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We use the doubling method to construct p-adic L-functions and families of
nearly ordinary Klingen Eisenstein series from nearly ordinary cusp forms on
unitary groups of signature (r, s) and Hecke characters, and prove the constant
terms of these Eisenstein series are divisible by the p-adic L-function, following
earlier constructions of Eischen, Harris, Li, Skinner and Urban. We also make pre-
liminary computations for the Fourier–Jacobi coefficients of the Eisenstein series.
This provides a framework to do Iwasawa theory for cusp forms on unitary groups.
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1. Introduction

Let p be an odd prime. Let K be a CM field with the maximal totally real subfield F
such that [F : Q] = d. Suppose p is totally split at K. We fix an isomorphism
ιp := Cp ' C and a CM type 6∞, which means a set of d different embeddings
K→ C such that 6∞ ∪6c

∞
, where c means complex conjugation, is the set of all

embeddings of K into C. This determines a set of embeddings K ↪→ Cp using ιp,
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which we denote by 6p. Let r ≥ s ≥ 0 be integers. We often write a = r − s
and b= s. Let U(r, s) be the unitary group associated to the skew-Hermitian matrix 1b

ζ

−1b

 ,
where ζ is a diagonal matrix such that i−1ζ is positive definite.

Eischen et al. [≥ 2015] constructed the p-adic L-function for an irreducible
cuspidal automorphic representation of U(r, s) that is nearly ordinary at all primes
dividing p, which interpolates (the algebraic part of) critical values of the standard
L-function of the representation twisted by general CM characters at far-from-
center critical points. The main tool used in [loc. cit.] is the doubling method of
Piatetski-Shapiro and Rallis. This paper can be thought of as a continuation of
their work, but instead using a more general pullback formula of Shimura (which is
actually due to Garrett [1984; 1989] and is called the “Garrett map”) to construct
p-adic families of Klingen Eisenstein series on U(r + 1, s+ 1) from the original
automorphic representation.

The motivation for doing this is to provide a framework to generalize the im-
portant work of Skinner and Urban [2014] on the Iwasawa main conjectures for
GL2 to forms on general unitary groups. The general strategy is, starting with a
family of cuspforms on the unitary group U(r, s) and a family of CM characters, we
construct a family of Klingen Eisenstein series on the bigger group U(r + 1, s+ 1).
One tries to prove the constant terms of the Klingen Eisenstein family are divisible
by the standard p-adic L-function of the cuspforms on U(r, s) and, therefore, the
Eisenstein family is congruent to cuspidal families modulo this p-adic L-function.
Passing to the Galois side, such congruences enable us to construct elements in
the Selmer groups, proving one divisibility of the corresponding Iwasawa main
conjecture.

We have been able to use it to prove one divisibility of the Iwasawa main
conjectures for Hilbert modular forms and some kinds of Rankin–Selberg p-adic L-
functions; see [Wan 2013; 2015]. C. Skinner has recently been able to use the result
of [Wan 2015] to prove a converse of a theorem of Gross, Zagier and Kolyvagin
that states that, if the rank of the Selmer group of an elliptic curve is one and the
p-part of the Shafarevich–Tate group is finite, then the Heegner point is nontorsion
and the central L-value vanishes at order exactly one [Skinner 2014]. The first step
towards the plan outlined above is to construct the family of Klingen–Eisenstein
series and study the p-adic properties of its Fourier–Jacobi coefficients, which is
the main task of the present paper.

In [Eischen et al. ≥ 2015] the interpolation formulas are proved at all arithmetic
points. However, in this paper we are only able to understand the pullback Eisenstein
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sections in the “generic case” (to be defined in Definition 4.42; basically this puts
restrictions on the ramification of the form at primes dividing p). The reason is
that it seems difficult in general to describe the nearly ordinary Klingen Eisenstein
sections. Fortunately, since along a Hida family the set of forms that are “generic”
is Zariski-dense, these computations are enough to construct the whole Hida family
of Klingen Eisenstein series (similar to the [Skinner and Urban 2014] case). Thus,
we only work with a Hida family of forms instead of a single cusp form, due to this
“generic” condition. We remark that when s = 0, by working with forms of general
vector-valued weights, we are able to construct a class of the p-adic L-function
and Klingen Eisenstein family for a single form unramified at p (not necessarily
ordinary; see [Eischen and Wan 2014]).

Now we state the main results. Let K∞ be the maximal abelian pro-p-extension
of K unramified outside p. We write 0K = Gal(K∞/K). This is a free Zp-module
whose rank should be d + 1, assuming the Leopoldt conjecture. Take a finite
extension L over Qp. Let OL be the integer ring of L . Let Our

L be the completion of
the integer ring of the maximal unramified extension of L . We define3K=OL [[0K]].
Let κ > 4 be an integer and τ0 a Hecke character of K×\A×K whose infinite types are(
−

1
2κ,

1
2κ
)

at all infinite places. We have a 3K-valued family of Hecke characters
of K×\A×K containing τ0 as a specialization (to be made precise later). Let 3 be
the weight algebra for U(r, s), defined later, and I a normal domain containing 3
which is finite over 3. Let Iur be the normalization of an irreducible component
of I⊗̂OL Our

L . (In fact, for each such irreducible component we can make the following
construction.) Let�∞∈C6∞ be the CM period of the CM field K and�p ∈ (Z

ur
p )
6∞

be the p-adic period (we refer to [Hida 2004a] for the definition). We write �6∞∞
for the product of the d elements of �∞ and define �6∞p similarly. Throughout
this paper, we write

zκ = 1
2(κ − r − s− 1),

z′κ =
1
2(κ − r − s).

Theorem 1.1. Let f be an I-coefficient, nearly ordinary, cuspidal eigenform on
GU(r, s) such that the specialization fφ at a Zariski-dense set of “generic” arith-
metic points φ is classical and generates an irreducible automorphic representation
of U(r, s). Let 6 be a finite set of primes containing all primes dividing any entry
of ζ , or the conductor of f , or K.

In the case when s 6= 0, we make the assumptions TEMPERED, Proj f ∨ and DUAL,
or assumptions TEMPERED, Proj f and Proj f ∨ (to be defined in Section 5A).

Then:

(i) There is an element L6
f ,τ0
∈ Iur
[[0K]]⊗Iur FIur such that, for a Zariski-dense subset

of arithmetic points φ ∈ Spec Iur
[[0K]] (to be specified in Definition 4.42), we have
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that, if s = 0, then L6
f ,τ0
∈ Iur
[[0K]] and

φ(L6
f ,τ0
)= c′κ(z

′

κφ
)

(
(−2)−d(a+2b)(2π i)d(a+2b)κφ (2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κφ − j − 1)d

)−1

·C p
fφ

×

∏
v|p

(
|pt1+···+tr |−κφ/2× p−((r+1)/2)

∑r
j=1 t j

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )

)

×
L6(π̃ fφ , τ̄

c
φ, κφ − r)�rκφ6∞

p

�
rκφ6∞
∞

.

If s 6= 0, then

φ(L6
f ,τ0
)

= c′κ(z
′

κφ
)

(
(−2)−d(a+2b)(2π i)d(a+2b)κφ (2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κφ − j − 1)d

)−1

·C p
fφ

×

∏
v|p

(
p(r+s)(r+s−1)/2

· (p− 1)r+s(∏r
i=1 pti ·(r+s−i)

)
·
(∏s

i=1 ptr+i (r+s−i)
)
·
∏r+s

j=1(p j − 1)

× p−ss2(1+a+2b)/2 p−
∑r

j=1 t j (a+1)/2 p
∑s

i=1 tr+i (a+b)
|pt1+···+tr+s·s2 |

−κφ/2

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )

)

×
L6(π̃ fφ , τ̄

c
φ, κφ − r − s)

〈ϕ̃ord
φ , ϕφ〉

,

where the χi are defined in Definition 4.42 and τφ,p = (τ1, τ
−1
2 ) such that τi has

conductor psi with s2 > s1. Also,

C p
fφ =

∏
v-p, v∈6

τ(yv ȳvxv)|(yv ȳv)2xv x̄v|
−zκ′

φ
−(a+2b)/2

v Vol(Yv)

(the xv and yv are the x and y in Section 4C1 and Yv is defined in Definition 4.11.)
The cκ(z) and c′κ(z) are defined in Lemma 4.3 and κφ is the weight associated to the
arithmetic point φ. The ϕφ and ϕ̃ord

φ are the specialization of f and the f ∨ provided
by the assumption Proj f ∨ (notice that they are ordinary vectors with respect to
different Borel groups, e.g., when s = 0, the level group for ϕφ at p is with respect
to the upper-triangular Borel subgroup, while that for ϕ̃ord

φ is with respect to the
lower-triangular Borel subgroup). The factor

p(r+s)(r+s−1)/2
· (p− 1)r+s(∏r

i=1 pti ·(r+s−i)
)
·
(∏s

i=1 ptr+i (r+s−i)
)
·
∏r+s

j=1(p j − 1)
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is the volume of a set K̃ ′ defined in Definition 4.34 (this is smaller than the level
group for ϕ̃ord

φ ). The FIur is the fraction field of Iur. The τφ are specializations
of the family of CM characters containing τ0. The pti are conductors of some
characters defined in Definition 4.21. The λ̃β,v is defined in (17), whose p-order is∑b

i=1 ta+b+i (a+ b− κ).

(ii) There is a set of formal q-expansions E f ,τ0 :=
{∑

β ah
[g](β)q

β
}
([g],h) for∑

β ah
[g](β)q

β
∈ (Iur

[[0K]]⊗̂Zp R[g],∞)⊗Iur FIur , where R[g],∞ is some ring to be
defined later, in Section 5, and ([g], h) are p-adic cusp labels (Definition 2.6) such
that, for a Zariski-dense set of arithmetic points φ ∈ Spec I[[0K]], φ(E f ,τ0) is the
Fourier–Jacobi expansion of the holomorphic, nearly ordinary Klingen Eisenstein
series E( fKling,φ, zκφ ,−) we construct in Section 5C (see the interpolation formula
in Proposition 5.8). Here, fKling is a certain “Klingen section” to be defined there.

(iii) The terms at
[g](0) are divisible by L6

f ,τ0
·L6

τ̄ ′0
, where L6

τ̄ ′0
is the p-adic L-function

of a Dirichlet character to be defined in the text.

The assumption “TEMPERED” is included so that we can easily write down the
explicit range of absolute convergence for pullback formulas. It is not serious
and may be relaxed using ideas of [Harris 1984]. Besides the theorem, we also
make some preliminary computations for the Fourier–Jacobi coefficients for Siegel
Eisenstein series. This is crucial for analyzing the p-adic properties of the Klingen
Eisenstein series we construct. When doing arithmetic application we need to prove
that certain Fourier–Jacobi coefficient of this Eisenstein family is prime to the
p-adic L-function.

This paper is organized as follows. In Section 2 we recall various backgrounds.
In Section 3 we recall the notion of p-adic automorphic forms on unitary groups
and Fourier–Jacobi expansion. In Section 4 we recall the notion of Klingen and
Siegel Eisenstein series, the pullback formulas relating them and their Fourier–
Jacobi coefficients, and then do the local calculations. (This is the most technical
part of this paper.) We manage to take the Siegel sections so that, when we are
moving our Eisenstein datum p-adically, these Siegel Eisenstein series also move
p-adic analytically. The hard part is to choose the sections at p-adic places. At
non-Archimedean cases prime to p the choice is more flexible. (We might change
this choice whenever doing arithmetic applications; see [Wan 2013; 2015].) At the
Archimedean places we restrict ourselves to the parallel scalar weight case, which
is enough for doing Hida theory. In Section 5 we make the global calculations and
construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel
Eisenstein series from a larger unitary group. Finally, we include an Appendix by
Kai-Wen Lan for detailed proofs of some facts used for the p-adic q-expansion
principle. (This is not strictly needed in our construction. But we think it is good to
include it for completeness and for the convenience of readers.)
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2. Background

In this section we recall notations for holomorphic automorphic forms on unitary
groups, Eisenstein series and Fourier–Jacobi expansions.

2A. Notation. Suppose F is a totally real field such that [F :Q] = d and K is a
totally imaginary quadratic extension of F . For a finite place v of F or K, we usually
write $v for a uniformizer and qv for the cardinality of its residue field. Let c be
the nontrivial element of Gal(K/F). Let r and s be two integers with r ≥ s ≥ 0.
We fix an odd prime p that splits completely in K/Q. We fix i∞ : Q ↪→ C and
ι : C' Cp and write i p for ι ◦ i∞. Let 6∞ be the set of Archimedean places of F .
We take a CM type of K, still denoted by 6∞ (thus 6∞ t6c

∞
are all embeddings

K→ C, where 6c
∞
= {τ ◦ c | τ ∈6∞}).

We use ε to denote the cyclotomic character and ω the Teichmüller character.
We will often adopt the following notation: for an idele class character χ =

⊗
v χv ,

we write χp(x) =
∏
v|p χv(xv). For a character ψ of K×v or A×K , we often write

ψ ′ for the restriction to F×v or A×F . For a character τ of K× or A×K , we define τ c

by τ c(x)= τ(xc). (Note: we will write τ̄ (x) for the complex conjugation of τ(x)
while the “c” means taking complex conjugation for the source.)

If v is a prime of F with characteristic ` and dvOF,v = (dv), dv ∈ F×v is the
different of F/Q at v and, if ψv is a character of F×v and (cψ,v) ⊂ OF,v is the
conductor, then we define the local Gauss sums

g(ψv, cψ,vdv) :=
∑

a∈(OF,v/cψ,v)×
ψv(a)e

(
TrFv/Q`

(
a

cψ,vdv

))
,

where ` is the rational prime above v. If
⊗
ψv is an idele class character of A×F

then we set the global Gauss sum,

g
(⊗

ψv
)
:=

∏
v

ψ−1
v (cψ,vdv)g(ψ, cψ,vdv).

This is independent of all the choices of dv and Cψ,v . Also, if Fv 'Qp and (pt) is
the conductor for ψv , then we write g(ψv) := g(ψv, pt). We define the Gauss sums
for K similarly.

Let K∞ be the maximal abelian Zp-extension of K unramified outside p. Write
0K :=Gal(K∞/K) and GK the absolute Galois group of K. Define 3K :=Zp[[0K]].
For any finite extension A of Zp define3K,A := A[[0K]]. Let εK :GK→0K ↪→3×K
be the canonical character. We define 9K to be the composition of εK with the reci-
procity map of global class field theory, which we denote as recK :K

×
\A×K → Gab

K .
Here we used the geometric normalization of class field theory. We make the
corresponding definitions for F as well.
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Let Sm(R) be the set of matrices S ∈ Mm(R⊗OF OK) such that S = tS, where
conjugation is with respect to the second variable of R⊗OF OK. We write B = Bn

and N = Nn for the upper-triangular Borel subgroup and unipotent radical of the
group GLn . Let N opp or N− be the opposite unipotent radical of N . We define the
function eAQ

=
∏
v ev with ev the function on Q×v such that ev(xv)= e2π i ·{xv} for {xv}

the fractional part of xv and e∞(x)= e−2π i x . We will usually write η =
(
−1m

1m
)

if m is clear from the context.

2B. Unitary Groups. We define

θr,s =

 1s

ζ

−1s

 ,
where ζ is a fixed diagonal matrix such that i−1ζ is totally positive. Let V = V (r, s)
be the skew-Hermitian space over K with respect to this metric, i.e., Kr+s equipped
with the metric given by 〈u, v〉 := uθr,s

tv̄. We define algebraic groups GU(r, s)
and U(r, s) as follows: for any OF -algebra R, the R points are

GU(r, s)(R) := {g ∈ GLr+s(OK⊗OF R) | gθr,s g∗ = µ(g)θr,s, µ(g) ∈ R×}

(where g∗ = tḡ and µ : GU(r, s)→ Gm,F is called the similitude character) and

U(r, s)(R) := {g ∈ GU(r, s)(R) | µ(g)= 1}.

So the unitary group U(r, s) in this paper really means the unitary group with
respect to our fixed metric θr,s . Sometimes we write GUn and Un for GU(n, n)
and U(n, n). For two forms ϕ1, ϕ2 on U(r, s)(AF ), we define the inner product by

〈ϕ1, ϕ2〉 :=

∫
U(r,s)(F)\U(r,s)(AF )

ϕ1(g)ϕ2(g) dg,

where the measure is chosen so that U(r, s)(OFv )= 1 for all finite v and we take
the measure at Archimedean places as in [Shimura 1997, (7.14.5)].

We have the embedding

GU(r, s)×ResOK/OF Gm→ GU(r + 1, s+ 1),

g× x =

a b c
d e f
h l k

× x 7→


a b c
µ(g)x̄−1

d e f
h l k

x

 .
We write m(g, x) for the right-hand side. The image of the above map is the

Levi subgroup of the Klingen parabolic subgroup P of GU(r + 1, s + 1), which
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consists of matrices in GU(r + 1, s + 1) such that the off-diagonal entries of the
(s+1)-st column and the last row are 0. We denote this Levi subgroup by MP . We
also write NP for the unipotent radical of P . We also define B = B(r, s) to be the
standard Borel subgroup, consisting of matrices

g =
(

Ag Bg

Dg

)
,

where the blocks are with respect to the partition r + s and we require that Ag is
lower-triangular and Dg is upper-triangular.

We write −V (r, s)= V (s, r) for the Hermitian space whose metric is −θr,s . We
define some embeddings of GU(r + 1, s + 1)×GU(−V (r, s)) into some larger
unitary groups. These will be used in the doubling method. Recall we wrote a=r−s
and b = s at the beginning of the introduction; we define GU(r + s+ 1, r + s+ 1)′

to be the unitary similitude group associated to

1b

1
ζ

−1b

−1b

−1
−ζ

1b


and G(r + s, r + s)′ to be associated to

1b

ζ

−1b

−1b

−ζ

1b


.

We define an embedding

α :
{
g1× g2 ∈ GU(r + 1, s+ 1)×GU(−V (r, s))

∣∣ µ(g1)= µ(g2)
}

→ GU(r + s+ 1, r + s+ 1)′

by viewing g1 as a block matrix with respect to the partition s+ 1+ (r − s)+ s+ 1
(this means we use this partition to divide both the rows and the columns into blocks)
and g2 as a block matrix with respect to s+(r−s)+s, then we define α by requiring
the 1, 2, 3, 4, 5-th (blockwise) rows and columns of GU(r + 1, s+ 1) embed to the
1, 2, 3, 5, 6-th (blockwise) rows and columns of GU(r + s+ 1, r + s+ 1)′ and the
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1, 2, 3-rd (blockwise) rows and columns of GU(V (s, r)) embed to the 8, 7, 4-th
rows and columns (blockwise) of GU(r + s+ 1, r + s+ 1)′.

We also define an embedding

α′ :
{
g1× g2 ∈ GU(r, s)×GU(−V (r, s))

∣∣ µ(g1)= µ(g2)
}
→ GU(r + s, r + s)′

in a similar way to above: Consider GU(r, s) and GU(−V (r, s)) as block matrices
with respect to the partition s + (r − s)+ s. Put the 1, 2, 3-rd (blockwise) rows
and columns of the first GU(r, s) into the 1, 2, 4-th (blockwise) rows and columns
of GU(r + s, r + s)′ and put the 1, 2, 3-rd (blockwise) rows and columns of the
second GU(r, s) into the 6, 5, 4-th rows and columns of GU(r + s, r + s)′.

We also define isomorphisms

β : GU(r + s+ 1, r + s+ 1)′ −→∼ GU(r + s+ 1, r + s+ 1), g 7→ S−1gS,

and
β ′ : GU(r + s, r + s)′ −→∼ GU(r + s, r + s), g 7→ S′−1gS′,

where

S =



1b −
1
2 · 1b

1
1a −

1
2ζ

−1b
1
2 · 1b

1b
1
2 · 1b

1
−1a −

1
2ζ

−1b −
1
2 · 1b


(1)

and

S′ =



1b −
1
2 · 1b

1a −
1
2ζ

−1b
1
2 · 1b

1b
1
2 · 1b

−1a −
1
2ζ

−1b −
1
2 · 1b


. (2)

Remark 2.1 (about unitary groups). In order to have Shimura varieties for doing
p-adic modular forms and Galois representations, we need to use a unitary group
defined over Q. More precisely, consider V as a skew-Hermitian space over Q and
still write θr,s for the metric on it. Let T be a OK lattice that we use to define GU(r, s).
Then the correct unitary similitude group should be

GU0(r, s)(A) := {g ∈ GLOK⊗Z A(T ⊗Z A) | gθr,s g∗ = µ(g)θr,s, µ(g) ∈ A}

for any commutative ring A. This group is smaller than the one we defined before.
However, this group is not convenient for local computations, since we cannot treat
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the primes of F independently. So what we do (implicitly) is: For the analytic
construction, we write down forms on the larger unitary similitude group defined
above and then restrict to the smaller one. For the algebraic construction, we only
do the pullbacks for unitary (instead of similitude) groups.

We are going to fix some bases of the various Hermitian spaces. We let

y1, . . . , ys, w1, . . . , wr−s, x1, . . . , x s

be the standard basis of V such that the Hermitian forms is given above. Let
W be the span over K of w1, . . . , wr−s . Let X∨ = OKx1

⊕ · · · ⊕ OKx s and
Y =OK y1

⊕· · ·⊕OK ys . Let L be an OK-maximal lattice such that L p := L⊗Z Zp =∑r−s
i=1(OK⊗Z Zp)w

i . We define a OK-lattice M of V by

M := Y ⊕ L ⊕ X∨.

Let Mp = M ⊗Z Zp. A pair of sublattices Polp = {N−1, N 0
} of Mp is called an

ordered polarization of Mp if N−1 and N 0 are maximal isotropic direct summands
in Mp and they are dual to each other with respect to the Hermitian pairing. More-
over, we require that, for each v = wwc with w ∈ 6p, rank N−1

w = rank N 0
wc = r

and rank N−1
wc = rank N 0

w = s. The standard polarization of Mp is given by
M−1
v = Yw ⊕ Lw ⊕ Ywc and M0

v = Xwc ⊕ Lwc ⊕ Xw. We let −V be the Her-
mitian space V with the metric given by the negative of V . We let ỹ1, . . . , ỹs ,
w̃1, . . . , w̃r−s , x̃1, . . . , x̃ s be the corresponding basis. Let Kys+1

⊕Kx s+1 be a
2-dimensional Hermitian space with metric

(
−1

1). We define

W := V ⊕Kys+1
⊕Kx s+1

⊕ (−V ).

Let ϒ ∈ U(n+ 1, n+ 1)(Fp) be such that, for each v|p with v =wwc, where w is
in our p-adic CM type 6p, ϒw = S−1

w . We define another basis of W by

t(y1,..., ys+1,w1,...,wr−s,x1,...,x s+1, y1,..., ys,w1,...,wr−s,x1,...,x s)ϒ

=
t( y1,..., yr+s+1,x1,...,xr+s+1).

Then Y :=
⊕r+s+1

i=1 (OK⊗Z Zp) yi and X :=
⊕r+s+1

i=1 (OK⊗Z Zp)xi gives another
polarization (Y , X) of L p := Mp⊕ (−Mp)⊕OK ys+1

⊕OKx s+1.

2C. Automorphic forms.

2C1. Hermitian symmetric domain. Suppose r ≥ s > 0. Then the Hermitian
symmetric domain for G := GU(r, s) is

X+= Xr,s =

{
τ =

( x
y

) ∣∣∣ x ∈Ms(C
6), y ∈M(r−s)×s(C

6), i(x∗−x)>−iy∗θ−1 y
}
.
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For α ∈ GU(r, s)(F∞), where F∞ := F ⊗Q R, we write

α =

a b c
d e f
h l d


according to the standard basis of V together with the block decomposition with
respect to s+(r−s)+s. There is an action of α ∈G(F∞)+ (here the superscript +
means the component with positive similitude factor at all Archimedean places)
on Xr,s , defined by

α

(
x
y

)
=

(
ax + by+ c
gx + ey+ f

)
(hx + ly+ d)−1.

If rs=0, Xr,s consists of a single point, written x0, with the trivial action of G(F∞)+.
For an open compact subgroup U of G(AF, f ), put

MG(X+,U ) := G(F)+\X+×G(AF, f )/U,

where U is an open compact subgroup of G(AF, f ). We let

Cr,s
= C(6c)s ⊗C(6c)r−s

⊗C(6)s

and define a map cr,s on it by (u1, u2, u3)cr,s = (ū1, ū2, u3). We define the map
p(τ ) : V ⊗Q R' Cr,s by p(τ )v = vB(τ )cr,s . Let

B(τ )=

x∗ y∗ x
0 ζ y
1s 0 1s

 .
We define the automorphic factors κ(α, τ ) and µ(α, τ) by

αB(τ )= B(ατ)(κ(α, τ ), µ(α, τ ))

for α ∈ G(R) and τ ∈ X+. We sometimes write κr,s(α, τ ), µr,s(α, τ ) to emphasize
the group U(r, s). We define j (g, z) := det(µ(g, z)). For z ∈ Xr+1,s+1, we define
℘(z) ∈ Xr,s to be the lower-right r × s submatrix. For z1 =

(x1
y1

)
and z ∈

(x
y

)
, we

define η(z1, z)= i(x∗1 − x)− y∗1 (iζ
−1)y and δ(z1, z)= 2−s det(η(z1, z)).

