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The number of nonzero coefficients
of modular forms (mod p)
Joël Bellaïche and Kannan Soundararajan

Let f =
∑
∞

n=0 anqn be a modular form modulo a prime p, and let π( f, x) be the
number of nonzero coefficients an for n < x . We give an asymptotic formula for
π( f, x); namely, if f is not constant, then

π( f, x)∼ c( f )
x

(log x)α( f )
(log log x)h( f ),

where α( f ) is a rational number such that 0<α( f )≤ 3/4, h( f ) is a nonnegative
integer and c( f ) is a positive real number. We also discuss the equidistribution
of the nonzero values of the coefficients an .

1. Introduction

Let f =
∑
∞

n=0 anqn be a holomorphic modular form of integral weight k ≥ 0 and
some level 01(N ) such that the coefficients an are integers. Let p be a prime number.
Serre [1976] has shown that the sequence an (mod p) is lacunary. That is, the
natural density of the set of integers n such that p - an is 0. More precisely, Serre
gave the asymptotic upper bound

|{n < x, an 6≡ 0 (mod p)}| �
x

(log x)β
, (1)

where β is a positive constant depending on f . Later, Ahlgren [1999, Lemma 2.1]
established the following asymptotic lower bound: assume that p is odd and that
there exists an integer n ≥ 2 divisible by at least one prime ` not dividing Np such
that p - an . Then

|{n < x, an 6≡ 0 (mod p)}| �
x

(log x)
. (2)
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Under the same hypothesis, this lower bound was recently improved by Chen [2012]:
for every K ≥ 0,

|{n < x, an 6≡ 0 (mod p)}| �
x

(log x)
(log log x)K , (3)

where the implicit constant depends on K .
We improve on results (1), (2) and (3) by giving an asymptotic formula for
|{n < x, an 6≡ 0 (mod p)}|. To describe our results, we slightly change our setting
by working directly with modular forms over a finite field, which allows for more
generality and more flexibility.

Let p be an odd prime1 and N ≥ 1 an integer. We define the space of modular
forms of level 01(N ) with coefficients in Fp, denoted by M(N , Fp), as the subspace
of Fp[[q]] generated by the reductions modulo p of the q-expansions at∞ of all
holomorphic modular forms of level 01(N ) and some integral weight k ≥ 0 with co-
efficients in Z. For F a finite extension of Fp, we define M(N , F) as M(N , Fp)⊗Fp F.
Given f in M(N , F), let

π( f, x)= |{n < x : an 6= 0}|.

Theorem 1. Let f =
∑
∞

n=0 anqn
∈ M(N , F), and assume that f is not constant;

that is, assume an 6= 0 for some n ≥ 1. Then there exists a rational number α( f )
with 0< α( f ) ≤ 3/4, an integer h( f ) ≥ 0, and a positive real constant c( f ) > 0
such that

π( f, x)∼ c( f )
x

(log x)α( f ) (log log x)h( f ).

This theorem was established by Serre [1976] for the case when f is an eigenform
for all Hecke operators Tm (that is, Tm f = λm f , λm ∈ F), and in this case one
has h( f ) = 0. However, the case of eigenforms is special because, as shown
by Atkin, Serre, Tate and Jochnowitz in the 1970s, there are only finitely many
normalized eigenforms in the infinite-dimensional space M(N , F). One can de-
compose every f ∈ M(N , F) as a finite sum

∑
i fi of generalized eigenforms2 fi

but this fact does not seem to be of immediate use, for two reasons. The meth-
ods for treating genuine eigenforms do not seem to apply readily to generalized
eigenforms, and moreover it is not clear how to obtain an asymptotic formula
for π( f, x) from asymptotics for π( fi , x). For f an eigenform, the main tool
in Serre’s study is the Galois representation over a finite field attached to f by
Deligne’s construction, ρ̄f : GQ,Np → GL2(F). To deal with a general modular
form f we replace ρf by a two-dimensional Galois pseudorepresentation, tf ,

1When p = 2, similar but slightly different results may be obtained, see [Bellaïche and Nicolas
2015].

2We call a form f ∈ M(N , F) a generalized eigenform if, for every ` not dividing Np, there exist
λ` ∈ F and nl ∈ N such that (T`− λ`)n` f = 0.
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of GQ,Np over a finite ring Af . The ring Af is obtained as the quotient of A
by the annihilator of f , where A is the Hecke algebra acting on the space of
modular forms M(N , F). The ring Af is not in general a field. In fact, it is a
field precisely when f is an eigenform for the Hecke operators T` (` - Np). The
Hecke algebra A (at least in the case of 00(N )) was introduced and studied in
the wake of Swinnerton-Dyer’s work on congruences between modular forms by
Serre, Tate, Mazur, Jochnowitz and others. More recent progress on understanding
its structure may be found in [Nicolas and Serre 2012a; 2012b; Bellaïche and
Khare 2015]. In Section 3, we recall the definitions of the Hecke algebra A,
its quotient Af , and the pseudorepresentation tf and gather the results we need
pertaining to them.

To prove Theorem 1, we introduce the notion of a pure form. A form f is pure
if every Hecke operator T` (with ` - Np) in Af is either invertible or nilpotent.
Generalized eigenforms are pure since the finite ring Af is local in this case,
but there are pure forms that are not generalized eigenforms. For pure forms
we can give a reasonable description of the set of integers n with (n, Np) = 1
and such that an 6= 0, and using this and a refinement of the Selberg–Delange
method (see Section 2) we deduce (in Section 4A) an asymptotic formula for
the number of n ≤ x with an 6= 0 and (n, Np) = 1. For a general f , we show
in Section 4B that if f =

∑
i fi is a minimal decomposition of f into pure

forms, then π( f, x) is asymptotically
∑

i π( fi , x). To complete the proof of
Theorem 1, it remains to handle coefficients an with (n, Np) > 1, and this is
treated in Section 4C.

Theorem 1 gives an asymptotic formula for the number of n< x such that an 6= 0
but says nothing about the number of n < x such that an = a, where a is a specific
fixed value in F∗. Some partial results are given during the course of the proof
of Theorem 1 in Section 4A. We say that f has the equidistribution property if
the number of n < x such that an = a is asymptotically the same for every a ∈ F∗.
In Section 5 we give sufficient conditions and, in some cases, necessary conditions
for the equidistribution property.

In Section 6 we consider a variant of the main theorem, where one counts only
the nonzero coefficients at square-free integers of a modular form.

Let us finally mention that the constants α( f ), h( f ) and c( f ) of Theorem 1 can
be effectively computed from our proof. This is done in some cases in Section 7.
However, we do not have a satisfactory understanding of how h( f ) and c( f )
behave as f varies. Such an understanding would require a more detailed study
of the structure of the Hecke algebra A and of the space M(N , F) as a Hecke-
module than is currently available (except in the case p = 2, N = 1 [Nicolas and
Serre 2012b; Bellaïche and Nicolas 2015] and partially in the case p = 3, N = 1
[Medvedovki 2015]).
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2. Applications of the Landau–Selberg–Delange method

2A. Frobenian and multifrobenian sets. If 6 is a finite set of primes and L is a
finite Galois extension of Q unramified outside 6 and∞, then for any prime ` 6∈6
we denote by Frob` ∈ Gal(L/Q) an element of Frobenius attached to `. We recall
that Frob` is only well-defined up to conjugation in Gal(L/Q).

Definition 2. Let h be a nonnegative integer and 6 a finite set of primes. We say
that a set M of positive integers is 6-multifrobenian of height h if there exists a
finite Galois extension L of Q with Galois group G, unramified outside 6 and∞,
and a subset D of Gh , invariant under conjugation and under permutations of the
coordinates, such that m ∈M if and only if m = `1 · · · `h where the `i are distinct
primes not in 6, and (Frob`1, . . . ,Frob`h )∈ D. For such a 6-multifrobenian set M
we define its density δ(M) to be

δ(M)=
#D

h!(#G)h
.

Observe that the condition (Frob`1, . . . ,Frob`h )∈ D depends only on the product
`1 · · · `h , since replacing each Frob`i by a conjugate in G amounts to replacing
(Frob`1, . . . ,Frob`h ) by a conjugate in Gh and D is invariant by conjugacy in
Gh , and since changing the order of the prime factors `1, . . . , `h permutes the
components of (Frob`1, . . . ,Frob`h ) and D is invariant by permutations. Thus the
notion of a multifrobenian set is well-defined.

There is only one 6-multifrobenian set of height h = 0, namely {1}. Note that
a 6-multifrobenian set of height 1 is just a 6-frobenian set of prime numbers in
the usual sense (see [Serre 2012, §3.3.1]). In what follows we will say that a set
is multifrobenian if it is 6-multifrobenian for some finite set of primes 6 and
frobenian if it is multifrobenian of height 1. We observe that this definition of
frobenian is slightly more restrictive than the one used by Serre (cf. [2012, §3.3.2])
for whom a set of primes is frobenian if it is frobenian in our sense up to a finite
set of primes. The more restrictive definition of frobenian that we adopt here will
be sufficient for our purposes, and we hope that its use will cause no confusion
to the reader.

Lemma 3. Let M be a multifrobenian set of height h and density δ(M). Then∑
m∈M
m≤x

1
m
∼ δ(M)(log log x)h .

Proof. This follows from the Chebotarev density theorem. �

Note in particular that δ(M) depends only on the set M and not on the choice
of L , G and D.
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Remark 4. Using the Chebotarev density theorem, one may show that if M is a
multifrobenian set of height h, then

|{n ≤ x : n ∈M}| ∼ hδ(M)
x

log x
(log log x)h−1.

This formula clearly implies Lemma 3 by partial summation, but the weaker Mertens-
type estimate of Lemma 3 suffices for our purposes.

2B. Square-free integers with prime factors in a frobenian set and random walks.
We begin with a general result of the Landau–Selberg–Delange type, which follows
by the method discussed in Chapter II.5 of Tenenbaum’s book [1995], or as in
Théorème 2.8 of Serre’s paper [1976].

