is isomorphic in the absolute
derived category to a direct summand of an object represented by a coherent
matrix factorization of finite flat dimension with set-theoretic support in T (cf.
Corollary 1.10 and Section 3.3).
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Another alternative approach to proving Proposition 3.6 would be to show that the
intersection of the full subcategories Dabs..X;L;w/-coh/ and Dabs..X;L;w/-qcohlf/

in the absolute derived category Dabs..X;L; w/-qcoh/ coincides with the full sub-
category Dabs..X;L; w/-cohlf/. We do not know whether this is true.

3.7. Duality and push-forwards. In the following two sections we discuss the
compatibility properties of the derived direct and inverse image functors for matrix
factorizations with the Serre–Grothendieck duality functors from Section 2.5.

Let X be a separated Noetherian scheme with a dualizing complex D�X , and let
f WY !X be a separated morphism of finite type. As usually, we set D�Y Df

CD�X ,
where f C is the functor denoted by f Š in [Hartshorne 1966] (right adjoint to Rf� for
proper morphisms f and left adjoint to Rf� for open embeddings f ; see [Neeman
1996, Example 4.2] and [Hartshorne 1966, Remark before Proposition V.8.5 and
Deligne’s Appendix]). This formula defines the dualizing complex D�Y up to a
natural quasi-isomorphism only, and we presume this derived category object (as
well as D�X ) to be represented by a finite complex of injective quasicoherent sheaves.

Proposition 3.7. Let T � Y0 be a closed subset such that (for some closed sub-
scheme structure on T ) the morphism f jT W T ! X0 is proper. Then the derived
direct image functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/

and the similar functor for the potential �w form a commutative diagram with the
Serre duality functors

HomX-qc.� ;D�X / W D
abs..X;L;�w/-coh/op

�! Dabs..X;L; w/-coh/;
HomY -qc.� ;D�Y / W D

abs
T ..Y; f �L;�f �w/-coh/op

�! Dabs
T ..Y; f �L; f �w/-coh/:

Two proofs of Proposition 3.7 are given below. One of them is based on the
theory of set-theoretic supports of coherent CDG-modules developed in Section 1.10
and the arguments similar to the proof of Lemma 3.5. It does not depend on the
assumption about w and f �w being local nonzero-divisors and does not mention
the zero loci. The other proof is based on the passage to the triangulated categories
of relative singularities and uses Proposition 3.5(c).

First proof. First of all, the duality functor

HomY -qc.� ;D�Y / WD
abs..Y;f �L;�f �w/-qcoh/op

�!Dabs..Y;f �L;f �w/-qcoh/

obviously takes the full subcategory Dabs..Y; f �L;�f �w/-cohT /op into

Dabs..Y; f �L; f �w/-cohT /

and vice versa. Furthermore, for any quasicoherent sheaf K on Y denote by
�TK � K the maximal quasicoherent subsheaf with set-theoretic support in T .
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Then for any matrix factorization M 2 Dabs..Y; f �L;�f �w/-cohT /, the natu-
ral morphism HomY -qc.M; �TD�Y /! HomY -qc.M;D�Y / is an isomorphism in
Dabs..Y; f �L; f �w/-cohT /.

As in the proof of Lemma 3.5, we will use the construction of the functor

Rf� W D
abs..Y; f �L; f �w/-qcoh/ �! Dabs..X;L; w/-qcoh/

similar to the one from the proof of Proposition 1.9 (see Remarks 1.8 and 1.9). Let
fU˛g and fVˇ g be two affine open coverings of the scheme Y . For any matrix fac-
torization N 2 .Y; f �L;�f �w/-qcoh, there is a natural morphism of bicomplexes
of matrix factorizations

f�C
�

fU˛g
HomY -qc.N ; �TD�Y / �!HomX-qc.f�N ; f�C �fU˛g�TD

�

Y /:

Passing to the total complexes and taking the composition with the adjunction
morphism f�CfU˛g

��TD�Y D Rf�.�TD�Y /! D�X , we obtain a natural morphism
of complexes of matrix factorizations

f�C
�

fU˛g
HomY -qc.N ; �TD�Y / �!HomX-qc.f�N ; D�X /

(cf. [Neeman 1996, beginning of Section 6]).
Substituting N D C �

fVˇg
M for some M 2 .Y; f �L;�f �w/-qcoh, we get a

natural morphism of bicomplexes of matrix factorizations

f�C
�

fU˛g
HomY -qc.C

�

fVˇg
M; �TD�Y / �!HomX-qc.f�C

�

fVˇg
M; D�X /:

When M is a coherent matrix factorization supported set-theoretically in T , the
induced morphism of the total complexes is a quasi-isomorphism of complexes of
matrix factorizations by the conventional Serre–Grothendieck duality theorem for
bounded derived categories of coherent sheaves and proper morphisms of schemes
(see [Hartshorne 1966, Theorem VII.3.3] or [Neeman 1996, Section 6]). Hence
the induced morphism of the total matrix factorizations is an isomorphism in
Dabs..X;L; w/-qcoh/, and consequently also in Dabs..X;L; w/-coh/. �

Second proof. Assume that w and f �w are locally nonzero-dividing sections of
the respective line bundles. Let i WX0!X be the zero locus of w and i 0 W Y0! Y

be the zero locus of f �w. As above, we set D�X0 D Ri ŠD�X and D�Y0 D Ri 0ŠD�Y
[Hartshorne 1966, Proposition V.2.4], and presume all these dualizing complexes
to be finite complexes of injective quasicoherent sheaves.

The duality functor

HomY -qc.� ;D�Y / W D
abs..Y; f �L;�f �w/-coh/op

�! Dabs..Y; f �L; f �w/-coh/

is compatible with the restrictions to the open subscheme Y nT and thus identifies
the full subcategories Dabs

T ..Y; f �L;�f �w/-coh/op and Dabs
T ..Y; f �L; f �w/-coh/.

To prove the proposition, we will define the Serre duality functors on the triangulated
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categories of relative singularities Db
Sing.Y0=Y / and Db

Sing.X=X0/, then check that
the equivalences of triangulated categories L„D ‡�1 commute with the dualities,
and finally reduce to the conventional Serre–Grothendieck duality theorem for
bounded complexes of coherent sheaves.

The duality functor HomX0-qc.� ;D�X0/ W D
b.X0-coh/op ! Db.X0-coh/ takes

objects of the form Li�K�, where K� 2 Db.X-coh/, to similar objects. Indeed, one
has

HomX0-qc.Li
�K�;D�X0/' Ri ŠHomX-qc.K�;D�X /

[loc. cit., Proposition V.8.5] and Ri Š ' LjX0 Œ�1� ˝OX0 Li� (see the proof of
Theorem 2.7). Therefore, we have the induced duality functor

HomX0-qc.� ;D�X0/ W D
b
Sing.X0=X/

op
�! Db

Sing.X0=X/:

Similarly, the duality functor

HomY0-qc.� ;D�Y0/ W D
b.Y0-coh/op

�! Db.Y0-coh/

takes the full subcategory Db.Y0-cohT /op into Db.Y0-cohT / and Perf T .Y0=Y /
op

into Perf T .Y0=Y /. Hence the induced duality functor

HomY0-qc.� ;D�Y0/ W D
b
Sing.Y0=Y; T /

op
�! Db

Sing.Y0=Y; T /:

Checking that the equivalence of categories Dabs..X;L; w/-coh/'Db
Sing.X0=X/

commutes with the dualities is easily done using the functor ‡ . It suffices to notice
the functorial quasi-isomorphism HomX-qc.i�F �;D�X / ' i�HomX0-qc.F �;D�X0/
for any complex F � 2 Db.X0-coh/ [loc. cit., Theorem III.6.7]. The same applies to
the equivalence of categories

Dabs
T ..Y; f �L; f �w/-coh/' Db

Sing.Y0=Y; T /:

Furthermore, by Proposition 3.5(c), the equivalences of categories L„ D ‡�1

transform the derived direct image functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/

into (the idempotent closure of) the direct image functor fı W Db
Sing.Y0=Y; T /!

Db
Sing.X0=X/.
Finally, the direct image functor fı W Db

Sing.Y0=Y; T / ! Db
Sing.X0=X/ com-

mutes with the Serre duality functors since so do the derived direct image functors
Rf jT � WD

b. zT -coh/!Db.X0-coh/ for all the closed subscheme structures zT � Y0
on the closed subset T and the similar functors related to the closed embeddings
zT 0! zT 00 of various such subscheme structures into each other. This is the conven-
tional Serre–Grothendieck duality theorem for proper morphisms of schemes. �
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3.8. Duality and pull-backs. Let X be a separated Noetherian scheme with a
dualizing complex D�X and f W Y !X be a separated morphism of finite type; set
D�Y D f

CD�X . Let L be a line bundle on X and w 2 L.X/ be a section.
Let us first suppose that the morphism f is smooth of relative dimension n.

Then the functor f C W DC.X-qcoh/ ! DC.Y -qcoh/ is naturally isomorphic to
!Y=X Œn�˝OY f

�, where !Y=X is the line bundle of relative top forms.
In particular, D�Y '!Y=X Œn�˝OY f

�D�X (where f �D�X is also presumed to have
been replaced by a complex of injectives). Then it is clear that the equivalences of
categories

D�X ˝OX � W D
co..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

f �D�X ˝OY � W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/

from Section 2.5 transform the inverse image functor for flat matrix factorizations
f � W Dco..X;L; w/-qcohfl/! Dco..Y; f �L; f �w/-qcohfl/ into the (underived, as
the morphism f is flat) inverse image functor for quasicoherent matrix factorizations
f � W Dco..X;L; w/-qcoh/! Dco..Y; f �L; f �w/-qcoh/.

Furthermore, for any quasicoherent matrix factorization M onX there is a natural
morphism of finite complexes of matrix factorizations f �HomX-qc.M;D�X /!
HomY -qc.f

�M; f �D�X / on Y . When M is a coherent matrix factorization, this
is a quasi-isomorphism of complexes of matrix factorizations (since the similar
assertion holds for coherent sheaves [Hartshorne 1966, Proposition II.5.8]), so the
related morphism of total matrix factorizations has an absolutely acyclic cone. Thus
the antiequivalences of categories

HomX-qc.� ;D�X / WD
abs..X;L;�w/-coh/op

�!Dabs..X;L;w/-coh/;
HomY -qc.� ;f

�D�X /WD
abs..Y;f �L;�f �w/-coh/op

�!Dabs..Y;f �L;f �w/-coh/

form a commutative diagram with the inverse image functors f � for coherent matrix
factorizations.

Now suppose that f is a proper morphism of finite type. The following the-
orem describes the compatibility property of the covariant Serre–Grothendieck
duality with the inverse images of matrix factorizations (cf. [Positselski 2012,
Theorem 5.15.3], where a similar result is proven for complexes of quasicoherent
sheaves).

Theorem 3.8. The equivalences of categories

D�X ˝OX � W D
abs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

D�Y ˝OY � W D
abs..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/

transform the inverse image functor

f � W Dabs..X;L; w/-qcohfl/ �! Dabs..Y; f �L; f �w/-qcohfl/
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into the functor f Š W Dco..X;L; w/-qcoh/! Dco..Y; f �L; f �w/-qcoh/ right ad-
joint to the direct image functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

(see the end of Section 1.8).

Proof. For any quasicoherent matrix factorization N on Y and any flat quasicoherent
matrix factorization E on X , we have to construct an isomorphism

HomDco..X;L;w/-qcoh/.Rf�N ; D�X ˝OX E/
' HomDco..Y;f �L;f �w/-qcoh/.N ; D�Y ˝OY f

�E/:

The composition

HomY .N ; D�Y ˝OY f
�E/ �! HomX .Rf�N ; Rf�.D�Y ˝OY f

�E//
' HomX .Rf�N ; f�D�Y ˝OX E/ �! HomX .Rf�N ; D�X ˝OX E/

provides a morphism from the right-hand to the left-hand side. Here all the Hom
functors are taken in the coderived categories of quasicoherent matrix factorizations
on Y and X ; the middle isomorphism holds since D�Y ˝OY f

�E is an injective
matrix factorization on Y (so the derived direct image can be computed for it by
applying the underived direct image functor f� termwise) and by the projection
formula; the last morphism is induced by the adjunction f�D�Y ! D�X .

Furthermore, on both sides of the desired isomorphism we have injective matrix
factorizations in the second arguments of the Hom functors; hence the Hom can
be computed in the homotopy category of matrix factorizations instead of the
coderived category in both cases. Finally, one can assume N to be an injective
matrix factorization, too, and compute Rf�N D f�N termwise (alternatively, one
could use the Čech construction). Similarly, the tensor products in the second
arguments are totalizations of termwise tensor products.

Now one can fix the components involved for both matrix factorizations N
and E , obtaining a morphism of finite complexes of abelian groups of the same
kind as above, but related to (one-term) complexes of quasicoherent sheaves rather
than matrix factorizations. The latter is an isomorphism by [Positselski 2012,
Theorem 5.15.3]. It remains to notice that the totalization of an acyclic finite
complex of (unbounded) complexes of abelian groups is acyclic. �

The next corollary is a matrix factorization version of the main result of Deligne’s
appendix to [Hartshorne 1966] (see also [Positselski 2012, Section 5.16]).

Corollary 3.8. For any morphism of finite type between separated Noetherian
schemes with dualizing complexes f W Y !X , a line bundle L on X , and a section
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w 2 L.X/, one can define a triangulated functor

f C W Dco..X;L; w/-qcoh/ �! Dco..Y; f �L; f �w//-qcoh/

in such a way that

(i) for an open embedding f , one has f CDf �, and more generally, for a smooth
morphism f of relative dimension n one has f C D !Y=X Œn�˝OY f

�;

(ii) for a proper morphism f , the functor f C D f Š is right adjoint to Rf�;

(iii) the construction is compatible with the compositions of the morphisms f .

Proof. It suffices to define f C WDco..X;L; w/-qcoh/!Dco..Y; f �L; f �w/-qcoh/
as the functor corresponding to the inverse image of flat quasicoherent matrix
factorizations f � W Dabs..X;L; w/-qcohfl/ ! Dabs..Y; f �L; f �w/-qcohfl/ under
the identifications of categories

D�X ˝OX � W D
abs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

D�Y ˝OY � W D
abs..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/;

where D�X is any dualizing complex on X and D�Y D f
CD�X . �

Appendix A. Quasicoherent graded modules

A.1. Flat quasicoherent sheaves. I am grateful to A. Neeman for suggesting that
a result of the following kind can be proven without much difficulty.

Lemma A.1. On any quasicompact semiseparated scheme, any quasicoherent sheaf
is the quotient sheaf of a flat quasicoherent sheaf.

Proof. Let X be our scheme. Assume that a quasicoherent sheaf M over X is flat
over an open subscheme V �X ; given an affine open subscheme U �X , we will
construct a surjective morphism N !M onto M from a quasicoherent sheaf N
over X that is flat over U [V . Let j denote the embedding U !X . There exists
a surjective morphism onto j �M from a flat quasicoherent sheaf F over U ; let K
denote the kernel of this morphism of sheaves.