2C2. Automorphic forms. We will mainly follow [Hsieh 2014] to define the space
of automorphic forms, with slight modifications. We define a cocycle

J : RF/QG(R)+× X+→ GLr (C
6)×GLs(C

6) := H(C),

(α, τ ) 7→ (κ(α, τ ), µ(α, τ )),
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where

κ(α, τ )=

(
h̄ tx + d̄ h̄ ty+ l θ̄

−θ̄−1(ḡ tx + f̄ ) −θ̄−1ḡ ty+ θ̄−1ēθ̄

)
and µ(α, τ)= hx + ly+ d

for τ =
(

x
y

)
and α =

a b c
g e f
h l d

 .
Let i be the point

(i1s
0

)
on the Hermitian symmetric domain for GU(r, s) (here 0

means the (r − s)× s matrix 0). Let GU(r, s)(R)+ be the subgroup of GU(r, s)(R)
whose similitude factor is totally positive. Let K+

∞
be the compact subgroup of

U(r, s)(R) stabilizing i and K∞ be the group generated by K+
∞

and diag(1r+s,−1s).
Then J : K+

∞
→ H(C), k∞ 7→ J (k∞, i), defines an algebraic representation of K+

∞
.

Definition 2.2. A weight k is defined by a set {kσ }σ∈6∞ where

kσ = (cr+s,σ , . . . , cs+1,σ ; c1,σ , . . . , cs,σ )

with c1,σ ≥ · · · ≥ cs,σ ≥ cs+1,σ + r + s ≥ · · · ≥ cs+r,σ + r + s for the ci,σ in Z.

Remark 2.3. Our convention is different from others in the literature. For example,
in [Hsieh 2014] the ar+1−i there for 1 ≤ i ≤ r is our −cs+i , and bs+1− j there for
1≤ j ≤ s is our c j . We let k ′ := (a1, . . . , ar ; b1, . . . , bs). We also note that if each
kσ = (0, . . . , 0; κ, . . . , κ) then Lk(C) is 1-dimensional with ρk(h)= detµ(h, i)κ .

For a weight k = (cr+s, . . . , cs+1; c1, . . . , cs), we define the representation of
GLr ×GLs with minimal weight −k by

Lk = { f ∈ OGLr ×GLs | f (tn+g)= k ′−1(t) f (g), t ∈ Tr × Ts, n+ ∈ Nr ×
tNs},

where OGLr ×GLs is the structure sheaf of the algebraic group GLr ×GLs ; see
[Hsieh 2014, Section 3]. The group action is denoted by ρk . We define the
functional/lk on Lk by evaluating at the identity and define a model Lk(C) of the
representation H(C) with the highest weight k as follows. The underlying space of
Lk(C) is Lk(C) and the group action is defined by

ρk(h)= ρk(
th−1), h ∈ H(C).

For a weight k, define ‖k‖ = {‖k‖σ }σ∈6 ∈ Z6 by

‖k‖σ := −cs+1,σ − · · ·− cs+r,σ + c1σ + · · ·+ cs,σ

and |k| ∈ Z6t6
c

by

|k| =
∑
σ∈6

(c1,σ + · · ·+ cs,σ ) · σ − (cs+1,σ + · · ·+ cs+r,σ ) · σ
c.
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Let χ be a Hecke character of K with infinite type |k|, i.e., the Archimedean part
of χ is given by

χ(z∞)=
(∏

σ

z(c1,σ+···+cs,σ )
σ · z−(cs+1,σ+···+cs+r,σ )

σ c

)
.

Definition 2.4. Let U be an open compact subgroup in G(AF, f ). We denote by
Mk(U,C) the space of holomorphic Lk(C)-valued functions f on X+×G(AF, f )

such that, for τ ∈ X+, α ∈ G(F)+ and u ∈U , we have

f (ατ, αgu)= µ(α)−‖k‖ρk(J (α, τ )) f (τ, g).

Now we consider automorphic forms on unitary groups in the adelic language.
Let i ∈ X+ and K+

∞
⊂ U(r, s)(F∞) be the stabilizer of i . The space of au-

tomorphic forms of weight k and level U with central character χ consists of
smooth and slowly increasing functions F : G(AF )→ Lk(C) such that, for every
(α, k∞, u, z) ∈ G(F)× K+

∞
×U × Z(AF ),

F(zαgk∞u)= ρk(J (k∞, i)−1)F(g)χ−1(z).

2C3. The group GU(s, r). Now we consider the unitary group GU(s, r) which has
the same Hermitian space as GU(r, s) but with the metric 〈 , 〉s,r := −〈 , 〉r,s . We
define the symmetric domain Xs,r = Xr,s but with the complex structure such that
a function is holomorphic on Xs,r if and only if it is holomorphic on Xr,s after
composition with the map

Xr,s→ Xs,r ,

(
x
y

)
7→

(
−x̄
−ȳ

)
.

We let Cs,r
= C(6)s ⊗ C(6)r−s

⊗ C(6c)s and define cs,r by (u1, u2, u3)cs,r =

(u1, u2, ū3). For GU(s, r), we define p(τ ) : V ⊗Q R' Cs,r by p(τ )v = vB(τ )cs,r .
We define the automorphic factors κs,r (α, τ ) and µs,r (α, τ ) by

αB(τ )= B(ατ)(µs,r (α, τ ), κs,r (α, τ )).

We define a weight k of U(r, s) such that k = (cr+1,σ , . . . , cr+s,σ ; c1,σ , . . . , cr,σ )σ

with c1,σ ≥ · · · ≥ cr,σ ≥ cr+1,σ + r + s ≥ · · · ≥ cr+s,σ + r + s. Using these we can
develop the theory of holomorphic automorphic forms on GU(s, r) similar to the
GU(r, s) case.

2C4. Embeddings of symmetric domains. We still follow [Shimura 1997]. Pick one
Archimedean place. Write z =

(x
y

)
∈ Xr+1,s+1, Xr,s , and w =

(u
v

)
∈ Xs,r . We define

the embeddings ι from Xr+1,s+1× Xs,r or Xr,s × Xs,r to Xr+s+1,r+s+1 or Xr+s,r+s
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by

ι(z, w)→

 x 0 0
y 1

2ζ 0
−ζ−1v∗y −v∗ −u∗

 .
(The ζ really means the image of ζ at this Archimedean place.) Let U = RT Q,

for

Q =



1 −
1
2

1
1 1

2ζ

1 1
2

−1 −
1
2

1
−1 −

1
2ζ

−1 1
2


, RT =



11+s

2−11r−s −2−11r−s

1s

A
−ζ−1

−ζ−1

1s


,

where A=
(

1s

1). (The U here is the Uv defined in [Shimura 1997, Section 22] and
other notations are slightly different.) We also define Q′ to be Q with the second
and sixth rows and columns (blockwise) deleted. Let

R′T ′ =



1s

2−11r−s −2−11t

1s

A′

−ζ−1
−ζ−1

1s


with A′ = 1s . Define U ′ = R′T ′Q′. Let ℘(z) be the lower-right r × s block for
z ∈ Xr+1,s+1 and ιU (z, w)= (U−1ι(z, w) as in [Shimura 1997, (22.2.1)]. If z =

(x
y

)
and z1=

(x1
y1

)
, let δ(z1, z)=2s−r det[i(x∗1−x)−y∗1θ

−1 y]. If we write [h]S for S−1hS
then we have [diag(g, g1)]SιU (z, w) = ιU (gz, g1w), [diag(g, g1)]S′ ιU ′(z, w) =
ιU ′(gz, g1w) and

j
(
[diag(g,g1)]S,ιU (z,w)

)
= δ(w,℘ (z))−1δ(gw,℘(g1z))det(γ ) jg(w) jg1(z). (3)

For a function g on Xr+s+1,r+s+1 or Xr+s,r+s , we define the pullback g◦ to be
the function on Xr+1,s+1× Xs,r or Xr,s × Xs,r given by

g◦(z, w)= δ(w,℘ (z))−k g(ιU (z, w)).

Definition 2.5. We define a scalar weight κ of U(s, r) to be the weight

(−κ, . . . ,−κ︸ ︷︷ ︸
s

; 0, . . . , 0︸ ︷︷ ︸
r

).
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2D. Shimura varieties and Igusa varieties. Fix a neat open compact subgroup K
of GU0(r, s)(A f ) whose p-component is GU0(r, s)(Zp); we refer to [Hsieh 2014]
for the definitions and arithmetic models of Shimura varieties over the reflex field E ,
which we denote by SG(K ). It parameterizes isomorphism classes of the quadruples
(A, λ, ι, η̄(�))/S , where � is a finite set of primes, (A, λ) is a polarized abelian
variety over some base ring S, λ is an orbit (see [Hsieh 2014, Definition 2.1])
of prime-to-� polarizations of A, ι is an embedding of OK into the endomor-
phism ring of A, and η̄(�) is some prime-to-� level structure of A. To each point
(τ, g) ∈ X+×G(AF, f ), we attach a quadruple as follows:

• The abelian variety Ag(τ ) := V ⊗Q R/M[g](M[g] := H1(Ag(τ ), Ẑp)).

• The polarization of A is given by the pullback of −〈 , 〉r,s on Cr,s to V ⊗Q R

via p(τ ).

• The complex multiplication ι is the OK-action induced by the action on V .

• The prime-to-p level structure η(p)g :M⊗Ẑp
'M[g] is defined by η(p)g (x)= g∗x

for x ∈ M .

We have a similar theory for Shimura varieties for GU(s, r) as well.
There is also a theory of compactifications of SG(K ), developed in [Lan 2008].

We let SG(K ) be a fixed choice of a toroidal compactification and S∗G(K ) the
minimal compactification.

We define some level groups at p, as in [Hsieh 2014, Section 1.10]. Recall that
G(A f )⊇ K =

∏
V Kv is an open compact subgroup such that K p = G(Zp) and let

6 be a finite set of primes including all primes above p such that Kv is spherical
for all v 6∈6. If we write gp =

( A
C

B
D

)
for the p-component of g, then define

K n
=

{
g ∈ K

∣∣∣∣ gp ≡

(
1r ∗

0 1s

)
mod pn

}
,

K n
1 = {g ∈ K | A ∈ Nr (Zp) mod pn, D ∈ N−s (Zp) mod pn, C = 0},

K n
0 = {g ∈ K | A ∈ Br (Zp) mod pn, D ∈ B−s (Zp) mod pn, C = 0}.

Now we recall briefly the notion of Igusa schemes over Ov0 (the localization of
the integer ring of the reflex field at the p-adic place v0 determined by ιp : C' Cp)
in [Hsieh 2014, Section 2]. Let V be the Hermitian space for U(r, s), M be a
standard lattice of V and Mp = M ⊗Z Zp. Let Polp = {N−1, N 0

} be a polarization
of Mp. The Igusa variety IG(K n) of level pn is the scheme representing the usual
quadruple for a Shimura variety together with

j : µpn ⊗Z N 0 ↪→ A[pn
],



1970 Xin Wan

where A is the abelian variety in the quadruple. Note that the existence of j implies
that if p is nilpotent in the base ring then A must be ordinary. For any integer m> 0,
let Om := Ov0/pm .

Igusa schemes over SG(K ). To define p-adic automorphic forms one needs Igusa
schemes over SG(K ). We fix such a toroidal compactification and refer to [Hsieh
2014, Section 2.7.6] for the construction. We still denote it by IG(K n). Then,
over Om , IG(K n) is a Galois covering of the ordinary locus of the Shimura vari-
ety with Galois group

∏
v|p GLr (OF,v/pn)×GLs(OF,v/pn). We write IG(K n

0 )=

IG(K n)K n
0 and IG(K n

1 )= IG(K n)K n
1 over Om .

Cusps. Let 1 ≤ t ≤ s. We let Pt be the maximal parabolic subgroup of GU(r, s)
consisting of matrices which, in the block form with respect to t + (r + s− 2t)+ t ,
are of the form × × ×× ×

×

 .
Let G Pt be the unitary similitude group with respect to the skew-Hermitian space
for ζ . Let Yt be the OK span of {y1, . . . , yt

}. We define the set of cusp labels by

Ct(K ) := (GL(Yt)×G Pt (A f ))NPt (A f )\G(A f )/K .

This is a finite set. We write [g] for the class represented by g ∈ G(A f ). For
each such g whose p-component is 1, we define K g

Pt
= G Pt (A f ) ∩ gK g−1 and

write S[g] := SG Pt
(K g

Pt
) the corresponding Shimura variety for the group G P with

level group K g
Pt
). By the strong approximation we can choose a set C t(K ) of

representatives of Ct(K ) consisting of elements g = pk0 for p ∈ Pt(A
6
f ) and

k0
∈ K 0 for K 0 the spherical compact subgroup.

Definition 2.6 (p-adic cusps). As in [Hsieh 2014], each pair (g, h)∈Ct(K )×H(Zp)

can be regarded as a p-adic cusp, i.e., cusps of the Igusa tower.

Igusa schemes for unitary groups. We refer to [Hsieh 2014, Section 2.5] for the
notion of Igusa schemes for the unitary groups U(r, s) (not the similitude group). It
parameterizes quintuples (A, λ, ι, η̄(p), j)/S similar to the Igusa schemes for unitary
similitude groups but requiring λ to be a prime-to-p polarization of A (instead of an
orbit). In order to use the pullback formula algebraically we need a map of Igusa
schemes, given by

i
(
[(A!, λ!, ι1, η

p
!

K!, j1)], [(A2, λ2, ι2, η
p
2 K2, j2)]

)
= [(A1× A2, λ1× λ2, ι1, ι2, (η

p
1 × η

p
2 )K3, j1× j2)].
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Similar to [Hsieh 2014], we know that, taking the change of polarization into
consideration,

i([z, g], [w, h])= [ι(z, w), (g, h)ϒ]

(ϒ is as defined at the end of Section 2B).

2D1. Geometric modular forms. Let H =
∏
v|p(GLr ×GLs) and let N ⊂ H be∏

v|p(Nr×
tNs). To save notation we also write H =

∏
v|p GLr (OF,v)×GLs(OF,v)

and let N ⊂ H be
∏
v|p Nr (OF,v)×

tNs(OF,v). We define ω = e∗�G/SG(K ) for �
the sheaf of differentials on the universal semiabelian scheme G over the toroidal
compactification (see [Hsieh 2014, Section 2.7.2] for a brief discussion). Recall that
for v|p we have v = ww̄ in K with w ∈6p. Let ew and ew̄ be the corresponding
projections for Kv ' Kw×Kw̄; then ω = ewω⊕ ew̄ω. We also define

E+ := Isom(Or
SG(K )

, ewω),

E− := Isom(Os
SG(K )

, ew̄ω),

E := E+⊕E−.

This is an H -torsor over SG(K ). We can define the automorphic sheaf ωk=E×H Lk .
A section f of ωk is a morphism f : E→ Lk such that

f (x, hw)= ρk(h) f (x,ω), h ∈ H, x ∈ SG(K ).

2E. p-adic automorphic forms on unitary groups. Let R be a p-adic Zp-algebra
and let Rm := R/pm . Let Tn,m := IG(K n)/Rm . Define

Vn,m = H 0(Tn,m,OTn,m ),

Vk(K n
•
, Rm)= H 0(Tn,m/Rm

, ωk)
K n
• .

Let V∞,m = lim
−−→n Vn,m and V∞,∞ = lim

←−−m V∞,m . Define Vp(G, K ) := V N
∞,∞, the

space of p-adic modular forms. Let T = T (Zp)⊂ H and let 3T := Zp[[T ]]. The
Galois action of T on V N

∞,m makes the space of p-adic modular forms a discrete
3T -module.

Suppose n ≥ m. To each Rm-quintuple (A, j) of level K n , we can attach a
canonical basis ω( j) of H 0(A, �A). Therefore, we have a canonical isomorphism

H 0(Tn,m/Rm , ωk)' Vn,m ⊗ Lk(Rm)

given by

f 7→ f̂ (A, j)= f (A, j,ω( j)).

We call f̂ the p-adic avatar of f .
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Similarly, we can define an embedding of geometric modular forms into p-adic
modular forms by

f 7→ f̂ (A, j)= f (A,ω( j)).

We also define the morphism

βk : Vk(K n
1 , Rm)→ V N

n,m, f 7→ βk( f ) := lk( f̂ ).

We can also pass to the limit for m → ∞ to get the embedding of Vk(K n
1 , R)

into V N
∞,∞. We refer to [Hsieh 2014, Sections 3.8–3.9] for the definition of a Up

Hecke operator and define Hida’s ordinary projector

e := lim
n

U n!
p .

2F. Algebraic theory for Fourier–Jacobi expansions. We suppose s > 0 in this
subsection. Let X∨t = spanOK

{x1, · · · , x t
} and Yt = spanOK

{y1, . . . , yt
}. Let Wt be

the skew-Hermitian space spanOK
{yt+1, . . . , ys , w1, . . . , x t+1, . . . , x s

}. Let G0
t be

the unitary similitude group of Wt . Let [g] ∈Ct(K ) and KG Pt
=G Pt (A f )∩gK g−1

(we suppress the subscript [g] so as to not make the notation too cumbersome). Let
At be the universal abelian scheme over the Shimura variety SG Pt

(KG Pt
). Write

g∨ = kg∨i γ for γ ∈ G(F)+ and k ∈ K . Define X∨g = X∨t g∨i γ and Yg = Yt g∨i γ . Let
Xg = {y ∈ (Yt ⊗Q Z) · γ | 〈y, X∨g 〉 ∈ Z}. Then we have

i : Yg ↪→ Xg.

Let Z[g] be

HomOK(Xg,A∨t )×HomOK
(Yg,A

∨
t )

HomOK(Yg,At)

:= {(c, ct) | c(i(y))= λ(ct(y)), y ∈ Yg}.

Here the Hom are the obvious sheaves over the big étale site of SG Pt
, represented by

abelian schemes. Let c and c∨ be the universal morphisms over HomOK(Xg,A∨t )

and HomOK(Yg,At). Let NPt be the unipotent radical of Pt and Z(NPt ) be its center.
Let H[g] := Z(NPt (F))∩ gi K g−1

i . Note that if we replace the components of K at
v|p by K n

1 then the set H[g] remains unchanged. Let 0[g] := GLK(Yt)∩ gi K g−1
i .

Let PAt be the Poincaré sheaf over A∨t ×At/Z[g] and P×At
its associated Gm-torsor.

Let S[g] := Hom(H[g],Z). For any h ∈ S[g], let c(h) be the tautological map
Z[g]→A∨t ×At and L(h) := c(h)∗P×At

its associated Gm torsor over Z[g].
It is well known (see [Lan 2008, Chapter 7], for example) that the minimal

compactification S∗G(K ) is the disjoint union of boundary components corresponding
to each t=1, . . . , s. Let OCp be the valuation ring for Cp. The following proposition
is proved in [Lan 2008, Proposition 7.2.3.16]. Let [g] ∈Ct(K ) and x̄ be a OCp -point
of the t-stratum of S∗G(K )(1/E) corresponding to [g].
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Proposition 2.7. Let [g] and x̄ be as above. We write the subscript x̄ to mean
formal completion along x̄ . Let π be the map SG(K )→ S∗G(K ). Then π∗(OSG(K ))x̄

is isomorphic to {∑
h∈S+

[g]

H 0(Z[g],L(h))x̄qh
}0[g]

.

Here S+
[g] means the totally nonnegative elements in S[g]. The qh is just regarded as

a formal symbol and 0[g] acts on the set by a certain formula, which we omit.

For each [g] ∈Ct(K ) we fix an x̄ corresponding to it as above. Now we consider
the diagram

Tn,m
πn,m
−−−→ T ∗n,my y

SG(K )[1/E]Om

π
−−−→ S∗G(K )[1/E]Om ,

where Tn,m → T ∗n,m → S∗G(K )[1/E]Om is the Stein factorization. By [Lan 2013b,
Corollary 6.2.2.8], T ∗n,m is finite étale over S∗G(K )[1/E]Om . Take a preimage of x̄
in T ∗n,m , which we still denote by x̄ . (To do this, we have to extend the field of
definition to include the maximal unramified extension of L .) Then the formal
completion of the structure sheaf of T ∗n,m and S∗G(K )[1/E]Om at x̄ are isomorphic.
So, for any p-adic automorphic form f ∈ lim

←−−m lim
−−→n H 0(Tn,m,On,m) (with trivial

coefficients), we have a Fourier–Jacobi coefficient

FJ( f ) ∈
{ ∏

h∈S+
[g]

lim
←−−

m
lim
−−→

n
H 0(Z[g],L(h))x̄ · qh

}
[g]

(4)

by considering f as a global section of π∗n,m(OTn,m )= OT ∗n,m and pullback at the x̄ .
Note that if t = s = 1 then there is no need to choose the x̄ and pullback, since the
Shimura variety for G t is 0-dimensional (see [Hsieh 2014, (2.18)]). In application,
when we construct families of Klingen Eisenstein series in terms of Fourier–Jacobi
coefficients, we will take t = 1 and define

R[g],∞ :=
∏

h∈S+
[g]

lim
←−−

m
lim
−−→

n
H 0(Z[g],L(h))x̄ · qh . (5)

We remark that the map FJ is injective on the space of forms with prescribed
nebentypus at p (this is not needed for our result though). This can be seen using
the discussion in [Skinner and Urban 2014] right before Section 6.2 (which in turn
uses result of Hida [2011] about the irreducibility of Igusa towers for the group
SU(r, s)⊂U(r, s), the kernel of the determinant map). In particular, to see this injec-
tivity we need the fact that there is a bijection between the irreducible components
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of the generic and special fibers of S∗G(K ) (see [Lan 2008, Section 6.4.1]) and that
there is at least one cusp of any given genus on the ordinary locus of each irreducible
component. (Note that the signature is (r, s) for r ≥ s > 0 at all Archimedean
places, so there is at least one cusp in Ct(K ) at each irreducible component. Since
p splits completely in K, the cusps of minimal genus must be in the ordinary locus.
On the other hand by the construction of minimal compactification the closure of
the stratum of any genus r is the union of all stratums of genus less than or equal
to r . Note also that, since the geometric fibers of the minimal compactification are
normal, their irreducible components are also connected components. This implies
the existence of such a cusp on the ordinary locus.) See the Appendix for more
details.

3. Eisenstein series and Fourier–Jacobi coefficients

The materials of this section are straightforward generalizations of parts of [Skinner
and Urban 2014, Sections 9 and 11] and we use the same notations as there, so
everything in this section should work out the same as [Skinner and Urban 2014]
when specialized to the group GU(2, 2)/Q.

3A. Klingen Eisenstein series. Let gu(R) be the Lie algebra of GU(r, s)(R). Let
δ be a character of the Klingen parabolic subgroup P such that δa+2b+1

= δP (the
modulus character of P).

3A1. Archimedean picture. Let v be an infinite place of F , so that Fv ' R. Let
i ′ and i be the points on the Hermitian symmetric domain for GU(r, s) and
GU(r + 1, s + 1) which are

(i1s
0

)
and

(i1s+1
0

)
, respectively (here 0 means the

(r − s)× s or (r − s)× (s + 1) matrix 0). Let GU(r, s)(R)+ be the subgroup of
GU(r, s)(R) whose similitude factor is positive. Let K+

∞
and K+,′

∞
be the compact

subgroups of U(r + 1, s + 1)(R) and U(r, s)(R) stabilizing i or i ′, and let K∞
(resp. K ′

∞
) be the group generated by K+

∞
(resp. K+,′

∞
) and diag(1r+s+1,−1s+1)

(resp. diag(1r+s,−1s)).
Now let (π, H) be a unitary tempered Hilbert representation of GU(r, s)(R) with

H∞ the space of smooth vectors. We define a representation of P(R) on H∞ as
follows: for p = mn, where n ∈ NP(R) and m = m(g, a) ∈ MP(R) with a ∈ C×,
g ∈ GU(r + 1, s+ 1)(R), put

ρ(p)v := τ(a)π(g)v, v ∈ H∞.

We define a representation by smooth induction, I (H∞) := IndGU(r+1,s+1)(R)
P(R) ρ and

write I (ρ) for the space of K∞-finite vectors in I (H∞). For f ∈ I (ρ) we also
define, for each z ∈ C, a function

fz(g) := δ(m)(a+2b+1)/2+zρ(m) f (k), g = mk ∈ P(R)K∞,
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and an action of GU(r + 1, s+ 1)(R) on it by

(σ (ρ, z)(g) f )(k) := fz(kg).

Let (π∨, V ) be the irreducible (gu(R), K ′
∞
)-module given by π∨(x)=π(η−1xη)

for

η =

 1b

1a

−1b


and x in gu(R) or K ′

∞
(this does not mean the contragradient representation!). Let

ρ∨, I (ρ∨), I∨(H∞), σ(ρ∨, z) and I (ρ∨) be the representations and spaces defined
as above but with π and τ replaced by π∨ ⊗ (τ ◦ det) and τ̄ c. We are going to
define an intertwining operator. Let

w =

 1b+1

1a

−1b+1

 .
For any z ∈ C, f ∈ I (H∞) and k ∈ K∞, consider the integral

A(ρ, z, f )(k) :=
∫

NP (R)

fz(wnk) dn. (6)

This is absolutely convergent when Re(z) > 1
2(a + 2b + 1) and A(ρ, z,−) in

HomC(I (H∞), I∨(H∞)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).
Suppose π is the holomorphic discrete series representation associated to the

(scalar) weight (0, . . . , 0; κ, . . . , κ); then it is well known that there is a unique (up
to scalar) vector v ∈ π such that k · v = detµ(k, i)−κ (here µ means the second
component of the automorphic factor J instead of the similitude character) for
any k ∈ K+,′

∞
. Then, by the Frobenius reciprocity law, there is a unique (up to

scalar) vector ṽ ∈ I (ρ) such that k · ṽ = detµ(k, i)−κ ṽ for any k ∈ K+
∞

. We fix v
and multiply ṽ by a constant so that ṽ(1)= v. In π∨, π(w)v has the action of K+

∞

given by multiplying by detµ(k, i)−κ . We define w′ ∈ U(r + 1, s+ 1) by

w′ =


1b

1
1a

1b

−1

 .
There is a unique vector ṽ∨ ∈ I (ρ∨) such that the action of K+

∞
is given by

detµ(k, i)−κ and ṽ∨(w′)=π(w)v. Then, by uniqueness, there is a constant c(ρ, z)
such that A(ρ, z, ṽ)= c(ρ, z)ṽ∨.