Proposition 5. Let a(n) be a sequence of complex numbers with |a(n)| ≤ dk(n)
for some natural number k, where dk(n) denotes the k-divisor function defined
by ζ(s)k =

∑
∞

n=1 dk(n)n−s . Suppose that in the region Re(s) > 1 the function
A(s)=

∑
∞

n=1 a(n)n−s can be written, for some real number α, as

A(s)= ζ(s)αB(s),

where B(s) extends analytically to the region Re(s) > 1− c/ log(2+ |t |) for some
positive constant c and is bounded in that region by |B(s)| ≤ C(1+ |t |) for some
constant C. Then, for all x ≥ 3 and any J ≥ 0, there is an asymptotic expansion

∑
n≤x

a(n)=
J∑

j=0

Aj x
(log x)1+ j−α + O

(
Cx

(log x)J+2−α

)
,

where the Aj are constants, with

A0 =
B(1)
0(α)

,

and the implied constant in the remainder term depends only on c, k, and J .

Proof. As mentioned above, this is a straightforward application of the Landau–
Selberg–Delange method, and so we content ourselves with sketching the argument
briefly. The constant c can be replaced by a possibly smaller constant so that ζ(s)
has no zeros in the region Re(s)> 1−c/ log(2+|t |), and moreover in this region we
have the classical bounds |ζ(s)α|� (log(|s|+2))A|α| for some constant A provided
we stay away from s = 1 (see for example II.3 of [Tenenbaum 1995]). Next, by
applying a quantitative version of Perron’s formula we see that, for x ≥ 3 and with
x1/(10k)

≥ T ≥ 1,∑
n≤x

a(n)=
1

2π i

∫ 1+1/ log x+iT

1+1/ log x−iT
A(s)

x s

s
ds+ O

(
x
T
(log x)k

)
.
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Now we deform the line of integration as follows. First make a slit along the real
line segment from 1− c/ log(T + 2) to 1. Then from 1+ 1/ log x + iT we proceed
in a straight line to 1−c/ log(T +2)+ iT and from there to 1−c/ log(T +2)+ i0+

(on the upper part of the slit) and from there to 1. We then circle around to the lower
part of the slit until 1−c/ log(T +2)+i0− and from there to 1−c/ log(T +2)−iT
and thence to 1+ 1/ log x − iT . The integrand has a logarithmic singularity at 1,
and the change in the argument above and below the slit leads to the main terms in
the asymptotic expansion (by “Hankel’s formula”; see [Tenenbaum 1995, §II.5.2]).
The remaining integrals are estimated using the bounds for |ζ(s)α| in the zero-free
region, together with our assumed bound for |B(s)|. The resulting error terms are
bounded by O(x1−c/ log(T+2)(T +2) log(T +2)). Choosing T = exp(c1

√
log x) for

a suitably small positive constant c1, we obtain the proposition. �

Now suppose we are given a frobenian set of primes U of density β = δ(U) > 0,
a finite abelian group 0, and a frobenian map3 τ0 : U → 0 such that the image
τ0(U) generates 0. Using multiplicativity, extend τ0 to a map τ from the set of
square-free numbers composed of prime factors in U to 0.

Theorem 6. Let g be any given element of 0, and let r be a positive integer. Then,
for x ≥ 3 and uniformly in r , we have

#{n ≤ x : n square-free, p | n =⇒ p ∈ U, τ (n)= g, (n, r)= 1}

= C(U, r)
1
|0|

x
(log x)1−β

+ O
(

xd(r)
(log x)1−β+δ

)
,

where C(U, r)= (1/0(β))
∏

pwp withwp= (1+1/p)(1−1/p)β if p∈U with p - r ,
and wp = (1− 1/p)β otherwise. In the remainder term above, d(r) denotes the
number of divisors of r , and δ is a fixed positive number (depending only on the
group 0).

Proof. We use the orthogonality of the characters of the group 0, which we write
multiplicatively even though it is abelian. Thus the quantity we want is

1
|0|

∑
χ∈0̂

χ(g)
∑
n≤x

(n,r)=1

χ(τ(n)),

where we set χ(τ(n)) = 0 if n is divisible by some prime not in U or if n is not
square-free.

We will use Proposition 5 to evaluate the sum over n above. Since the map τ
is frobenian, by the usual proof of the Chebotarev density theorem (that is, by
expressing frobenian sets in terms of Hecke L-functions and using the zero-free

3A map from a frobenian set of primes to a finite set is called frobenian if its fibers are frobenian.
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region for Hecke L-functions) we may write
∞∑

n=1
(n,r)=1

χ(τ(n))
ns = ζ(s)β(χ)Bχ,r (s), where β(χ)=

∑
g∈0

χ(g)δ(τ−1
0 (g)),

and Bχ,r (s) extends analytically to the region Re(s) > 1−c/(log(2+|t |)) for some
1/10≥ c > 0 and in that region satisfies the bound |Bχ,r (s)| ≤ Cd(r)(1+ |t |) for
some constant C . The constants c and C depend only on U and 0 but not on r .

First suppose that χ equals the trivial character χ0. Note that β(χ) then equals β
and that

Bχ0,r (s)=
∏
p∈U
p-r

(
1−

1
ps

)β(
1+

1
ps

) ∏
p/∈U
or p|r

(
1−

1
ps

)β
.

Therefore, appealing to Proposition 5, we obtain the main term of the theorem.
Now suppose that χ is not the trivial character. Then Re(β(χ)) ≤ β − δ for

some fixed δ > 0, since there is a g in the image of τ0 such that χ(g) 6= 1 (since
τ(U) generates 0), and the frobenian set τ−1

0 (g) is nonempty and hence of positive
density δ(τ−1

0 (g)). Therefore, by Proposition 5, we see that the contribution of the
nontrivial characters is

O
(

xd(r)
(log x)1−β+δ

)
. �

2C. A density result. We keep the notation and hypotheses of the preceding section:
U is a frobenian set with β= δ(U)> 0, 0 is a finite abelian group, and τ0 :U→0 is
a frobenian map whose image generates 0. In addition, let M be a multifrobenian
set of height h ≥ 0, such that every element in M is coprime to the primes in U .
Let S be a given nonempty set of square-full numbers (we permit 1 to be treated as
a square-full number).

Define Z = Z(U,M,S) to be the set of positive integers n ≥ 1 that can be
written as

(2.1) n = mm′m′′ with m, m′, m′′ positive integers such that
(2.1.1) m is square-free and all its prime factors are in U ;
(2.1.2) m′ ∈M;
(2.1.3) m′′ ∈ S and m′′ is relatively prime to mm′.

These conditions imply that m, m′ and m′′ are pairwise relatively prime, and for
n ∈ Z such a decomposition n = mm′m′′ is unique. Extend τ to a map Z→ 0 by
setting τ(n)= τ(m) for n as in (2.1). Let 1 be any nonempty subset of 0.

Theorem 7. With notation as above, we have

#{n ≤ x : n ∈ Z, τ (n) ∈1} ∼ Cδ(M)
|1|

|0|

x
(log x)1−β

(log log x)h,
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where (with C(U, s) as in Theorem 6)

C =
∑
s∈S

C(U, s)
s

.

Proof. Set R = (log x)2 and z = x1/ log log x . We want to count n = mm′m′′ for
m′′ ∈ S, m′ ∈M, with (m′,m′′) = 1, and for m composed of primes in U , with
(m,m′′) = 1 and τ(m) = g. We now group these terms according to whether
(i) m′′ ≤ R and m′ ≤ z, or (ii) m′′ ≤ R but m′ > z, or (iii) m′′ > R. We shall show
that the first case gives the main term in the asymptotics, and the other two cases
are negligible.

First consider case (i). This case contributes∑
m′′∈S
m′′≤R

∑
m′∈M
m′≤z

(m′,m′′)=1

∑
g∈1

∣∣∣{m ≤
x

m′m′′
: τ(m)= g, (m,m′′)= 1

}∣∣∣.

Now we use Theorem 6, so that the above equals

∑
m′′∈S
m′′≤R

∑
m′∈M
m′≤z

(m′,m′′)=1

(
C(U,m′′)

|1|

|0|

x
m′m′′(log(x/m′m′′))1−β

+ O
(

xd(m′′)
m′m′′(log x)1−β+δ

))
.

Using Lemma 3, and since
∑

m′′∈S d(m′′)/m′′ converges, we see that the error term
above is O(x/(log x)1−β+δ−ε), which is negligible. Since log(x/m′m′′) ∼ log x ,
the main term above is (again using Lemma 3)

∼
|1|

|0|

x
(log x)1−β

(δ(M)(log log x)h)
∑

m′′∈S
m′′≤R

C(U,m′′)
m′′

,

which equals the main term of the theorem.
Now consider case (ii). Since all the terms involved are positive, we see that

they contribute (with ω(u) denoting the number of distinct prime factors of u)

�

∑
m′′∈S
m′′≤R

∑
z≤u≤x/m′′
ω(u)=h

∑
m≤x/(um′′)
p|m=⇒p∈U

1. (4)

Now in the sums above either u ≤
√

x or m ≤
√

x . In the first case, note that
the largest prime factor of u lies in [z1/h,

√
x] and the others are all below

√
x .

Moreover, using Proposition 5, the inner sum over m in (4) is� x/(um′′(log x)1−β).
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Thus we see that the first-case contribution to (4) is bounded by

�

∑
m′′∈S
m′′≤R

∑
z<u≤

√
x

ω(u)=h

x
um′′(log x)1−β

�
x

(log x)1−β

( ∑
p≥z1/h

p≤
√

x

1
p

)( ∑
p≤
√

x

1
p

)h−1

�
x

(log x)1−β
(log log x)h−1 log log log x .