Since the morphism j W U ! X is affine and flat, the functor j� is exact and
preserves flatness. Consider the pull-back of the exact triple j�K! j�F! j�j

�M
with respect to the morphism M! j�j

�M; denote the middle term of the resulting
exact triple by N . One has N jU DF jU , so N is flat over U . Furthermore, the sheaf
j �M is flat over V \U ; hence, so is the sheaf K. The embedding U \ V ! V

is an affine flat morphism, so the sheaf j�K is flat over V . From the exact triple
j�K!N !M, we conclude that N is flat over V . �

It follows immediately that any quasicoherent graded module over a quasicoherent
graded algebra B over X is a quotient module of a flat quasicoherent graded module.
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A.2. Locally projective quasicoherent graded modules. The following result is
essentially due to Raynaud and Gruson [1971] (for a discussion, see [Drinfeld 2006,
Section 2]); here we just briefly explain how to deduce the formulation that interests
us from their assertions.

Theorem A.2. Let X be an affine scheme and fU˛g be its finite affine covering.
Let B be a quasicoherent graded algebra over X and P be a quasicoherent graded
module over B. Then the graded B.X/-module P.X/ is projective if and only if the
graded B.U˛/-module P.U˛/ is projective for every ˛.

Proof. First of all, a graded module P over a graded ring B is projective if and only
if it is projective as an ungraded module. Indeed, if P is graded projective, then it is
a homogeneous direct summand of a free graded module; hence P is also ungraded
projective. Conversely, pick a homogeneous (of degree 0) surjective homomorphism
F ! P onto a given graded module P from a free graded module F . If P is
ungraded projective, this homomorphism has a (perhaps nonhomogeneous) section s,
and the homogeneous component of s of degree 0 provides a homogeneous section.
Hence it suffices to consider ungraded modules over an ungraded quasicoherent
algebra B.

It is clear that if P.X/ is a projective B.X/-module, then P.V / is a projective
B.V /-module for any affine open subscheme V �X . Conversely, assume that the
B.U˛/-module P.U˛/ is projective for every ˛. Then by the result of [Kaplansky
1958], the B.U˛/-modules P.U˛/ are direct sums of countably generated modules,
and it follows easily that so is the B.X/-module P.X/ (essentially, since a connected
graph with an at most countable set of edges at each vertex has a countable number of
vertices). Hence we can assume the B.X/-module P.X/ to be countably generated.

Besides, the B.U˛/-modules P.U˛/ are flat; hence so is the B.X/-module P.X/.
By [Raynaud and Gruson 1971, Corollaire II.2.2.2], it remains to show that the
B.X/-module P.X/ satisfies the Mittag-Leffler condition; this can be easily deduced
from the similar property of the B.U˛/-modules P.U˛/ using the formulation of this
condition given in Proposition II.2.1.4(iii) or Propositions II.2.1.4(ii) and II.2.1.1(i)
of [Raynaud and Gruson 1971] (cf. Sections II.2.5 and II.3.1 of the same paper). �

A.3. Injective quasicoherent graded modules. The following result is a noncom-
mutative generalization of a theorem of Hartshorne [1966, Theorem II.7.18] about
injective quasicoherent sheaves on Noetherian schemes. Our proof method, based
on the Artin–Rees lemma, is different from the one in [loc. cit.].

Theorem A.3. Let B be a Noetherian quasicoherent graded algebra over a Noe-
therian schemeX . Then any injective object in the category of quasicoherent graded
left modules over B is also an injective object of the category of arbitrary sheaves
of graded B-modules over X .
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Consequently, the restriction J jU of an injective quasicoherent graded module J
over B to an open subscheme U �X is an injective quasicoherent graded module
over BjU . Conversely, if U˛ is an open covering of X and the quasicoherent graded
BjU˛ -modules J jU˛ are injective, then a quasicoherent graded B-module J is
injective. Besides, the underlying sheaf of graded abelian groups of any injective
quasicoherent graded B-module J is flabby.

Proof. First of all, notice that the abelian category B-qcoh of quasicoherent graded
modules over B is a locally Noetherian Grothendieck category with coherent graded
modules forming the subcategory of Noetherian generators [Hartshorne 1977, Ex-
ercise II.5.15]; so, in particular, B-qcoh has enough injectives and the assertions
of Theorem A.3 are not vacuous. The category of sheaves of graded B-modules
B-mod has similar properties, with the extensions by zero of the restrictions of B to
(small) open subschemes of X forming a set of Noetherian generators [Hartshorne
1966, Theorem II.7.8].

Secondly, let us check that the main result in the first paragraph implies the
assertions in the second one. Indeed, injective sheaves of graded B-modules have
all the properties we are interested in. They remain injective after being restricted to
an open subscheme since the extension by zero from an open subscheme is an exact
functor. They are flabby since given two open subschemes U � V �X and jU , jV
being their identity embeddings U , V ! X , the morphism of sheaves of graded
B-modules jU ŠBjU ! jV ŠBjV is injective. And their property is local [loc. cit.,
Lemma II.7.16] because sheaves of graded B-modules supported inside one of the
subschemes U˛ form a set of generators of the category B-mod.

Now let J be an injective quasicoherent graded module over B. To prove the main
assertion, we have to show that for any open subscheme U �X and a subsheaf of
graded B-modules G � jU ŠBjU , any homogeneous morphism of sheaves of graded
B-modules G! J can be extended to a similar morphism jU ŠBjU ! J . Indeed,
G is a subsheaf of graded B-modules in the coherent graded B-module B; hence
according to the following proposition, there exists a quasicoherent graded B-module
G � F � B such that the morphism G ! J can be extended to a homogeneous
morphism of quasicoherent graded B-modules F ! J .

Since J is injective in B-qcoh, the latter morphism can in turn be extended to a
similar morphism B! J . Restricting to jU ŠBjU , we obtain the desired morphism
of sheaves of graded B-modules jU ŠBjU ! J . �

Proposition A.3. In the assumptions of Theorem A.3, let E be a coherent graded
left B-module, G � E be a subsheaf of graded B-modules, M be a quasicoherent
graded B-module, and � W G!M be a morphism of sheaves of graded B-modules.
Then there exists a coherent graded B-module G � F � E such that the morphism �

can be extended to F .
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Proof. Before proving Proposition A.3, let us reformulate its conclusion as follows.
In the same setting, there exists a quasicoherent graded B-module K together with
an injective morphism M! K and a morphism E ! K forming a commutative
diagram with the embedding G! E and the morphism � W G!M. Indeed, if a
coherent B-module F exists, one can take K to be the fibered coproduct of E and M
over F ; conversely, if a quasicoherent B-module K exists, one can take F to be
the full preimage of M� K under the morphism E! K. Notice also that one can
always replace M with its sufficiently big coherent graded B-submodule.

Now let us state the version of Artin–Rees lemma that we will use.

Lemma A.3. In the assumptions of Theorem A.3, let M be a coherent graded
B-module, N �M a coherent graded B-submodule, andZ�X a closed subscheme
with the sheaf of ideals IZ �OX . Then for any n� 0, there exists m� 0 such that
the intersection ImZM\N is contained in InZN .

Proof. Clearly, the question is local, so it suffices to consider the case of an affine
scheme X . Then (the graded version of) the Artin–Rees lemma for ideals generated
by central elements in noncommutative Noetherian rings [Goodearl and Warfield
1989, Theorem 13.3] applies. �

Being a Noetherian object, the sheaf of graded B-modules G is generated by
a finite number of homogeneous sections sn 2 G.Un/, where Un � X are some
open subschemes. If all of these subschemes coincide with X , the sheaf G, being
a subsheaf of a coherent sheaf generated by global sections, is itself coherent, so
there is nothing to prove. In the general case, we will argue by induction on the
number of open subschemes Un that are not equal to X .

Let U D U1 ¨ X be one such open subscheme, and T D X nU be its closed
complement. We can assume that M is a coherent graded B-module. Let N
denote its maximal coherent graded B-submodule supported set-theoretically in T .
Applying Lemma A.3 to N �M, we conclude that there is a closed subscheme
structure i W Z ! X on T such that the morphism N ! i�i

�M is injective.
Consequently, so is the morphism M! i�i

�M˚ j�j �M, where j denotes the
open embedding U !X .

Let us show that there is a thicker closed subscheme structure i 0 WZ0!X on T
such that the kernel of the morphism of sheaves i 0�i

0�G! i 0�i
0�E is contained in

the kernel of the morphism of sheaves i 0�i
0�G! i�i

�G. Indeed, there exists a finite
collection of subsheaves of graded B-modules in G, each of them an extension by
zero of a coherent graded BjV -module from some open subscheme V �X such that
the stalk of G at each point of X coincides with the stalk of one of these subsheaves.
So the assertion reduces to the case when G is a coherent graded B-submodule in E
when it is an equivalent reformulation of Lemma A.3.
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Let H� i 0�E denote the image of the morphism of sheaves of graded i 0�B-mod-
ules i 0�G ! i 0�E over the scheme Z0. Let � W Z ! Z0 be the natural closed
embedding. Then, according to the above, the morphism of sheaves of graded
i 0�B-modules i 0�G! ��i

�G induces a morphism H! ��i
�G.

The sheaf of graded i 0�B-modules H is generated by the images of the restrictions
of the sections sn, n � 2, to the closed subschemes Z0 \ Un � Un. Hence the
induction assumption is applicable to H, and we can conclude that there exists a
quasicoherent graded i 0�B-module K on the scheme Z0 together with an injective
morphism ��i

�M!K and a morphism i 0�E!K forming a commutative diagram
with the embedding H! i 0�E and the composition H! ��i

�G! ��i
�M.

Similarly, the sheaf of graded BjU -modules j �G is generated by the restrictions of
the sections sn to the open subschemes U1\Un�Un, among which the (restriction
of) the section s1 is a global section over U DU1. Hence the induction assumption
is applicable to j �G, and there exists a quasicoherent graded BjU -module L together
with an injective morphism j �M!L and a morphism j �E!L forming a commu-
tative diagram with the embedding j �G! j �E and the morphism j �G! j �M.

Now the injective morphism M! i 0�K˚ j�L (whose first component is the
composition M! i�i

�M' i 0���i�M! i 0�K) and the morphism E! i 0�K˚ j�L
provide the desired commutative diagram of morphisms of sheaves of graded
B-modules over X . �

Appendix B. Hochschild (co)homology of matrix factorizations

This appendix complements the paper [Polishchuk and Positselski 2012] in two
ways. Section B.1 contains some modifications and improvements of the main
results of [loc. cit.] generally, and as applied to locally free matrix factorizations of
finite rank in particular. The main thrust consists of replacing the finite homological
dimension conditions in [loc. cit.] with the Noetherianness conditions to the (limited)
extent possible.

Section B.2, on the other hand, presents an elementary approach to the comp-
utation of Hochschild (co)homology of coherent matrix factorizations, entirely un-
related to that in [loc. cit.] and not based on any notion of Hochschild (co)homology
of the second kind, but rather on the Serre–Grothendieck duality theory.

B.1. Locally free matrix factorizations of finite rank. In Sections B.1.1–B.1.4, we
start with a bit of categorical nonsense, following the lines of [Polishchuk and Posit-
selski 2012, Sections 3.3–3.5], but with the additional coherence/Noetherianness
conditions imposed from the very beginning. We use the notation from [loc. cit.]
rather than that of the main body of this paper. Then in Section B.1.5, we turn
to locally free matrix factorizations of finite rank over certain possibly singular,
affine algebraic varieties. Finally, Section B.1.6 presents an improvement over
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the discussion of matrix factorizations over smooth affine varieties in [loc. cit.,
Section 4.8]. An example of an application of our techniques to nonaffine varieties
can be found in the preprint [Efimov 2012].

B.1.1. Coherent and Noetherian CDG-categories. Let .�; �; 1/ be a grading group
data [Polishchuk and Positselski 2012, Section 1.1] and B# be a small �-graded
preadditive category [Positselski 2011a, Section A.1]. Both left and right �-graded
B#-modules form abelian categories.

A �-graded B#-module is said to be finitely generated (respectively, finitely
presented) if it is a quotient module of a finitely generated free �-graded B#-module
[Polishchuk and Positselski 2012, Section 1.5] (respectively, the cokernel of a
morphism of finitely generated free �-graded B#-modules).

A �-graded preadditive category B# is called left Noetherian if any submodule of
a finitely generated �-graded left B#-module is finitely generated, or equivalently,
if the abelian category of �-graded left B#-modules is locally Noetherian. A
�-graded preadditive category B# is called left coherent if any submodule of a
finitely presented �-graded left B#-module is finitely presented.

Let B be a small (�-graded) CDG-category [loc. cit., Section 1.2] and B#

be its underlying �-graded preadditive category. Following [loc. cit.], we de-
note the DG-categories of left and right CDG-modules over B by B-modcdg

and modcdg-B . The DG-subcategories of left CDG-modules whose underlying
�-gradedB#-modules are flat or injective are denoted byB-modcdg

fl andB-modcdg
inj �

B-modcdg. Similarly, the DG-subcategories of left and right CDG-modules over B
whose underlying �-graded B#-modules are projective and finitely generated are
denoted by B-modcdg

fgp and modcdg
fgp -B .

Assuming that the �-graded category B# is left Noetherian, the DG-subcategory
of left CDG-modules whose underlying �-graded B#-modules are finitely generated
is denoted by B-modcdg

fg � B-modcdg. Assuming that the �-graded category B#

is right coherent, the DG-subcategory of right CDG-modules whose underlying
�-graded B#-modules are finitely presented is denoted by modcdg

fp -B .
The coderived and contraderived categories of left CDG-modules over B are

denoted by Dco.B-modcdg/ and Dctr.B-modcdg/, respectively [loc. cit., Section 3.2].
Assuming that the �-graded category B# is right coherent, the class of flat �-graded
left B-modules [loc. cit., Section 2.2] is closed under infinite products, so the
contraderived category Dctr.B-modcdg

fl / is well-defined. The homotopy category of
the DG-category B-modcdg

inj is denoted, as usually, by H 0.B-modcdg
inj /.

In the respective assumptions of left Noetherianness or right coherence of the
�-graded categoryB#, the absolute derived categories of CDG-modules with finitely
generated or finitely presented underlying �-graded B#-modules are denoted by
Dabs.B-modcdg

fg / and Dabs.modcdg
fp -B/, respectively.
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B.1.2. Derived functors of the second kind. Let k be a commutative ring and B
be a small k-linear CDG-category. Assume that the �-graded category B# is left
Noetherian. Let L and M be left CDG-modules over B; suppose that the �-graded
left B#-module L# underlying the CDG-module L over B is finitely generated.