Definition 3.1. We define Fκ ∈ I (ρ) to be the ṽ as above.
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3A2. Prime-to-p picture. Our discussion here follows [Skinner and Urban 2014,
§9.1.2]. Let (π, V ) be an irreducible, admissible representation of GU(r, s)(Fv)
which is unitary and tempered. Let ψ and τ be unitary characters of K×v such
that ψ is the central character for π . We define a representation ρ of P(Fv) as
follows. For p=mn, where n ∈ NP(Fv) and m =m(g, a) ∈ MP(Fv) with a ∈ K×v
and g ∈ GU(Fv), let

ρ(p)v := τ(a)π(g)v, v ∈ V .

Let I (ρ) be the representation defined by admissible induction, that is, I (ρ) =
IndGU(r+1,s+1)(Fv)

P(Fv) ρ. As in the Archimedean case, for each f ∈ I (ρ) and each z ∈C

we define a function fz on GU(r + 1, s+ 1)(Fv) by

fz(g) := δ(m)(a+2b+1)/2+zρ(m) f (k) for g = mk ∈ P(Fv)Kv

and a representation σ(ρ, z) of GU(r + 1, s+ 1)(Fv) on I (ρ) by

(σ (ρ, z)(g) f )(k) := fz(kg).

Let (π∨, V ) be given by π∨(g)=π(η−1gη). This representation is also tempered
and unitary. We denote by ρ∨, I (ρ∨) and (σ (ρ∨, z), I (ρ∨)) the representations
and spaces defined as above but with π and τ replaced by π∨⊗ (τ ◦ det) and τ̄ c,
respectively.

For f ∈ I (ρ), k ∈ Kv and z ∈ C, consider the integral

A(ρ, z, v)(k) :=
∫

NP (Fv)
fz(wnk) dn. (7)

As a consequence of our hypotheses on π this integral converges absolutely and uni-
formly for z and k in compact subsets of

{
z
∣∣Re(z)> 1

2(a+2b+1)
}
×Kv . Moreover,

for such z, A(ρ, z, f ) ∈ I (ρ∨), and the operator A(ρ, z,−) ∈HomC(I (ρ), I (ρ∨))
intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

For any open subgroup U ⊆ Kv, let I (ρ)U ⊆ I (ρ) be the finite-dimensional
subspace consisting of functions satisfying f (ku)= f (k) for all u ∈U . Then the
function{

z ∈ C
∣∣ Re(z) > 1

2(a+ 2b+ 1)
}
→ HomC(I (ρ)U , I (ρ∨)U ), z 7→ A(ρ, z,−)

is holomorphic. This map has a meromorphic continuation to all of C.
We finally remark that, when π and τ are unramified, there is a unique (up to

scalar) unramified vector Fρv ∈ I (ρ).

3A3. Global picture. We follow [Skinner and Urban 2014, §9.1.4]. Let (π, V )
be an irreducible, cuspidal, tempered automorphic representation of GU(r, s)(AF ).
This is an admissible (gu(R), K ′

∞
)v|∞×GU(r, s)(A f )-module which is a restricted

tensor product of local irreducible admissible representations. Let ψ , τ : A×K→ C×
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be Hecke characters such that ψ is the central character of π . Let τ =
⊗
τw and

ψ =
⊗
ψw be their local decompositions, w running over places of F . Define a

representation of (P(F∞)∩ K∞)× P(AF, f ) by putting

ρ(p)v :=
⊗
(ρw(pw)vw),

Let I (ρ) be the restricted product
⊗

I (ρw) with respect to the Fρw at those w at
which τw, ψw and piw are unramified. As before, for each z ∈ C and f ∈ I (ρ), we
define a function fz on GU(r + 1, s+ 1)(AF ) as

fz(g) :=
⊗

fw,z(gw),

where fw,z are defined as before, and an action σ(ρ, z) of

(gu, K∞)⊗GU(r + 1, s+ 1)(A f )

on I (ρ) by σ(ρ, z) :=
⊗
σ(ρw, z). Similarly, we define ρ∨, I (ρ∨) and σ(ρ∨, z),

but with the corresponding things replaced by their ∨, and we have global versions
of the intertwining operators A(ρ, f, z).

Definition 3.2. Let6 be a finite set of primes of F containing all the infinite places,
primes dividing p, and places where π or τ is ramified. Then we call the triple
D= (π, τ,6) an Eisenstein datum.

3A4. Klingen-type Eisenstein series on G. We follow [Skinner and Urban 2014,
§9.1.5] in this subsubsection. Let π , ψ and τ be as above. For f ∈ I (ρ) and z ∈ C,
there are maps from I (ρ) and I (ρ∨) to spaces of automorphic forms on P(AF )

given by
f 7−→ (g 7→ fz(g)(1)).

In the following we often write fz for the automorphic form on P(AF ) given by
this recipe.

If g ∈ GU(r + 1, s+ 1)(AF ), it is well known that

E( f, z, g) :=
∑

γ∈P(F)\G(F)

fz(γ g) (8)

converges absolutely and uniformly for (z, g) in compact subsets of{
z ∈ C

∣∣ Re(z) > 1
2(a+ 2b+ 1)

}
×GU(r + 1, s+ 1)(AF ).

Therefore, we get some automorphic forms which are called Klingen Eisenstein
series.

Definition 3.3. For any parabolic subgroup R of GU(r + 1, s + 1) and an auto-
morphic form ϕ, we define ϕR to be the constant term of ϕ along R, defined
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by

ϕR(g)=
∫

n∈NR(F)\NR(AF )

ϕ(ng) dn.

The following lemma is well known (see [Skinner and Urban 2014, Lemma 9.2]).

Lemma 3.4. Let R be a standard F-parabolic subgroup of GU(r + 1, s+ 1) (i.e,
R ⊇ B, where B is the standard Borel subgroup). Suppose Re(z) > 1

2(a+ 2b+ 1).
Then:

(i) If R 6= P then E( f, z, g)R = 0.

(ii) E( f, z,−)P = fz + A(ρ, f, z)−z .

3B. Siegel Eisenstein series on Gn.

3B1. Local picture. Our discussion in this subsection follows [Skinner and Urban
2014, §§11.1–11.3] closely. Let Q = Qn be the Siegel parabolic subgroup of GUn

consisting of matrices
( Aq

0
Bq
Dq

)
. It consists of matrices whose lower-left n×n block

is zero.
For a finite place v of F and a character χ of K×v , we let In(χ) be the space of

smooth Kn,v-finite functions (here Kn,v means the open compact group Gn(OF,v))
f : Kn,v→ C such that f (qk)= χ(det Dq) f (k) for all q ∈ Qn(Fv)∩ Kn,v , where

we write q as a block matrix q =
( Aq

0
Bq
Dq

)
. For z ∈ C and f ∈ I (χ), we also define

a function f (z,−) : Gn(Fv)→ C by f (z, qk) := χ(det Dq)|det Aq D−1
q |

z+n/2
v f (k)

for q ∈ Qn(Fv) and k ∈ Kn,v.
For f ∈ In(χ), z ∈ C and k ∈ Kn,v, the intertwining integral is defined by

M(z, f )(k) := χ̄n(µn(k))
∫

NQn (Fv)
f (z, wnrk) dr.

For z in compact subsets of
{
Re(z) > 1

2 n
}
, this integral converges absolutely and

uniformly, with the convergence being uniform in k. In this case it is easy to see
that M(z, f ) ∈ In(χ̄

c). A standard fact from the theory of Eisenstein series says
that this has a continuation to a meromorphic section on all of C.

Let U⊆ C be an open set. By a meromorphic section of In(χ) on U we mean a
function ϕ :U→ In(χ) taking values in a finite-dimensional subspace V ⊂ In(χ)

and such that ϕ :U→ V is meromorphic.
For Archimedean places there is a similar picture (see [loc. cit.]).

3B2. Global picture. For an idele class character χ =
⊗
χv of A×K , we define a

space In(χ) to be the restricted tensor product defined using the spherical vectors
f sph
v ∈ In(χv), f sph

v (Kn,v)= 1, at the finite places v where χv is unramified.
For f ∈ In(χ) we consider the Eisenstein series

E( f ; z, g) :=
∑

γ∈Qn(F)\Gn(F)

f (z, γ g).



Families of nearly ordinary Eisenstein series on unitary groups 1979

This series converges absolutely and uniformly for (z, g) in compact subsets of{
Re(z) > 1

2 n
}
×Gn(AF ). The automorphic form defined is called Siegel Eisenstein

series.
Let ϕ : U → In(χ) be a meromorphic section; then we put E(ϕ; z, g) =

E(ϕ(z); z, g). This is defined at least on the region of absolute convergence and it
is well known that it can be meromorphically continued to all z ∈ C.

Now, for f ∈ In(χ), z ∈ C and k ∈
∏
v-∞ Kn,v

∏
v|∞ K∞, there is a sim-

ilar intertwining integral M(z, f )(k) as above, but with the integration being
over NQn (AF ). This again converges absolutely and uniformly for z in compact
subsets of

{
Re(z) > 1

2 n
}
× Kn . Thus, z 7→ M(z, f ) defines a holomorphic section{

Re(z) > 1
2 n
}
→ In(χ̄

c). This has a continuation to a meromorphic section on C.
For Re(z) > 1

2 n, we have

M(z, f )=
⊗

v M(z, fv), f =
⊗

fv.

The functional equation for Siegel Eisenstein series is

E( f, z, g)= χn(µ(g))E(M(z, f );−z, g),

in the sense that both sides can be meromorphically continued to all z ∈ C and the
equality is understood as of meromorphic functions of z ∈ C.

3B3. The pullback formulas. Let χ be a unitary idele class character of A×K . Given
a unitary, tempered, cuspidal eigenform ϕ on GU(r, s) which is a pure tensor, we
formally define the integral

Fϕ( f ; z, g) :=
∫

U(r,s)(AF )

f (z, S−1α(g, g1h)S)χ̄(det g1g)ϕ(g1h) dg1,

f ∈ Ir+s+1(χ), g ∈ GU(r + 1, s+ 1)(AF ), h ∈ GU(r, s)(AF ), µ(g)= µ(h).

This is independent of h. (We suppress the χ in the notation for Fϕ since its choice
is implicitly given by f .) We also formally define

F ′ϕ( f ; z, g) :=
∫

U(r,s)(AF )

f (z, S′−1α(g, g1h)S′)χ̄(det g1g)ϕ(g1h) dg1,

f ∈ Ir+s(χ), g ∈ GU(r, s)(AF ), h ∈ GU(r, s)(AF ), µ(g)= µ(h).

The pullback formulas are the identities in the following proposition.

Proposition 3.5. Let χ be a unitary idele class character of A×K .

(i) If f ∈ Ir+s(χ), then Fϕ( f ; z, g) converges absolutely and uniformly for (z, g)
in compact sets of {Re(z) > r + s}×GU(r, s)(AF ) and, for any h ∈ GU(r, s)(AF )
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such that µ(h)= µ(g),∫
U(r,s)(F)\U(r,s)(AF )

E( f ; z, S′−1α(g, g1h)S′)χ̄(det g1h)ϕ(g1h) dg1

= F ′ϕ( f ; z, g). (9)

(ii) If f ∈ Ir+s+1(χ), then Fϕ( f ; z, g) converges absolutely and uniformly for
(z, g) in compact sets of

{
Re(z) > r + s+ 1

2

}
×GU(r + 1, s+ 1)(AF ) and, for any

h ∈ GU(r, s)(AF ) such that µ(h)= µ(g),∫
U(r,s)(F)\U(r,s)(AF )

E( f ; z, S−1α(g, g1h)S)χ̄(det g1h)ϕ(g1h) dg1

=

∑
γ∈P(F)\G(r+1,s+1)(F)

Fϕ( f ; z, γ g), (10)

with the series converging absolutely and uniformly for (z, g) in compact subsets of{
Re(z) > r + s+ 1

2

}
×GU(r + 1, s+ 1)(AF ).

Proof. The global integral Fϕ and F ′ϕ can be written as a product of local integrals.
The absolute convergence of local integrals for F ′ϕ is proved in [Lapid and Rallis
2005, Lemma 2]. The absolute convergence for the global integral F ′ϕ follows
from this and the explicit computations in [Lapid and Rallis 2005] at all unramified
places, together with the assumption that ϕ is tempered. The absolute convergence
for Fϕ is proved in the same way. Then part (i) is proved by Piatetski-Shapiro and
Rallis [Gelbart et al. 1987] and (ii) is a straightforward generalization by Shimura
[1997], which is in turn due to earlier works of Garrett [1984; 1989]. Both are
straightforward consequences of the double coset decompositions in [Shimura 1997,
Propositions 2.4 and 2.7]. �

3C. Fourier–Jacobi expansion.

3C1. Fourier–Jacobi expansion. We will usually write eA(x) = eAQ
(TrAF/AQ

x)
for x ∈ AF . For any automorphic form ϕ on GU(r, s)(AF ), β ∈ Sm(F) for m ≤ s.
We define the Fourier–Jacobi coefficient at g ∈ GU(r, s)(AF ) as

ϕβ(g)=
∫

Sm(F)\Sm(AF )

ϕ


1s 0

S 0
0 0

0 1r−s 0
0 0 1s

 g

 eA(−Tr(βS)) d S.

In fact, we are mainly interested in two cases: m = s, or r = s and arbitrary m ≤ s.
In particular, suppose G =Gn =GU(n, n), 0≤m ≤ n are integers, and β ∈ Sm(F).
Let ϕ be a function on G(F)\G(A). The β-th Fourier–Jacobi coefficient ϕβ of ϕ
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at g is defined by

ϕβ(g) :=
∫
ϕ

1n
S 0
0 0
1n

 g

 eA(−TrβS) d S.

Now we prove a useful formula on the Fourier–Jacobi coefficients for Siegel
Eisenstein series.

Definition 3.6. Put

Z :=


1n

z 0
0 0

0n 1n

 ∣∣∣∣ z ∈ Sm(K)

 ,

V :=




1m x z y
1n−m y∗ 0

1m0n
−x∗ 1n−m

 ∣∣∣∣ x, y ∈ Mm(n−m)(K), z− xy∗ ∈ Sm(K)

 ,

X :=




1m x
0n1n−m

1m0n
−x∗ 1n−m

 ∣∣∣∣ x ∈ Mm(n−m)(K)

 ,

Y :=


1n

z y
y∗ 0

0n 1n

 ∣∣∣∣ y ∈ Mm(n−m)(K)

 .
From now on we will usually write wn for

(
−1n

1n
)
.

Proposition 3.7. Let f be in In(τ ) and suppose β ∈ Sm(F) is totally positive. If
E( f ; z, g) is the Siegel Eisenstein series on GUn defined by f for some Re(z)
sufficiently large, then the β-th Fourier–Jacobi coefficient Eβ( f ; z, g) satisfies

Eβ( f ; z, g)

=

∑
γ∈Qn−m(F)\GUn−m(F)

∑
y∈Y

∫
Sm(A)

f

wn

1n
S y
tȳ 0
1n

αn−m(1, γ )g

eA(−TrβS) d S,

where

αn−m(γ )=


1

D C
1

B A


if g1 =

( A
C

B
D

)
, where A, B, C and D are (n−m)× (n−m) matrices.
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Proof. We follow [Ikeda 1994, Section 3]. Let H be the normalizer of V in G.
Then

Gn(F)=
m⊔

i=1

Qn(F)ξi H(F)

for

ξi :=


0m−i 0 −1m−i 0
0 1n−m+i 0 0
1m−i 0 0m−i 0
0 0n−m+i 0 1n−m+i

 .
Unfolding the Eisenstein series, we get

Eβ( f ; z, g)=
∑
i>0

∑
γ∈Qn(F)\Qn(F)ξi H(F)

∫
f

γ
1n

S 0
0 0
1n

 g

 eA(−Tr(βS)) d S

+

∑
γ∈Qn(F)\Qn(F)ξ0 H(F)

∫
f

γ
1n

S 0
0 0
1n

 g

 eA(−Tr(βS)) d S.

By [Ikeda 1994, Lemma (3.1)] (see [ibid., p. 628]), the first term vanishes. Also,
we have [loc. cit.]

Qn(F)\Qn(F)ξ0 H(F)= ξ0 Z(F)X (F)Qn−m(F)\Gn−m(F)

= ξ0 X (F) · Qn−m(F)\Gn−m(F) · Z(F)

= wnY (F)Sm(F)wn−m Qn−m(F)\Gn−m(F)

(note that Sm commutes with X and Gn−m). So

Eβ( f ; z, g)=
∑

γ∈Qn−m(F)\Gn−m(F)

∑
y∈Y (F)

∫
Sm(A)

f

wn

1n
S y
tȳ 0
1n

αn−m(1, γ )g


×eA(−Tr(βS)) d S

Note that the final integral is essentially a product of local ones. �

Now we record some useful formulas:

Definition 3.8. If gv ∈ Un−m(Fv) and x ∈ GLm(Kv), then define

FJβ( fv; z, y, g, x)

=

∫
Sm(Fv)

f

wn

1n
S y
tȳ 0
1n

α(diag(x, tx̄−1), g)

 eFv (−TrβS) d S,
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where

α(g1, g2)=


A B

D′ C ′

C D
B ′ A′

 if g1 =

(
A B
C D

)
, g2 =

(
A′ B ′

C ′ D′

)
.

We also define

fv,β,z(g) := f
(

z, wn

(
1n S

1n

)
g
)

ev(−TrβS) d S.

Since1n
S X
tX

1n




1m

Ā−1

1m

B Ā−1 A

=


1m X B Ā−1

Ā−1

1m

B Ā−1 A




1n
S− X B tX X A

Ā tX

1n

 ,
it follows that:

FJβ

(
f ; z, X,

(
A B Ā−1

Ā−1

)
g, Y

)
= τ c

v (det A)−1
|det AĀ|z+n/2

v ev(−Tr( tXβX B))FJβ( f ; z, X A, g, Y ).

Also, we have

FJβ( f ; z, y, g, x)= τv(det x)|det x x̄ |−(z+n/2−m)
A FJ tx̄βx( f ; z, x−1 y, g, 1).

3C2. Weil representations. We define the Weil representations which will be used
in calculating local Fourier–Jacobi coefficients in the next section.

The local set-up. Let v be a place of F . Let h ∈ Sm(Fv), det h 6= 0. Let Uh be
the unitary group of this metric and denote by Vv the corresponding Hermitian
space. Let Vn−m := K(n−m)

v ⊕K(n−m)
v := Xv ⊕ Yv be the skew-Hermitian space

associated to U(n − m, n − m). Let W := Vv ⊗Kv
Vn−m,v. Then (−,−) :=

TrKv/Fv (〈−,−〉h ⊗Kv
〈−,−〉n−m) is a Fv linear pairing on W that makes W into

a 4m(n−m)-dimensional symplectic space over Fv. The canonical embedding of
Uh ×Un−m into Sp(W ) realizes the pair (Uh,Un−m) as a dual pair in Sp(W ). Let
λv be a character of K×v such that λv|F×v = χ

m
K/F,v. It is well known (see [Kudla

1994]) that there is a splitting Uh(Fv)×Un−m(Fv) ↪→Mp(W, Fv) of the metaplectic
cover Mp(W, Fv)→ Sp(W, Fv) determined by the character λv. This gives the
Weil representation ωh,v(u, g) of Uh(Fv) × Un−m(Fv), where u ∈ Uh(Fv) and
g ∈Un−m(Fv), via the Weil representation of Mp(W, Fv) on the space of Schwartz
functions S(Vv ⊗Kv

Xv). Moreover, we write ωh,v(g) to mean ωh,v(1, g). For
X ∈Mm×(n−m)(Kv), we define 〈X, X〉h := tXβX (note this is an (n−m)×(n−m)
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matrix). We record here some useful formulas for ωh,v which are generalizations
of the formulas in [Skinner and Urban 2014, Section 10]:

• ωh,v(u, g)8(X)= ωh,v(1, g)8(u−1 X).

• ωh,v(diag(A, t Ā−1))8(X)= λ(det A)|det A|K8(X A).

• ωh,v(r(S))8(x)=8(x)ev(Tr〈X, X〉h S).

• ωh,v(η)8(x)= |det h|v
∫
8(Y )ev(TrKv/Fv (Tr〈Y, X〉h)) dY .

Global setup. Let h ∈ Sm(F) be positive definite. We can define global versions of
Uh , GUh , X , Y , W , and (−,−), analogously to the local case. Fixing an idele class
character λ=

⊗
λv of A×K/K

× such that λ|F× = χm
K/F , the associated local splitting

described above then determines a global splitting Uh(AF )×U1(AF ) ↪→Mp(W,AF )

and hence an action ωh := ⊗ωh,v of Uh(AF )× U1(AF ) on the Schwartz space
S(VAK ⊗K X).

4. Local computations

In this section we do the local computations for Klingen Eisenstein sections real-
ized as the pullbacks of Siegel Eisenstein sections. We will compute the Fourier
and Fourier–Jacobi coefficients for the Siegel sections and the pullback Klingen
Eisenstein sections.

4A. Archimedean computations. Let v be an Archimedean place of F .

4A1. Fourier coefficients.

Definition 4.1. fκ,n(z, g)= Jn(g, i1n)
−κ
|Jn(g, i1n)|

κ−2z−n.

Now we recall [Skinner and Urban 2014, Lemma 11.4]. Let Jn(g, i1n) :=

det(Cgi1n + Dg) for g =
( Ag

Cg

Bg
Dg

)
.

Lemma 4.2. Suppose β ∈ Sn(R). Then the function z 7→ fκ,β(z, g) has a meromor-
phic continuation to all of C. Furthermore, if κ ≥ n then fκ,n,β(z, g) is holomorphic
at zκ := 1

2(κ − n) and, for y ∈ GLn(C), fκ,n,β(zκ , diag(y, tȳ−1))= 0 if detβ ≤ 0,
while, if detβ > 0, then

fκ,n,β(zκ , diag(y, tȳ−1))

=
(−2)−n(2π i)nκ(2/π)n(n−1)/2∏n−1

j=0(κ − j − 1)!
ev(i Tr(βy tȳ)) det(β)κ−n det ȳκ .

4A2. Pullback sections. Now we assume that our π is the holomorphic discrete
series representation associated to the (scalar) weight (0, . . . , 0; κ, . . . , κ) and let
ϕ be the unique (up to scalar) vector such that the action of K+,

′

∞
(see Section 3A)

is given by detµ(k, i)−κ . Recall also that in Section 3A we defined the Klingen
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section Fκ(z, g) (denoted Fκ ). Recall we have defined S and S′ in equations (1)
and (2). Let

i :=


1
2 i1b

i
1
2ζ

1
2 i1b

 or

1
2 i1b

1
2ζ

1
2 i1b


be the distinguished point in the symmetric domain for GU(n, n) or GU(n+1, n+1),
for n = a+ 2b. We define Archimedean sections to be

fκ(g)= Jn+1(g, i)−κ |Jn+1(g, i)|κ−2z−n−1

and
f ′κ(g)= Jn(g, i)−κ |Jn(g, i)|κ−2z−n

and the pullback sections on GU(a+ b+ 1, b+ 1) and GU(a+ b, a) to be

Fκ(z, g) :=
∫

U(a+b,b)(R)
fκ(z, S−1α(g, g1)S)τ̄ (det g1)π(g1)ϕ dg1

and

F ′κ(z, g) :=
∫

U(a+b,b)(R)
f ′κ(z, S′−1α(g, g1)S′)τ̄ (det g1)π(g1)ϕ dg1.

Lemma 4.3. The integrals Fκ and F ′κ are absolutely convergent for Re(z) suffi-
ciently large and, for such z, we have

(i) Fκ(z, g)= cκ(z)Fκ,z(g);

(ii) F ′κ(z, g)= c′κ(z)π(g)ϕ;

where

c′κ(z, g)=2ν |det ζ |bv


π (av+bv)bv0bv

(
z+ 1

2(n+ κ)− av − bv
)

×0bv
(
z+ 1

2(n+ k)
)−1 if b > 0,

1 otherwise.

and cκ(z, g) = c′κ
(
z + 1

2 , g
)
. Here 0m(s) := πm(m+1)/2∏m−1

k=0 0(s − k) and ν :=
(a+ 2b)db (recall that d = [F :Q]).

Proof. See [Shimura 1997, Propositions 22.2 and A2.9]. Note that the action
of (β, γ ) ∈ U(r, s)×U(s, r) is given by (β ′, γ ′), defined there. Taking this into
consideration, our conjugation matrix S is Shimura’s S times 6−1 (with notation
as there), which is defined in (22.1.2) in [Shimura 1997]. Also our result differs
from [Skinner and Urban 2014, Lemma 11.6] by a power of 2, since we are using a
different S here. �
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4A3. Fourier–Jacobi coefficients. We write FJβ,κ for the Fourier–Jacobi coefficient
defined in Definition 3.8 with fv chosen as fκ,n .