For the second case, note that for m ≤
√

x (and m′′ ≤ R = (log x)2) we have (by
standard estimates for the number of integers with h distinct prime factors)∑

u≤x/(mm′′)
ω(u)=h

1�
x

mm′′
(log log x)h−1

log x
,

and so we obtain that the second-case contribution to (4) is bounded by

�
x

log x
(log log x)h−1

∑
m≤
√

x
m∈U

1
m
�

x
log x

(log log x)h−1
∏

p≤
√

x
p∈U

(
1+

1
p

)

�
x

(log x)1−β
(log log x)h−1.

Putting both cases together, we see that the contribution of the terms in case (ii) is

�
x

(log x)1−β
(log log x)h−1 log log log x,

which is small compared to the contribution from case (i).
Finally, since the number of mm′ ≤ x/m′′ is trivially at most x/m′′, the contri-

bution in case (iii) is

�

∑
m′′∈S
m′′>R

x
m′′
�

x
√

R
=

x
log x

,

which is negligible. This completes our proof. �

3. Modular forms modulo p

3A. The algebra of modular forms M(N, F). As in the introduction, we fix an
odd prime p and a level N ≥ 1. Let k ≥ 0 be an integer. The space Mk(N ,Z)

denotes the space of all holomorphic modular forms of weight k and level 01(N )
and with q-expansion at infinity in Z[[q]]. For any commutative ring A we define

Mk(N , A)= Mk(N ,Z)⊗ A.
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The natural q-expansion map Mk(N , A)→ A[[q]] is injective for any ring A (this
is the q-expansion principle; see [Diamond and Im 1995, Theorem 12.3.4]), and so
we may view below Mk(N , A) as a subspace of A[[q]]. Finally we define

M(N , A)=
∞∑

k=0

Mk(N , A)⊂ A[[q]].

Note that if A is a subring of C, then M(N , A) is the direct sum of the spaces
Mk(N , A) (see [Miyake 2006, Lemma 2.1.1]). However, the situation is different
for general rings A and, in particular, when A is a finite field. For instance, the
constant modular form 1 of weight 0 in M0(N , Fp) and the Eisenstein series Ep−1

in Mp−1(N , Fp) both have the same q-expansion 1, showing that the subspaces
M0(N , Fp) and Mp−1(N , Fp) are not in direct sum in Fp[[q]]. For the same reason
it is not true that M(N , A)⊗A A′ = M(N , A′) in general (though this is true if A′

is flat over A); rather M(N , A′) is the image of M(N , A)⊗A A′ in A′[[q]].

3B. Hecke operators on Mk(N, A). For any k ≥ 0, the space of modular forms
Mk(N ,C) is endowed with the action of the Hecke operators Tn for positive inte-
gers n. If n is a positive integer coprime to N , define the operator Sn as nk−2

〈n〉,
where 〈n〉 is the diamond operator. Recall that these operators satisfy the following
properties.

(3.1) All the operators Tn and Sm commute.

(3.2) We have S1 = 1 and Smn = Sm Sn for all m, n coprime to N .

(3.3) The Hecke relations T1 = 1, Tmn = Tm Tn if (m, n)= 1 hold. If ` - N is prime,
then T`n+1 = T`n T`− `S`T`n−1 . If ` |N is prime then T`n = (T`)n .

As is customary, we shall also use below the notation U` for the operators T`
when ` |N . From the above relations one sees that the operators T` and S` for
` prime determine all the others. Recall that the action of the Hecke operators on
q-expansions is given as follows.

(3.4) If ` |N then an(U` f )= a`n( f ).

(3.5) If ` -N is prime, then an(T` f )= a`n( f )+`an/`(S` f ), with the understanding
that an/` means 0 if ` - n.

It follows that

(3.6) if (n,m) = 1 then an(Tm f ) = anm( f ); in particular, a1(Tm f ) = am( f ) for
every m ≥ 1.

Lastly, we recall the following important fact, which follows from the geometric
interpretation due to Katz [1973] of the elements of Mk(N , A) as the sections of a
coherent sheaf on the modular curve Y1(N )/A over A, and of the Hecke operators
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as correspondences on Y1(N ). A convenient reference is [Diamond and Im 1995,
Chapter 12].

(3.7) Let A be a subring of C. All the operators Tn and Sn leave stable the subspace
Mk(N , A) of Mk(N ,C).

This fact allows us to define unambiguously the operators Tn and Sn over
Mk(N , A) = Mk(N ,Z)⊗Z A by extending the scalars from Z to A for the linear
operators Tn and Sn on Mk(N ,Z).

3C. Hecke operators on M(N, F). From now on, F is a finite field of characteris-
tic p. First we recall a result due to Serre and Katz, which allows us to assume that
the level N is prime to p; for a proof, see [Gouvêa 1988, pages 21–22].

(3.8) Let F be a finite field of characteristic p. Write N = N0 pν with (N0, p)= 1.
Then as subspaces of F[[q]] one has M(N , Fp)= M(N0, Fp).

Henceforth, we assume that (N , p)= 1.

(3.9) There are unique operators Tn (for any n≥1) and Sn (for n≥1 with (n, N )=1)
on M(N , F) such that, for any k ≥ 0, the inclusion Mk(N , F) ↪→ M(N , F) is
compatible with the operators Tn and Sn defined on the source and target.

Since the sum of the Mk(N , A) for k = 0, 1, 2, . . . is M(N , A) by definition, the
uniqueness claimed in (3.9) follows. The existence relies on the interpretation of
the elements of M(N , A) as algebraic functions on the open Igusa curve (an étale
cover of degree p− 1 of the ordinary locus of Y1(N )/Fp ) which is due to Katz (see
[1973; 1975, Theorem 2.2]) and based on earlier work of Igusa. For a more recent
reference for (3.9), see [Gross 1990, Propositions 5.5 and 5.9].

It is clear that the operators Tn and Sn still satisfy properties (3.1) to (3.6). We
record one more easy consequence of (3.9).

(3.10) The actions of the Hecke operators Tn and Sn on M(N , F) are locally finite.
That is, any form f ∈M(N , F) is contained in a finite-dimensional subspace
of M(N , F) stable under all these operators.

We shall use the notation Up instead of Tp when acting on the space M(N , F).
More generally, if m is an integer all of whose prime factors divide Np we shall
use the notation Um instead of Tm .

Finally, we note that the space M(N , F) enjoys an additional Hecke operator
(see [Jochnowitz 1982, §1]).

(3.11) The subspace M(N , F) of F[[q]] is stable under the operator Vp defined by
Vp
(∑

anqn
)
=
∑

anq pn .
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3D. The subspace F(N, F) of M(N, F). Using the same notation as in [Nicolas
and Serre 2012a; 2012b], let us define F(N , F) as the subspace

⋂
`|Np ker U`

of M(N , F). In other words,

(3.12) F(N , F)= { f =
∑
∞

n=0 anqn
∈ M(N , F), an 6= 0⇒ (n, Np)= 1}.

Since the Hecke operators commute, T` and S` for ` - Np stabilize F(N , F).

3E. The residual Galois representations ρ̄ and the invariant α(ρ̄). We denote
by GQ,Np the Galois group of the maximal algebraic extension of Q unramified
outside Np. We denote by c a complex conjugation in GQ,Np. If ` is a prime not
dividing Np, we denote by Frob` an element of Frobenius associated to ` in GQ,Np.
We fix an algebraic closure Fp of Fp.

We shall denote by R = R(N , p) the set of equivalence classes of continuous
odd4 semisimple two-dimensional representations ρ̄ of the Galois group GQ,Np

over Fp that are attached to eigenforms in M(N , Fp). Here we say that ρ̄ is attached
to an eigenform in M(N , Fp) if there exists a nonzero eigenform f ∈ M(N , Fp) for
the Hecke operators T` and S` for ` - Np, with eigenvalues λ` and σ`, such that

(3.13) the characteristic polynomial of ρ̄(Frob`) is X2
− λ`X + `σ`.

Although we do not need this fact, we remark that Khare and Wintenberger have
shown Serre’s conjecture that every odd semisimple two-dimensional representation
of Serre’s conductor N is attached to an eigenform in M(N , Fp).

A result of Atkin, Serre and Tate in the case N=1 [Serre 1973], and of Jochnowitz
in the general case [1982, Theorem 2.2], states that the number of systems of
eigenvalues for the T` and S` appearing in M(N , Fp) is finite. Hence R(N , p) is a
finite set. If ρ̄ : GQ,Np→GL2(Fp) is a representation, it is defined over some finite
extension F of Fp inside Fp (for absolutely irreducible ρ̄, this amounts to saying
that tr ρ̄(GQ,Np) ⊂ F, since finite fields have trivial Brauer groups). Therefore,
there exists a finite extension F of Fp such that all representations in R(N , p) are
defined over F.

For ρ̄ ∈ R(N , p), we shall denote by Uρ̄ the open and closed subset of GQ,Np

of elements g such that tr ρ̄(g) 6= 0, and by Nρ̄ its complement, the set of elements g
such that tr ρ̄(g)= 0. We set α(ρ̄)=µGQ,Np(Nρ̄), where µGQ,Np is the Haar measure
on the compact group GQ,Np.

Proposition 8. For all representations ρ̄ we have α(ρ̄) ∈Q with 0< α(ρ̄)≤ 3/4.
If ρ̄ is reducible, we have α(ρ̄)≤ 1/2.

Proof. By definition, α(ρ̄) is the proportion of elements of trace zero in the finite
subgroup G = ρ̄(GQ,Np) of GL2(Fp). Thus α(ρ̄) is rational and is at most one.
Since ρ̄(c) has trace zero, we have α(ρ̄) > 0. It remains now to obtain the upper

4That is, such that tr ρ̄(c)= 0.
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bounds claimed for α(ρ̄). Let G ′ be the image of G in PGL2(Fp). Then α(ρ̄) is
also the proportion of elements of trace zero in G ′ (it makes sense to say that an
element of PGL2(Fp) has “trace zero”, even though the trace of such an element
is of course not well-defined). Also, observe that an element g′ in PGL2(Fp) has
trace 0 if and only if it has order exactly 2. Indeed, let g be a lift of g′ in GL2(Fp).
If g is diagonalizable and x, y are its eigenvalues, then g′ having order exactly 2
means that x 6= y, but x2

= y2; thus x =−y, and tr g= 0. If g is not diagonalizable,
then the order of g′ is a power of p, hence not 2, and it has a double eigenvalue
x 6= 0 so its trace 2x is not 0. Hence α(ρ̄) is also the proportion of elements of
order 2 in G ′.