As in [Polishchuk and Positselski 2012, §§ 2.1–2], we denote by Z0.B-modcdg/

and Z0.modcdg-B/ the abelian categories of left and right CDG-modules over B .
LetZ0.B-modcdg

fg /�Z
0.B-modcdg/ andH 0.B-modcdg

fg /�H
0.B-modcdg/ denote

the abelian and homotopy categories of left CDG-modules over B with finitely gen-
erated underlying �-graded B#-modules, and Z0.modcdg

fp -B/�Z0.modcdg-B/ and
H 0.modcdg

fp -B/�H 0.modcdg-B/ be the similar categories of right CDG-modules
with finitely presented underlying �-graded modules.

Let J � be a right resolution of M in Z0.B-modcdg/ such that the �-graded
left B#-modules J i # are injective, and let J be the total CDG-module of the
complex of CDG-modules J � constructed by taking infinite direct sums along the
diagonals. Then the complex Tot˚HomB.L; J �/ computing ExtIIB .L;M/ [loc. cit.,
Section 2.2] is isomorphic to the complex HomB.L; J / [loc. cit., formula (6)],
which computes the k-modules of morphisms from L into MŒ�� in the coderived
category Dco.B-modcdg/ [Positselski 2011b, Theorems 3.5(a) and 3.7]. Thus,

H� ExtIIB .L;M/ ' HomDco.B-modcdg/.L;MŒ��/:

Just as in [Polishchuk and Positselski 2012, Section 3.3], one can lift this iso-
morphism from the level of cohomology modules to that of the derived category
D.k-mod/ in the following way. Consider the functor

HomB WH 0.B-modcdg/op
�H 0.B-modcdg/ �! D.k-mod/;

and restrict it to the full subcategory H 0.B-modcdg
inj / in the second argument. This

restriction factorizes through the coderived category Dco.B-modcdg/ in the first
argument. Taking into account [Positselski 2011b, Theorem 3.7], we obtain a right
derived functor

Dco.B-modcdg/op
�Dco.B-modcdg/ �! D.k-mod/:

Restricting to the full subcategory Dabs.B-modcdg
fg /

op � Dco.B-modcdg/op [loc. cit.,
Theorem 3.11.1] in the first argument, we have the derived functor

Dabs.B-modcdg
fg /

op
�Dco.B-modcdg/ �! D.k-mod/: (4)

The composition of this functor with the localization functors

Z0.B-modcdg
fg / �! Dabs.B-modcdg

fg / and Z0.B-modcdg/ �! Dco.B-modcdg/

agrees with the derived functor ExtIIB where the former is defined.
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Now assume that the �-graded category B# is right coherent. Consider the
functor [Polishchuk and Positselski 2012, formula (5)]

˝B WH
0.modcdg-B/�H 0.B-modcdg/ �! D.k-mod/

and restrict it to the Cartesian product of full subcategories

H 0.modcdg
fp -B/�H 0.B-modcdg

fl /�H 0.modcdg-B/�H 0.B-modcdg/:

Since the tensor product with a finitely presented �-graded right B#-module com-
mutes with infinite products of �-graded left B#-modules, this restriction factorizes
through the contraderived category Dctr.B-modcdg

fl / in the second argument. Clearly,
it also factorizes through the absolute derived category Dabs.modcdg

fp -B/ in the
first argument.

By Remark 1.5 of the main body of this paper (see also [Positselski 2012,
Proposition A.3.1(b)]), the natural functor Dctr.B-modcdg

fl /!Dctr.B-modcdg/ is an
equivalence of triangulated categories. Hence we obtain the left derived functor

Dabs.modcdg
fp -B/�Dctr.B-modcdg/ �! D.k-mod/: (5)

Up to composing with the localization functors Z0.modcdg
fp -B/! Dabs.modcdg

fp -B/
and Z0.B-modcdg/!Dctr.B-modcdg/, this functor agrees with the derived functor
TorB;II from [Polishchuk and Positselski 2012, Section 2.2] where the former
is defined.

Indeed, let N be an object of Z0.modcdg
fp -B/. Let P� be a left resolution of

an object M 2Z0.B-modcdg/ by left CDG-modules over B with flat underlying
�-graded B#-modules, and let P be the total CDG-module of the complex P�
constructed by taking infinite products along the diagonals. Then the complex
Totu.N ˝B P�/ computing TorB;II .N;M/ is isomorphic to the complex N ˝B P
computing the derived functor (5) on the objects N and M .

B.1.3. Comparison of the two theories. Let C be a small k-linear (�-graded)
DG-category. The above constructions applicable to CDG-categories and CDG-mod-
ules over them can be also applied to DG-categories and DG-modules as a particular
case. Following [Polishchuk and Positselski 2012], we denote the DG-categories of
left and right DG-modules over C by C -moddg and moddg-C , and generally use
the upper index “dg” instead of “cdg” in the notation related to DG-modules.

As in [loc. cit., Sections 2.1, 3.1 and 3.4], we denote by H 0.C -moddg/inj and
H 0.C -moddg/fl the homotopy categories of h-injective and h-flat left DG-modules
over C . The notation H 0.C -moddg

inj/inj and H 0.C -moddg
fl /fl stands for the full

triangulated subcategories in H 0.C -moddg/ formed by h-injective DG-modules
over C whose underlying �-graded C #-modules are injective, or h-flat DG-modules
whose underlying �-graded C #-modules are flat, respectively. Finally, we let
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H 0.C -moddg
fgp/prj �H

0.C -moddg/ and H 0.moddg
fgp-C/fl �H 0.moddg-C/ denote

the full triangulated subcategories of h-projective left and h-flat right DG-modules
whose underlying �-graded C #-modules are projective and finitely generated.

Assume that the �-graded category C # is left Noetherian. Let L be an object
of Z0.C -moddg

fg /. Given a left DG-module M over C , pick its injective resolution
J � in the exact category Z0.C -moddg/ [loc. cit., Section 2.1]. Let Tot˚.J �/!
Totu.J �/ be the natural closed morphism between the total DG-modules of the
complex J � constructed by taking infinite direct sums and infinite products along
the diagonals. Then the induced morphism of complexes of k-modules

HomC .L; Tot˚.J �// �! HomC .L; Totu.J �//

represents the comparison morphism ExtIIC .L;M/! ExtC .L;M/ [loc. cit., for-
mula (10)] in D.k-mod/ between the two kinds of Ext objects for the DG-modules
L and M .

Similarly, assume that the �-graded category C # is right coherent. Let N be an
object of Z0.moddg

fp -C/. Given a left DG-module M over C , pick its projective
resolution P� in the exact category Z0.C -moddg/. Let Tot˚.P�/! Totu.P�/ be
the natural closed morphism between the total DG-modules of the complex P�
constructed by taking infinite direct sums and infinite products along the diagonals.
Then the induced morphism of complexes of k-modules

N ˝C Tot˚.P�/ �!N ˝C Totu.P�/

represents the comparison morphism TorC .N;M/ ! TorC;II .N;M/ [loc. cit.,
formula (9)] in D.k-mod/ between the two kinds of Tor objects for the DG-modules
N and M .

Proposition A. Assume that the �-graded category C # is left Noetherian. Let L
be a left DG-module over C whose underlying �-graded left C #-module is finitely
generated, and let M be a left DG-module over C . Then the natural morphism
ExtIIC .L;M/! ExtC .L;M/ is an isomorphism provided that either

(i) the objectM 2Dco.C -moddg/ belongs to the image of the fully faithful functor
H 0.C -moddg

inj/inj! Dco.C -moddg/; or

(ii) the object L 2Dabs.C -moddg/ belongs to the image of the fully faithful functor
H 0.C -moddg

fgp/prj! Dabs.C -moddg
fg /.

Proof. Let J � be an injective resolution of the DG-module M in the exact cat-
egory Z0.C -moddg/. Then the natural morphism M ! Tot˚.J �/ is always an
isomorphism in Dco.C -moddg/ [Positselski 2011b, proof of Theorem 3.7], while
the morphism M ! Totu.J �/ is an isomorphism in the conventional derived
category D.C -moddg/ [loc. cit., proofs of Theorems 1.4-5]. Furthermore, one has
Tot˚.J �/ 2H 0.C -moddg

inj/ and Totu.J �/ 2H 0.C -moddg
inj/inj.
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Part (i): The functor is fully faithful by [loc. cit., Theorem 3.5(a) and Lemma 1.3].
According to formula (4) from Section B.1.2 and [Polishchuk and Positselski
2012, Section 3.1], both kinds of Ext involved are well-defined as functors of the
argumentM 2Dco.C -moddg/. Hence one can assumeM 2H 0.C -moddg

inj/inj. Then
both morphisms M ! Tot˚.J �/ and M ! Totu.J �/ are homotopy equivalences
by semiorthogonality; hence so is the morphism Tot˚.J �/! Totu.J �/ and the
assertion follows.

Part (ii): In view of the first paragraph of this proof, a cone K of the morphism
Tot˚.J �/! Totu.J �/ in H 0.C -moddg/ is an acyclic DG-module over C whose
underlying �-graded C #-module is injective. Hence the complex of morphisms
HomC .� ; K/ is a well-defined functor Dabs.C -moddg

fg /
op!D.k-mod/ annihilating

H 0.C -moddg
fgp/prj. �

Proposition B. Assume that the �-graded category C # is right coherent. Let N be
a right DG-module over C whose underlying �-graded right C #-module is finitely
presented, and let M be a left DG-module over C . Then the natural morphism
TorC .N;M/! TorC;II .N;M/ is an isomorphism provided that either

(i) there exists a closed morphism P ! M into M from a DG-module P 2
H 0.C -moddg

fl /fl with a cone contraacyclic with respect to C -moddg or com-
pletely acyclic with respect to C -moddg

fl (see [Polishchuk and Positselski 2012,
Sections 3.2 and 4.7]); or

(ii) the objectN 2Dabs.moddg-C/ belongs to the image of the fully faithful functor
H 0.moddg

fgp-C/fl! Dabs.moddg
fp -C/.

Proof. Let P� be a projective resolution of the DG-module M in the exact
category Z0.C -moddg/. Then the natural morphism Totu.P�/ ! M is always
an isomorphism in Dctr.C -moddg/ [Positselski 2011b, proof of Theorem 3.8],
while the morphism Tot˚.P�/!M is an isomorphism in D.C -moddg/ [loc. cit.,
proof of Theorem 1.4]. Furthermore, one has Totu.P�/ 2 H 0.C -moddg

fl / and
Tot˚.P�/ 2H 0.C -moddg

fl /fl.

Part (i): Acyclic DG-modules in the second argument are annihilated by the func-
tor TorC by [Polishchuk and Positselski 2012, Section 3.1], while contraacyclic
DG-modules in the second argument are annihilated by the functor TorC;II .N;� /
according to the formula (5). The latter also applies to DG-modules completely
acyclic with respect to C -moddg

fl since the functor of a tensor product with a finitely
presented DG-module preserves infinite direct sums and products. So one can
replace M with P and assume that M 2H 0.C -moddg

fl /fl.
Then a cone of the morphism Totu.P�/!M is contraacyclic with respect to

C -moddg with a flat underlying �-graded C #-module, and hence also contraacyclic
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with respect toC -moddg
fl . On the other hand, a cone of the morphism Tot˚.P�/!M

is acyclic and h-flat. It follows that the functor N ˝C � transforms both of these
morphisms, and therefore also the morphism Tot˚.P�/! Totu.P�/, into quasi-
isomorphisms of complexes of k-modules.

Part (ii): A cone K of the morphism Tot˚.P�/! Totu.P�/ in H 0.C -moddg/ is an
acyclic DG-module over C whose underlying �-graded C #-module is flat. Hence
the tensor product �˝C K is a well-defined functor Dabs.moddg

fp -C/! D.k-mod/
annihilating H 0.moddg

fgp-C/fl. �

In particular, assuming that the category C # is left Noetherian, the natural
morphism ExtIIC .L;M/! ExtC .L;M/ is an isomorphism for all L 2 C -moddg

fg
and M 2C -moddg provided that the Verdier localization functor Dco.C -moddg/!

D.C -moddg/ is an equivalence of triangulated categories. Assuming that the cate-
gory C # is right coherent, the natural morphism TorC .N;M/! TorC;II .N;M/

is an isomorphism for all N 2 moddg
fp -C and M 2 C -moddg provided that the

Verdier localization functor Dctr.C -moddg/! D.C -moddg/ is an equivalence of
categories, or alternatively, that any acyclic DG-module fromC -moddg

fl is completely
acyclic with respect to C -moddg

fl .

B.1.4. Comparison for the DG-category of CDG-modules. Let B be a k-linear
CDG-category and C D modcdg

fgp -B be the DG-category of right CDG-modules
overB whose underlying �-gradedB#-modules are projective and finitely generated.
The DG-categories of (left or right) CDG-modules over B and DG-modules over C
are naturally equivalent [Polishchuk and Positselski 2012, Sections 1.5 and 2.6] (as
are the categories of �-graded modules over B# and C #).

Following [loc. cit., Section 3.5], we denote by MC the DG-module over C
corresponding to a CDG-module M over B .

Let k_ be an injective cogenerator of the abelian category of k-modules. Intro-
duce the notation B-modcdg

prj �B-modcdg for the DG-category of left CDG-modules
over B with projective underlying �-graded B#-modules. The results below in this
section are to be compared with those from [loc. cit., Sections 3.5 and 4.7].

Proposition A0. Assume that the �-graded category B# is left Noetherian. LetL be
a left CDG-module over B whose underlying �-graded left B#-module L# is finitely
generated, and let M be a left CDG-module over B . Then the natural morphism
ExtIIC .LC ;MC /! ExtC .LC ;MC / is an isomorphism provided that either

(i) the objectM belongs to the minimal triangulated subcategory of Dco.B-modcdg/

containing the objects Homk.F; k_/ for all F 2H 0.modcdg
fgp -B/ and closed

under infinite products; or

(ii) the object L belongs to the minimal thick subcategory of Dabs.B-modcdg
fg /

containing the image of H 0.B-modcdg
fgp /.
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Proof. Part (i): The equivalence of categories

H 0.C -moddg
inj/inj ' D.C -moddg/

makes the embedding functor H 0.C -moddg
inj/inj! Dco.C -moddg/ right adjoint to

the localization functor Dco.C -moddg/! D.C -moddg/. It follows that the functor
H 0.C -moddg

inj/inj ! Dco.C -moddg/ preserves infinite products (also, all infinite
products exist in the coderived category since it is compactly generated [Positselski
2011b, Theorem 3.11.2]). Since the category H 0.C -moddg

inj/inj is the minimal
triangulated subcategory of H 0.C -moddg/ containing the objects Homk.FC ; k_/
and closed under infinite products [loc. cit., Theorem 1.5], the assertion follows
from Proposition A(i).