Lemma 4.4. Let zκ = 1
2(κ − n), β ∈ Sm(R), m < n and detβ > 0. Then:

(i) FJβ,κ(zκ , x, η, 1)= fκ,m,β
(
zκ + 1

2(n−m), 1
)
e(i Tr( tXβX)).

(ii) If g ∈Un−m(R), then

FJβ,κ(zκ , X, g, 1)= e(i Trβ)cm(β, κ) fκ−m,n−m(zκ , g′)wβ(g′)8β,∞(x),

where

g′ =
(

1n

−1n

)
g
(

1n

1n

)
,

ct(β, κ)=
(−2)−t(2π i)tκ(2/π)t (t−1)/2∏t−1

j=0(κ − j − 1)
detβκ−t

and 8β,∞(x)= e−2π Tr(〈x,x〉β ).

Proof. Our proof is similar to [Skinner and Urban 2014, Lemma 11.5]. For (i) we first
assume that m ≤ 1

2 n; then there is a matrix U ∈Un−m such that XU = (0, A) for A
an m×m positive semidefinite Hermitian matrix. It follows that FJβ,κ(z, X, η, 1)=
FJβ,κ(z, (0, A), η, 1) and e(iT r( tXβX)) = e(i Tr(U−1 tXβXU )), so we are re-
duced to the case when X = (0, A).

Let C be an m×m positive definite Hermitian matrix defined by C =
√

A2+ 1.
(Since A is positive semidefinite Hermitian, this C exists by linear algebra.) We
have

1n

A

A
1n

=


C
1

C
AC−1 C−1

1
AC−1 C−1





C−1 C−1 A
1

C−1 C−1 A
−C−1 AC−1

1
−C−1 A C−1


.

Write k(A) for the second matrix in the right of the above, which belongs to K+n,∞;
then, as in [Skinner and Urban 2014, Lemma 11.5],

wn

1n
S X
tX

1n

=


C−1

1
× × C−1

× × ×

× × ×

× × ×

C
1

× × C


wn


U−1SU−1

1n

1n

 k(A).
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Thus,

FJβ,κ(zκ , (0, A), η, 1)= (det C)2m−2κ FJβ ′,κ(zκ , 0, η, 1), β ′ = CβC

= (det C)2m−2κ fκ,m,β ′
(
zκ + 1

2(n−m), 1
)

= fκ,m,β
(
z+ 1

2(n−m), 1
)
e(i Tr(CβC −β)).

But

e(i Tr(CβC −β))= e(i Tr(C2β −β))= e
(
i Tr((C2

− 1)β)
)

= e(i Tr(A2β))= e(i Tr(AβA)).

This proves part (i).
Part (ii) is proved completely the same as [Skinner and Urban 2014, Lemma 11.5].
In the case when m > 1

2 n, we proceed similarly as in [Skinner and Urban 2014,
Lemma 11.5], replacing a and u there by corresponding block matrices just as
above. We omit the details. �

4B. Finite primes, unramified case.

4B1. Pullback integrals.

Lemma 4.5. Suppose π , ψ and τ are unramified and ϕ ∈ π is a new vector. If
Re(z) > 1

2(a+ b) then the pullback integral converges and

Fϕ( f sph
v ; z, g)=

L(π̃, τ̄ c, z+ 1)∏a+2b−1
i=0 L(2z+ a+ 2b+ 1− i, τ̄ ′χ i

K)
Fρ,z(g),

where Fρ,z is the spherical section taking value ϕ at the identity and

Fϕ( f sph
v ; z, g)=

L
(
π̃ , τ̄ c, z+ 1

2

)∏a+2b−1
i=0 L(2z+ a+ 2b− i, τ̄ ′χ i

K)
π(g)ϕ.

This is computed in [Lapid and Rallis 2005, Proposition 3.3].

4B2. Fourier–Jacobi coefficients. Let v be a prime of F not dividing p and τ a
character of K×v . For f ∈ In(τ ) and β ∈ Sm(Fv), 0 ≤ m ≤ n, we define the local
Fourier–Jacobi coefficient to be

fβ(z; g) :=
∫

Sm(Fv)
f

z, wn

1n
S 0
0 0
1n

 g

 ev(−TrβS) d S.

We first record straightforward generalizations of [Skinner and Urban 2014,
Lemmas 11.7 and 11.8] to any fields [Shimura 1997, Propositions 18.14 and 19.2].
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Lemma 4.6. Let β ∈ Sn(Fv) and let r := rank(β). Then, for y ∈ GLn(Kv),

f sph
v,β (z, diag(y, tȳ−1))= τ(det y)|det y ȳ|−z+n/2

v D−n(n−1)/4
v

×

∏n−1
i=r L(2z+ i − n+ 1, τ̄ ′χ i

K)∏n−1
i=0 L(2z+ n− i, τ̄ ′χ i

K)
hv, t ȳβy(τ̄

′($)q−2z−n
v ),

where hv, t ȳβy ∈ Z[X ] is a monic polynomial depending on v and tȳβy but not on τ .
If β ∈ Sn(OF,v) and detβ ∈ O×F,v, then we say that β is v-primitive and, in this
case, hv,β = 1.

Lemma 4.7. Suppose v is unramified in K. Let β ∈ Sm(Fv) with detβ 6= 0 and
let β ∈ Sm(OFv ) and let λ be an unramified character of K×v such that λ|F×v = 1.
If β ∈ GLm(OFv ) then, for u ∈ Uβ(Fv),

FJβ( f sph
n ; z, x, g, u)= τ(det u)|det uū|−z+1/2

v

f sph
n−m(z, g)ωβ(u, g)80(x)∏m−1
i=0 L(2z+ n− i, τ̄ ′χ i

K)
.

4C. Prime-to-p ramified case.

4C1. Pullback integrals. Again let v be a prime of F not dividing p. We fix
some x and y in K which are divisible by some high power of $v (which can be
made precise from the proof of the following two lemmas). (When we are moving
things p-adically, the x and y are not going to change.) We define f †

∈ In+1(τ )

to be the Siegel section supported on the cell Q(Fv)wa+2b+1 NQ(OF,v), where
wa+2b+1 =

(
−1a+2b+1

1a+2b+1
)

and the value at NQ(OF,v) equals 1. Similarly, we
define f †,′

∈ In(τ ) to be the section supported in Q(Fv)wa+2b NQ(OF,v) that takes
value 1 on NQ(OF,v).

Definition 4.8. fv,sieg(g) := f †(gS̃−1
v γ̃v) ∈ In+1(τ ),

where γ̃v is defined to be

1b (1/x)1b

1
1a (1/(y ȳ))1a

1b (1/x̄)1b

1b

1
1a

1b
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and

S̃v =



1b −
1
2 1b

1
1
−1b

1
2 1b

1b
1
2 1b

1
1a

−1b −
1
2 1b


.

Similarly, we define f ′v,sieg(g) := f †,′(gS̃−1
v γ̃ ′v) for

S̃′v :=



1b −
1
2 1b

1a

−1b
1
2 1b

1b
1
2 1b

1a

−1b −
1
2 1b


and

γ̃v =



1b (1/x)1b

1a (1/(y ȳ))1a

1b (1/x̄)1b

1b

1a

1b


.

Lemma 4.9. Let K (2)
v be the subgroup of G(Fv) of matrices of the form


1b d
a 1 f b c

1a g
1b e

1

 ,

where e = − tā, b = td̄, g = −ζ t f̄ , b ∈ M(Ov), c − f ζ t f̄ ∈ OF,v, a ∈ (x),
e ∈ (x̄), f ∈ (y ȳ) and g ∈ (2ζ y ȳ). Then Fϕ(z; g, f ) is supported in PwK (2)

v and
is invariant under the action of K (2)

v .
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Proof. Let Sx,y consist of matrices

S :=


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


in the space of Hermitian (a+ 2b+ 1)× (a+ 2b+ 1) matrices (the blocks are with
respect to the partition b+ 1+ a + b) such that the entries of S13 and S23 (resp.
S14 and S24, S31 and S32, S41 and S42) are divisible by y (resp. x , ȳ, x̄), while
the entries of S33 (resp. S34, S43, S44) are divisible by y ȳ (resp. x ȳ, x̄ y, x x̄). Let
Qx,y := Q(Fv) ·

( 1
Sx,y 1

)
.

Write

η =

 1b

1a

−1b

 .
As in [Skinner and Urban 2014, Proposition 11.16], for

g =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

 ,

we have

γ (g, 1) ∈ supp fv,sieg ⇐⇒ S−1
v α(g, 1)Awa+2b+1dx,y γ̃

−1
∈ Qx,y

⇐⇒ S−1
v α(gw, η diag(x̄−1, 1, x))Aw′dy γ̃

−1
∈ Qx,y .

Here,

A =



1b

1
1a −

1
2ζ

1b

1b

1
−1a −

1
2ζ

1b


,

dx,y = diag(1, 1, y, x, 1, 1, ȳ−1, x̄−1),

dy = diag(1, 1, y, 1, 1, 1, ȳ−1, 1),
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w′ =



1b

1
1a

1b

1b

1
−1a

1b


and γ̃ =



1b

1
1a

1b

1b 1b

1
1a 1a

1b 1b


.

Here, x and y stand for the corresponding block matrices of the corresponding
size. Recall that γ (m(g1, 1), g1) ∈ Q; by multiplying this to the left for g1 =

diag(x̄, 1, x−1)η−1, we are reduced to proving that, if γ (g, 1)w′dy γ̃
−1
∈ Qx,y , then

g ∈ PwK (2)
v w−1. A computation tells us that γ (g, 1)w′dy γ̃

−1 equals the product

1b −
1
2 1b

1
1a

−1b
1
2 1b

1b

1
1a

−1b



×



a1 a2
1
2ζa3 y−a3 ȳ−1

−b1 b1 b2 a3 ȳ−1

a4 a5
1
2ζa6 y−a6 ȳ−1

−b3 b3 b4 a6 ȳ−1

1
2a7

1
2a8

1
4ζ y(a9−1)− 1

2(a9+1)ȳ−1
−

1
2 b5

1
2 b5

1
2 b6

1
2(a9+1)ȳ−1

1
c1 c2

1
2ζc3 y−c3 ȳ−1 1−d1 d1 d2 c3 ȳ−1

c4 c5
1
2ζc6 y−c6 ȳ−1

−d3 d3 d4 c6 ȳ−1

−za7 −za8 −
1
2(a9+1)y+z(a9−1)ȳ−1 zb5 −zb5 −zb6 z(1−a9)ȳ−1

a1−1 a2
1
2ζa3 y−a3 ȳ−1

−b1 b1 b2 a3 ȳ−1 1


,

where z= ζ−1.
One first proves that d4 6= 0 by looking at the second row of the lower left of

the above matrix, so by left-multiplying g by some matrix in NP , we may assume
that d2 = b2 = b4 = b6 = 0, then the result follows by an argument similarly to the
proof of Lemma 4.36 later on. �

Now recall that

g =

a5 a6 a4

a8 a9 a7

a2 a3 a1

 .
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Let Y be the set of g such that the entries of a2 are integers, the entries of a3

(resp. a1 − 1, 1− a5, a6, a4, a8, a7) are divisible by y ȳ (resp. x̄ , x , x̄ y, x x̄ ,
1
2 ȳ yζ , ȳ yxζ ), and 1− a9 = y ȳζ(1+ y ȳN ) for some N with integral entries.

Lemma 4.10. Let ϕx = π(diag(x̄, 1, x−1)η−1)ϕ, where ϕ is invariant under the
action of Y defined above; then:

(i) Fϕx ( fv,sieg; z, w)= τ(y ȳx)|(y ȳ)2x x̄ |−z−(a+2b+1)/2
v Vol(Y) ·ϕ.

(ii) F ′ϕx
( f ′v,sieg; z, w)= τ(y ȳx)|(y ȳ)2x x̄ |−z−(a+2b)/2

v Vol(Y) ·ϕ.

Proof. First, one computes

1
1

1
2 −

1
2

1
1 1

1
−ζ−1

−ζ−1

1 1





1
1

1
a1 a3 a2

1
1

a7 a9 a8

a4 a6 a5





1
1

1 −
1
2ζ

1
1

1
−1 −

1
2ζ

1



×



1
1

1
1

1
1

−1
1





1
1

y
1

1
1

ȳ−1

1





1
1

1
1
−1 1

1
−1 1

−1 1



=



1
1

1
2 a8

1
4ζ y(1−a9)−

1
2 ȳ−1(1+a9) −

1
2 a7

1
2 ȳ−1(1+a9) −

1
2 a8

−a2
1
2 a3ζ y+a3 ȳ−1 a1 −a3 ȳ−1 a2

−a2
1
2 a3ζ y+a3 ȳ−1 a1−1 1 −a3 ȳ−1 a2

1
ζ−1a8 −

1
2 y(1+ζ−1a9ζ )+ζ

−1 ȳ−1(1−a9)−ζ
−1a7 −ζ−1 ȳ−1(1−a9)−ζ

−1a8

1−a5
1
2 a6ζ y+a6 ȳ−1 a4 −a6 ȳ−1 a5


.

One checks the above matrix belongs to Qx,y if and only if the ai satisfy the
conditions required by the definition of Y. The lemma follows by a similar argument
to Lemma 4.38 below. �

Definition 4.11. We will sometimes write Yv for the Y above to emphasize the
dependence on v.
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4C2. Fourier–Jacobi coefficient. We first give a formula for the Fourier coefficients
for f̃v,sieg := ρ(γ̃v) f †

v,sieg and f̃ ′v,sieg := ρ(γ̃
′
v) f †,′

v,sieg.

Lemma 4.12. (i) Let β = (βi j ) ∈ Sn+1(Fv); then for all z ∈ C we have

f̃v,sieg,β(z, 1)= Vol(Sn+1(OF,v))ev

(
TrKv/Fv

(
βa+b+2,1+ · · ·+βa+2b+1,b

x

)
+
βb+2,b+2+ · · ·+βb+1+a,b+1+a

y ȳ

)
.

(ii) Let β = (βi j ) ∈ Sv(Fv). Then

f̃ ′v,sieg,β(z, 1)= Vol(Sn(OF,v))ev

(
TrKv/Fv

(
βa+b+1,1+ · · ·+βa+2b,b

x

)
+
βb+1,b+1+ · · ·+βb+a,b+a

y ȳ

)
.

The proof is straightforward.
Here we record a lemma on the Fourier–Jacobi coefficient for f †

v ∈ In(τv)

and β ∈ Sm(Fv).

Lemma 4.13. If β 6∈ Sm(OFv )
∗ then FJβ( f †

; z, u, g, hy)= 0. If β ∈ Sn(OFv )
∗ then

FJβ( f †
; z, u, g, h)= f †(z, g′η)ωβ(h, g′η)80,y(u) ·Vol(Sm(OFv )),

where g′ =
( 1n−m

−1n−m

)
g
(1n−m

−1n−m

)
.

The proof is similar to [Skinner and Urban 2014, Lemma 11.15].

4D. p-adic computations. In this subsection we first prove that, under some
“generic conditions”, the unique (up to scalar) nearly ordinary vector in I (ρ) is just
the unique (up to scalar) vector with certain prescribed action of level subgroup.
Then we construct a section F† in I (ρ∨)which is the pullback of a Siegel section f †

supported in the big cell. We can understand the action of the level group of this
section. Then we define F0 to be the image of F† under the intertwining operator.
By checking the action of the level subgroup on F0, we can prove that it is just the
nearly ordinary vector.

In our calculations we will usually use the projection to the first component of
Kv ' Kw×Kw̄ 'Qp×Qp.

4D1. Nearly ordinary sections. Let λ1, . . . , λn be n characters of F×v , which we
identify with Q×p , and π = IndGLn

B (λ1, . . . , λn).
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Definition 4.14. Let n = r + s and k = (cr+s, . . . , cs+1; c1, . . . , cs) be a weight.
We say (λ1, . . . λn) is nearly ordinary with respect to k if

{valpλ1(p),...,valpλn(p)}=
{
c1+s−1− 1

2 n+ 1
2 ,c2+s−2− 1

2 n+ 1
2 ,...,cs−

1
2 n+ 1

2 ,

cs+1+ r + s− 1− 1
2 n+ 1

2 ,...,cr+s + s− 1
2 n+ 1

2

}
.

We write the elements of the right side in order as κ1, . . . , κr+s , so κ1> · · ·>κr+s .
Let Ap := Zp[t1, t2, . . . , tn, t−1

n ] be the Atkin–Lehner ring of G(Qp), where ti
is defined by ti = N (Zp)αi N (Zp), αi =

(1n−i
p1i

)
. Then ti acts on π N (Zp) by

v|ti =
∑

x∈N |α−1
i Nαi

xiα
−1
i v.

We also define a normalized action with respect to the weight k, following [Hida
2004b]:

v‖ti := δ(αi )
−1/2 pκ1+···+κiv|ti

Definition 4.15. A vector v ∈ π is called nearly ordinary if it is an eigenvector for
all ‖ti with eigenvalues that are p-adic units.

We identify π as a set of smooth functions on GLn(Qp):

π = { f : GLn(Qp)→ C | f (bx)= λ(b)δB(b)1/2 f (x)}.

Here, λ(b) :=
∏n

i=1 λi (bi ) for

b =

b1 × ×
. . . ×

bn


and δB is the modulus function for the upper-triangular Borel subgroup. Let w` be
the longest Weyl element, 

1
1

. .
.

1

 ,
and let f ` be the element in π (which is unique up to scalar) that is supported in
Bw`N (Zp) and invariant under N (Zp). We have:

Lemma 4.16. f ` is an eigenvector for all ti .

Proof. Note that, for any i , f `|ti is invariant under N (Zp). By looking at the
definition of v|ti for the above model of π , it is not hard to see that f `|ti is
supported in B(Qp)w`B(Zp). So f `|ti must be a multiple of f `. �
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Lemma 4.17. Suppose that (λ1, . . . , λn) is nearly ordinary with respect to k and
suppose

νp(λ1(p)) > νp(λ2(p)) > · · ·> νp(λn(p));

then the eigenvalues of ‖ti acting on f ` are p-adic units. In other words, f ` is an
ordinary vector.

Proof. A straightforward computation gives that

f `‖ti = λ1 · · · λi (p−1)pκ1+···+κi f `,

which is clearly a p-adic unit by the definition of (λ1, . . . , λn) being nearly ordinary
with respect to k. �

Remark 4.18. Hida proved [2004b, Theorem 5.3] that the nearly ordinary vector
is unique up to scalar.

Lemma 4.19. Let λ1, . . . , λa+2b be characters of Q×p such that cond(λa+2b) >

· · · > cond(λb+1) > cond(λ1) > · · · > cond(λb). We define the subgroup Kλ of
GLa+2b(Zp) to be those matrices whose below-diagonal entries of the i-th column
are divisible by cond(λa+2b+1−i ) for 1≤ i ≤ a+ b, and the left-to-diagonal entries
of the j-th row are divisible by cond(λa+2b+1− j ) for a+ b+ 2 ≤ j ≤ a+ 2b. Let
λop be the character of Kλ defined by

λa+2b(g11)λa+2b−1(g22) · · · λ1(ga+2b a+2b).

Then f ` is the unique (up to scalar) vector in π such that the action of Kλ is given
by multiplying by λop.

Proof. We only need to prove the uniqueness. We use the model of induced
representation as above. Let n=a+2b and let e1, . . . , en be the standard basis of the
standard representation of GLn . Let pti be the conductor of λi . So ta+2b =max{ti }i .
Write K0(p)⊂GLn(Zp) for the subgroup consisting of elements in B(Zp)modulo p.
Suppose f is any vector satisfying the requirement of the lemma. Let w be a Weyl
element of GLn such that f is not identically 0 on wK0(p). Then we see that
w · e1 = ea+2b by considering right-multiplication by diag(1+ pta+2b−1, 1, . . . , 1).
Continuing this argument, we see that w · e2 = ea+2b−1, . . . . Finally, we have
w = w` and the lemma is clear by Bruhat decomposition. �

We let

w1 :=



1
. . .

1
1

. .
.

1


.
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Now let B̃ = Bw1 and K̃λ = Kw1
λ .

Corollary 4.20. Denote ai := νp(λi (p)). Suppose λ1, . . . , λa+2b are such that
cond(λ1) > · · ·> cond(λa+2b) and a1 < · · ·< aa+b < aa+2b < · · ·< aa+b+1. Then
the unique (up to scalar) ordinary section with respect to B̃ is

f ord(x)=
{
λ1(g11) · · · λa+2b(ga+2b,a+2b) if g ∈ K̃λ,

0 otherwise.

Proof. We only need to prove that π(w1) f ord(x) is ordinary with respect to B̃w1= B.
Let λ′1 = λa+b+1, . . . , λ

′

b = λa+2b, λ′b+1 = λa+b, . . . , λ
′

a+2b = λ1. Then λ′ satisfies
Lemma 4.17 and thus the ordinary section for B (up to scalar) is f `λ′ . Since λ′ also
satisfies the assumptions of Lemma 4.19, f `λ′ is the unique section such that the
action of Kλ is given by λ′a+2b(g11) · · · λ

′

1(ga+2b,a+2b). But λ is clearly regular, so
IndGLa+2b

B (λ) ' IndGLa+2b
B (λ′). So the ordinary section of IndGLa+2b

B (λ) for B also
has the action of Kλ given by this character. It is easy to check that π(w1) f ord has
this property and the uniqueness (up to scalar) gives the result. �

4D2. Pullback sections. In this subsubsection we construct a Siegel section on
U(a+2b+1, a+2b+1) which pulls back to the nearly ordinary Klingen sections
on U(a+ b+ 1, b+ 1). We need to rearrange the basis since we are going to study
large block matrices and the new basis will simplify the explanation. One can check
that the Klingen Eisenstein series we construct in this subsection, when going back
to our previous basis, is nearly ordinary with respect to the Borel subgroup

B1 :=


∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗

∗ ∗

 ,
where the first four blocks are upper-triangular and the fifth is lower-triangular. But
the one we need is nearly ordinary with respect to the Borel subgroup

B2 :=


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∗ ∗


(it is for this one that we can use the 3-adic Fourier–Jacobi expansions). (Here the
blocks are with respect to the partition b+ 1+ a+ b+ 1.) There is a Weyl element
wBorel of GLa+2b+2 such that w−1

Borel B2wBorel= B1. This wBorel is in fact in the Weyl
group of GLb+1+a embedded as the upper-left minor. In the case of the doubling
method (U(r, s)×U(s, r) ↪→ U(r + s, r + s)) we have a corresponding change of
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index and we write w′Borel for the corresponding Weyl element. In Section 4D4 we
will come back to the original basis.

Now we explain the new basis. Let Va,b and Va,b+1 be the Hermitian space with
respective matricesζ1a

1b

−1b

 and

ζ 1b+1

−1b+1

 .
(These are our skew-Hermitian spaces for U(r, s) and U(r + 1, s + 1) under the
new basis.) The matrix S for the embedding U(Va,b)×U(Va,b+1) ↪→ U(Va+2b+1)

becomes 

1 −
1
2ζ

1 1
2

1
−1 1

2
−1 −

1
2ζ

1 1
2

1
−1 −

1
2


.

Godement sections at p. Let v|p be a prime of F and Kv ' Qp × Qp. Let τ
be a character of Q×p ×Q×p . Suppose τ = (τ1, τ

−1
2 ) and let psi be the conductor

of τi , i = 1, 2. Let χ1, . . . χa , χa+1, . . . χa+2b be characters of Q×p whose conductors
are pt1, . . . , pta+2b . Suppose we are in the generic case:

Definition 4.21 (generic case).

t1 > t2 > · · ·> ta+b > s1 > ta+b+1 > · · ·> ta+2b > s2.

Also, let ξi =χiτ
−1
1 for 1≤ i ≤ a+b and ξ j =χ

−1
j τ2 for a+b+2≤ j ≤ a+2b+1.

Let ξa+b+1 = 1.

Let 81 be the following Schwartz function on Ma+2b+1(Qp): let 0 be the
subgroup of GLa+2b+1(Zp) consisting of matrices γ = (γi j ) such that ptk divides
the below-diagonal entries (i.e., i > j) of the k-th column for 1 ≤ k ≤ a+ b and
ps1 divides γi j when a + b+ 2 ≤ i ≤ a + 2b+ 1 and j = a + b+ 1; while pt j−1

divides γi j when a+ b+ 2≤ j ≤ a+ 2b+ 1 and either i ≤ a+ b+ 1 or i > j .
Let ξ ′i = χiτ

−1
2 , 1 ≤ i ≤ a + b, ξ ′j = χ

−1
j τ1, a + b+ 2 ≤ j ≤ a + 2b+ 1, and

ξ ′a+b+1 = τ1τ
−1
2 . (Thus, ξ ′k = ξkτ1τ

−1
2 for any k.)

Definition 4.22. 81(x)=
{

0 if x 6∈ 0,∏a+b+1
k=1 ξ ′k(xkk) if x ∈ 0.

Now we define another Schwartz function 82 on Ma+2b+1(Qp).
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Let X be the following set: if

x =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 ∈ X
is in block matrix form with respect to the partition a+2b+1= a+b+1+b, then

• x has entries in Zp;

•

( A11
A21

A14
A24

)
has i-th upper-left minors Ai such that det Ai ∈Z×p for i=1, . . . , a+b;

and

• A42 has i-th upper-left minors Bi such that det Bi ∈ Z×p for i = 1, . . . , b.

We define

8ξ (x)=


0 if x 6∈ X,

ξ1

ξ2
(det A1) · · ·

ξa+b−1

ξa+b
(det Aa+b−1)ξa+b(det Aa+b)

×
ξa+b+2

ξa+b+3
(det B1) · · ·

ξa+2b

ξa+2b+1
(det Bb−1)ξa+2b+1(det Bb) if x ∈ X.