If ρ̄ is reducible, then, since ρ̄ is assumed semisimple, G is conjugate to a
subgroup of the diagonal subgroup D = Fp

∗
× Fp

∗, and G ′ may thus be assumed to
be a subgroup of the image D′ of D in PGL2. The group D′ is isomorphic to Fp

∗,
by the isomorphism sending x ∈ Fp

∗ to the image of
( 1

0
0
x

)
in PGL2(Fp), and via this

identification the only element of trace zero of D′ is −1, which is always in G ′

because G contains ρ̄(c). Thus one has α(ρ̄) = 1/|G ′|. Therefore, α(ρ̄) ≤ 1/2
since G ′ is not the trivial group because ρ̄(c) is not trivial in PGL2(Fp).

Now assume that ρ̄ is irreducible. We shall use the classification of subgroups
of PGL2(Fp) for which a convenient modern reference is [Faber 2012]. According
to Theorems B and C of [Faber 2012], if G ′ is any finite subgroup of PGL2(Fp),
we are in one of the 9 situations described there and labeled B(1) to B(4) and
C(1) to C(5). The case B(3) does not arise since we assume p > 2, and neither
do cases B(2) and C(1) which contradict the assumed irreducibility of ρ̄ (for B(2)
because G ′ cyclic implies G abelian, and for C(1) by Remark 2.1 of [Faber 2012]).
In the other situations, we argue as follows.

C(2) G ′ is isomorphic to a dihedral group D2n of order 2n (for n ≥ 2 an
integer) which is a semidirect product of a cyclic group Cn by a subgroup
of order 2. In this case, the elements of order 2 are the elements not
in Cn and, if n is even, the unique element of order 2 in Cn . Thus

α(ρ̄)=

{
1
2 if n is odd,
1
2 +

1
2n if n is even.

Note that if n = 2, then α(ρ̄)= 3/4, and in all other cases α(ρ̄)≤ 5/8.

C(3) G ′ ' A4, so α(ρ̄)= 1/4 since A4 has order 12, and has 3 elements of
order 2.

C(4) G ′ ' S4, so α(ρ̄)= 3/8 since S4 has order 24 and 9 elements of order 2
(6 transpositions and 3 products of two disjoint transpositions).

C(5), B(4) G ′ ' A5, so α(ρ̄)= 1/4 since A5 has order 60 and has 15 elements of
order 2 (the products of two disjoint transpositions).
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B(1) The subgroup G ′ of PGL2(Fp) is conjugate to PGL2(Fq), where q is
some power of p. In this case, the number of matrices of trace 0 in G ′

is q2, while |G ′| = q(q − 1)(q + 1), so

α(ρ̄)=
q

(q − 1)(q + 1)
.

Thus in this case we have α(ρ̄) ≤ 3/8, and this bound is attained for
q = 3.

B(1) again The subgroup G ′ of PGL2(Fp) is conjugate to PSL2(Fq). The number
of matrices of trace 0 in SL2(Fq) is q2

− q if −1 is not a square in Fq

and q2
+q if−1 is a square. Since |SL2(Fq)| = q(q−1)(q+1) one has

α(ρ̄)=

{
1

q+1 if −1 is not a square in Fq ,

1
q−1 if −1 is a square in Fq .

Thus in this case we have α(ρ̄) ≤ 1/4, and this value is attained for
q = 3 and q = 5. �

3F. The Hecke algebra A. From now on, we assume that F is a finite field con-
tained in Fp and large enough to contain the fields of definition of all the represen-
tations ρ̄ ∈ R(N , p).

Let A = A(N , F) be the closed subalgebra of EndF(M(N , F)) generated by the
Hecke operators T` and S` for ` prime not dividing Np. Equivalently, by (3.3), A is
the closed subalgebra of EndF(M(N , F)) generated by the Tm for all m relatively
prime to Np. Here we give M(N , F) its discrete topology and EndF(M(N , F)) its
compact-open topology. Then M = M(N , F) and F = F(N , F) are topological
A-modules. Note that if f ∈ M (or if f ∈F) the submodule Af of M (respectively
of F) generated by f is finite-dimensional over F by (3.10), and hence is finite
as a set.

By construction, the maximal ideals of A(N , F) correspond to the Gal(Fp/F)-
conjugacy classes of systems of eigenvalues (for the T` and S`, ` - Np) appearing
in M(N , Fp). As recalled earlier, the set of such systems is finite and in natural
bijection (determined by the Eichler–Shimura relation (3.13)) with the set R(N , p).
Further, by our choice of F, all those eigenvalues are in F. It follows that A is a
semilocal ring; more precisely, we have a natural decomposition

A =
∏

ρ̄∈R(N ,p)

Aρ̄,

where Aρ̄ is the localization of A at the maximal ideal corresponding to the system
of eigenvalues corresponding to ρ̄. The quotient Aρ̄ of A is a complete local F-
algebra of residue field F, and if one denotes by Tρ̄ the image of an element T ∈ A



The number of nonzero coefficients of modular forms (mod p) 1839

in Aρ̄ , then Aρ̄ is characterized among the local components of A by the following
property.

(3.14) For every ` - Np, the elements T`,ρ̄ − tr ρ̄(Frob`) and `S` − det ρ̄(Frob`)
belong to the maximal ideal mρ̄ of Aρ̄ (or, equivalently, are topologically
nilpotent in Aρ̄).

The decomposition of A as
∏

Aρ̄ gives rise to corresponding decompositions
of M = M(N , F) and F = F(N , F):

M =
⊕

ρ̄∈R(N ,p)

Mρ̄, F =
⊕

ρ̄∈R(N ,p)

Fρ̄,

such that Aρ̄Mρ̄ = Mρ̄ and Aρ̄Mρ̄′ = 0 if ρ̄ 6= ρ̄ ′, and similarly for F . In other
words, Mρ̄ (or Fρ̄) is the common generalized eigenspace in M (respectively F)
for all the operators T` and `S` (` - Np) with generalized eigenvalues tr ρ̄(Frob`)
and det ρ̄(Frob`).

Let ρ̄ ∈ R. Since A acts faithfully on M , the algebra Aρ̄ acts faithfully on Mρ̄ . In
particular Mρ̄ is nonzero. It is easy to deduce that Mρ̄ contains a nonzero eigenform
for all the Hecke operators T` and S`, ` - Np. We shall need on one occasion the
following slightly more precise result, due to Ghitza [2006].

(3.15) Let ρ̄ ∈ R. There exists a form f =
∑
∞

n=1 anqn in Mρ̄ , with a0 = 0, a1 = 1,
that is an eigenform for all the Hecke operators T` and S`, ` - Np.

Indeed, according to [Ghitza 2006, Theorem 1], there exists an eigenform h ∈Mρ̄

which is cuspidal, that is, such that a0(h) = 0. Let m ∈ N with am(h) 6= 0. Then
f = (1/am(h))Umh is an eigenform and satisfies a0( f )= 0, a1( f )= 1.

3G. The Hecke modules Af and the Hecke algebra Af . For f ∈M(N , F), recall
that we defined Af to be the submodule of M (over A) generated by f , which
by (3.10) is a finite-dimensional vector space over F. We shall denote by Af the
image of A under the restriction map EndF(M)→ EndF(Af ). Thus Af is a finite-
dimensional quotient of A. We continue to denote by T` and S` the images of
T` and S` in Af .

3H. The support R( f ) of a modular form. For f ∈ M , we define the support
of f to be the subset of R consisting of those representations ρ̄ such that the
component fρ̄ of f in Mρ̄ is nonzero. We will denote the support of f by R( f ).
Thus R( f )=∅ if and only if f = 0, and R( f ) is a singleton {ρ̄} if and only if f is
a generalized eigenform for all the operators T` and S` (with ` - Np). Equivalently,
R( f ) is the smallest subset of R such that the natural surjection A=

∏
ρ̄∈R Aρ̄→ Af

factors through
∏
ρ̄∈R( f ) Aρ̄ . In view of (3.14), we have the following lemma.
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Lemma 9. Let ` - Np. The action of the operator T` on the finite-dimensional space
Af is nilpotent if and only if Frob` ∈ Nρ̄ for every ρ̄ ∈ R( f ). Similarly, the action
of R` on Af is invertible if and only if Frob` ∈Uρ̄ for every ρ̄ ∈ R( f ).

3I. Pure modular forms and the invariants α( f ) and h( f ).

Definition 10. We say that f ∈ M is pure if, for every ρ̄, ρ̄ ′ ∈ R( f ), one has
Nρ̄ = Nρ̄′ , or equivalently Uρ̄ = Uρ̄′ . If f is pure and nonzero, we denote by Nf

and Uf the common sets Nρ̄ and Uρ̄ for ρ̄ ∈ R( f ). Further, we let N f and U f denote
the sets of primes ` - Np with Frob` ∈ Nf and Frob` ∈Uf respectively.

Note that generalized eigenforms are pure, but that the converse is false in general.
Also note that, by Lemma 9, if f is nonzero and pure and ` -Np, then T` is nilpotent
on Af if ` ∈N f , and T` is invertible on Af if ` ∈ U f .

Definition 11. Let f be a pure, nonzero, modular form. Define α( f )=µGQ,Np(Nf )

such that α( f ) = α(ρ̄) for any ρ̄ ∈ R( f ). Define the strict order of nilpotence
of f , denoted by h( f ), as the largest integer h such that there exist (not necessarily
distinct) prime numbers `1, . . . , `h - Np in N f with T`1 · · · T`h f 6= 0.

Note that, in the definition of the strict order of nilpotence, the largest integer h
exists and is no more than the dimension of Af , since the T`i act nilpotently on Af
for `i ∈N f .