Part (ii): The equivalence of absolute derived categories

Dabs.B-modcdg
fg /' Dabs.C -moddg

fg /

takes objects of the full subcategory H 0.B-modcdg
fgp / � Dabs.B-modcdg

fg / to repre-
sentable (and, consequently, perfect and h-projective) DG-modules in

H 0.C -moddg
fgp/� Dabs.C -moddg

fg /;

so it remains to apply Proposition A(ii). �

Proposition B0. Assume that the �-graded category B# is right coherent. Let N be
a right CDG-module over B whose underlying �-graded right B#-module N # is
finitely presented, and let M be a left CDG-module over B . Then the natural mor-
phism TorC .NC ;MC /!TorC;II .NC ;MC / is an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

H 0.B-modcdg
prj /� Dctr.B-modcdg/

containing the image ofH0.B-modcdg
fgp / and closed under infinite direct sums; or

(ii) the object N belongs to the minimal thick subcategory of Dabs.modcdg
fp -B/ con-

taining the image of H 0.modcdg
fgp -B/.

Proof. Similar to that of Proposition A0 and based on Proposition B. �

Now assume that the commutative ring k has finite weak homological dimension
and all the �-graded k-modules of morphisms in the category B# are flat. Clearly,
the DG-categories of left and right CDG-modules over the CDG-category B˝kBop

are naturally equivalent, as are the DG-categories of left and right DG-modules over
the DG-category C ˝k C op. The DG-category of CDG-modules over B ˝k Bop

is also naturally equivalent to the DG-category of DG-modules over C ˝k C op
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[Polishchuk and Positselski 2012, Section 2.6]. As above, we denote by MC the
DG-module over C ˝k C op corresponding to a CDG-module M over B˝k Bop.

To any left CDG-module G and right CDG-module F over B , one can assign the
left CDG-module G˝k F and the right CDG-module F ˝k G (corresponding to
each other under the above equivalence) over the CDG-category B˝k Bop. There
are also the natural diagonal CDG-module B over B˝k Bop and DG-module C
over C ˝k C op [loc. cit., Section 2.4]; these also correspond to each other with
respect to the above equivalence of DG-categories.

For any DG-module MC over C ˝k C op, we are interested in the comparison
morphisms between the two kinds of Hochschild cohomology HH II;�.C;MC /!

HH�.C;MC / and Hochschild homologyHH�.C;MC /!HH
II
� .C;MC / [loc. cit.,

formula (23)].

Proposition C. Assume that the �-graded category B# ˝k B
#op is Noetherian

and the diagonal �-graded module B# over it is finitely generated. Let M be a
CDG-module over B ˝k Bop. Then the natural morphism HH II;�.C;MC /!

HH�.C;MC / is an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

Dco.B˝k B
op-modcdg/

containing the CDG-modulesHomk.F˝kG; k_/ for all F 2H 0.modcdg
fgp -B/

and G 2H 0.B-modcdg
fgp / and closed under infinite products; or

(ii) the diagonal CDG-module B over B ˝k Bop belongs to the minimal thick
subcategory of

Dabs.B˝k B
op-modcdg

fg /

containing the CDG-modules G ˝k F for all F 2 H 0.modcdg
fgp -B/ and G 2

H 0.B-modcdg
fgp /.

Proposition D. Assume that the �-graded category B#˝kB
#op is coherent and the

diagonal �-graded moduleB# over it is finitely presented. LetM be a CDG-module
over B ˝k Bop. Then the natural morphism HH�.C;MC /! HH II

� .C;MC / is
an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

H 0.B-modcdg
prj /� Dctr.B˝k B

op-modcdg/

containing the CDG-modules G ˝k F for all F 2 H 0.modcdg
fgp -B/ and G 2

H 0.B-modcdg
fgp / and closed under infinite direct sums; or
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(ii) the diagonal CDG-module B over B ˝k Bop belongs to the minimal thick
subcategory of Dabs.B˝kB

op-modcdg
fg / containing the CDG-modulesG˝kF

for all F 2H 0.modcdg
fgp -B/ and G 2H 0.B-modcdg

fgp /.

Proofs of Propositions C and D. Similar to the proofs of Propositions A0 and B0. �

In particular, assume that the �-graded category B#˝k B
#op is Noetherian and

the diagonal �-graded module B# over it is finitely generated. Suppose that the
diagonal CDG-module B over B˝k Bop belongs to the minimal thick subcategory
of Dabs.B ˝k B

op-modcdg
fg / containing the CDG-modules G ˝k F for all F 2

H 0.modcdg
fgp -B/ and G 2 H 0.B-modcdg

fgp /. Then, according to [Polishchuk and
Positselski 2012, formulas (44-45) in Section 2.6] and parts (ii) of Propositions C
and D, there are natural isomorphisms

HH�.C;MC /'HH
II;�.C;MC /'HH

II;�.B;M/; (6)

HH�.C;MC /'HH
II
� .C;MC /'HH

II
� .B;M/ (7)

for any CDG-module M over B˝k Bop. Specializing to the case of the diagonal
CDG-module M D B and DG-module MC D C , we obtain

HH�.C /'HH II;�.C /'HH II;�.B/;

HH�.C /'HH
II
� .C /'HH

II
� .B/:

(8)

B.1.5. Locally free matrix factorizations. Let k be a regular commutative Noether-
ian ring of finite Krull dimension and X be an affine scheme of finite type over
Spec k. Let w 2O.X/ be a global regular function on X . Consider the Z=2-graded
CDG-algebra B over k with B0DO.X/, B1D 0, d D 0, and hD�w 2B0. We
will find it convenient to denote the CDG-algebra B simply by .X; h/D .X;�w/
(cf. Section 2.2 of the main body of this paper).

Then C Dmodcdg
fgp -B is the Z=2-graded DG-category of locally free matrix fac-

torizations of finite rank of the potential w on X . Furthermore, one has B˝kBopD

.X�kX; w2�w1/, wherewi Dp�i w 2O.X�kX/, i D 1, 2, and pi WX�kX!X

denote the coordinate projections. Let � WX!X �kX be the diagonal embedding
and ��OX be the corresponding coherent sheaf on X �k X .

Consider the coherent matrix factorization of the potential w2�w1 on X �X
whose even-degree component is the sheaf ��OX , while the odd-degree com-
ponent vanishes. We will denote this “diagonal” matrix factorization simply by
��OX 2H 0..X �k X; w2�w1/-modcdg

fg /. Applying the machinery of the previ-
ous sections leads to the following result (cf. [Polishchuk and Positselski 2012,
Sections 4.8–4.10]).
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Corollary B.1.5. Suppose that the diagonal matrix factorization ��OX belongs
to the minimal thick subcategory of Dabs..X �k X; w2�w1/-modcdg

fg / containing
the external tensor products of locally free matrix factorizations of finite rank
p�1G ˝k p

�
2F for all G 2 H 0..X;�w/-modcdg

fgp / and F 2 H 0..X;w/-modcdg
fgp /.

Then the natural isomorphisms (8) hold for the CDG-algebra B D .X;w/ and the
DG-category of locally free matrix factorizations C Dmodcdg

fgp -B . �

Notice that the condition under which the conclusion of Corollary B.1.5 has been
proven is a rather strong one, particularly when X is not assumed to be a regular
scheme. Then it is not even clear when or why the diagonal matrix factorization
��OX should belong to the thick envelope of the full triangulated subcategory of
locally free matrix factorizations

H 0..X �k X; w2�w1/-modcdg
fgp /� Dabs..X �k X; w2�w1/-modcdg

fg /

on X �kX , let alone to the thick subcategory generated by external tensor products
of locally free matrix factorizations from the two copies of X .

B.1.6. Smooth stratifications. A scheme X of finite type over a field k is said to
admit a smooth stratification [Efimov 2013] if it can be presented as a disjoint union
of its locally closed subsets X D

F
˛ S˛ so that each S˛, when endowed with the

structure of a reduced locally closed subscheme in X , becomes a smooth scheme
over k. In particular, every scheme of finite type over a perfect field k admits a
smooth stratification, as any regular scheme of finite type over a perfect field is
smooth over it [Grothendieck 1967, Corollaires 17.15.2 and 17.15.13]. Notice that
a scheme of finite type over a field admits a smooth stratification if and only if its
maximal reduced closed subscheme does.

The definition of a regular stratification of a Noetherian scheme is similar, except
that the strata S˛ are only required to be regular schemes in their reduced locally
closed subscheme structures. Any scheme of finite type over a field admits a regular
stratification [Grothendieck 1965, Scholie 7.8.3(iii)–(iv) and Proposition 7.8.6(i)].

Let X be a smooth affine scheme over a field k and w 2 O.X/ be a regular
function on X . Set X0 D fw D 0g � X to be the zero locus of w. The following
result is a slight generalization of [Polishchuk and Positselski 2012, Corollary 4.8.A]
based on the above definitions.

Corollary B.1.6. Assume that there exists a closed subscheme Z � X such that
w W X nZ ! A1

k
is a smooth morphism, wjZ D 0, and the scheme Z admits a

smooth stratification over k. Then the conditions of Corollary B.1.5 are satisfied,
so its conclusions apply.

Proof. According to the argument in [Polishchuk and Positselski 2012, Section 4.8],
it suffices to show that the bounded derived category of coherent sheaves on Z�Z
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is generated by external tensor products of coherent sheaves on the two Cartesian
factors. This is a particular case of the following lemma. �

Lemma B.1.6. Let Z0 and Z00 be schemes of finite type over a field k. Assume that
the scheme Z0 admits a smooth stratification. Then the bounded derived category of
coherent sheaves Db..Z0 �Z00/-coh/ on the Cartesian product Z0 �k Z00 coincides
with its minimal thick subcategory containing the external tensor products K0˝kK00

of coherent sheaves on K0 on Z0 and K00 on Z00.

Proof. One proceeds by induction on the total number of strata in a smooth
stratification of Z0 and a regular stratification of Z00. Clearly, one can replace
Z0 and Z00 with their maximal reduced closed subschemes. Now if S˛0 is an
open stratum in Z0 and Tˇ0 is an open stratum in Z00, then S˛0 is smooth as an
open subscheme in Z0 and Tˇ0 is regular as an open subscheme in Z00, while the
induction assumption applies to .Z0nS˛0/�kZ

00 andZ0�k .Z00nTˇ0/. The scheme
S˛0 �k Tˇ0 is regular since it is smooth over a regular scheme. The rest of the
argument is based on [Orlov 2011, Proposition 2.7] and follows the lines of [Lin
and Pomerleano 2013, proof of Theorem 3.7]. �

B.2. Coherent matrix factorizations. In this section, we return to the notation
system typical for the main body of this paper. The notion of a critical value of a
regular function on a singular variety is defined in Section B.2.1. In Section B.2.2
we show that the external tensor product of coherent matrix factorizations is a fully
faithful functor between the absolute derived categories and provide a sufficient
condition for the pretriangulated extension of its DG-category version to be a
quasiequivalence. The Hochschild cohomology of the DG-category corresponding
to the absolute derived category of coherent matrix factorizations of a potential
having no critical values but zero is computed in Section B.2.4.

The notion of cotensor product of complexes of quasicoherent sheaves and
quasicoherent matrix factorizations is discussed in Sections B.2.5–B.2.6 and used in
order to compute the Hochschild homology of the (same) DG-category of coherent
matrix factorizations in Section B.2.7. The direct sum formula for the Hochschild
(co)homology of the DG-categories of coherent matrix factorizations of a potential
with several critical values is established in Section B.2.8.

In some sense, the results of this section (as compared to those of Section B.1)
suggest that the DG-category corresponding to the absolute derived category of
coherent matrix factorizations on a singular variety may be better behaved than the
similar category of locally free matrix factorizations of finite rank. Other (and in
some way related) arguments in support of the same conclusion are provided by
the results of the papers [Lunts 2010; Efimov 2013] showing that the DG-category
corresponding to the absolute derived category of coherent matrix factorizations is
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smooth (and even homotopically finitely presented), under suitable conditions on
the field k. (Cf. the counterexample in Section 3.3.)

B.2.1. Noncritical functions. Let k be a field and X be a scheme of finite type
over Spec k. Let f 2O.X/ be a global regular function on X .

Let Y be a scheme of finite type over Spec k and g 2O.Y / be a global regular
function. Let p1 WX �k Y !X and p2 WX �k Y ! Y be the natural projections.
Consider the regular function f1Cg2 D p�1f Cp

�
2g on X �k Y .

Suppose that f WX ! A1
k

is a flat morphism from X to the affine line (when k
is algebraically closed, this means that the function f � c is a local nonzero-divisor
on X for every c 2 k). Then the morphism f1Cg2 WX �k Y ! A1

k
is also flat as

it is the composition of two flat morphisms

X �k Y �! A1k �k Y �! A1k

(the former morphism being flat since the morphism f WX ! A1
k

is and the latter
one because the polynomial xCg does not divide zero in BŒx� for any commutative
ring B and element g 2 B). In particular, it follows that the function f1Cg2 is a
local nonzero-divisor on the Cartesian product X �k Y .

A function f 2O.X/ is said to be noncritical (or to have no critical values) if for
any regular function g 2O.Y / on a scheme Y of finite type over Spec k the absolute
derived category of coherent matrix factorizations Dabs..X �k Y; O; f1Cg2/-coh/
vanishes (i.e., is equivalent to the zero category). According to Remark 1.3 and
Theorem 1.10(b), this condition is local in both X and Y .

Therefore, given a scheme X of finite type over Spec k and a regular function
f 2O.X/, there is a unique maximal open subschemeX 0

f
�X where the function f

is noncritical. We will see below that the open subscheme X 0
f

is always dense in X
if the morphism f WX ! A1

k
is flat and the field k has zero characteristic.

Similarly, there is a unique maximal open subscheme A1
k;f
� A1

k
such that the

restriction of f to its full preimage in X is noncritical. The scheme A1
k;f

is always
nonempty if the field k has zero characteristic. The points in the complement
A1
k
nA1

k;f
are called the critical values of f . In particular, one says that f has no

critical values but zero if the restriction of f to f �1.A1
k
nf0g/�X is noncritical.

Notice that when the schemes X and Y are separated and the morphism of
schemes f W X ! A1

k
is flat, the category Dabs..X �k Y; O; f1 C g2/-coh/ is

equivalent to the triangulated category Db
Sing.ff1C g2 D 0g=X �k Y / of relative

singularities of the zero locus of the function f1Cg2 on X �k Y (see Theorem 2.7).

Remark B.2.1. It would be interesting to have a geometric characterization of non-
criticality of functions on singular schemes. For example, how does our definition
of noncriticality relate to the condition that the differential of f at every closed
point x 2X be a nonzero element of the Zariski cotangent space T �x X ? We do not
know this; cf. the smooth stratification approach below.
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Lemma B.2.1. Let X D
F
˛ S˛ be a scheme of finite type over Spec k presented

as a disjoint union of its locally closed subsets, endowed with their reduced
locally closed subscheme structures. Let L be a line bundle on X and w 2
L.X/ be its global section. In this setting, if the absolute derived categories
Dabs..S˛;LjS˛ ; wjS˛ /-coh/ vanish for all ˛, then so does the absolute derived
category Dabs..X;L; w/-coh/.

