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We prove that the higher Frobenius–Schur indicators, introduced by Ng and
Schauenburg, give a strong-enough invariant to distinguish between any two
Tambara–Yamagami fusion categories. Our proofs are based on computation of
the higher indicators in terms of Gauss sums for certain quadratic forms on finite
abelian groups and rely on the classification of quadratic forms on finite abelian
groups, due to Wall.

As a corollary to our work, we show that the state-sum invariants of a Tambara–
Yamagami category determine the category as long as we restrict to Tambara–
Yamagami categories coming from groups G whose order is not a power of 2.
Turaev and Vainerman proved this result under the assumption that G has odd
order, and they conjectured that a similar result should hold for groups of even
order. We also give an example to show that the assumption that |G| is not a
power of 2 cannot be completely relaxed.

1. Introduction

Fusion categories (see [Etingof et al. 2005]) occur in various branches of mathe-
matics: low-dimensional topology, subfactors, and quantum groups, to name a few.
Classification of fusion categories, although currently out of reach in general, is
a main driving question in the area. A natural method for classifying objects in
mathematics is via numerical invariants. Ng and Schauenburg [2007b] introduced
a class of invariants of spherical pivotal fusion categories (to be simply called
spherical categories) called the higher Frobenius–Schur indicators. Let C denote
a spherical category. For each simple object V of C and each integer k ≥ 1, Ng
and Schauenburg define a complex number νk(V ), called the k-th indicator of V .
These build on and generalize many previous works, e.g., [Bantay 1997; Fuchs
et al. 1999; Fuchs and Schweigert 2003; Kashina et al. 2006; Linchenko and
Montgomery 2000; Mason and Ng 2005]; we refer the reader to the introduction
of [Ng and Schauenburg 2007b] for more details. For k = 2, these invariants
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generalize the classical Frobenius–Schur indicator of a finite group representation.
The Frobenius–Schur indicators of the simple objects of C can be used to define the
Frobenius–Schur exponent of C, denoted FSexp(C). When C is the representation
category of a quasi-Hopf algebra, FSexp(C) is equal to exp(C) or 2 exp(C) [Ng and
Schauenburg 2007a, Theorem 6.2] where exp(C) denotes the exponent of C in the
sense of Etingof et al. (see [Etingof 2002] and its references).

The higher indicators are powerful tools for studying pivotal categories. For
example, they were used in [Ng and Schauenburg 2010] to prove that the projective
representation of SL2(Z) obtained from a modular tensor category factors through
a finite quotient SL2(Z/nZ) for some n. In this article, we demonstrate that the
numbers νk(V ), as k varies over natural numbers and V varies over the set of
simple objects of C, give a strong-enough numerical invariant of C that is able to
distinguish between any two spherical categories in an interesting class, known as
Tambara–Yamagami categories (TY-categories for short).

Susan Montgomery has asked whether the FS-indicators of a semisimple Hopf
algebra determine the tensor category of its representations. This was shown to
be true for the class of semisimple Hopf algebras of dimension 8 in [Ng and
Schauenburg 2008]. The representation categories of these Hopf algebras are TY-
categories. Kashina et al. [2012] showed that, for the class of nonsemisimple Hopf
algebras called Taft algebras, the second indicator can distinguish between the
finite tensor categories of their representations. Along similar lines, Siu-Hung Ng
(private communication) has asked whether a spherical fusion category generated
by a simple object is completely determined by its FS-indicators. Our results give
an affirmative answer to this question for the class of TY-categories.

Let G be a finite group. Let S be a finite set that contains G and one extra
element, denoted m. Consider the following fusion rule on S:

g⊗ h = gh, m⊗ g = g⊗m = m, m⊗m =
⊕
x∈G

x for all g, h ∈ G.

Tambara and Yamagami [1998] classified all fusion categories that have the above
fusion rule; for a conceptual proof of this classification, see [Etingof et al. 2010,
Example 9.4]. Such fusion categories exist only if G is abelian and are classified by
pairs (χ, τ ) where χ :G×G→C∗ is a nondegenerate symmetric bicharacter on G
and τ is a square root of |G|−1. For each tuple (G, χ, τ ) as above, there exists a
spherical category, denoted TY(G, χ, τ ). Two TY-categories C = TY(G, χ, τ ) and
C′ = TY(G ′, χ ′, τ ′) are isomorphic as spherical categories if and only if τ = τ ′

and (G, χ)' (G ′, χ ′), that is, there exists an isomorphism f : G→ G ′ such that
χ ′( f (x), f (y)) = χ(x, y) for all x, y ∈ G. Let Irr(C) = G ∪ {mC} be the simple
objects of C. There is a canonical (spherical) pivotal structure on C such that the
pivotal dimension of an object matches the Frobenius–Perron dimension. For an
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object V of C, let pdim(V ) denote its pivotal dimension for this canonical pivotal
structure.

We shall prove the following theorem:

Theorem 1.1. Let C and C′ be two TY-categories. If∑
V∈Irr(C)

νk(V )=
∑

V∈Irr(C′)

νk(V ),∑
V∈Irr(C)

pdim(V )νk(V )=
∑

V∈Irr(C′)

pdim(V )νk(V )

for all k ≥ 1, then C ' C′ as spherical fusion categories.

Now we shall describe our plan for the proof of this theorem and give a sum-
mary of contents of the sections. Let C = TY(G, χ, τ ) and C′ = TY(G ′, χ ′, τ ′)
be two TY-categories. Assuming G and G ′ are nontrivial groups, the assump-
tions of Theorem 1.1 are quickly seen to be equivalent to νk(mC) = νk(mC′) and∑

x∈G νk(x)=
∑

x∈G ′ νk(x). Based on work done in [Shimizu 2011], we can easily
conclude that G ' G ′ and τ = τ ′. Most of our work goes into showing that, if
νk(mC)= νk(mC′) for all k, then (G, χ)' (G, χ ′). Shimizu [2011, Theorems 3.3
and 3.4] calculated νk(mC) using an expression for the indicator in terms of the
twist of the Drinfeld center of C [Ng and Schauenburg 2007a, Theorem 4.1]. This
project started for us when Siu-Hung Ng asked us whether the 8-th root of unity in
[Shimizu 2011, Theorem 3.5] is related to the signature modulo 8 for some related
lattice. This indeed turns out to be the case. A simple restatement of Shimizu’s
result gives us a formula relating the indicators ν2k(mC) to certain quadratic Gauss
sums; see Lemma 4.1. This formula is the starting point for our calculations, and
we want to explain it in precise terms. For this, we need some notation.

Let G be an abelian group, always written additively in this paper unless otherwise
stated. Let q :G→Q/Z be a quadratic form on G. Given a pair (G, q), one defines
the associated quadratic Gauss sum

2(G, q)= |G|−1/2
∑
x∈G

e(q(x)), where e(x)= e2π i x . (1)

For k ∈ Z, it will be also convenient to define the invariant

ξk(G, q)=2(G, q)k2(G,−k · q). (2)

Let C = TY(G, χ, τ ) be a TY-category where (G, χ, τ ) is a triple as above. We
choose a quadratic form q on G such that χ(x, y) = e(−∂q(x, y)) where ∂q :
G×G→Q/Z denotes the symmetric Z-bilinear form

∂q(x, y)= q(x + y)− q(x)− q(y). (3)
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One can show that such a q always exists. In Lemma 4.1, we prove that for k ≥ 1

ν2k(mC)= sign(τ )kξk(G, q).

Much of the calculation in Sections 3 and 5 is geared towards finding explicit
formulae for ξk(G, q) by using the classification of the irreducible quadratic forms
and the known values of Gauss sums of these irreducible forms. The calculations
are more complicated when G is a 2-group, which is a well known feature in the
theory of quadratic forms on finite abelian groups. When G is a 2-group, and v2(k)
(the two-valuation of k) is at least 1, we relate ξk(G, q) to an invariant σv2(k)(∂q) of
the pair (G, ∂q) (see Lemma 3.8). The invariant σn(∂q) is a generalization of the
Kervaire–Brown–Peterson–Browder invariant [Brown 1972; Kawauchi and Kojima
1980, p. 33]. Detailed calculation of the values of the Gauss sums and properties of
the invariant σn(∂q) lets us conclude that the bicharacter χ can be recovered from
values of the Gauss sums, thus proving our theorem.

Sections 2 through 4 contain preparatory material. In Section 2, we collect the
background material necessary for quadratic and bilinear forms on finite abelian
groups and their classification. The results here are mostly due to C. T. C. Wall
[1963]; also see [Miranda 1984; Kawauchi and Kojima 1980; Nikulin 1979],
wherein the proofs can be found. However, we have chosen to include the proofs
of most of what we need in the detailed Appendix. In particular, we give a proof
of the existence part of Wall’s theorem (see Theorem 2.1) on the classification of
nondegenerate quadratic and bilinear forms on finite abelian groups. We have ex-
plained our reason for including the Appendix in Section 2, following the statement
of Theorem 2.1.

Section 3 contains the background on values of Gauss sums and calculation
of ξk(G, q) in various cases. Section 4 introduces the TY-categories and relates
the indicator values ν2k(C) with Gauss sums. With these preparations, we prove
Theorem 1.1 in Section 5.

Finally, in Section 6, we apply Theorem 1.1 to address a recent conjecture
[Turaev and Vainerman 2012] regarding 3-manifold invariants constructed from
TY-categories. Given a compact 3-manifold M and a spherical category C, one
can define an invariant |M |C , called the state-sum invariant in that paper. Turaev
and Virelizier [2013] showed that |M |C = τZ(C)(M), where Z(C) is the Drinfeld
center of C and τZ(C)(M) denotes the Reshetikhin–Turaev invariant. For k ≥ 1,
let Lk,1 = {(z1, z2) ∈ C2

: |z1|
2
+ |z2|

2
= 1}/〈(z1, z2) ∼ e2π i/k(z1, z2)〉 denote the

lens spaces. In Theorem 6.3, we show that a TY-category C = TY(G, χ, τ ) is
determined by the sequence of state-sum invariants {|Lk,1|C : k ≥ 1} as long as
we restrict to categories such that |G| has an odd factor. Turaev and Vainerman
proved this result assuming that |G| is odd and conjectured that a similar result
should hold for groups of even order. In Section 6, we exhibit two nonisomorphic
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tuples (G, χ, τ ) and (G ′, χ ′, τ ′) such that |Lk,1|TY(G,χ,τ ) = |Lk,1|TY(G ′,χ ′,τ ′) for
all k. In our example, both G and G ′ have order 64. This example demonstrates
that one needs to put some hypothesis on the possible orders of G or else consider
state-sum invariants of other 3-manifolds if one has to recover the category from
the data of these invariants.