(11)
This is a locally constant function with compact support. Let

82(x) := 8̃ξ (x)=
∫

Ma+2b+1(Qp)

8ξ (y)ep(Tr y tx) dy

(where tilde stands for Fourier transform). Let 8 be the Schwartz function on
Ma+2b+1,2(a+2b+1)(Qp) defined by

8(X, Y ) :=81(X)82(Y )

and define a Godement section (terminology of Jacquet) by

f 8(g)= τ2(det g)|det g|−s+(a+2b+1)/2
p

×

∫
GLa+2b+1(Qp)

8((0, X)g)τ−1
1 τ2(det X)|det X |−2s+a+2b+1

p d×X.

Lemma 4.23. If γ ∈ 0, then

8ξ (
tγ X)=

a+2b+1∏
k=1

(ξk(γkk))8ξ (X).

Proof. This is straightforward. For example, to see that the A42 block of tγ X has
invertible upper-left minors (i.e., has determinants in Z×p ) for γ ∈ 0, X ∈ X, one
notes that all entries of the upper-right block of γ are zero modulo p, and that
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multiplying by invertible matrices which are lower-triangular modulo p does not
change the property that all upper-left minors are invertible. �

Fourier coefficients. For z in the absolutely convergent range and β ∈ Sa+2b+1(Qp)

(which is isomorphic to Ma+2b+1(Qp) through the first projection), the Fourier
coefficient is defined by

f 8β (1, z)=
∫

Ma+2b+1(Qp)

f 8
((

1a+2b+1

−1a+2b+1

)(
1 N

1

))
ep(−TrβN ) d N

=

∫
Ma+2b+1(Qp)

∫
GLa+2b+1(Qp)

8

(
(0, X)

(
1a+2b+1

−1a+2b+1 −N

))
× τ−1

1 τ2(det X)|det X |−2z+a+2b+1
p ep(−TrβN ) d N d×X

=

∫
GLa+2b+1(Qp)

81(−X)8ξ (− tX−1 tβ)τ−1
1 τ2(det X)|det X |−2z

p d×X

= τ−1
1 τ2(−1)Vol(0)8ξ ( tβ). (12)

Definition 4.24. Let f̃ †
= f̃ †

a+2b+1 be the Siegel section supported on

Q(Qp)wa+2b+1

(
1 Ma+2b+1(Zp)

1

)
and f̃ †

(
wa+2b+1

( 1 X
1

))
= 1 for X ∈ Ma+2b+1(Zp).

Lemma 4.25. f̃ †
β (1)=

{
1 if β ∈ Ma+2b+1(Zp),

0 if β 6∈ Ma+2b+1(Zp),

(here we used the projection of β onto its first component in Kv = Fv × Fv), where
the first component corresponds to the element inside our CM-type 6∞ under
ι := C' Cp (see Section 2A).

Definition 4.26. f †
:=

f 8

τ−1
1 τ2(−1)Vol(0)

.

Thus, f †
β =8ξ (

tβ).

We define

cn(τ
′, z) :=

{
τ ′(pnt)p2ntz−tn(n+1)/2 if t > 0,
p2nz−n(n+1)/2 if t = 0.

(13)

Now we recall a lemma from Skinner and Urban [2014, Lemma 11.12], which will
be useful later.

Lemma 4.27. Suppose v|p and β ∈ Sn(Qv), detβ 6= 0. Then:

(i) If β 6∈ Sn(Zv) then M(z, f̃ †
n )β(−z, 1)= 0.
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(ii) Suppose β ∈ Sn(Zv). Let t := ordv(cond(τ ′)). Then

M(z, f̃ †
n )β(−z, 1)= τ ′(detβ)|detβ|−2z

v g(τ̄ ′)ncn(τ
′, z).

Note that our f̃ † is the f † in [Skinner and Urban 2014] and our τ is their χ .
Now we want to write down our Godement section f 8 in terms of f̃ †. First we

prove the following:

Lemma 4.28. Suppose 8ξ,n is the function on Mn(Qp) defined as follows: If
cond(ξi )= (pti ) for t1 > · · ·> tn and ξi are characters of Q×p with conductor pti .
Let Xn be the subset of Mn(Zp) such that the i-th upper-left minor Mi has determi-
nant in Z×p . Define 8ξ,n to be

ξ1

ξ2
(det M1) · · ·

ξn−1

ξn
(det Mn−1)ξn(det Mn)

on Xn and 0 otherwise. Let

X̃ξ,n = X̃ξ := N (Zp)

p−t1Z×p
. . .

p−tn Z×p

 N opp(Zp).

Then the Fourier transform 8̂ξ of 8ξ is the function

8̃ξ (x)=
{

0 if x 6∈ X̃ξ ,∏n
i=1 g(ξi )

∏n
i=1 ξ̄i (xi pti ) if x ∈ X̃ξ ,

where x =

1 × ×
. . . ×

1

x1
. . .

xn

1
×
. . .

× × 1

 .
Proof. First suppose x is in the “big cell” N (Qp)T (Qp)N opp(Qp). It is easily seen
that we can write x in terms of block matrices,

x =
(

1n−1 u
1

)(
z
w

)(
1n−1

v 1

)
,

where z ∈ GLn−1(Qp), w ∈ Q×p , u ∈ Mn−1,1(Qp) and v ∈ M1,n−1(Qp). A first
observation is that 8̃ξ is invariant under right-multiplication by N opp(Zp) and
left-multiplication by N (Zp). We show that v ∈ M1×(n−1)(Zp) if 8̃ξ (x) 6= 0. By
definition,

8̃ξ (x)=
∫

Mn(Q p)

8ξ (y)ep(Tr y tx) dy,

so, writing

y =
(

1n−1

` 1

)(
a

b

)(
1 m

1

)
=

(
a am
`a `am+ b

)
,
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we have

8̃ξ (x)=
∫

a∈Xξ,n−1,m∈M(Zp), `∈M(Zp), b∈Z×p

8ξ

((
1
` 1

)(
a

b

)(
1 m

1

))
× ep

(
Tr
((

1
tm 1

)( ta
b

)(
1 t`

1

)(
1 u

1

)(
z
w

)(
1
v 1

)))
dy

=

∫
8ξ

((
a

b

))
ep

(
Tr
(

1
tm+ v 1

)( ta
b

)(
1 t`+ u

1

)(
z
w

))
dy

=

∫
8ξ

((
a

b

))
× ep

(
Tr
(( ta ta( t`+ u)
( tm+ v) ta ( tm+ v) ta( t`+ u)+ b

)(
z
w

)))
dy

=

∫
8ξ

((
a

b

))
ep
(
Tr( taz+ (( tm+ v) ta( t`+ u)+ b)w)

)
dy.

(Note that 8ξ is invariant under transpose.)
If 8̃ξ (x) 6= 0, then it follows from the last expression that w ∈ p−tn Z×p . Suppose

v 6∈ M1×(n−1)(Zp); then tm + v 6∈ M1×(n−1)(Zp). We let a, m and b be fixed
and let ` vary in M1×(n−1)(Zp); we find that this integral must be 0. (Notice
that a ∈ Xξ,n−1 and w ∈ p−tn Z×p , thus ( tm + v) taw 6∈ M1×n−1(Zp)). Thus, a
contradiction. Therefore, v ∈ M1×n−1(Zp), and similarly u ∈ Mn−1,1(Zp). Thus,
by the observation at the beginning of the proof, we may assume u = 0 and v = 0
without loss of generality.

Thus, if we write8ξ,n−1 as the restriction of8ξ to the upper-left (n−1)×(n−1)
minor,

8̃ξ (x)=
∫
8ξ

((
a

b

))
ep
(
Tr( taz+ ( tm ta t`+ b)w)

)
dy

= p−ntng(ξn)ξ̄n(wptn )

∫
a∈Xξ,n−1

8ξ,n−1(a)ep(
taz) dy.

By an induction procedure one gets

8̃ξ (x)=
{

0 if x 6∈ X̃ξ,n,
p−

∑n
i=1 i ti

∏n
i=1 g(ξi )

∏n
i=1 ξ̄i (xi pti ) if x ∈ X̃ξ,n.

We have thus proved that 8̃ξ,n , when restricted to the “big cell”, has support in X̃ξ,n .
Since X̃ξ,n is compact, 8̃ξ,n itself must be supported in X̃ξ,n . �
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Lemma 4.29. Let X̃ξ be the support of 82 = 8̂ξ ; then a complete set of represen-
tatives of X̃ξ mod Ma+2b+1(Zp) is given by the elements


A B
C D

E

 ,

where the blocks are with respect to the partition a+b+1+b and
( A

C
B
D

)
runs over

the set
1 m12 · · · m1,a+b
. . .

. . .
...

. . . ma+b−1,a+b

1




x1
. . .

. . .
xa+b




1
n21

. . .
...

. . .
. . .

na+b,1 · · · na+b,a+b−1 1

 ,
where xi runs over p−ti Z×p mod Zp, mi j runs over Zp mod pt j , ni j runs over
Zp mod pti , and E runs over the set


1 k12 · · · k1,b
. . .

. . .
...

. . . kb−1,b

1




y1
. . .

. . .
yb




1
`21

. . .
...

. . .
. . .

`b,1 · · · `b,b−1 1

 ,
where yi runs over p−ti+a+b Z×p mod Zp, ki j runs over Zp mod pta+b+ j , and `i j runs
over Zp mod pta+b+i .

Proof. This is elementary and we omit it here. �

We also define, for g ∈ GLa+2b(Qp),

gι =

 1a×a

1b×b

1b×b

 g

 1b×b

1a×a

1b×b


and

gι =

 1a×a

1b×b

1b×b

−1

g

 1b×b

1a×a

1b×b

−1

.
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Corollary 4.30. We have

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)
f̃ †

z, g

1a+2b+1

A B
C D

E
1a+2b+1


 .

Here Ai is the i-th upper-left minor of A, Di is the (a+i)-th upper-left minor of( A
C

B
D

)
(not of D), Ei is the i-th upper-left minor of E , and the sum runs over the set

of representatives of Lemma 4.29.

Proof. We only need to check the Siegel Eisenstein sections on both sides coincide
on wNa+2b+1(Qp), since the big cell Qa+2b+1(Qp)wNa+2b+1(Qp) is dense in
GL2a+4b+2. To see this we just need to know that they have the same β-th Fourier
coefficients for all β ∈ Sa+2b+1(Qp). But this is seen by (12) and Lemmas 4.28
and 4.29. �

Now we define several sets. Let B′ be the set of (a+b)×(a+b) upper-triangular
matrices of the form

1 m12 · · · m1,a+b
. . .

. . .
...

. . . ma+b−1,a+b

1




x1
. . .

. . .
xa+b

 ,
where xi runs over Z×p mod pti and mi j runs over Zp mod pt j .

Let D′ be the set of b× b lower-triangular matrices of the form
1

n21
. . .

...
. . .

. . .
na+b,1 · · · na+b,a+b−1 1

 ,
where ni j runs over Zp mod pti+a+b .
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Let E′ be the set of b× b upper-triangular matrices of the form


1 k12 · · · k1,b
. . .

. . .
...

. . . kb−1,b

1

 ,

where ki j runs over Zp mod pta+b+ j .
Let C′ be the set of (a+ b)× (a+ b) lower-triangular matrices of the form


y1

. . .
. . .

yb




1
`21

. . .
...

. . .
. . .

`b,1 · · · `b,b−1 1

 ,

where yi runs over Z×p mod pti+a+b Zp and `i j runs over Zp mod pta+b+i .
Thus, if B ′, C ′, D′, E ′ run over the set B′, C′, D′, E′, respectively, then

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

ξ̄i (B ′i i )
b∏

i=1

ξa+b+i (C ′i i )

× f̃ †
(

z, gα
(

diag(B ′, 1,C ′1),
(

E ′

D′

)ι)(
2 A′

1

)
× α

(
diag(B ′, 1,C ′1),

(
E ′

D′

)ι)−1 )
= p−

∑a+b
i=1 i ti−

∑b
i=1 i ta+b+1+i∑

B ′,C ′,D′,E ′

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

ξ̄i (B ′i i )
b∏

i=1

ξa+b+i (C ′i i )
a+b∏
i=1

τ̄1(B ′i i )
b∏

i=1

τ̄2(C ′i i )

× f̃ †
(

z, gα
(

diag(B ′, 1,C ′1),
(

E ′

D′

)ι)(
1 A′

1

))
,
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where

A′ =



p−t1

. . .
p−ta

p−ta+1

. . .
p−ta+b

0
p−ta+b+1

. . .
p−ta+2b


. (14)

We let

γ =



ζ−1
−ζ−1

1
1

1
1
2

1
2

1 1
1

1 1


and w′ =



1
1

1
1

−1
1

1
1


.

Definition 4.31 (pullback section). If f is a Siegel section and ϕ ∈ πp, then

Fϕ(z, f, g) :=
∫

GLa+2b(Qp)

f (z, γ α(g, g1)γ
−1)τ̄ (det g1)ρ(g1)ϕ dg1.

Now we define a subset K of GLa+2b+2(Zp) so that k ∈ K if and only if pti

divides the below-diagonal entries of the i-th column for 1≤ i ≤ a+b, ps1 divides
the below-diagonal entries of the (a+b+1)-th column, and pta+b+ j divides the right-
to-diagonal entries of the (a+b+1+ j)-th row for 1≤ j ≤ b− 1. We also define ν,
a character of K , by

ν(k)= τ1(ka+b+1,a+b+1)τ2(ka+2b+2,a+2b+2)

×

a+b∏
i=1

χi (ki i )

b∏
i=1

χa+b+i (ka+b+i+1,a+b+i+1)

for any k ∈ K .

Definition 4.32. We define ϒ to be the element in U(n, n)(Fv) (which equals
U(n, n)(Qp)) such that the projection to the first component of Kv = Fv × Fv
equals that of γ (note that γ 6∈ U(n, n)(Fv)).
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Lemma 4.33. Let K ′ ⊂ K be the compact subgroup defined by, for k ∈ K ,

k =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

 ∈ K ′

(here the blocks are with respect to the partition (a+ b+ 1+ b+ 1)) if and only if
pta+b+i+t j divides the (i, j)-th entry of c1 for 1≤ i ≤ b, 1≤ j ≤ a, and pta+b+i+ta+ j

divides the (i, j)-th entry of c2 for 1≤ i ≤ b, 1≤ j ≤ b. (It is not hard to check that
this is a group.)

Then Fϕ(z, ρ(ϒ) f †, gk)= ν(k)Fϕ(z, ρ(ϒ) f †, g) for any ϕ ∈ π and k ∈ K ′.

Proof. This follows directly from the action of K ′ on the Godement section f †. �

We define K ′′ to be the subgroup of K that consists of matrices
1

1
1

c1 c2 1
1


such that pt j divides the (i, j)-th entry of c1 for 1 ≤ i ≤ b, 1 ≤ j ≤ a, and pta+ j

divides the (i, j)-th entry of c2 for 1≤ i ≤ b, 1≤ j ≤ b.

Definition 4.34. Let K̃ ⊂ GLa+2b(Zp) be the set of matricesa1 a3 a2

a7 a9 a8

a4 a6 a5


(the blocks are with respect to the partition (b + a + b)) such that the columns
of a3 and a6 are divisible by pt1, . . . , pta , the columns of a4 are divisible by
pta+1, . . . , pta+b , pta+i divides the below-diagonal entries of the i-th column of a1

(1 ≤ i ≤ b), pt j divides the below-diagonal entries of the j-th column of a9

(1≤ j ≤ a), and pta+b+k divides the above-diagonal entries of the k-th row of a5.
Let K̃ ′ ⊂ K̃ be those matrices such that pta+b+i+ta+ j divides the (i, j)-th entry

of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b, and pta+b+i+t j divides the (i, j)-th entry of a6 for
1≤ i ≤ b, 1≤ j ≤ a. We also define K̃ ′′ to be the subset of K̃ consisting of matrices 1

1
a4 a6 1





Families of nearly ordinary Eisenstein series on unitary groups 2007

such that pta+ j divides the (i, j)-th entry of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b, and pt j

divides the (i, j)-th entry of a6 for 1 ≤ i ≤ b, 1 ≤ j ≤ a. We also define ν̃, a
character of K̃ , by

ν̃(k)=
b∏

i=1

χa+i (ki,i )

a∏
i=1

χi (kb+i,b+i )

b∏
i=1

χa+b+i (ka+b+i,a+b+i ).

The following lemma will be useful in identifying our pullback section:

Lemma 4.35. Suppose Fϕ(z, ρ(ϒ) f †, g) as a function of g is supported in PwK
and

Fϕ(z, ρ(ϒ) f †, gk)= ν(k)Fϕ(z, ρ(ϒ) f †, g)

for k ∈ K ′, and Fϕ(z, ρ(ϒ) f †, w) is invariant under the action of (K̃ ′′)ι. Then
Fϕ(a, ρ(ϒ) f †, g) is the unique section (up to scalar) whose action by k ∈ K is
given by multiplying by ν(k).

Proof. This is easy from the fact that K = K ′K ′′ = K ′′K ′. The uniqueness follows
from Lemma 4.19. �

From now on in this subsection we use w to denote1a

1b+1

−1b+1

 or

1a

1b

−1b

 .
Lemma 4.36. If γα(g, 1)γ−1

∈ supp(ρ(ϒ) f †) then g ∈ PwK . (Here ρ denotes
the action of GUa+2b+1(Fv) on the Siegel sections given by right-translation.)

Proof. Since f † is of the form f †(g) =
∑

A∈X f̃ †
(
g
( 1 A

1

))
, where X is some set,

we only have to check the lemma for each term in the summation.
Recall we defined A′ in (14), where the blocks are with respect to the partition

(a+ b+ 1+ b). Let ζv and γv be the projection of ζ and γv to the first component
of Kv ' Fv × Fv; then

γv =



ζ−1
v −ζ−1

v

1b

1
1b

1
2 1a

1
2 1a

1b 1b

1
1b 1b
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=



2ζ−1
v −ζ−1

v

1b

1
1b

1
2 1a

1b

1
1b





1a

1b

1
1b

1a 1a

1b 1b

1
1b 1b


.

We denote the last term by γ̃v (different from the definition in the prime-to-p case).
Using the expression for f † involving the various B ′, C ′, D′ and E ′ as above and

the fact that γ (m(g, 1), g)∈ Q and that K is invariant under right-multiplication by
any B or C , we only need to check that if γ̃vα(g, 1)γ̃−1

v ∈ supp
(
ρ(ϒ)ρ

(( 1 A′
1

)))
f̃ †

then g ∈ PwK . Our calculations below are generalizations of the proof of [Skinner
and Urban 2014, Proposition 11.16]. If

gw =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4


then this is equivalent to

1a

1b

1
1b

1a 1a

1b 1b

1
1b 1b


.



a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

1b

1c

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

1b


α(1, w−1)w′

×M



1a

1b

1
1b

−1a 1a

−1b 1b

1
−1b 1b


M−1w−1

a+2b+1
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being in supp f̃ †, where

M= diag(pt1, . . . , pta , 1b, 1, pta+1, . . . , pta+b , 1a, 1b, 1, p−ta+b+1, . . . , p−ta+2b)

temporarily, which is equivalent to

γ̃vα

gw,

 −1b

1a

1b

 diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )

w′γ̃−1
v

belonging to

supp
(
ρ(M−1wa+2b+1) f̃ †).

The right-hand side is contained in

Qt := Q ·


(

1
S 1

) ∣∣∣∣∣ S ∈ St =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


 ,

where the blocks for St are with respect to the partition a+ b+ 1+ b and consist
of matrices Si j ∈ M(Zp) such that pti divides the i-th column of the matrix S
for 1≤ i ≤ a, pta+i divides the (a+b+1+i)-th column for 1≤ i ≤ b, pta+b+i divides
the (a+b+1+i)-th row for 1≤ i≤b, and the (i, j)-th entry of S41 and S44 is divisible
by pta+b+i+t j and pta+b+i+ta+ j , respectively. Observe that we have only to show that
if γ̃ α(gw, 1)w′γ̃−1

∈ Qt then g ∈ PwK , i.e., gw ∈ P Kw for Kw
:= wKw (note

that γ (m(g1, 1), g1) ∈ Q).
Let

γ̃vα(gw, 1)w′γ̃−1
v =



−a1 a2 a3 −b1 a1 b1 b2

−a4 a5 a6 −b3 a4 b3 b4

−a7 a8 a9 −b5 a7 b5 b6

1
−1− a1 a2 a3 −b1 a1 b1 b2

−c1 c2 c3 1− d1 c1 d1 d2

−c4 c5 c6 −d3 c4 d3 d4

−a4 a5− 1 a6 −b3 a4 b3 b4 1


:= H.

Thus, if H ∈ Qt , then 
a1 b1 b2

c1 d1 d2

c4 d3 d4

a4 b3 b4 1
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is invertible and there exists S ∈ St such that
−1− a1 a2 a3 −b1

−c1 c2 c3 1− d1

−c4 c5 c6 −d3

−a4 a5− 1 a6 −b3

=


a1 b1 b2

c1 d1 d2

c4 d3 d4

a4 b3 b4 1

 S.

By looking at the third row (blockwise), one finds d4 6= 0, so by left-multiplying g
by a matrix 

1a ×

1b ×

1 ×

1b ×

d−1
4


(which does not change the assumption and conclusion) we may assume that d4 = 1
and d2 = b2 = b4 = b6 = 0. So we assume that gw is of the form

a1 a2 a3 b1

a4 a5 a6 b3

a7 a8 a9

c1 c2 c3 d1

c4 c5 c6 d3 1

 .
Next, by looking at the second row (blockwise) and noting that d2 = 0, we find

that d1 is of the form 
Z×p Zp · · · · · · Zp

pta+1Zp Z×p
. . .

. . . Zp
... pta+2Zp Z×p

. . .
...

...
. . .

. . .
. . . Zp

pta+1Zp · · · · · · · · · Z×p

 .
So, by multiplying by a matrix of the form

1a

1b

1 ×
1b

1


on the left we may assume that b5 = 0. Also, by looking at the third row again
we see c4 = (pt1Zp, . . . , pta Zp), c5, c6 ∈ M(Zp) and d3 ∈ (pta+1, . . . , pta+b),
while, from the second row, c1 ∈ (Mb×1(pt1Zp),Mb×1(pt2Zp), . . . ,Mb×1(pta Zp)),
c2 ∈ Mb×b(Zp) and c3 ∈ Mb×1(Zp).
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By looking at the first row and noting that b2 = 0, we know

a1 ∈


Z×p Zp · · · · · · Zp

pt1Zp Z×p
. . .

. . . Zp
... pt2Zp Z×p

. . .
...

...
. . .

. . .
. . . Zp

pt1Zp · · · · · · · · · Z×p

 ,

a2, a3 ∈ M(Zp) and b1 ∈ (Ma×1(pta+1Zp),Ma×1(pta+2Zp), . . . ,Ma×1(pta+b Zp)).
Finally, looking at the fourth row (blockwise), we note that b4 = 0. Similarly,

a4 ∈ (Mb×1(pt1Zp),Mb×1(pt2Zp), . . . ,Mb×1(pta Zp)),

b3 ∈ (Mb×1(pta+1Zp),Mb×1(pta+2Zp), . . . ,Mb×1(pta+b Zp)),

a5− 1 ∈


M1×b(pta+b+1Zp)

M1×b(pta+b+2Zp)
...

M1×b(pta+2b Zp)

 and a6 ∈


pta+b+1Zp

pta+b+2Zp
...

pta+2b Zp

 .
Now we prove that gw ∈ P Kw using the properties proven above. First we

right-multiply gw by
1a

1b

1
−d−1

1 c1 −d−1
1 c2 −d−1

1 c3 d−1
1

−c4 −c5 −c6 −d3 1

 ∈ Kw,

which does not change the above properties or what needs to be proven, so without
loss of generality we assume that c4 = c5 = c6 = d3 = c1 = c2 = c3 = 0 and d1 = 1.
Moreover, we set

(a1
a4

a2
a5

)−1(a3
a6

)
:= T =

(T1
T2

)
. Then

1a T1

1b T2

1
1b

1

 ∈ Kw.

By multiplying 
1a −T1

1b −T2

1
1b

1
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to the right we get an element in P . So it is clear that gw ∈ P Kw. �

Now suppose that π is nearly ordinary with respect to k. We define ϕ to be
the unique (up to scalar) nearly ordinary vector in π with respect to the Borel
subgroup B̃. Let ϕw = π(w)ϕ.

Now write

ϕ′ = π

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw.
Compute the value Fϕ′(z, ρ(ϒ) f †, w). In fact, Fϕ′(z, ρ(ϒ) f †, w) is equal to

∑
B,C,D,E

∫
GLa+2b(Qp)

f̃ †

γ̃ α
w


B

1
C

1

w,
g1

(
E

D

)
M

 1b

1a

−1b

ι


×w′γ̃−14w−1
a+2b+1

τ̄ (detg1)ρ(gι1)ϕ
′dg1

with (temporarily)

M= diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . ),

4= diag(p−t1, . . . , p−ta , 1b, 1, p−ta+1, . . . , p−ta+b , 1a, 1b, 1, pta+b+1, pta+2b),

where the sum is over B ∈B′, C ∈ C′, D ∈D′ and E ∈ E′. A direct computation
gives

γ̃ α

1,

a1 a3 a2

a7 a9 a8

a4 a6 a5

ιw′γ̃−1
=



−1a 1a

1b

1
−a3 −a2 a1 a2

−a9− 1a −a8 a7 1a a8

−a3 −a2 a1− 1b 1b a2

1
−a6 1b− a5 a4 a5


.