(3.16) Given a general nonzero form f , partition the finite set R( f ) into equivalence
classes Ri ( f ) based on the equivalence relation ρ̄∼ ρ̄ ′ if and only if Nρ̄= N ′ρ̄ .
Thus we may write

f =
∑

i

fi , fi =
∑

ρ̄∈Ri ( f )

fρ̄,

so that the fi are pure. We call this decomposition the canonical decompo-
sition of f into pure forms.

We now extend the definitions of α( f ) and h( f ) to forms that are not necessarily
pure.

Definition 12. If f =
∑

i fi is the canonical decomposition of f into pure forms,
we set α( f )=mini α( fi ) and h( f )=maxi,α( fi )=α( f ) h( fi ).

3J. Existence of a pseudorepresentation and consequences.

Proposition 13. There exist continuous maps t : GQ,Np→ A and d : GQ,Np→ A
such that

(i) d is a morphism of groups GQ,Np→ A∗,

(ii) t is central (i.e., t (gh)= t (hg)),

(iii) t (1)= 2,
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(iv) t (gh)+ t (gh−1)d(h)= t (g)t (h) for all g, h ∈ GQ,Np,

(v) t (Frob`)= T` for all ` - Np,

(vi) d(Frob`)= `S` for all ` - Np.

The uniqueness of such a pair (t, d) is clear: the function t is characterized
uniquely by (ii) and (v) alone using the Chebotarev density theorem, and d is
characterized by (i) and (vi) (or else by (iv); see (5) below). The existence of
t and d is proved by “glueing” the traces and determinants of the representations
attached by Deligne to eigenforms in characteristic zero and then reducing modulo p.
For details, see [Bellaïche and Khare 2015].

Remark 14. The properties (i) to (iv) express the fact that (t, d) is a pseudorepre-
sentation of dimension 2. The map t is called the trace, and the map d is called the
determinant of the representation (t, d) (see [Chenevier 2014]). It is easy to check
that the trace and determinant of any continuous two-dimensional representation
(of a topological group over any topological commutative ring) satisfy properties
(i) to (iv). Since p > 2, one can recover d from t by the formula

d(g)= (t (g)2− t (g2))/2, (5)

which follows upon taking g = h in (iv) and using (iii).

We prove for later use the following lemma.

Lemma 15. For every g ∈ GQ,Np one has t (g p)= t (g)p.

Proof. Let m∈GL2(A) be the matrix
( 0

d(g)
−1
t (g)

)
with tr(m)= t (g) and det(m)=d(g).

Since tr and det on the multiplicative subgroup generated by m satisfy properties
(i) to (iv) above, one sees easily by induction on n that tr(mn) = t (gn) for all n.
Thus it suffices to prove that tr(m p)= tr(m)p.

Let f : Fp[D, T ]→ A be the morphism of rings sending D to d(g) and T to t (g),
where D and T are two indeterminates. Let M ∈ GL2(Fp[D, T ]) be the matrix( 0

D
−1
T

)
. Since f (M)= m, it clearly suffices to prove that tr(M p)= tr(M)p. Since

Fp[D, T ] can be embedded in an algebraic field k of characteristic p, it suffices
to prove that, for all M ∈ M2(k), one has tr(M p) = tr(M)p. Replacing M by a
conjugate matrix if necessary, we may assume that M is triangular, in which case
the formula is obvious. �

Let f ∈ M(N , F) be a modular form. Let tf : G→ Af and df : G→ Af be the
composition of t and d with the natural morphism of algebras A→ Af . Note that
(tf , df ) satisfies the same properties (i) to (vi), and so (tf , df ) is a pseudorepresen-
tation of G on Af . In particular, (v) reads

tf (Frob`) f = T` f. (6)
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We now deduce certain consequences of the existence of the pseudorepresentation
(t, d) for the algebra A and for modular forms f ∈ M .

Proposition 16. The Hecke algebra A is topologically generated by the T` for
` - Np alone (that is, without the S`).

Proof. Let A′ be the closed subalgebra of A generated by the T`. Since the
elements Frob` for ` - Np are dense in GQ,Np and t (Frob`)= T` ∈ A′, one sees that
t (GQ,Np)⊂ A′. In particular, for ` not dividing Np, we have t (Frob2

`) ∈ A′, hence
we also have (t (Frob2

`)− t (Frob`)2)/2. But this element is just d(Frob`) = `S`.
Hence S` ∈ A′ and A′ = A. �

Lemma 17. There exists a finite quotient G f of GQ,Np such that, for ` - Np, the
action of T` on Af depends only on the image of Frob` in G f .

Proof. Let H denote the subset of GQ,Np consisting of elements h such that
tf (gh)= tf (g) for every g ∈ G. Since t is central (property (ii) above), it follows
that H is a normal subgroup of G. We call H the kernel of the pseudorepresentation
(tf , df ). By (5) and (iii) one has df (h) = 1 for h ∈ H . Let G f = GQ,Np/H . The
maps tf , df : GQ,Np → Af factor through G f to give maps G f → Af , which we
shall also denote by tf and df . Note that, by construction, there is no h 6= 1 in G f

such that tf (gh)= tf (g) for every g ∈ G f . Since Af is finite, it follows easily that
G f is a finite group. Finally, by (6), T` f depends only on tf (Frob`), which only
depends on the image of Frob` in G f . Therefore, if g ∈ Af , then g = Tf for some
T ∈ A, and T`g = T`Tf = T T` f depends only on the image of Frob` in G f . �

We draw three consequences of this lemma.

Proposition 18. Let f =
∑
∞

n=0 anqn
∈ F = F(N , F). If f 6= 0, then there exists a

square-free integer n such that an 6= 0.

Proof. Since f is nonzero, an 6= 0 for some n ∈ N, and since f ∈ F , one has
(n, Np)= 1. Thus a1(Tn f ) 6= 0. By Proposition 16, Tn is a limit of linear combina-
tions of terms of the form T`1 · · · T`s with `1, . . . , `s being (not necessarily distinct)
primes all not dividing Np. Since T 7→ a1(Tf ) is continuous and linear, we deduce
that a1(T`1 · · · T`s f ) 6= 0 for some primes `1, . . . , `s not dividing Np (again not
necessarily distinct). Since the action of T`i on Af depends only on Frob`i in the
finite Galois group G f , one can replace `i by any other prime whose Frobenius has
the same image without affecting the action of T`i . In this manner, we may find
distinct primes `′i such that T`1 · · · T`s = T`′1 · · · T`′s , and then with m = `′1 · · · `

′
s it

follows that am( f )= a1(Tm f )= a1(T`′1 · · · T`′s f )= a1(T`1 · · · T`s f ) 6= 0. �

Proposition 19. Let f ∈ M(N , F) be a pure form, and let f ′ be any element
of M(N , F). Let h be a nonnegative integer, and let M denote the set of square-
free integers m having exactly h prime factors, all from the set N f , and such that
Tm f = f ′. Then M is multifrobenian.
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Proof. Let G f be as in Lemma 17 and let Df, f ′ ⊂ Gh
f denote the set of h-tuples

(g1, . . . , gh) such that tf (g1) · · · tf (gh) f = f ′, where gi ∈ Nf for i = 1, . . . , h. Then
Df, f ′ is invariant under conjugation and symmetric under permutations, and hence
by definition M is the multifrobenian set of weight h attached to Df, f ′ and G f . �

Proposition 20. Let f be a pure modular form. Then there exist h( f ) distinct
primes `1, . . . , `h( f ) in N f such that T`1 · · · T`h( f ) f 6= 0.

Proof. The fact that we can find h( f ) primes `1, . . . , `h( f ) in N f such that
f ′ := T`1 · · · T`h( f ) f 6= 0 simply follows from the definition of h( f ). In the
notation of the previous proposition we see that Df, f ′ is not empty as it con-
tains (Frob`1, . . . ,Frob`h( f )). Hence the multifrobenian set M of that proposi-
tion is not empty, and there exist distinct primes `′1, . . . , `

′

h( f ) in N f such that
T`′1 · · · T`′h( f )

f = f ′ 6= 0. �

4. Asymptotics: proof of Theorem 1

Let f =
∑

anqn
∈ M = M(N , F). We assume below that f is not constant. We set

Z( f )= {n ∈ N, an 6= 0} and π( f, x)= |{n < x, an 6= 0}|,

and our goal is to establish an asymptotic formula for π( f, x). For a given a ∈ F∗

it will also be convenient to define

Z( f, a)= {n ∈ N, an = a} and π( f, a, x)= |{n < x, an = a}|.

By (3.8), we may assume without loss of generality that (N , p) = 1, so all the
results of Section 3 apply.

4A. Proof of Theorem 1 when f ∈ F(N, F) and f is pure. We assume in this
section that f is a pure form in F(N , F). From Section 3I recall that the set of
primes ` not dividing Np may be partitioned into two sets, U f and N f , such that
` ∈ U f if T` acts invertibly on Af and ` ∈N f if T` acts nilpotently on Af .

Given a ∈ F∗ we wish to prove an asymptotic formula for π( f, a, x). If n is an
integer with an( f )= a (and since f ∈ F we must have (n, Np)= 1) then we may
write n=mm′m′′ with m square-free and containing all prime factors from U f , with
m′ square-free and containing h ≤ h( f ) prime factors all from N f , and with m′′

square-full and coprime to mm′. Such a decomposition of the number n is unique,
and if we write f ′′ = Tm′′ f and f ′ = Tm′ f ′′ then f ′ and f ′′ are forms in Af −{0}
with am( f ′)= a. Thus integers n with an( f )= a uniquely define triples ( f ′, f ′′, h)
and we may decompose

Z( f, a)=
∐

f ′, f ′′,h

Z( f, a; f ′, f ′′, h), (7)
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where the disjoint union is taken over forms f ′, f ′′ in Af − {0} and integers
0 ≤ h ≤ h( f ). Here the set Z( f, a; f ′, f ′′, h) is defined as the set of integers
n = mm′m′′ with (n, Np)= 1 such that

(4.1) m is square-free and all its prime factors are in U f ;

(4.2) m′ is square-free, has exactly h prime factors, and all its prime factors are in
N f , and moreover f ′ = Tm′ f ′′;

(4.3) m′′ is square-full, relatively prime to mm′, and f ′′ = Tm′′ f ;

(4.4) am( f ′)= a.

Next we evaluate the number of elements up to x in the set Z( f, a; f ′, f ′′, h)
using Theorem 7. Write S f, f ′′ for the set of square-full integers m′′ such that
Tm′′ f = f ′′, and write M f ′, f ′′ for the set of integers m′ that are the product of
h distinct primes in N f and such that f ′ = Tm′ f ′′. By Proposition 19, M f ′, f ′′ is a
multifrobenian set of height h. Observe that conditions (4.1), (4.2), (4.3) are the
same as conditions (2.1.1), (2.1.2), (2.1.3) defining the set Z(U f ,M f ′, f ′′,S f, f ′′).
Now, define a map τ f : U f → A∗f sending ` to tf (Frob`) = T` and extend it by
multiplicativity to the set of all square-free integers composed only of primes
from U f . Let 0f be the image of τ f , which is a finite abelian subgroup of the
finite group A∗f , and let 1 f ′,a denote the set of γ ∈ 0f such that a1(γ f ′)= a. For
n = mm′m′′ ∈ Z( f, a; f ′, f ′′, h) set τ f (n) = τ f (m) so that condition (4.4) is the
same as τ f (n) ∈1 f ′,a . Thus we are in a position to apply Theorem 7, which yields,
assuming that the sets M f ′, f ′′ , S f, f ′′ and 1 f ′,a are all not empty,

|{n < x : n ∈ Z( f, a; f ′, f ′′, h)}|

= |{n < x : n ∈ Z(U f ,M f ′, f ′′,S f, f ′′), τ (n) ∈1 f ′,a}|

∼ c δ(M f ′, f ′′)
|1 f ′,a|

|0f |

x
(log x)α( f ) (log log x)h, (8)

where c = c( f, f ′′) > 0 is a constant depending only on U f and S f, f ′′ (thus only
on f and f ′′), and α( f )= 1− δ(U f )= δ(N f ) as defined in Section 3I. If at least
one of the sets M f ′, f ′′ , S f, f ′′ or 1 f ′,a is empty, then so is Z( f, a; f ′, f ′′, h).

Using (7), one deduces that either all the Z( f, a, f ′, f ′′, h) are empty for all
permissible choices of ( f ′, f ′′, h), in which case π( f, a, x)= 0 for all x , or

π( f, a, x)∼ c( f, a)
x

(log x)α( f ) (log log x)h( f,a), (9)

where h( f, a) ≤ h( f ) is the largest integer h ≤ h( f ) for which there exist forms
f ′, f ′′ ∈ A f −{0} such that Z( f, a; f ′, f ′′, h) is not empty, and where

c( f, a)=
∑

( f ′, f ′′,h( f,a))

c( f, f ′′)δ(M f ′, f ′′)
#1 f ′,a

#0f
, (10)
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the sum being over those f ′, f ′′ ∈ Af − {0} such that Z( f, a; f ′, f ′′, h( f, a)) is
not empty.

We claim that the set Z( f, a; f ′, f ′′, h( f )) is not empty for some choice of
( f ′, f ′′)∈ (Af −{0})2 and some a∈F∗. To see this, take m′′=1 and f ′′= f =Tm′′ f .
By Proposition 20, there exists an integer m′ with h( f ) distinct prime factors in N f

such that Tm′ f 6= 0. Fix one such m′ and let f ′ = Tm′ f . Proposition 18 tells us
that there exists a square-free integer m such that am( f ′) 6= 0. Note that h( f ′)= 0,
hence m has all its prime factors in U f . Define a = am( f ′) ∈ F∗. Then the set
Z( f, a; f ′, f ′′, h( f )) contains n=mm′m′′ and is therefore not empty, which proves
the claim.

Since π( f, x)=
∑

a∈F∗ π( f, a, x), it follows from (9) and the above claim that

π( f, x)∼ c( f )
x

(log x)α( f ) (log log x)h( f ), with c( f )=
∑
a∈F∗

h( f,a)=h( f )

c( f, a). �

4B. Proof of Theorem 1 when f ∈ F(N, F) but f is not necessarily pure. Let
f =

∑
i fi be the canonical decomposition (see (3.16)) of f into pure forms. By

the preceding section, one has

π( fi , x)∼ c( fi )
x

(log x)α( fi )
(log log x)h( fi ).

Consider the indices i such that α( fi ) is minimal (and by definition α( fi )= α( f ));
among those, select the indices with h( fi )maximal (and by definition h( fi )=h( f )).
Let I denote the set of such indices. We claim that

π( f, x)∼ c( f )
x

(log x)α( f ) (log log x)h( f ), with c( f )=
∑
i∈I

c( fi ).

To prove the claim, first note that we can forget those fi with i 6∈ I , because they
have a negligible contribution compared to the asserted asymptotics (either the
power of log log x is smaller, or the power of log x is larger). It remains to prove
that, for i, j ∈ I , i 6= j , one has

π( fi , fj , x)= o
(

x
(log x)α( f ) (log log x)h( f )

)
, (11)

where π( f1, fj , x) = |{n ≤ x, an( fi ) 6= 0, an( fj ) 6= 0}|. But if n is such that
an( fi ) 6= 0 and an( fj ) 6= 0, it has at most h( fi )+ h( fj ) = 2h( f ) prime factors `
such that Frob` ∈ Nfi ∪ Nfj . Moreover, the two open sets Nfi and Nfj of GQ,Np are
not equal by definition of the decomposition into pure forms (3.16). Therefore the
measure α′ of the open set Nfi ∪ Nfj is strictly greater than the common measure
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α( f )= α( fi )= α( fj ) of Nfi and Nfj . Hence an application of Theorem 7 gives

π( f1, fj , x)= O
(

x
(log x)α′

(log log x)2h( f )
)
,

which implies (11) since α′ > α( f ). �

4C. Proof of Theorem 1: general case. Let B be the set of integers m ≥ 1 all of
whose prime factors divide Np. Note that the series

∑
m∈B 1/m converges. For

m ∈ B, we consider the following operators on F[[q]]:

Um

(∑
anqn

)
=

∑
amnqn and Vm

(∑
anqn

)
=

∑
anqmn.

We also consider the operator W defined by

W
(∑

anqn
)
=

∑
(n,Np)=1

anqn.

The operators Um stabilize the space M(N , F) (see Section 3C). The operator Vm

however does not stabilize M(N , F) (except for m = p; see (3.11)), but it sends
M(N , F) into M(Nm, F) since it is the reduction modulo p of the action on
q-expansions of the operator on modular forms f (z) 7→ f (mz). As for the opera-
tor W , it is easily seen from the definitions to satisfy

W =
∑
m∈B

µ(m)VmUm,

where µ(m) is the Möbius function. Since µ vanishes on integers that are not
square-free, the sum is in fact finite, and it follows that W sends M(N , F) into
M(N 2, F) and, more precisely, into F(N 2, F).

Let f =
∑

anqn
∈ M(N , F) be a modular form. For any integer m ∈ B, define

fm =
∑

n=mm′
(m′,Np)=1

anqn,

so that f = a0+
∑

m∈B fm . This sum may genuinely be infinite, but it obviously
converges in F[[q]]. Clearly

π( f, x)=
∑
m∈B

π( fm, x)+ O(1),

where the error term O(1) is just 0 if a0 = 0 and 1 otherwise. One sees from the
definitions that fm = Vm WUm f , so that

π( fm, x)= π(WUm f, x/m).
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Since π( fm, x) is clearly at most x/m, and since
∑

m∈B,m>(log x)2 1/m� 1/ log x ,
we conclude that

π( f, x)=
∑
m∈B

m≤(log x)2

π(WUm f, x/m)+ O
(

x
log x

)
. (12)

Now WUm f ∈ F(N 2, F), and we can apply the results of Section 4B and
thus estimate π(WUm f, x/m). Thus, if WUm f 6= 0 and m ≤ (log x)2 (so that
log(x/m)∼ log x), then

π(WUm f, x/m)∼ c(WUm f )
x

m(log x)α(WUm f ) (log log x)h(WUm f ). (13)

Note that, since f is not a constant, WUm f 6= 0 for at least one m ∈ B. Further,
note that, while B is infinite, the set of forms WUm f for m ∈ B is finite since Um f
belongs to the Hecke-module generated by f which is finite-dimensional over F

(see (3.10)). Thus the asymptotic formula (13) holds uniformly for all m ≤ (log x)2

with m ∈ B and as x→∞. Finally, since the Hecke operators T` for ` prime to Np
commute with the operators Um , Vm and W , it follows that

α( f )= min
m∈B

WUm f 6=0

α(WUm f ) and h( f )= max
m∈B

WUm f 6=0
α(WUm f )=α( f )

h(WUm f ).

Thus, setting cm = c(WUm f ) when WUm f 6= 0 (which happens for at least one
m ∈ B) and setting cm = 0 otherwise, we may recast (13) as

π(WUm f, x/m)= (cm + εm(x))
x

m(log x)α( f ) (log log x)h( f ), (14)

where εm(x)→ 0 as x→∞, uniformly for all m ∈ B with m ≤ (log x)2.
From (12) and (14) we obtain

π( f, x)∼
∑
m∈B

m<(log x)2

cm

m
x

(log x)α( f ) (log log x)h( f )
∼ c

x
(log x)α( f ) (log log x)h( f ),

with
c =

∑
m∈B

cm

m
, (15)

noting that this series converges because cm takes only finitely many values (and
hence is bounded). This finishes the proof of Theorem 1. �

5. Equidistribution

Definition 21. We say that a form f ∈ M(01(N ), F) has the equidistribution prop-
erty if, for any two a, b ∈ F∗, we have π( f, a, x) ∼ π( f, b, x). We say that a
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subspace V ⊂ M(01(N ), F) has the equidistribution property if every nonconstant
form f ∈ V has the equidistribution property.