Quadratic and bilinear forms on finite abelian groups appear in various places in
topology and geometry. We give some examples:

• The “torsion linking pairing” on the torsion part of the n-th integral homology
of a (2n+1)-dimensional real compact manifold coming from Poincaré duality
and intersection pairing, for example [Kawauchi and Kojima 1980]. For 3-
manifolds, we get a pairing on the torsion 1-cycles related to the linking number.
For this reason, discriminant forms are called linking pairs in that paper.

• Intersection pairing on the torsion part of middle cohomology of a (4n+ 2)-
dimensional manifold and computation of Kervaire–Arf invariants [Brown
1972].

• Study of integral lattices coming from algebraic geometry, for example study
of K3 surfaces [Nikulin 1979]. Let G be a finite abelian group and b be a
nondegenerate symmetric bilinear form on G. For each pair (G, b), there exists
a pair (L , B), where L 'Zn and B : L× L→Z is a nondegenerate symmetric
Z-bilinear form such that G = L ′/L and b is the Q/Z valued form induced
on L ′/L by B; here L ′ denotes the dual lattice of L . For this reason, we have
borrowed the name “discriminant form” from [Nikulin 1979] for pairs (G, b).

We hope that the methods of calculation of Gauss sums will have other uses in
computations of Gauss sums coming from the above sources.

2. Bilinear and quadratic forms on finite abelian groups

Definitions. Let G be a finite abelian group (written additively). Let exp(G) denote
the exponent of G. A discriminant form is a pair (G, b) where G is a finite abelian
group and b : G × G → Q/Z is a symmetric bilinear form on G. As all the
bilinear forms considered in this article are symmetric, the adjective “symmetric”
will sometimes be dropped. Say that b or (G, b) is nondegenerate if for each
nonzero x ∈ G there exists y ∈ G such that b(x, y) 6= 0.

Let G be a finite abelian group and q be a quadratic form on G. We say that the
pair (G, q) is a premetric group. We say that q is nondegenerate and (G, q) is a
metric group if the bilinear form ∂q (see (3)) is nondegenerate.

The morphisms in the categories of discriminant forms and premetric groups are
defined as usual. Isomorphisms are often called isometries. There is an obvious
notion of an orthogonal direct sum on discriminant forms and premetric groups.
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If (G1, q1) and (G2, q2) are two premetric groups, we let (G1, q1) ⊥ (G2, q2)

denote their orthogonal direct sum. The map (G, q) 7→ (G, ∂q) defines a functor
from the category of premetric or metric groups to the category of discriminant or
nondegenerate discriminant forms, respectively.

Remark. Let G be a finite abelian group. Note that a bilinear form on G takes
values in exp(G)−1Z/Z. Let (G, q) be a premetric group. Let a ∈ G. Note that
∂q(a, a) = 2q(a), and so q takes value in (2 exp(G))−1Z/Z. If G has odd order,
then a = 2( 1

2(exp(G)+1))a. So q(a)= 1
2(exp(G)+1)∂q(a, a). Hence, q actually

takes values in exp(G)−1Z/Z and ∂q determines q. But this fails for groups of
even order. For example, consider the nondegenerate bilinear form on Z/4Z given
by b(x, y)= xy/4. Then q(x)= x2/8 and q ′(x)= 5x2/8 are two distinct quadratic
forms on Z/4Z such that ∂q = ∂q ′ = b.

Definitions. Let p be a prime. If a is a rational number, vp(a) will denote the
p-valuation of a. It will be convenient to extend the definition of p-valuation as
follows. Let G be an abelian p-group. Define vp : G→ Z≤0 ∪ {∞} by vp(x) =
− logp(order(x)) if x is a nonzero element of G, and vp(0) = ∞. We say that
vp(x) is the p-valuation of x .

This definition of p-valuation is useful to us because of the following example.
Let Q(p) be the ring of all rational numbers of the form m/pr where m ∈ Z

and r ∈ Z≥0. If (G, q) is a premetric p-group, then observe that q and ∂q take
values in the Z-module Q(p)/Z. If α is a nonzero element of Q(p)/Z, then it can be
written as p−na for some a ∈ Z relatively prime to p. One has vp(α)=−n.

Let (G, b) be a discriminant form. Let e1, . . . , ek ∈ G and bi j = b(ei , e j ).
The matrix B = ((bi j )) is called the Gram matrix of e1, . . . , ek . We shall write
Gramb(e1, . . . , en)= B. One has

b
(∑

i

gi ei ,
∑

j

h j e j

)
= (g1, . . . , gk)B(h1, . . . ,hk)

tr, g1, . . . , gk,h1, . . . ,hk ∈Z.

A discriminant form or premetric group is called irreducible if it cannot be written
as an orthogonal direct sum of two nonzero discriminant forms or premetric groups,
respectively. A finite abelian group is homogeneous if it is isomorphic to (Z/pr Z)n

for some prime p and positive integers r and n. For a p-group G, we let rk(G)
denote the minimum number of generators for G or equivalently dimFp(G/8(G))
where 8(G) is the Frattini subgroup of G. In particular,

rk((Z/pr Z)n)= n.

An element of (Z/pr Z)n will often be written as a vector whose entries come
from Z/pr Z. A discriminant form on a homogeneous finite abelian group will be
often written as ((Z/pr Z)n, B) where B is an n×n matrix with entries in p−r Z/Z
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name in [Miranda 1984] (G, q) (G, ∂q)

Apr

(
Z/pr Z, q(x)=

(pr
+1)/2
pr

x2
) (

Z/pr Z,
1
pr

)
Bpr

(
Z/pr Z, q(x)=

u p(pr
+1)/2

pr
x2
) (

Z/pr Z,
u p

pr

)
A2r

(
Z/2r Z, q(x)=

1
2r+1 x2

) (
Z/2r Z,

1
2r

)
B2r

(
Z/2r Z, q(x)=

−1
2r+1 x2

) (
Z/2r Z,

−1
2r

)
C2r

(
Z/2r Z, q(x)=

5
2r+1 x2

) (
Z/2r Z,

5
2r

)
D2r

(
Z/2r Z, q(x)=

−5
2r+1 x2

) (
Z/2r Z,

−5
2r

)
E2r

(
(Z/2r Z)2, q(x1, x2)=

x1x2

2r

) (
(Z/2r Z)2,

( 0
2−r

2−r

0

))
F2r

(
(Z/2r Z)2, q(x1, x2)=

x2
1+x1x2+x2

2

2r

) (
(Z/2r Z)2,

( 21−r

2−r
2−r

21−r

))
Table 1. Irreducible quadratic and symmetric bilinear forms. In the
first two rows, p represents an odd prime. For the prime 2 and for r = 1
or 2, some of the forms above are isometric. For example, A2 ' C2.

such that b(x, y) = x Bytr for all x, y ∈ (Z/pr Z)n . Let p be an odd prime and
u p denote a quadratic nonresidue modulo p. Table 1 lists the irreducible metric
groups (G, q) and corresponding irreducible discriminant forms (G, ∂q).

Theorem 2.1 [Wall 1963; Miranda 1984; Nikulin 1979]. (a) Each nondegenerate
discriminant form is an orthogonal direct sum of the irreducible discriminant
forms listed in Table 1.

(b) Each metric group is an orthogonal direct sum of the irreducible metric groups
listed in Table 1.

It follows that, given any nondegenerate symmetric bilinear form b on a finite
abelian group G, there exists a quadratic form q on G such that ∂q = b.

A proof of Theorem 2.1 has been sketched in the Appendix. Here we shall only
give a brief indication of our argument. This argument seems to be different from
the proofs in the references above, and we believe it is simpler. It is probably well
known to experts, but we have not seen it in the literature.

Let (G, b) be a discriminant form. Write G =
⊕

p G(p) where G(p) is the p-
Sylow subgroup of G. Let b(p) be the restriction of b to G(p)×G(p). Clearly (G, b)
is an orthogonal direct sum of (G(p), b(p)) as p varies over primes. So it suffices to
decompose (G, b) into irreducibles when G is a p-group for some prime p.
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Let G be a finite abelian p-group and b be a nondegenerate symmetric bilinear
form on G. The algorithm for decomposing (G, b) into irreducibles boils down
to diagonalizing symmetric matrices with entries in Q(p)/Z via conjugation. The
algorithm for diagonalization is the same as the well known algorithm for diagonal-
izing quadratic forms over p-adic integers; see for example [Conway and Sloane
1999, Chapter 15, §4.4]. This algorithm is the core of our argument. We repeat
that we could not find this argument in literature for bilinear forms on finite abelian
groups. This is our first reason for including the Appendix. A second reason is that
the argument is constructive, and so it can be useful in actually decomposing given
bilinear forms over finite abelian groups into irreducibles. A third reason is that part
(b) of Theorem 2.1 as well as Lemma 2.2 (which we need in our arguments) are not
explicitly stated in [Wall 1963]. They can probably be extracted from the arguments
in [Wall 1963] or [Miranda 1984; Nikulin 1979]. But this might require some work
mainly because each paper has its own rather complicated set of notations.

The following lemma, describing the nondegenerate quadratic forms on (Z/2r Z)2,
is essential to the proof of Theorem 2.1. It is stated here because we shall also use
it in the computation of some Gauss sums. It can be proved using Hensel’s lemma.
A proof is given in the Appendix.

Lemma 2.2. Set G= (Z/2r Z)2 and let q be an irreducible nondegenerate quadratic
form on G. Then there exist integers A, B,C with B odd such that q(x1, x2) =

2−r (Ax2
1 + Bx1x2 + Cx2

2). If AC is even, then (G, q) ' ((Z/2r Z)2, x1x2/2r ).
Otherwise, (G, q)' ((Z/2r Z)2, (x2

1 + x1x2+ x2
2)/2

r ).

3. Gauss sums and related invariants of a quadratic form

Let G be a finite abelian group and q : G→ Q/Z be a quadratic form on G. In
Section 1, we defined the quadratic Gauss sums 2(G, q) and the related invariant
ξk(G, q); see (1) and (2). In this section, we shall compute the invariants 2(G, q)
and ξk(G, q) for various pairs (G, q). One verifies that 2 is multiplicative, that is,

2((G1, q1)⊥ (G2, q2))=2(G1, q1)2(G2, q2).

In the same sense, ξk is also multiplicative. We start with the following well known
result. The proof is omitted.

Theorem 3.1. (a) Let χ : G→ C∗ be a character on G. Then
∑

x∈G χ(x)= |G|
if χ = 1 and

∑
x∈G χ(x)= 0 otherwise.

(b) If q is a nondegenerate quadratic form on G, then2(G, q)2(G,−q)= 1 and,
in particular, |2(G, q)|2 = 1.

The next lemma gives the values of the Gauss sums of irreducible nondegenerate
forms.
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Lemma 3.2. (a) Let p be an odd prime and α be an integer relatively prime to p.
Then

2
(
Z/pr Z, α(pr

+ 1)x2/2pr)
=

(2α
p

)r
εpr ,

where
( 2α

p

)
denotes the Legendre symbol and εm = 1 if m ≡ 1 mod 4 and

εm = i if m ≡ 3 mod 4.

(b) Let α be an odd integer. Then

2(Z/2r Z, αx2/2r+1)= (−1)r(α
2
−1)/8e(α/8).

(c) Let α, β, and γ be integers with β odd. Then

2((Z/2r Z)2, (αx2
1 +βx1x2+ γ x2

2)/2
r )= (−1)αγ r .

Proof. For part (a), see for example [Iwaniec and Kowalski 2004, p. 52]. Let Gr

and G ′r denote the left-hand sides of the formulae in parts (b) and (c), respectively.
Then one verifies that Gr = 2Gr−2 and G ′r = 4G ′r−2 for r > 2. Parts (b) and (c)
now follow by induction once the formulae for r = 1 and 2 are verified. �

Since 2 is multiplicative, one can calculate the Gauss sums of arbitrary non-
degenerate forms by first decomposing the forms into orthogonal direct sums of
irreducible forms and using Lemma 3.2. We will also need to compute the Gauss
sums of some singular forms. This is the purpose of the lemma below.

Lemma 3.3. (a) Let p be a prime. Let G = (Z/pr Z)n , and let q be a p−r Z/Z-
valued quadratic form on G. Let 0 ≤ s ≤ r . Then psq induces a quadratic
form on G/pr−s G and

2(G, psq)= psn/22(G/pr−s G, psq).

(b) Let α be an odd integer. Then one has

2

(
Z/2r Z, 2s

·
αx2

2r+1

)
=


2s/2(−1)(r−s)(α2

−1)/8e(α/8) if 0≤ s < r ,
0 if s = r ,

2r/2 if s > r .

Proof. (a) If x ≡ x ′ mod pr−s G, then psq(x)= psq(x ′) since q and ∂q take values
in p−r Z/Z. So psq(x) induces a form on G/pr−s G. One has

|G|1/22(G, psq)=
∑
x∈G

e(psq(x))= |pr−s G|
∑

y∈G/pr−s G

e(psq(y))

= |pr−s G||G/pr−s G|1/22(G/pr−s G, psq).

Part (a) follows since |pr−s G| = psn .
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(b) First suppose r − s ≥ 1. Note that, if y ≡ x mod 2r−s , then αy2/2r−s+1
≡

αx2/2r−s+1 mod Z. So

2r/22

(
Z/2r Z, 2s

·
αx2

2r+1

)
=

2r
−1∑

x=0

e
(
αx2

2r−s+1

)

= 2s
2r−s
−1∑

x=0

e
(
αx2

2r−s+1

)
= 2(r+s)/22

(
Z/2r−sZ,

αx2

2r−s+1

)
.

Part (b) now follows from Lemma 3.2 for 0≤ s < r . Now let s = r . Note that, if
y ≡ x mod 2, then αx2/2≡ αy2/2 mod Z. So

2r/22

(
Z/2r Z, 2s

·
αx2

2r+1

)
=

2r
−1∑

x=0

e(αx2/2)= 2r−1
1∑

x=0

e(αx2/2)= 0.

For s > r , the quadratic form we have is identically equal to 0, so the result is
obvious. �

Lemma 3.4. Let p be an odd prime, and let both r and k be positive integers. Let
q1 and q2 be the two nonisometric nondegenerate quadratic forms on G = Z/pr Z.
Then

ξk(G, q1)= (−1)ε
k
p,r ξk(G, q2)

where εk
p,r = r(k+ 1)−min{r, vp(k)}.

Proof. There are only two distinct nondegenerate quadratic forms on G; see Table 1.
Without loss of generality, we may thus assume that q j (x) = u j (pr

+ 1)x2/2pr

for j = 1, 2, where u1 = 1 and u2 = u p is a quadratic nonresidue modulo p.
Lemma 3.2(a) implies 2(G, q1)= (−1)r2(G, q2). If vp(k) > r , the lemma holds
by the fact that 2(G,−kq)=

√
|G|.

Now assume 0≤ vp(k)≤ r . Write s = vp(k) and −k = psa with a ∈Z relatively
prime to s. Then 2(G,−kq j ) is equal to

2(G, psaq j )= ps/22(Z/pr−sZ, psau j (pr
+ 1)x2/2pr )

= ps/22(Z/pr−sZ, (pr−s
+ 1)au j x2/2pr−s).

The first equality follows from Lemma 3.3(a). For the second, we need to observe
that the quadratic forms (pr−s

+1)αx2/2pr−s and (pr
+1)αx2/2pr−s are identical

on Z/pr−sZ. From Lemma 3.2(a), we have

2
(
Z/pr−sZ, (pr−s

+ 1)au px2/2pr−s)
= (−1)r−s2

(
Z/pr−sZ, (pr−s

+ 1)ax2/2pr−s),
which implies 2(G,−kq2) = (−1)r−vp(k)2(G,−kq1). The lemma follows once
we recall that 2(G, q1)= (−1)r2(G, q2). �
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Next, we shall introduce an invariant σk(b) of a discriminant form (G, b) defined
in [Kawauchi and Kojima 1980] and in Lemma 3.6 compare it to our Gauss sums
(discriminant forms are called linking pairs in [Kawauchi and Kojima 1980]).

Definitions. For the convenience of the reader, we shall recall some of the defi-
nitions from [Kawauchi and Kojima 1980; Wall 1963]. Let G be a finite abelian
group. Let

G[n] = {x ∈ G : nx = 0}

denote the n-torsion subgroup of G. Let p be a prime. Then G(p) =
⋃

n G[pn
] is

the p-Sylow subgroup of G. For k ≥ 1, define

G̃k
p = G[pk

]/(G[pk−1
] + pG[pk+1

]).

Take a decomposition of G into a direct sum of cyclic groups of prime power
order. If such a decomposition has n factors isomorphic to Z/pkZ, then G̃k

p is an
elementary abelian p-group of rank n. Let b be a nondegenerate symmetric bilinear
form on G. Then

b̃k
p([x], [y])= pk−1b(x, y)

defines a nondegenerate bilinear form on G̃k
p. Here x and y denote any two elements

of G[pk
] representing [x], [y] ∈ G̃k

p, respectively.
Let ck(b) be the characteristic element (also called parity element) of the F2-

quadratic space (G̃k
2, b̃k

2). Explicitly, ck(b) is the unique element of G̃k
2 such that

b̃k
2(x, x)= b̃k

2(x, ck(b)) for all x ∈ G̃k
2. In other words, ck(b) is represented by any

c ∈ G[2k
] that satisfies

2k−1b(x, x)= 2k−1b(x, c) for all x ∈ G[2k
].

Note that both sides of the above equality can only take the values 0 or 1/2. Also
observe that the characteristic element ck(b) is zero if and only if b(x, x)∈ 21−kZ/Z

for all x ∈ G[2k
].

The invariant σk(b) takes values in (Z/8Z)∪{∞}, which is made into a semigroup
by defining∞+∞= n+∞=∞ for n ∈ Z/8Z. If ck(b) 6= 0, then σn(b)=∞ by
definition. If ck(b)= 0, then one checks that

qk(x)= 2k−1b(x, x)

induces a well defined quadratic form on G(2)/G[2k
] and, following [Kawauchi

and Kojima 1980], we can define σk(b) by

|G(2)/G[2k
]|

1/22(G(2)/G[2k
], qk)= Ce(σk(b)/8),

where C is the absolute value of the left-hand side of the equation [Kawauchi
and Kojima 1980, §2]; we shall soon see that C 6= 0. If x, y ∈ G(2) represent
[x], [y] ∈ G(2)/G[2k

], then ∂qk([x], [y])= 2kb(x, y). Suppose [x] ∈ G(2)/G[2k
]
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such that ∂qk([x], [y])= 0 for all [y] ∈G(2)/G[2k
]. Let x ∈G(2) be a representative

for [x]. Then 2kb(x, y)= 0 for all y ∈ G(2). Since b is nondegenerate, it follows
that 2k x = 0, so [x] = 0 in G(2)/G[2k

]. So we have argued that, if ck(b) = 0,
then qk(x) is a nondegenerate form on G(2)/G[2k

]. Hence, Theorem 3.1(b) gives
C = |G(2)/G[2k

]|
1/2. So σk(b) is in fact given by the simpler formula

2(G(2)/G[2k
], qk)= e(σk(b)/8). (4)

The following theorem is the reason for our interest in the invariant σk(b), and it
follows from Theorem 4.1 of [Kawauchi and Kojima 1980].

Theorem 3.5. Let G be a finite abelian 2-group, and let b and b′ be two non-
degenerate symmetric bilinear forms on G. Then (G, b) ' (G, b′) if and only if
σk(b)' σk(b′) for all k ≥ 1.

Definition. It will be convenient for us to work with the invariant

ςk(b)= e(σk(b)/8) (5)

rather than σk(b). If σk(b) = ∞, then we define ςk(b) = 0. So ςk takes values
in the multiplicative semigroup µ8 ∪ {0} where µ8 is the group of 8-th roots of
unity. From Corollary 2.2 of [Kawauchi and Kojima 1980], it follows that, if
(G, b) = (G1, b1)⊥ (G2, b2), then ςk(b) = ςk(b1)ςk(b2). In other words, ςk is
multiplicative, just like the Gauss sums or the invariant ξk . The multiplicativity
of ςk(b) also follows from the next lemma.

Lemma 3.6. Let G be a finite abelian 2-group, and let b be a nondegenerate
symmetric bilinear form on G. Let k ≥ 1. Then

2(G, 2k−1b(x, x))= |G[2k
]|

1/2ςk(b).

Let q be a nondegenerate quadratic form on G. Then with b = ∂q, the above
equation yields

ςk(∂q)= |G[2k
]|
−1/22(G, 2kq). (6)

Proof. Let qk(x)= 2k−1b(x, x). Let w vary over a set of coset representatives of
G/G[2k

] and y vary over G[2k
]. Then

|G|1/22(G, qk)=
∑
w,y

e(qk(w+ y))=
∑
w

e(qk(w))
∑
y

e(2k−1b(y, ck(b))). (7)

The second equality follows since 2kb(w, y)=0 and 2k−1b(y, y)=2k−1b(y, ck(b)).
If ck(b) 6= 0, then y 7→ e(2k−1b(y, ck(b))) is a nontrivial character on G[2k

], so the
inner sum in (7) is zero; hence, 2(G, 2k−1b(x, x))= 0. Now suppose ck(b)= 0.
Then we find that 2k−1b(w,w) = 2k−1b(w′, w′) if w ≡ w′ mod G[2k

]. Thus,
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(w 7→ qk(w)) induces a quadratic form on G/G[2k
]. From (7), we get

|G|1/22(G, qk)= |G[2k
]|

∑
w∈G/G[2k ]

e(qk(w))

= |G[2k
]|

√
|G/G[2k]|2(G/G[2k

], qk).

The lemma follows from (4). �

Lemma 3.7. Let (G, q) be an irreducible metric 2-group with exp(G) = 2r (see
Table 1). Let β be an odd integer and n ≥ 1. Then

ςn(∂q)β2n
=

{
0 if n = r and rk(G)= 1,

(− 1)rk(G)δn,2δr,12(G, q)β2n
otherwise,

(8)

where δi, j is the Kronecker delta, and

2(G, β2nq)= |G[2n
]|

1/2(−1)rk(G)max{r−n,0}(β2
−1)/8ςn(∂q)β . (9)

Proof. We treat the cases rk(G) = 1 and rk(G) = 2 separately. First suppose G
has rank 1, that is, (G, q)' (Z/2r Z, αx2/2r+1) where α ∈ {±1,±5}. Then from
Lemma 3.2(b), we find that 2(G, q)=±e(α/8). Since n ≥ 1, we have

2(G, q)β2n
= e(α/8)β2n

. (10)

Now we split the argument into three cases.

Case 1 (n > r). Then 2(G, 2nβq) = |G|1/2 = |G[2n
]|

1/2, and so (6) implies
ςn(∂q) = 1. This verifies (9). From (10), we obtain 2(G, q)β2n

= e(α/8)β2n
=

(−1)δn,2δr,1 . This verifies (8).

Case 2 (n = r). Lemma 3.3(b) implies that 2(G, 2nβq) = 0. From (6), we get
ςn(∂q)= |G[2n

]|
−1/22(G, 2nq)= 0 too. This verifies (8) and (9) in this case.

Case 3 (1≤ n < r ). From (6) and Lemma 3.3(b), we have

ςn(∂q)= |G[2n
]|
−1/22(G, 2nq)

= 2−n/22

(
Z/2r Z, 2n αx2

2r+1

)
= (−1)(r−n)(α2

−1)/8e(α/8).

Since n ≥ 1, using (10), we obtain ςn(∂q)β2n
= e(α/8)β2n

= 2(G, q)β2n
, which

verifies (8). To verify the expression for 2(G, β2nq), we compute as follows:

2(G, 2nβq)=2
(

Z/2r Z, 2n βαx2

2r+1

)
= 2n/2(−1)(r−n)(α2β2

−1)/8e(βα/8)

= 2n/2(−1)(r−n)(β2
−1)/8((−1)(r−n)(α2

−1)/8e(α/8)
)β

= 2n/2(−1)(r−n)(β2
−1)/8ςn(∂q)β,
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where the third equality follows from the fact that for odd integers β and α

(α2β2
− 1)− (β2

− 1)−β(α2
− 1)= β(β − 1)(α2

− 1)≡ 0 mod 16. (11)

This verifies (9) and finishes the argument in the case rk(G)= 1.

Now assume rk(G)= 2. If n < r , then (6) and Lemmas 3.3(a) and 3.2(c) give us
ςn(∂q)=±1 (or else see Corollary 2.2 of [Kawauchi and Kojima 1980]). If n ≥ r ,
then from (4), we obtain, ςn(∂q)=2(G/G[2n

], 2nq). Since G[2n
] =G, the Gauss

sum is equal to 1 and thus ςn(∂q)= 1. Thus, in any case, we find that ςn(∂q)=±1.
Lemma 3.2(c) tells us that 2(G, q)=±1 as well. Now (8) follows since n ≥ 1.

Since ςn(∂q)=±1, the right-hand side of (9) becomes

|G[2n
]|

1/2ςn(∂q).

Since G is of type E2r or F2r , Lemma 2.2 implies (G, βq)' (G, q). So (G, 2nβq)'
(G, 2nq), and (9) follows immediately from (6). �

Lemma 3.8. Let (G, q) be a metric 2-group. Let n ≥ 1 and β be an odd positive
integer. Let ςn(∂q) be the invariant introduced in (5). Then

ξ2nβ(G, q)= (−1)0G,β,n |G[2n
]|

1/2ςn(∂q)(2
n
−1)β

where 0G,β,n is an integer dependent on G, β, and n and independent of q. More
precisely, if we write G '

⊕
∞

r=1(Z/2
r Z)Nr , then

0G,β,n = δn,2 N1+

∞∑
r=1

Nr max{r − n, 0}(β2
− 1)/8.

Proof. Observe that both sides of the equation we want to prove are multiplicative
invariants of a metric group. Since any metric group (G, q) can be decomposed
into irreducibles by Theorem 2.1, it suffices to prove the equation when (G, q)
is an irreducible metric group. Assume (G, q) is an irreducible metric group
of exponent 2r ; the possibilities for these are given in Table 1. Note that G is
isomorphic to (Z/2r Z) or (Z/2r Z)2 and N j = δ j,r rk(G). So the equation we want
to prove becomes

2(G, q)β2n
2(G,−β2nq)

= (−1)rk(G)δn,2δ1,r+rk(G)max{r−n,0}(β2
−1)/8
|G[2n

]|
1/2ςn(∂q)(2

n
−1)β .

This equation follows directly from Lemma 3.7. �

4. Indicator of Tambara–Yamagami categories as Gauss sums

Let G be a finite abelian group. A function χ : G×G→ C∗ is called a symmetric
bicharacter on G if χ(x, · ) and χ( · , x) are characters on G and χ(x, y)= χ(y, x)
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for each x, y ∈ G. A symmetric bilinear form b on G determines a symmetric
bicharacter χ : G × G → C∗ given by χ(x, y) = e(−b(x, y)) (the minus sign
in front of b is for consistency with notation in [Shimizu 2011]). This sets up
a natural correspondence between bilinear forms and bicharacters. We say χ is
nondegenerate if b is.

Let G be a finite abelian group, χ be a nondegenerate symmetric bicharacter
on G, and τ be a square root of |G|−1. Let b be the bilinear form on G given
by χ(x, y)= e(−b(x, y)). Given any triple (G, χ, τ ), there exists a spherical fusion
category C, called the Tambara–Yamagami category or TY-category for short. We
shall denote this category by TY(G, χ, τ ) or by TY(G, b, τ ). The simple objects
of C are G ∪ {m}. We shall write m = mC if there is a chance of confusion. The
associativity constraint in TY(G, χ, τ ) is dictated by the bicharacter χ and sign(τ ).
See [Tambara and Yamagami 1998] or [Shimizu 2011] for more details on the
TY-categories. Caution: the abelian groups in [Shimizu 2011] are multiplicative
while for our purpose it is convenient to write the group G additively.

For each simple object x of a spherical fusion category and each integer k ≥ 1,
one can associate a complex number νk(x), introduced in [Ng and Schauenburg
2007b], called the k-th Frobenius–Schur indicator of x . The lemma below tells us
the indicators of the simple objects of a TY-category. This is an easy translation of
results in [Shimizu 2011]. Our main observation is noting that the indicators of the
object mC can be expressed in terms of certain Gauss sums.

Lemma 4.1. Let C = TY(G, χ, τ ) be a TY-category. From [Shimizu 2011, The-
orem 3.2], we know that νk(x)= δxk ,1 for x ∈ G. Let b be the bilinear form on G
given by χ(x, y) = e(−b(x, y)). Let q be any quadratic form such that ∂q = b.
Then for all k ≥ 1, one has ν2k−1(mC)= 0 and

ν2k(mC)= sign(τ )k2(G, q)k2(G,−kq)= sign(τ )kξk(G, q),

and this value does not depend on the choice of q.

Proof. From Theorem 3.3 of [Shimizu 2011], we know that ν2k−1(m)= 0. Let

C(χ)= {ϕ : G→ C : ϕ(x)ϕ(y)ϕ(x + y)−1
= χ(x, y) for x, y ∈ G}.

From the proof of that result, we have

ν2k(mC)=
1
|G|

∑
ϕ∈C(χ)

(
τ
∑
x∈G

ϕ(x)
)k√
|G|. (12)

By definition, e◦q ∈ C(χ). One checks that G acts simply transitively on C(χ) by
a ·ϕ(x)=ϕ(x)χ(a, x)−1. So C(χ)={ϕa :a ∈G}where ϕa(x)= e(q(x))χ(a, x)−1.
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One has

τ
∑
x∈G

ϕa(x)=
sign(τ )
√
|G|

∑
x∈G

e(q(x)+ b(a, x)+ q(a)− q(a))

=
sign(τ )e(−q(a))

√
|G|

∑
x∈G

e(q(x + a))

= sign(τ )e(−q(a))2(G, q).

From (12), it follows that

ν2k(mC)=
sign(τ )k
√
|G|

∑
a∈G

e(−kq(a))2(G, q)k

= sign(τ )k2(G, q)k2(G,−kq).

To complete the proof, observe that the expression on the right-hand side of (12)
only depends on χ and is independent of the choice of q. �

We shall need the following.

Lemma 4.2 [Shimizu 2011, Theorem 3.5]. Let C = TY(G, b, τ ) be a TY-category.
Let q be a quadratic form such that ∂q = b. Then ν2k(m) = |G[k]|1/2ψ where
ψ ∈µ8∪{0} (recall that µ8 denotes the set of 8-th roots of unity). One has ψ = 0 if
and only if there exists a ∈ G[k] such that kq(a) 6= 0.

Remark. We should mention that, from the values of the Gauss sums given in
the previous section and the decomposition of (G, q) into irreducibles, we can
show that ξk(G, q)= 0 if and only if (G, q) contains an irreducible component that
equals A2r , B2r , C2r , or D2r where r = v2(k) for some even k and that this yields
another proof of Lemma 4.2.

Let (G, q) be a premetric group. The invariant ξk(G, q) can itself be expressed
as a Gauss sum as follows. Let Fk(G, q) denote the premetric group given
by the abelian group {(g1, . . . , gk) ∈ Gk

:
∑

j g j = 0} with the quadratic form
q(g1, . . . , gk)=

∑
j q(g j ). Then one can show that ξk(G, q)= Fk(G, q). In view

of this formula, the appearance of the 8-th root of unity ψ in the above lemma
becomes a consequence of Milgram’s formula.

5. Tambara–Yamagami categories are determined by the higher
Frobenius–Schur-indicators

In this section, we shall prove Theorem 1.1. Let C=TY(G, χ, τ ) be a TY-category.
We shall show that the Frobenius–Schur indicators of the simple objects of C
determine the triple (G, χ, τ ). So the indicators can distinguish between any two
TY-categories. Most of the work goes into showing that the indicators νk(mC)
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determine the bicharacter χ . Let q be a quadratic form on G such that χ(x, y)=
e(−∂q(x, y)). Then Lemma 4.1 gives νk(mC)= sgn(τ )kξk(G, q) where ξk(G, q)
is a product of quadratic Gauss sums. Based on computations in Section 3, we shall
argue that the invariants ξk(G, q) determine the bicharacter χ . We need a couple
of lemmas before proving Theorem 1.1. The lemmas let us handle special cases.

Lemma 5.1. Let G be an abelian group of odd order. Let b1 and b2 be two
nonisometric nondegenerate symmetric bilinear forms on G. Let q1 and q2 be
quadratic forms such that ∂q j = b j for j = 1, 2. Then either there exists an odd
positive integer k such that ξk(G, q1) 6= ξk(G, q2) or else, for each natural number γ ,
there exists a positive integer k with v2(k)= γ and ξk(G, q1) 6= ξk(G, q2).

Proof. Fix a nonsquare u p modulo p for each odd prime p. Recall from Table 1

Apr =

(
Z/pr Z, q(x)=

2−1x2

pr

)
and Bpr =

(
Z/pr Z, q(x)=

2−1u px2

pr

)
.

We will also use the notation

n·Apr =

(
Z/pr Z, q(x)=

2−1nx2

pr

)
and n·Bpr =

(
Z/pr Z, q(x)=

2−1u pnx2

pr

)
for n ∈ Z. Write G '

⊕
p,r (Z/pr Z)Np,r where p ranges over odd primes and r ≥ 1.

Since Apr ⊥ Apr ' Bpr ⊥ Bpr [Wall 1963, Theorem 4], the metric group (G, q j ) is
an orthogonal direct sum, over all (p, r) such that Np,r 6= 0, of the homogeneous
metric groups

ANp,r−1
pr ⊥C j

p,r ,

where C j
p,r is either Apr or Bpr . Since ξk is multiplicative, we have

ξk(G, q j )=
∏

p,r :Np,r 6=0

ξk(Apr )Np,r−1ξk(C j
p,r ). (13)

Let
A= {(p, r) : Np,r 6= 0, C1

p,r 6= C2
p,r },

Amax = {(p, r) ∈A : (p, r ′) /∈A for all r ′ > r}.

If (p, r) /∈A, then the (p, r)-th term in the product in (13) is the same for j = 1, 2.
If (p, r)∈A, then the (p, r)-th terms differ by a factor (−1)ε

k
p,r given in Lemma 3.4.

It follows that

ξk(G, q1)= (−1)3ξk(G, q2) where 3=
∑

(p,r)∈A

εk
p,r .
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Case 1. If there is a prime p such that (p, 1) ∈Amax, then choose such a prime p0

and let k = p0. We find∑
r :(p0,r)∈A

εk
p0,r = ε

k
p0,1 = 1(k+ 1)−min{1, vp0(k)} = p0 ≡ 1 mod 2.

For all prime (p, r) ∈A such that p 6= p0, we have εk
p,r = r(p0+ 1)≡ 0 mod 2. It

follows that 3≡ 1 mod 2, so ξk(G, q1) 6= ξk(G, q2).

Case 2. Otherwise, choose (p0, r0) ∈ Amax such that r0 > 1. Choose any γ ≥ 1,
and let

k = 2γ p−1
0

∏
(p,r)∈Amax

pr .

Note that k is an integer with v2(k)= γ and vp0(k)= r0− 1. One has

εk
p0,r0
= r0(k+ 1)−min{r0, vp0(k)} ≡ r0− (r0− 1)= 1 mod 2.

If r < r0, then r ≤ vp0(k), so εk
p0,r = r(k−1)−r ≡ 0 mod 2. Finally if p 6= p0, then

(p, r) ∈A implies r ≤ vp(k) by our choice of k, so εk
p,r = r(k+ 1)− r ≡ 0 mod 2.

Again, 3≡ 1 mod 2, so ξk(G, q1) 6= ξk(G, q2). �

Lemma 5.2. Let b and b′ be two nondegenerate symmetric bilinear forms on a finite
abelian 2-group G. Let q and q ′ be quadratic forms such that ∂q = b and ∂q ′ = b′.
Let k be a positive integer such that v2(k)= 0 or v2(k)>max{2, v2(exp(G))}. Then
ξk(G, q)= ξk(G, q ′).

Proof. By the structure theorem of finite abelian groups and by Theorem 2.1, we
can decompose G and (G, q) as

G '
∞⊕

r=1

(Z/2r Z)Nr and (G, q)' (H1, µ1)⊥ · · ·⊥ (Hm, µm),

respectively, where each Hi ' Z/2ri Z or Hi ' (Z/2ri Z)2 and µi is an irreducible
nondegenerate quadratic form on Hi .

Suppose k is odd. By Lemmas 3.2(b) and 3.3, if (Hi , µi )∼= (Z/2ri Z, αx2/2ri+1),
then

ξk(Hi , µi )= (−1)kri (α
2
−1)/8e(α/8)k(−1)ri (k2α2

−1)/8e(−kα/8).

Using (11), this simplifies to

ξk(Hi , µi )= (−1)ri (k2
−1)/8.

By Lemma 3.2, if (Hi , µi )∼= ((Z/2ri Z)2, (αx2
1 + x1x2+αx2

2)/2
ri ) with α ∈ {0, 1},

then
ξk(Hi , µi )= (−1)α

2ri k(−1)(−kα)2ri = (−1)αri k+αri k2
= 1.
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We summarize both cases with the equation

ξk(Hi , µi )= (−1)rk(Hi )ri (k2
−1)/8.

Summing over all i such that ri = r yields
∑

i rk(Hi )ri =
∑

r r Nr . So

ξk(G, q)= (−1)
∑

r r Nr (k2
−1)/8.

The expression for ξk(G, q) does not depend on q , so we get ξk(G, q)= ξk(G, q ′)
for k odd.

Now suppose that k = 2nβ with β odd and n > max{2, v2(exp(G))}. Then
max{r − n, 0} = 0 for all r such that Nr > 0. Since n > v2(exp(G)), the quadratic
forms 2n−1b(x, x) and 2n−1b′(x, x) are identically equal to 0, so Lemma 3.6 implies
that ςn(b)= ςn(b′)= 1. From Lemma 3.8, we get

ξ2nβ(G, q)= |G[2n
]|

1/2ςn(b)(2
n
−1)β
= |G|1/2.

Thus, ξ2nβ(G, q) does not depend on q and we get ξ2nβ(G, q)= ξ2nβ(G, q ′). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Write C1 = TY(G1, b1, τ1) and C2 = TY(G2, b2, τ2). Let
m1=mC1 and m2=mC2 . We have pdim(x)= 1 for x ∈G j and pdim(m j )=

√
|G j |.

So the hypothesis in the theorem yields

(
√
|G1| − 1)νk(m1)= (

√
|G2| − 1)νk(m2) for all k ≥ 1. (14)

Lemma 4.1 implies that, if k is a multiple of 8|G1||G2|, then νk(m j ) =
√
|G j |

for j = 1, 2. It follows that (
√
|G1| − 1)

√
|G1| = (

√
|G2| − 1)

√
|G2| and hence

|G1| = |G2|.
First consider the trivial case: |G1| = |G2| = 1. Then the bilinear forms b1

and b2 are trivial. So there are only two such TY-categories, and they are only
distinguished by the value of τ ∈ {±1}. We know

∑
x∈G j

νk(x) = |G j [k]| and
sign(τ j )= ν2(mC j ). (See Theorem 3.2 of [Shimizu 2011] and the remark following
the proof of Theorem 3.4 of [Shimizu 2011]. Or else, see Lemma 4.1.) It follows
that 1+sign(τ1)=

∑
V∈Irr C1

ν2(V )=
∑

V∈Irr C2
ν2(V )= 1+sign(τ2). So sign(τ1)=

sign(τ2), and the theorem holds in the trivial case.
We may now assume that |G1|=|G2|>1. Equation (14) implies νk(m1)=νk(m2)

and hence
∑

x∈G1
νk(x) =

∑
x∈G2

νk(x) for all k ≥ 1. It follows that |G1[k]| =
|G2[k]| for each k ≥ 1. This forces G1 ' G2, and so we may assume without loss
of generality that G1 = G2 = G. By [Shimizu 2011], sign(τ j )= ν2(mC j ), and so it
follows that τ1 = τ2. Assume that b1 and b2 are nonisomorphic.

Write G=Ge⊕Go where Ge is the 2-Sylow subgroup of G and Go=
⊕

p 6=2 G(p)

is the “odd part”. Then (G, b j )= (Go, bo
j )⊥ (Ge, be

j ). Choose quadratic forms qo
j

and qe
j such that bo

j = ∂qo
j and be

j = ∂qe
j . Then q j = qo

j ⊥ qe
j is a quadratic form
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such that ∂q j = b j . By Lemma 4.1, it is enough to show that ξk(G, q1) 6= ξk(G, q2)

for some k. Since ξk is multiplicative for j ∈ {1, 2}, we have

ξk(G, q j )= ξk(Go, qo
j )ξk(Ge, qe

j ).

We split the argument into two cases.

Case 1 (bo
1 � bo

2). Then Lemma 5.1 implies that there is an integer k > 1 that is
either odd or v2(k) >max{2, v2(exp(Ge))} such that ξk(Go, qo

1 ) 6= ξk(Go, qo
2 ) and

Lemma 5.2 implies that ξk(Ge, qe
1)= ξk(Ge, qe

2). So ν2k(m1) 6= ν2k(m2) if bo
1 � bo

2.

Case 2 (bo
1
∼= bo

2). In this case, we must have be
1 � be

2. From Theorem 3.5, there
exists some n ≥ 1 such that σn(be

1) 6= σn(be
2), which implies ςn(be

1) 6= ςn(be
2). Now

Lemma 3.8 implies that

ξ2n (Ge, qe
j )= (−1)0Ge ,1,n |Ge[2n

]|
1/2ςn(be

j )
2n
−1

where 0Ge,1,n is an integer dependent on Ge and n but independent of qe
j . It follows

that ξ2n (Ge, qe
1) 6= ξ2n (Ge, qe

2). On the other hand, since (Go, bo
1)
∼= (Go, bo

2), we
have ξ2n (Go, qo

1 )= ξ2n (Go, qo
2 ). So ν2n+1(m1) 6= ν2n+1(m2). �

6. Tambara–Yamagami categories associated to groups with an odd factor
are determined by the state-sum invariants

Let G be a finite abelian group, χ be a nondegenerate symmetric bicharacter on G
and τ be a square root of |G|−1. Let C = TY(G, χ, τ ) denote the associated
Tambara–Yamagami category. If M is a closed compact 3-manifold, we denote
by |M |C the state-sum invariant of M defined using the category C, as in [Turaev
and Vainerman 2012]. Let Lm,n denote the lens spaces.

Lemma 6.1. For all k ≥ 1, one has |Lk,1|C = (|G[k]| + |G|1/2νk(mC))/(2|G|).

This lemma follows directly from Theorem 0.3 of [Turaev and Vainerman 2012]
as well as Lemma 4.1. The former expresses |L2k,1|C in terms of a quantity ζk(χ)

that is essentially the right-hand side of the equation in Lemma 4.1.

Corollary 6.2. For all k ≥ 1, |Lk,1|C = (pdim(C))−1∑
V∈Irr(C) νk(V ) pdim(V ).

The corollary follows from Theorem 3.2 of [Shimizu 2011], which implies∑
x∈G νk(x)= |G[k]|.

Theorem 6.3. Let C = TY(G, χ, τ ) and C′ = TY(G ′, χ ′, τ ′) be any two TY-
categories. Suppose |G| is not a power of 2. If |Lk,1|C = |Lk,1|C′ for all k ≥ 1, then
C ' C′.

Proof. Let Ge and G ′e be the 2-Sylow subgroups of G and G ′, respectively. Let Go

and G ′o be the sums of the p-Sylow subgroups for all odd p. From Theorem 0.1 of
[Turaev and Vainerman 2012], we already know that |G|= |G ′| and that the p-Sylow
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subgroups of G and G ′ are isomorphic for all odd p. It follows that |Ge| = |G ′e|.
We claim that Ge ' G ′e as well. The claim implies G ' G ′, and then Lemma 6.1
tells us νk(mC)= νk(mC′) for all k, which forces χ ' χ ′ by Theorem 1.1. Thus, to
complete the proof, we need to show Ge ' G ′e. For this, it suffices to show that
|G[2n

]| = |G ′[2n
]| for all n ≥ 0. Suppose this is false. Since |G[20

]| = |G ′[20
]| = 1,

we may pick the smallest n ≥ 0 such that |G[2n+1
]|> |G ′[2n+1

]| (without loss of
generality) and |G[2m

]| = |G ′[2m
]| for all m ≤ n.

Let a= |Go| = |G ′o|. Let n≥ 0. Then G[2na] =Go⊕G[2n
]. By Lemma 4.2, we

can write ν2n+1a(mC)= |G[2na]|1/2ψn , where ψn ∈ µ8 ∪ {0}. Define ψ ′n similarly
for C′. We have

2|G||L2n+1a,1|C = |G[2
n+1a]| + |G|1/2ν2n+1a(mC)

= |Go|(|G[2n+1
]| + |Ge|

1/2
|G[2n

]|
1/2ψn).

So |L2n+1a,1|C = |L2n+1a,1|C′ implies

|G[2n+1
]| + |Ge|

1/2
|G[2n

]|
1/2ψn = |G ′[2n+1

]| + |G ′e|
1/2
|G ′[2n

]|
1/2ψ ′n.

If ψn = ψ
′
n = 0, then the above equation would imply |G[2n+1

]| = |G ′[2n+1
]|.

So ψn 6= 0 or ψ ′n 6= 0. Rearranging the above equation and remembering that
|Ge| = |G ′e|, we get

|G[2n+1
]| − |G ′[2n+1

]| = |Ge|
1/2
|G[2n

]|
1/2(ψ ′n −ψn). (15)

Each side of (15) belong to Z[e2π i/8
]. Consider the absolute norm of each side.

If ψ ∈ µ8 ∪ {0}, one verifies that the absolute norm of (ψ − 1) is a power of 2 or
zero. For example, if ψ is a primitive 8-th root of unity, then N Q[ψ]

Q
(ψ − 1) =∏3

j=0(e((2 j + 1)/8)− 1) = 2. If ψn 6= 0 or ψ ′n 6= 0, then writing (ψ ′n − ψn) =

ψn(ψ
′
n/ψn−1) or (ψ ′n−ψn)=ψ

′
n(1−ψn/ψ

′
n), respectively, we find that the norm of

(ψ ′n−ψn) is a power of 2 or zero. So the norm of the right-hand side of (15) is also a
power of 2. However, note that the left-hand side is already an integer, so it must also
be a power of 2. The only way this is possible is if |G[2n+1

]| = 2|G ′[2n+1
]|. Write

ν2n+1(mC)=|G[2n
]|

1/2λn and ν2n+1(mC′)=|G ′[2n
]|

1/2λ′n for some λn, λ
′
n ∈µ8∪{0}.

Now the equality |L2n+1,1|C = |L2n+1,1|C′ yields

|G ′[2n+1
]| = |G[2n+1

]| − |G ′[2n+1
]| = |G|1/2|G[2n

]|
1/2(λ′n − λn).

Now the left-hand side is a power of 2, so the norm of the right-hand side must
also be a power of 2. Since N (λ′n−λn) is a power of 2, it follows that |G| is also a
power of 2, which contradicts our assumption. It follows that (G, χ) ' (G ′, χ ′).
Now since ν2(mC)= sgn(τ ), the equality |L2,1|C = |L2,1|C′ implies τ = τ ′. �
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Example. We exhibit two Tambara–Yamagami categories that have the same
state-sum invariant for all lens spaces Lk,1. Recall that A2n denotes the met-
ric group ((Z/2nZ), x2/2n+1). For k ∈ Z, we shall denote the premetric group
((Z/2nZ), kx2/2n+1) by (k · A2n ). Let (G1, b1) = (A2)

4
⊥ A4 and (G2, b2) =

(A2)
2
⊥ (A4)

2. Let C1 = TY(G1, b1,−
1
8) and C2 = TY(G2, b2,

1
8). Then we claim

that |Ln,1|C1 = |Ln,1|C2 for all positive integers n.

Proof of claim. Let qi be a quadratic form such that ∂qi = bi for i ∈ {1, 2}. We
will break the proof into cases according to possible 2-valuations of n. The trivial
case is that |Ln,1|C1 =

1
128 = |Ln,1|C2 if n is odd. By Lemmas 6.1 and 4.1, to prove

|L2k,1|C1 = |L2k,1|C2 , it is enough to show that

|G1[2k]| + (−1)k8ξk(G, q1)= |G2[2k]| + 8ξk(G, q2).

Since ξk is multiplicative,

ξk(G, q1)= ξk(A2)
4ξk(A4) and ξk(G, q2)= ξk(A2)

2ξk(A4)
2.

From Lemma 3.2, we have ξk(A2r )=2(A2r )k2(−k · A2r )= e(k/8)2(−k · A2r ).
The values of 2(−k · A2r ) were computed in Lemma 3.3. This lets us compute the
invariants. We shall consider three cases.

Case 1. Suppose k is odd. Then we have 2(−k · A2) = (−1)(k
2
−1)/8e(−k/8), so

ξk(A2)= (−1)(k
2
−1)/8. We have 2(−k · A4)= (−1)2(k

2
−1)/8e(−k/8)= e(−k/8),

so ξk(A4)= 1. It follows that ξk(G, q1)= 1= ξk(G, q2). Since |G1[2k]| = 32 and
|G2[2k]| = 16, we get |L2k,1|C1 = |L2k,1|C2 in this case.

Case 2. Suppose v2(k) = 1 or 2. Then 2(−k · A2) = 0 or 2(−k · A4) = 0, so
ξk(A2)=0 or ξk(A4)=0. Since both (G1, b1) and (G2, b2) have components of type
A2 and A4 and since ξk is multiplicative, it follows that ξk(G, q1)= ξk(G, q2)= 0.
Since |Gi [2k]| = 64, we get |L2k,1|C1 = |L2k,1|C2 in this case.

Case 3. Finally suppose v2(k)≥ 3. Let r = 1 or r = 2. Then 2(A2r )k = e(k/8)= 1.
The quadratic form−k ·A2r is identically equal to 1, so ξk(A2r )=2(−k ·A2r )=2r/2.
It follows that ξk(G, q j ) = |G|1/2 = 8 for j = 1, 2. Since |Gi [2k]| = 64 and
(−1)k = 1, we get |L2k,1|C1 = |L2k,1|C2 in this case too. �

Appendix: Diagonalization of bilinear and quadratic forms

In this appendix, we discuss the problem of decomposing quadratic and bilinear
forms on finite abelian groups into irreducible components.

Notation. If R is an abelian group, we let Mn(R) be the set of all n× n matrices
with entries in R. If R is a commutative ring and S is an R-module, then Sn is
a (left) Mn(R)-module and Mn(S) is an Mn(R)-bimodule. The action of Mn(R)
on Sn is obtained by writing elements of Sn as column vectors and multiplying by
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the matrix on the left. The two actions of Mn(R) on Mn(S) are by left and right
multiplication.

Recall from Section 2 that, if x is an element in a p-group of finite order, then we
write vp(x)=− logp(order(x)) and vp(0)=∞. The lemma below is elementary.
We leave the proof as an easy exercise.

Lemma A.1. Let p be a prime. Let G be an abelian p-group.

(a) Let x ∈ G and r ∈ Z. Then r x = 0 if and only if vp(r)+ vp(x)≥ 0.

(b) If x ∈ G and r ∈ Z such that r x 6= 0, then vp(r)+ vp(x)= vp(r x).

(c) Let x1, x2 ∈ G. Then vp(x1+ x2) ≥ min{vp(x1), vp(x2)}, and equality holds
if 〈x1〉 ∩ 〈x2〉 = 0 or vp(x1) 6= vp(x2). (Here and later, 〈x〉 denotes the cyclic
subgroup generated by x.)

(d) Let b be a symmetric bilinear form on a finite abelian p-group G. If g ∈ G,
then vp(g) ≤ vp(b(g, h)) for all h ∈ G. Further, if b is nondegenerate, then
vp(g)=min{vp(b(g, h)) : h ∈ G}.

Decomposing symmetric bilinear forms into irreducible components is almost
equivalent to diagonalizing matrices by row and column operations. We introduce
these operations next.

Definitions. Let Ei j be the n × n matrix whose (i, j)-th entry is 1 and all other
entries are 0. Let In denote the n× n identity matrix. Let R be a commutative ring.
Let A be an n×n matrix with entries in some R-module M . The operations Flipi j (A),
Addr, j

i (A), and Scaler
i (A) defined below are called row-column operations on A.

• Let Flipi j (A)= Str AS where S = In − Ei i − E j j + Ei j + E j i . This operation
interchanges the i-th and j-th rows of A and then interchanges the i-th and
j-th columns of A.

• Let Addr, j
i (A)= Str AS, where S = In + r E j i for some r ∈ R and i 6= j . This

operation adds r times the j-th row of A to the i-th row of A and then adds r
times the j-th column of A to the i-th column of A.

• Let Scaler
i (A) = Str AS where S = In + (r − 1)Ei i for some r ∈ R. This

operation multiplies the i-th row of A by r and then multiplies the i-th column
by r .

Let (G, b) be a discriminant form and (e1, . . . , en) ∈ Gn . For each i 6= j , the
operation Flipi j converts Gramb(e1, . . . , en) to Gramb( f1, . . . , fn) where f j = ei ,
fi = e j , and fk= ek for k /∈{i, j}. The operation Addr, j

i converts Gramb(e1, . . . , en)

to Gramb( f1, . . . , fn)where fi=ei+re j and fk=ek for k 6= i . The operation Scaler
i

converts Gramb(e1, . . . , en) to Gramb( f1, . . . , fn) where fi = rei and fk = ek

for k 6= i . We shall say that a row-column operation on Gramb(e1, . . . , en) is valid
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if G =
⊕

k〈ek〉 implies G =
⊕

k〈 fk〉. Clearly, Flipi j is always valid. The operation
Scaler

i is valid if r is relatively prime to the exponent of G. Lemma A.2 lets us
decide when Addr,i

j is valid.

Lemma A.2. Let G be a finite abelian group and e1, . . . , en ∈ G such that G =⊕
k〈ek〉. Let f1, . . . , fn ∈ G such that ord( fk) = ord(ek) for all k and f1, . . . , fn

generate G. Then there exists φ ∈ Aut(G) such that φ(ek) = fk . In particular,
G =

⊕
k〈 fk〉.

Proof. Let nk = ord(ek) = ord( fk). Since 〈ek〉 is a cyclic group of order nk and
fk is an element of order nk in G, there exists a homomorphism φk : 〈ek〉 → G
given by φk(ek) = fk . By the universal property of the direct sum, there exists a
homomorphism φ : G→ G such that φ(ek)= fk for all k. Since the fk generate G,
the map φ is onto. Since G is a finite group, φ must be injective as well. �

Let A ∈ Mn(Q(p)/Z). The proofs of Lemmas A.3 and A.4 are based on the
algorithm to reduce A to a diagonal matrix (or a block-diagonal matrix with blocks of
size at most 2 when p= 2) by conjugation or equivalently using the elementary row-
column operations introduced above. This paves the way to proving Theorem 2.1 of
[Wall 1963]. Let diag(a1, . . . , an) denote the diagonal n× n matrix with diagonal
entries a1, . . . , an .

Lemma A.3. Let p be an odd prime. Let u p be a quadratic nonresidue modulo p.
Let A 6= 0 be a symmetric matrix in Mn(Q(p)/Z). Let r1 be the smallest number
such that pr1 A = 0.

(a) Then there exists a matrix S ∈ GLn(Z) such that S mod p ∈ GLn(Z/pZ) and

Str AS = diag(p−r1ε1, . . . , p−rnεn)

with r1 ≥ r2 ≥ · · · ≥ rn ≥ 0, ε j ∈ {1, u p, 0}, and ε1 6= 0.

(b) Let (G, b) be a nondegenerate discriminant form where G is a p-group. Let
G=

⊕n
j=1〈e j 〉. Then there exists f1, . . . , fn ∈G such that G=

⊕n
j=1〈 f j 〉 and

Gramb( f1, . . . , fn) = diag(p−r1ε1, . . . , p−rnεn) with r1 ≥ r2 ≥ · · · ≥ rn > 0
and ε j ∈ {1, u p}.

Proof. (a) One proceeds by finding a pivot with the smallest p-valuation and then
using this pivot to sweep out the rows and columns. Let A = ((ai j )) ∈ Mn(Q(p)/Z)

be a symmetric nonzero matrix. Let r1 > 0 be the smallest integer such that
pr1 A = 0. By induction on n, it suffices to show that there is a sequence of row-
column operations that converts A to a matrix of the form

( d1
0

0
A′
)

where d1 = p−r1

or d1 = u p p−r1 and A′ ∈ Mn−1(Q(p)/Z) is a symmetric matrix such that pr1 A′ = 0.

Claim (finding a pivot). After changing A by row-column operations, we may
assume that a11 = p−r1 or a11 = u p p−r1 .
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Proof of claim. If there is a diagonal entry ai i such that vp(ai i ) = −r1, then
apply Flip1i to A to get vp(a11) = −r1. Otherwise, there exists i 6= j such that
vp(ai j )=−r1 and vp(ai i )>−r1 and vp(a j j )>−r1. In this case, apply Add1, j

i to A.
This changes the (i, i)-th entry of the matrix from ai i to (ai i + 2ai j + a j j ), whose
p-valuation is−r1.1 Now we apply Flip1i . Either way, we get vp(a11)=−r1. Using
the operation Scaler

i , we can change a11 to r2a11. By choosing r appropriately, we
can make a11 = p−r1 or a11 = u p p−r1 . This proves the claim.

Sweeping out. Now a11 = ε1 p−r1 with ε1 = 1 or u p. Since ε1 is relatively prime
to p, we can pick ε′ ∈ Z such that ε′ε1 ≡ 1 mod pr1 . We can represent a1i in
the form βi p−r1 with βi ∈ Z. We add (−βiε

′) times the first row to the i-th row
and then add (−βiε

′) times the first column to the i-th column to make a1i = 0
and ai1 = 0. Performing this operation for i = 2, 3, . . . , n converts A to a matrix of
the form

(
ε1 p−r1

0
0
A′
)
. Finally note that the entries of A′ are Z-linear combinations

of entries of A, so pr1 A = 0 implies pr1 A′ = 0. The row-column operations above
correspond to conjugating A by certain matrices that are always invertible modulo p.
Now part (a) follows by induction.

(b) Assume the setup of part (b). Let A=Gramb(e1, . . . , en). Part (a) shows that the
matrix A can be diagonalized by a sequence of row-column operations. Performing
a row-column operation on Gramb(e1, . . . , en) converts it to Gramb( f1, . . . , fn)

where the f j are given in the definition preceding Lemma A.2. We need to verify
that all the row-column operation used in the proof of part (a) are valid (see
the definition preceding Lemma A.2). While finding the pivot, we may perform
Add1, j

i to a matrix Gramb(e1, . . . , en) if a nondiagonal entry of the matrix, say ai j ,
has the highest power of p in the denominator. Since ai j = a j i , Lemma A.1(d)
implies that order(ei )= order(e j ). Since 〈ei 〉 ∩ 〈e j 〉 = 0, Lemma A.1 implies that
ord(ei + e j )= ord(ei ). Now Lemma A.2 implies that Add1, j

j is valid.
While sweeping out, we perform the row-column operation Add−βi ε

′,1
i where

a1i = βi p−r1 . This operation changes Gramb(e1, . . . , en) to Gramb( f1, . . . , fn)

where fi =ei−βiε
′e1 and fk=ek for k 6= i . Assume G=

⊕
k〈ek〉. Since the discrim-

inant form on G is nondegenerate, we have vp(e1)=−r1 and hence vp(−βiε
′e1)=

vp(βi )− r1. Also, vp(ei ) ≤ vp(a1i ) = vp(βi )− r1. Since 〈ei 〉 ∩ 〈−βiε
′e1〉 = {0},

we have vp( fi )=min{vp(ei ), vp(−βiε
′e1)} = vp(ei ). Lemma A.2 implies that the

row-column operations performed while sweeping out are valid.
It follows that there exist f1, . . . , fn ∈ G such that G =

⊕
〈 f j 〉 and that

Gramb( f1, . . . , fn) = diag(p−r1ε1, . . . , p−rnεn) with r1 ≥ r2 ≥ · · · ≥ rn ≥ 0 and
ε j ∈ {1, u p, 0}. Since (G, b) is nondegenerate, it follows that we must have ε j 6= 0
and order( f j )= pr j for all j . �

1This is the step in the argument that fails for p = 2.
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The next lemma handles the case of the prime p = 2. This proof is similar to the
proof of Lemma A.3 but somewhat more complicated. We only elaborate on the
necessary modifications.

Lemma A.4. (a) Let A 6= 0 be a symmetric matrix in Mn(Q(2)/Z). Let m be the
smallest number such that 2m A = 0. Then there exists a matrix S ∈ GLn(Z)

such that (S mod 2) ∈ GLn(Z/2Z) and Str AS is block-diagonal with blocks of
size 1 or 2. Each block is of the form

(2−rδ) or 2−r( 2a
b

b
2c

)
(16)

where r is some nonnegative integer, a, b, and c are integers with b odd, and
δ ∈ {0,±1,±5}. The largest r that occurs is equal to m.

(b) Let (G, b) be a nondegenerate discriminant form where G is a 2-group. Let
G =

⊕n
j=1〈e j 〉. Then there exists f1, . . . , fn ∈ G such that G =

⊕n
j=1〈 f j 〉

and Gramb( f1, . . . , fn) is a block-diagonal matrix with blocks of size 1 or 2.
Each block is of the form given in (16) where r is some positive integer, a, b,
and c are integers with b odd, and δ ∈ {±1,±5}.

Proof. (a) As above, we try to get a diagonal entry of A to have minimum 2-
valuation. If this succeeds, then we can proceed with the sweep out as before and
split off a 1× 1 block from A. This procedure fails only in the situation when there
exists i 6= j such that

( ai i
a j i

ai j
a j j

)
= 2−m

( 2α
β

β
2γ

)
where α, β, γ ∈ Z, β is odd, and all

the diagonal entries of A have 2-valuation strictly larger than −m. In this case, we
can use row-column flips to move this 2×2 submatrix to the upper-left corner of A
so that

(a11
a21

a12
a22

)
= 2−m

(2α
β

β
2γ

)
and then use this 2× 2 block to sweep out the first

two rows and first two columns simultaneously.
This is how it is done. Suppose the first two entries of the i-th row are 2−m(u, v)

for u, v ∈ Z where i > 2. We want to find r1 and r2 such that

(r1, r2)2−m( 2α
β

β
2γ

)
= 2−m(u, v) mod Z.

This system can always be solved since the determinant (4αγ−β2) of the coefficient
matrix is odd. Solving the equation yields

(r1, r2)= d(2γ u−βv, 2αv−βu)

where d is an inverse of (4αγ −β2) modulo 2m . Now we add to the i-th row −r1

times the first row and−r2 times the second row and then perform the corresponding
column operations to the i-th column. Verify that after these operations the first
two entries of the i-th row and i-th column become zero. Part (a) follows.

(b) Let A = Gramb(e1, . . . , en). The sweep-out operation above corresponds to
replacing Gramb(e1, . . . , en) by Gramb( f1, . . . , fn) where fi = ei + r1e1 + r2e2

and f j = e j for all j 6= i . The extra work needed in part (b) is to check that
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this operation is valid. Note that, since 2m is the maximum denominator in A,
order(e1) = order(e2) = 2m . Suppose order(ei ) = 2k . Then u and v must be
divisible by 2m−k because the entries of the i-th row can have denominator at
most 2k . From the formula for r1 and r2, we see that 2m−k divides r1 and r2.
It follows that 2k fi = 0. On the other hand, since 〈ei 〉 ∩ 〈e1, e2〉 = 0, we have
order( fi ) ≥ 2k . So order( fi ) = order(ei ) and Lemma A.2 implies the sweep-out
operations using 2× 2 blocks described above are valid. �

For p-groups with p odd, Wall’s Theorem 2.1(a) follows from Lemma A.3.
For p = 2, we need Lemma A.4 and we also need Lemmas 2.2 and A.7, which
describe the irreducible nondegenerate quadratic and bilinear forms on (Z/2r Z)2.
Proving Lemmas 2.2 and A.7 depends on solving a system of congruence equations
modulo 2n for all n. This can be done by a standard application of Hensel’s lemma,
which we now state in the necessary form.

Lemma A.5 (Hensel’s lemma). Let p be a prime. Let f1, . . . , fm ∈ Z[x1, . . . , xn]

and f = ( f1, . . . , fm). Let D f = ((∂ fi/∂x j )) be the Jacobian of f . Let t1 ∈ Zn

such that f (t1) ≡ 0 mod p and the m × n matrix (D f (t1) mod p) has rank m
over Fp. Then, for all k ≥ 1, there exists tk ∈ Zn such that tk+1 ≡ tk mod pk and
f (tk)≡ 0 mod pk .

The proof is omitted.

Lemma A.6. (a) Let s =
( s11

s21

s12
s22

)
be a 2× 2 matrix of indeterminates. Let

(A(s), B(s),C(s))

= (s2
11+ s11s12+ s2

12, 2s11s21+ s11s22+ s21s12+ 2s12s22, s2
21+ s21s22+ s2

22).

Let A, B, and C be odd integers. Let n ≥ 1. Then the equation

(A(s), B(s),C(s))≡ (A, B,C) mod 2n (17)

has a solution S ∈ M2(Z) such that S ≡ I mod 2 (here I denotes the 2× 2
identity matrix).

(b) Let s =
( s11

s21

s12
s22

)
be a 2× 2 matrix of indeterminates. Let

(A(s), B(s),C(s))= (s11s12, s11s22+ s21s12, s21s22).

Let A, B, and C be integers such that B is odd and AC is even. Let n ≥ 1.
Then the equation

(A(s), B(s),C(s))≡ (A, B,C) mod 2n (18)

has a solution S ∈ M2(Z) such that S ≡
( A

1
1
C

)
mod 2.



1820 Tathagata Basak and Ryan Johnson

Proof. (a) Apply Hensel’s lemma to f = ( f1, f2, f3) for f1(s)= s2
11+s11s12+s2

12−A,
f2(s)= 2s11s21+ s11s22+ s21s12+2s12s22− B, and f3(s)= s2

21+ s21s22+ s2
22−C .

Since A, B, and C are odd, s = I is a solution to f (s)≡ 0 mod 2. One computes

D f =

2s11+ s12 0 s11+ 2s12 0
2s21+ s22 2s11+ s12 s21+ 2s22 s11+ 2s12

0 2s21+ s22 0 s21+ 2s22

 ,
so D f (I )≡

0 0 1 0
1 0 0 1
0 1 0 0

 mod 2,

which has rank 3. For part (b), let f1(s)= s11s12− A, f2(s)= s11s22+ s21s12− B,
and f3(s) = s21s22 − C . Since B is odd and AC is even, s∗ =

( A
1

1
C

)
satisfies

f (s∗)≡ 0 mod 2. One computes

D f =

s12 0 s11 0
s22 s12 s21 s11

0 s22 0 s21

 , so D f (s∗)≡

1 0 A 0
C 1 1 A
0 C 0 1

 mod 2.

Since A or C is even, either the second or the third column of the above matrix is
equal to (0, 1, 0)tr. So the matrix (D f (s∗) mod 2) has rank 3. �

Proof of Lemma 2.2. (a) Note that 2q(x) = ∂q(x, x) ∈ 2−r Z/Z. So q(x) takes
values in 2−r−1Z/Z, and

q(x1, x2)= 2−r−1(αx2
1 + 2Bx1x2+ γ x2

2)

where q(1, 0)= 2−r−1α, q(0, 1)= 2−r−1γ , and ∂q((1, 0), (0, 1))= 2−r B. Suppose
α is odd. Let α be an inverse of α modulo 2r+1. Then we can complete squares to
write

q(x1, x2)= 2−r−1(α(x1+ Bαx2)
2
+ (γ − B2α)x2

2).

This contradicts the irreducibility of q, and thus, α has to be even. For the same
reason, γ has to be even. So we can write

q(x1, x2)= 2−r (Ax2
1 + Bx1x2+Cx2

2).

If A, B, and C are all even, then ∂q takes values in 2−r+1Z/Z and hence cannot
be nondegenerate. If B is even, then A or C must be odd, and we can once again
complete squares (as above) and decompose (G, q) into an orthogonal direct sum
of two metric groups. So B must be odd.

First, suppose AC is odd. Let F(x1, x2)= x2
1+x1x2+x2

2 . Let s =
( s11

s21

s12
s22

)
. Note

that

F((x1, x2)s)= A(s)x2
1 + B(s)x1x2+C(s)x2

2
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where (A(s), B(s),C(s)) are the polynomials given in Lemma A.6(a). We want to
show q(x1, x2)' 2−r F(x1, x2). This is equivalent to finding a matrix s ∈ M2(Z)

with odd determinant such that

F((x1, x2)s)≡ (Ax2
1 + Bx1x2+Cx2

2) mod 2r

or equivalently (A(s), B(s),C(s)) ≡ (A, B,C) mod 2r . The proof follows from
Lemma A.6(a) if AC is odd. If AC is even, then the proof is identical, using
F(x1, x2)= x1x2 and using part (b) of Lemma A.6 instead of part (a). �

Lemma A.7. (a) Let A, B, and C be odd integers. Let r ≥ 1. Then there exists a
matrix S ∈ M2(Z) such that S

( 2
1

1
2

)
Str
≡
( 2A

B
B

2C

)
mod 2r and S ≡ I mod 2.

(b) Let A, B, and C be integers such that AC is even and B is odd. Let r ≥ 1.
Then there exists a matrix S ∈ M2(Z) such that S

( 0
1

1
0

)
Str
≡
( 2A

B
B

2C

)
mod 2r

and S ≡
( A

1
1
C

)
mod 2.

Proof. (a) The congruences in part (a) translate into A(s)≡ A mod 2r−1, B(s)≡
B mod 2r , and C(s)= C mod 2r−1 where A(s), B(s), and C(s) are as in Lemma
A.6(a). Part (a) follows from Lemma A.6. Similarly part (b) follows from part (b)
of Lemma A.6. �

Proof of Theorem 2.1. (a) Let (G, b) be a nondegenerate discriminant form. It suf-
fices to decompose (G, b) into irreducibles when G is a p-group for some prime p.
First suppose p is odd. From Lemma A.3, it follows that there exist f1, . . . , fn ∈G
such that G =

⊕
〈 f j 〉 and Gramb( f1, . . . , fn) = diag(p−r1ε1, . . . , p−rnεn) with

r1 ≥ r2 ≥ · · · ≥ rn ≥ 0 and ε j ∈ {1, u p}. Since (G, b) it nondegenerate, it follows
that we must have order( f j )= pr j for all j . Thus, (G, b) is an orthogonal direct
sum of the rank-1 discriminant forms (〈 f j 〉, b|〈 f j 〉) and each of these are of type A
or B. This completes the argument for odd p.

Now we consider the case p = 2. From Lemma A.4, it follows that there exist
f1, . . . , fn ∈ G such that G =

⊕
〈 f j 〉 and Gramb( f1, . . . , fn) is block-diagonal

with blocks of size 1 or 2 as given in Lemma A.4. Accordingly, (G, b) is an
orthogonal direct sum of rank-1 or -2 discriminant forms spanned by one or two
of the f j . The rank-1 forms among these are clearly of type A, B, C , or D. The
Gram matrix of a rank-2 piece has the form 2−r

( 2a
b

b
2c

)
. Lemma A.7 shows that

such a rank-2 piece is either of type E or F .

(b) Let (G, q) be a metric group. By part (a), (G, ∂q) is an orthogonal direct sum
of irreducible forms (G j , b j ). Each G j is a homogeneous p-group of rank 1 or
2. Further, G j can have rank 2 only if p = 2. It follows that (G, q) is also an
orthogonal direct sum of (G j , q j ) where q j = q|G j . The rank-1 forms are clearly
of type A, B, C , or D. The rank-2 forms either decompose into two rank-1 forms
or they are irreducible as metric groups. In the latter case, Lemma 2.2 shows that
(G j , q j ) is of type E or F . �
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