Now we define Y to be the subset of GLa+2b(Zp) consisting of block matricesa1 a3 a2

a7 a9 a8

a4 a6 a5
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such that

γ̃ α

1,

a1 a3 a2

a7 a9 a8

a4 a6 a5

ιw′γ̃−1

is in the Qt defined in the proof of Lemma 4.36. It is not hard to prove that it can
be described as follows: the i-th columns of −a9− 1 and a3 (resp. a7 and a1− 1)
are divisible by pti (resp. pta+i ) for 1 ≤ i ≤ a, the (i, j)-th entry of a6 (resp. a4)
is divisible by pta+b+i+t j (resp. pta+b+i+ta+ j ), and the i-th row of 1− a5 is divisible
by pta+b+i . The entries in a2 and a8 are in Zp. Then the pullback section is equal to∑

B,C,D,E

∫
f̃ †(γ̃ α(1, gι1)w

′γ̃−14w−1
a+2b+1

)
τ̄ (det g1)π(gι1)ϕ dg1,

where

4= diag(p−t1, . . . , p−ta , 1, 1, p−ta+1, . . . , p−ta+b , 1, 1, 1, pta+b+1, . . . , pta+2b)

and the integration is over elements (with superscript w meaning conjugation by w)

g1 ∈

(
B

C

)w
ι

Y

(
E

D

)
conj

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+b , . . . )

for(
E

D

)
conj
:=

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+1, . . . )

(
E

D

)

× diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )

 −1b

1a

1b

 .
Lemma 4.37. If ϕw is invariant under the action of (K̃ ′′)ι, then

Fϕ′(z, ρ(ϒ) f †, w)

is such that the action of K̃ ι on it is given by ν̃.

Proof. By the above two lemmas we only need to check that Fϕ′(z, ρ(ϒ) f †, w) is
invariant under the action of K̃ ′′. We first claim that

∑
D,E π

((
E

D

)ι
conj

)
ϕ′ is invari-

ant under (K̃ ′′)ι. The claim follows from direct checking. Also, for any k1 ∈ K̃ ′′, we
can find a k2 ∈ K̃ ′′ such that k1

( B
C

)w
ι

k−1
2 runs over the same set of representatives

as
( B

C

)w
ι

. For any k1 ∈ K̃ ′′, we can find a k2 ∈ K̃ ′′ such that k1Yk−1
2 =Y. The

lemma follows from these observations. �
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The value of f̃ † at

g1 =

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+b , . . . )

is
τ((pta+b+1+···+ta+2b , pt1+···+ta+b))|pt1+···+ta+2b |

−z−(a+2b+1)/2.

So, a straightforward computation using the model for π = π(χ1, . . . , χa+2b)

tells us the following:

Lemma 4.38. If ϕ and ϕ′ are defined as after the proof of Lemma 4.36, then:

Fϕ′(z, ρ(ϒ) f †, w)

= τ((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |
−z−(a+2b+1)/2 Vol(K̃ ′)

× p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)ϕw.

Combining the three lemmas above, we get the following:

Proposition 4.39. With assumptions as in the above lemma, Fϕ′(z, ρ(ϒ) f †, g) is
the unique section supported in PwK such that the right action of K is given by
multiplying the character ν, and its value at w is

Fϕ′(z, ρ(ϒ) f †, w)

= τ((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |
−z− a+2b+1

2 Vol(K̃ ′)

× p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+1+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)ϕw.

Proof. Clearly φw is invariant under (K̃ ′′)ι. �

This Fϕ′(z, ρ(ϒ) f †, g) we constructed is not going to be the nearly ordinary
vector unless we apply the intertwining operator to it. So now we start with
some ρ = (π, τ ). We define our Siegel section f 0

∈ Ia+2b+1(τ ) to be

f 0(z; g) := M(−z, f †)z(g),

where f †
∈ Ia+2b+1(τ̄

c). We recall the following generalization of a proposition
from [Skinner and Urban 2014].

Proposition 4.40. Suppose our data (π, τ ) comes from the local component at v of
a global data. Then there is a meromorphic function γ (2)(ρ, z) such that

Fϕ∨(−z,M(z, f ), g)= γ (2)(ρ, z)A(ρ, z, Fϕ( f ; z,−))−z(g).
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Moreover, if πv 'π(χ1, . . . , χa+2b) then, if we write γ (1)(ρ, z)= γ (2)
(
ρ, z+ 1

2

)
,

then

γ (1)(ρ, z)= ψ(−1)cn(τ
′, z)g(τ ′p)

nε
(
π, τ c, z+ 1

2

)L
(
π̃ , τ̄ c, 1

2 − z
)

L
(
π, τ c, z+ 1

2

) ,
where cn(τ

′, z) is the constant appearing in Lemma 4.27.

Proof. The same as [Skinner and Urban 2014, Proposition 11.13]. �

Remark 4.41. Here we are using the L-factors for the base change from the unitary
groups, while [Skinner and Urban 2014] uses the GL2 L-factor for π , so our formula
appears slightly different.

Now we are going to show that

F0
v (z; g) := Fϕ′(z, ρ(ϒ) f 0, g)

is a constant multiple of the nearly ordinary vector if our ρ comes from the
local component of the global Eisenstein data (see Section 3A). Return to the
situation of our Eisenstein data. Suppose that at the Archimedean places our
representation is a holomorphic discrete series associated to the (scalar) weight
k= (0, . . . 0; κ, . . . κ)with r zeroes and s kappas. Here r =a+b and s=b. Suppose
π ' Ind(χ1, . . . , χa+2b) is nearly ordinary with respect to the weight k. We may
reorder the χi so that νp(χ1(p))= s− 1

2 n+ 1
2 , . . . , νp(χr (p))= r+ s−1− 1

2 n+ 1
2,

νp(χr+s(p))= κ− 1
2 n+ 1

2 , . . . , νp(χr+1(p))= κ+s−1− 1
2 n+ 1

2 , and τ = (τ1, τ
−1
2 )

is a character of Q×p ×Q×p with νp(τ1(p))= νp(τ2(p))= κ
2 , so

νp(χ1(p)) < · · ·< νp(χa+b(p)) < νp(τ2(p)p−zκ )

< νp(τ1(p)pzκ )

< νp(χa+2b(p)) < · · ·< νp(χa+b+1(p)),

where zκ = 1
2(κ − r − s− 1). It is easy to see that

I (ρv, zκ)' Ind(χ1, . . . χr+s, τ2| · |
zκ , τ1| · |

−zκ ).

By definition, I (ρv, zκ) is nearly ordinary with respect to the weight

(0, . . . , 0︸ ︷︷ ︸
r+1

; κ, . . . , κ︸ ︷︷ ︸
s+1

).

Definition 4.42. With assumptions and conventions as above, we say (π, τ ) is
generic if

cond(χ1) > · · ·> cond(χa+b) > cond(τ2)

> cond(χa+b+1) > · · ·> cond(χa+2b) > cond(τ1).
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We suppose also that the conductor of τi is psi . Notice that we have s2 > s1 by
our assumption, which is different from Definition 4.21 (since we have applied the
intertwining operator here).

Let us record the following formula for the ε-factor in Proposition 4.40:

ε
(
π, τ c, z+ 1

2

)
=

r∏
i=1

g(χ−1
i τ2)χiτ

−1
2 (pti ) ·

s∏
i=1

g(χ−1
r+iτ2)χr+iτ

−1
2 (ps2)

× |p
∑r

i=1 ti+s·s2 |
z+ 1

2

r+s∏
i=1

g(χiτ
−1
1 )χ−1

i τ1(pti ) · |p
∑r+s

i=1 ti |z+
1
2 . (15)

From the form of Fϕ′(z, ρ(ϒ) f †
; g) and the above proposition we have a descrip-

tion in the “generic” case for F0
v (z, g) as in [Skinner and Urban 2014, Lemma 9.6]:

it is supported in P(Qp)Kv, with

F0
v (z, 1)= γ (2)(ρ,−z)τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
z−(a+2b+1)/2 Vol(K̃ ′)p−

∑a+b
i=1 (i+1)ti−

∑b
i=1(i+1)ta+b+1+i

×

a+b∏
i=1

g(ξ †
i )ξi (−1)

b∏
i=1

g(ξ †
a+b+1+i )ξ

†
a+b+1+i (−1)ϕ

= cn
(
τ ′p,−z− 1

2

)
g(τ ′p)

n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
z−(a+2b+1)/2 Vol(K̃ ′)p−

∑a+b
i=1 i ti−

∑b
i=1 i ta+b+1+i

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε(π,τ c, z)ϕ

× |p
∑r

i=1 ti+s·s2 |
−z
· |p

∑r+s
i=1 ti |−z,

where the ξ †
i are the ξi defined in Definition 4.21 but using (π, τ̄ c) instead of (π, τ ).

Here we also used Proposition 4.40 and the formula for the epsilon factor there.
Notice that we have absorbed a factor p−

∑a+b
i=1 ti−

∑b
i=1 ta+b+1+i , which comes from

computing the image under the intertwining operator of Fϕ′(z, ρ(ϒ) f †
; g) to get

the factor p−
∑a+b

i=1 (i+1)ti−
∑b

i=1(i+1)ta+b+1+i in the above expression. The right action
of Kv is given by the character

χ1(g11) · · ·χa+b(ga+b a+b)τ2(ga+b+1 a+b+1)χa+b+1(ga+b+2 a+b+2)× · · ·

×χa+2b(ga+2b+1 a+2b+1)τ1(ga+2b+2 a+2b+2).

(It is easy to compute A(ρ, z, Fϕ′(ρ(ϒ) f †
; z,−))−z(1) and we use the uniqueness

of the vector with the required Kv action. Here, on the second row of the above
formula for F0

v (z, 1), the power for p is slightly different from that for the section
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F(z, f †, w). This comes from the computations for the intertwining operators for
Klingen Eisenstein sections.)

Thus, Corollary 4.20 tells us that F0
v (z, g) is a nearly ordinary vector in I (ρ).

Now we describe f 0:

Definition 4.43. Suppose (pt)= cond(τ ′) for t ≥ 1, then define ft to be the section
supported in Q(Qp)K Q(pt) with ft(k)= τ(det dk) on K Q(pt).

Lemma 4.44. f̃ 0
:= M(−z, f̃ †)z = ft,z.

Proof. This is just [Skinner and Urban 2014, Lemma 11.10]. �

Corollary 4.45. We have

f 0(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)
f̃t

z,g

1a+2b+1

A B
C D

E
1a+2b+1


 .

Here, Ai is the i-th upper-left minor of A, Di is the (a+i)-th upper-left minor
of
( A

C
B
D

)
and Ei is the i-th upper-left minor of E.

We define the Siegel section f 0′
∈ Ia+2b(τ ) by

f 0′(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)

× f̃t

z, gw′−1
Borel

1a+2b+1

A B
C D

E
1a+2b+1

w′Borel

 .
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Then, similar to before, the corresponding pullback section F ′ϕ′(z, ρ(ϒ
′) f 0′, 1)

equals

cn(τ
′

p,−z)g(τ ′p)
n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |

z−(a+2b)/2 Vol(K̃ ′)

× p−
∑
(i−1)ti−

∑
(i−1)ta+b+i

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

×

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε
(
π, τ c, z+ 1

2

)
ϕ

× |p
∑r

i=1 ti+s·s2 |
−z+ 1

2 · |p
∑r+s

i=1 ti |−z+ 1
2 .

Fourier coefficients for f 0. We record a formula here for the Fourier coefficients
for f 0 which will be used in p-adic interpolation.

Lemma 4.46. Suppose |detβ| 6= 0; then:

(i) If β 6∈ Sa+2b+1(Zp) then f 0
β (z, 1)= 0.

(ii) Let t := ordp(cond(τ ′)). If β ∈ Sa+2b+1(Zp) then

f 0
β (z, 1)= τ̄ ′(detβ)|detβ|2z

p g(τ
′)a+2b+1ca+2b+1(τ̄

′,−z)8ξ ( tβ),

where ca+2b+1(−,−) is as defined in (13) and 8ξ is defined in (11).

Proof. This follows from [Skinner and Urban 2014, Lemma 11.12] and the argument
of Corollary 4.30, where we deduce the form of f † from the section f̃ †. �

4D3. Fourier–Jacobi coefficients. Now let m = b+ 1. For β ∈ Sm(Fv)∩GLm(Ov)

we are going to compute the Fourier–Jacobi coefficient for ft at β.

Lemma 4.47. Let x :=
( 1

D 1

)
(this is a block matrix with respect to (a+b)+(a+b)).

Then:

(a) FJβ( ft ; z, v, xη−1, 1)= 0 if D 6∈ pt Ma+b(Zp).

(b) If D ∈ pt Mn(Zp) then FJβ( ft ; z, v, xη−1, 1)= c(β, τ, z)80(v), where

c(β, τ, z) := τ̄ (− detβ)|detβ|2z+n−m
v g(τ ′)mcm

(
τ ′,−z− 1

2(n−m)
)

and cm is as defined in Lemma 4.27.

Proof. Similar to the proof of [Skinner and Urban 2014, Lemma 11.20]. We only
give the detailed proof for the case when a = 0. The case when a > 0 is even easier
to treat.
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Assuming a = 0, we temporarily write n for b and save the letter b for other use.
We have

w2n+1

12n+1
S v
tv̄ D
12n+1

α(1, η−1)=


1n+1

−1n

−1n+1 v −S
D −

tv̄ −1n

 .
This belongs to Q2n+1(Qp)K Q2n+1(p

t) (where K Q2n+1(p
t) consists of matrices

in Q2n+1(Zp) modulo pt ) if and only if S is invertible with S−1
∈ pt Mn+1(Ov),

S−1v ∈ pt M(n+1)×n(Ov) and tv̄S−1v − D ∈ pt Mn(Zp). Since v = γ t(b, 0) for
some γ ∈ SLn+1(Ov) and b ∈ Mn(Kv), we are reduced to the case v = t(b, 0).
Writing b = (b1, b2) with bi ∈ Mn(Qp), and S = (T, tT ) with T ∈ Mn+1(Qp)

and T−1
=
(a1

a3

a2
a4

)
, where a1 ∈ Mn(Qp), a2 ∈ Mn×1(Qp), a3 ∈ M1×n(Qp) and

a4 ∈ M1(Qp), the conditions on S and v can be rewritten as

det T 6= 0, ai ∈ pt Mn(Zp), a1b1 ∈ pt Mn(Zp), a3b1 ∈ pt M1×n(Zp),

ta1b2 ∈ pt Mn(Zp),
ta2b2 ∈ pt Zp,

tb2a1b1− D ∈ pt Mn(Zp).
(*)

Now we prove that if the integral for FJβ( ft ; z, v, xη−1, 1) is nonzero then
b1, b2 ∈ Mn(Zp). Suppose otherwise; then without loss of generality we assume b1

has an entry which has the maximal p-adic absolute value among all entries of b1

and b2, Suppose it is pw for w > 0 (w means this only inside this lemma). Also,
for any matrix A of given size, we say A ∈ tb∨2 if and only tb2 A has all entries
in Zp (of course we assume the sizes of the matrices are correct so that the product
makes sense).

Now let

0 :=

{
γ =

(
h j
k l

)
∈GLn(Zp)

∣∣∣∣h∈GLn+1(Zp), l ∈Z×p , h−1∈ tb∨2 ∩ pt Mn(Zp),

j ∈ Zn
p ∩

tb∨2 , k ∈ pt M1×n(Zp)

}
.

Suppose that our b1, b2 and D are such that there exist ai satisfying (*); then one
can check that 0 is a subgroup and, if T satisfies (*), so does T γ for any γ ∈ 0.
Let T denote the set of T ∈ Mn+1(Qp) satisfying (*). Then

FJβ

(
ft ; z, v,

(
1
D 1

)
η−1, 1

)
=

∑
T∈T/0

|det T |3n+2−2z
p

∫
0

τ ′(− det T γ )ep(−TrβT γ ) dγ.

Let T ′ := βT =
( c1

c3

c2
c4

)
(with blocks with respect to the partition (n+ 1)); then the

above integral is zero unless we have c1 ∈ p−t Mn(Zp)⊕ [
tb2]n×n , c4 ∈ p−t Zp,
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c2 ∈ p−t Mn+1(Zp) and c3 ∈ [
tb2]1×n ⊕M1×n(Zp). Here [ tb2]i×n means the set of

i × n matrices such that each row is a Zp-linear combination of the rows of tb2.
But then

β

(
b1

0

)
= T ′T−1

(
b1

0

)
=

(
c1a1b1+ c2a3b1

c3a1b1+ c4a3b1

)
.

Since β ∈ GLn+1(Zp), the left-hand side must contain some entry with p-adic
absolute value pw. But it is not hard to see that all entries on the right-hand side
have p-adic values strictly less than pw; a contradiction. Thus we conclude that
b1∈Mn(Zp) and b2∈Mn(Zp). By (*), b2

ta1b1−D∈ pt Mn(Zp) and a1∈ pt Mn(Zp).
So D ∈ pt Mn(Zp).

The value claimed in part (b) can be deduced similarly to in [Skinner and Urban
2014, Lemma 11.20] �

4D4. Original basis. Recall that we changed the basis at the beginning of this
subsection. Now we go back. We define the corresponding sections (we use the
same notations)

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)

× f̃ †


z, gw−1

Borel



1b C D
1

1a A B
1b E

1b

1
1a

1b


wBorel


,

and f 0(z, g) the same except using f̃t in place of f̃ †. Here, Ai is the i-th upper-left
minor of A, Di is the (a+i)-th upper-left minor of

( A
C

B
D

)
and Ei is the i-th upper-

left minor of E . The wBorel is the element in G(Fp) such that, for any v = ww̄
dividing p with w ∈6p, its projection to the first factor of Kv ' Kw ×Kw̄ is the
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Weyl element defined at the beginning of Section 4D2. We also define

f †′(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1

)

× f̃ †


z, gw′−1

Borel



1b C D
1a A B

1b E
1b

1a

1b


w′Borel


,

and f 0′ the same except with f̃t instead of f̃ †. The corresponding pullback section
Fϕ′( f 0, z,−) is the nearly ordinary section with respect to the Borel B2 defined in
Section 4D2 such that Fϕ′( f 0, z, wBorel) is given by

cn+1
(
τ ′p,−z− 1

2

)
g(τ ′p)

n+1τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
−z−(a+2b+1)/2 Vol(K̃ ′)p−

∑
i ti−

∑
i ta+b+i

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (pti )

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε(π, τ c, z)ϕ.

Also, we have that F ′ϕ′(z, ρ(ϒ
′) f 0′, w′Borel) is given by

cn(τ
′

p,−z)g(τ ′p)
n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |

−z−(a+2b)/2 Vol(K̃ ′)

× p−
∑

i ti−
∑

i ta+b+i

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (pti )

×

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε
(
π, τ c, z+ 1

2

)
ϕ.

5. Global computations

5A. p-adic interpolation.

5A1. Weight space and Eisenstein datum. Recall that we have the algebraic group
H =

∏
v|p GLr ×GLs such that H(/Zp) is the Galois group of the Igusa tower
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over the ordinary locus of the toroidal compactified Shimura variety. Let T/Zp

be the diagonal torus. Let T := T (1+Zp). We define the weight ring 3 = 3r,s

as OL [[T ]]. Fix throughout a finite-order character χ0 of T (Fp) (the torsion part
of T (Zp)); a Qp-point φ ∈ Spec3 is called arithmetic if there is a weight k =
(cs+1, . . . , cs+r ; c1, . . . , cs)= (0, . . . , 0; κ, . . . , κ) such that φ is given by a char-
acter χ0χφtcs+1

1 · · · tcr+s
r t−c1

r+1 · · · t
−cs
r+s of T for χφ a character of order and conductor

powers of p, with κ ≥ 2(a+ b+ 1). We write this κ as κφ . Let 3K = OL [[0K]].

Definition 5.1. For I a normal domain over 3 which is also a finite module over 3,
a Qp-point φ ∈ Spec I is called arithmetic if its image in Spec3 is arithmetic.

(i) If s>0, let V N
∞,∞(K , I, χ0) be the set of I-adic formal Fourier–Jacobi expansions{

fx =
∑
β

aβ(x, f )qβ
}

x

such that, for a Zariski-dense set of generic arithmetic points φ ∈ Spec I, the
specialization fφ is the formal Fourier–Jacobi expansion of a form on U(r, s)
whose p-part nebentype at diag(t1, . . . , tr+s) is given by

χ0χφω(t
cs+1
1 · · · tcs+r

r t−c1
r+1 · · · t

−cs
r+s )

for the weight (cs+1, . . . , cs+r ; c1, . . . , cs) = (0, . . . , 0; κφ, . . . , κφ). Here, by χφ
we also mean the character of T (Zp) restricting to χφ on T that is trivial on
the torsion part of T (Zp). We say f ∈ V N

∞,∞(K , I) is a family of eigenforms if
the specializations fφ above are eigenforms. We define V N ,ord

∞,∞ (K , I, χ0) for the
subspace such that the specializations above are nearly ordinary.

(ii) If s = 0, then let K =
∏
v Kv and let

K0(p)=
∏
v-p

Kv

∏
v|p

K0(p)v

(with K0(p)v ⊂ G(OFv ) be the set of matrices which are in B(OF,v) modulo p).
Then G(F)\G(AF )/K0(p) is a finite set with {gi }i a set of representatives. We
identify the set

SN
G (K ) := G(F)\G(AF )/K p N (OF,p)

with the disjoint union of gi · N−(pOF,p)T (OF,p) and endow the latter with the
p-adic topology on N−(pOF,p)T (OF,p). We define V N

∞,∞(K , I, χ0) to be the set
of continuous I-valued functions on SN

G (K ) such that, for a Zariski-dense set of
arithmetic points φ ∈ Spec I, the specialization fφ is a form on U(r, 0) whose p-part
nebentype at diag(t1, . . . , tr ) is given by

χ0χφω(t
c1
1 · · · t

cr
r )
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for the weight (0, . . . , 0). Note that, by the description of nebentypus at p, such
a family is determined by its values on gi · N−(pOF,p). Similarly we define
V N ,ord
∞,∞ (K , I, χ0) for the nearly ordinary part.

Remark 5.2. To see this is a good definition, we have to compare it with the
notion of Hida families in the literature. We refer to [Hida 2004b, Chapter 8;
Hsieh 2014, Sections 3–4] for the definition of Hida families. We have to check
that a Hida family in Hsieh’s terms does give a Hida family here. We need to
show that, if κφ � 0 (depending on the p-part of the conductor at φ) when s > 0,
then any nearly ordinary p-adic cusp form is classical. If s > 0 this is proved
by the argument of [Hsieh 2014, Theorem 4.19]. (It is assumed that s = 1 in
[loc. cit.]; however, the proof for this particular theorem works in the general case.)
If s = 0 the situation is even easier: the contraction property of the Up operator
[Hsieh 2014, Proposition 4.4] (which again works in our case as well) shows that the
specialization at φ is right-invariant under an open subgroup of U(r)(Zp) depending
only on the conductor of the nebentypus (note also that we have trivial weight
if s = 0), and is thus classical.

Definition 5.3. We define an Eisenstein datum as a quadruple D := (I, f , τ0, χ0),
where χ0 is a finite-order character of T (Zp), τ0 is a finite-order character of
K×\A×K whose conductors at primes above p divides (p), and f ∈ V N ,ord

∞,∞ (K , I) is
a Hida family of eigenforms defined as above. We define 3D :=3⊗OL 3K. We
call a Qp-point φ ∈ Spec3D is arithmetic if φ|I is arithmetic with some weight κφ
and φ(γ+)= (1+ p)κφ/2ζ+, φ(γ−)= (1+ p)κφ/2ζ− for p-power roots of unity ζ±.
We define τφ = φ ◦9K.

Let X be the set of arithmetic points. If fφ is classical and generates an irreducible
automorphic representation π fφ of U(r, s), we say that φ is generic if (π fφ , τ ) is
generic (see Definition 4.42). Let Xgen be the set of generic arithmetic points.

5B. Some assumptions.

5B1. Including types. Consider the group U(s, r). Suppose K p
=K6K6

⊂G(Ap
f )

for a finite set of primes 6 and let W6 be a finite OL -module on which K6

acts through a finite quotient. Let K ′6 ⊂ K6 be a normal subgroup contain-
ing

∏
v∈6\{v|p}Yv, defined in Definition 4.11 and acting trivially on W6 , and

let K ′ = G(Zp)K ′6K6 . The modules of modular forms of weight κ , type W6 and
character ψ are

Mκ(K ,W6;OL)= (Mκ(K ′;OL)⊗OL W6)
K6 .

Suppose for v ∈6\{v|p} we have open compact subgroups K̃ ′v ⊂ K̃v ⊂ G(Fv)
such that K̃ ′v is a normal subgroup of K̃v and an irreducible finite-dimensional rep-
resentation Wv of K̃v/K̃ ′v . Suppose ϕv ∈πv is a vector in Wv . We fix a K̃v-invariant
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measure and let v1, v2, . . . be a basis such that ϕv is v1. We also assume that K̃ ′v
includes the Yι

v defined in Section 4. We let W∨v be the dual representation and we
write v∨1 , v∨2 , . . . for the dual basis. We first prove the following lemma:

Lemma 5.4. Let G be a finite group and ρ : G → Aut(V ) an irreducible repre-
sentation on an n-dimensional vector space V . We fix a G-invariant norm and a
unitary basis v1, . . . , vn . Let ρ∨ be the dual representation on V∨ with dual basis
v∨1 , . . . , v

∨
n . Then, as elements in V ⊗ V∨,∑

g∈G

(gvi ⊗ gv∨j )= 0, i 6= j,

∑
g

(gvi ⊗ gv∨i )= |G|
n∑

i=1

vi ⊗ v
∨

i .