In view of Theorem 1, f having the equidistribution property is equivalent to

π( f, a, x)∼
c( f )
|F| − 1

x
log(x)α( f ) (log log x)h( f ),

where c( f ) is the constant of Theorem 1.
We now give a sufficient condition for equidistribution for generalized eigen-

forms, which generalizes a similar criterion for true eigenforms due to Serre [1976,
Exercise 6.10].

Proposition 22. Let ρ̄ : GQ,Np→ GL2(F) be a representation in R(N , p). If the
set tr ρ̄(GQ,Np)−{0} generates F∗ multiplicatively, then the generalized eigenspace
M(N , F)ρ̄ has the equidistribution property.

Proof. First assume that f ∈ F(N , F)ρ̄ . Since f is pure, the asymptotic formula (9)
holds for π( f, a, x), and to obtain equidistribution it remains to show that the
constant c( f, a) appearing there is independent of a ∈ F∗. By formula (10), which
gives the values of c( f, a), it suffices to prove that the cardinalities of the sub-
sets 1 f ′,a of 0f are independent of a ∈ F∗, for any given form f ′ ∈ Af − {0}.
Recall that 0f is the subgroup of A∗f generated by the elements T` = tf (Frob`)
for ` ∈ U f = Uρ̄ and hence, by Chebotarev and the definition of U f , the sub-
group of A∗f generated by tf (GQ,Np) ∩ A∗f . Recall also that 1 f ′,a is the set of
elements γ ∈ 0f such that a1(γ f ′)= a. To prove that |1 f ′,a| is independent of a,
it therefore suffices to prove that 0f contains the subgroup F∗ of A∗f , in which case
multiplication by ba−1 will induce a bijection between 1 f ′,a and 1 f ′,b for any
b ∈ F∗. Since by hypothesis tr ρ̄(GQ,Np)− {0} generates F∗, it suffices to show
that tr ρ̄(GQ,Np)−{0} ⊂ 0f . For this, let g ∈ GQ,Np, and assume that tr ρ̄(g) 6= 0.
By (3.14), one has tf (g)≡ tr ρ̄(g) (mod mAf ) where mAf is the maximal ideal of
the finite local algebra Af . Let n be an integer such that mn

Af
= 0, and let q be the

cardinality of F. Then, by Lemma 15,

tf (gqn
)= tf (g)q

n
≡ (tr ρ̄(g))q

n
(mod mn

Af
),

so that, since x 7→ xq induces the identity on F,

tf (gqn
)= tr ρ̄(g).

Hence tr ρ̄(g) ∈ 0f and this completes the proof of the proposition for forms
f ∈ F(N , F)ρ̄ .
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Now consider a general nonconstant form f ∈M(N , F)ρ̄ . Mimicking the proof
in Section 4C, one has

π( f, a, x)=
∑
m∈B

m≤(log x)2

π(WUm f, a, x/m)+ O
(

x
log x

)

and the asymptotic formula obtained for π(WUm f, a, x/m) is independent of a∈F∗,
since WUm f ∈ F(N 2, F)ρ̄ and by the result just established. �

Serre has given an example of an eigenform f mod p that does not have the
equidistribution property: namely, the form1 mod 7 (see [Serre 1976, Exercise 12]).
Here is a generalization.

Proposition 23. Suppose f is a nonconstant eigenform in F(N , F)ρ̄ . If the set
tr ρ̄(GQ,Np)−{0} does not generate F∗ multiplicatively, then f does not have the
equidistribution property.

Proof. Let f =
∑
∞

n=1 anqn . Since f is an eigenform for the T`, ` - Np, and also is
killed by the U` for ` |Np (because it is in F), the sequence an is multiplicative and
one has a` = 0 for ` |Np and a` = tr ρ̄(Frob`) for all ` - Np. Also one has a1 6= 0
since f is nonconstant, and we may assume a1 = 1.

Let B be the proper subgroup of F∗ generated by tr ρ̄(GQ,Np)−{0}. By multiplica-
tivity, an ∈ B ∪ {0} for all square-free integers m. Since an 6= 0 for square-free n
exactly when n is composed only of primes in U f , we see that∑

n≤x
an∈B

1≥
∑
n≤x

n square-free
p|n=⇒p∈U f

1∼ c
x

(log x)α( f ) (16)

for a suitable positive constant c. Now if f has the equidistribution property, then,
since |B| ≤ |F∗− B| for proper subgroups B of F∗, we must have∑

n≤x
an∈B

1≤ (1+ o(1))
∑
n≤x

an∈F∗−B

1.

The right-hand side above is at most the number of integers of the form mr ≤ x
where 1< m is square-full and r ≤ x/m is square-free with (r,m)= 1 and ar 6= 0.
Ignoring the condition (r,m) = 1, the number of such integers is (arguing as in
Section 4C)

≤

∑
1<m≤x

m square-full

∑
r≤x/m

r square-free
p|r=⇒p∈U f

1 ≤
∑

1<m≤(log x)2
m square-full

x
m

c+ o(1)
(log x)α( f ) +

∑
m>(log x)2

m square-full

x
m
,
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which is at most

(c+ o(1))
x

(log x)α( f )

∑
1<m

m square-full

1
m
= (c+ o(1))

x
(log x)α( f )

(
ζ(2)ζ(3)
ζ(6)

− 1
)

= ((0.9435 . . .)c+ o(1))
x

(log x)α( f ) .

But this contradicts the lower bound (16), completing our proof. �

We can use the above result to give a converse to Proposition 22 when the level N
is equal to 1.

Proposition 24. Let ρ̄ ∈ R(1, F). The space M(1, F)ρ̄ has the equidistribution
property if and only if the set tr ρ̄(GQ,p)−{0} generates F∗ multiplicatively.

Proof. By (3.15), M(1, F)ρ̄ has an eigenform f =
∑
∞

n=1 anqn with a1 = 1 for all
the Hecke operators T` and S`, ` 6= p. Replacing f by f − VpUp f (see (3.11)),
we may assume that f is an eigenform in F(1, F)ρ̄ . If M(1, F)ρ̄ , hence f , has
the equidistribution property, then by the preceding proposition tr ρ̄(GQ,p)−{0}
generates F∗ multiplicatively. �

In the same spirit, but concerning forms that are not necessarily generalized
eigenforms, one has the following partial result.

Proposition 25. If 2 is a primitive root modulo p, then M(N , Fp) has the equidis-
tribution property.

Proof. One reduces to the case of an f ∈ F(N , p) pure exactly as in Section 4B.
Then, arguing as in the proof of Proposition 22, it suffices to prove that the group 0f

generated by tf (GQ,Np) contains F∗p . But 0f contains tf (1)= 2 which by hypothesis
generates F∗p . �

Again, one has a partial converse to this proposition.

Proposition 26. In the case N = 1 and p ≡ 3 (mod 4), M(1, Fp) has the equidis-
tribution property if and only if 2 is a primitive root modulo p.

Proof. Let ωp : GQ,p → F∗p be the cyclotomic character modulo p, and define
ρ̄ = 1⊕ ω(p−1)/2

p . The hypothesis p ≡ 3 (mod 4) means that (p − 1)/2 is odd,
and so ρ̄ is odd and thus belongs to R(1, p) (ρ̄ is the representation attached to the
Eisenstein series Ek(z) where k = 1+ (p− 1)/2 for p > 3 and to E4(z) if p = 3).
Reasoning as in Proposition 24, there is an eigenform f in F(1, p)ρ̄ . If M(1, p),
hence f , has the equidistribution property, then ρ̄(GQ,p)− {0} generates F∗p by
Proposition 23. Since the image of ρ̄ is {0, 2}, this implies that 2 is a primitive root
modulo p. �
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6. A variant: counting square-free integers with nonzero coefficients

Given a modular form f =
∑
∞

n=0 anqn in M(N , p), let

πsf( f, x)= |{n < x, n square-free, an 6= 0}|.

Our proof of Theorem 1 allows us to get asymptotics for πsf( f, x), and indeed this
is a little simpler than Theorem 1. We state this asymptotic result, and sketch the
changes to our proof, omitting details.

Theorem 27. If there exists a square-free integer n with an 6= 0, then there exists a
positive real constant csf( f ) > 0 such that

πsf( f, x)∼ csf( f )
x

(log x)α( f ) (log log x)h( f ).

If an = 0 for all square-free integers n, then in fact an 6= 0 only for those integers n
that are divisible by `2 for some prime ` dividing Np.

Suppose below that f has some coefficient an 6= 0 with n not divisible by the
square of any prime dividing Np. We first prove Theorem 27 for a pure form
f ∈ F(N , p), as in Section 4A. In this case, our hypothesis on f is equivalent
to saying that f is nonconstant. Then the proof given in Section 4A works by
replacing the sets Z( f ), Z( f, a) by their intersection Zsf( f ), Zsf( f, a) with the set
of square-free integers. We have a decomposition, analogous to (7) but simpler:

Zsf( f, a)=
∐
f ′,h

Zsf( f, a; f ′, h), (17)

where the disjoint union is taken over forms f ′ in Af − {0} and over integers
0≤ h ≤ h( f ). Here the set Zsf( f, a; f ′, h) is defined as the set of integers n=mm′

with (n, Np)= 1 such that

(6.1) m is square-free and all its prime factors are in U f ;

(6.2) m′ is square-free, has exactly h prime factors, and all its prime factors are in
N f , and moreover f ′ = Tm′ f ;

(6.3) am( f ′)= a.

The asymptotics for the number of integers less than x in Z( f, a; f ′, h) is then
exactly as in Section 4A, except that the set of square-full integers S f, f ′′ is now {1}.
The desired asymptotics for πsf( f ) follows.

The case where f is in F(N , F) but not necessarily pure is reduced to the pure
case exactly as in Section 4B.

Finally, in the general case where f ∈ M(N , F), let Bsf be the set of square-free
integers m whose prime factors all divide Np. We observe that Bsf is a finite subset
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of the infinite set B defined in Section 4C. For m ∈ Bsf, we define as in Section 4C

fm =
∑

n=mm′
(m′,Np)=1

anqn,

and we have clearly
πsf( f, x)=

∑
m∈Bsf

πsf( fm, x).

By the assumption made on f , at least one of the fm for m ∈ Bsf is nonconstant.
The rest of the proof is therefore exactly as in Section 4C.

7. Examples

7A. Examples in the case N = 1, p = 3. The simplest case where our theory
applies is N = 1, p= 3. Let us denote by1= q+2q4

+q7
+q13

+· · · ∈ F3[[q]] the
reduction modulo 3 of the q-expansion of the usual1 function. The space M(1, F3)

is the polynomial algebra in one variable F3[1] and F(1, F3) is the subspace of
basis (1k) where k runs among positive integers not divisible by 3. The set of
Galois representations R(1, F3) has only one element, ρ̄ = 1⊕ω3 where ω3 is the
cyclotomic character modulo 3. Therefore, every nonzero form f ∈ M(1, F3) is a
generalized eigenform, and hence pure. Thus the sets U f , N f are independent of f
and are respectively the sets U , N of prime numbers ` congruent to 1, 2 modulo 3;
the invariant α( f ) is 1/2.

The invariant h( f ) is more subtle. Recall from Section 3I that h( f ) is the
largest integer h such that there exist primes `1, . . . , `h in N f (that is, congruent to
2 mod 3) such that T`1 · · · T`h f 6= 0. According to a result of Anna Medvedowski
[2015] h( f ) is also the largest h such that T h

2 f 6= 0. Using this it is easy to compute
the value of h(1k) for small values of k, as shown below (we omit the values of k
divisible by 3 since h(13k)= h(1k)):

f 1 12 14 15 17 18 110 111 113 114 116 117 119

h( f ) 0 1 2 3 4 5 4 5 4 5 4 5 6

In general Medvedowski [2015] has shown that h(1k) < 4klog 2/ log 3. Numerical
experiments suggest that h(1k) is of the order

√
k for large k with 3 - k, so there is

perhaps some room to improve this upper bound (note log 2/ log 3≈ 0.63).

Calculation of π(12, x). The invariant c( f ) is the most difficult to determine. We
shall calculate c(12), illustrating the proof of our theorem in this simplest nontrivial
case. To ease notation, set f =12. The Hecke module Af is a two-dimensional
vector space generated by f =12 and1, and the Hecke algebra Af can be identified
with the algebra of dual numbers F3[ε], where ε12

= 1 and ε1 = 0. The value
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of the operators T` and `S` in Af = F3[ε] is given by the following table (see
[Bellaïche and Khare 2015, §A.3.1]):

` (mod 9) 1, 4, 7 2 5 8

T` 2 ε 2ε 0
`S` 1 −1 −1 −1

From this, using (3.3), it is not difficult to compute T`n for any n:

` (mod 9) 1,4,7 2 5 8
n (mod 6) 0,3 1,4 2,5 0,2,4 1 3 5 0,2,4 1 3 5 0,2,4 1,3,5

T`n 1 2 0 1 ε 2ε 0 1 2ε ε 0 1 0

We are now ready to follow the proof of Theorem 1. Since f ∈F(1, F3) and f is
pure, only Section 4A is relevant. As in our analysis there, write f =

∑
n≥1 anqn

and, for a = 1, 2 (mod 3), let Z( f, a) be the set of integers n such that an = a. The
set Z( f, a) is the disjoint union of sets Z( f, a; f ′, f ′′, h) as in (7), where f ′, f ′′ are
in Af −{0} and h ≤ h( f )= 1 is a nonnegative integer. The subsets with h = 0 have
negligible contribution in view of (8). When h = 1, for the set Z( f, a; f ′, f ′′, 1)
to be nonempty one must have h( f ′′) = 1 and h( f ′) = 0. Since f ′′ and f ′ must
be the image of f by some Hecke operators, this implies, in view of the table
above, that f ′′ is either 212 or 12 and that f ′ is either 21 or 1, so we have 4 sets
Z( f, a; f ′, f ′′, 1) to consider for each value 1, 2 of a. As explained in Section 4A,
to each permissible choice of f ′, f ′′ is attached a set S f, f ′′ of square-full integers,
namely the set of square-full m′′ such that Tm′′ f = f ′′, and a multifrobenian set of
height 1, that is, a frobenian set, M f ′, f ′′ , which is the set of primes ` in N f such that
T` f ′′ = f ′. For every choice of f ′′, f ′, one sees from the table above that M f ′, f ′′

is either the set of primes congruent to 2 (mod 9) or to 5 (mod 9), and in any case
δ(M f ′, f ′′)= 1/6. The sets S f, f ′′ may be easily determined using our table above.
Thus S12,12 consists of square-full numbers where primes ≡ 2 (mod 3) appear in
an even exponent, an even number of primes ≡ 1 (mod 3) appear in exponents
that are at least 2 and ≡ 1 or 4 (mod 6), and other primes ≡ 1 (mod 3) appear in
exponents that are multiples of 3. The set S12,212 consists of square-full numbers
that are divisible by an odd number of primes ≡ 1 (mod 3) appearing in exponents
at least 2 and ≡ 1 or 4 (mod 6), other primes ≡ 1 (mod 3) appearing in exponents
that are multiples of 3, and primes ≡ 2 (mod 3) appearing in even exponents.

According to Theorem 7, for a = 1 or 2, f ′ =1 or 21, and f ′′ =12 or 212,
one has

|{n < x : n ∈ Z( f, a; f ′, f ′′, 1)}|

∼

( ∑
s∈S f, f ′′

C(U, s)
s

)(
1
6

)(
1
2

)
x

(log x)
1
2

log log x, (18)
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where

C(U, s)= C(U)
∏
`|s

`≡1 (mod 3)

(
1+

1
`

)−1

and

C(U)=
1

0( 1
2)

∏
p≡1 (mod 3)

(
1+

1
p

)(
1−

1
p

)1
2 ∏

p 6≡1 (mod 3)

(
1−

1
p

)1
2

=

4
√

3

π
√

2

∏
p≡1 (mod 3)

(
1−

1
p2

)1
2

= 0.2913 . . . . (19)

In (18), the factor 1/6 is δ(M f ′′, f ′) and the factor 1/2 is |1|/|0| (and this factor
would disappear if we counted cases a = 1 and a = 2 together).

Adding up all the possibilities, using (7), we finally obtain that

π(12, x)∼ c(12)
x

(log x)
1
2

log log x,

where

c(12)=
1
3

∑
s∈S f, f ∪S f,2 f

C(U, s)
s
=

C(U)
3

∏
`≡1 (mod 3)

(
1−

1
`3

)−1 ∏
`≡2 (mod 3)

(
1−

1
`2

)−1

.

Calculation of πsf(1
k, x) for k = 1, 2, 4, 5, 7, 10. In these examples, we describe

the calculation of csf(1
k), which is simpler than evaluating c(1k). For h ≥ 0 an

integer, let Mh be the set of integers that are the product of exactly h distinct
primes, all congruent to 2 or 5 modulo 9. This is a multifrobenian set, attached to
the cyclotomic extension Q(µ9)/Q of the Galois group G = (Z/9Z)∗, and one has
δ(Mh) = 2h/(h!6h) = 1/(h!3h). One can show that, for k = 1, 2, 4, 5, 7, 10 and
h = h(1k)= 0, 1, 2, 3, 4, 4 respectively, and for m′ ∈Mh , one has (with f =1k)
that Tm′ f 6= 0, and in fact Tm′ f =1 or Tm′ f = 21. Also note that for f ′ =1 or
f ′ = 21, one also has Tm f ′ =1 or 21 for any square-free m with prime factors
in U , so that am( f ′) 6= 0.

Thus, the main contribution to Zsf(1
k) is the set we call Z(U,Mh, 1), namely

the set of all square-free numbers mm′, where m is any product of primes in U (i.e.,
congruent to 1 (mod 3)) and m′ ∈Mh . According to Theorem 6,

πsf(1
k, x)∼

C(U)
h!3h

x
(log x)1/2

(log log x)h, k = 1, 2, 4, 5, 7, 10,

where h = h(k)= 0, 1, 2, 3, 4, 4 respectively and C(U) is the constant appearing
in (19).
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7B. Example of a nonpure form in the case N = 1, p = 7. Examples of powers
of 1 that are not pure arise (mod 7). There one has 12

= f +1, where f =12
−1

is an eigenform for all the Hecke operators T` (` a prime number with ` 6= 7), with
eigenvalue `2

+ `3. The Galois representation ρ̄f corresponding to this system is
ω2

7⊕ω
3
7 where ω7 is the cyclotomic character modulo 7. The set Nρ̄f is the set of

prime numbers ` that are congruent to −1 modulo 7, and Uρ̄f is the set of prime
numbers congruent to 1, 2, 3, 4, 5 modulo 7. One has α( f )= α(ρ̄f )= 1/6.

The form 1 is also of course an eigenform, with system of eigenvalues `+ `4

for T`, corresponding to the Galois representation ρ̄1 = ω7⊕ω
4
7 with α(ρ̄1)= 1/2.

The decomposition 12
= f +1 is thus the canonical decomposition into pure

forms, and the pure form 1 can be neglected because α(1) > α( f ). One finds

πsf(1
2, x)∼ πsf( f, x)∼ C(Uρ̄f )

x
(log x)1/6

with

C(Uρ̄f )=
1

0(5/6)

∏
`≡1,2,3,4,5 (mod 7)

(
1+

1
`

)(
1−

1
`

)5
6 ∏
`≡−1,0 (mod 7)

(
1−

1
`

)5
6

so that

πsf(1
2, x)∼ csf(1

2)
x

(log x)1/6
, csf(1

2)= C(Uρ̄f )= 0.5976 . . . .
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