Proof. Proceeding by induction on the number of strata in the stratification S˛, it
suffices to consider the case when there are only two of them, namely, a closed subset
S �X and its open complement X nS . One can also replace X with its maximal
reduced closed subscheme. Then the desired assertion follows from Theorem 1.10(b)
since the triangulated category Dabs..X;L; w/-cohS / is generated by the image of
the natural functor Dabs..S;LjS ;wjS /-coh/!Dabs..X;L;w/-cohS /. �

Proposition B.2.1. Let X be a scheme of finite type over Spec k and f 2O.X/ be
a regular function on X . Let X D

F
˛ S˛ be a smooth stratification of the scheme

X over k (see Section B.1.6) such that the morphisms of schemes f jS˛ W S˛! A1
k

are smooth for all ˛. Then the function f is noncritical on X .

Proof. Let Y be a scheme of finite type over Spec k and g 2O.Y / be a regular func-
tion. We have to show that the triangulated category Dabs..X�kY;O; f1Cg2/-coh/
vanishes. Choosing a stratification of Y by regular locally closed subschemes and
applying Lemma B.2.1, one can assume that X is smooth over k and Y is regular.

Then the scheme X �k Y is also regular, the derivative of the function f1Cg2 2
O.X �k Y /, viewed as an element of the Zariski cotangent space, does not vanish
at any points where the function itself does (and, in a sense, at any other closed
points, too), and it follows that the zero locus of f1 C g2 in X �k Y is also a
regular scheme. It remains to use Theorem 2.7 (or [Orlov 2012, Theorem 3.5] and
Corollary 2.4(c)). �

It follows from Proposition B.2.1 that for any scheme of finite type X with a
smooth stratification X D

F
˛ S˛ over Spec k and any regular function f 2O.X/,

the set of critical values of the function f on X is contained in the union of the
sets of critical values of the functions f jS˛ . In particular, if the characteristic of k
is zero, then all of these sets are finite.

B.2.2. External tensor products. Let X 0 and X 00 be separated schemes of finite
type over a field k, and let w0 2O.X 0/ and w00 2O.X 00/ be regular functions. Let
X 0 �k X

00 be the Cartesian product, p1 and p2 be its natural projections onto the
factors X 0 and X 00, and w01Cw

00
2 D p

�
1w
0Cp�2w

00 be the related regular function
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on X 0 �k X 00. Then there is the external tensor product functor

˝k W D
co..X 0;O; w0/-qcoh/�Dco..X 00;O; w00/-qcoh/

�! Dco..X 0 �k X
00; O; w01Cw

00
2/-qcoh/; (9)

which restricts to the similar functor

˝k W D
abs..X 0;O; w0/-coh/�Dabs..X 00;O; w00/-coh/

�! Dabs..X 0 �k X
00; O; w01Cw

00
2/-coh/ (10)

on coherent matrix factorizations.

Proposition B.2.2. Let K0 and M0 be coherent matrix factorizations of the poten-
tial w0 on the scheme X 0, and let K00 and M00 be coherent matrix factorizations of
the potential w00 on the scheme X 00. Then the natural map of Z=2-graded k-vector
spaces of morphisms

HomDabs..X 0;O;w 0/-coh/.K0;M0Œ��/˝k HomDabs..X 00;O;w 00/-coh/.K00;M00Œ��/

�! HomDabs..X 0�kX 00;O;w 01Cw
00
2 /-coh/.K0˝k K00; M0˝kM00Œ��/ (11)

induced by the additive functor of two arguments (10) is an isomorphism.

Proof. By Proposition 1.5(d), it suffices to show that the natural map

HomDco..X 0;O;w 0/-qcoh/.K0;M0Œ��/˝k HomDco..X 00;O;w 00/-qcoh/.K00;M00Œ��/

�! HomDco..X 0�kX 00;O;w 01Cw
00
2 /-qcoh/.K0˝k K00; M0˝kM00Œ��/ (12)

induced by the functor (9) is an isomorphism for any coherent matrix factorizations
K0, K00 and quasicoherent matrix factorizations M0, M00 of the potentialsw0 andw00.
One easily checks that the desired assertion holds for the Hom spaces in the
homotopy categories of matrix factorizations (since it holds for morphisms between
the external tensor products of coherent and quasicoherent sheaves).

Furthermore, one can assume the quasicoherent matrix factorizations M0 and
M00 to be injective. Then the Hom spaces in the left-hand side of the map (12)
coincide with the similar Hom spaces computed in the homotopy categories of
matrix factorizations. Let I � be a right resolution of M0˝k M00 in the abelian
category of quasicoherent matrix factorizations (and closed morphisms between
them) consisting of injective matrix factorizations, and let J be the total matrix
factorization of the complex I � constructed by taking infinite direct sums along the
diagonals. Then the k-vector spaces of morphisms from K0˝k K00 into J in the
homotopy category of matrix factorizations are isomorphic to the right-hand side
of (12) [Positselski 2011b, Theorem 3.7].
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It remains to show that the spaces of morphisms from K0˝k K00 to M0˝kM00

in the homotopy category of matrix factorizations are isomorphic to the similar
spaces of morphisms from K0˝k K00 to J . Indeed, taking the termwise Hom from
K0˝k K00 preserves exactness of the sequence 0!M0˝k M00 ! I � since the
higher Ext spaces from the components of K0 ˝k K00 into those of M0 ˝k M00

in the abelian category of quasicoherent sheaves on X 0˝k X 00 vanish. The latter
assertion can be checked for affine schemes X 0, X 00 using projective resolutions
and then globally for the cohomology of quasicoherent sheaves using, e.g., the
Čech approach. �

Theorem B.2.2. Assume that the morphisms of schemes

w0 WX 0! A1k and w00 WX 00! A1k

are flat. Suppose that there exist closed subschemes Z0 � X 0 and Z00 � X 00 such
that w0jZ0 D 0 D w00Z00 , the functions w0 and w00 are noncritical on X 0 nZ0 and
X 00nZ00, and the schemeZ0 admits a smooth stratification over k. Then the absolute
derived category Dabs..X 0 �k X

00; O; w01Cw
00
2/-coh/ coincides with its minimal

thick subcategory containing the image of the functor (10).

Proof. By the definition of noncriticality, one has

Dabs....X 0 nZ0/�k X
00/; O; w01Cw

00
2/-coh/D 0

D Dabs...X 0 �k .X
00
nZ00//; O; w01Cw

00
2/-coh/:

Therefore, any coherent matrix factorization of the potential w01Cw
00
2 on X 0�kX 00

has its category-theoretic support inside Z0�k Z00, and is consequently isomorphic
in Dabs..X 0�kX

00; O; w01Cw
00
2/-coh/ to a direct summand of an object represented

by a coherent matrix factorization supported set-theoretically inside Z0 �k Z00 (see
Corollary 1.10(b)). It follows that the triangulated category

Dabs..X 0 �k X
00; O; w01Cw

00
2/-coh/

is generated by the direct images of coherent matrix factorizations of the zero
potential from the closed embedding Z0 �k Z00!X 0 �k X

00.
Furthermore, let X 00, X 000 , and Y0 denote the zero loci of the functions w0, w00,

and w01Cw
00
2 on X 0, X 00, and X 0 �k X 00, respectively. Denote the natural closed

embeddings by i 0 W X 00! X 0, i 00 W X 000 ! X 00, � W X 00 �X
00
0 ! Y0, and h W Y0!

X 0�X 00. The external tensor product functor (cf. [Polishchuk and Positselski 2012,
Lemma 4.8.B])

˝k W D
b
Sing.X

0
0=X

0/�Db
Sing.X

00
0 =X

00/ �! Db
Sing.Y0=.X

0
�k X

00// (13)

is well-defined since for any bounded complexes of coherent sheaves F � on X 0 and
K� on X 000 one has ��.Li 0�F �˝kK�/' Lh�..idX 0 �i 00/�.F �˝kK�//. Indeed, the
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square diagram of closed embeddings

X 00 �k X
00
0 X 0 �k X

00
0

Y0 X 0 �X 00

//

�� ��

//

is Cartesian and the higher derived tensor products related to the construction of
this relative Cartesian product of schemes all vanish.

The functor ‡ W Db
Sing.Y0=.X

0 �k X
00//! Dabs..X 0 �k X

00; O; w01Cw
00
2/-coh/

(see Section 2.7) and the similar functors for the potentials w0 and w00 on X 0 and
X 00 transform the external product functor (10) into the external tensor product
functor (13). By the assumption, one has Z0 � X 00 and Z00 � X 000 . It remains to
apply Lemma B.1.6 in order to finish the proof of the theorem. �

B.2.3. Internal Hom of matrix factorizations. Let X be a separated Noetherian
scheme. Let L be a line bundle onX andw0, w00 2L.X/ be its global sections. Then
given a matrix factorization U0! U1˝L˝1=2! U0˝OX L of the potential w0

and a matrix factorization V0 ! V1 ˝ L˝1=2 ! V0 ˝OX L of the potential w00

on the scheme X (in the symbolic notation of Section 2.2), one can construct the
matrix factorization

U0˝OX V0˚U1˝OX V1

�! U1˝L˝1=2˝OX V0˚U0˝OX V1˝L˝1=2

�! U0˝OX V0˝OX L˚U1˝OX V1˝OX L

of the potential w0Cw00 on X . Here the tensor product U1˝OX V1 is defined as
the sheaf .U1˝L˝1=2/˝OX .V1˝L˝1=2/˝OX L˝�1 on X , while the differential
on the tensor product of matrix factorizations is given by the conventional rule
d.u˝ v/D d.u/˝ vC .�1/juju˝ d.v/.

We denote the matrix factorization so obtained by U˝OX V and call it the tensor
product of two matrix factorizations U and V of two sections w0 and w00 of the
same line bundle L on a scheme X . Restricting to the cases when one or both
matrix factorizations are flat, and passing to the coderived categories, one obtains
the induced tensor product functors

˝OX W D
co..X;L; w0/-qcohfl/�Dco..X;L; w00/-qcohfl/

�! Dco..X; L; w0Cw00/-qcohfl/ (14)

and

˝OX W D
co..X;L; w0/-qcohfl/�Dco..X;L; w00/-qcoh/

�! Dco..X; L; w0Cw00/-qcoh/: (15)
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The functors (14) and (15) are well-defined since the tensor product with a flat
(quasicoherent) matrix factorization takes a short exact sequence of flat matrix
factorizations to a short exact sequence of flat matrix factorizations, the tensor
product with a flat matrix factorization takes a short exact sequence of quasicoherent
matrix factorizations to a short exact sequence of quasicoherent matrix factorizations,
and the tensor product with a quasicoherent matrix factorization takes a short exact
sequence of flat matrix factorizations to a short exact sequence of quasicoherent
matrix factorizations. Also, the tensor product functor preserves infinite direct sums.

Given a quasicoherent matrix factorization U0! U1˝L˝1=2! U0˝OX L of a
potential w0 2L.X/ and a quasicoherent matrix factorization V0! V1˝L˝1=2!
V1 ˝OX L of a potential w00 2 L.X/ on the scheme X , one can construct the
quasicoherent matrix factorization

HomX-qc.U0;V0/˚HomX-qc.U1;V1/

�!HomX-qc.U0; V1˝L˝1=2/˚HomX-qc.U1;V0/˝L˝1=2

�!HomX-qc.U0;V0/˝OX L˚HomX-qc.U1;V1/˝OX L

of the potential w00�w0 on X . Here the sheaf HomX-qc.U1;V0/˝L˝1=2 is defined
as the tensor product HomX-qc.U1˝L˝1=2; V0/˝OXL, while the differential on the
internal Hom is given by the conventional rule d.g/.u/Dd.g.u//�.�1/jgjg.d.u//.

We denote the matrix factorization so obtained by HomX-qc.U ;V/ and call it
the matrix factorization of quasicoherent internal Hom between the quasicoherent
matrix factorizations U and V of two sections w0 and w00 of the same line bundle L
on a scheme X . Restricting to the case when the matrix factorization in the second
argument is injective, one obtains the induced internal Hom functor

HomX-qc W D
abs..X;L; w0/-qcoh/op

�H 0..X;L; w00/-qcohinj/

�! Dabs..X; L; w00�w0/-qcoh/; (16)

which can be also viewed as the right derived internal Hom functor

RHomX-qc W D
abs..X;L; w0/-qcoh/op

�Dco..X;L; w00/-qcoh/

�! Dabs..X; L; w00�w0/-qcoh/: (17)

Remark B.2.3. Alternatively, one could restrict the quasicoherent internal Hom
functor to pairs of quasicoherent matrix factorizations which are both injective,
obtaining the triangulated functor

HomX-qc WH
0..X;L; w0/-qcohinj/

op
�H 0..X;L; w00/-qcohinj/

�!H 0..X; L; w00�w0/-qcohfl/; (18)
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which can be also viewed as a derived internal Hom functor

LRHomX-qc W D
co..X;L; w0/-qcoh/op

�Dco..X;L; w00/-qcoh/

�! Dabs..X; L; w00�w0/-qcohfl/ (19)

that is a left derived functor in its first argument and a right derived functor in the
second one. Notice that the derived functor so obtained does not agree with the right
derived functor defined above; i.e., the composition of the functor (19) with the natu-
ral fully faithful functor Dabs..X;L; w00�w0/-qcohfl/!Dabs..X;L; w00�w0/-qcoh/
and the Verdier localization functor Dabs..X;L; w0/-qcoh/!Dco..X;L; w0/-qcoh/
is not isomorphic to the functor (17).

In particular, when w0 D w00, the functors (16) and (17) take values in the
absolute derived category of quasicoherent matrix factorizations of the zero potential
0 2 L.X/. The objects of this category are simply complexes of quasicoherent
sheaves M� on X endowed with a 2-periodicity isomorphism M�Œ2�'M�˝OX L.
So there is a natural forgetful functor

Dco..X;L; 0/-qcoh/ �! Dco.X-qcoh/ (20)

and the similar functors acting on the homotopy, absolute derived, etc. categories
of flat, coherent, locally free, etc. matrix factorizations.

Furthermore, there is the derived global sections functor

R�.X;� / W Dco.X-qcoh/ �! D.Z-mod/ (21)

taking values in the derived category of abelian groups and defined using either the
injective resolutions or the Čech construction (see Sections 1.8–1.9). In fact, the
functor (21) factorizes through the conventional derived category D.X-qcoh/.

Composing the forgetful functor with the functor of underived global sections of
complexes of quasicoherent sheaves, one obtains a triangulated functor

�.X;� / WH 0..X;L; 0/-qcoh/ �! D.Z-mod/: (22)

Alternatively, the functor (22) can be defined as the functor Hom.X;L;0/-qcoh.OX ;� /,
where the structure sheaf OX is viewed as a matrix factorization .U0;U1/ of the
potential 0 2 L.X/ with the components U0 DOX and U1˝L˝1=2 D 0.

Similarly, composing the functors (20) and (21), one obtains a triangulated
functor

R�.X;� / W Dco..X;L; 0/-qcoh/ �! D.Z-mod/; (23)

which can be alternatively described as the functor HomDco..X;L;0/-qcoh/.OX ;�Œ��/.
In the case when LDOX , the functors (22) and (23) can be viewed as taking values
in the derived category of Z=2-graded (2-periodic) complexes of abelian groups.
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For any quasicoherent matrix factorizations K and M of a potential w 2 L.X/
on the scheme X there is a natural isomorphism of complexes of abelian groups

Hom.X;L;w/-qcoh.K;M/' �.X;HomX-qc.K;M//; (24)

and more generally, for any quasicoherent matrix factorizations K and E of potentials
w0 and w00 2 L.X/ and a quasicoherent matrix factorization M of the potential
w0Cw00 on the scheme X there is a natural isomorphism of complexes

Hom.X;L;w 0Cw 00/-qcoh.K˝OX E ; M/' Hom.X;L;w 00/-qcoh.E ;HomX-qc.K;M//:

(25)

Lemma B.2.3. Let K be a quasicoherent matrix factorization and M be an injective
quasicoherent matrix factorization of a potential w 2 L.X/. Let

HomX-qc.K;M/ �! J

be a closed morphism with a coacyclic cone between quasicoherent matrix factor-
izations of the potential 0 2 L.X/ from the matrix factorization of quasicoherent
internal Hom into an injective matrix factorization J . Then the induced morphism

�.X;HomX-qc.K;M// �! �.X;J /

is a quasi-isomorphism of complexes of abelian groups.

Proof. Let 0!HomX-qc.K;M/! I � be a right resolution of the matrix factoriza-
tion HomX-qc.K;M/ by injective matrix factorization Ii . Then one can take J to
be the total matrix factorization of the complex I � constructed by passing to the
infinite direct sums along the diagonals. Notice that the functor of global sections of
quasicoherent sheaves on X commutes with the infinite direct sums. It remains to
show that the functor �.X;� /DHom.X;L;w 00/-qcoh.OX ;� / preserves the exactness
of the sequence 0!HomX-qc.K;M/! I � (cf. the proof of Proposition B.2.2).

In fact, we claim that the Ext groups from flat quasicoherent sheaves to the com-
ponents of HomX-qc.K;M/ vanish in the abelian category X-qcoh. This assertion
follows from the results of [Positselski 2012, Lemma 2.5.3(c) and Corollary 4.1.9(b)]
(the argument is based essentially on the above Lemma A.1). �

We recall the constructions of the (underived and derived) direct and inverse
image functors for matrix factorizations from Sections 1.8–1.9 and 3.5–3.6. In
addition to the conventional adjunction of the (underived) direct and inverse image
functors f� and f � (as mentioned in Section 1.8), there is also the “internal Hom
adjunction”, formulated as follows.

Let f WZ!Y be a morphism of separated Noetherian schemes, L be a line bundle
on Y , and w0, w00 2 L.Y / be two global sections. Let K 2 H 0..Y;L; w0/-qcoh/
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and M 2H 0..Z; f �L; f �w00/-qcoh/ be quasicoherent matrix factorizations on
Y and Z. Then there is a natural isomorphism

f�HomZ-qc.f
�K;M/'HomY -qc.K; f�M/ (26)

of quasicoherent matrix factorizations of the potential w00�w0 on Y .
Now let X be a separated scheme of finite type over a field k, and let w0; w00 2

O.X/ be two global regular functions on X . Denote by p1 and p2 the natural
projectionsX�kX�X , and consider the regular functionw01Cw

00
2Dp

�
1w
0Cp�2w

00

on X �k X . Let � WX !X �k X denote the diagonal map.
Let N and K be quasicoherent matrix factorizations of the potentials w0 and w00

on X . Then there is a natural isomorphism N ˝OX K ' ��.N ˝k K/ of matrix
factorizations of the potentialw0Cw00 onX . Therefore, given a quasicoherent matrix
factorization M of the potential w0Cw00 2O.X/, one has a natural isomorphism
of Z=2-graded complexes of abelian groups

Hom.X;O;w 00/-qcoh.K;HomX-qc.N ;M//

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; ��M/: (27)

Proposition B.2.3. (a) Assume that the matrix factorization N is coherent and the
matrix factorization M is injective. Let ��M! J be a closed morphism with a
coacyclic cone between quasicoherent matrix factorizations of the potentialw01Cw

00
2

on X �k X from the direct image ��M into an injective matrix factorization J .
Then there is a natural closed morphism with a coacyclic cone HomX-qc.N ;M/!

p2�HomX�kX -qc.p
�
1N ;J / of quasicoherent matrix factorizations of the poten-

tial w00 on X , and the matrix factorization p2�HomX�kX -qc.p
�
1N ;J / is injective.

(b) There is a natural isomorphism of Z=2-graded complexes of abelian groups

Hom.X;O;w 00/-qcoh.K; p2�HomX�kX -qc.p
�
1N ;J //

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; J /:

Proof. Part (a): The desired closed morphism is provided by the composition

HomX-qc.N ;M/ ' p2���HomX-qc.�
�p�1N ;M/

' p2�HomX�kX -qc.p
�
1N ; ��M/ �! p2�HomX�kX -qc.p

�
1N ;J /:

To prove that this morphism has a coacyclic cone, pick a right resolution I � of
the matrix factorization ��M on X �k X by injective matrix factorizations, and
take J to be the totalization of the complex of matrix factorizations I � constructed
by passing to the infinite direct sums along the diagonals.

Then the complex of matrix factorizations 0!HomX�kX -qc.p
�
1N ; ��M/!

HomX�kX -qc.p
�
1N ; I

�/ is acyclic since for any affine open subscheme U �X the
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higher Ext spaces between the components of the restrictions of p�1N and ��M to
U �kU vanish. The latter assertion follows from the adjunction of derived functors
L�� and �� D R�� or p�1 D Lp�1 and Rp1� together with the agreement of the
derived direct/inverse images of (complexes of) quasicoherent sheaves with the
compositions of morphisms of separated Noetherian schemes.

It remains to show that our complex will stay acyclic after applying the direct im-
age functor p2�. According to the argument in the proof of Lemma B.2.3, the compo-
nents of the matrix factorizations HomX�kX -qc.p

�
1N ; I

i / are acyclic for the direct
image; so are the components of the matrix factorization HomX�kX -qc.p

�
1N ;��M/,

in view of the above local argument and since for any affine open subscheme U �X ,
the higher Ext spaces between the components of the restrictions of p�1N and��M
to X �k U vanish. The latter assertion is checked in the same way as above.

Finally, the claim that the matrix factorization in question is injective follows
from the computation in part (b), which shows that the left-hand side is an exact
functor of the argument K, because the right-hand side is.

Part (b) is straightforward:

Hom.X;O;w 00/-qcoh.K; p2�HomX�kX -qc.p
�
1N ;J //

' Hom.X�kX;O;w 002 /-qcoh.p
�
2K; HomX�kX -qc.p

�
1N ;J //

' Hom.X�kX;O;w 01Cw 002 /-qcoh.p
�
1N ˝OX�kX p

�
2K; J /

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; J /: �

B.2.4. Hochschild cohomology. Our goal in the rest of this appendix is to compute
the Hochschild (co)homology of the DG-category DGabs..X;O; w/-coh/ corre-
sponding to the triangulated category Dabs..X;O; w/-coh/. The word “correspond-
ing” here means, first of all, that there is a natural equivalence of (triangulated)
categoriesH 0DGabs..X;O; w/-coh/'Dabs..X;O; w/-coh/ (see [Positselski 2011b,
Section 1.2]).

As the absolute derived category is constructed from the homotopy category of
matrix factorizations using the Verdier localization procedure, so the DG-category
DGabs..X;O; w/-coh/ is obtained by applying a DG-version of localization to the
DG-category of coherent matrix factorizations .X;O; w/-coh of the potential w
on the scheme X (see Section 1.2). Several such localization procedures are
known, leading to naturally quasiequivalent DG-categories. As the Hochschild
(co)homology of DG-categories are preserved by quasiequivalences [Polishchuk and
Positselski 2012, Sections 2.1 and 2.4], it is not very important which localization
procedure to choose. To be specific, let us say that we prefer Drinfeld’s localiza-
tion [Drinfeld 2004]. Similarly one localizes the DG-category .X;O; w/-qcoh and
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obtains a DG-category DGco..X;O; w/-qcoh/ “corresponding” to the coderived
category Dco..X;O; w/-qcoh/.

Our method will naturally allow us to compute the Hochschild cohomology
HH�.DGabs..X;O; w/-coh// together with its structure of an associative (in fact,
supercommutative, but we will neither prove nor use this fact) Z=2-graded algebra
over k. Similarly, the Hochschild homology HH�.DGabs..X;O; w/-coh// will be
computed together with its structure of a Z=2-graded module over the Z=2-graded
associative algebra HH�.DGabs..X;O; w/-coh//.

Let X be a separated scheme of finite type over a field k and w 2 O.X/ be a
global regular function. Assume that the morphism of schemes w W X ! A1

k
is

flat. Consider the Cartesian square X �k X and endow it with the potential (global
function) w2�w1 D p�2 .w/�p

�
1 .w/.

Any Z=2-graded complex of quasicoherent sheaves K� on X can be viewed
as a matrix factorization of the potential 0 2 O.X/. Furthermore, one can take
its direct image ��K� with respect to the diagonal embedding � WX !X �k X

and consider it as a quasicoherent matrix factorization of the potential w2�w1 on
X �k X . Given a bounded Z-graded complex of quasicoherent sheaves K�, one
can associate a Z=2-complex with it (by taking direct sums of all terms with the
same parity) and then apply the above constructions.

Theorem B.2.4. Assume that there exists a closed subscheme Z � X such that
wjZ D 0, the function w is noncritical on X nZ, and the schemeZ admits a smooth
stratification over k. In particular, if the field k is perfect, it suffices to require
that the function w on X have no critical values but zero (and take Z D fw D 0g).
Then there is a natural isomorphism between the Hochschild cohomology algebra
HH�.DGabs..X;O; w/-coh// and the Ext algebra

HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D
�

X Œ��/;

where D�X denotes a dualizing complex on X .

Proof. By the definition, the Hochschild cohomology algebra of a Z=2-graded
DG-category DG is the Z=2-graded algebra HomD.DG˝kDGop-mod/.DG;DGŒ��/,
where the Hom is taken in the conventional derived category D.DG˝k DG

op-mod/

of DG-bimodules over DG (or DG-modules over DG˝k DGop) between two copies
of the diagonal DG-bimodule DG over DG [Polishchuk and Positselski 2012,
Sections 2.4 and 3.1].

Specializing to the case of the DG-category DGw D DGabs..X;O; w/-coh/,
we notice, first of all, that the contravariant Serre–Grothendieck duality functor
M 7�!HomOX .M;D�X / (see Section 2.5) provides a quasiequivalence between the
DG-categories DGabs..X;O; w/-coh/op and DGabs..X;O;�w/-coh/. Furthermore,
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the external tensor product is a DG-functor

DGabs..X;O;�w/-coh/˝k DGabs..X;O; w/-coh/

�! DGabs..X �k X; O; w2�w1/-coh/; (28)

which, according to Proposition B.2.2 and Theorem B.2.2, induces an equiv-
alence between the derived categories of (left or right) DG-modules over the
two DG-categories in the left-hand and right-hand sides. Composing the Serre–
Grothendieck duality with the external tensor product, we obtain (perhaps, after
replacing our DG-categories with naturally quasiequivalent ones) a DG-functor

DGabs..X;O; w/-coh/op
˝k DG

abs..X;O; w/-coh/

�! DGabs..X �k X; O; w2�w1/-coh/ (29)

having the same property with respect to the derived categories of DG-modules
over the left-hand and right-hand sides as the DG-functor (28).

We are interested specifically in the diagonal right DG-module over DGop
w˝kDGw ,

that is, the contravariant functor from DG
op
w ˝k DGw to the DG-category of Z=2-

graded complexes of k-vector spaces taking an object .Mop;K/ to the complex
HomDG.K;M/. It is claimed that the diagonal DG-module is naturally quasi-
isomorphic to the DG-module obtained by composing the DG-functor (29) with
the right DG-module over the right-hand side represented by the object

��D�X 2DG
abs..X�kX; O; w2�w1/-coh/�DGco..X�kX; O; w2�w1/-qcoh/:

Indeed, for any quasicoherent matrix factorizations K and N of the potentials w
and �w on X there is a natural isomorphism of Z=2-graded complexes of abelian
groups (see (27))

Hom.X;O;w/-qcoh.K;HomOX .N ;D
�

X //

' Hom.X�kX;O;w2�w1/-qcoh.N ˝k K; ��D�X /:

Proposition B.2.3 shows how one can pass from this isomorphism to a quasi-isomor-
phism of the similar complexes of morphisms in the DG-categories DGco..X;O; w/
-qcoh/ and DGco..X �k X; O; w2�w1/-qcoh/.

Now morphisms between representable DG-modules in the derived category of
DG-modules over a DG-category DG are computed by the complex of morphisms
in DG between the representing objects, so our proof is finished. �

Remark B.2.4. Given a separated scheme X of finite type over a field k, let D�X
be a dualizing complex on X and D�X�kX be a dualizing complex on X �k X such
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that D�X ' R�Š.D�X�kX /. Then the antiequivalence of absolute derived categories

HomX�kX -qc.� ; D�X�kX / W D
abs..X �k X; O; w1�w2/-coh/op

' Dabs..X �k X; O; w2�w1/-coh/

from Proposition 2.5 transforms the object��OX 2Dabs..X�kX;O; w1�w2/-coh/
into the object ��D�X 2 Dabs..X �k X; O; w2 �w1/-coh/ (see Proposition 3.7).
Therefore, in the assumptions of Theorem B.2.4, the Hochschild cohomology
algebra HH�.Dabs..X;O; w/-coh// of the DG-category DGabs..X;O; w/-coh/ can
be also identified with the Ext algebra

HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op

(cf. Remark B.2.7 below).

B.2.5. Cotensor product of complexes of quasicoherent sheaves. Let X be a sepa-
rated Noetherian scheme. Then there is a tensor product functor on the coderived
category of (Z-graded complexes of) flat quasicoherent sheaves on X (cf. [Murfet
2007, Chapter 6])

˝OX W D
co.X-qcohfl/�Dco.X-qcohfl/ �! Dco.X-qcohfl/; (30)

and a similar functor of the tensor product on the coderived categories of flat and
arbitrary quasicoherent sheaves (see [Positselski 2012, Section 4.12])

˝OX W D
co.X-qcohfl/�Dco.X-qcoh/ �! Dco.X-qcoh/: (31)

Now let D�X be a dualizing complex on X (viewed, as usual, as a finite com-
plex of injective quasicoherent sheaves). Then the equivalence of triangulated
categories Dco.X-qcohfl/' Dco.X-qcoh/ constructed using the dualizing complex
D�X (see [Murfet 2007, Chapter 8]) transforms the tensor product functor (30) into
the tensor product functor (31). One can use the same equivalence of categories
to define a tensor triangulated category structure with the unit object D�X on the
coderived category Dco.X-qcoh/. We call this operation the cotensor product of
complexes of quasicoherent sheaves on X and denote it by

�D�X
W Dco.X-qcoh/�Dco.X-qcoh/ �! Dco.X-qcoh/: (32)

Explicitly, N � �D�X
M� D D�X ˝OX HomX-qc.D�X ;N

�/˝OX HomX-qc.D�X ;M
�/

for any complexes of injective quasicoherent sheaves N � and M� on X (cf.
Lemma 1.7(b)) and also N � �D�X

M� D HomX-qc.D�X ;N
�/ ˝OX M� for any

complex of injective quasicoherent sheaves N � and any complex of quasicoherent
sheaves M� on X .

Recall that the full triangulated subcategory of bounded-below complexes in
Dco.X-qcoh/ is equivalent to DC.X-qcoh/ (see [Positselski 2010, Lemma 2.1 and
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Remark 4.1] or [Positselski 2012, Lemma A.1.2]). Denote by DCcoh.X-qcoh/ the
full triangulated subcategory in DC.X-qcoh/ consisting of complexes with coherent
cohomology sheaves; then the category DCcoh.X-qcoh/ can be also viewed as a full
triangulated subcategory in Dco.X-qcoh/.

For any complexes of quasicoherent sheaves N � and M� on X there is a natural
morphism of complexes of quasicoherent sheaves

D�X ˝OX HomX-qc.D�X ;N
�/˝OX HomX-qc.D�X ;M

�/

�!HomX-qc.HomX-qc.N �;D�X /˝OX HomX-qc.M�;D�X /; D
�

X / (33)

on X defined in terms of the composition morphisms

HomX-qc.D�X ;K
�/˝OX HomX-qc.K�;D�X / �!HomX-qc.D�X ;D

�

X /

for complexes of quasicoherent sheaves K� onX and the natural quasi-isomorphism

D�X ˝OX HomX-qc.D�X ;D
�

X /˝OX HomX-qc.D�X ;D
�

X / �! D�X :

Theorem B.2.5. For any bounded-below complexes of injective quasicoherent
sheaves N � and M� with coherent cohomology sheaves on a separated Noetherian
scheme X with a dualizing complex D�X , the natural morphism (33) is a homotopy
equivalence of bounded-below complexes of injective quasicoherent sheaves on X
with coherent cohomology sheaves.

Proof. By Lemma 2.5(b) and (c), both sides of (33) are bounded-below complexes
of injective quasicoherent sheaves. Since the functor

HomX-qc.� ;D�X / W D.X-qcoh/ �! D.X-qcoh/

takes DCcoh.X-qcoh/� DC.X-qcoh/ into D�.X-coh/� D�.X-qcoh/ and vice versa,
while the derived tensor product functor

˝
L
X W D

�.X-qcoh/�D�.X-qcoh/ �! D�.X-qcoh/

takes D�.X-coh/�D�.X-coh/ into D�.X-coh/, the right-hand side has coherent
cohomology sheaves.

It remains to prove the homotopy equivalence claim. Since the homotopy category
of bounded-below complexes of injectives is equivalent to DC.X-qcoh/, one only
has to check that the map is a quasi-isomorphism. Let us first show that it suffices
to do so for complexes of sheaves on affine open subschemes U �X .

Indeed, for any quasicoherent sheaves E and K on X there is a natural mor-
phism of quasicoherent sheaves HomX-qc.E ;K/jU ! HomU -qc.EjU ;KjU / on U .
The morphism of complexes of quasicoherent sheaves HomX-qc.E�;K�/jU !
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HomU -qc.E�jU ;K�jU / is a quasi-isomorphism whenever the complex E� has co-
herent cohomology, K� is a complex of injective quasicoherent sheaves, and one of
the complexes E� and K� is finite.

Finally, the tensor product in the right-hand side preserves quasi-isomorphisms
of bounded-above complexes of flat quasicoherent sheaves, while the one in the
left-hand side is well-defined on the coderived category of (complexes of) flat
quasicoherent sheaves. It remains to notice that the functor HomX-qc.D�X ;� / in
the equivalence of categories in Theorem 2.5 agrees with the restrictions to open
subschemes since so does its inverse functor D�X ˝OX �.

Now that we are on an affine scheme U , pick bounded-above complexes of vector
bundles 0N � and 0M� isomorphic to HomU -qc.N �;D�U / and HomU -qc.M�;D�U /,
respectively, in D�.U -coh/. Given the isomorphisms

HomU -qc.D�U ;HomU -qc.
0N �;D�U //'HomU -qc.

0N �;HomU -qc.D�U ;D
�

U //

'HomU -qc.
0N �;OU /;

and similar isomorphisms for 0M� in Dco.U -qcohfl/, the assertion reduces to the
obvious isomorphism of complexes

D�X ˝OX HomU -qc.
0N �;OU /˝OU HomU -qc.

0M�;OU /
' HomU -qc.

0N �˝OX
0M�; D�U /: �

For any complexes of quasicoherent sheaves K� and M� on X we denote by
Hom˚X-qc.K

�;M�/ the complex of quasicoherent sheaves on X obtained by totaliz-
ing the bicomplex of quasicoherent internal Hom sheaves HomX-qc.Ki ;Mj / by
taking infinite direct sums along the diagonals. Assuming that M� is a complex
of injective quasicoherent sheaves, the complex Hom˚X-qc.K

�;M�/ is absolutely
acyclic with respect to X-qcoh whenever the complex K� is (see Lemma 2.5(a)).

In the same assumption, the complex Hom˚X-qc.K
�;M�/ is also coacyclic with

respect to X-qcoh whenever the complex of quasicoherent sheaves K� is acyclic
and bounded from above [Positselski 2010, Lemma 2.1]. Therefore, representing
the second argument of Hom˚X-qc by complexes of injectives, one can construct the
right derived functors

RHom˚X-qc W D
abs.X-qcoh/op

�Dco.X-qcoh/ �! Dabs.X-qcoh/ (34)

and

RHom˚X-qc W D
�.X-qcoh/op

�Dco.X-qcoh/ �! Dco.X-qcoh/ (35)

of the functor Hom˚X-qc.
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For any complexes of quasicoherent sheaves N � and M� on X there is a natural
morphism of complexes of quasicoherent sheaves

N �˝OX HomX-qc.D�X ;M
�/ �!Hom˚X-qc.HomX-qc.N �;D�X /; M

�/ (36)

on X defined in terms of the composition/evaluation morphism

N �˝OX HomX-qc.N �;D�X /˝OX HomX-qc.D�X ;M
�/ �!M�:

Proposition B.2.5. For any bounded-below complex of injective quasicoherent
sheaves N � with coherent cohomology sheaves and any complex of injective quasi-
coherent sheaves M� on X , the natural morphism (36) is a homotopy equivalence
of complexes of injective quasicoherent sheaves on X .

Proof. It suffices to check that the morphism (36) is an isomorphism in Dco.X-qcoh/.
Since both sides of the desired isomorphism are well-defined as functors of the ar-
gument N � 2DC.X-qcoh/ taking values in Dco.X-qcoh/, one can freely replace N �

with any quasi-isomorphic bounded-below complex of quasicoherent sheaves. The
same applies to the bounded-above complex HomX-qc.N �;D�X / in the right-hand
side of (36).

Since all the functors involved are local in X up to isomorphism in the relevant
triangulated categories, it suffices to consider complexes of sheaves over affine open
subschemesU �X (see Remark 1.3). Representing the object HomU -qc.N �;D�U /2
D�.U -coh/� D�.U -qcoh/ by a bounded-above complex of vector bundles 0N �, it
remains to notice the isomorphism of complexes

HomU -qc.
0N �;D�U /˝OU F � 'Hom˚U -qc.

0N �; D�U ˝OU F �/

for any complex of quasicoherent sheaves F � on U and point out that the functor
Hom˚U -qc.

0N �;� / takes a homotopy equivalence

D�U ˝OU HomU -qc.D�U ;M
�/ �!M�

to a homotopy equivalence. �

In the particular cases when either N � is a finite complex of quasicoherent
sheaves with coherent cohomology sheaves, or N � is a bounded-below complex of
quasicoherent sheaves with coherent cohomology sheaves and M� is a bounded-
below complex of quasicoherent sheaves, the direct sum totalization of the bicomplex
HomX-qc in the right-hand side of the isomorphism (36) in the coderived category
Dco.X-qcoh/ is no different from the conventional direct product totalization.

Finally, letX be a separated scheme of finite type over a field k and� WX!Speck
be its structure morphism. Then D�X ' �

COSpeck (see Section 3.7) is a natural
choice of the dualizing complex on X . Let � �k � W X �k X ! Spec k be the
structure morphism of the Cartesian square ofX over k. Then the dualizing complex
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D�X�kX D .� �k �/
COSpeck on X �k X is quasi-isomorphic to the external tensor

product D�X ˝k D
�

X , and one has D�X '�
C.D�X�kX /' R�Š.D�X ˝k D

�

X /, where
� WX !X �k X denotes the diagonal map.

The equivalence of categories Dco.X�kX-qcohfl/'Dco.X�kX-qcoh/ constructed
using the dualizing complex D�X�kX and the similar equivalence Dco.X-qcohfl/'

Dco.X-qcoh/ constructed using the dualizing complex D�X transform the external
tensor product functor

˝k W D
co.X-qcohfl/�Dco.X-qcohfl/ �! Dco.X �k X-qcohfl/

into the external tensor product functor

˝k W D
co.X-qcoh/�Dco.X-qcoh/ �! Dco.X �k X-qcoh/

since so do the functors D�X ˝OX � and D�X�kX ˝OX�kX �.
Let N � and M� be two complexes of injective quasicoherent sheaves on X , and

let J � be a complex of injective quasicoherent sheaves on X �k X isomorphic to
N �˝kM� in Dco.X�kX-qcoh/. Then in the coderived categories of quasicoherent
sheaves one has

N ��D�X
M�
D D�X ˝OX �

�.HomOX .D
�

X ;N
�/˝k HomOX .D

�

X ;M
�//

' D�X ˝OX �
�HomOX .D

�

X�kX
;J �/' R�Š.N �˝kM�/

by [Positselski 2012, Theorem 5.15.3] applied to the proper morphism (actually,
closed embedding) �. We have obtained the formula

N ���COSpeck
M�
' R�Š.N �˝kM�/ (37)

for the cotensor product of complexes of quasicoherent sheaves on the scheme X
(see the end of Section 1.8 for the notation Rf Š as applied to objects of the coderived
category of quasicoherent sheaves).

B.2.6. Cotensor product of matrix factorizations. The equivalences of triangulated
categories

Dco..X;L; w00/-qcohfl/' Dco..X;L; w00/-qcoh/
Dco..X; L; w0Cw00/-qcohfl/' Dco..X; L; w0Cw00/-qcoh/

constructed using a dualizing complex D�X (see Section 2.5) transform the tensor
product functor (14) into the tensor product functor (15). So one can use the same
equivalences of categories together with the similar equivalence

Dco..X;L; w0/-qcohfl/' Dco..X;L; w0/-qcoh/
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(constructed using the same dualizing complex D�X ) in order to define a triangulated
functor of two arguments

�D�X
W Dco..X;L; w0/-qcoh/�Dco..X;L; w00/-qcoh/

�! Dco..X; L; w0Cw00/-qcoh/; (38)

which we call the cotensor product of matrix factorizations.
As in the case of complexes of quasicoherent sheaves, one explicitly has

N �D�X
MD D�X ˝OX HomX-qc.D�X ;N /˝OX HomX-qc.D�X ;M/

for any injective quasicoherent matrix factorizations N and M on X , and also

N �D�X
MDHomX-qc.D�X ;N /˝OX M

for any injective quasicoherent matrix factorization N and any quasicoherent matrix
factorization M onX . As in Section B.2.3, N and M must be matrix factorizations
of two sections w0 and w00 of the same line bundle L on a scheme X ; then the
cotensor product N �D�X

M is a matrix factorization of the section w0Cw00 of the
line bundle L.

Remark B.2.6. While a matrix factorization version of Proposition B.2.5 is pre-
sented below, Remark B.2.3 explains the reason why a matrix factorization version of
Theorem B.2.5 cannot be formulated in the way similar to the version for complexes
of quasicoherent sheaves above. Still, let N and M be coherent matrix factoriza-
tions of sections w0 and w00 of the same line bundle L on a separated Noetherian
scheme X with enough vector bundles. Let P and Q be coherent matrix factoriza-
tions of the potentials �w0 and �w00 2 L.X/ isomorphic to HomX-qc.N ;D�X / and
HomX-qc.M;D�X / in the respected coderived categories.

Let E� and F� be left resolutions of the matrix factorizations P and Q by locally
free matrix factorizations of finite rank (of the respected potentials). Then the total-
izations of the bounded-below complexes of matrix factorizations HomX-qc.E�;D�X /,
HomX-qc.F�;D�X /, and HomX-qc.E�˝OX F�; D�X / represent objects naturally iso-
morphic to N , M and N�D�X

M in the coderived categories of matrix factorizations
of the potentials w0, w00, and w0Cw00 (cf. Corollary 2.5).

For any quasicoherent matrix factorizations M and N of sections w0 and w00

of the same line bundle L on the scheme X , there is a natural morphism of quasi-
coherent matrix factorizations of the section w0Cw00 of the line bundle L on X

N ˝OX HomX-qc.D�X ;M/ �!HomX-qc.HomX-qc.N ;D�X /; M/ (39)

constructed in the same way as it was done for complexes of quasicoherent sheaves
in Section B.2.5.



Coherent analogues of matrix factorizations and relative singularity categories 1283

Proposition B.2.6. For any coherent matrix factorization N and injective quasico-
herent matrix factorization M of sections w0 and w00 of the same line bundle L on
a separated Noetherian scheme X , the natural morphism (39) is an isomorphism
in the coderived category of quasicoherent matrix factorizations of the potential
w0Cw00 2 L.X/.

Proof. The argument follows the lines of the proof of Proposition B.2.5. The left-
hand side of the desired isomorphism is well-defined as a functor of the argument
N 2 Dco..X;L; w00/-qcoh/ taking values in Dco..X; L; w0Cw00/-qcoh/, while the
right-hand side is well-defined as a functor of the argument N2Dabs..X;L;w00/-coh/
taking values, say, in the same coderived category. Besides, the right-hand side,
viewed as an object of the coderived category, only depends on the matrix factor-
ization HomX-qc.N ;D�X / viewed as an object of the absolute derived category.

Furthermore, the contravariant Serre–Grothendieck duality HomX-qc.� ;D�X /
is well-defined as a functor Dabs..X;L; w00/-qcoh/! Dabs..X;L;�w00/-qcoh/ and
takes Dabs..X;L; w00/-coh/�Dabs..X;L; w00/-qcoh/ into Dabs..X;L;�w00/-coh/�
Dabs..X;L;�w00/-coh/, inducing an equivalence between these two subcategories
(see Proposition 2.5). In particular, one can conclude that all the functors involved
are local in X , and it suffices to prove the desired assertion for matrix factorizations
over affine open subschemes U �X .

Now let K be a coherent matrix factorization of the potential �w00 isomorphic
to HomU -qc.N ;D�U / in Dabs..U;L;�w00/-qcoh/, and let E� be its left resolution by
locally free matrix factorizations of the same potential�w002L.U /. Then the matrix
factorization HomX-qc.K;M/ is isomorphic in Dco..X; L; w0Cw00/-qcoh/ to the
totalization of the complex of matrix factorizations HomX-qc.E�;M/ constructed
by taking infinite direct sums along the diagonals; and the matrix factorization
N 'HomX-qc.K;D�X / can be described similarly (cf. the proof of Corollary 2.5).

It remains to notice that the functor of tensoring with HomX-qc.E�;OX / and
totalizing by taking infinite direct sums along the diagonals takes the homotopy
equivalence

D�X ˝OX HomX-qc.D�X ;M/ �!M

to a homotopy equivalence of matrix factorizations. �

As in Section B.2.5, we finish by discussing the case of a separated scheme
X of finite type over a field k. From now on we also assume that L D OX . So
let w0; w00 2O.X/ be two global regular functions on X ; as in Section B.2.2, we
consider the regular function w01Cw

00
2 D p

�
1w
0Cp�2w

00 on X �k X . We use the
dualizing complexes D�X D �

COSpeck and D�X�kX D .� �k �/
COSpeck .

The equivalence of categories

Dco..X �k X; O; w01Cw
00
2/-qcohfl/' Dco..X �k X; O; w01Cw

00
2/-qcoh/
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constructed using the dualizing complex D�X�kX and the similar equivalences of
coderived categories of matrix factorizations of the potentials w0 and w00 on X
constructed using the dualizing complex D�X transform the external tensor product
functor (cf. (9))

˝k W D
co..X;O; w0/-qcohfl/�Dco..X;O; w00/-qcohfl/

�! Dco..X �k X; O; w01Cw
00
2/-qcohfl/

into the external tensor product functor

˝k W D
co..X;O; w0/-qcoh/�Dco..X;O; w00/-qcoh/

�! Dco..X �k X; O; w01Cw
00
2/-qcoh/

since so do the functors D�X ˝OX � and D�X�kX ˝OX�kX �.
Let N and M be injective quasicoherent matrix factorizations of the potentials

w0 and w00 on X , and let J be an injective quasicoherent matrix factorization of
the potential w01Cw

00
2 on X �k X isomorphic to N ˝kM in

Dco..X �k X; O; w01Cw
00
2/-qcoh/:

Then in the coderived categories of quasicoherent matrix factorizations one has

N �D�X
MD D�X ˝OX �

�.HomOX .D
�

X ;N /˝k HomOX .D
�

X ;M//

' D�X ˝OX �
�HomOX .D

�

X�kX
;J /' R�Š.N ˝kM/

by the result of Theorem 3.8 applied to the proper morphism �. We have obtained
the formula

N ��COSpeck
M ' R�Š.N ˝kM/ (40)

for the cotensor product of quasicoherent matrix factorizations on the scheme X .

B.2.7. Hochschild homology. Let X be a separated scheme of finite type over a
field k and � WX ! Spec k be its structure morphism. Let w 2O.X/ be a global
regular function; as in Section B.2.4, we assume that the morphism of schemes
w WX ! A1

k
is flat. Consider the scheme X �k X and endow it with the potential

w2�w1 D p
�
2 .w/�p

�
1 .w/. Let � WX !X �k X denote the diagonal morphism.

Theorem B.2.7. In the assumptions of Theorem B.2.4, there is a natural isomor-
phism between the Hochschild homology moduleHH�.DGabs..X;O; w/-coh// over
the algebra HH�.DGabs..X;O; w/-coh// and the Ext module

HomDco..X�kX;O;w2�w1/-qcoh/.��OX ; ��D�X Œ��/
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over the algebra

HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D
�

X Œ��/:

Here D�X denotes the dualizing complex �COSpeck on X .

Proof. By the definition, the Hochschild homology of a Z=2-graded DG-category
DG is the Z=2-graded vector space TorDG˝kDGop

� .DG;DG/ for the diagonal right
and left DG-modules DG over the DG-category DG ˝k DGop [Polishchuk and
Positselski 2012, Sections 2.4 and 3.1]. This is the conventional derived tensor
product (“of the first kind”) of a left and a right DG-module over a small DG-category.
The Hochschild cohomology algebra HomD.DG˝kDGop/.DG;DGŒ��/ acts on the
Hochschild homology space via its action on, say, the first argument of the Tor.

As in the proof of Theorem B.2.4, we set DGw DDGabs..X;O; w/-coh/; accord-
ingly, DG�w D DGabs..X;O;�w/-coh/ and

DGw2�w1 D DGabs..X �k X; O; w2�w1/-coh/:

The DG-functor DGop
w ˝k DGw ! DGw2�w1 (29) induces a fully faithful functor

between the homotopy categories H 0.DGw/
op˝k H

0.DGw/! H 0.DGw2�w1/

such that every object in the target category can be obtained from objects in the
image using the operations of a cone and the passage to a direct summand.

Let DG.mod-DGop
w ˝k DGw/ denote the DG-category version of the (conven-

tional) derived category of right DG-modules over the DG-category DG
op
w ˝k DG

(i.e., contravariant DG-functors from DG
op
w ˝kDG into the DG-category DG.k-vect/

of Z=2-graded complexes of k-vector spaces). Let DG.mod-DGop
w ˝k DGw/

0 �

DG.mod-DGop
w ˝k DGw/ denote the full DG-subcategory of DG-modules corre-

sponding to compact objects of the derived category D.mod-DGop
w ˝kDGw/ of right

DG-modules.
The derived tensor product with the left DG-module DGw over DGop

w ˝k DGw
can be viewed as a covariant DG-functor DG.mod-DGop

w ˝k DGw/! DG.k-vect/.
We are interested in the restriction of this DG-functor to the DG-subcategory
DG.mod-DGop

w ˝k DGw/
0; let us denote it by

F W DG.mod-DGop
w ˝k DGw/

0
�! D.k-vect/:

There is a natural DG-functor DGop
w ˝k DGw ! DG.mod-DGop

w ˝k DGw/
0 as-

signing to any object of DGop
w ˝k DGw the contravariant DG-functor represented by

it. Similarly one constructs a DG-functor DGw2�w1 ! DG.mod-DGop
w ˝k DGw/

0

whose composition with the DG-functor DGop
w ˝k DGw ! DGw2�w1 is naturally

quasi-isomorphic to the DG-functor DGop
w ˝k DGw ! DG.mod-DGop

w ˝k DGw/
0.

It is claimed that the composition of the DG-functor

DGw2�w1 �! DG.mod-DGop
w ˝k DGw/

0
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with the DG-functor F W DG.mod-DGop
w ˝k DGw/

0! D.k-vect/ is naturally quasi-
isomorphic to the DG-functor HomDGw2�w1

.��OX ; � /. Since the derived cat-
egories of left DG-modules over DGw1�w2 and DG

op
w ˝k DGw are equivalent, it

suffices to construct a quasi-isomorphism between the compositions of the two
DG-functors in question with the DG-functor DGop

w ˝k DGw ! DGw2�w1 .
Indeed, let .Kop;M/ be an object of DG

op
w ˝k DGw . Then the functor of the

(derived or underived) tensor product with the diagonal left DG-module DGw takes
the right DG-module over DGop

w ˝k DGw represented by .Kop;M/ to the complex
of k-vector spaces HomDGw .K;M/. Substituting K D HomX-qc.N ;D�X / with
N 2 DG�w and assuming M to be represented by an injective matrix factorization
isomorphic to the given coherent one in DGco..X;O; w/-qcoh/, we have to compute
the complex of k-vector spaces Hom.X;O;w/-qcoh.HomX-qc.N ;D�X /;M/.

Now the formula (24) together with Lemma B.2.3 allow us to interpret this com-
plex as R�.X;HomX-qc.HomX-qc.N ;D�X /;M//. According to Proposition B.2.6
together with the formula (40), this is the same as R�.X; R�Š.N ˝kM//, or, in
other notation, HomDGco..X;O;0/-qcoh/.OX ; R�Š.N˝kM//. Finally, the adjunction
of �� and R�Š allows us to rewrite the complex in question as

HomDGco..X�kX;O;w2�w1/-qcoh/.��OX ; N ˝kM/:

The desired quasi-isomorphism of DG-functors is obtained.
It remains to recall that, according to the proof of Theorem B.2.4, the diagonal

right DG-module DGw over DGop
w ˝k DGw is represented by the object ��D�X 2

DGw2�w1 , in order to finish our proof here. �

Remark B.2.7. The Hochschild homology module HH�..DGabs.X;O; w/-coh//
over the Hochschild cohomology algebra HH�..DGabs.X;O; w/-coh// can be also
computed as the Ext module

HomDco..X�kX;O;w1�w2/-qcoh/.��OX ; ��D�X Œ��/

over the Ext algebra

HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op;

according to Remark B.2.4. Moreover, the contravariant Serre duality for matrix
factorizations over X�kX can be used in order to obtain an alternative proof of our
Hochschild homology computation. Indeed, for any coherent matrix factorizations
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N and M of the potentials �w and w on X there are natural quasi-isomorphisms

HomDGabs..X;O;w/-coh/.HomX-qc.N ;D�X /;M/

'HomDGabs..X;O;w/-coh/.HomX-qc.N ;D�X /;HomX-qc.HomX-qc.M;D�X /;D
�

X //

'HomDGabs..X�kX;O;w1�w2/-coh/.HomX-qc.N;D�X/˝kHomX-qc.M;D�X/;��D
�

X/

'HomDGabs..X�kX;O;w1�w2/-coh/.HomX�kX -qc.N˝kM;D�X�kX /;��D
�

X /

'HomDGabs..X�kX;O;w2�w1/-coh/.��OX ;N˝kM/

by Proposition 2.5 and the proof of Theorem B.2.4. In other words, while the right
diagonal DG-module DGw over DGop

w ˝k DGw is represented by the object

��D�X 2 DG
abs..X �k X; O; w2�w1/-coh/

as a contravariant DG-functor on DG
op
w ˝k DGw � DGw2�w1 , the left diagonal

DG-bimodule DGw over DGop
w ˝k DGw is represented by the object

��O�X 2 DG
abs..X �k X; O; w2�w1/-coh/

as a covariant DG-functor on

DGop
w ˝k DGw � DGw2�w1 D DGabs..X �k X; O; w2�w1/-coh/:

B.2.8. Direct sum over the critical values. Let X be a separated scheme of fi-
nite type over a field k and � W X ! Spec k be its structure morphism. As in
Sections B.2.5–B.2.7 (see also Section 3.7), we choose the dualizing complex
D�X ' �

COSpeck on X . Let w 2O.X/ be a global regular function on X such that
the morphism of schemes w WX ! A1

k
is flat (cf. [Orlov 2004; 2012]).

Let c1, : : : , cn 2 k be a finite number of different elements of the ground field.
Assume that there exist closed subschemes Zi � X such that the function w is
noncritical onXn.Z1[� � �[Zn/, the restriction ofw toZi is equal to the constant ci ,
and the schemes Zi admit smooth stratifications over k.

In particular, if the field k is perfect, it suffices to require that the function w has
only a finite number of critical values c1, : : : , cn 2 A1

k
(i.e., the open subscheme

A1
k;f
� A1

k
is nonempty; see Section B.2.1), and all of these values belong to the

field k (rather than its algebraic closure). When the field k has zero characteristic,
the former condition holds automatically. Then one simply takes Zi to be the zero
locus of the function wi � ci on X .

Consider the Cartesian square X �k X with the global function w2 � w1 D
p�2 .w/ � p

�
1 .w/ on it. Let � W X ! X �k X denote the diagonal morphism.

The following result is to be compared with [Polishchuk and Positselski 2012,
Corollary 4.10].
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Corollary B.2.8. There are natural isomorphisms of Z=2-graded k-algebrasLn
iD1HH

�.DGabs..X; O; w� ci /-coh//
' HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D

�

X Œ��/

' HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op: (41)

There are also natural isomorphisms of Z=2-graded k-modulesLn
iD1HH�.DG

abs..X; O; w� ci /-coh//
' HomDco..X�kX;O;w2�w1/-qcoh/.��OX ; ��D�X Œ��/

' HomDco..X�kX;O;w1�w2/-qcoh/.��OX ; ��D�X Œ��/ (42)

over the Z=2-graded k-algebra (41).

Proof. For each i D 1, : : : , n, let Yi denote the open subscheme X n
S
j¤i Zi �X .

Let wi 2O.Yi / denote the restriction of the regular function w�ci to Yi . The argu-
ment is based on the results of Sections B.2.4 and B.2.7 applied to the schemes Yi
(or their open subschemes) endowed with the potentials wi .

The restriction of morphisms (in the coderived categories) of quasicoherent
matrix factorizations to the open subschemes Yi �X defines a Z=2-graded k-algebra
morphism from the (middle or) right-hand side to the left-hand side of (41), and
a Z=2-graded k-module morphism from the (middle or) right-hand side to the
left-hand side of (42). It remains to show that these morphisms are isomorphisms.

For this purpose, one can start with replacing ��D�X or ��OX in the second
argument of the Hom spaces in the middle or right-hand sides of (41) and (42) with
an injective matrix factorization J on X �k X representing the same object in the
coderived category. Then one notices that the restriction from X �k X to its open
subscheme V D

Sn
iD1 Yi �k Yi does not change the Hom spaces in the right-hand

sides, as the image of � is contained in V .
Finally, one writes down the Čech resolution of the matrix factorization J jV

corresponding to the covering of the scheme V by its open subschemes Yi�kYi . This
is a finite acyclic complex of injective matrix factorizations, so applying the functor
Hom.V;O; .w2�w1/jV /-qcoh.K;� / from any quasicoherent matrix factorization K
preserves its acyclicity. Since the Hom spaces on any intersection of at least two
different open subschemes in the covering are zero by Theorems B.2.4– B.2.7 (as
w is noncritical on Yi \Yj for any i ¤ j ), the desired isomorphisms follow. �

Remark B.2.8. The Hochschild cohomology algebra and the Hochschild homology
module of the DG-category version DGb.X-coh/ of the bounded derived category
Db.X-coh/ of (complexes of) coherent sheaves on a separated scheme X of finite
type over a field k can be computed in the way similar to (but simpler than) the
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above. The answers are the same as in Theorems B.2.4 and B.2.7:

HH�.DGb.X-coh// ' HomD.X�kX-qcoh/.��D�X ; ��D
�

X Œ��/

' HomDb.X�kX-coh/.��OX ; ��OX Œ��/op (43)

and
HH�.DG

b.X-coh// ' HomD.X�kX-qcoh/.��OX ; ��D�X Œ��/; (44)

the only difference being that DGb.X-coh/ is a Z-graded DG-category and the right-
hand sides describe the Hochschild (co)homology as a Z-graded algebra and module.
The only assumption is that the scheme X should admit a smooth stratification
over k (i.e., it suffices that the field k be perfect).
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