Proof. This is a straightforward application of the Schur orthogonal relation. �

Definition 5.5. We define W6\{p}=
∏
v∈6\{p}Wv and v1=

∏
v∈6\{p} vv,1 ∈W6\{p}.

We can also make a notion of W6\{p}-valued Hida families in a similar manner
to Definition 5.1.

5B2. Assumption TEMPERED. Let f be a Hida family of eigenforms as defined in
Definition 5.1. We say it satisfies the assumption “TEMPERED” if the specializations
fφ in the definition are tempered eigenforms.

5B3. Assumption DUAL. We first define an OL -involution ◦ :3→3 sending any
diag(t1, . . . , tn)∈ T (1+Zp) to diag(t−1

n , . . . , t−1
1 ). We define I◦ to be the ring I but

with the 3-algebra structure given by composing the involution ◦ with the original
3 structure map of I.

Let f be an I-adic cuspidal eigenform on U(r, s) such that, for a Zariski-dense
set of generic arithmetic points φ, the specialization fφ is classical and generates an
irreducible automorphic representation π fφ of U(r, s); we say it satisfies assumption
DUAL if there is an I◦-adic nearly ordinary cusp form f ∨ on U(s, r) such that
f ∨φ ∈ π

∨
fφ for all the arithmetic points φ ∈ Spec I that are in the image of some

point in Xgen. (Here we identified U(r, s) and U(s, r) in the obvious way. At an
arithmetic point both fφ and f ∨φ have scalar weight κ . Note also that we only
require the specialization fφ to be “generic” (not required for f ∨φ ).)

5B4. Assumptions Proj f ∨ and Proj f ∨ . We say a nearly ordinary cuspidal eigenform
f ∨ on U(s, r) satisfies assumption Proj f ∨ if (π f ∨ ⊗W6\{p})

K is 1-dimensional
and there is a Hecke operator 1 f ∨ on U(s, r) that is an L-coefficient polynomial
of Hecke operators outside 6 such that, for any g ∈ Mκ(K ,W6\{p}), we have that
eord
· g− 1 f ∨eord

· g is a sum of forms in irreducible automorphic representations
which are orthogonal to π f ∨ .
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We say a nonzero nearly ordinary cuspidal I◦-adic family of eigenforms f ∨

in (V N
∞,∞(K , I◦, χ−1

0 )⊗W6\{p})
K6 satisfies assumption Proj f ∨ if there is an ac-

tion eord acting on (V N
∞,∞(K , I◦, χ−1

0 )⊗W6\{p})
K6 interpolating the eord of spe-

cializations and there is a Hecke operator 1 f ∨ which is an FI polynomial of
Hecke operators outside 6 such that, for Zariski-dense set of arithmetic points
φ ∈ Spec I◦ in the image of Xgen, (π f ∨φ ⊗W6\{p})

K is 1-dimensional and, for any
g ∈ (V N

∞,∞(K , I◦, χ−1
0 ) ⊗ W6)

K6 , (eord
· g − 1 f ∨eord g)φ is a sum of forms in

irreducible automorphic representations which are orthogonal to π f ∨φ .

Remark 5.6. If r+s= 2 then these assumptions often hold, since the unitary group
is closely related to GL2 or quaternion algebras. It is easy to see DUAL by simply
taking f ∨ = f ⊗ (χ)−1 for χ the central character of f . To see Proj f and Proj f ∨ ,
we first suppose r = s = 1 and f is a Hida family of GL2 newforms with tame
level M such that (M, pδK)= 1 and trivial character. The existence of eord is as in
[Skinner and Urban 2014, Lemma 12.2] Since we have an isomorphism of algebraic
groups over F ,

GU(1, 1)∼ GL2×Gm ResK/F Gm,

we can obtain a family on U(1, 1) from f and the trivial character of A×K/K
×,

which we still denote by f . Take an arithmetic point φ and a GL2 Hecke operator t
involving only Hecke operators Tv at primes v outside 6 which are split in K/F
such that the t-eigenvalue t ( fφ) is different from its eigenvalues on other forms on
Sord
κφ
(00(M)∩01(ptφ ),C) (the space of ordinary cusp forms on U(1, 1) of weight

(0, κφ) and level 00(M)∩01(ptφ ), with ptφ being the p-part level at φ. Also here
we use the U(1, 1) Hecke operators at split primes v = ww̄ which are associated
to the elements (diag($w, 1), diag(1,$−1

w̄ ))). This is possible since any form in
Sord
κφ
(00(M)∩01(ptφ ),C) is the restriction of a form on GU(1, 1) obtained from

a GL2 form of conductor dividing NmK/FδK/F Mptφ and a character of A×K/K
×

unramified outside p. Note that any cuspidal automorphic representation on GL2 /F
with the same Hecke eigenvalue with fφ on split primes is π fφ or π fφ ⊗χK/F , and
that any element g ∈GL2(Fv) such that det(g)∈NmK/F (K

×
v ) can be written as ag′

with a∈K×v and g′∈U(1, 1)(Fv). A simple representation-theoretic argument shows
that the only forms in Sord

κφ
(00(M)∩01(ptφ ),C) with the same Hecke eigenvalues

with fφ at split primes are in the 1-dimensional space spanned by fφ . Let 3 be the
weight space for U(1, 1) and define

Sord(00(M), I) := Sord(00(M),3)⊗3 I.

It follows from Hida’s control theorem for unitary groups (see [Hsieh 2014, The-
orem 4.21], for example) that this is a free module over I of finite rank, and the
specialization of this free module to φ gives the space Sord

κφ
(00(M)∩01(ptφ ),OL) for

some L finite over Qp provided κφ � 0 with respect to the p-part of the conductor



2026 Xin Wan

of φ. We consider det(T − t), where T is a variable and we regard t as an operator
on this free I-module. We thus obtain an I-coefficient polynomial of T . Moreover,
we can write det(T − t)= (T − t ( f )) · g(T ) for some polynomial g(T ). Then we
define

1 f =
g(t)
g( f )

(note that g(t ( f )) is not identically zero.) This proves Proj f , and Proj f ∨ is seen in
a similar way. If (r, s)= (2, 0) we observe that if we set

D = {g ∈ M2(K) | gtζḡ = det(g)ζ }

then D is a definite quaternion algebra over Q with local invariants invv(D) =
(−s,−DK/Q)v (the Hilbert symbol). The relation between GU(2) and D is ex-
plained by

GU(2)= D××Gm ResK/Q Gm .

We can similarly show that, if f is a Hida family of newforms on D× with trivial
character, tame level prime to p and all primes of δK such that D is unramified, and
is the trivial representation at primes where D is ramified, then we can produce a
family f on U(2, 0) from f and the trivial character of A×K/K

×. A similar argument
proves that Proj f and Proj f ∨ is true.

5C. Klingen Eisenstein series and p-adic L-functions.
5C1. Construction. Now we are going to construct the nearly ordinary Klingen
Eisenstein series (and will p-adically interpolate them in families). First of all, let τ
be a Hecke character which is of infinite type

(
−

1
2κ,

1
2κ
)

at all infinite places (here
the convention is that the first infinite place of K is inside our CM type). Recall
that we write D := {π, τ,6} for the Eisenstein data (see Definition 3.2). We define
the normalization factor

BD :=
�rκ6∞

p

�
rκ6∞
∞

(
(−2)−d(a+2b+1)(2π i)d(a+2b+1)κ(2/π)d(a+2b+1)(a+2b)/2∏a+2b

j=0 (κ− j−1)d

)−1

×

a+2b∏
i=0

L6(2zκ+a+2b+1−i, τ̄ ′χ i
K)
∏
v|p

(g(τ̄ ′v)
a+2b+1ca+2b+1(τ

′

v,−zκ))−1,

B ′D :=
�rκ6∞

p

�
rκ6∞
∞

(
(−2)−d(a+2b)(2π i)d(a+2b)κ(2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κ− j−1)d

)−1

×

a+2b−1∏
i=0

L6(2zκ+a+2b−i, τ̄ ′χ i
K)
∏
v|p

(g(τ̄ ′v)
a+2bca+2b(τ

′

v,−z′κ))
−1.

Here, zκ = 1
2(κ − a− 2b− 1) and z′κ =

1
2(κ − a− 2b), cm is defined in (13), and

�∞ is the CM period in Section 2A.
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We construct a Siegel Eisenstein series Esieg associated to the Siegel section

fD,sieg = BD

∏
v|∞

fκ
∏
v|p

ρ(ϒv) f 0
v

∏
v∈6,v-p

f̃v,sieg
∏
v

f sph
v ∈ Ia+2b+1(τ, z)

and E ′sieg associated to the section

f ′D,sieg = B ′D
∏
v|∞

f ′κ
∏
v|p

ρ(ϒ ′v) f 0′
v

∏
v∈6,v-p

f̃ ′v,sieg

∏
v

f sph,′
v ∈ Ia+2b(τ, z).

Here ϒv and ϒ ′v are as defined in Definition 4.32. First note that, since π is nearly
ordinary with respect to the scalar weight κ , its contragradient is also nearly ordinary
on U(s, r) with respect to the scalar weight κ . We denote this representation by π̃ .
We consider E(γ (g,−)) as an automorphic form on U(s, r). For each v - p we
choose an open compact group K̃v,s ⊂ U(s, r)v such that∏

v∈6,v-p

ρ
(
γ (1, η diag(x̄−1

v , 1, xv).S̃−1
v )

)(
E(γ (g,−))⊗ τ̄ (det−)

)
is invariant under its action. We have the following lemma:

Lemma 5.7. There is a bounded measure ED,sieg on 0K× T (1+Zp) with values
in the space of p-adic automorphic forms on U(r + s+ 1, r + s+ 1) such that, for
all arithmetic points φ ∈ Xgen with the associated character φ̂ on 0K× T (1+Zp),
we have ∫

0K×T (1+Zp)

φ̂ dED,sieg

is the Siegel Eisenstein series ρ
(∏

v∈6,v-p γ (1, η diag(x̄−1
v , 1, xv)S̃−1

v )
)
Esieg,Dφ

,
where Esieg,Dφ

is the Siegel Eisenstein series we construct using the characters
(χ1,φ, . . . , χn,φ, τφ). Similarly, we can define a measure E′D,sieg interpolating the
E ′sieg,Dφ

.

Proof. It follows from our computations for Fourier coefficients, Lemmas 4.2, 4.6,
4.12 and 4.46, and [Skinner and Urban 2014, Lemma 11.2], that all the Fourier
coefficients of Esieg and E ′sieg are interpolated by elements in 3r,s[[0K]]. Then the
lemma follows from the abstract Kummer congruence. We refer to [Hsieh 2011,
Lemma 3.15, Theorem 3.16] for a detailed proof. �

Now we define our Klingen Eisenstein series using the pullback formula. Note
that by (3) the pullback of the Siegel Eisenstein series are still holomorphic auto-
morphic forms. Let β be the embedding given in Section 2B. Let K̃s be the open
compact subgroup of G(OF,6), which is K̃v,s as above for v ∈6\{v|p}, K̃v for v|p
and spherical otherwise. We define ED,Kling by, for any points x and x1 on the
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Igusa schemes of U(r + 1, s+ 1) and U(s, r),

eord,low
· 1low

f ∨ TrK̃/K̃s
(elow(β−1(ED,sieg) · τ̄ (det(g1)))⊗ v1)(x, x1)

= ED,Kling(x)� f ∨(x1)

(as a W6\{p}-valued form — recall v1 ∈ W6\{p}; see Section 5B1). Here we let
K̃6\{p} act on both ED,sieg and W6\{p}. We get a 3D-adic formal Fourier–Jacobi
expansion from the measure elowβ−1(ED,sieg) and then apply the Hecke operators to
the expansion. We also define the 6-primitive p-adic L-function L6

f ,K,τ0
∈ Iur
[[0K]]

by, for elements x and x1 in the Igusa schemes of U(r, s) and U(s, r),

eord,low
· 1low

f ∨ TrK̃/K̃s
(elowβ−1(E′D,sieg) · τ̄ (det g1)⊗ v1)(x, x1)

= L6
f ,K,τ0

f1(x)� f ∨(x1).

The f1 is the v∨1 -component of f (see Section 5B1). This is possible by Lemma 5.4.
Here note that the necessity of enlarging the coefficient ring to include Our

L is caused
when specifying points on Igusa schemes (recall Section 2F).

Here we used the superscript “low” to mean that, under

U(a+ b+ 1, b+ 1)×U(b, a+ b) ↪→ U(a+ 2b+ 1, a+ 2b+ 1),

the action is for the group U(b, a+ b).

5C2. Identify with Klingen Eisenstein series constructed before. We define a Klin-
gen Eisenstein section by

f �Dφ ,Kling(z, g)= BD

∏
v

Fϕv (z; fv,sieg, g),

where the Fϕv (z; fv,sieg, g) are the pullback sections we computed in Section 5 and
ϕv for v ∈6\{v|p} is the v∨1 -component, as in Sections 5B1 and 5B4. We first look
at places dividing p. The pairing 〈 , 〉 induces a natural pairing between π and π̃ .
Write

ϕw =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv
∏
v|p

ϕw,v.

Then〈∏
v-p

TrK̃v/K̃v,s ρ
(
γ (1, η diag(x̄−1

v , 1, xv).S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw〉
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equals〈
ρlow

(∏
v|p

diag(pta+b+1, . . . , pta+2b , 1a, 1b)
ι

)
×

∏
v-p

TrK̃v/K̃v,s ρ(γ (1, η diag(x̄−1
v , 1, xv)S̃−1

v ))
(
E(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(1b, pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw〉 .
Since Esieg(γ (g,−))τ̄ (det−) satisfies the property that, if K̃ ′′′ is the subgroup of
GLa+2b(Zp) (defined in the last section) consisting of matricesa1 a3 a2

a7 a9 a8

a4 a6 a5


such that the (i, j)-th entries of a7 and a4 are divisible by pti+ta+b+ j and pta+i+ta+b+ j ,
respectively, the i-th row of a8 and the right-to-diagonal entries of a9 are divisible by
pti for i = 1, . . . , a, the below-diagonal entries of the i-th column of a1 are divisible
by pta+b+i , the up-to-diagonal entries of the i-th row of a5 are divisible by pta+i , and
a2, a3, a6 ∈ M(Zp), then the right action of hι for h ∈ K̃ ′′′ on E(γ (g,−))τ̄ (det−)
is given by the character

λ(hι)= χ̄a+b+1(h11) · · · χ̄a+2b(hbb)χ̄1(hb+1,b+1) · · · χ̄(ha+b,a+b)

× χ̄a+1(ha+b+1,a+b+1) · · · χ̄a+b(ha+2b,a+2b).

(This is easily checked from the definition of the Godement section.) It is elementary
to check that the above expression equals∏
v|p

1∏b
i=1 pta+b+i (a+b)

×

〈∏
v|p

∑
y

ρlow(y)ρlow(diag(pta+b+1,...,1a,1b)
ι)

×

∏
v-p

TrK̃v/K̃v,sρ
(
γ (1,ηdiag(x̄−1

v ,1,xv)S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(1b, pt1 ..., pta+1,...)ι

 −1b

1a

1b

ιϕw〉, (15)
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where y runs over N (Zp)/βN (Zp)β
−1 for N consisting of matrices of the form( 1s

∗

0
1r

)
with ∗ having Zp-entries and β = diag(pta+b+1, . . . , 1a, 1b). Write the ex-

pression

eord,low
∏
v|p

∑
y

ρlow(y)ρlow(β ι)

×

∏
v-p

TrK̃v/K̃v,s ρ
(
γ (1, η diag(x̄−1

v , 1, xv)S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
. (16)

Now let K̃ [ consists of matrices in GLb(Zp) whose below-diagonal entries of
the i-th row are divisible by pt

a+b+i for 1≤ i ≤ s. Let K̃ ] be the set of elements in
GLa+2b(Zp) whose right-to-diagonal entries of the i-th row are divisible by pti for
1≤ i ≤ a+ b and whose lower-right b× b block is in

diag(pta+b+1, . . . , pta+2b)K̃ [ diag(pta+b+1, . . . , pta+2b)−1.

Then a similar argument as in Section 4D1 shows that there is a unique (up to
scalar) vector ϕ̃]v ∈ π(χ−1

1 , . . . , χ−1
a+2b) such that the action of (ki j ) ∈ K ] is given

by the character diag(χ−1
1 (k11), . . . , χ

−1
a+2b(ka+2ba+2b)). We use the model of the

induced representation from χ−1
1 ⊗ · · ·⊗χ

−1
a+2b on the space of smooth functions

on GLa+2b(Zp). We take ϕ̃]v such that, if ϕ̃ord
v takes value 1 on identity in this model,

then ϕ̃]v also takes value 1 on identity (and has support K ]
⊂GLa+2b(Zp)). From the

action of the level group we know that the action of ρlow(K ]) on the left part of the in-
ner product in (15) is given by the character diag(χ−1

1 (k11), . . . , χ
−1
a+2b(ka+2ba+2b)).

For v|p define T low
β,v to be the Hecke operator corresponding to β just in terms of

double cosets acting on π∨ϕ (with no normalization factors involved). By checking
the actions of the level groups at primes dividing p (certain open compact subgroups
of G(OF,p)) we can see that the π̃ component of the left part, when viewed as an
automorphic form on U(a+ b, b), is a multiple of ϕ̃ord. Suppose the eigenvalue for
the Hecke operator T low

β,v on ϕ̃ord is λ̃β,v. It is easy to compute that

λ̃β,v = p
∑b

i=1 ta+b+i ((a+2b+1)/2−i)
·

b∏
j=1

χ−1
a+2b+1− j (p

ta+b+ j ) (17)

with the convention on the χi after Remark 4.41.
Let

ϕ′ =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv

×

∏
v|p

ρ

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . .)ι

 −1b

1a

1b

ιϕw,v
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and

ϕ′′ =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv

×

∏
v|p

ρ

diag(1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw,v.
Here, for v|∞, the ϕv is the unique vector mentioned before Definition 3.1. Define
the Klingen Eisenstein section promised in the introduction as

fDφ ,Kling = BDφ

( ∏
v∈6,v-p

|K̃v/K̃v,s |

)
f �Dφ ,Kling.

Then we have:

Proposition 5.8. For a classical generic arithmetic point φ, we have

φ(ED,Kling)

=

∏
v∈6,v-p

|K̃v/K̃v,s |
EKling( fDφ ,Kling, zκφ , g)

〈ϕ̃ord
φ , ϕφ〉

×

∏
v|p

( s∏
j=1

χr+ j (ptr+ j )

r∏
j=1

χ−1
j (pt j )p

∑s
i=1 ta+b+i ((a−1)/2+i)

·p−
∑r

j=1 t j ((a+1)/2− j)
)
.

Proof. Here, let 2 be the expression (15) and 4 the expression (16). We have

2

〈ϕ̃], ϕ′′〉
=

〈4, ϕ′′〉λ̃β,v∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
〈ϕ̃ord, ϕ′′〉

and

〈ϕ̃], ϕ′′〉 = 〈ϕ̃ord, ϕ′′〉 ·
∏
v|p

( ∏
1≤i≤ j≤s

pta+b+i−ta+b+ j

)
(e.g., using the model of the induced representation). So

〈4, ϕ′′〉

〈ϕ̃ord, ϕ′′〉
=
2
∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
λ̃β,v〈ϕ̃], ϕ′′〉

=
2
∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
λ̃β,v〈ϕ̃ord, ϕ′′〉

.

We also have

〈ϕ̃ord, ϕ′′〉 =

r∏
j=1

χ j (pt j ) · p
∑r

j=1 t j ((a+1)/2− j).

The proposition follows. �
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Then parts (i) and (ii) of Theorem 1.1 are just a corollary of the above proposition
(except the statement in the s = 0 case, which we are going to consider next).

Similarly, we obtain an interpolation formula for the p-adic L-function as in
Theorem 1.1, using also the formula (15).

5C3. Interpolating Petersson inner products for definite unitary groups. To sim-
plify the exposition we only discuss the case when F = Q in this subsubsec-
tion. In the case when s = 0, we hope that the periods showing up are CM
periods. Thus, by our assumption, the Archimedean components of π are trivial
representations. For this purpose we prove that, under certain assumptions, the
Petersson inner products of two families can be interpolated by elements in the
Iwasawa algebra. Let K =

∏
v Kv be an open compact subgroup of U(r, s)(A f )

which is G(Zp) at all primes dividing p and K0(p), obtained from K by replacing
the v-component by K 1

0 at all primes v dividing p. Now we take a set {gi }i of
representatives for U(r, s)(F)\U(r, s)(AF )/K0(p). We take K sufficiently small
so that for all i we have U(r, s)(F) ∩ gi K g−1

i = 1. For the nearly ordinary
Hida family f ∨ of eigenforms (recall that this Hida family is nearly ordinary
with respect to the lower-triangular Borel subgroup) we construct a bounded
I-valued measure µi on N−(pZp) as follows. Let T− be the set of elements
diag(pa1, . . . , par ) with a1 ≤ · · · ≤ ar . We only need to specify the measure for
sets of the form nt−N−(Zp)(t−)−1, where n ∈ N−(Zp) and t− ∈ T−. We assign
its measure µi (nt−N−(Zp)(t−)−1) by f ∨(gi n · t−)λ(t−)−1, where λ(t−) is the
Hecke eigenvalue of f ∨ for Ut− . This does define a measure. We briefly explain
the point when r = 2 (the general case is only notationally more complicated).
Write π f ∨φ ,p = π(χ1,p, χ2,p) such that νp(χ1,p(p))= 1

2 , νp(χ2,p(p))=−1
2 . Then

λ(diag(1, pn))= (χ2,p(p) · p1/2)n . One checks that∑
m∈pn−1Zp/pnZp

π

((
1
m 1

)
p

)
π(diag(1, pn)p) f ∨φ,p

= (χ2,p(p) · p1/2)π(diag(1, pn−1)p) f ∨φ,p.

This implies that, for any m1 ∈ pZp/pn−1Zp,∑
m2∈pn−1Zp/pnZp

µi (m1m2 diag(1, pn)N−(Zp) diag(1, p−n))

= µi (m1 diag(1, pn−1)N−(Zp) diag(1, p1−n)),

i.e., this µi does define a measure.

Proposition 5.9. If we define

〈 f , f ∨〉 :=
∑

i

∫
n∈N−(pZp)

f (gi n) dµi ∈ I

then, for all φ ∈ Xgen, the specialization of 〈 f , f ∨〉 to φ is 〈 fφ, f ∨φ 〉 ·Vol(K̃φ)
−1.
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Proof. For each φ ∈ Xgen, we choose t− such that t−N−(pZp)(t−)−1
⊆ K̃φ . We

consider

〈 fφ, π∨fφ (t
−) f ∨φ 〉.

Unfolding the definitions, note χ−1
φ (t−)δB(t−) gives the Hecke eigenvalue λ(t−);

this gives δB(t−)χ−1
φ (t−)

∑
i

∫
n∈N−(pZp)

f (gi n) dµi ·Vol(K̃φ). On the other hand,
using the model of π fφ ,p and π f ∨φ ,p as the induced representation π(χ1,φ, . . . , χr,φ)

and π(χ−1
1,φ, . . . , χ

−1
r,φ ) of GLr (Qp), we get that

〈 fφ, π∨fφ (t
−) f ∨φ 〉 = δB(t−)χ−1

φ (t−)〈 fφ, f ∨φ 〉.

This proves that the specialization of 〈 f , f ∨〉 to φ is 〈 fφ, f ∨φ 〉 ·Vol(K̃φ)
−1. �

So, to see the main theorem in the case when s= 0, instead of applying the Hecke
operator eord

·1 f ∨ we pair the pullback of Siegel Eisenstein series (Iur
[[0K]]-valued)

with the measure determined by the Hida family f using the above lemma. That is,
considering

EKling(g, zκ)=
∑

i

∫
n∈N−(pOF,p)

Esieg(S−1α(g, gi n)S, zκ) dµi ,

where the {dµi }i are the measures constructed from f as above. In our situation,
when restricting to U(s, r), the level group at p for Eisenstein series is lower-
triangular modulo a certain power of p while that for f is upper-triangular modulo
a certain power of p. The above construction works in the same way. The powers of
CM and p-adic periods enter when applying the comparison between the standard
basis and the Néron basis for differentials of CM abelian varieties while doing
pullback (see [Hsieh 2014, (3.14)]).

5D. Constant terms. We explain part (iii) of the main theorem.

5D1. p-adic L-functions for Dirichlet characters. There is an element Lτ̄ ′ in3K,OL

such that φ(Lτ̄ ′)= L(τ̄ ′φ, κφ − r).τ ′φ(p
−1)pκφ−rg(τ̄ ′φ)

−1 at each arithmetic point φ
in Xpb. For more details see [Skinner and Urban 2014, §3.4.3].

5D2. Archimedean computation. As in [Skinner and Urban 2014], we calculate
the Archimedean part of the intertwining operator for Klingen Eisenstein sections
and prove the “intertwining operator” part (see Lemma 3.4) of the constant term
vanishes. Suppose π is associated to the weight (0, . . . , 0; κ, . . . , κ); then it is well
known that there is a unique (up to scalar) vector v ∈π such that k ·v=detµ(k, i)−κ

for any k ∈ K+,′
∞
v (with notations as in Section 3A1). Recall we defined c(ρ, z) in

Section 3A1.
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Lemma 5.10. With assumptions as above,

c(ρ, z)=πa+2b+1
b−1∏
i=0

(
1

z+ 1
2κ −

1
2 − i − a

1

z− 1
2κ +

1
2 − i

) a−1∏
i=0

1
−1+ i − 2z+ 2b

×
0(2z+ a)2−1−2z+2b

0
( 1

2(a+ 1)+ z+ 1
2κ
)
0
( 1

2(a+ 1)+ z− 1
2κ
) det

( 1
2 iζ

)−2
.

Proof. This follows the same way as [Skinner and Urban 2014, Lemma 9.3]. �

Corollary 5.11. When κ > 3
2a+ 2b, or κ ≥ 2b and a = 0, we have c(ρ, z)= 0 at

the point z = 1
2(κ − a− 2b− 1).

In the case when κ is sufficiently large, the intertwining operator

A(ρ, zκ , F)= A(ρ∞, zκ , Fκ)⊗ A(ρ f , zκ , F f )

and all terms are absolutely convergent. Thus, as a consequence of the above
corollary we have A(ρ, zκ , F) = 0. Therefore the constant term of EKling is
essentially

L6(π̃, τ̄ c, zκ + 1)
�2κ6
∞
〈ϕ̃ord, ϕ′′〉

.L6(2zκ + 1, τ̄ ′χa+2b
K )ϕ,

up to a product of normalization factors at local places. Interpolating the calculations
in p-adic families, part (iii) of Theorem 1.1 follows from the above discussion,
Lemma 3.4 and our local descriptions for the Fϕv (z; fv,sieg, g) in Section 4. (See
also the proof of [Skinner and Urban 2014, Theorem 12.11].)

Index of symbols

A(ρ, z,−) 1975 H 1965 MP 1962
B 1962 In(χ) 1978 NP 1962
δ(m) 1975 Jn 1984 P 1961
EP 1977 k 1966 φ′ 2012
ER 1977 K 2005 π∨ 1975
f̃ † 1999 K ′ 2006 Qn 1978
f † 1999 K ′′ 2006 ρ∨ 1975
fv,sieg 1989 K̃ 2006 S′ 1985
f 0 2014 K̃ ′′ 2006 θr,s 1961
Fκ 1976 K+,′

∞
1974 ϒ 2005

F0
v 2015 K ′

∞
1974 wn 1981

Fρv 1976 Kn,v 1978 X+ 1965
G 1961 lk 1966 〈X, X〉h 1983
γ 2005 M(z;−) 1979
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Appendix: Boundary strata of connected components
in positive characteristics

by Kai-Wen Lan

Under the assumption that the PEL datum involves no factor of type D and that the
integral model has good reduction, we show that all boundary strata of the toroidal
or minimal compactifications of the integral model (constructed in earlier works of
the author) have nonempty pullbacks to connected components of geometric fibers,
even in positive characteristics.

A.1. Introduction. Toroidal and minimal compactifications of Shimura varieties
and their integral models have played important roles in the study of arithmetic
properties of cohomological automorphic representations. While all known models
of them are equipped with natural stratifications, they often suffer from some impre-
cisions or redundancies due to their constructions. The situation is especially subtle
in positive or mixed characteristics, or when we need purely algebraic constructions
even in characteristic zero (for example, when we study the degeneration of abelian
varieties), where the constructions are much less direct than algebraizing complex
manifolds created by unions of explicit double coset spaces.

For example, integral models of Shimura varieties defined by moduli problems of
PEL structures suffer from the so-called failure of Hasse’s principle, because there
is no known way to tell the difference between two moduli problems associated with
algebraic groups which are everywhere locally isomorphic to each other. Similarly,
when their toroidal and minimal compactifications are constructed using the theory
of degeneration, the data for describing them are also local in nature. Unlike in the
complex analytic construction, one cannot just express all the boundary points as
the disjoint unions of some double coset spaces labeled by certain standard maximal
(rational) parabolic subgroups. (Even the nonemptiness of the whole boundaries
in positive characteristics was not straightforward — see the introduction to [Lan
2011].) As we shall see, in Example A.7.2, when factors of type D are allowed, it is
unrealistic to expect that the boundary stratifications in the algebraic and complex
analytic constructions match with each other.

Our goal here is a simple-minded one — to show that the strata of good reduction
integral models of toroidal and minimal compactifications constructed as in [Lan
2013a] have nonempty pullbacks to each connected component of each geometric
fiber, under the assumption that the data defining them involve no factors of type D
(in a sense we will make precise). We will also answer the analogous question for
the integral models constructed by normalization in [Lan 2014], allowing arbitrarily
deep levels and ramifications (that is, bad reductions in general).

This goal is motivated by the study of p-adic families of Eisenstein series,
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for which it is crucial to know that the strata on connected components of the
characteristic-p fibers are all nonempty. For example, this is useful for the consid-
eration of algebraic Fourier–Jacobi expansions. We expect it to play foundational
roles in other applications of a similar nature.

A.2. Main result. We shall formulate our results in the notation system of [Lan
2013a] — henceforth abbreviated [KWL] — which we shall briefly review. (We
shall follow [KWL, Notation and conventions, pp. xxi–xxiii] unless otherwise
specified. While for practical reasons we cannot explain everything we need from
there, we recommend the reader to make use of the reasonably detailed index and
table of contents there when looking for the numerous definitions.)

Let (O, ?, L , 〈 · , · 〉, h0) be an integral PEL datum, where O, ?, and (L , 〈 · , · 〉, h0)

are as in [KWL, Definition 1.2.1.3], satisfying [KWL, Condition 1.4.3.10], which
defines a group functor G over Z as in [KWL, Definition 1.2.1.6], and the reflex
field F0 (as a subfield of C), as in [KWL, Definition 1.2.5.4], with ring of integers OF0 .
Let p be any good prime, as in [KWL, Definition 1.4.1.1]. Let Hp be any open
compact subgroup of G(Ẑp) that is neat, as in [KWL, Definition 1.4.1.8]. Then
we have a moduli problem MHp over S0 = Spec(OF0,(p)), as in [KWL, Definition
1.4.1.4], which is representable by a scheme that is quasiprojective and smooth
over S0, by [KWL, Theorem 1.4.1.11 and Corollary 7.2.3.10]. By [KWL, Theorem
7.2.4.1 and Proposition 7.2.4.3], we have the minimal compactification Mmin

Hp of MHp ,
which is a scheme that is projective and flat over S0, with geometrically normal
fibers. Moreover, for each compatible collection 6 p of cone decompositions for
MHp , as in [KWL, Definition 6.3.3.4], we also have the toroidal compactification
Mtor

Hp,6 p of MHp , which is an algebraic space that is proper and smooth over S0, by
[KWL, Theorem 6.4.1.1], and which is representable by a scheme projective over
M0 when 6 p is projective, as in [KWL, Definition 7.3.1.3], by [KWL, Theorem
7.3.3.4]. Any such Mtor

Hp,6 p admits a canonical surjection
∮

Hp : M
tor
Hp,6 p → Mmin

Hp ,
which is constructed by Stein factorization as in [KWL, Section 7.2.3], whose fibers
are all geometrically connected. (The superscript “p” indicates that the objects are
defined using level structures “away from p”. We will also encounter their variants
without the superscript “p”, which also involve level structures “at p”.)

By [KWL, Theorem 7.2.4.1(4)], there is a stratification of Mmin
Hp by locally

closed subschemes Z[(8Hp ,δHp )], where [(8Hp , δHp)] runs through the (finite) set
of cusp labels for MHp (see [KWL, Definition 5.4.2.4]). The open dense sub-
scheme MHp is the stratum labeled by [(0, 0)]; we call all the other strata the
cusps of MHp . Similarly, by [KWL, Theorem 6.4.1.1(2)], there is a stratification
of Mtor

Hp,6 p by locally closed subschemes Z[(8Hp ,δHp ,σ p)], where [(8Hp , δHp , σ p)]

runs through equivalence classes, as in [KWL, Definition 6.2.6.1], with σ p
⊂ P+8Hp

and σ p
∈68Hp ∈6

p. By [KWL, Theorem 7.2.4.1(5)], the surjection
∮

Hp induces
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a surjection from the [(8Hp , δHp , σ p)]-stratum Z[(8Hp ,δHp ,σ p)] of Mtor
Hp,6 p to the

[(8Hp , δHp)]-stratum Z[(8Hp ,δHp )] of Mmin
Hp .

Let s → S0 be any geometric point with residue field k(s), and let U be any
connected component of the fiber MHp ×S0 s. Since Mmin

Hp → S0 is proper and has
geometrically normal fibers, the closure U min of U in Mmin

Hp ×S0 s is a connected
component of Mmin

Hp ×S0 s. Similarly, since Mtor
Hp,6 p → S0 is proper and smooth, the

closure U tor of U in Mtor
Hp,6 p ×S0 s is a connected component of Mtor

Hp,6 p ×S0 s. (In
these cases the connected components are also the irreducible components of the
ambient spaces.)

The stratifications of Mmin
Hp and Mtor

Hp,6 p induce stratifications of U min and U tor,
respectively, by pullback. We shall denote the pullback of Z[(8Hp ,δHp )] to U min

by U[(8Hp ,δHp )] and call it the [(8Hp , δHp)]-stratum of U min. Similarly, we shall
denote the pullback of Z[(8Hp ,δHp ,σ p)] to U tor by U[(8Hp ,δHp ,σ p)], and call it the
[(8Hp , δHp , σ p)]-stratum of U tor. By construction, the surjection

∮
Hp induces a

surjection U tor
→U min, which maps the [(8Hp , δHp , σ p)]-stratum U[(8Hp ,δHp ,σ p)]

of U tor surjectively onto the [(8Hp , δHp)]-stratum U[(8Hp ,δHp )] of U min. It is natural
to ask whether a particular stratum of U min or U tor is nonempty.

From now on, we shall assume the following:

Assumption A.2.1. The semisimple algebra O⊗Z Q over Q involves no factor of
type D (in the sense of [KWL, Definition 1.2.1.15]).

Our main result is the following:

Theorem A.2.2. With the setting as above, all strata of U min are nonempty.

An immediate consequence is the following:

Corollary A.2.3. With the setting as above, all strata of U tor are nonempty.

Proof. Since the canonical morphism U[(8Hp ,δHp ,σ p)]→U[(8Hp ,δHp )] is surjective for
each equivalence class [(8Hp , δHp , σ p)] with underlying cusp label [(8Hp , δHp)]

as above, the nonemptiness of U[(8Hp ,δHp )] implies that of U[(8Hp ,δHp ,σ p)]. �

Remark A.2.4. Each stratum Z[(8Hp ,ZHp )] (resp. Z[(8Hp ,ZHp ,σ p)]) is nonempty by
[KWL, Theorem 7.2.4.1(4)–(5), Corollary 6.4.1.2, and the explanation of the ex-
istence of complex points as in Remark 1.4.3.14]. The question is whether its
pullback to U min (resp. U tor) is still nonempty for every U as above.

Remark A.2.5. It easily follows from Theorem A.2.2 and Corollary A.2.3 that their
analogues are also true when the geometric point s→S0 is replaced with morphisms
from general schemes, although we shall omit their statements. In particular, we
can talk about connected components of fibers rather than geometric fibers.

The proof of Theorem A.2.2 will be carried out in Sections A.3, A.4, and A.5. In
Sections A.5 and A.6, we will also state and prove analogues of Theorem A.2.2 in
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zero and arbitrarily ramified characteristics, respectively (see Theorems A.5.1
and A.6.1). We will give some examples in Section A.7, including one (see
Example A.7.2) showing that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that O⊗Z Q involves no factor of type D.

A.3. Reduction to the case of characteristic zero. The goal of this section is to
prove the following:

Proposition A.3.1. Suppose Theorem A.2.2 is true when char(k(s))= 0. Then it is
also true when char(k(s))= p > 0.

Remark A.3.2. Proposition A.3.1 holds regardless of Assumption A.2.1.

Remark A.3.3. It might seem that everything in characteristic zero is well known
and straightforward. But Proposition A.3.1, which is insensitive to the crucial
Assumption A.2.1, shows that the key difficulty is in fact in characteristic zero.

By [KWL, Theorem 7.2.4.1(4)], each Z[(8Hp ,δHp )] is isomorphic to a boundary
moduli problem M

ZHp

Hp defined in the same way as MHp (but with certain integral
PEL datum associated with ZHp ). Then it makes sense to consider the minimal
compactification Zmin

[(8Hp ,δHp )] of Z[(8Hp ,δHp )], which is proper flat and has geometri-
cally normal fibers over MH, as in [KWL, Theorem 7.2.4.1 and Proposition 7.2.4.3].
(So the connected components of the geometric fibers of Zmin

[(8Hp ,δHp )] → S0 are
closures of those of Z[(8Hp ,δHp )]→ S0.) By considering the Stein factorizations of
the structural morphisms Zmin

[(8Hp ,δHp )]→ S0 (see [EGA III1 1961, Corollaire (4.3.3)
and Remarque (4.3.4), pp. 131–132]), we obtain the following:

Lemma A.3.4 (cf. [KWL, Corollary 6.4.1.2] and [Deligne and Mumford 1969,
Theorem 4.17]). Suppose char(k(s))= p > 0. Then there exists some discrete valu-
ation ring R that is flat over OF0,(p), with fraction field K and residue field k(s), the
latter lifting the structural homomorphism OF0,(p)→ k(s) such that, for each cusp
label [(8Hp , δHp)] and each connected component V of Z[(8Hp ,δHp )]⊗OF0,(p)

R, the
induced flat morphism V → Spec(R) has connected special fiber over Spec(k(s)).

Proof of Proposition A.3.1. Let R be as in Lemma A.3.4. Let Ũ denote the
connected component of MHp⊗OF0,(p)

R=Z[(0,0)]⊗OF0,(p)
R such that Ũ⊗R k(s)=U

as subsets of MHp ⊗OF0,(p)
k(s) = MHp ×S0 s, and let Ũ min denote its closure

in Mmin
Hp ⊗OF0,(p)

R, which is a connected component of Mmin
Hp ⊗OF0,(p)

R because
Mmin

Hp ⊗OF0,(p)
R is normal, by [KWL, Proposition 7.2.4.3(4)]. For each cusp label

[(8Hp , δHp)], let Ũ[(8Hp ,δHp )] denote the pullback of Z[(8Hp ,δHp )] to Ũ min. Then
Ũ[(8Hp ,δHp )] is an open and closed subscheme of Z[(8Hp ,δHp )] ⊗OF0,(p)

R such that
Ũ[(8Hp ,δHp )]⊗R k(s)=U[(8Hp ,δHp )] as subsets of Mmin

Hp ⊗OF0,(p)
k(s). By Lemma A.3.4,

it suffices to show that Ũ[(8Hp ,δHp )]⊗R K 6=∅ for some algebraic closure K of K .
Also by Lemma A.3.4, Ũ ⊗R K 6= ∅, and so Ũ min

⊗R K contains at least one
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connected component of Mmin
Hp ⊗OF0,(p)

K . Thus, Ũ[(8Hp ,δHp )]⊗R K 6=∅ under the
assumption of the proposition, as desired. �

A.4. Comparison of cusp labels. Let Hp := G(Zp) and H := HpHp, the latter
being a neat open compact subgroup of G(Ẑ). By the same references to [KWL] as
in Section A.2, we have the moduli problem MH and its minimal compactification
Mmin

H over S0,Q := S0⊗Z Q∼= Spec(F0). For each compatible collection 6′ of cone
decompositions for MH, we also have a toroidal compactification Mtor

H,6′ , together
with a canonical morphism

∮
H :M

tor
H,6′→Mmin

H , over S0,Q. (Here 6′ does not have
to be related to the 6 p above.)

Each cusp label [(ZH,8H, δH)] for MH (where ZH has been suppressed in the
notation for simplicity) can be described as an equivalence class of the H-orbit
(ZH,8H, δH) of some triple (Z,8, δ), where:

(1) Z = {Z−i }i∈Z is an admissible filtration on L ⊗Z Ẑ that is fully symplectic,
as in [KWL, Definition 5.2.7.1]. In particular, Z−i = (Z−i ⊗Z Q) ∩ (L ⊗Z Ẑ),
the symplectic filtration Z⊗Z Q on L ⊗Z A∞ extends to a symplectic filtration
ZA on Z⊗Z A, and each graded piece of Z or Z⊗Z Q is integrable, as in [KWL,
Definition 1.2.1.23], that is, it is the base extension of some O-lattice.

(2) 8 = (X, Y, φ, ϕ−2, ϕ0) is a torus argument, as in [KWL, Definition 5.4.1.3],
where φ : Y ↪→ X is an embedding of O-lattices with finite cokernel, and where
ϕ−2 : GrZ

−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)) and ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ are isomorphisms

matching the pairing 〈 · , · 〉20 : GrZ
−2×GrZ

0 → Ẑ(1) induced by 〈 · , · 〉 with the
pairing 〈 · , · 〉φ : Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1))× (Y ⊗Z Ẑ)→ Ẑ(1) induced by φ.

(3) δ : GrZ
−→∼ L is an O-equivariant splitting of the filtration Z.

(4) Two triples (ZH,8H, δH) and (Z′H,8
′

H, δ
′

H) are equivalent (as in [KWL, Defi-
nition 5.4.2.2]) if ZH = Z′H and there exists a pair of isomorphisms, γX : X ′ −→∼ X
and γY : Y −→∼ Y ′, matching 8H with 8′H.

Since H=HpHp, it makes sense to consider the p-part of (ZH,8H, δH), which
is the Hp-orbit of some triple (ZZp , (ϕ−2,Zp , ϕ0,Zp), δZp), where:

(1) ZZp = {ZZp,−i }i∈Z is a symplectic admissible filtration on L ⊗Z Zp, which
determines and is determined by a symplectic admissible filtration ZQp={ZQp,−i }i∈Z

of L⊗Z Qp by ZQp,−i = ZZp,−i⊗Z Q and ZZp,−i = ZQp,−i ∩ (L⊗Z Zp) for all i ∈Z.

(2) ϕ−2,Zp : Gr
ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)) and ϕ0 : Gr
ZZp
0 −→∼ Y ⊗Z Zp are

isomorphisms matching the pairing 〈 · , · 〉20,Zp :Gr
ZZp
−2 ×Gr

ZZp
0 →Zp(1) induced by

〈 · , · 〉 with the pairing 〈 · , · 〉φ,Zp :HomZp(X ⊗Z Zp,Zp(1))× (Y ⊗Z Zp)→ Zp(1)
induced by φ.

(3) δZp : GrZZp −→∼ L ⊗Z Zp is a splitting of the filtration ZZp .
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By forgetting its p-part, each representative (ZH,8H, δH) for MH induces a
representative (ZHp ,8Hp , δHp) for MHp , and this assignment is compatible with
the formation of equivalence classes. Therefore, we have well-defined assignments

(ZH,8H, δH) 7→ (ZHp ,8Hp , δHp) (A.4.1)
and

[(ZH,8H, δH)] 7→ [(ZHp ,8Hp , δHp)]. (A.4.2)

By construction, these assignments are compatible with surjections on both their
sides (see [KWL, Definition 5.4.2.12]). We would like to show that they are both
bijective.

Lemma A.4.3. Let k be any field over Z(p). Consider the assignment to each flag W
of totally isotropic O⊗Z k-submodules of L ⊗Z k (with respect to 〈 · , · 〉 ⊗Z k) its
stabilizer subgroup PW in G⊗Z k. Then each such PW is a parabolic subgroup
of G⊗Z k and the assignment is bijective. Moreover, given any minimal parabolic
subgroup PW0 of G ⊗Z k, which is the stabilizer of some maximal flag W0 of
totally isotropic O⊗Z k-submodules of L ⊗Z k, every parabolic subgroup of G⊗Z k
is conjugate under the action of G(k) to some parabolic subgroup of G ⊗Z k
containing PW0 , which is the stabilizer of some subflag of W0.

Although the assertions in this lemma are well known, we provide a proof because
we cannot find a convenient reference in the literature in the generality we need.

Proof. Let ksep be a separable closure of k. Since the characteristic of k is either 0
or p, the latter being a good prime by assumption, it follows from [KWL, Proposition
1.2.3.11] that each of the simple factors of the adjoint quotient of G⊗Z ksep is
isomorphic to one of the groups of standard type listed in the proof of [KWL,
Proposition 1.2.3.11]. Then we can make an explicit choice of a Borel subgroup B
of G⊗Zksep stabilizing a flag of totally isotropic submodules, with a maximal torus T
of G⊗Zksep contained in B which is isomorphic to the group of automorphisms of the
graded pieces of this flag. By [Springer 1998, Theorem 6.2.7 and Theorem 8.4.3(iv)],
since all parabolic subgroups of G⊗Z ksep are conjugate to one containing B, the
parabolic subgroups of G ⊗Z ksep are exactly the stabilizers of flags of totally
isotropic O⊗Z ksep-submodules of L ⊗Z ksep. Then the analogous assertion over k
follows, because the assignment of maximal parabolic subgroups of G⊗Z ksep is
compatible with the actions of Gal(ksep/k) on the set of flags of totally isotropic
submodules of L ⊗Z ksep and on the set of parabolic subgroups of G⊗Z ksep. The
last assertion of the lemma follows from [Springer 1998, Theorem 15.1.2(ii) and
Theorem 15.4.6(i)]. �

Lemma A.4.4. The assignment

ZH 7→ ZHp (A.4.5)
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is bijective.

Proof. Let ZZp = {ZZp,−i }i∈Z be a symplectic admissible filtration on L ⊗Z Zp

as above, which determines and is determined by a symplectic filtration ZQp =

{ZQp,−i }i∈Z on L ⊗Z Qp. By Lemma A.4.3, the action of G(Qp) on the set of
such filtrations ZQp is transitive, because the O-multirank (see [KWL, Definition
1.2.1.25]) of the bottom piece ZQp,−2 of any such ZQp is determined by the existence
of some isomorphism

ϕ−2,Zp : Gr
ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)).

Let P denote the parabolic subgroup of G⊗Z Qp stabilizing any such ZQp (see
Lemma A.4.3). Since p is a good prime by assumption, the pairing 〈 · , · 〉⊗Z Zp

is self-dual, and hence G(Zp) is a maximal open compact subgroup of G(Qp),
by [Bruhat and Tits 1972, Corollary 3.3.2]. Since G⊗Z Qp is connected under
Assumption A.2.1 (because the kernel of the similitude character of G ⊗Z Qp

factorizes over an algebraic closure of Qp as a product of connected groups, by
the proof of [KWL, Proposition 1.2.3.11]), we have the Iwasawa decomposition
G(Qp) = G(Zp)P(Qp), by [Bruhat and Tits 1972, Proposition 4.4.3] (see also
[Casselman 1980, (18) on p. 392] for a more explicit statement). Consequently,
Hp = G(Zp) acts transitively on the set of possible filtrations ZZp as above, and
hence the assignment (A.4.5) is injective.

As for the surjectivity of (A.4.5), it suffices to show that, for some symplectic ad-
missible filtration ZZp , an isomorphism ϕ−2,Zp :Gr

ZZp
−2 −→

∼ HomZp(X⊗Z Zp,Zp(1))
exists. By [Reiner 1975, Theorem 18.10] and [KWL, Corollary 1.1.2.6], it suffices
to show that there exists some symplectic filtration ZQp such that ZQp,−2 and
HomQp(X ⊗Z Qp,Qp(1)) have the same O-multirank. Or, rather, we just need
to notice that the O-multirank of a totally isotropic O⊗Z Qp-submodule can be
any O-multirank below a maximal one (with respect to the natural partial order),
by Assumption A.2.1 and by the classification in [KWL, Proposition 1.2.3.7 and
Corollary 1.2.3.10]. �

Lemma A.4.6. The assignment (A.4.1) is bijective.

Proof. It is already explained in the proof of Lemma A.4.4 that an isomor-
phism ϕ−2,Zp : Gr

ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)) exists for any ZZp considered
there. Since p is a good prime, which forces both [L#

: L] and [X : φ(Y )] to
be prime to p, any choice of ϕ−2,Zp above uniquely determines an isomorphism
ϕ0 : Gr

ZZp
0 −→∼ Y ⊗Z Zp. Also, by the explicit classification in [KWL, Proposition

1.2.3.7 and Corollary 1.2.3.10] as in the proof of Lemma A.4.4, there exists a
splitting δZp :GrZZp −→∼ L⊗Z Zp and the action of G(Zp)∩P(Qp) acts transitively
on the set of possible triples (ϕ−2,Zp , ϕ0,Zp , δZp). Hence the assignment (A.4.1) is
bijective, as desired. �
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Lemma A.4.7. The assignment (A.4.2) is bijective.

Proof. By Lemma A.4.6, it suffices to show that (A.4.2) is injective. Suppose two
representatives (ZH,8H, δH) and (Z′H,8

′

H, δ
′

H) with 8H = (X, Y, φ, ϕ−2,H, ϕ0,H)

and 8′H = (X
′, Y ′, φ′, ϕ′

−2,H, ϕ
′

0,H) are such that the induced (ZHp ,8Hp , δHp) and
(Z′Hp ,8

′

Hp , δ
′

Hp) are equivalent to each other. By definition, ZHp = Z′Hp , so that
ZH = Z′H by Lemma A.4.4, and there exists a pair (γX : X ′ −→∼ X, γY : Y −→∼ Y ′)
matching 8Hp with 8′Hp . Hence we may assume that (X, Y, φ)= (X ′, