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G-valued crystalline representations
with minuscule p-adic Hodge type

Brandon Levin

We study G-valued semistable Galois deformation rings, where G is a reductive
group. We develop a theory of Kisin modules with G-structure and use this to
identify the connected components of crystalline deformation rings of minus-
cule p-adic Hodge type with the connected components of moduli of “finite flat
models with G-structure”. The main ingredients are a construction in integral
p-adic Hodge theory using Liu’s theory of (¢, é)—modules and the local models
constructed by Pappas and Zhu.
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1. Introduction

1.1. Overview. One of the principal challenges in the study of modularity lifting
or, more generally, automorphy lifting via the techniques introduced in [Taylor and
Wiles 1995] is understanding local deformation conditions at £ = p. Kisin [2009]
introduced a ground-breaking new technique for studying one such condition, flat
deformations, which led to better modularity lifting theorems. Kisin [2008] ex-
tended those techniques to construct potentially semistable deformation rings with
specified Hodge—Tate weights. In this paper, we study Galois deformations valued
in a reductive group G and extend Kisin’s techniques to this setting. In particular,
we define and prove structural results about “flat” G-valued deformations.

Let G be a reductive group over a Z ,-finite flat local domain A with connected
fibers. Let [ be the residue field of A and F := A[1/p]. Let K/Q be a finite ex-
tension with absolute Galois group ['x and fix a representation 7 : 'y — G(F). The

MSC2010: primary 11S20; secondary 14L.15, 14F30.
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(framed) G -valued deformation functor is represented by a complete local Noether-
ian A-algebra RE| . For any geometric cocharacter p of Res( K®q,F)/F GrF, there
exists a quotient Rst K (resp. RCHS’M ) of R Whose points over ﬁn1te extensions
F'/F are sem1stable (resp. crystalhne) representations with p-adic Hodge type n
(see [Balaji 2012, Theorem 3.0.12]).

When G = GL, and p is minuscule, R it appears the thesis changed is
a quotient of a flat deformation ring. For modularity lifting, it is important to
know the connected components of Spec Rcm “#1/ p]. Intuitively, Kisin’s [2009]
technique is to resolve the flat deformation r1ng by “moduli of finite flat models”
of deformations of 7. When K /Q), is ramified, the resolution is not smooth, but its
singularities are relatively mild, which allowed for the determination of the con-
nected components in many instances when G = GL, [Kisin 2009, Propositions
2.5.6 and 2.5.15]. Kisin’s technique extends beyond the flat setting (for p arbi-
trary), where one resolves deformation rings by moduli spaces of integral p-adic
Hodge theory data called G-modules of finite height, also known as Kisin modules.

In this paper, we define a notion of Kisin module with G-structure or, as we call
them, G -Kisin modules (Definition 2.2.7) and we construct a resolution

cris, b

O: X%’ris’M — Spec Rc-m

where O is a projective morphism and ®[1/ p] is an isomorphism (see Propositions
2.3.3 and 2.3.9). The same construction works for Ri—lt’” as well. The goal then
is to understand the singularities of X cris:i The natural generalization of the flat
condition for GL;, to an arbitrary group G is minuscule p-adic Hodge type p. A
cocharacter u of a reductive group H is minuscule if its weights when acting on
Lie H lie in {—1,0, 1} (see Definition 4.1.1 and discussion afterward). Our main
theorem is a generalization of the main result of [Kisin 2009] on the geometry

of X ;”S’““ for G reductive and y minuscule:

Theorem 4.4.1. Assume p }1(G%), where GY is the derived subgroup of G.

Let |1 be a minuscule geometric cocharacter of Res( K®q, F)/F GF. Then X cris 4

cris
is normal and X-

the reflex field of .

) A P is reduced, where Ay is the ring of mtegers of

When G = Gszg, this is a result of Broshi [2008]; also, this is a stronger result
than in [Levin 2013], where we placed a more restrictive hypothesis on u (see
Remark 1.1.1). The significance of Theorem 4.4.1 is that it allows one to identify
the connected components of Spec Rclm [1/p] with the connected components
of the fiber in X CriSlover the closed point of Spec RCrlb *# a projective scheme
over [, (see Corollary 4.4.2). This identification led to the successful determina-
tion of the connected components of Spec R;m ""[1/ p] in the case when G = GL,

[Kisin 2009; Gee 2006; Imai 2010; 2012; Hellmann 2011]. Outside of GL,,
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relatively little is known about the connected components of these deformations
rings without restricting the ramification in K.
When K /Q, is unramified, we have a stronger result:

Theorem 4.4.6. Assume K/Q is unramified, p > 3, and p t 71 (G*). Then the

%ns,u is formally smooth over Ap,). In

H[1/ p] is connected.

universal crystalline deformation ring R
particular, Spec R%ﬁs
Remark 1.1.1. In [Levin 2013], we made the assumption on the cocharacter  that
there exists a representation p : G — GL(V') such that pou is minuscule. This extra
hypothesis on pu excluded most adjoint groups like PGL,, as well as exceptional
types like E¢ and E7, both of which have minuscule cocharacters. One can weaken
the assumptions in Theorem 4.4.6 if one assumes this stronger condition on .

Remark 1.1.2. The groups 71 (G%") and 71(G*?) appearing in Theorems 4.4.1
and 4.4.6 are the fundamental groups in the sense of semisimple groups. Note that
71(G%") is a subgroup of 71 (G). The assumption that p 4 71 (G%") insures that
the local models we use have nice geometric properties. The stronger assumption
in Theorem 4.4.6 that p } 1 (G%) is probably not necessary and is a byproduct of
the argument, which involves reduction to the adjoint group.

There are two main ingredients in the proof of Theorem 4.4.1 and its appli-
cations, one coming from integral p-adic Hodge theory and the other from local
models of Shimura varieties. In Kisin’s original construction, a key input was an
advance in integral p-adic Hodge theory, building on work of Breuil, which allows
one to describe finite flat group schemes over Ok in terms of certain linear algebra
objects called Kisin modules of height in [0, 1] [Kisin 2006; 2009]. More precisely,
then, X ;”S’“ is a moduli space of G-Kisin modules with “type” . Intuitively, one
can imagine X ;Hs’“ as a moduli of finite flat models with additional structure.

The proof of Theorem 4.4.1 uses a recent advance of Liu [2010] in integral
p-adic Hodge theory to overcome a difficulty in identifying the local structure
of X ;HS’“ . Heuristically, the difficulty arises because for a general group G one
cannot work only in the setting of Kisin modules of height in [0, 1], where one
has a nice equivalence of categories between that category and the category of
finite flat group schemes. Beyond the height-in-[0, 1] situation, the Kisin mod-
ule only remembers the Galois action of the subgroup I'sc C 'y which fixes
the field K(z'/?, 7!/ P .) for some compatible system of p-power roots of
a uniformizer 7 of K.

Liu [2010] introduced a more complicated linear algebra structure on a Kisin
module, called a (¢, G)—module, which captures the action of I'k, the full Galois
group. We call them (¢, f’)—modules to avoid confusion with the group G. Let
A be a finite local A-algebra which is either Artinian or flat. Our principal result
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(Theorem 4.3.6) says roughly that, if p : 'ee — G(A) has “type” u, i.e., comes
from a G-Kisin module (4, ¢4) over A of type u with  minuscule, then there
exists a canonical extension p : 'y — G(A) and, furthermore, if A4 is flat over Z,
then p[1/ p] is crystalline. This is rough in the sense that what we actually prove is
an isomorphism of certain deformation functors. As a consequence, we get that the
local structure of X Crisi ot g point (P, pp/) € X cris, (F’) is smoothly equivalent
to the deformation group01d Dg of P with type U

To prove Theorem 4.4.1, one studies the geometry of D“ Here, the key input
comes from the theory of local models of Shimura varletles. A local model is a
projective scheme X over the ring of integers of a p-adic field F such that X is sup-
posed to étale-locally model the integral structure of a Shimura variety. Classically,
local models were built out of moduli spaces of linear algebra structures. Rapoport
and Zink [1996] formalized the theory of local models for Shimura varieties of PEL
type. Subsequent refinements of these local models were studied mostly on a case
by case basis by Faltings, Gortz, Haines, Pappas, and Rapoport, among others.

Pappas and Zhu [2013] define, for any triple (G, P, u), where G is a reductive
group over F (which splits over a tame extension), P is a parahoric subgroup,
and p is any cocharacter of G, a local model M () over the ring of integers of
the reflex field of . Their construction, unlike previous constructions, is purely
group-theoretic, i.e., it does not rely on any particular representation of G. They
build their local models inside degenerations of affine Grassmannians extending
constructions of Beilinson, Drinfeld, Gaitsgory, and Zhu to mixed characteristic.
The geometric fact we will use is that M () is normal with special fiber reduced
[Pappas and Zhu 2013, Theorem 0.1].

The significance of local models in this paper is that the singularities of X
are smoothly equivalent to those of a local model M () for the Weil- restrlcted
group Res(x g, F)/F G . This equivalence comes from a diagram of formally
smooth morphisms (3-3-9-2):

Cris, (b

N (00),
D‘B[F

/ \ (1-1-2-1)

w AL
D%F D op’

which generalizes constructions from [Kisin 2009, Proposition 2.2.11; Pappas and
Rapoport 2009, §3]. The deformation functor D ’“QLF is represented by the completed
local ring at an F-point of M (w). Intuitively, the above modification corresponds
to adding a trivialization to the G-Kisin module and then taking the “image of
Frobenius”. We construct the diagram (1-1-2-1) in Section 3 with no assumptions
on the cocharacter u (to be precise, D%F is deformations of type less than or equal
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to wu in general). It is intriguing to wonder whether Dg[F and diagram (1-1-2-1)
have any relevance to studying higher-weight Galois deformation rings, i.e., when
[ 1s not minuscule.

As a remark, we usually cannot apply [Pappas and Zhu 2013] directly, since the
group Res¢ K®q,F)/F G will generally not split over a tame extension. In [Levin
2013], we develop a theory of local models following Pappas and Zhu’s approach
but adapted to these Weil-restricted groups (for maximal special parahoric level).
These results are reviewed in Section 3.2 and are studied in more generality in
[Levin 2014].

We now a give brief outline of the article. In Section 2, we define and develop
the theory of G-Kisin modules and construct resolutions of semistable and crys-
talline G-valued deformation rings (Propositions 2.3.3 and 2.3.9). This closely
follows the approach of [Kisin 2008]. The proof that “semistable implies finite
height” (Proposition 2.3.13) requires an extra argument not present in the GL,, case
(Lemma 2.3.6). In Section 3, we study the relationship between deformations of
G-Kisin modules and local models. We construct the big diagram (Theorem 3.3.3)
and then impose the p-type condition to arrive at the diagram (3-3-9-2). We also
give an initial description of the local structure of Xz"** in Corollary 3.3.15.
Section 4.2 develops the theory of (¢, I')-modules with G -structure and Section 4.3
is devoted to the proof of our key result (Theorem 4.3.6) in integral p-adic Hodge
theory. In the last section, Section 4.4, we prove Theorems 4.4.1 and 4.4.6, which
follow relatively formally from the results of Sections 3.3 and 4.3.

1.2. Notations and conventions. We take F to be our coefficient field, a finite
extension of Q,. Let A be the ring of integers of F' with residue field F. Let
G be a reductive group scheme over A with connected fibers and f Rep, (G) the
category of representations of G on finite free A-modules. We will use V' to denote
a fixed faithful representation of G, i.e., V € / Rep A(G) such that G — GL(V) is
a closed immersion. The derived subgroup of G will be denoted by G and its
adjoint quotient by G,

All G-bundles will be with respect to the fppf topology. If X is a A-scheme, then
GBun(X) will denote the category of G-bundles on X. We will denote the trivial
G-bundle by €°. For any G-bundle P on a A-scheme X and any W € fRepA(G),
P (W) will denote the pushout of P with respect to W (see the discussion be-
fore Theorem 2.1.1). Let F be an algebraic closure of F. For a linear algebraic
F-group H, X, (H) will denote the group Hom(Gy,, H ) of geometric cocharac-
ters. For 1 € X«(H), [u] will denote its conjugacy class. The reflex field Fy, of
[i] is the smallest subfield of F over which the conjugacy class [11] is defined.

If T is a profinite group and B is a finite A-algebra, then f Repp(I') will be
the category of continuous representations of I' on finite projective B-modules
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where B is given the p-adic topology. More generally, GRepg (I") will denote the
category of pairs (P, n) where P is a G-bundle over Spec B and n: ' — Autg(P)
is a continuous homomorphism.

Let K be a p-adic field with ring of integers Og and residue field k. Denote its
absolute Galois group by I'x. We furthermore take W := W (k) and Ko :=W|[1/ p].
We fix a uniformizer 7 of K and let £ (1) the minimal polynomial of 7 over Kj.
Our convention will be to work with covariant p-adic Hodge theory functors, so
we take the p-adic cyclotomic character to have Hodge—Tate weight —1.

For any local ring R, we let m g denote the maximal ideal. We will denote the
completion of B with respect to a specified topology by B.

2. Kisin modules with G -structure

In this section, we construct resolutions of Galois deformation rings by moduli
spaces of Kisin modules (i.e., G-modules) with G-structure. For GL,,, this tech-
nique was introduced in [Kisin 2009] to study flat deformation rings. In [Kisin
2008], the same technique is used to construct potentially semistable deformation
rings for GL,,. Here we develop a theory of G-Kisin modules (Definition 2.2.7).
In particular, in Section 2.4, we show the existence of a universal G-Kisin module
over these deformation rings (Theorem 2.4.2) and relate the filtration defined by
a G-Kisin module to p-adic Hodge type. One can construct G-valued semistable
and crystalline deformation rings with fixed p-adic Hodge type without G-Kisin
modules [Balaji 2012]. However, the existence of a resolution by a moduli space
of Kisin modules allows for finer analysis of the deformation rings; see Section 4.

2.1. Background on G-bundles. All bundles will be for the fppf topology. For
any G-bundle P on a A-scheme X and any W € / Rep A(G), define

PW):=PxSW=(PxW)/~

to be the pushout of P with respect to W. This is a vector bundle on X. This
defines a functor from / Rep, (G) to the category Vecy of vector bundles on X.

Theorem 2.1.1. Let G be a flat affine group scheme of finite type over Spec A
with connected fibers. Let X be a A-scheme. The functor P +— {P (W)} from the
category of G-bundles on X to the category of fiber functors (i.e., faithful exact
tensor functors) from f Rep (G) to Vecy is an equivalence of categories.

Proof. When the base is a field, this is a well-known result [Deligne and Milne
1982, Theorem 3.2] in Tannakian theory. When the base is a Dedekind domain,
see [Broshi 2013, Theorem 4.8] or [Levin 2013, Theorem 2.5.2]. O

We will also need the following gluing lemma for G-bundles:
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Lemma 2.1.2. Let B be any A-algebra. Let f € B be a non-zero-divisor and G be
a flat affine group scheme of finite type over A. The category of triples (Py, P, Q),
where Py € GBun(Spec By), Pe GBun(Spec §) and « is an isomorphism be-
tween Py and P over Spec B 75 Is equivalent to the category of G-bundles on B.

