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Let Q be a quiver, M a representation of Q with an ordered basis B and e a
dimension vector for Q. In this note we extend the methods of Lorscheid (2014)
to establish Schubert decompositions of quiver Grassmannians Gre(M) into affine
spaces to the ramified case, i.e., the canonical morphism F : T → Q from the
coefficient quiver T of M w.r.t. B is not necessarily unramified.

In particular, we determine the Euler characteristic of Gre(M) as the number
of extremal successor closed subsets of T0, which extends the results of Cerulli
Irelli (2011) and Haupt (2012) (under certain additional assumptions on B).

Introduction

The recent interest in quiver Grassmannians stems from a formula of Caldero
and Chapoton [2006] that relates cluster variables of a quiver Q with the Euler
characteristics of the quiver Grassmannians of exceptional modules of Q. Formulas
for the Euler characteristics for a given quiver yield a description of the associated
cluster algebra in terms of generators and relations. This opened a way to understand
cluster algebras, which are defined by an infinite recursive procedure, in terms of
closed formulas—provided one knows the Euler characteristics of the associated
quiver Grassmannians.

Torus actions and cluster algebras associated with string algebras. While the
classification of all cluster algebras seems to be as much out of reach as a clas-
sification of wild algebras, their is some hope to understand and classify cluster
algebras that are associated with tame algebras. A first step in this direction has
been realized by Cerulli Irelli [2011] and Haupt [2012] who established a formula
for the Euler characteristics of quiver Grassmannians in the so-called unramified
case. These results sufficed to understand all cluster algebras associated path with
string algebras.
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We review the method of Cerulli Irelli and Haupt in brevity: following Ringel
[1998], we note that every exceptional representation M of a quiver Q has a tree
basis B, meaning that the coefficient quiver T = 0(M,B) is a tree. A subset β of
T0 =B is successor closed if for all i ∈ β and all arrows α : i→ j in T , also j ∈ β.
A subset β of T0 =B is of type e = (ep)p∈Q0 if #β ∩Mp = ep for all p ∈ Q0.

If the canonical morphism F : T → Q is unramified, i.e., the morphism of the
underlying CW-complexes is locally injective, then one can define a (piecewise
continuous) action of the torus Gm on Gre(M) that has only finitely many fixed
points. This yields the formula

χ(Gre(M)) = #{fixed points} = #{successor closed β ⊂ T0 of type e}.

For other types of cluster algebras, the exceptional modules are in general not
unramified tree modules. This is, for instance, the case for cluster algebras associated
with exceptional Dynkin quivers of types D̃ and Ẽ , or, more general, for cluster
algebras associated with clannish algebras or exceptional tame algebras. Therefore
other methods are required to treat ramified tree modules.

Cluster algebras from marked surfaces. Fomin, Shapiro and Thurston explore in
[Fomin et al. 2008] the connection between cluster algebras and marked surfaces.
Namely, to each surface with boundary and finitely many marked points such that
each boundary component contains at least one marked point, one can associate a
cluster algebra. It is shown in that paper that all cluster algebras associated with
quivers of extended Dynkin types Ã and D̃ come from marked surfaces.

This connection with marked surfaces yields a description of the cluster variables
in terms of triangulations of the surface, which leads to a combinatorial description
of the algebra. For unpunctured surfaces, i.e., all marked points are contained in
the boundary, Musiker, Schiffler and Williams [Musiker et al. 2013] construct a
basis for the associated cluster algebra.

Cluster algebras of punctured surfaces, which includes type D algebras, are more
difficult to treat since not all mutations of clusters come from flips of triangulations.
For recent results in this direction, see [Qiu and Zhou 2013]. However, these
methods do not suffice yet for a complete understanding of the associated cluster
algebras.

Schubert decompositions and ramified tree modules. Caldero and Reineke [2008]
show that Gre(M) is smooth projective if M is exceptional. If M is an equi-oriented
string module, i.e., the coefficient quiver T is an equi-oriented Dynkin quiver
of type An , then Gre(M) has a continuous torus action with finitely many fixed
points, see [Cerulli Irelli 2011]. Thus if M is an exceptional equi-oriented string
module, then the Białynicki–Birula decomposition [1973, Theorem 4.3] yields a
decomposition of Gre(M) into affine spaces.
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While a torus action with finitely many fixed points determines the Euler char-
acteristic, a decomposition of Gre(M) into affine spaces determines the (additive
structure of the) cohomology of Gre(M), which is a much stronger result. In
particular, we re-obtain the Euler characteristic as the number of affine spaces
occurring in the decomposition. However, the class of exceptional equi-oriented
string modules is very limited. In particular, most exceptional modules of affine
type D are not of this kind.

In [Lorscheid 2014], we extend decompositions of Gre(M) into affine spaces to
a larger class of quiver Grassmannians by a different method. Namely, the choice
of an ordered basis B of M defines a decomposition of Gre(M) into Schubert cells,
which are, in general, merely closed subsets of affine spaces. In certain cases,
however, these Schubert cells are affine spaces themselves. The method of proof
is to exhibit explicit presentations of Schubert cells in terms of generators and
relations.

One requirement of [Lorscheid 2014] is that the morphism F : T → Q is
unramified. It is the purpose of this note to extend the methods of that paper
to ramified F : T → Q. In particular, this extends, under the given additional
assumptions, the formula of Cerulli Irelli and Haupt to the ramified case.

As will be shown in joint work with Thorsten Weist, the results of this text
are indeed applicable to all exceptional modules of affine type D̃n , which yields
combinatorial formulas for the Euler characteristics of Gre(M).

The main result of this text. An arrow α of T is extremal if for every other arrow
α′ with F(α′) = F(α) either s(α) < s(α′) or t (α′) < t (α). A subset β of T0 is
extremal successor closed if for every i ∈ β and every extremal arrow α : i → j
in T , we also have j ∈ β.

Under certain additional assumptions on B, the quiver Grassmannian Gre(M) de-
composes into affine spaces (Theorem 4.1), and the parametrization of the nonempty
Schubert cells yields the formula

χ(Gre(M)) = #{extremal successor closed β ⊂ T0 of type e},

see Corollary 4.4.

Content overview. To keep the technical complexity as low as possible, we restrict
ourselves in this text to tree modules over the complex numbers, though the methods
work in the more general context of modules of tree extensions over arbitrary rings
as considered in [Lorscheid 2014]. The technique of proof in the ramified case is
essentially the same as the one used in [Lorscheid 2014]. But since the presentation
of our results is different and simplified, we include all details.

This text is organized as follows. In Section 1, we review basic facts about quiver
Grassmannians, their Schubert decompositions and tree modules. In Section 2,
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we describe generators and relations for a Schubert cell, which are labeled by
relevant pairs and relevant triples, respectively. In Section 3, we introduce extremal
successor closed subsets, polarizations and maximal relevant pairs, and we establish
preliminary facts. In Section 4, we state the main results and conclude with several
remarks and examples.

The Appendix, by Thorsten Weist, shows how to establish polarizations for
exceptional modules along Schofield induction.

1. Setup

To start with, let us explain the notation and terminology that we use. By a variety
we understand the space of complex points of an underlying scheme, and we broadly
ignore the schematic structure of quiver Grassmannians. For more details on the
notions in this section, see Sections 1 and 2 of [Lorscheid 2014].

1A. Quiver Grassmannians. Let Q = (Q0, Q1, s, t) be a quiver with (complex)
representation M =

(
{Mi }i∈Q0, {Mα}α∈Q1

)
, with dimension vector d = dim M , and

let e ≤ d be another dimension vector for Q. The quiver Grassmannian Gre(M)
is the set of subrepresentations N of M with dim N = e. A basis B for M is the
union

⋃
p∈Q0

Bp of bases Bp for the vector spaces Mp. An ordered basis of M is
a basis B of M whose elements b1, . . . , bn are linearly ordered. The choice of an
ordered basis yields an inclusion

Gre(M)→
∏

p∈Q0

Gr(ep, dp)

that sends N to (Np)p∈Q0 , which endows Gre(M) with the structure of a projective
variety.

1B. Schubert decompositions. A point of the Grassmannian Gr(e, d) is an e-
dimensional subspace V of Cd . Let V be spanned by vectors w1, . . . , we ∈Cd . We
write w = (wi, j )i=1...d, j=1...,e for the matrix of all coordinates of w1, . . . , we. For
a subset I of {1, . . . , d} of cardinality e, the Plücker coordinates

1I (V )= det(wi, j )i∈I, j=1...,e

define a point (1I (V ))I in P
(∧e

Cd
)
. For two ordered subsets I = {i1, . . . , ie} and

J = { j1, . . . , je} of {1, . . . , d}, we define I ≤ J if il ≤ jl for all l = 1 . . . , e. The
Schubert cell C I (d) of Gr(e, d) is defined as the locally closed subvariety of all
subspaces V such that 1I (V ) 6= 0 and 1J (V )= 0 for all J > I .