Proof. This is a generalization of the Beauville-Laszlo formal gluing lemma for
vector bundles. See [Pappas and Zhu 2013, Lemma 5.1] or [Levin 2013, Theo-
rem 3.1.8]. O

Leti : H C G be a flat closed A-subgroup. We are interested in the “fibers” of

the pushout map
i : HBun — GBun

carrying an H-bundle Y to the G-bundle ¥ x G. Let Q be a G-bundle on
a A-scheme §. For any S-scheme X, define Fibp(X) to be the category of
pairs (P,«), where P € HBun(X) and « : i«(P) = Qx is an isomorphism in
GBun(X). A morphism (P,«) — (P’,a’) isamap f : P — P’ of H-bundles
such that o’ 04 (f) o™ ! is the identity.

Proposition 2.1.3. The category Fibg (X) has no nontrivial automorphisms for
any S-scheme X. Furthermore, the underlying functor |Fibg| is represented by
the pushout Q X6 (G/H). In particular, if G/H is affine (resp. quasiaffine) over S
then |Fibg | is affine (resp. quasiaffine) over X.

Proof. See [Serre 1958, Proposition 9] or [Levin 2013, Lemma 2.2.3]. O

Proposition 2.1.4. Let G be a smooth affine group scheme of finite type over
Spec A with connected fibers.

(1) Let R any A-algebra and I a nilpotent ideal of R. For any G-bundle P on
Spec R, P is trivial if and only if P @ g R/ 1 is trivial.

(2) Let R be any complete local A-algebra with finite residue field. Any G-bundle
on Spec R is trivial.

Proof. For (1), because G is smooth, P is also smooth. Thus, P(R) — P(R/I)
is surjective. A G-bundle is trivial if and only if it admits a section.
Part (2) reduces to the case of R = [ using part (1). Lang’s theorem says that
1 . .« . . .
H (F, G) is trivial for any smooth connected algebraic group over [ (see [Springer
1998, Theorem 4.4.17]) d

2.2. Definitions and first properties. Let K be a p-adic field with ring of inte-
gers O and residue field k. Set W := W(k) and K¢ := W]1/p]. Recall Breuil
and Kisin’s ring & := W{u] and let E(u) € Wu] be the Eisenstein polynomial
associated to a choice of uniformizer = of K that generates K over Ko. Fix
a compatible system {nl/p,yrl/pz, ...} of p-power roots of 7 and let Koo =
K(ml/P zV/P” ). Set Too := Gal(K/Koo).
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Let O¢ denote the p-adic completion of G[1/u]. We equip both O¢ and & with
a Frobenius endomorphism ¢ defined by taking the ordinary Frobenius lift on W
and u — u”. For any Z -algebra B, let Oy p := Og ®z, B and 6 :=6R®z, B.
We equip both of these rings with Frobenii having trivial action on B. Note that
all tensor products are over Z, even though the group G may only be defined over
the A.
Definition 2.2.1. Let B be any A-algebra. For any G-bundle on Spec Og g, we let
¢*(P):= P ®o, 5,0 O¢,p be the pullback under Frobenius. An (O, g, ¢)-module
with G-structure is a pair (P,¢p), where P is a G-bundle on Spec O¢ g and
¢p : ¢*(P) = P is an isomorphism. Let GModg%,B be the category of such pairs.
Remark 2.2.2. When G = GL,, GModg%'B is equivalent to the category of
rank-d étale (Og, g, ¢)-modules via the usual equivalence between GL4-bundles
and rank-d vector bundles.

When B is Z ,-finite and Artinian, the functor 7 defined by
Tp(M.$) = (M ®0, 03.)" "

induces an equivalence of categories between étale (O¢, g, ¢)-modules (which are
Oy, g-projective) and the category of representations of I's; on finite projective
B-modules (see [Kisin 2009, Lemma 1.2.7]). A quasi-inverse is given by

Mp(V):=(V ®z, @%un)r""-

This equivalence extends to algebras which are finite flat over Z.

Definition 2.2.3. For any profinite group I" and A-algebra B, define GRepg(I")
to be the category of pairs (P, n) where P is a G-bundle over Spec B and, with B
given the p-adic topology, n: I' — Autg (P) is a continuous homomorphism.

In the G-setting, GReppg(I") will play the role of representation of I' on finite
projective B-modules. We have the following generalization of Tp:

Proposition 2.2.4. Let B be any A-algebra which is Z p-finite and either Artinian
or Z p-flat. There exists an equivalence of categories

TG, : GMod¢, , — GRepg(T'oo)

with a quasi-inverse M g g. Furthermore, for any finite map B — B’ and any
(P,¢p) € GModg% » there is a natural isomorphism

Te,p'(P ®p B') = Tg,p(P)Qp B'.

Proof. Using Theorem 2.1.1, we can give Tannakian interpretations of GModg?2 5
and GRepp (I'o). The former is equivalent to the category

[/ Rep, (G). Mod¢* |®
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of faithful exact tensor functors. The latter is equivalent to the category of faithful
exact tensor functors from / Rep A(G) to f Rep B(T0). We define TG, g (P, ¢p)
to be the functor which assigns to any W € f Rep, (G) the I'no-representation
Tg(P(W),¢pw)). This is an object of GRepp (I's) because Tp is a tensor exact
functor (see [Broshi 2008, Lemma 3.4.1.6] or [Levin 2013, Theorem 4.1.3]). Sim-
ilarly, one can define M g, g which is quasi-inverse to T, g. Compatibility with
extending the coefficients follows from [Kisin 2009, Lemma 1.2.7(3)]. O

Definition 2.2.5. Let B be any Z-algebra. A Kisin module with bounded height
over B is a finitely generated projective Gp-module 2p together with an iso-
morphism ¢op, : @™ (Mp)[1/E(u)] = Mp[1/E(u)]. We say that (Mg, ¢, ) has
height in [a, b] if

E@)*Mp O doms (9" (Mp)) D Ew)* M
as submodules of Mp[1/E (u)].

Let Mod‘é’zh (resp. Modé’l[;l’b]) be the category of Kisin modules with bounded
height (resp. height in [a, b]) with morphisms being & g-module maps respecting
Frobenii. Then Mod%’l[?o’h] is the usual category of Kisin modules with height at
most &, as in [Brinon and Conrad 2009; Kisin 2006; 2009].

Example 2.2.6. Let G(1) be the Kisin module whose underlying module is &G and
whose Frobenius is given by ¢ LE(u)ps where E(0) = co p. For any Z ,-algebra,
we define G g (1) by base change from Z, and define O¢ g (1) := &g (1) ®s, 0%, B,
an étale (O¢, g, ¢)-module.

In order to reduce to the effective case (height in [0, /]), it is often useful to
“twist” by tensoring with Gg(1). For any Mip € Mod‘é’;’h and any n € Z, define
Mp (n) by n-fold tensor product with Sp (1) (negative n being tensoring with the
dual). It is not hard to see that if 9 g € Mod%l[}“’b ! then Mg (n) e Mod%l[;””’b +n],

Definition 2.2.7. Let B be any A-algebra. A G-Kisin module over B is a pair
(BB, pypy), where Pp is a G-bundle on Sp and

bps 19" (Bp)[1/E@)] = Pp[1/E )]

is an isomorphism of G-bundles. Denote the category of such objects by GModé’gh.

Remark 2.2.8. Unlike the Kisin module for GL,,, G-bundles do not have endomor-
phisms. Additionally, there is no reasonable notion of effective G-Kisin module.
The Frobenius on a G-Kisin module is only ever defined after inverting E(u).
Later, we use auxiliary representations of G to impose height conditions.

The category Modé’bh is a tensor exact category, where a sequence of Kisin
B
modules
0— My — M — Mg >0
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is exact if the underlying sequence of G g-modules is exact. For any representation
W e/ Rep A(G), the pushout (B (W), ppz(W))isa K1s1n module with bounded
height. Using Theorem 2.1.1, one can interpret GModq]’ as the category of faith-
ful exact tensor functors from / Rep A(G) to Mod‘p bh
Since E(u) is invertible in O, there is a natural map GpB[1/E(u)] — O p for
any Z p-algebra B. This induces a functor
Y : GMod%™ — GMod

O¢,B

for any A-algebra B.

Definition 2.2.9. Let B be any A-algebra and let Pg € GMod . A G-Kisin
lattice of Pp is a pair (B, «) where Lp € GMod‘p oM and « : TG (‘BB) ~ Pp is
an isomorphism.

From the Tannakian perspective, a G-Kisin lattice of P is equivalent to Kisin
lattices My in P(W) for each W € / Rep A (G) functorial in W and compatible
with tensor products. Furthermore, we have the following, which says that the
bounded height condition can be checked on a single faithful representation.

Proposition 2.2.10. Let Pp € GMod(p . A G-Kisin lattice of Pp is equivalent
to an extension ‘B p of the bundle Pp to Spec Gp such that, for a single faithful
representation V € / Rep A(G),

PBr(V) C Pp(V)
is a Kisin lattice of bounded height.

Proof. The only claim which does not follow from unwinding definitions is that,
if we have an extension Pp such that Pp (V) C Pp(V) is a Kisin lattice for a
single faithful representation V', then Pp (W) C Pp(W) is a Kisin lattice for all
representations W of G.

By [Levin 2013, Theorem C.1.7], any W € fRepA(G) can be written as a
subquotient of direct sums of tensor products of V' and the dual of V. It suffices
then to prove that bounded height is stable under duals, tensor products, quotients,
and saturated subrepresentations.

Duals and tensor products are easy to check. For subquotients, let

0> Mp—>Ng—Lg—0

be an exact sequence of étale (O¢ p,@)-modules. Suppose that the sequence is
induced by an exact sequence

0—->Mp >N > Lg—0

of projective Gp-lattices. Assume 9ip has bounded height with respect to ¢n,.
By twisting, we can assume 91p has height in [0, A].
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Since Mp = Mg NNg, Mp is Ppr,-stable. Similarly, £p is ¢y ,-stable. Con-
sider the diagram

0 —— ¢*(Mp) — ¢*(Mp) — ¢*(£p) —— 0

J/q)MB l¢NB l(bLB

0 Mp Np LB 0.

All the linearizations are injective because they are isomorphisms at the level of
0%, g-modules. By the snake lemma, the sequence of cokernels is exact. If E (u)h
kills Coker(¢n ), then it kills Coker(¢as,) and Coker(¢p,) as well. Thus, Mp
and P p both have height in [0, 4] whenever D1p does. O

Definition 2.2.11. For any B as in Proposition 2.2.4, define
T,ep: GModé’zh — GRepg(I'so)
to be the composition Tg,s, := Tg,B o VG-
We end this section with an important full faithfulness result:

Proposition 2.2.12. Assume B is finite flat over A. Then the natural extension
map
,bh
T : GModg," — GModg,
is fully faithful.

Proof. This follows from the full faithfulness of Y, for all n > 1 by considering
a faithful representation of G. When B = Z,, this is [Brinon and Conrad 2009,
Proposition 11.2.7]. One can reduce to this case by forgetting coefficients, since
any finitely generated projective G p-module is finite free over G. O

2.3. Resolutions of G-valued deformations rings. Fix a faithful representation
V of G over A and integers a, b with a < b. We will use V and a, b to impose
finiteness conditions on our moduli space.

Definition 2.3.1. Let B be any A-algebra. We say that a G-Kisin lattice Bp in
(PB,¢pgy) € GMod& ,, has height in [a, b] if ‘Bp (V) in Pp (V) has height in [a, D].

For any finite local Artinian A-algebra A and any (P4, ¢p,) € GModgﬁ > con-
sider the moduli problem over Spec A4, for any A-algebra B,

X§-PN(B) := {GKisin lattices in P4 ®c, , O¢,p with height in [a. 5]}/ = .

Theorem 2.3.2. Assume that Py is a trivial bundle over Spec O¢ 4. The functor
X I[fA’b] is represented by a closed finite-type subscheme of the affine Grassmannian
Grg’ over Spec A, where G' is the Weil restriction Res(W@,Zp M/AG.
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Proof. By Proposition 2.2.10, X},aA’b] (B) is the set of bundles over Gp extending
Pp := P4 ®q, 4 O¢,p with height in [a, b] with respect to V. We want to identify
this set with a subset of Grg/(B).

Consider the diagram

S®z, B—— (W ®z, B)[u]

l l

O¢, g —— (W ®z, B)(w)),

where the vertical arrows are localization at u and the top horizontal arrow is u-adic
completion. The Beauville-Laszlo gluing lemma, Lemma 2.1.2, says that the set
of extensions of Pp to Gp is in bijection with the set of extensions of ﬁB to
Wg[u]], where Pg is the u-adic completion. This second set is in bijection with
the B-points of the Weil restriction Res(W@,Zp A)/A Grg, which is isomorphic to
Grg’ by [Richarz 2015, Lemma 1.16] or [Levin 2013, Proposition 3.4.2].

Set My := P4(V). By [Kisin 2008, Proposition 1.3], the functor X E;b] of
Kisin lattices in M4 with height in [a, b] is represented by a closed subscheme of
GrReS(W®Zp A,/ aGL(V)- Evaluation at V' induces a map of functors

[a,b] [a,b]
ng — XAjA ) (2-3-2-1)
By Proposition 2.2.10, the subset X }f/;b](B) C Grg/(B) is exactly the preimage
of X)771(B). O

We now extend the construction beyond the Artinian setting by passing to the
limit. Let R be a complete local Noetherian A-algebra with residue field F. Let
n: I'so = G(R) be a continuous representation.

Proposition 2.3.3. For anyn > 1, let ny : I'eo — G(R/m'y) denote the reduction
modulo m'y. From {nn}, we construct a system Mg r/m, (Mn) =: (Py,. ¢n) in
GModg{) Ryt Assume that Py, is a trivial G-bundle. There exists a projective

R
R-scheme

CF X,[,“’b] — Spec R

whose reduction modulo m’y is X};:’b] foranyn > 1.
n

Proof. By Proposition 2.2.4, there are natural isomorphisms

P’/n—H ®@ G%,R/m';g = P77n

%,R/ml}e—H
for all n > 1. Since Py, is a trivial G-bundle, all Py, are trivial, by Proposition
2.1.4(1), so we can apply Theorem 2.3.2. Consider then the system

b
xgh
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of schemes over {R/m',}. Since G is reductive, the affine Grassmannian Grg is
ind-projective [Levin 2013, Theorem 3.3.11]. In particular, any ample line bundle
on Grgs will restrict to a compatible system of ample line bundles on {X I[,‘; ’nb]}.
By formal GAGA [EGAIIIl; 1961, Théoreme (5.4.5)], there exists a projective
R-scheme X ,[7a’b] whose reductions modulo m’, are X 1[; ’f]. O

Remark 2.3.4. Unlike for GL,, there are nontrivial G-bundles over Spec F((u)),
which is why we need the assumption in Proposition 2.3.3. If P, admits any
G-Kisin lattice 3,,, then by Proposition 2.1.4(2) the G-bundle B, is trivial,
since Gr is a semilocal ring with finite residue fields. Thus, the assumption in
Proposition 2.3.3 is natural if you are interested in studying ['s-representations of
finite height. By Steinberg’s theorem, one can always make Py, trivial by passing
to a finite extension ' of [.

We record for reference the following compatibility with base change:

Proposition 2.3.5. Let f : R — S be a local map of complete local Noetherian
A-algebras with finite residue fields of characteristic p. Let ns be the induced
map Lo — G(S). Then there is a natural map [’ : X,[]‘;’b] — X,[,a’b] which makes
the following diagram Cartesian:

f/
i L oo

L, |

Spec S —— Spec R.

In particular, if R — S is surjective then f’ is a closed immersion.

We will now study the projective F'-morphism
. yla,b]
®[1/p]: X;*7'[1/p] — Spec R[1/p].

We show it is a closed immersion (this is essentially a consequence of Proposition
2.2.12) and that the closed points of the image are G-valued representations with
height in [a, b] in a suitable sense; see Proposition 2.3.9. Next, we show that, if
n is the restriction of n' : Ty — G(R), then the image of ®[1/p] contains all
semistable representations with 7’ (V') having Hodge-Tate weights in [a, b]. These
are generalizations of results from [Kisin 2008].

The following lemma will be useful at several key points:

Lemma 2.3.6 (extension lemma). Let G be a smooth affine group scheme over A.
Let C be a finite flat A-algebra and let U be the open complement of the finite set
of closed points of Spec G¢.
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(1) There is an equivalence of categories between G-bundles Q on U and the
category of triples (B*, P,y) where SB* is a G-bundle on Spec S¢[1/p],
P is a G-bundle on Spec Og c, and y is an isomorphism of their restrictions
to Spec Og c[1/ p].

(2) Assume G is a reductive group scheme with connected fibers. Let V be a faith-
ful representation of G over A. If Q is a G-bundle on U such that the locally
free coherent sheaf Q(V') on U extends to a projective S ¢ -module Mc, then
there exists a unique (up to unique isomorphism) G-bundle Q over Spec Sc
such that Qly =~ Q and Q(V) =

Proof. Note that we can write U as the union of Spec ©¢[1/u] and Spec S¢[1/ p].
Recall also that O¢ ¢ is the p-adic completion of S¢[1/u]. Since p is a non-
zero-divisor in &¢[1/u], we can apply the gluing lemma, Lemma 2.1.2, to P
and P*[1/u] to construct a G-bundle Q' on Spec S ¢ [1/u] which, by construction,
is isomorphic to B* along Spec S¢[1/u, 1/ p]. The G-bundles B* and Q' glue to
give a bundle Q over U. Each step in the construction is a categorical equivalence.

For part (2), consider the functor |Fibgy.|, which by Proposition 2.1.3 and
[Levin 2013, Theorem C.2.5] is represented by an affine scheme Y. ¢ defines
a U-point of Fibgy.. Since I'(U, Oy ) = &¢, we deduce that

Homeg . (Spec S¢, Fibgy. ) = Homg- (U, Fibgy,. ).

A S -point of Fibgy,. is exactly a bundle Q~ extending Q and mapping to M.
A similar argument, using that the Isom-scheme between G-bundles is repre-

sentable by an affine scheme, shows that if an extension exists it is unique up to

unique isomorphism (without any reductivity hypotheses). O

Let B be any finite local F-algebra with residue field F’. Define B° to be the
subring of elements which map to O/ modulo the maximal ideal of B. Let Intp
denote the set of finitely generated O z/-subalgebras C of B® such that C[1/p]=

Definition 2.3.7. A continuous homomorphism 7 : I'eqc — G(B) has bounded
height if there exists a C € Intg and g € G(B) such that

() ne = gng~! factors through G(C);

2) Mg,c (n/c) € GModg{ c admits a G-Kisin lattice of bounded height.
We define height in [a, b] with respect to the chosen faithful representation V' by
replacing bounded height in (2) with height in [a, b].

Lemma 2.3.8. Let B be a finite local Qp-algebra and choose C € Intg and
Mc € Mod‘p et . If Mc, considered as an Og-module, has bounded height (resp.
height in [a, b]) then there exists some C’' O C in Intg, such that M¢c ®c C’ has
bounded height (resp. height in [a, b]).
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Proof. This is the main content in the proof of part (2) of Proposition 1.6.4 in
[Kisin 2008]. If F' is the residue field of B, then one first constructs a Kisin lattice
Mo, in Mc ®c Ofs. The Kisin lattice in Mc ®c C’ is constructed by lifting
Mg ., (the extension to C " is required to insure that the lift is ¢-stable). O

Proposition 2.3.9. The morphism ® becomes a closed immersion after invert-
ing p. Furthermore, if Spec R,[7a’b] C Spec R is the scheme-theoretic image of ©,
then, for any finite F-algebra B, a A-algebra map x : R — B factors through R%“’b]
ifand only if n g x B has height in [a, b].

Proof. The map O is injective on C-points for any finite flat A-algebra C, by
Proposition 2.2.12. The proof of the first assertion is then the same as in [Kisin
2008, Proposition 1.6.4].

For the second assertion, say x : R — B factors through R%a’b]. Because ®[1/ p]
is a closed immersion, x : R — B comes from a B-point y of X ,,a’ . Any such x
is induced by x¢c : R — C for some C € Intg. By properness of ®, there exists
yc € X,[7a’b](C) such that ®(yc) = xc. This implies that n ® g x C has height
in [a, b] as a G-valued representation and hence n ® g » B also has height in [a, b]
(see Definition 2.3.7).

Now, let x : R — B be a homomorphism such that np := n® g x B has height in
[a, b] as a G-valued representation. Any homomorphism R — B factors through
some C € Intg, so that np has image in G(C); call this map nc. We claim that
there exists some C’ D C in Intg such that n¢ = n¢ ® ¢ C’ has height in [a, b]
and hence x is in the image of X ,[7"’1’](3 ). Essentially, we have to show that if one
Galois stable “lattice” in np has finite height then all “lattices” do. For GL,, this
is Lemma 2.1.15 in [Kisin 2006]. We invoke the GL,, result below.

Since np has height in [a, b], there exists C’ € Intg and g € G(B) such that
n = gnpg ! factors through G(C’) and has height in [a,b]. Enlarging C if
necessary, we assume both n¢ and 7 are valued in G(C). Let Py := M g.c(n)
and Py := M g,c(n'). Then g induces an isomorphism

Py [1/p] = Py [1/p].

Since P; has a G-Kisin lattice with height in [a, b], we get a bundle Q¢ over
Sc|[1/p] extending Py [1/p]. By Lemma 2.3.6(1), P, and Qc glue to give a
bundle Q¢ over the complement of the closed points of Spec G¢.

We would like to apply Lemma 2.3.6(2). Py (V) has height in [a, b] as an
O¢-module by [Kisin 2006, Lemma 2.1.15] since it corresponds to a lattice in
nc(V)[1/p]l =’ (V)[1/p]. By Lemma 2.3.8, there exists C O C in Intg such that
Py (V) ®c C has height in [a, b] as an 0O g-module. Replace C by C. Then, if
M is the unique Kisin lattice in P; ('), we have

c[1/p1 0 Pye (V) =M,
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where 90/ is the unique Kisin lattice in Py(V'). This shows that Q¢ (V') extends
across the closed points, so we can apply Lemma 2.3.6(2) to construct a G-Kisin
lattice of Pr.. O

Now, assume that 7 is the restriction to I's, of a continuous representation of I'g,
which we continue to call n. Recall the definition of semistable for a G-valued
representation:

Definition 2.3.10. If B is a finite F-algebra, a continuous representation npg :
'k — GF(B) is semistable (resp. crystalline) if, for all representations W in
Repr (G F), the induced representation ng(W) on W ® r B is semistable (resp.
crystalline).

Note that because the semistable and crystalline conditions are stable under ten-
sor products and subquotients, it suffices to check these conditions on a single
faithful representation of GF.

Remark 2.3.11. Since we are working with covariant functors, our convention will
be that the cyclotomic character has Hodge—Tate weight —1. This is, unfortunately,
opposite to the convention in [Kisin 2008].

The following theorem generalizes [Kisin 2008, Theorem 2.5.5]:

Theorem 2.3.12. Let R be a complete local Noetherian A-algebra with finite
residue field and n : T'x — G(R) a continuous representation. Given any a, b
. . . . [a,b],st [a,b],cris [a,b] .,
integers with a < b, there exists a quotient Ry, (resp. Ry ) of Ry"%1 with
the property that, if B is any finite F-algebra and x : R — B a map of A-algebras,
then x factors through R%"’b]’“ (resp. R%a’b]’ms) ifand only if ny : T'x — G(B) is
semistable (resp. crystalline) and 1y (V') has Hodge—Tate weights in [a, b).

Since the semistable and crystalline properties can be checked on a single faith-
ful representation, the quotients Rg?{;])’“ and RE;I(’II;%’CHS of R constructed by apply-
ing [Kisin 2008, Theorem 2.5.5] to n(V') satisfy the universal property in Theorem
2.3.12 with respect to maps x : R — B, where B is a finite F'-algebra. What remains
is to show that R%a’b]’St = Rga(}l;])’“ is a quotient of R%a’b], 1.e., that “semistable

implies finite height”.

Proposition 2.3.13. Let R and n be as in 2.3.12. For any map x : R — B with
B a finite local F-algebra, if the representation 1y is semistable and n (V') has
Hodge-Tate weights in |a, b], then x factors through R,[7a’b].

Proof. By Lemma 2.3.8, there exists C € Intg such that 1, factors through GL(V¢),
hence G(C), and that M¢ := P;, (V) admits a Kisin lattice 91¢c with height
in [a, b]. By Proposition 2.2.10, it suffices to extend the bundle P, to Spec S¢
such that 3, (V) = Mc.
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We will apply Lemma 2.3.6. Consider a candidate fiber functor §, for B,
which assigns to any W € f Rep (G) the unique Kisin lattice of bounded height
in My C Py, (W) = My (as an Og-module, not as an Og c/-module). Such a
lattice exists since 7y (W) is semistable. The difficulties are that 2ty may not
be Og,c/-projective and that it is not obvious whether §; . is exact. It can happen
that a nonexact sequence of G-modules can map under T to an exact sequence
of I'o-representations (see [Liu 2012, Example 2.5.6]).

Let B=C[1/p]. By [Kisin 2008, Corollary 1.6.3], 9y, [1/ p] is finite projective
over Sc[1/p] = &p for all W. We claim furthermore that §;, ®s. Sp is exact.
For any exact sequence 0 — W” — W — W’ — 0 in /Rep, (G), we have a
left-exact sequence

0 — My~ [1/p] = Mw[1/p] — Mw[1/p].

Exactness on the right follows from [Levin 2013, Lemma 4.2.22] on the behavior
of exactness for sequences of G-modules. Thus, §,, ®s. Sp defines a bundle ‘P p
over Sp. Clearly, B Qs O¢,p = Py, o,  O¢,p. By Lemma 2.3.6(1), we get a
bundle Q over U such that Q (W) =M |y. Since My is a projective &¢-module
by our choice of C, Q extends to a bundle Q over 5S¢ by Lemma 2.3.6(2). O

2.4. Universal G-Kisin module and filtrations. For this section, we make a small
change in notation. Let Rg be a complete local Noetherian A-algebra with finite
residue field and let R = Ry[1/p].

Define & Ro to be the mp,-adic coinpletion of & ®7, Ro. The Frobenius on
S ®z, Ro extends to a Frobenius on Sg,,.

Definition 2.4.1. A (é Rol1/ ], ¢)-module of bounded height is a finitely gener-
ated projective S g, [1/ p]-module Mg together with an isomorphism

PR 1T (MR)[1/E )] = Mg[1/Eu)].

Let n: 'oo = G(Rp) be continuous representation. If 6@?) .R, 18 the m g -adic
completion of @}g .Ro» then the inverse limit lim M g g, /mno(nn) defines a pair
(Py, ¢yn) over @;g ,Ro [Levin 2013, Corollary 2 3.5]. Assume Rog = R[ ]. For
any finite F-algebra B and any homomorphism x : Ry — B, there is a unique
G-Kisin lattice in Py ®3,. %o x 0z, by Proposition 2.2.12; call it (Bx,Px). In
the following theorem, we construct a universal G-bundle over & Rol1/p] with a
Frobenius which specializes to (P, ¢x) at every x.

Theorem 2.4.2. Assume that Ry = R[a b]. Let B be a ﬁnite F-algebra. The
pair (Py[1/p], ¢y[1/ p]) extends to a G- bundle ‘Bn over GRO[I/p] together with
a Frobenius

5, 0 (Bl E@)] = Py[1/Ew)]
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such that, for any x : Ro[1/p] — B, the base change

(B ®& 4, 11/51 OB P55, O, 11/p.1/E ) OB/ EW)])
iS (‘BXa d)X)

Proof. Let X, :== Xy [a’b] be the projective Rg/ m’l‘eo-scheme as in Section 4.3.
Take Yy, := Xy Xgpec Ro/mR Spec GRo/m” a projective (‘5R0/m” -scheme. Let
Xy [a.b] _, Spec Ry be the algebralzatlon of hm X, as before. The base change Y

of Xy [a.b] along the map Ry — S Ro has the property that
Y mod m'}eo ~Y,.

Furthermore, Y is a proper S Ro-Scheme.

Over each Y;,, we have a universal G-Kisin lattice (3, ¢, ) with height in [a, b].
By [Levin 2013, Corollary 2.3.5], there exists a G-bundle 33, on Y such that
By, mod m'I’e = PB,. We would like to construct a Frobenius ¢ over Y[1/E (u)]
which reduces to ¢, modulo m’, for each n > 1. A priori, the Frobenius is only
defined over the m g,-adic completion of S Ro[1/E(u)], which we denote by S.

We have a projective morphism

Y — Spec S,

where Y is the base change of Y[1/E(u)] along Spec S — Spec GRO[I/E(u)]
Y is falthfully flat over Y [1/E(u)], since S Rol1/E(u)] is Noetherian. Define
IsomG = Isomg (¢* (B5). Py) to be the affine finite-type ¥ -scheme of G-bundle
isomorphisms. The compatible system {¢, } lifts to an element

[ﬁ € Isomg (Yg).

We would like to descend $ toa Y[1/E(u)]-point of Isomg. Let i : G — GL(V)
be our chosen faithful representation. Consider the closed immersion

ix : Isomg < Isomgp ) (@™ (By)(V), Byr(V)).

The image i « ($) descends to a Y [1/E (u)]-point of Isomgy (1) (¢ ™*(By) (V). B, (V)
(twist to reduce to the effective case). Since Y is faithfully flat over Y [1/E(u)],
for any closed immersion Z C Z’ of Y -schemes we have

Z(YI/Ew)]) = Z(Yg) N Z' (Y [1/E))).

Applying this with Z" =Isomg and Z = Isomgp vy (@™ (By) (V). By (V)), we get
a universal pair (5, ¢y) over Y and Y [1/E (u)], respectively. Since Ro = R[" b],

O[1/p]: X[“ b][l/p] — Ry[1/p] is an isomorphism and the pair ‘)3,, = ‘Bn[l/p]
and ¢, [1 / p| over S Ro[1/ p] has the desired properties. O
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We now discuss the notion of p-adic Hodge type for G-valued representation
and relate this to a filtration associated to a G-Kisin module.

Let B be any finite F-algebra. For any representation of I'x on a finite free
B-module Vg, set

Dar(Vp) := (Vg ®a, Bir)"¥,

a filtered (K ®q, B)-module whose associated graded is projective (see [Balaji
2012, Definition 2.1.6, Lemma 2.4.2]). Furthermore, D4r defines a tensor exact
functor from the category of de Rham representations on projective B-modules to
the category Filgg, , p of filtered (K ®q, B)-modules (see [Balaji 2012, Lemma
2.4.2)). For any field «, Fil, will be the tensor category of Z-filtered vectors spaces
(V, {Fil' V1), where Fil' (V) D Fil: T1(V).

We recall a few facts from the Tannakian theory of filtrations:

Definition 2.4.3. Let H be any reductive group over a field x. For any exten-
sion k' Dk, an H -filtration over k' is a tensor exact functor from Rep, (H) to Fil,.

Associated to any cocharacter v : G, — H,’ is a tensor exact functor from
Rep, (H) to graded «’-vector spaces which assigns to each representation W the
vector space W/, with its weight grading defined by the Gy-action through v,
which we denote by w,, (see [Deligne and Milne 1982, Example 2.30]).

Definition 2.4.4. For any H -filtration % over «’, a splitting of & is an isomorphism
between gr(%) and w, for some v : Gy, — H,.

By [Saavedra Rivano 1972, Proposition 1V.2.2.5], all H -filtrations over " are
splittable. For any given %, the cocharacters v for which there exists an isomor-
phism gr(%) =~ w, lie in the common H (x’)-conjugacy class. If «’ is a finite
extension of x contained in i, then the type [vg] of the filtration ¥ is the geometric
conjugacy class of v for any splitting w, over «’. For any conjugacy class [v] of
geometric cocharacters of H, there is a smallest field of definition, contained in a
chosen separable closure of «, called the reflex field of [v]. We denote this by «,].

Let G be as before, so that Gg is a (connected) reductive group over F, and
let n : 'y — G(B) be a continuous representation which is de Rham. Then Dgg
defines a tensor exact functor from Repr (G r) to Fil K®q, B (see Proposition 2.4.2
in [Balaji 2012]), which we denote by F~.

Fix a geometric cocharacter € X« ((Res( K®q, F)/F G) ) and denote its con-
jugacy class by [u]. The cocharacter u is equivalent to a set (uw)w: k—F of
cocharacters jty of G indexed by Qp-embeddings of K into F.

Definition 2.4.5. Let Fj,;) be the reflex field of [u]. For any embedding v : K — F
over Qp, let pry, : K ®q, F — F denote the projection. If F’ is a finite exten-
sion of F,, a G-filtration & over K ®q,, F' has type [u] if pry, (F ®F i F)
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has type [y] for any Fj,j-embedding i : F/ — F. A de Rham representation
n: Tk — G(F') has p-adic Hodge type pu if F3* has type [u].

Let Ay denote the ring of integers of F[,}. For any u in the conjugacy class [u],
Gm acts on V ® o F through py foreach ¥ : K — F. We take a and b be the
minimal and maximal weights taken over all iy .

Theorem 2.4.6. Let Ro be a complete local Noetherian A[,)-algebra with finite
residue field and n : 'y — G(Ro) a continuous homomorphism. Let RB‘fﬁb]’St be
as in Theorem 2.3.12. There exists a quotient Rf)t,’ff of R([f;,b]’St such that, for any
finite extension F' of F,,), a homomorphism { : Ry — F' factors through R‘g”# if
and only if the G(F')-valued representation corresponding to { is semistable with

p-adic Hodge type [1L].
Proof. See [Balaji 2012, Proposition 3.0.9]. O

Remark 2.4.7. One can deduce from the construction in [Balaji 2012, Proposi-
tion 3.0.9] or by other arguments [Levin 2013, Theorem 6.1.19] that the p-adic
Hodge type on the generic fiber of the semistable deformation ring R([)‘f;]b]’St is

locally constant so that Spec R5*[1/p] is a union of connected components of

b 0’77
Spec R([f;] ]’St[l/p].

Finally, we recall how the de Rham filtration is obtained from the Kisin module.

Definition 2.4.8. Let B be a finite 0 -algebra. Let (9, ¢p) be a Kisin module
over B with bounded height. Define

Fil' (p*(Mp)) := ¢5 " (E )’ Mp) Np*(Mp).

SetDp :=¢*(Mp)/E(u)p*(Mp), a finite projective (K ®q, B)-module. Define
Fil' (D p) to be the image of Fil' (¢p*(Mp)) in Dp.

Proposition 2.4.9. Let B be a finite QO p-algebra and Vp a finite free B-module
with an action of ' which is semistable with Hodge—Tate weights in [a, b]. Any
Z p-stable lattice in Vg has finite height. If Mp is the (&g, ¢)-module of bounded
height attached to Vg, then there is a natural isomorphism ®p = Daqr(VB) of
filtered (K ®q,, B)-modules.

Proof. The relevant results are in the proofs of Corollary 2.6.2 and Theorem 2.5.5(2)
in [Kisin 2008]. Since Kisin works with contravariant functors, one has to do
a small translation. Under Kisin’s conventions, g would be associated to the
B-dual Vg, and it is shown there that D == D J (V) as filtered K ®g,, B-modules
in the case where [a, b] = [0, h]. By compatibility with duality [Balaji 2012, Propo-
sition 2.2.9], D3 (V) = Dgr(VB). The general case follows by twisting. O
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3. Deformations of G -Kisin modules

In this section, we study the local structure of the “moduli space” of G-Kisin
modules. This generalizes results of [Kisin 2009; Pappas and Rapoport 2009]. G-
Kisin modules may have nontrivial automorphisms and so it is more natural, as was
done in [Kisin 2009, §2.2], to work with groupoids. The goal of the section is to
smoothly relate the deformation theory of a G-Kisin module to the local structure
of a local model for the group Res(K®@pF)/F GF.

Intuitively, the smooth modification (a chain of formally smooth morphisms)
corresponds to adding a trivialization to the G-Kisin module and then taking the
“image of Frobenius™ similar to Proposition 2.2.11 of [Kisin 2009]. The target
of the modification is a deformation functor for the moduli space Grg(u)’W dis-
cussed in Section 3.3, which is a version of the affine Grassmannian that appears
in the work of Pappas and Zhu [2013] on local models. Finally, we show that
the condition of having p-adic Hodge type u is related to a (generalized) local
model M(u) C Grg(”)’W. In this section, there are no conditions on the co-
character . We will impose conditions on w only in the next section when we
study the analogue of flat deformations.

3.1. Definitions and representability results. Let [F be the residue field of A. De-
fine the categories

6 A = {Artin local A-algebras with residue field F}

and
% A = {complete local Noetherian A-algebras with residue field [F}.

Morphisms are local A-algebra maps. Recall that fiber products in the category % A
exist and are represented by completed tensor products. A groupoid over €,
(or @ A) will be in the sense of Definition A.2.2 of [Kisin 2009]; this is also known
as a category cofibered in groupoids over € A (or 0 A)- Recall also the notion of a
2-fiber product of groupoids from (A.4) in [Kisin 2009]. See [Kim 2009, §10] for
more details related to groupoids.

Choose a bounded-height G-Kisin module (P, ¢F) € GMod(é’[th. Define Do, =

Ua<s D%gb] to be the deformation groupoid of ‘¢ as a G-Kisin module of bounded

~

height over € A . The morphisms D;E?[F’b] C Dy, are relatively representable closed
immersions, so intuitively Dy, is an ind-object built out of the finite-height pieces.

Let €° denote the trivial G-bundle over A. Throughout we will be choosing
various trivializations of the G-bundle ‘B and other related bundles. This is always
possible because Gf is a complete semilocal ring with all residue fields finite (see
Proposition 2.1.4(2)).
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Proposition 3.1.1. For any Vg with height in [a, b], the deformation groupozd
D% b1 admits a formally smooth morphism 7 : Spf R — D[“ b] for some R € <€A
(i.e., has a versal formal object in the sense of [SGA 7y 1972])

Proof. One can check the abstract Schlessinger’s criterion in [SGA 71 1972, Theo-
rem 1.11]. However, it will be useful to have an explicit versal formal object. Fix
a trivialization B¢ of g mod E (u)N for any N > 1, and define

DY M (4) 1= {(Pa. Ba) | Ba € DEPN(A). Ba: Pa =€, mod E)V},
where B4 lifts Br. Since G is smooth, the forgetful morphism

(N) . pla,bl,(N) [a,b]
T : D‘B[F — D%F

is formally smooth for any N.

If N> ((b—-a)/(p—1), then 5{[5[;13],(N) is prorepresentable by a complete local
Noetherian A-algebra. The proof uses Schlessinger’s criterion. The two key points
are that objects in 5(55‘[51’]’(]\’ )(A) have no nontrivial automorphisms, for which one
inducts on the power of p which kills A (see [Levin 2013, Proposition 8.1.6]), and
that the tangent space of the underlying functor is finite-dimensional, which uses
a successive approximation argument (see [Levin 2013, Proposition 8.1.8]). [

It will also be useful to have an infinite version of D[a bL.(V) . Fix a trivialization
Br  Pr = %0 Define a groupoid on € 5 by

b b
DY () = {(Pu. Ba) | Ba € DEANA), B Pa =€ ).
where B4 lifts Br. Define D(°°) =Uyzp D[a b],(00)

3.2. Local models for Weil-restricted groups. In this section, we associate to any
geometric conjugacy class [j] of cocharacters of Res K®a,F)/F G r alocal model
M () (Definition 3.2.3) over the ring of integers A[,) of the reflex field Fj,; of
[14] (the relevant parahoric here is Resg, ®7,A)/A G). By construction, M(u) is a
flat projective A[,j-scheme. The principal result (Theorem 3.2.4) says that M ()
is normal and its special fiber is reduced.

The details of the proof of Theorem 3.2.4 are in [Levin 2013, §10], where we
follow the strategy introduced in [Pappas and Zhu 2013]. We cannot apply Pappas
and Zhu’s result directly because the group Res( K®q,F)/F G r usually does not
split over a tame extension of F. In [Levin 2014], we generalize [Levin 2013,
§10] and [Pappas and Zhu 2013] to groups of the form Res; ,r H, where H is
reductive group over L which splits over a tame extension of L, and allow arbitrary
parahoric level structure. Here we recall the relevant definitions and results, leaving
the details to [Levin 2013; 2014].
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For any A-algebra R, set Ry := R ®z,, W. Our local models are constructed
inside the following moduli space:

L —

Definition 3.2.1. For any A-algebra R, let Ry [u](g ) denote the E(u)-adic
completion of Ry [u]. Define

Grg(")’W(R) := {isomorphism classes of pairs (¢, )},

o —

where € is a G-bundle on Ry [u] £ ()) and

| —— ~¢0 .
« |RW[M](E<u))[E(u)_1] Rw [z E @)—1]

Proposition 3.2.2. The functor Grg(u)’W

over A. Furthermore:

is an ind-scheme which is ind-projective

(1) The generic fiber Grg (u)’W[l / pl is naturally isomorphic to the affine Grass-
mannian ofRes(K@,@p F)/F GF over the field F.

(2) If ko is the residue field of W, then the special fiber Grg(u)’W QA is natu-

rally isomorphic to the affine Grassmannian of Res(k()@[Fp r)/F(GF).
Proof. See §10.1 in [Levin 2013]. O

Let H be any reductive group over F' and Grg be the affine Grassmannian of H.
Associated to any geometric conjugacy class [u] of cocharacters, there is an affine
Schubert variety S(u) in (Grg) F,,;» where Fj,, is the reflex field of [u]. These
are the closures of orbits for the positive loop group L™ H .

The geometric conjugacy classes of cocharacters of H can be identified with
the set of dominant cocharacters for a choice of maximal torus and Borel subgroup
over F. The dominant cocharacters have partial ordering defined by p > A if
and only if ; — A is a nonnegative sum of positive coroots. Then S(u)z is the
union of the locally closed affine Schubert cells for all ' < u [Richarz 2013,
Proposition 2.8].

Definition 3.2.3. Let Fj,,)/ F be the reflex field of [1] with ring of integers A . If
S(1) C GrRres g ®a, P/ FOF ® F F, is the closed affine Schubert variety associated
to u, then the local model M (i) associated to u is the flat closure of S(u) in
Grg(“)’W ®AAfy- Itis a flat projective scheme over Spec A[y,.

The main theorem on the geometry of local models is:

Theorem 3.2.4. Suppose that p t|m1 (G|, where G¥ is the derived subgroup
of G. Then M () is normal. The special fiber M(u) @4, F is reduced, irreducible,
normal, Cohen—Macaulay and Frobenius-split.
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For the next subsection, it will useful to recall a group which acts on Grg(u)’W

and M(u). Define

LTFOGR) = G(Rw [l 5 ) = lim G (Rw ) /(E()'))

i>1

for all A-algebras R. L*-F G is represented by a group scheme that is the projec-
tive limit of the affine, flat, finite-type group schemes Res A®, W)[ul/E(u)i)/ AG.

The group LTE@G acts on Grg(u)’W by changing the trivialization. This
action is nice in the sense of [Gaitsgory 2001, A.3], i.e., Grg(u)’W ~ 1i_r)nl. Z;, where

Z; are LTE® G_stable closed subschemes on which LTE® G acts through the
quotient RGS((A®ZD W)[ul/E w))/A G.

Corollary 3.2.5. For any [, the local model M() is stable under the action
of LT-E Waq.

Proof. Since everything is flat, it suffices to show that M(u)[1/p] is stable un-
der LTEMG[1/p]. The functor LT E®@G[1/p] on F-algebras is naturally iso-
morphic to the positive loop group L+R€S( K®q,F)/F (G), so that the isomorphism
in Proposition 3.2.2(1) is equivariant. M (u)[1/p] is the closed affine Schubert
variety S(u) which is stable under the action of this group. O

3.3. Smooth modification. We begin by defining the deformation functor which
will be the target of our modification.

Definition 3.3.1. Choose a G-bundle Qf over &f together with a trivialization &g
of QO over G¢[1/E(u)]. Define a deformation functor on €5 by

EQ[F(A) := {isomorphism classes of triples (€, §, ¥)},

where € is a G-bundle on &4, § : €|g,[E@)-1] =
V1€ ®c, SF = QF is compatible with § and §p.

%OGA[E(M)_I]’ and the map

Example 3.3.2. Let G = GL(V). For any (Q4,84) € Dg,(A), 84 identifies Q4
with a “lattice” in (V ®a S4)[1/E(u)], that is, a finitely generated projective
& 4-module L4 such that L4[1/Eu)] = (V ®a S4)[1/Eu)].

The main result of this section is the following:

Theorem 3.3.3. Let A be a Z ,-finite, flat, local domain with residue field F. Let G
be a connected reductive group over A and Py a G-Kisin module with coefficients
in F. Fix a trivialization By of B¢ as a G-bundle. There exists a diagram of
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groupoids over € A ,

where Qf := (¢* (Br)., Br[1/ E ()] o pop; ). Both w° and ¥ are formally smooth.

Later in the section, we will refine this modification by imposing appropriate
conditions on both sides. Intuitively, the above modification corresponds to adding
a trivialization to the G-Kisin module and then taking the “image of Frobenius”.
The groupoid 5((130;’) is defined at the end of Section 3.1 and 7 ©*® is formally smooth
since G is smooth. Next, we construct the morphism W and show that it is formally
smooth. To avoid excess notation, we sometimes omit the data of the residual
isomorphisms modulo m 4. One can check that the everything is compatible with
such isomorphisms.

Definition 3.3.4. For any (P4, ¢y, B4) € D™ (A), we set
V((Ba, pyps» Ba)) = (97 (Ba), 84),

where 84 is the composite

@*(Ba)[1/E )] ﬁ Bu[l/E )] M

Proposition 3.3.5. The morphism VY of groupoids is formally smooth.

Proof. Choose A € € and an ideal I of A. Consider a pair (Q4,684) € EQ[F(A)
over a pair (Q4/7.64/1)- Let (Ba/r.94/1.Ba/1) be an element in the fiber over
(Qua/1+84/1)- The triple (By/1.Pa/1.Bay1) is isomorphic to a triple of the form
(%%A/] , ¢,,4/I .Id4,r). Let y4, 1 be the isomorphism between ¢* (%OGA/I) and Qy/1.
We want to construct a lift (B34, ¢4, B4) suchthat W (R4, P4, B4) =(04,084). Take
LBy = %%A to be the trivial bundle and B4 to be the identity.

Now, pick any lift y4 : (p*(%%A) = (4, of y4,5 which exists since G is smooth.
We can define the Frobenius by

¢4 =S40 yall/Eu)].
It is easy to check that W (P4, ¢4, Ba) = (Q4,84). O

We would now like to relate D g, to Grg(“)’W from the previous section.

€2 [1/E)].

Proposition 3.3.6. A pair (QF, o) as in Definition 3.3.1 defines a point xf in
Grg(”)’W(I]:). Furthermore, for any A € €, there is a natural functorial bijection
between EQ[F(A) and the set of x4 € Grg(“)’W(A) such that x4 modmy4 = xg.
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Proof.  Recall that &4 = (W ®z, A)[u]| because A is finite over Z,. Also,
Grg(“)’W(A) is the set of isomorphism classes of bundles on the E(u)-adic com-
pletion of (W ® 7z, A)[u] together with a trivialization after inverting £ (u). Since
p is nilpotent in A, we can identify (w ®z, A)[[u]] and the E(u)-adic com-
pletion (W ®z, A)[u](E))- This identifies D g, (A) with the desired subset of
Grg W (4). O

For any Z ,-algebra A, let S4 denote the E (u)-adic completion of (W ®z,, A)[u].

Lemma 3.3.7. For any finite flat Z p-algebra N, there is a (W ®z,, A')[u]-algebra
isomorphism
6A’ — §A/ .

Proof. For any n > 1, we have an isomorphism
Sa/p" =S /p"

since (E(u)) and u define the same adic topologies modulo p”. Passing to the
limit, we get an isomorphism of their p-adic completions. Both G 5/ and S5+ are
already p-adically complete and separated. O

Fix a geometric cocharacter p of Res K®a,F)/F G, which we can write as
n= (,uw)sz_)f, where the 11y are cocharacters of G 7. Assume that F' = F,, so
that the generalized local model M () is a closed subscheme of Grg(u)’W over A;
see Definition 3.2.3. Recall that V is a fixed faithful representation of G. For
each ¥, iy induces an action of Gy, on V. Define a (resp. b) to be the smallest

(resp. largest) weight appearing in Vg over all iy,

Definition 3.3.8. Define a closed subfunctor D ’“QL[F of D g, by

D, (4) :={(04.64) € D, (A) | (Qa.84) € M(1)(A)}

under the identification in Proposition 3.3.6. Define 5&0)’“ to be the base change
of 5% along W. It is a closed subgroupoid of Dgs®.

The following proposition says that 5;;:’)’“ descends to a closed subgroupoid
Dy, of Dap,:

Proposition 3.3.9. Let a and b be as in the discussion before Definition 3.3.8.
There is a closed subgroupoid Dg[F C Dgg;;b] C Dy, such that ‘% |5;Bc>o).u factors
through D%F and :

) (00,1 K 1 (00)

D‘J3[F e D‘B[F X Doy D‘B[F
is an equivalence of closed subgroupoids. Furthermore, w : ﬁ%;:’)’“ — D%F is
formally smooth.
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Proof. For any A € €5 define D“ _(A) to be the full subcategory whose objects
are n(°°)(D(°°) "(A)). Observe that for any x € D”“ _(A) the group G(&4) acts
transitively on the fiber (7©)~1(x) C D(°°)(A) by changmg the trivialization.
The key point is that D(oo) H(A) is stable under G(S,4), by Corollary 3.2.5. Hence,

(7 *) 7 (x) C Dog " (A). (3-3-9-1)

It is not hard to see then that the map to the fiber product is an isomorphism and
that 7# is formally smooth.

It remains to show that Dg — Dy, is closed. Let PB4 € Dy, (A) and choose

a trivialization B4 of Py, i.e., a lift to D;‘BOO)(A) We want a quotient 4 — A’
such that, for any f : A — B, P4 ®y,7r B € D“ .(B) if and only if f factors
through A’. Let A — A’ represent the closed condltlon D(Oo) M D(oo) Clearly,
PaR4A € DM (A’) and so any further base change is as well Now, let f:A—B
be such that ‘ISA ®a,r B € D“ (B) The trivialization 84 induces a trivialization
B onPp. The pair (Pp, ,BB) hes in D(OO) *(B) by (3-3-9-1). O

We have constructed a diagram of formally smooth morphisms

N (00),
D‘B[F

7 X (3-3-9-2)

2 14
Dy, Do,
where B’éF is represented by the completed local ring at the F-point of M ()
corresponding to (QF, 6f). Next, we would like to replace Df;f)’“ by a “smaller”
groupoid which is representable.

Let a and b be as in the discussion before Definition 3.3.8 and choose N > b—a.
Recall the representable groupoid D(E?[F’b]’(N) (Proposition 3.1.1). Define a closed
subgroupoid

~(N), 1. i A la.b].(N)
D™ = Dy XDy Doy
of 553“[;17]’(1\’). By Proposition 3.3.9, the morphism 5;;:” L D%\:)’“ is formally
smooth.

Proposition 3.3.10. For any N > b—a, the morphism WV* : D;go) s D’“L _ factors
through D(N) *. Furthermore, D( )H is formally smooth over DQ

Proof. By our assumption on N, D(N) Hi

factorization \IJ”“ D(N) s D“ on underlying functors. For any x € D(N) H(4),
set

is representable, so it suffices to define the

WV (x) i = WH(F)
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for any lift X of x to 5“?’” (A). The image is independent of the choice of lift by
Corollary 3.2.5. The map VAGDRIEN formally smooth since W is. O

In the remainder of this section, we discuss the relationship between D% and
p-adic Hodge type w. For this, it will useful to work in a larger category than % A-
All of our deformation problems can be extended to the category of complete
local Noetherian A-algebras R with finite residue field. For any such R, we de-
fine D%F (R) (and, similarly, 5% (R), D b[F (R)) to be the category of deformations
to R of Pr ®¢ R/mpg with condition *, where * is any of our various conditions.
For any finite local A-algebra A’, the category % A’ is a subcategory of the category
of complete local Noetherian A-algebras with finite residue field.

The functors D!; b1V D(N) H and D”“ are all representable on % A Itis
easy to check, using the crlterlon in [Chai et al. 2014, Proposition 1.4.3.6], that
these functors commute with change in coefficients, i.e., if Rla:b1.(N) represents

;%[Fb] M) over € A then RI@P1L(N) &\ A/ represents the extension of D[“ bL.(N)
restricted to the category € A+, and similarly for D(N) " and D‘é

An argument as in Theorem 2.4.2 shows that, in D[a bl (R), an object of D[@:]
is the same as a G-bundle B on S R together with a Frobemus

by 1@ (BRI EW)] = Br[1/E )]

deforming Br @ R /m g and having height in [a, b]. The condition on the height is
essential in order to define the Frobenius over R. We would like to give a criterion
that says when (PBr, ¢y ) lies in D““ (R).

Choose (Br, Ppr) € D[ a,b] (R) For any finite extension F’ of F and any
homomorphism x : R — F/, denote the base change of Br to Sr/ by (B, dx).
Associated to (Px, ¢x) is a functor D from Repr (G F) to filtered (K ®q, F')-
modules given by D (W) = ¢*(PBx)(W)/Eu)e*(Px)(W) with the filtration
defined as in Definition 2.4.8.

Lemma 3.3.11. For any finite extension F’ of F and any x : R — F’, the func-
tor Dy is a tensor exact functor.

Proof. Any such x factors through the ring of integers A’ of F’, so that (By, Px)
comes from a pair (Px,, Px,) over Sp-. Let Sas and Sp be the E (u)-adic com-
pletions of (W ®z, A')[u] and (W ®z,, F')[u], respectively. By Lemma 3.3.7, we
can equivalently think of (P, . ¢x,) as a pair over Sx-.

Choose a trivialization o of Py, and set O, := ¢*(Px,) with trivialization
Ox0 :=Poll/E(u)] o ¢yx,. Define (Qx,dx) to be (Qx,, bx,) ®s., SFs and define a
filtration on D, := Qx mod E(u) by

Fill (Do, (W) =(Qx(W)NEw) (WRSF))/(Ew)Qx(W)NE ) (WRSF))
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for any W € Repr(GF). Since §A/[1/p]/(E(u)) = §p//(E(u)), there is an
isomorphism
@x = @Qx

of tensor exact functors to Modg g, , F/ identifying the filtrations.

It suffices then to show that ® ¢ . is a tensor exact functor to the category of fil-
tered (K ®q,, F’)-modules. Without loss of generality, we assume that F’ contains
a Galois closure of K. Then

Spr = H F'lu—y ()]

over embeddings ¢ : K — F’' (ﬁrst decompose W ®z, F' and then decompose
E(u) in each factor). Thus, (Qx,x) decomposes as a product ]_[w(Qx ,SW)
where each pair defines a point zy, of the affine Grassmannian of G g-. The quotient
Do, decomposes compatibly as ]_[1/, D o¥. We are reduced then to a computation
for a point zy € Grg,,(F'). Without loss of generality, we can assume G- is
split. Up to translation by the positive loop group (which induces an isomorphism
on filtrations), zy, is the image [g] for some g € T'(F'((¢))) where T is maximal
split torus of Gf/. Using the weight space decomposition for 7" on any represen-
tation W, one can compute directly that ®© o¥ is a tensor exact functor. For more
details, see [Levin 2013, Proposition 3.5.11, Lemma 8.2.15]. O

Definition 3.3.12. Let F’ be any finite extension of F with ring of integers A’.
We say a G-Kisin module (Pa/, ) over A’ has p-adic Hodge type  if the
G F -filtration associated to B a/[1/ p] as above has type u.

Theorem 3.3.13. Assume that F = FJ,). Let R be any complete local Noe-
therian A algebra with finite residue field which is A-flat and reduced. Then

Pr € D (R) lies in DM (R) if and only if, for all finite extensions F'/F and
all homomorphzsms X:R —> F’, the G p-filtration D+ has type less than or equal

10 [u].

Proof. Choose a lift y of Pg to D[a b1, (N)(R) Clearly, Pr € D’“L .(R) if and only
if y € D(N) *(R), which happens 1f and only W(y) € D” (R) Let R be the
quotient of R representing the fiber product
Spr XB[SJFb] ELQL[F.
To show that R* = R, it suffices to show that Spec R*[1/ p] contains all closed
points of Spec R[1/ p], since R is flat and R[1/ p] is reduced and Jacobson.
The groupoid D’“QL is represented by a completed stalk on the local model
M) C GrE(”) W so that, for any x : R — F', U(§)[1/ p] defines an F’-point
(Qux. ) of GHEDW . Since Mu(F') = S(u)(F). (Q.8x) € SG)(F')if and
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only if the filtration © ¢ . has type less than or equal to 1] [Levin 2013, Proposition
3.5.11]. The proof of Lemma 3.3.11 shows that the two filtrations agree, i.e.,

@x g@Qx

Thus, x factors through R* exactly when the type of the filtration D is less than
or equal to [u]. O

R[-a’b]’crlS be the universal

Fix a continuous representation 7 : 'y — G([F). Let
framed G-valued crystalline deformation ring with Hodge—Tate weights in [a, b],

and let © : X%a’b]’cris — Spec R%a’b]’cris be as in Proposition 2.3.3.

Definition 3.3.14. Assume F = F{,). Define R%ﬁs’SM to be the flat closure of the
connected components of

SpeC R%a,b] ,CriS [l/p]

with type less than or equal to u (see Theorem 2.4.6). Define X i< (o be the
flat closure in X la:bleris o the same connected components (smce ®[1/p] is an

isomorphism).

Corollary 3.3.15. Let XEHS’SM be as in Definition 3.3.14. A point X € XErls ()
corresponds to a G- Kzsm lattice P over Spr. The deformation problem Dcm H
which assigns to any A € 6 A®z, W(F) the set of isomorphisms classes of trlples

(. Pa.8) | y: RS= — A, Ba € D (A), 84 Ti,e,(Ba) = nylr.}

is representable. Furthermore, if @ is the completed local ring of X cris, SU- gy X,

then the natural map Spf @M Dcm"" is a closed immersion which i lS an isomor-
phism modulo p-power torsion.

Proof. Without loss of generality, we can replace A by A @) W(F'). By con-
struction and Proposition 2.3.5, for any A € €, the deformation functor

DI (A) = {y  RISSH — A, Pa € DN (A). 641 To,6,(Ba) = ylra}/ =

is representable. That is, cris 4.be represents the completed stalk at a point of the

fiber product X ; La.b.eris o e RI-P1 Spec R&"S=H_Since D”“ C D[“ 1 is closed,
S0 is D'Erlq o Dgismebe and hence D™ is representable by Rcm’“ To see that
the closed immersion Spf @” — Dcm’“ b¢ factors through Dcm’“, it suffices to
show that the “universal” lattice ‘B@u € D;E? bl (0%) lies in Dy, (@“ ).

By Proposition 2.3.9 and Theorem 2.3.12, ®[1/p]is an 1somorph1sm Further-
more, by [Balaji 2012, Proposmon 4.1.5], R[“ bl.erist] / p] and RC-HS’SM[I/p] are
formally smooth over F. Hence, @ satisfies the hypotheses of Theorem 3.3.13.

By Theorem 3.3.13, we are reduced to showing that for any finite F// F and any
homomorphism x : @ﬁcf — F’ the filtration D, corresponding to the base change
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By = ‘B@u ®y F’ has type less than or equal to . The homomorphism x corre-
sponds to a closed point of Spec Rcim’su [1/p], i.e., a crystalline representation o
with p-adic Hodge type less than or equal to u. Furthermore, P, is the unique
(SF/, ¢)-module of bounded height associated to px. By Proposition 2.4.9, the de
Rham 97’%1; filtration associated to pyx is isomorphic to the filtration © associated
to (Px, ¢x) Thus, ®, has type less than or equal to p for all points x and so
Pou € Dy ,(6%), by Theorem 3.3.13.

By the argument above, Spec @M and Spec RC-HS”“L have the same F’-points for
any finite extension of F. Since Rcm =t/ p] is formally smooth over F, the

kernel of RC-rlS L @‘f is p-power torswn O

Remark 3.3.16. In fact, Corollary 3.3.15 holds as well for semistable deformation
rings with p-adic Hodge type less than or equal to p. To apply Theorem 3.3.13
and make the final deduction, we needed that the generic fiber of the crystalline
deformation ring was reduced (to argue at closed points). This is true for G-valued
semistable deformation rings by the main result of [Bellovin 2014].

4. Local analysis

In this section, we analyze finer properties of crystalline G-valued deformation
rings with minuscule p-adic Hodge type. The techniques in this section are in-
spired by [Kisin 2009; Liu 2013]. We develop a theory of (¢, f‘)—modules with
G -structure and our main result, Theorem 4.3.6, is stated in these terms. How-
ever, the idea is the following: given a G-Kisin module (34, ¢4) over some finite
A-algebra A, we get a representation of I's, via the functor 7 s ,. In general, this
representation need not extend (and certainly not in a canonical way) to a repre-
sentation of the full Galois group I'x. When G = GL,, and *J34 has height in [0, 1]
then, via the equivalence between Kisin modules with height in [0, 1] and finite
flat group schemes [Kisin 2006, Theorem 2.3.5], one has a canonical extension to
I'k which is flat. We show (at least when A is a A-flat domain) that the same
holds for G-Kisin modules of minuscule type: there exists a canonical extension
to I'x which is crystalline. This is stated precisely in Corollary 4.3.8. We end by
applying this result to identify the connected components of G-valued crystalline
deformation rings with the connected components of a moduli space of G-Kisin
modules (Corollary 4.4.2).

4.1. Minuscule cocharacters. We begin with some preliminaries on minuscule
cocharacters and adjoint representations which we use in our finer analysis with
(¢, f)—modules in the subsequent sections.
Let H be a reductive group over field k. The conjugation action of H on itself
gives a representation
Ad: H — GL(Lie(H)). (4-1-0-1)
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This is algebraic, so, for any x-algebra R, H(R) acts on Lie(Hg) = Lie H ®, R.
We will use Ad to denote these actions as well. We can define Ad for G over
Spec A in the same way.

Definition 4.1.1. Any cocharacter A : G, — H gives a grading on Lie H defined
by ‘
Lie H(i):={Y e Lie H | Ad(A(a))Y =d'Y}.

A cocharacter A is called minuscule if Lie H(i) = 0 fori ¢ {—1,0, 1}.

Minuscule cocharacters were studied by Deligne [1979] in connection with the
theory of Shimura varieties. A detailed exposition of their main properties can be
found in §1 of [Gross 2000].

Assume now that A is split and fix a maximal split torus 7 contained in a
Borel subgroup B. This gives rise to a set of simple roots A and a set of simple
coroots AV. In each conjugacy class of cocharacters, there is a unique dominant
cocharacter valued in 7. The set of dominant cocharacters is denoted by X« (T)%.

Recall the Bruhat (partial) ordering on X(7)": given dominant cocharacters
ot G —> T, wesay ' <pifpu—p =3 cav ngo with ng > 0.
Proposition 4.1.2. Let u be a dominant minuscule cocharacter. Then there is no
dominant (' such that ' < p in the Bruhat order.

Proof. See Exercise 24 from Chapter IV.1 of [Bourbaki 2002]. O

Proposition 4.1.3. If u is a minuscule cocharacter, then the (open) affine Schubert
variety S°(1) is equal to S(w). Furthermore, S(i) is smooth and projective. In
fact, S(u) = H/P(u), where P(i) is a parabolic subgroup associated to the
cocharacter L.

Proof. Since the closure S(u) = | wepS O(u’) [Richarz 2013, Proposition 2.8],
the first part follows from Proposition 4.1.2. For the remaining facts, we refer to
discussion after [Pappas et al. 2013, Definition 1.3.5] and [Levin 2013, Proposi-
tion 3.5.7]. O

Forany u: Gy, — T, we get an induced map G, (¢ ((2))) = T (k((2))) C H(x((2)))
on loop groups. We let 1(7) denote the image of ¢ € «((¢))*.

Proposition 4.1.4. For any X € Lie H ® «[[t]], we have
Ad((1)(X) € %(Lie H @ c[t]).
Proof. As in Definition 4.1.1, we can decompose
Lie H = Lie H(—1) @ Lie H & Lie H(1).

Then Ad(u(t)) acts on Lie H(i) ® k((r)) by multiplication by #/. The largest
denominator is then 1. O
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4.2. Theory of (¢, f)-modules with G-structure. We review Liu’s theory [2010;
Caruso and Liu 2011] of (¢, @). We call them (¢, f’)—modules to avoid confusion
with the algebraic group G. The theory of (¢, f’)—modules is an adaptation of the
theory of (¢, I')-modules to the non-Galois extension Koo = K(7/?, 71/ P ).
The T refers to an additional structure added to a Kisin module which captures
the full action of 'y as opposed to just the subgroup I'eo := Gal(K/Koso). The
main theorem in [Liu 2010] is an equivalence of categories between (torsion-free)
(¢, f)—modules and 'k -stable lattices in semistable @ ,-representations.
Let ET denote the perfection of Og/(p). There is a unique surjective map

O:WE') - 0g

which lifts the projection ET — O g/ (p). The compatible system (m'/P") 50 of
the p"-th roots of 7 defines an element 7 of Et. Let [7r] denote the Teichmiiller
representative in W(E +). There is an embedding

S W(E),

defined by u — [], which is compatible with the Frobenii. If E is the fraction
field of E T, then W(E c W(E ). The embedding & — W(E~ *) extends to an
embedding

0¢ — W(E).

As before, let Koo = |J K(w'/P"). Set Kpoo := | J K({pn), where &pn is a
primitive p"-th root of unity. Denote the compositum of Ko, and Kpoeo by Koo, poo;
Koo, poe 1s Galois over K.

Definition 4.2.1. Define
[ :=Gal(Koo poo/K) and T := Gal(Koo,poo/Koo).

There is a subring R C W(E *) which plays a central role in the theory of
(¢, I')-modules. The definition can be found on p. 5 of [Liu 2010]. The relevant
properties of R are

€)) R is stable by the Frobenius on W(E );
) R contains G;

3) R is stable under the action of the Galois group I'x and 'k acts through the
quotient T".

For any 7, algebra A, set Ry := R ' Qz, A with a Frobenius induced by the
Frobenius on R Similarly, define W(E +)A = W(E+) ®z, A and W(E )4 =
W(E) ®z, A. For any & 4-module M4, define

M = R4 @p.c, M4 = R4 @, ¢* (My)
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and
My = W(E')4®p0, Ma=WET)4®z M.

Recall that ¢* (M4) := 64 Qy,c, M4 and that the linearized Frobenius is a map
P, 1@ (Mg) = My (When My has height in [0, 00)).

If <My is a projective &4-module then, by Lemma 3.1.1 in [Caruso and Liu
2011] P*(My) C 9’51,4 - 971,4 Although the map m +— 1 ® m from 9y to
EmA is not G 4-linear, 1t is injective when 94 is G4 pI'O]eCtIVG The image is a
¢(64)-submodule of ,‘JﬁA We will think of 9)i4 inside of smA in this way. Finally,
for any étale (O¢, 4, ¢)-module Jil4, we define

Mg = W(E) 4 ®p.00 s Ma=W(E)4 R0, , 9" (Mg)

with semilinear Frobenius extending the Frobenius on 4. To summarize, for any
Kisin module ($714, ¢4), we have the diagram

(Mg, pa) ~~r My ~~~mr My

é ¥

(Ma, pa) ~~~rnmnnnnss (M. Pa).

Now, let y € I and let 53\114 be an R4-module. A map g : 931A — 9,3\114 is
y-semilinear if

glam) =y(a)g(m)

forany a R 4, M € 5)\114. A (semilinear) [-action on iﬁtA is a y-semilinear map g,
for each y € I' such that

8y 08y = 8y’y

as (y'y)-semilinear morphisms. A (semilinear) [-action on ifJ\IA extends in the
natural way to a (semilinear) 'k -action on 97@1 and on ./17LA.

For any local Artinian Zp-algebra A, choose a Z,-module isomorphism A =
@7/ p"iZ so that, as a W(E )-module, W(E)4 = P W, (E). We equip W(E)4
with the product topology, where W,,, (E ) has a topology induced by the isomor-
phism W, (E ) =~ E™i given by Witt components (see §4.3 of [Brinon and Conrad
2009] for more details on the topology of E). We can similarly define a topology
on W(E *)4 using the topology on E™, and it is clear that this is the same as the
subspace topology from the inclusion W(E 4 C W(E )4. Finally, we give Ry
the subspace topology from the inclusion Ry C W(E *)4. The same procedure
works for A finite flat over Z,.
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A T-action on 9/5(14 is continuous if, for any basis (equivalently for all bases)
of My, the induced map I' — GL, (R4) is continuous, where r is the rank of iy
(such a basis exists by [Kisin 2009, Lemma 1.2.2(4)]).

Definition 4.2.2. Let A be a finite Z,-algebra. A (g, f)-module with height in
[a,b] over A is a triple (M4, pon,, I'), where

(1) (Ma. dur,) € ModZ!*?;

(2) T is a continuous (semilinear) I"-action on 91y4;

(3) the I'k-action on 97?,4 commutes with qggm , (as endomorphisms of J(%A);

(4) regarding M4 as a (S 4)-submodule of ‘55?,4, we have My C 55?};“

(®)] T acts trivially on D/J\TA /14 (5)\1,4) (see §3.1 of [Caruso and Liu 2011] for the
definition of 7+ (y)).

We often refer to the additional data of a (¢, f’)—module on a Kisin module as a
I'-structure.

Remark 4.2.3. Although we allow arbitrary height [a, b] (in particular, negative
height), the ring R is still sufficient for defining the [-action. This follows from
the fact that the T-action on S(1) is given by ¢ (see [Liu 2010, Example 3.2.3]),
which is a unit in R. See also [Levin 2013, Example 9.1.9].

Proposition 4.2.4. Choose (M4, pom,) € Modé’fEa’b] of rank r. Fix a basis { f;}
of My. Let C' be the matrix for ¢on, with respect to {1®y, fi}. Then a I'-structure
on M4 is the same as a continuous map

B.:T — GL,(Ry)
such that
(i) C'-@(By) = B, -y(C’) in Mat(W(E),) for all y € T;
(i) By =1Idforall y € Too;
(iii) B, =Idmod I4(R)4 forally €T

(iv) Byy = By -y(By) forally,y’ €T.

Let Mod‘p a1 Genote the category of (¢, I')-modules with height in [a, b]

over A. A morphlsm between (¢, I') modules is a morphism in Mod(p La-b] that is
I- -equivariant when extended to Ry.

Let Mod&; oh,T = Upso Mod&; [=h.h).0 , 50 Mod? ;h ) has a natural tensor prod-
uct operation Wthh at the level of Mod‘p bh is the tensor product of bounded height
Kisin modules. The [-structure on the tensor product is defined via

Ri®p.6,(Ms®c, M) = (R4 Ry, Ma) ®z, (RA®p.6, M) = My ®z, Ny.
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One also defines a I'-structure on the dual EIRX :=Homg , (14, &4) in the natural
way (see the discussion after [Levin 2013, Proposition 9.1.5]). Note that, unlike in
other references (for example [Ozeki 2013]), we do not include any Tate twist in
our definition of duals.

We will now relate these (¢, f)—modules to I'g-representations. For this, we
require that A be Zp-finite and either Z,-flat or Artinian. Define a functor Ty

from Modé’:h’r to Galois representations by
T4(@4) := (W(E) ® 3 Ma)1=" = (flg)?1=".

The semilinear I'gx-action on A7LA commutes with qEA, SO ?A (E)/J\IA) is a 'k -stable
A-submodule of W(E) ® p My.
We now recall the basic facts we will need about f‘A:

Proposition 4.2.5. Let A be 7 p-finite and either Z -flat or Artinian.

(D) Ifii)\TA € Modg’:h’r, then there is a natural A[l ]-module isomorphism

04 : T, (Ma) — Ta(My).

: C . . h, T
Furthermore, 04 is functorial with respect to morphisms in Mod‘é’: .

) 7\14 is an exact tensor functor from Mod%™™! 1o Rep4 (') which is compati-
Sy A
ble with duals.

Proof. See [Levin 2013, Propositions 9.1.6 and 9.1.7]. O

We are now ready to add G-structure to (¢, f‘)—modules. Let G be a connected
reductive group over a Z ,-finite and flat local domain A as in previous sections.

Definition 4.2.6. Define GModé’; to be the category of faithful exact tensor func-
tors [/ Rep A(G),Mod‘éfh’r]Q We will refer to these as (¢, I')-modules with
G -structure.

Recall the category GRep4 (') from Definition 2.2.3. By Proposition 4.2.5(2),
T4 induces a functor

fG,A : GMod%’j — GRepy (I'k).

Furthermore, if wr_, : GRep,(I'xr) — GRepy(I'so) is the forgetful functor then
there is an natural isomorphism

TG4 = wry ©71G,4-

The functor fG, 4 behaves well with respect to base change along finite maps
A — A’ by the same argument as in Proposition 2.2.4.
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We end this section by adding G-structure to the main result of [Liu 2010].
For A finite flat over A, an element (P4, p4) of GRepy(I'x) is semistable (resp.
crystalline) if p4[1/ p]: Tx — Autg(P4)(A[1/ p]) is semistable (resp. crystalline).
For A a local domain and p4 semistable, we say p4 has p-adic Hodge type u if
04[1/ p] does for any trivialization of P4 (see Definition 2.4.5).

Theorem 4.2.7. Let F'/ F be a finite extension with ring of integers A'. The func-
tor TG, A’ induces an equivalence of categories between GMod%’IE and the full
subcategory of semistable representations of GRep /(' ).

Proof Using the Tannakian description of both categories, it suffices to show that
T+ defines a tensor equivalence between Mod“’ bh I and semistable representations
of 'k on finite free A’-modules. When F = @ p and the Hodge-Tate weights are
negative (in our convention), this is Theorem 2.3.1 in [Liu 2010]. Note that Liu uses
contravariant functors, so that our 7/ is obtained by taking duals. The restriction
on Hodge-Tate weights can be removed by twisting by @(1), the (¢, f‘)—module
corresponding to the inverse of the p-adic cyclotomic character.

To define a quasi-inverse to Tas, let L be a semistable ' -representation on a fi-
nite free A’-module. Forgetting the coefficients, Liu [2010] constructs a [-structure
71 (L) on the unique Kisin lattice in M (L). This (¢, f’)—module over Z, has an
action of A’, by functoriality of the construction. By an argument as in [Kisin
2008, Proposition 1.6.4(2)], the resulting & A/-module is projective, so this defines
an object of Mod‘”’bh’r which we call YAX} (L).

Flnally, we appeal to Proposition 1.4.4.2 in [Saavedra Rivano 1972] to conclude
that 7o+ and T} define a tensor equivalence of categories given that T respects
tensor products (Proposition 4.2.5). O

4.3. Faithfulness and existence result. Fix anelement t € I such that t(n)=¢em,
where ¢ is a compatible system of primitive p”-th roots of unity. If p # 2, then
7 is a topological generator for f‘poo = Gal(Koo,poe / Kpeo). If p =2, then some
power of T will generate f‘poo. In both cases, t together with Too topologically
generate r (see [Liu 2010, §4.1]). Given condition (4) in Definition 4.2.2, the
[-action is determined by the action of t.

Recall the element t € W(E T), which is the period for G(1) in the sense that
o) =cy LE (u)t. We will need a few structural results about W(E ™).

Lemma 4.3.1. For any y € 'k, we have the following divisibilities in W(E"‘):
ya) lu, y(e®)e®). and y(E))|E(@u).

Proof. See [Levin 2013, Lemma 9.3.1]. O



1778 Brandon Levin

The (¢, f‘)—modules which give rise to crystalline representations satisfy an extra
divisibility condition on the action of 7 [Gee et al. 2014, Corollary 4.10; Levin
2013, Proposition 9.3.4]. We call this the crystalline condition.

Definition 4.3.2. . An object DJIA € Mod(p la.b).T is crystalline if, for any x € 94,
there exists y € M4 such that T(x)—x = (p(t)up y.

Proposition 4.3.3. If imA is crystalline then, forall x e M4 and y € T, there exists
y € My such that y(x) —x = e(Hu?P y.

Proof. This is an easy calculation using that [ is topologically generated by f‘oo
and t [Levin 2013, Proposition 9.3.3]. O

Definition 4.3.4. We say an object ‘BA € GMod(p la BT is crystalline if %A(W) is
crystalline for all W € f Rep, (G). For an ob]ect Q3[F € GMod"’ fa.b].T , define the
crystalline (¢, F) module deformation groupoid over € by

D%is’[a’b](A) — (B4, Vo) € Dg"b](A) | B4 is crystalline}
F F
forany A € €.

Proposition 4.3.5. Let F’ be a finite extension of F with ring of integers N’
The equivalence from Theorem 4.2.7 induces an equivalence between the full sub-
category of crystalline objects in GModé’}:’ with the category of crystalline repre-
sentations in GRep 5/ (I'k).

Proof. 1t suffices to show that if T4 (@A(W)) is a lattice in a crystalline represen-
tation then ‘is‘A(W) satisfies the crystalline condition. This only depends on the
underlying (¢, f)—module so we can take A = Z,. When p > 2, this is proven in
Corollary 4.10 in [Gee et al. 2014]. The argument for p =2 is essentially the same
and was omitted only because in [Gee et al. 2014] they need further divisibilities
on (7 — 1)", for which p = 2 becomes more complicated. Details can be found in

[Levin 2013, Proposition 9.3.4]. O
Choose a crystalline object ‘}A3[F € GMod(p la.b).T . If P is the underlying G -Kisin
module of ‘B[F, then we would like to study the forgetful functor

3 . Dcris,[a,b] D[a b]
% RU

More specifically, if u and a, b are as in the discussion before Definition 3.3.8,
and F' = Fj,), we consider

AN, pycris,u ,_ pyeris,[a,b] u w
AP D{m =Dg XD‘E?[Eb] D‘B[F — D;m.

We can now state our main theorem:
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Theorem 4.3.6. Assume that p does not divide 71 (G %), where G is the derived
group of G, and that F = Fj,). If pu is a minuscule geometric cocharacter of

Res(K@,@p F)/F GF then

A pESH L pl
B Br

is an equivalence of groupoids over € 4.

Remark 4.3.7. This generalizes [Levin 2013, Theorem 9.3.13], where we worked
with G-Kisin modules with height in [0, 1]. See Remark 1.1.1 for more informa-
tion.

Corollary 4.3.8. Assume F = Fi,) and that i is minuscule. Let F' be a finite
extension of F with ring of integers A'. There is an equivalence of categories be-
tween G -Kisin modules over G ps with p-adic Hodge type p and the subcategory of
GRep /(') consisting of crystalline representations with p-adic Hodge type L.

Corollary 4.3.8 follows from the proof of Theorem 4.3.6. It generalizes the
equivalence between Kisin modules of Barsotti—Tate type and lattices in crys-
talline representations with Hodge—Tate weights in {—1, 0} [Kisin 2006, Theorem
2.2.7]. Note that we do not require p}|m1(G%")| here. For the relevant defi-
nitions, see Definition 3.3.12 and the discussion before Theorem 4.2.7. Before
proving Theorem 4.3.6 and Corollary 4.3.8, we begin with some preliminaries on
crystalline (¢, f‘)—modules with G-structure.

Definition 4.3.9. Define G(u? i) to be the kernel of the reduction map
GW(E*)a) = GW(E™*)a/(p(ul)).

Proposition 4.3.10. Choose (Ba, ¢p,) € GMod‘é’:h. Fix a trivialization By of B 4.
Let C' € G(GA[I/A(p(E(u))]) be ¢, with respect to the trivialization 1 ®¢ Ba.
Then a crystalline T"-structure on B34 is the same as a continuous map
B.:T — G(Ry)

satisfying the following properties:

(@) C"-¢(By) =By -y(C')in G(W(E)4) forall y € T;

(b) B, =1d forall y € Too;

(c) By € G(uP) forally € I

(d) By, = B, -y(By)forally,y €T.
Proof. Everything follows directly from Proposition 4.2.4. The only point to note

is that (uPp(t)) C 1+ (ﬁ) 4 because u € I (ﬁ). Hence, the crystalline condition,
which is equivalent to condition (c), implies condition (5) of Definition 4.2.2. [

Before we begin the proof of Theorem 4.3.6, we have two important lemmas.
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Lemma 4.3.11. Let By € D%F (A) and choose a trivialization B4 of the bun-
dle By. If C € G(6A[1/E(u)]) is the Frobenius with respect to B4 then, for
any Y € Gu?"), "

P(C)p(V)p(C) e Gw? ),
where p(C) =C’ € G(W(E)A) is the Frobenius with respect to 1 @, 4.
Proof. Let O denote the coordinate ring of G and let /. be the ideal defining the
identity, so that Og /I, = A and I,/12 =~ (Lie(G))". Then G(u?") is identified
with '

{Y € Homa (Og. W(E ™)) | Y(Ie) C (¢(tu? )}
Conjugation by C induces an automorphism of Gg ,[1/Eu)]- Let
Ado (C)*: 06 ®A Ga[l/E)] — O ®a Sall/E(u)]
be the corresponding map on coordinate rings. The key observation is that
Adog (C)* U @D C Y 1] ®n E)/ &4. (4-3-11-1)
j=1

By successive approximation, one is reduced to studying the induced automorphism
of

P /17" @a Sall/Ew))).

=0
The j-th graded piece is Sym’ (Lie(G)Y) ® o S4[1/E(u)] as a representation of
G(GA[I/E(M)]). Since p is minuscule, Lie(G) ® o &4 has height in [-1, 1] and
so Sym’ (Lie(G)Y ® S4) has height in [—j, j]. Thus,

Adog (C)* (Sym’ (Lie(G)¥ @4 6.4)) C Eu) ™/ (Sym’ (Lie(G)") ®4 ).

from which one deduces (4-3-11-1).

Let Y € G?"). Then ¢(Y)(I,) C (p((p(t)upi) C ((p(E(u))cp(t)upiH). For
any x € [,

(@(C)p(Y)p(C)™H(x) = (9(¥) ® D((1 ® 9)(Adeg (C)*(x))),

which is a priori only in W(E)A. But since for any b € Iej, e(Y)(b) is divis-
ible by @(E))/ o()/u/”""", we have Ad(@(C))(¢(Y))(x) € (@®u? ") so
9(C)p(Y)p(C)~! lies in GuP? ™). O

By [Kisin 2006, Corollary 1.3.15], a I'so-representation coming from a finite-
height, torsion-free Kisin module 9t extends to a crystalline I'g-representation if
and only if the canonical Frobenius equivariant connection on 9t ®g O[1/A] has
at most logarithmic poles. Kisin [2006, Proposition 2.2.2] states furthermore that
if 901 has height in [0, 1] then the condition of logarithmic poles is always satisfied.



G-valued crystalline representations with minuscule p-adic Hodge type 1781

The following lemma is a version of that proposition for G-Kisin modules with
minuscule type:

Lemma 4.3.12. Let F'/F be a finite extension containing Fy,) and let (B p+, ¢F-)
be a G-Kisin module over F'. Fix a trivialization of Br+; let C € G (6 F [l/E(u)])
be the Frobenius with respect to this trivialization. If the G-filtration Dsg ., over
K ®q, F' defined before Lemma 3.3.11 has type , then the right logarithmic
derivative (dC/du)-C 1 e (Lie GCRGF/] /E(u)]) has at most logarithmic poles
along E(u), i.e., lies in E(u)"'(Lie G ® G ).

Proof. Choose an embedding o : Ko — F’. Without loss of generality, we
assume that o (E(u)) splits in F’ and write o (E(u)) = [[f—;(u — ¥; (7)) over
embeddings ¥; : K — F’ which extend o. Let C,; denote the o-component of C
under the decomposition of S [1/E(u)] asa W ®z,, F' = [[g,_, g F'-algebra.
We can furthermore compute the “pole” at ¥; (7)) by working in the completion
at u — ¥ (7r), which is isomorphic to F'[[¢]] with 1 = u — ; (7).

Let uy; € X«(GF) be the v;-component of p. Fix a maximal torus 7 of
G F/ such that py, factors through 7. The Cartan decomposition for G(F’((¢)))
combined with the assumption that Dss,., has type p implies that

Co = Bl',qui (t)Di»

where B; and D; are in G(F'[[t])) (see the discussion before Proposition 4.1.4 for
the definition of .y, (¢)). Finally, we compute that (dCy/du)C; ! equals

dB; __ dpy, (t) _ dD; __
BT+ AAB) [ T g, (07 ) AAB) | Ad(uy, 0)( = D7)

dt dt dt

We have (dB;/dt)B; I ¢ (LieG ® F'[[t]). Using a faithful representation on
which T acts diagonally, we have (duwy, (1)/dt) iy, (1)1 € (1/t)(Lie G ® F'[t]).
Finally, since py, is minuscule, Ad(uy,; (1))(X) € (1/1)(Lie G @ F'[t]) for any
X € Lie G so in particular for (dDi/dt)Di_l, by Proposition 4.1.4. O

Proof of Theorem 4.3.6. The faithfulness of A is clear. For fullness, let ‘,f?A
and ‘4’31/4 be in D2 (A) and let ¥ : P4 = P/, be an isomorphism of underly-
ing G-Kisin modules. To show Y is equivariant for the [-actions, we can iden-
tify PB4 and P, using ¥ and choose a trivializatiAon of P4. Then it suffices to
show tllat (B4. pg,) has at most one crystalline I'-structure. Let B; and B in
G(W(E™),) define the action of T with respect to the chosen trivialization of
©*(P4) for the two [-structures. By the crystalline property, B;(B.)~! € G(uP).
By Proposition 4.2.4, if Frobenius is given by C’ with respect to the trivialization,
then
B.(B)™' = C'o(B(B) ™) ()"

But then, by Lemma 4.3.11, B,(B;)_1 = [ since it is in G(ul’i) foralli > 1.
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We next attempt to construct a crystalline [-structure on any 4 € D“  (A).
Along the way, we will have to impose certain closed conditions on D%[F to make
our construction work. In the end, we will reduce to A flat over Z, to show that
these conditions are always satisfied. Fix a trivialization 84 of 34. We want ele-
ments {B,} € G(ﬁA) forall y € r satisfying the conditions of Proposition 4.3.10.
Choose an element y € T. Let C denote the Frobenius with respect to B4 and let
C’ = ¢(C) be the Frobenius with respect to 1 ® B4.

We use the topology on G(W(E),) induced from the topology on W(E)4 (see
the discussion before Definition 4.2.2). Take Bo = I. For all i > 1, define

Bi :=C'o(Bi—1)y(C") ' € GW(E) ). (4-3-12-1)

If P4 admits a [-structure, then the B; converge to By in G(ﬁA) or, equivalently,
in G(W(E)4).

Base case: By = C'y(C’)~! € G(u?). Let V be a faithful n-dimensional repre-
sentation of G such that 34 (1) has height in [a, b]. Set r = b —a. Consider C as
an element of GL, (S4[1/E(u)]) such that

C":= E(u)™°C e Mat,(S4) and D”:=Ew)?C™! € Mat,(&4)
with C”" D" = E(u)" I. Working in Mat,, (W(E)4), we compute that

C/)/(C/)_l _

= 1 " /4 _ —a b
I_w(E(u)—ay(E(u»b(C y(D") = E@) ™ y(E@)) 1)).

It would thus suffice to show u¢(t) E ()"~ divides C”y(D")—E (u) "%y (E (u))?1
in Mat,, (W(E 7)), as then u t divides
1
E(u)~y(Eu))®
using Lemma 4.3.1.
Consider P(u1,u2) = C”(u1)D"(uz), where we replace u by u; in C”, which
is in Mat, (&4), and u by up in D”. Let Pij(u1,uz) =Y 45¢ c,l(j (ul)ué‘ be the

(i, j)-th entry, where c,’cj (u1) is a power series in u; with coefficients in W ®z, A.
We have that P;j(u,u) = 6;; E(u)". The (i, j)-th entry of C"y(D") is

Pij(u. [elu) = > [el* e k.

k>0

(C"y(D") = Eu)™“y(E(u))°I)

where & = ({,i)i>0 is the sequence of p"-th roots of unity such that y(@/P"y =
§pnn1/ P" Note that ¢(t) divides [¢] — 1 since [e] =1 € I [I]W(E T) (see [Fontaine
1994, Proposition 5.1.3]) and ¢(%) is a generator for this ideal. Then

Pij(u. [eh) =Y (el = Dey o + 85 E(u)”

k>0
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Since u([g] — 1)E(u)"~! divides E(u)r E(u)_ y(E(u))b, it suffices to show
that u([e] — 1) E(u)"~! divides Y, ([e]k — l)c (u)u*. Using the Taylor expansion
forxk — 1 at x = 1, we have

k

e 1= 35 )@ -0

{=1
from which we deduce that
-1, 0—1 k4t
> (e = e @k =udlel - Y el -D T 3 (T el on
k>0 £>1 k>0
Since E(u) divides [¢] — 1, we are reducing to showing that

w (el ot

k>0

E(u)r —L

for 1 < £ <r — 1 where the expression on the right is exactly
Mﬁ_l(dePij(ul,uz) )
¢ duz e

Let (%1) be the condition that E(u)"~ —L divides d* Pij(uy, uz)/duz‘( for all

(i,j)and 1 <€ <r—1. This is a closed condition on Dg

Inductlon step: Let Py € DM . (A) satisfy (x1) with trivialization as above, so that
=C'y(C) ' e GuP). We have

Biy1B ' =Co(B;B)C.

As C =¢(C’), we can applyLemma43 11 to conclude that B 41 B;” leGu lerl)

ie., Bi+1B; =1 modgo(t)up W(E"')A Since W(E"‘)A is separated and
complete, lim B; = By € G(W(E"‘)A) and B, satisfies By y(C) = Co(By). Itis
easy to see that By,y'(By) = By, for any y and y’, by continuity, so we have a
[-action. If y € oo, then y acts trivially on &4 and so on C as well, so B, = I.

Let (x2) denote the condition that B, € G(ﬁA) for all y € I'. We claim this is
also a closed condition on D%F. Since W(E~ )/ RisZ p-flat, the sequence

0— Ry — W(E)g— (WET)/R) @2, 40

is exact for any A. Any flat module over an Artinian ring is free, so the vanishing
of an element f € (W(E )/ I/Q\) ®z, A is a closed condition on Spec A.

We have shown that any element 34 € D% (A) which satisfies (1) and (x2)
admits a crystalline [-structure and so lies in Dcm #(A). Tt suffices then to show
that the closed subgroupoid defined by the condifions (*1) and (%2) is all of D%
Recall that D”“ admits a formally smooth representable hull D (N) H = Spf R(N Dbt
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where R((l{?: ):1¢ is flat and reduced by Theorem 3.2.4 and Proposition 3.3.10. Since
R(]?F’) * is flat and R(N) "11/ p] is reduced and Jacobson, any closed subscheme of
Spec R( )M which contams Hom A(R(N) #_F’) for all F'/F finite is the whole
space. It sufﬁces then to show that, for any F’/F finite and A’ the ring of integers
of F’, every object of D“ (') satisfies (1) and (x2).

First, for (x1), choose y € T. Then set Qy(u) := (d*P;; (ul,uz)/du2|(u u))
which is in Mat, (S 4+) (we ignore ut=1 /¢! since we are in the torsion-free set-
ting). We can check that E(u)"~¢| Q4 (u), working over F’ = A’[1/p] or any
finite extension thereof. In particular, we can put ourselves in the situation of
Lemma 4.3.12. We compute then that

e
Qo) = (E(u)~ “C) (E(u)” h

— (Ew)™C) Z (,f;)de(”)b et
m=0

dum dut—m
V4 m b L—m o —1
l _,d™E(u) d C
- Z(ln)(E(u) T )(C dut-m )
m=0

Since E(u)" ™™ divides E(u)~% d™E(u)? /du™, it suffices to show that

dk -1
Y = E(u)k(C % ) € Mat,, (&)
du

for all k > 0 (applied with k = £—m). The case k = 0 is trivial. By Lemma 4.3.12,
Xc:=Eu)(dC/du)C™' = —Eu)C d(C~')/du is an element of Lie G ® S~
considered as subset of Lie(GL(V)) ® S~ so, in particular, Y; € Mat, (S f/). The
product rule applied to (d /du)(Eu)*C d*=1C~'/du) implies that

dE(u)

Y = ;_M(E(“)Yk—l)_k Y1+ Y1Ye1
s0, by induction on k, Yk € Mat, (& F/) for all k > 0.

For (x7), recall that R=R Ko N W(E *) (see p. 5 of [Liu 2010]) so it suffices
to show that By, € G(Rg, ®z, A’) or, equivalently, B, € GL,(Rg, ®z, A’) with
respect to V. Denote by My the Kisin module P A/(V) of rank n. Since ¢ (E (1))
is invertible in Sk, C’ lies in GL,(Sk, ®z » A’) and defines a Frobenius on the
Breuil module My := Sk, ®s,o My . Using a similar argument to above, one can
construct the monodromy operator Ny, on Jly inductively, taking No = 0 and
setting

. dc’ ., _
Nit1:= pC'o(N;i)(C) 1+”E(C') L (4-3-12-2)
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The sequence {N;} converges to an element of Mat, (u”Sk,). For each N;, let
N; be the induced derivation on Jly over —u d /du which, on the chosen basis, is
given by N;. Equation (4-3-12-2) is equivalent to

Nit1¢uy = pda, Ni. (4-3-12-3)

Let e(y) := y([x])/[rx]. Define a y-semilinear map B; on R, ®sy, My by

Bi(x) = ® (N’ (x)

5 (—loge(y))’
i

Jj=0 '

for all x € Jly . Equation (4-3-12-3) implies that

§i+1¢mv = du, Bi

By induction on i, one deduces that B; is exactly the y-semilinear morphism in-
duced by the matrix B; defined in (4-3-12-1).

If Ny, is the limit of the ]Vi and Ey is the y-semilinear morphism induced
by By, then we have the formula

Z (= 10g (J/))

B,(x):= ® N7 (x)

Jj=0
for all x € My . Working with respect to the chosen basis for Jily, we deduce that
By € GL, (R, ®z, A'), as desired. O

4.4. Applications to G-valued deformation rings. Let ij : 'x — G(F) be a con-
tinuous representation. As before, p is a minuscule geometric cocharacter of
Res( K®q, F)/F GF. Let RCrls " be the universal G-valued framed crystalline de-
formation ring with p-adic Hodge type p over Ay Let X ¢ris:l pe the projective
Rc-m’“ scheme as in Corollary 3.3.15. The following theorem on the geometry of
X5 ris, has a number of important corollaries. The proof uses the main results from
Sectlons 3.2 and 4.2. We can say more about the connected components when K
is unramified over Q, (see Theorem 4.4.6).

Theorem 4.4.1. Assume p t mq (Gder) Let |t be a minuscule geometric cocharacter
cris

ofReS(K®@ F)/FGF. Then X'fm’” is normal and X-

Corollary 4.4.2. Assume p }m1(G%). Let X Em  denote the fiber of X TS over
the closed point of Spec Rcm . The connected components of Spec Rms’”[l /Pl

cr1s,

o ® A Fru is reduced.

are in bijection with the connected components of X

Proof. By Theorem 2.3.12, Spec R%ﬂb’u[l/p] X‘Em’ﬂ[l/p] Since XCHS’M ®AFis
reduced by Theorem 4.4.1, the bijection between ¢ (X cris o [1/pD and o (X Sm )
follows from the “reduced fiber trick” [Kisin 2009, Corollary (2.4.10)]. O
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Remark 4.4.3. Theorem 4.4.1 and Corollary 4.4.2 hold for unframed G-valued
crystalline deformation functors when they are representable, by exactly the same
arguments.

Before we begin the proof, we introduce a few auxiliary deformation groupoids.
The relationship between the various deformation spaces is described in (4-4-5-1).
Let D%:' be the deformation functor of 7, so D,-?(A) is the set of homomorphisms
n: 'k — G(A) lifting 7. Let Pr be the G-Kisin module associated to a F-point X
of X"

]

Definition 4.4.4. Define D )[-Ca’b] (A) to be the category of triples

{(n4.%B4.84) | 14 € D5(A), PBa € DY), 84 Tg,6,(PBa) = nalr -

Let ‘.]A3[F denote a crystalline f‘ structure on ‘Pr together with an isomorphism
TG [F(‘B[F) =~ 7. Define DCrls #.0 (A) to be the category of triples

{(14,Ba,84) | na € DD(A) P € Dcns “(A), 84: TG, 4(Ba) = 4}

Proposition 4.4.5. For any By, the forgetful functor from D;ls’“ B o D[a b1
fully faithful.

Proof. One reduces immediately to the case of GL,, and then we have the following
more general fact: Choose any 55?;1, My € Mod%’fh’r. Let f: 9, — My be a
map of underlying Kisin modules such that T, (f) is I'k-equivariant (under the
identification YA“G 4 = Ts,). Then f is a map of (¢, f‘)—modules. This is proven in
[Ozeki 2013, Corollary 4.3] when height is in [0, /], but can be easily extended to
bounded height. The key input is a weak form of Liu’s comparison isomorphism
[2007, Proposition 3.2.1], which is also in [Levin 2013, Proposition 9.2.1]. O

The diagram below illustrates some of the relationships between the different
deformation problems. The diagonal maps on the left and the map labeled sm are
formally smooth. Maps labeled with ¢ ~ indicate that the complete stalk at a point
of the target represents that deformation functor. The horizontal equivalences are
consequences of Theorem 4.3.6 and the proof of Theorem 4.4.1, respectively.

(oo) “w cm Ly D cns u X;ris,u
/ \ \ [ f (4-4-5-1)
Du DCT]S L D[a b] X[a b]

Proof of Theorem 4.4.1. Let X be a point of the special fiber of X crisl defined over
a finite field F’. Since X5 cris 4 [1/p] = Spec chs 1/ plis formally smooth over F
[Balaji 2012, Propos1t10n 4.1.5], it suffices to show that the completed stalk @“
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at x is normal and that @ ® Ary Fiug 1s reduced. To accomplish this, we compare
@“ with D’é from Sectlon 3.3 and then use as input the corresponding results for
the local model M ().

These properties can be checked after an étale extension of A). RC-rls com-
mutes with changing coefficients using the abstract criterion in [Chai et al. 2014,
Proposition 1.4.3.6] as does the formation of X 5K by Proposition 2.3.5. We can
assume then, without loss of generality, that A Apyy and F' = F. Let ‘B be
the G-Kisin module defined by x. Since p is minuscule, X crisf — X cris, <1 (see
Proposmon 4.1.3).

Since @’-}“ is nonempty and A-flat (assuming that R is nonempty), it has
an F’-point for some finite extension F’/F. Any such point gives rise to a crys-
talline lift p of X to Op- such that the unique Kisin lattice in M ¢ 0, (p) reduces
to Br F F’. Replace I’ by F. Then, by Proposition 4.3.5, the corresponding
G(@ F)-valued representation is isomorphic to TG 0pr (‘BO ) for some crystalline
(o, F) module with G-structure. Reducing modulo the maximal ideal, we obtain
a crystalline [-structure ‘,]3[F on Pr. By Proposition 4.4.5, this is the unique such
structure. '

Recall the deformation problem D)C-CHS’“ from Corollary 3.3.15 and D )[-Ca’b] from
Definition 4.4.4. The natural map

cris, b

cris, b [a,b]
D — ch

%
is a closed immersion (by Theorem 2.3.12). By Corollary 3.3.15, Spf @’-L is closed

Dcirls,u

Fix the isomorphism B¢ : Tg¢(Pr) 2 7. Consider the groupoid D{; T

Definition 4.4.4. There is a natural morphism from D&is#H to D[ ], given by
forgetting the [-structure. By Proposition 4.4.5, thls?norphlsm is fully faithful,
hence a closed immersion by considering tangent spaces.

We claim that

cris, ;0,0 I
S = sprof

F

as closed subfunctors of D )[-Ca’b]. Since they are both representable, we look at their
F’-points for any finite extension F’ of . By Theorem 4.2.7 and Corollary 3.3.15,

DEMUE(F!) = DY (F!) = SprOg (F').
Since 0% is A-flat and 0%[1/ p] is formally smooth over F, we deduce that

Spt0f c DE™IE.
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Finally, DCHS’“ ‘H is formally smooth over D““ , by Theorem 4.3.6. By (3-3-9-2),
there is a dlagram

Spf S*

PN

cris, ., 5“
Br

where S# €% A and both morphisms are formally smooth (Qy is as in Section 3.2).
The functor D’“QL is represented by a completed stalk R‘é on M (). In particular,

R’é is A-flat so the same is true of D;lS .0 . Thus,
F

cris, i, __ o
2 = Spf 0%

F

By Theorem 3.2.4, R‘é is normal and Cohen—Macaulay, and R‘é ® Fis reduced,

so the same holds true for 0%
O

Theorem 4.4.6. Assume K /Q,, is unramified, p > 3, and p } 71(G*). Then the
universal crystalline deformation ring R%ﬁs’“ is formally smooth over Ay,).

Proof. First, replace A by Ay,). Without loss of generality, we can assume that
F contains all embeddings of K, since this can be arranged by a finite étale
base change. When K/Q, is unramified, GrE(“)’ is a product of [K : Q]
copies of the affine Grassmannian Grg (see [Levm 2013, Proposition 10.1.11]). If

= (Uy)y:k—F then M(u)fF = ]_[w S(py ), where S(uy ) are affine Schubert
varieties of Grg,.. Under the assumption that p } 71 (G9), there is a flat closed
A-subscheme of Grg which, abusing notation, we denote by S(jty ), whose fibers
are the affine Schubert varieties for (ty (see Theorem 8.4 in [Pappas and Rapoport
2008], especially the discussions in §§8.e.3-8.e.4). Thus,

M= [] S
v:K—F
Since jy is minuscule, S(uy ) is isomorphic to a flag variety for G, hence M (i)
is smooth (see Proposition 4.1.3). The proof of Theorem 4.4.1 shows that the local
structure of X criss g smoothly equivalent to the local structure of M (). Thus,
e g formally smooth over A.
Finally, we have to show that

O: X;ris’” — Spec RC-rlb

cris, /b -

is A-flat, it suffices

cris u,

is an isomorphism. Since ®[1/ p] is an isomorphism and R
to show that ® is a closed immersion. Let mg be the maxunal ideal of R
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Consider the reductions
. yeris, i cris, i
®n: X5, — Spec R} /m'g.

We appeal to an analogue of Raynaud’s uniqueness result [1974, Theorem 3.3.3]
for finite flat models. For any Artin local Z p-algebra A and any finite A-algebra B,
let B and P, be two distinct points in the fiber of O, over x : R%“S’” — A, ie.,
G-Kisin lattices in Py ®4 B. Let 12 denote the adjoint representation of G. Under
the assumption that p > 3, [Liu 2007, Theorem 2.4.2] (which generalizes Ray-
naud’s result) implies that 4 (V) = U (V2d) as Kisin lattices in (Py®4B)(V9),
using that p is minuscule.

Since B is Artinian, without loss of generality we can assume it is local ring.
Choose a trivialization of Pp. There exists g € G(Og,p) such that P = g -Pp
(working inside the affine Grassmannian as in Theorem 2.3.2). The results above
implies that Ad(g) € G*(&,). By assumption, Z := ker(G — G) is étale
so, after possibly extending the residue field F, we can lift Ad(g) to an element
g €G(Sy)suchthat g =gz, where z € Z (0%, 4). We want to show that z € Z(Gy4).
We can write Z as a product Zys X (G)® for some s > 0. Since Zos has order
prime to p by assumption, Ziors (@%,A) = Ziors (GA)e SO We can assume

2 € (Gm(05,4))° = (A ®z, W)(W)*)".

For any embedding v : W — OFf, we associate to z the s-tuple Ay of integers
of the degrees of the leading terms of each component base changed by . To
show that Ay, = 0, we can work over A/my4 = F. We think of A as a cocharacter
of Z. Consider the quotient of G by its derived group Z’ := G/G%". The map
X«(Z) — X«(Z') is injective. Any character y of Z’ defines a one-dimensional
representation L, of G so, in particular, we can consider B (L) and P (L)
as Kisin lattices in Py (L ). Writing Gf = @sz ~ 0y F[uy ], a Kisin lattice of
Pyx(Ly) has type (hy) exactly when ¢p, (e) = (ayu”?)e for a basis element e
and ay, € F. Since both P and P have type 11, ‘Pp (L) and P’ (L) both have
type hy 1= (¥, ;ty'). However, a direct computation shows that 3% (L) has type
hy + (x. pAy’ — Ay), where ' = @ o . Thus, Ay, = pAys. We deduce that
plEQrly = Ay and so Ay = 0.

We are reduced to the following general situation: X — Spec A is proper mor-
phism which is injective on B-points for all A-finite algebras B, where A4 is a
local Artinian ring. By consideration of the one geometric fiber, X — Spec A4 is
quasifinite, hence finite. Thus, X = Spec A’. By Nakayama, it suffices to show
A/my — A’ /(my)A’ is surjective so we can assume A = k is a field. Surjectivity
follows from considering the two morphisms A" = A" ®; A’, which agree by
injectivity of X — Spec 4 on A-finite points. O
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