Given a quiver Q, a representation M with ordered basis B and a dimension
vector e, we say that a subset β of B is of type e if βp = β ∩Bp is of cardinality
ep for every p ∈ Q0. For d = dim M , the Schubert cell Cβ(d) is defined as the
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locally closed subset
∏

p∈Q0
Cβp(dp) of

∏
p∈Q0

Gr(ep, dp). The Schubert cell C M
β

is defined as the intersection of Cβ(d) with Gre(M) inside
∏

p∈Q0
Cβp(dp). The

Schubert decomposition of Gre(M) (w.r.t. the ordered basis B) is the decomposition

Gre(M)=
∐
β⊂B

of type e

C M
β

into locally closed subvarieties. Note that the Schubert cells C M
β are affine varieties,

but that they are, in general, not affine spaces. In particular, a Schubert cell C M
β

might be empty. We say that Gre(M)=
∐

C M
β is a decomposition into affine spaces

if every Schubert cell C M
β is either an affine space or empty.

1C. Tree modules. Let M be a representation of a quiver Q with basis B. Let
α : s→ t be an arrow of Q and b ∈Bs . Then we have the equations

Mα(b)=
∑

b′∈Bt

λα,b,c c

with uniquely determined coefficients λα,b,c ∈ C. The coefficient quiver of M w.r.t.
B is the quiver T = 0(M,B) with vertex set T0 =B and with arrow set

T1 =
{
(α, b, c) ∈ Q1×B×B

∣∣ b ∈Bs(α), c ∈Bt (α) and λα,b,c 6= 0
}
.

It comes equipped with a morphism F : T→ Q that sends b ∈Bp to p and (α, b, c)
to α, and with a thin sincere representation N = N (M,B) of T with basis B and
1× 1-matrices N(α,b,c) = (λα,b,c). Note that M is canonically isomorphic to the
pushforward F∗N (see [Lorscheid 2014, Section 4]).

The representation M is called a tree module if there exists a basis B of M such
that the coefficient quiver T = 0(M,B) is a tree. We call such a basis a tree basis
for M .

If T is a tree, we can replace the basis elements b by certain nonzero multiples b′

such that all λα,b,c equal 1. We refer to this assumption by the expression M = F∗T
where we identify T , by abuse of notation, with its thin sincere representation
with basis T0 =B and matrices (1). In this case, M and B are determined as the
pushforward of this thin sincere representation of T along F : T → Q. In general,
T is not determined by M : there are examples of tree modules M and bases B and
B′ such that 0(M,B) and 0(M,B′) are nonisomorphic trees.

2. Presentations of Schubert cells

Let Q be a quiver and M a representation with ordered basis B and dimension vec-
tor d . Let e be another dimension vector for Q and β ⊂B of type e. In this section,
we will describe coordinates and relations for the Schubert cell C M

β of Gre(M).
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2A. Normal form for matrix representations. Let N be a point of C M
β . Then Np

is an ep-dimensional subspace of Mp for every p ∈ Q0 and has a basis (w j ) j∈βp

where w j = (wi, j )i∈Bp are column vectors in Mp. If we define wi, j = 0 for
i, j ∈ B whenever j ∈ β, or i ∈ Bp and j ∈ Bq with p 6= q, then we obtain a
matrix w = (wi, j )i, j∈B. We call w a matrix representation of N . Note that N is
determined by the matrix representation w, but there are in general many different
matrix representations of N .

We say that a matrix w = (wi, j )i, j∈B in MatB×B is in β-normal form if

(i) wi,i = 1 for all i ∈ β,

(ii) wi, j = 0 for all i, j ∈ β with j 6= i ,

(iii) wi, j = 0 for all i ∈B and j ∈ β with j < i ,

(iv) wi, j = 0 for all i ∈B and j ∈B−β, and

(v) wi, j = 0 for all i ∈Bp and j ∈ βq with p 6= q.

Lemma 2.1. Every N ∈ C M
β has a unique matrix representation w = (wi, j )i, j∈B

in β-normal form.

Proof. The uniqueness follows from the fact that a matrix w in β-normal form is in
reduced column echelon form by (i)–(iv). The vanishing of the Plücker coordinates
1J (Np) for J > βp and the nonvanishing of 1βp(Np) implies that we find pivot
elements in the rows i ∈ βp for each p ∈ Q0 for a matrix presentation w of N in
reduced echelon form. This shows that there is a matrix presentation w of N that
satisfies (i)–(iv). Since Bp⊂ Np, the matrix w is a block matrix and satisfies (v). �

2B. Defining equations. Lemma 2.1 identifies C M
β with a subset of the affine

matrix space MatB×B. The following lemma determines defining equations (along
with equations (i)–(v) from Section 2A) for C M

β , which shows that C M
β is a closed

subvariety of MatB×B.

Lemma 2.2. Let T =0(M,B) be the coefficient quiver of M w.r.t. B and F : T →
Q the canonical morphism, and recall that T0 =B. A matrix w = (wi, j )i, j∈B in
β-normal form is the matrix representation of a point N of C M

β if and only if w
satisfies the equation

E(α, t, s) :
∑

α∈F−1(α)
with t (α)=t

ws(α),s =
∑

α∈F−1(α)

wt,t (α)ws(α),s .

for all arrows α ∈ Q1 and all vertices s ∈ F−1(s(α)) and t ∈ F−1(t (α)).
If t ∈ β or s /∈ β, then E(α, t, s) is satisfied for any w in β-normal form.

Proof. Given a matrix w = (wi, j )i, j∈B in β-normal form, we write wi for the
column vector (wi, j ) j∈Bp where p ∈ Q0 and i ∈Bp. The matrix w represents a
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point N of Gre(M) if and only if for all α ∈ Q1 and all s ∈ βs(α), there are λk ∈ C

for k ∈ βt (α) such that

Mα ws =
∑

k∈βt (α)

λkwk .

This means that for all t ∈ F−1(t (α)),∑
α∈F−1(α)

with t (α)=t

ws(α),s =
[
Mα ws

]
t equals

∑
k∈βt (α)

λkwt,k .

For t ∈ βt (α), we obtain∑
α∈F−1(α)

with t (α)=t

ws(α),s =
∑

k∈βt (α)

λkwt,k =
∑

k∈βt (α)

λkδt,k = λt

by (i) and (ii) for w in β-normal form. Therefore, for arbitrary t ∈ F−1(t (α)) we
obtain that∑

α∈F−1(α)
with t (α)=t

ws(α),s =
∑

k∈βt (α)

( ∑
α∈F−1(α)

with t (α)=k

ws(α),s

)
wt,k =

∑
α∈F−1(α)

wt,t (α)ws(α),s,

as claimed. If t ∈ β, then this equation is satisfied for all w in β-normal form by
the definition of the λk and since wt,k = δt,k for t ∈ β. If s /∈ β, then all coefficients
ws(α),s are 0, i.e., we obtain the tautological equation 0= 0. This proves the latter
claim of the lemma. �

2C. Relevant pairs and relevant triples. A relevant pair is an element of the set

Rel2 = {(i, j) ∈ T0× T0 | F(i)= F( j) and i ≤ j}

and a relevant triple is an element of the set

Rel3=
{
(α, t, s)∈Q1×T0×T0

∣∣∣ there is an α′ : s ′→ t ′ in T with F(α′)= α,
F(s ′)= F(s), F(t ′)= F(t), s ′ ≤ s and t ≤ t ′

}
.

Given a matrix w = (wi, j ) in β-normal form, we say that wi, j is a constant
coefficient (w.r.t. β) if it appears in one of the equations (i)–(v) from Section 2A,
and otherwise we say that wi, j is a free coefficient (w.r.t. β), which is the case if and
only if there is a p ∈ Q0 such that i ∈Bp−βp, j ∈ βp and i < j . The significance
of Rel2 is that if wi, j is not constant equal to 0 w.r.t. β (for any β), then (i, j) is a
relevant pair.
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If we substitute for a given β all constant coefficients wi, j with i 6= j by 0, then
we obtain the β-reduced form of E(α, t, s):∑

α∈F−1(α) with
t (α)=t, s(α)≤s,

s(α)/∈β or s(α)=s

ws(α),s =
∑

α∈F−1(α) with
t<t (α), s(α)<s,
t (α)∈β, s(α)/∈β

wt,t (α)ws(α),s +
∑

α∈F−1(α) with
s(α)=s, t≤t (α),
t (α)∈β or t (α)=t

wt,t (α). (1)

The significance of Rel3 is that if E(α, t, s) is a nontrivial equation in the
coefficients of a matrix w in β-normal form (for any β), then (α, t, s) is a relevant
triple.

In the following, we will associate certain values with relevant pairs and relevant
triples. Since T0 = B is linearly ordered, we can identify it order-preservingly
with {1, . . . , n}. We define the root of a connected component of T as its smallest
vertex, and we denote by r(i) the root of the component that contains the vertex i .
In particular, if T is connected, then 1 is the only root and r(i)= 1 for all i ∈ T0.
Let d(i, j) denote the graph distance of two vertices i, j ∈ T0. We define the root
distance of a relevant pair (i, j) as

δ(i, j)=max{d(i, r(i)), d( j, r( j))}.

We define the fiber length of a relevant pair (i, j) as

ε(i, j)= #
{
k ∈ T0 | F(k)= F(i) and i ≤ k < j

}
.

We consider N×N× T0 with its lexicographical order, i.e., (i, j, k) < (i ′, j ′, k ′) if
i < i ′, or i = i ′ and j < j ′, or i = i ′, j = j ′ and k < k ′. The inclusion

9 : Rel2 → N×N× T0

(i, j) 7→
(
ε(i, j), δ(i, j), j

)
induces a linear order on Rel2, i.e., (i, j) < (i ′, j ′) if 9(i, j) < 9(i ′, j ′).

Let (α, t, s) be a relevant triple. We define 9(α, t, s) as the maximum of
9(smin , s) and 9(t, tmax), where smin is the smallest vertex that is the source
of an arrow α ∈ F−1(α) with t ≤ t (α) and tmax is the largest vertex that is the target
of an arrow α ∈ F−1(α) with s(α)≤ s.

For a relevant triple (α, t, s) with t /∈ β and s ∈ β, we define 9β(α, t, s) as
9(i, j) where (i, j) is the largest relevant pair that appears as an index in the β-
reduced form (1) of E(α, t, s). Note that E(α, t, s) contains at least one nontrivial
term by the definition of a relevant triple. Note further that if there is an arrow
α : s→ t in F−1(α) and every other arrow α′ ∈ F−1(α) satisfies either s < s(α′)
or t (α′) < t , then the only nontrivial terms in (1) are the constant coefficients ws,s

and wt,t . Thus in this case 9β(α, t, s)=max{9(s, s),9(t, t)}.
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Since wi, j = 0 if j < i for w in β-normal form, we have 9β(α, t, s)≤9(α, t, s).
In Section 3D, we consider cases in which 9β(α, t, s) and 9(α, t, s) are equal.

Example 2.3. A good example to illustrate the roles of relevant pairs, relevant
triples and the function 9 is the following. Let M be the preinjective representation
of the Kronecker quiver Q = K (2) with dimension vector (3, 4). Denote the two
arrows of Q by α and γ . Then there exists an ordered basis B of M such that the
coefficient quiver T = 0(M,B) looks like

1 2 3

4 5 6 7

α γ α γ α γ

where we label the arrows by their image under F . We investigate the Schubert
cell C M

β for β = {3, 6, 7}. A matrix w = (wi, j )i, j∈B in β-normal form has the six
free coefficients w1,3, w2,3, w4,6, w5,6, w4,7, w5,7, and w3,3 = w6,6 = w7,7 = 1.
All other coefficients vanish. The nontrivial equations on the free coefficients are
labeled by the relevant triples (α, 5, 3), (α, 4, 3), (γ , 5, 3) and (γ , 4, 3), and their
respective β-reduced forms are

w2,3 = w5,6, w1,3 = w4,6, w1,3 = w2,3w5,6+w5,7 and 0 = w2,3w4,6+w4,7.

It is easy to see that these equations can be solved successively in linear terms. We
show how these equations are organized by the ordering of Rel2 defined by 9. The
relevant pairs that appear as indices of free coefficients are ordered as follows:

(5, 6) < (2, 3) < (4, 6) < (1, 3) < (5, 7) < (4, 7).

Ordered by size, we have

9β(α, 5, 3)= (2, 3), 9β(α, 4, 3)= (1, 3),

9β(γ , 5, 3)= (5, 7), 9β(γ , 4, 3)= (4, 7),

which correspond to the indices of linear terms in each of the corresponding
equations. Therefore, we find a unique solution in w2,3, w1,3, w5,7 and w4,7 for
every w5,6 and w4,6, which shows that C M

β is isomorphic to A2.
This demonstrates how the ordering of relevant pairs organizes the defining

equations for C M
β in such a way that they are successively solvable in variables that

appear in linear terms. In the next section, we will develop criteria under which
this example generalizes to other representations M and ordered bases B.

Remark 2.4. The definition of 9 is based on heuristics with random examples of
tree modules with ordered F : T → Q. It is possible that different orders of Rel2
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lead to analogues of Theorem 4.1 that include quiver Grassmannians not covered
in this text. Interesting variants might include the graph distance d(i, j) of i and
j as an ordering criterion; e.g., consider the ordering of Rel2 given by the map
9̃ : Rel2 → N× N→ T0 with 9̃(i, j) = (d(i, j), ε(i, j), j). This might be of
particular interest for exceptional modules that do not have an ordered tree basis
such that F : T → Q is ordered. See, however, Section 4B for some limiting
examples.

3. Preliminaries for the main theorem

In this section, we develop the terminology and establish preliminary facts to
formulate and prove the main theorem in Section 4. As before, we let Q be a
quiver and M a representation with ordered basis B and dimension vector d. Let
e be another dimension vector for Q and β ⊂B of type e. Let T = 0(M,B) be
the coefficient quiver of M w.r.t. B and F : T → Q the canonical morphism. We
identify the linearly ordered set T0 =B with {1, . . . , n}.

3A. Extremal successor closed subsets. An arrow α : s→ t in T is called extremal
(with respect to F) if all other arrows α′ : s ′→ t ′ with F(α′)= F(α) satisfy either
s < s ′ or t ′ < t . Note that if F is ordered and unramified, then every arrow of T is
extremal.

Recall that T0 =B, which allows us to consider β as a subset of T0. We say that
β is extremal successor closed if for all extremal arrows α : s→ t of T , either s /∈ β
or t ∈ β. Note that if F is ordered and unramified, then β is extremal successor
closed if and only if β is successor closed in the sense of [Cerulli Irelli 2011] and
[Haupt 2012].

Lemma 3.1. If β is not extremal successor closed, then C M
β is empty.

Proof. We assume that C M
β is nonempty and prove the lemma by contraposition.

Let α : s → t be an extremal arrow in T and α = F(α). Let N ∈ C M
β have the

matrix representation w in β-normal form. The β-reduced form of E(α, t, s) is

ws,s = wt,tws,s

since α : s→ t is extremal and thus for every other α′ : s ′→ t ′ in F−1(α) either
s < s ′, and thus ws′,s = 0, or t ′ < t , and thus wt ′,t = 0. Since ws,s = 1 if s ∈ β
(by (i)) and wt,t = 0 if t /∈ β (by (iv)), equation E(α, t, s) would be 1= 0 if s ∈ β
and t /∈ β. This is not possible since we assumed that Cβ is nonempty. Therefore
s /∈ β or t ∈ β, which shows that β is extremal successor closed. �

3B. Ordered and ramified morphisms. The morphism F : T → Q is ordered if
for all arrows α : s→ t and α′ : s ′→ t ′ of T with F(α)= F(α′), we have s ≤ s ′ if
and only if t ≤ t ′.
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Consider an arrow α ∈ Q1 and a vertex i ∈ T0. The ramification index rα(i) at
i in direction α is the number of arrows α ∈ F−1(α) with source or target i . If
rα(i) > 1, we say that F branches at i in direction α and that F ramifies above F(i).
The morphism F : T → Q is unramified or a winding if for all α ∈ Q1 and all
i ∈ T0, we have rα(i)≤ 1. In other words, F : T → Q is unramified if and only if
the associated map of CW-complexes is unramified.

Note that F is strictly ordered (in the sense of [Lorscheid 2014, Section 4.2]) if
and only if F is ordered and unramified. From this viewpoint, we can say that we
extend Theorem 4.2 of [Lorscheid 2014] from unramified morphisms F : T → Q
to ramified F in this text.

3C. Polarizations. Let I = {i1, . . . , ir } be a finite ordered set with i1 < · · · < ir .
A sorting of I is a decomposition I = I< q I> such that I< = {i1, . . . , is} and
I>={is+1, . . . , ir } for some s ∈{1, . . . , r−1}. A polarization for a linear map Mα :

Mp→ Mq (between finite dimensional complex vector spaces) are ordered bases
Bp and Bq for Mp and Mq , respectively, that admit sortings Bp=B<

p,αqB>
p,α and

Bq =B<
q,α qB>

q,α such that Mα restricts to a surjection B<
p,α ∪ {0}� B<

q,α ∪ {0}
and its adjoint map Mad

α restricts to a surjection B>
q,α ∪ {0}� B>

p,α ∪ {0}. We call
these decompositions of Bp and Bq a sorting for Mα.

Let M be a representation of Q. A polarization for M is an ordered basis B

of M such that Bp and Bq are a polarization for every arrow α : p→ q in Q. In
this case, we also say that M is polarized by B. An ordered polarization of M is a
polarization B such that the canonical morphism F : T → Q from the coefficient
quiver is ordered.

In other words, M is polarized by B if and only if there are, for all arrows
α : p→ q in Q, sortings Bp = B<

p,α qB>
p,α and Bq = B<

q,α qB>
q,α such that

rα(i)≤ 1 for all i ∈B<
p,αqB>

q,α and rα(i)≥ 1 for all i ∈B<
q,αqB>

p,α . This means
that the nonzero matrix coefficients of Mα w.r.t. Bp and Bq can be covered by an
upper left submatrix M<

α and a lower right submatrix M>
α . Here M<

α has at most one
nonzero entry in each column and at least one nonzero entry in each row; M>

α has at
least one nonzero entry in each column and at most one nonzero entry in each row.

Figure 1 illustrates the typical shape of a fiber of an arrow α : p→ q of Q in
the coefficient quiver T = 0(M,B) where B is an ordered polarization for M . We
use the convention that we order the vertices from left to right in growing order.
The property that B is a polarization is visible by the number of arrows connecting

• • • • • • • • •

• • • • • • • • • •

Figure 1



1348 Oliver Lorscheid

to a vertex in the upper left / lower left / upper right / lower right of the picture,
and the property that F : T → Q is ordered is visible from the fact that the arrows
do not cross each other.

Lemma 3.2. Let B be an ordered polarization for M. Let α : p→ q be an arrow
in Q and Bp =B<

p,α qB>
p,α and Bq =B<

q,α qB>
q,α a sorting for Mα . Then every

i in B<
q,α qB>

p,α connects to a unique extremal arrow.

Proof. It is clear that every vertex i connects to at most one extremal arrow in
F−1(α). Since M is polarized by B, we have that if rα(i)≥ 1, then rα( j)= 1 for
all j such that there is an arrow α : i→ j or α : j→ i in F−1(α). In case i = s(α),
this means that α : i → j0 is extremal where j0 is minimal among the targets of
arrows in F−1(α) with source i . In case i = t (α), this means that α : j0→ i is
extremal where j0 is maximal among the sources of arrows in F−1(α) with target i .
This establishes the lemma. �

Remark 3.3. Ringel [2013] develops the notion of a radiation basis in order to
exhibit distinguished tree bases for exceptional modules. By Proposition 3 of that
paper, a radiation basis B is a polarization of M (w.r.t. any ordering of B). Examples
of representations with radiation basis are indecomposable representations of Dynkin
quivers (with an exception for E8) and the pullback of preinjective or preprojective
modules of the Kronecker quiver K (n) with n arrows to its universal covering
graph. Since the coefficient quiver of a pullback is the same as the coefficient quiver
of the original representation, it follows that every preinjective or preprojective
representation of the Kronecker quiver K (n) is polarized by some ordered basis.

The Appendix gives a general strategy to establish polarizations of exceptional
modules along Schofield induction. In [Lorscheid and Weist ≥ 2015], we will show
that every exceptional representation M of a quiver of affine Dynkin type D̃n has a
polarization which yields a Schubert decomposition of Gre(M) into affine spaces.

3D. Maximal relevant pairs. Let α ∈ Q1. A relevant pair (i, j) is maximal for α
if there exists a relevant triple (α, t, s) such that 9(i, j)=9(α, t, s).

Lemma 3.4. Assume that M is polarized by B and that β⊂B is extremal successor
closed. Let (α, t, s) be a relevant triple with s ∈ β and t /∈ β. Then one of the
following holds.

(i) There is an extremal arrow α′ : s ′→ t in F−1(α) such that s ′ /∈ β and

9β(α, t, s)=9(s ′, s)=9(α, t, s).

In this case, the β-reduced form of E(α, t, s) is

ws′,s =−
∑

α∈F−1(α) with
t (α)=t, s(α)/∈β

ws(α),s +
∑

α∈F−1(α) with
s′<s(α)<s,

s(α)/∈β, t (α)∈β

wt,t (α)ws(α),s +
∑

α∈F−1(α)
with s(α)=s, and
t (α)∈β or t (α)=t

wt,t (α).
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(ii) There is an extremal arrow α′ : s→ t ′ in F−1(α) such that t ′ ∈ β and

9β(α, t, s)=9(t, t ′)=9(α, t, s).

In this case, the β-reduced form of E(α, t, s) is

wt,t ′ =
∑

α∈F−1(α)
with t (α)=t, and

s(α)/∈β or s(α)=s

ws(α),s −
∑

α∈F−1(α) with
t<t (α)<t ′,

s(α)/∈β, t (α)∈β

wt,t (α)ws(α),s −
∑

α∈F−1(α) with
s(α)=s,t (α)∈β

wt,t (α).

Proof. Once we know that there is an extremal arrow α′ : s ′→ t (or α′ : s→ t ′), it
is clear that s ′ /∈ β (or t ∈ β), that ws′,s (or wt,t ′) is a free coefficient and that the
β-reduced form of E(α, t, s) looks as described in (i) (or (ii)).

If there are extremal arrows α′ : s ′ → t and α′′ : s → t ′′, then s ′ is minimal
among the sources of arrows in F−1(α) with target t , and t ′′ is maximal among
the targets of arrows in F−1(α) with source s. Clearly, we have 9(α, t, s) =
max{9(s ′, s),9(t, t ′′)}. By the definition of a relevant triple, we have s ′ ≤ s and
t ≤ t ′′. Since β is extremal successor closed, s ′ /∈ β and t ′′ ∈ β. In particular, this
means that s ′ 6= s and t 6= t ′′, and thus ws′,s and wt,t ′′ are free coefficients. By the
minimality of s ′ and the maximality of t ′′, every other free coefficient wi, j in the β-
reduced form of E(α, t, s) must satisfy ε(i, j) <max{ε(s ′, s), ε(t, t ′′)}. Therefore
also 9β(α, t, s)=max{9(s ′, s),9(t, t ′′)}, which establishes the proposition in the
case that both s and t connect to extremal arrows in the fiber of α.

Let p = s(α) and q = t (α). Let Bp =B<
p,α qB>

p,α and Bq =B<
q,α qB>

q,α be
sortings for Mα . If s is not the source of any extremal arrow in the fiber of α, then
Lemma 3.2 implies that s ∈ B<

p,α. By the definition of a relevant triple, there is
an arrow α ∈ F−1(α) with s(α)≤ s and t (α)≤ t . This implies that t ∈B<

q,α and,
by Lemma 3.2, that there is an extremal arrow α′ : s ′→ t . Since β is extremely
successor closed, s ′ /∈ β and ws,s′ is a free coefficient.

We claim that in this situation 9β(α, t, s) = 9(s ′, s) = 9(α, t, s). Since α′ is
extremal, all s ′′ ∈ F−1(p) appearing in an index of the β-reduced form of E(α, t, s)
must lie between s ′ and s. This means that ε(s ′, s) is larger than ε(s ′, s ′′) and
ε(s ′′, s) if s ′′ is different from both s and s ′. Similarly, the largest relevant pair
(t ′′, t ′) with F(t ′′) = F(t ′) = q satisfies t ′′ = t and that t ′ is maximal among the
targets of arrows in F−1(α) whose source is less or equal to s. Since t, t ′ ∈B<

q,α,
we have ε(t, t ′) ≤ ε(s ′, s). Equality can only hold if every s ′′ between s ′ and s
is the source of precisely one arrow in F−1(α). But then there would be such a
unique arrow with source s, which is necessarily extremal. Since this contradicts
the assumption that there is no extremal arrow with source s in F−1(α), we see that
9(s ′, s)>9(t, t ′). This shows that9β(α, t, s)=9(s ′, s)=9(α, t, s)=9(α, t, s),
which means that (i) is satisfied.
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If t is not the target of any extremal arrow in the fiber of α, then we conclude
analogously to the previous case that there is an extremal arrow α′ : s→ t ′ with
t ′ ∈ β such that 9β(α, t, s)=9(t, t ′). Thus in this case, (ii) is satisfied. �

Lemma 3.5. Let α ∈ Q1 and (i, j) ∈ Rel2. Assume that M is polarized by B.

(i) If F(i) = s(α), then there is at most one α : i → t in F−1(α) such that
9(i, j)=9(α, t, j).

(ii) If F( j) = t (α), then there is at most one α : s → j in F−1(α) such that
9(i, j)=9(α, i, s).

Proof. We prove (i). If there is only one arrow α in F−1(α) with source i , then
(i) is clear. Assume that there are two different arrows α : i → t and α′ : i → t ′

in F−1(α) with t ′ < t . Since M is polarized, we have rα(k) ≤ 1 for all k ≥ i and
rα(l) ≥ 1 for all l ≥ t ′. This means that there is an arrow α′′ : j → t ′′ and that
ε(t ′, t ′′) > ε(t, t ′′) ≥ ε(i, j). An equality ε(t, t ′′) = ε(i, j) is only possible if t is
maximal among the targets of arrows in F−1(α) with source i .

This shows (i). The proof of (ii) is analogous. �

Corollary 3.6. Assume that M is polarized by B and that β ⊂ B is extremal
successor closed. Let α ∈ Q1. If (i, j) is maximal for α, then there is a unique
(α, t, s)∈Rel3 such that9β(α, t, s)=9(i, j)=9(α, t, s). If (i, j) is not maximal
for α, then there is no relevant triple (α, t, s) with 9(i, j)=9(α, t, s).

Proof. This is an immediate consequence of Lemmas 3.4 and 3.5. �

4. Schubert decompositions for tree modules

Theorem 4.1. Let M be a representation of Q and B an ordered polarization
for M. Let e be a dimension vector for Q. Assume that every (i, j) ∈ Rel2 is
maximal for at most one α ∈ Q1. Then

Gre(M)=
∐
β⊂B

of type e

C M
β

is a decomposition into affine spaces. Moreover, C M
β is not empty if and only if β is

extremal successor closed.

Proof. By Lemma 3.1, C M
β is empty if β is not extremal successor closed. Let β be

extremal successor closed. The theorem is proven once we have shown that C M
β is

an affine space. As before, we identify T0 order-preservingly with {1, . . . , n}. For
ψ ∈ N×N× T0, we denote by C M

β (ψ) the solution space of all coefficients wi, j

with 9(i, j)≤ ψ in all equations E(α, t, s) where (α, t, s) is a relevant triple with
9β(α, t, s) < ψ . We show by induction over ψ ∈9(Rel2) that C M

β (ψ) is an affine
space. Since 9(Rel2) is finite, this implies that C M

β is an affine space as required.
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As base case, consider ψ =9(n, n). By Lemma 2.2, only those relevant triples
(α, t, s) with t /∈ β and s ∈ β lead to nontrivial equations E(α, t, s). For such a
relevant triple, 9β(α, t, s)≤ ψ if and only if E(α, t, s) does not contain any free
coefficient and thus is of the form ws,s = wt,tws,s . This is the case if and only if
there is an extremal arrow α : s → t in F−1(α). Since β is extremal successor
closed, ws,s = wt,tws,s is satisfied. This means that C M

β (ψ)= A0 is a point.
Consider ψ >9(n, n) and let ψ ′ be its predecessor in 9(Rel2). We assume that

C M
β (ψ

′) is an affine space. By the assumption of the theorem, (i, j) is maximal
for at most one α ∈ Q1. If there is no such α, then there is no relevant triple
(α, t, s) with 9β(α, t, s) = 9(i, j), which means that wi, j does not appear as a
maximal coefficient of an equation E(α, t, s). If i ∈ β or j /∈ β, then wi, j = 0 and
C M
β (ψ)= C M

β (ψ
′). Otherwise wi, j is free and C M

β (ψ)= C M
β (ψ

′)×A1.
If there is an arrow α ∈ Q1 such that (i, j) is maximal for α, then there exists a

unique relevant triple (α, t, s) such that 9β(α, t, s)=9(i, j) by Corollary 3.6. If
wi, j is not free, then i ∈ β or j /∈ β. By Lemma 3.4, either t = i and there is an
extremal arrow α : s→ j in F−1(α) or s= j and there is an extremal arrow α : i→ t
in F−1(α). In either case, if i ∈ β or j /∈ β, then t ∈ β or s /∈ β since β is extremal
successor closed. This means that E(α, t, s) is trivial and thus C M

β (ψ)= C M
β (ψ

′).
If wi, j is free, but E(α, t, s) is trivial, then C M

β (ψ)= C M
β (ψ

′)×A1. If finally wi, j

is free and E(α, t, s) is nontrivial, then wi, j is determined by all coefficients wi ′, j ′

with 9(i ′, j ′) < 9(i, j) by one of the formulas in Lemma 3.4. This means that
C M
β (ψ)= C M

β (ψ
′).

Thus we have shown that in all possible cases, C M
β (ψ) equals either C M

β (ψ
′)

or C M
β (ψ

′)×A1, which are both affine spaces by the inductive hypothesis. This
finishes the proof of the theorem. �

Remark 4.2. Though the assumptions of Theorem 4.1 come in a different shape
than Hypothesis (H) in Section 4.5 of [Lorscheid 2014], they are indeed equivalent
to Hypothesis (H) if F : Q→ T is unramified.

Remark 4.3. Though we do not explicitly require that B is a tree basis, it follows
from the other assumptions of the theorem that M is a tree module. Indeed, if the
coefficient quiver T had a loop and i was the largest vertex of this loop at maximal
distance to 1, then the relevant pair (i, i) would be maximal for the two connecting
arrows of the loop. Note that if M is not indecomposable, then T = 0(M,B) is
not necessarily connected (cf. Example 4.7).

By [Ringel 1998], every exceptional module is a tree module. But it is clear that
not every exceptional module admits an ordered tree basis such that the canonical
morphism F : T → Q from the coefficient quiver is ordered. For instance, there are
exceptional representations of the Kronecker quiver K (3) with three arrows that
attest to this fact: see the example P(x, 3) in [Ringel 2013, page 15].
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However, if M has a radiation basis B, then we can order B inductively along the
construction of M by smaller radiation modules in such a way that B satisfies the as-
sumptions of the theorem. In particular, this includes all exceptional representations
of Dynkin type, with an exception for E8. We see that the class of modules that
admit an ordered basis to that we can apply the theorem lies somewhere between
radiation modules and tree modules.

Corollary 4.4. Under the assumptions of Theorem 4.1, the Euler characteristic of
Gre(M) equals the number of extremal successor closed subsets β ⊂B of type e.

Proof. Since the Euler characteristic is additive under decompositions into locally
closed subsets,

χ(Gre(M))=
∑
β⊂B

of type e

χ(C M
β ).

The Euler characteristic of an affine space is 1 and the Euler characteristic of the
empty set is 0. Therefore the corollary follows immediately from Theorem 4.1. �

Corollary 4.5. If Gre(M) is smooth and the assumptions of Theorem 4.1 are sat-
isfied, then the closures of the nonempty Schubert cells C M

β of Gre(M) represent
an additive basis for the cohomology ring H∗(Gre(M)). If n = dim Gre(M) and
d = dim C M

β , then the class of the closure of C M
β is in H n−2d(Gre(M)).

Proof. This follows immediately from [Lorscheid 2014, Cor. 6.2]. �

4A. Two examples for type D4.

Example 4.6 (quiver Grassmannian of a ramified tree module). We give an instance
of a ramified tree module to which the methods of this text apply. Let Q be the
quiver

x
t y

z

α

η

γ

of type D4 and let M be the exceptional module

C1

C2 C1

C1

(
1
0

)

(
0
1

)
(

1
1

)

of Q. We can order the obvious basis B in such a way that the coefficient quiver T
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looks like
4

1
3

2
5

α
γ

γ
η

where we label the arrows by their images under F . For the dimension vector e
with ex = ez = 0 and ey = et = 1, we obtain precisely one subrepresentation N
of M with dim N = e. This means that Gre(M) is a point. Therefore, the Euler
characteristic of Gre(M) equals 1.

There is precisely one extremal successor closed subset of type e, namely β =
{2, 3}, which accounts for the Euler characteristic. It is indeed easily verified that
the assumptions of Theorem 4.1 are satisfied. Note that β is not successor closed,
which shows that the number of successor closed subsets does not coincide with
the Euler characteristic in this example.

Example 4.7 (a del Pezzo surface of degree 6). The previous representation appears
as a subrepresentation of the following unramified representation. This example
arose from discussions with Markus Reineke. Let Q be the same quiver as in the
previous example and M the representation

C2

C3 C2

C2

(
1 0
0 1
0 0

)

(
0 0
1 0
0 1

)
(

1 0
0 0
0 1

)

of Q. We can order the obvious basis B in such a way that the coefficient quiver T
is 4

5
1 6

2
3 7

8
9

α
α γ

γ

η
η

where we label the arrows by their images under F . It is clear from this picture
that B is an ordered polarization, and it is easily verified that every relevant pair
is maximal for at most one arrow. Thus Theorem 4.1 implies that the nonempty
Schubert cells are affine spaces and that they are indexed by the extremal successor
closed subsets β of T0. For type e = (2, 1, 1, 1), we obtain the nonempty Schubert
cells

C M
{1,2,4,6,8} ' A0, C M

{1,2,5,6,8} ' A1, C M
{1,3,4,6,9} ' A1,

C M
{1,3,4,7,9} ' A1, C M

{2,3,5,7,8} ' A1, C M
{2,3,5,7,9} ' A2.
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Therefore the Euler characteristic of X = Gre(M) is 6 and since X is smooth (as
we will see in a moment), Corollary 4.5 tells us that H 0(X)= Z, H 1(X)= Z4 and
H 2(X)= Z are additively generated by the closures of the Schubert cells.

To show that X is smooth, we consider X as a closed subvariety of Gr(2, 3)×
P1
×P1

×P1. Note that for a subrepresentation N of M with dimension vector e,
the 1-dimensional subspaces Nx , Ny and Nz of Mx , My and Mz , respectively,
determine the 2-dimensional subspace Nt of Mt uniquely. The images of Nx =

〈(x0
x1

)〉
,

Ny =
〈(y0

y1

)〉
and Nz =

〈(z0
z1

)〉
in Mt lie in a plane if and only if

det

x0 y0 0
x1 0 z0

0 y1 z1

=−x0 y1 z0− x1 y0 z1 = 0.

Therefore the projection Gr(2, 3) × P1
× P1

× P1
→ P1

× P1
× P1 yields an

isomorphism

Gre(M)−→∼
{
[ x0 : x1 | y0 : y1 | z0 : z1] ∈ P1

×P1
×P1

| x0 y1 z0 + x1 y0 z1 = 0
}
.

Since there is no point in Gre(M) that vanishes for all derivatives of the defining
equation, Gre(M) is smooth.

The projection π1,3 : P
1
×P1

×P1
→ P1

×P1 to the first and third coordinate
restricts to a surjective morphism π1,3 : Gre(M)→ P1

×P1. It is bijective outside
the fibers of [1 : 0 | 0 : 1] and [0 : 1 | 1 : 0], and these two fibers are

π−1
1,3([1 : 0 | 0 : 1])= {[1 : 0 | y0 : y1 | 0 : 1]} ' P1

and
π−1

1,3([ 0 : 1 | 1 : 0])= {[0 : 1 | y0 : y1 | 1 : 0]} ' P1.

This shows that Gre(M) is the blow-up of P1
×P1 in two points, which is a del

Pezzo surface of degree 6. Note that the closure of the Schubert cells C M
{1,2,5,6,8},

C M
{1,3,4,6,9}, C M

{1,3,4,7,9} and C M
{2,3,5,7,8} are four of the six curves on Gre(M) with

self-intersection −1. In particular, the closures of the latter two cells are the two
connected components of the exceptional divisor w.r.t. the blow-up π1,3 :Gre(M)→
P1
×P1.
To return to the opening remark of this example, we see that every point of

Gre(M), apart from the intersection points of pairs of (−1)-curves, is a subrepre-
sentation of M that is isomorphic to the representation of Example 4.6. There are
six intersection points of pairs of (−1)-curves on Gre(M), whose coordinates in
P1
×P1

×P1 are

[1 : 0 | 1 : 0 | 1 : 0], [0 : 1 | 1 : 0 | 1 : 0], [0 : 1 | 0 : 1 | 1 : 0],

[0 : 1 | 0 : 1 | 0 : 1], [1 : 0 | 0 : 1 | 0 : 1], [1 : 0 | 1 : 0 | 0 : 1].
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Note that each Schubert cell contains precisely one of these points, and that these
points coincide with the subrepresentations N of M that are spanned by the successor
closed subsets β of B.

This exemplifies the idea that the Euler characteristic of a projective variety
should equal the number of F1-points. The naive definition of the F1-points as the
points with coordinates in F1 = {0, 1} yields the right outcome in this case. The
more elaborate definition of the F1-points as the Weyl extension W (XF1) of the
blue scheme XF1 associated with X = Gre(M) and B yields a intrinsic bijection
between the elements of W (XF1) and the above points. This definition of F1-points
generalizes the connection between Euler characteristics and F1-points to a larger
class of quiver Grassmannians than the naive definition. See [Lorscheid 2013,
Section 4] for more details.

4B. Limiting examples. As already mentioned in Remark 2.4, there are different
possible choices to order Rel2, which might lead to different generalities of ana-
logues of Theorem 4.1. The following examples show, however, that we cannot
simply drop an assumption in Theorem 4.1.

Example 4.8 (nonordered F). Consider the representation M=
[(0

1
1
0

)
:C2
→C2

]
of

the quiver Q=
[
•→ •

]
. With the obvious choice of the ordered basis B={1, 2, 3, 4}

of M , the coefficient quiver T = 0(M,B) looks as follows:

1 3

2 4

The Schubert cells in the decomposition

Gr(1,1)(M)= C M
{1,3}qC M

{1,4}qC M
{2,3}qC M

{2,4}

are easily determined to be

C M
{1,3} =∅, C M

{1,4} ' A0, C M
{2,3} ' A0 and C M

{2,4} ' Gm .

In this example, we come across a Schubert cell that is isomorphic to Gm =

A1
− A0. Theorem 4.1 does indeed not apply since F : T → Q is not ordered.

However, the other conditions of Theorem 4.1 are satisfied: B is a polarization and
every relevant pair is maximal for at most one arrow (since Q has only one arrow).

Note that the indices of the nonempty Schubert cells are precisely the extremely
successor closed subsets β⊂B of type e. However, only {1, 4} and {2, 3} contribute
to the Euler characteristic of Gre(M) ' P1, which is 2. These two subsets are
precisely the successor closed subsets of B, in coherence with the methods of
[Cerulli Irelli 2011] and [Haupt 2012], which apply to this example.
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Example 4.9 (nonpolarized basis). Consider the representation M =
[(1

1
0
1

)
:C2
→

C2
]

of the quiver Q =
[
•→ •

]
. With the obvious choice of ordered basis B =

{1, 2, 3, 4} of M , the coefficient quiver T = 0(M,B) looks as follows:

1 3

2 4

The Schubert cells in the decomposition

Gr(1,1)(M)= C M
{1,3}qC M

{1,4}qC M
{2,3}qC M

{2,4}

are easily determined to be

C M
{1,3} =∅, C M

{1,4} ' A0, C M
{2,3} ' A0 and C M

{2,4} ' Gm .

The Schubert cell C M
{2,4} ' Gm does not contradict Theorem 4.1 since B is not

a polarization, though the canonical morphism F : T → Q is ordered and every
relevant pair is maximal for at most one arrow (as Q has only one arrow).

Acknowledgements. I would like to thank Dave Anderson, Giovanni Cerulli Irelli,
Markus Reineke, Cecília Salgado and Jan Schroer for helpful discussions. I would
like to thank Thorsten Weist for including his ideas on polarizations as an appendix
to this text.

Appendix: Tree modules with polarizations
by Thorsten Weist

Let Q be a quiver without loops and oriented cycles. The aim of this appendix is to
investigate under which conditions we can construct indecomposable tree modules
X such that the basis B of the respective coefficient quiver TX := 0(X,B) is a
polarization for X . In many cases, the question whether there exists a polarization
for X is closely related to the question whether there exists a coefficient quiver
without a subdiagram of the form

s1
a
−→ t1

a
←− s2

a
−→ t2.

We call a coefficient quiver without such a subdiagram a weak polarization for X .
Clearly, a polarization does not have such a subdiagram. But we will see that in
many cases these two conditions are already equivalent, for instance for exceptional
representations. In the following, we will not always distinguish between an arrow
a of the coefficient quiver and its color F(a). Moreover, we will often label the
arrows of the coefficient quiver by its color.
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One of the main tools which can be used to construct tree modules is Schofield
induction, see [Schofield 1991] and [Weist 2012] for an application to tree mod-
ules. A direct consequence is that, fixing an exceptional sequence (Y, X) with
Hom(X, Y )= 0 and a basis (e1, . . . , em) of Ext(X, Y ), representations appearing
as the middle terms of exact sequences

0→ Y e
→ Z→ Xd

→ 0

give rise to a full subcategory F(X, Y ) of Rep(Q), the category of representations
of Q. Moreover, we obtain that F(X, Y ) is equivalent to the category of repre-
sentations of the generalized Kronecker quiver K (m) with K (m)0 = {q0, q1} and
K (m)1 = {ρi : q0→ q1 | i ∈ {1, . . . ,m}} where m = dim Ext(X, Y ). Fixing a real
root α of Q, we denote by Xα the indecomposable representation of dimension α,
which is unique up to isomorphism. By Schofield induction, we also know that, if
α is an exceptional root of Q, there already exist exceptional roots β and γ such
that Xβ ∈ X⊥γ , Hom(Xβ, Xγ )= 0 and α = βd

+ γ e, where (d, e) is a real root of
the generalized Kronecker quiver K (dim Ext(Xβ, Xγ )).

Let X and Y be two representations of a quiver Q. Then we can consider the
linear map

γX,Y :
⊕
q∈Q0

Homk(Xq , Yq)→
⊕

a:s→t∈Q1

Homk(Xs, Yt)

defined by γX,Y (( fq)q∈Q0)= (Ya fs − ft Xa)a:s→t∈Q1 .
It is well-known that we have ker(γX,Y ) = Hom(X, Y ) and coker(γX,Y ) =

Ext(X, Y ). The first statement is straightforward. The second statement follows
because every morphism f ∈

⊕
a:s→t∈Q1

Homk(Xs, Yt) defines an exact sequence

0→ Y →
(
(Yq ⊕ Xq)q∈Q0,

((
Ya

0
fa

Xa

))
a∈Q1

)
→ X→ 0

with the canonical inclusion on the left hand side and the canonical projection on
the right hand side.

Assume that the representations X and Y are tree modules and let TX =0(X,BX )

and TY = 0(Y,BY ) be the corresponding coefficient quivers. Let x = dimX ,
y=dimY . Fixing a vertex q , from now on we will denote the corresponding vertices
of the coefficient quivers by (BX )q = {b

q
1 , . . . , bq

xq } and (BY )q = {c
q
1 , . . . , cq

yq }. Let
ea

k,l , where a : s→ t ∈ Q1, k = 1, . . . , xs and l = 1, . . . , yt , be the canonical basis
of
⊕

a:s→t Homk(Xs, Yt) with respect to BX and BY , i.e., ea
k,l(b

s
i )= δi,kδ j,lct

j .
This means that the coefficient quiver 0(Z ,BX ∪BY ) of the middle term of the

exact sequence
E(ea

k,l) : 0→ Y → Z→ X→ 0

is obtained by adding an extra arrow with color a from bs
k to ct

l to TX ∪ TY .
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Following [Weist 2012] we call a basis of E(X, Y ) of Ext(X, Y ), which solely
consists of elements of the form eak

ik , jk with k = 1, . . . , dim Ext(X, Y ), ak ∈ Q1,
1≤ ik ≤ xs and 1≤ jk ≤ yt , tree-shaped. In abuse of notation, we will not always
distinguish between eak

ik , jk and eak
ik , jk .

Let X be a tree module. For a vertex bs
i and an arrow a : s→ t ∈ Q1 we define

N (a, bs
i ) := {b

t
j ∈ (TX )0 | bs

i
a
−→ bt

j ∈ (TX )1}.

Analogously, we define N (a, bt
i ). If TX is a weak polarization for X , we say that it

is strict if we have, for all arrows s
a
→ t ∈ Q1, that |N (a, bs

i )| ≤ 1 for all 1≤ i ≤ xs

or |N (a, bt
i )| ≤ 1 for all 1≤ i ≤ xt . Clearly, a weak polarization which is strict is a

polarization as defined in Section 3C. Note that we can always assume that B is
ordered.

For a vertex q of TX let S(q)= {F(a) ∈ Q1 | a ∈ (TX )1, s(a)= q} and T (q)=
{F(a) ∈ Q1 | a ∈ (TX )1, t (a)= q}.

Lemma A.1. Let X be a tree module with coefficient quiver TX such that for every
a ∈ Q1, the map Xa is of maximal rank. Then TX is a polarization if and only if TX

is a weak polarization.

Proof. Since Xa is of maximal rank, Xa is either surjective or injective. Thus if, in
addition, TX is a weak polarization, this means that |N (a, bs

i )| ≤ 1 for all 1≤ i ≤ xs

or |N (a, bt
i )| ≤ 1 for all 1≤ i ≤ xt . It follows that TX is a polarization. �

Remark A.2. For general representations of a fixed dimension, and thus in partic-
ular for exceptional representations, it is true that all linear maps appearing are of
maximal rank.

Using the notation from above we introduce the following definition:

Definition A.3. (i) Let X and Y be two tree modules with coefficient quivers TX

and TY . Moreover, let E(X, Y )= (eak
ik , jk )k with sk

ak
−→ tk ∈ Q1 be a tree-shaped

basis of Ext(X, Y ), i.e., eak
ik , jk (b

sk
ik
)= ctk

jk . Then we call E(X, Y ) a polarization if

(a) we have that ak /∈ S(bsk
ik
) or ak /∈ T (ctk

jk ) for all k,
(b) if ak = al and bsk

ik
= bsl

il
(resp. ctk

jk = ctl
jl ) for k 6= l, we have ak /∈ T (ctk

jk )

(resp. ak /∈ S(bsk
ik
)),

(c) for all bsk
ik

ak
−→ bt

j ∈ (TX )1 we have |N (ak, bt
j )| = 1 and for all cs

i
ak
−→ ctk

jk ∈

(TY )1 we have |N (ak, cs
i )| = 1.

(ii) If we have ak /∈ S(bsk
ik
) and ak /∈ T (ctk

jk ) for all k in the first condition and if we
also have ak 6= al if k 6= l, we say that the basis is a strong polarization.

Remark A.4. Roughly speaking condition (c) ensures that bsk
ik

is the only neighbor
which is connected to bt

j by an arrow with color ak .



Schubert decompositions for quiver Grassmannians of tree modules 1359

Condition (a) means that either bsk
ik

is not the source of an arrow with color
ak (when only the coefficient quiver TX is considered) or ctk

jk is not the target of
an arrow with color ak (when only the coefficient quiver TY is considered). In
particular, if we have ak /∈ S(bsk

ik
) and ak /∈ T (ctk

jk ) for all k in the first condition, the
second and third conditions are clearly satisfied.

Now we are in a position to state under which conditions an exceptional sequence
together with a tree-shaped basis of the Ext-group gives rise to indecomposable
representations such that, in addition, there exists a coefficient quiver which is a
(weak) polarization:

Theorem A.5. Let (Y, X) be an exceptional sequence (of tree modules) such that
the coefficient quivers TX and TY are weak polarizations. Moreover, let E(X, Y )=
(ea1

i1, j1, . . . , eam
im , jm ) be a basis of Ext(X, Y ) which is a polarization and let M be an

indecomposable tree module of K (m).

(i) If TM is unramified, then the induced coefficient quiver TZ of the middle term
Z of the corresponding exact sequence

eM : 0→ Y e
→ Z→ Xd

→ 0

is a weak polarization for Z. Moreover, Z is indecomposable.

(ii) If the polarization of the basis is strong and TM is a weak polarization, then
the induced coefficient quiver TZ of the middle term Z of the corresponding
exact sequence

eM : 0→ Y e
→ Z→ Xd

→ 0

is a weak polarization for Z. Moreover, Z is indecomposable.

(iii) If Xa is injective (resp. surjective) if and only if Ya is injective (resp. surjective)
for all arrows a ∈ Q1, then TZ is a weak polarization if and only if TZ is a
polarization.

(iv) If M , and thus also Z , is exceptional, the polarization is strict and thus TZ is a
polarization for Z.

Proof. By simply counting arrows and vertices of the induced coefficient quiver
TZ it follows that Z is a tree module, see also [Weist 2012, Proposition 3.9].
Moreover, since M is indecomposable, by Schofield induction we know that Z is
indecomposable.

Thus we only need to check that TZ is a weak polarization for Z . We first
consider the case when TM is unramified and E(X, Y ) not necessarily a strong
polarization. Clearly, in this case TM is a weak polarization for M . Moreover, note
that, since E(X, Y ) is a basis, if ak = al for k 6= l, we either have jk 6= jl or ik 6= il .
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The coefficient quiver could contradict the polarization property if bsk
ik
= bsl

il
(resp.

ctk
jk = ctl

jl ), ak = al for l 6= k and ak ∈ T (ctk
jk )∩ (TY )1 (resp. ak ∈ S(bsk

ik
)∩ (TX )1). But

this is not possible because E(X, Y ) is a polarization. Indeed, this would contradict
condition (b).

Another possibility for TZ not being a weak polarization is if TM had a subdiagram

bq0
j

ai
−→ bq1

k
ai
←− bq0

l or bq1
j

ai
←− bq0

k
ai
−→ bq1

l

for some i ∈ {1, . . . ,m}. But since TM is unramified, this is not possible.
The last possibility for TZ not being a weak polarization is if the basis contradicts

condition (c) of Definition A.3.
Next we consider the case that the polarization is strong, the representation M is

a weak polarization and the representation is not forced to be unramified. But in
this case it is straightforward to check that the induced coefficient quiver is a weak
polarization. Indeed, for two basis elements ak : b

sk
ik
→ ctk

jk and al : b
sl
il
→ ctl

jl with
k 6= l, we have ak 6= al and, moreover, considering the original coefficient quiver
TX and TY , we have |N (ar , q)| = 0 for q ∈ {bsk

ik
, ctk

jk , bsl
il
, ctl

jl } and r ∈ {k, l}. Thus
all subdiagrams which could prevent TZ from being a weak polarization are forced
to be induced from TM . But since TM is a weak polarization, this cannot happen.

The third claim is straightforward because, in general, for an exact sequence
e ∈ Ext(X, Y ) with middle term Z , the matrix Za is a block matrix with diagonal
blocks Xa and Ya for every arrow.

The last claim follows from Lemma A.1, see also Remark A.2. �

Remark A.6. (i) If we are only interested in (weak) polarizations, we can drop
the condition that X and Y are exceptional. But in this case it is far more com-
plicated or even impossible to say anything concerning the indecomposability
of Z .

(ii) If Q is of extended Dynkin type and, moreover, (Y, X) is an exceptional
sequence, we have dim Ext(X, Y )≤ 2 because otherwise there would be a root
d of Q having an n-parameter family of indecomposables for n ≥ 2. Then
things become easier because every indecomposable tree module of K (2) is
unramified.

Let S(n) be the n-subspace quiver with vertices S(n)0 = {q0, q1, . . . , qn} and
arrows S(n)1 = {qi

ai
−→ q0 | i = 1, . . . , n}. Let us consider two examples:

Example A.7. First let n = 4 and consider the exceptional sequence induced by
the roots α = (2, 1, 1, 1, 0) and β = (0, 0, 0, 0, 1). Then coefficient quivers of Xα ,
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Xβ and a basis of Ext(Xβ, Xα) are for instance given by

• a1

&&
•

• a2

&&

a2
88

•

a4
jj

a4tt
•

•

a3
88

Here the dotted arrows correspond to the tree-shaped basis of Ext(Xβ, Xα) under
consideration, whence the remaining vertices and arrows correspond to the two
coefficient quivers.

Since the basis of Ext(Xβ, Xα) is a polarization, which is not strong, and since
we have dim Ext(Xβ, Xα)≤ 2, the first part of Theorem A.5 applies. For instance,
considering the exceptional representation of dimension (1, 2) of K (2), we obtain

•

a1

��

•

a2
��

a2

��

•

a3
��

•

a1

��

•

a2
��

a2

��

•

a3
��

• • • •

•

a4

bb

a4

<<

on the S(4)-side. This is obviously a (strict) polarization.

Example A.8. An example for a basis which is a strong polarization can be obtained
when considering S(n) with n ≥ 3 and the exceptional sequence induced by the
roots α = (1, 1, 0, . . . , 0) and β = (1, 0, 1, . . . , 1). In this case such a basis of
Ext(Xβ, Xα) is given by choosing n− 2 out of the n− 1 maps mapping the one-
dimensional subspace (Xβ)qi to (Xα)q0 for i = 2, . . . , n.

References

[Białynicki-Birula 1973] A. Białynicki-Birula, “Some theorems on actions of algebraic groups”, Ann.
of Math. (2) 98 (1973), 480–497. MR 51 #3186 Zbl 0275.14007

[Caldero and Chapoton 2006] P. Caldero and F. Chapoton, “Cluster algebras as Hall algebras of quiver
representations”, Comment. Math. Helv. 81:3 (2006), 595–616. MR 2008b:16015 Zbl 1119.16013

[Caldero and Reineke 2008] P. Caldero and M. Reineke, “On the quiver Grassmannian in the acyclic
case”, J. Pure Appl. Algebra 212:11 (2008), 2369–2380. MR 2009f:14102 Zbl 1153.14032

[Cerulli Irelli 2011] G. Cerulli Irelli, “Quiver Grassmannians associated with string modules”, J.
Algebraic Combin. 33:2 (2011), 259–276. MR 2012c:16043 Zbl 1243.16013

[Fomin et al. 2008] S. Fomin, M. Shapiro, and D. Thurston, “Cluster algebras and triangulated
surfaces. I. Cluster complexes”, Acta Math. 201:1 (2008), 83–146. MR 2010b:57032

http://dx.doi.org/10.2307/1970915
http://msp.org/idx/mr/51:3186
http://msp.org/idx/zbl/0275.14007
http://dx.doi.org/10.4171/CMH/65
http://dx.doi.org/10.4171/CMH/65
http://msp.org/idx/mr/2008b:16015
http://msp.org/idx/zbl/1119.16013
http://dx.doi.org/10.1016/j.jpaa.2008.03.025
http://dx.doi.org/10.1016/j.jpaa.2008.03.025
http://msp.org/idx/mr/2009f:14102
http://msp.org/idx/zbl/1153.14032
http://dx.doi.org/10.1007/s10801-010-0244-6
http://msp.org/idx/mr/2012c:16043
http://msp.org/idx/zbl/1243.16013
http://dx.doi.org/10.1007/s11511-008-0030-7
http://dx.doi.org/10.1007/s11511-008-0030-7
http://msp.org/idx/mr/2010b:57032


1362 Appendix by Thorsten Weist

[Haupt 2012] N. Haupt, “Euler characteristics of quiver Grassmannians and Ringel–Hall algebras of
string algebras”, Algebr. Represent. Theory 15:4 (2012), 755–793. MR 2944441 Zbl 1275.16016

[Lorscheid 2013] O. Lorscheid, “A blueprinted view on F1-geometry”, 2013. To appear in Absolute
arithmetic and F1-geometry, edited by K. Thas, Eur. Math. Soc., Zürich. arXiv 1301.0083

[Lorscheid 2014] O. Lorscheid, “On Schubert decompositions of quiver Grassmannians”, J. Geom.
Phys. 76 (2014), 169–191. MR 3144366 Zbl 1297.13027

[Lorscheid and Weist ≥ 2015] O. Lorscheid and T. Weist, “Quiver Grassmannians of type D̃n”, Split
into arXiv 1507.00392 and arXiv 1507.00395.

[Musiker et al. 2013] G. Musiker, R. Schiffler, and L. Williams, “Bases for cluster algebras from
surfaces”, Compos. Math. 149:2 (2013), 217–263. MR 3020308 Zbl 1263.13024

[Qiu and Zhou 2013] Y. Qiu and Y. Zhou, “Cluster categories for marked surfaces: punctured case”,
2013. arXiv 1311.0010

[Ringel 1998] C. M. Ringel, “Exceptional modules are tree modules”, pp. 471–493 in Proceedings of
the Sixth Conference of the International Linear Algebra Society (Technical University of Chemnitz,
1996), vol. 275/276, edited by S. Kirkland et al., 1998. MR 2000c:16020 Zbl 0964.16014

[Ringel 2013] C. M. Ringel, “Distinguished bases of exceptional modules”, pp. 253–274 in Algebras,
quivers and representations, edited by A. B. Buan et al., Abel Symp. 8, Springer, Heidelberg, 2013.
MR 3183888

[Schofield 1991] A. Schofield, “Semi-invariants of quivers”, J. London Math. Soc. (2) 43:3 (1991),
385–395. MR 92g:16019 Zbl 0779.16005

[Weist 2012] T. Weist, “Tree modules”, Bull. Lond. Math. Soc. 44:5 (2012), 882–898. MR 2975149
Zbl 1279.16015

Communicated by Mikhail Kapranov
Received 2013-08-22 Revised 2015-02-23 Accepted 2015-06-17

oliver@impa.br Instituto Nacional de Matemática Pura e Aplicada, Estrada
Dona Castorina 110, 22460-320 Rio de Janeiro-RJ, Brazil

weist@uni-wuppertal.de Bergische Universität Wuppertal, Gaussstr. 20,
42097 Wuppertal, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s10468-010-9264-0
http://dx.doi.org/10.1007/s10468-010-9264-0
http://msp.org/idx/mr/2944441
http://msp.org/idx/zbl/1275.16016
http://msp.org/idx/arx/1301.0083
http://dx.doi.org/10.1016/j.geomphys.2013.10.018
http://msp.org/idx/mr/3144366
http://msp.org/idx/zbl/1297.13027
http://arxiv.org/abs/1507.00392
http://arxiv.org/abs/1507.00395
http://dx.doi.org/10.1112/S0010437X12000450
http://dx.doi.org/10.1112/S0010437X12000450
http://msp.org/idx/mr/3020308
http://msp.org/idx/zbl/1263.13024
http://msp.org/idx/arx/1311.0010
http://dx.doi.org/10.1016/S0024-3795(97)10046-5
http://msp.org/idx/mr/2000c:16020
http://msp.org/idx/zbl/0964.16014
http://dx.doi.org/10.1007/978-3-642-39485-0_11
http://msp.org/idx/mr/3183888
http://dx.doi.org/10.1112/jlms/s2-43.3.385
http://msp.org/idx/mr/92g:16019
http://msp.org/idx/zbl/0779.16005
http://dx.doi.org/10.1112/blms/bds019
http://msp.org/idx/mr/2975149
http://msp.org/idx/zbl/1279.16015
mailto:oliver@impa.br
mailto:weist@uni-wuppertal.de
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2015 is US $255/year for the electronic version, and $440/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 9 No. 6 2015

1293Bivariant algebraic cobordism
JOSÉ LUIS GONZÁLEZ and KALLE KARU

1337Schubert decompositions for quiver Grassmannians of tree modules
OLIVER LORSCHEID

1363Noncommutative geometry and Painlevé equations
ANDREI OKOUNKOV and ERIC RAINS

1401Electrical networks and Lie theory
THOMAS LAM and PAVLO PYLYAVSKYY

1419The Kac–Wakimoto character formula for the general linear Lie superalgebra
MICHAEL CHMUTOV, CRYSTAL HOYT and SHIFRA REIF

1453Effective Matsusaka’s theorem for surfaces in characteristic p
GABRIELE DI CERBO and ANDREA FANELLI

1477Adams operations and Galois structure
GEORGIOS PAPPAS

A
lgebra

&
N

um
ber

Theory
2015

Vol.9,
N

o.6

http://dx.doi.org/10.2140/ant.2015.9.1293
http://dx.doi.org/10.2140/ant.2015.9.1363
http://dx.doi.org/10.2140/ant.2015.9.1401
http://dx.doi.org/10.2140/ant.2015.9.1419
http://dx.doi.org/10.2140/ant.2015.9.1453
http://dx.doi.org/10.2140/ant.2015.9.1477

	Introduction
	1. Setup
	1A. Quiver Grassmannians
	1B. Schubert decompositions
	1C. Tree modules

	2. Presentations of Schubert cells
	2A. Normal form for matrix representations
	2B. Defining equations
	2C. Relevant pairs and relevant triples

	3. Preliminaries for the main theorem
	3A. Extremal successor closed subsets
	3B. Ordered and ramified morphisms
	3C. Polarizations
	3D. Maximal relevant pairs

	4. Schubert decompositions for tree modules
	4A. Two examples for type D4
	4B. Limiting examples

	Appendix: Tree modules with polarizationsby Thorsten Weist
	References
	
	

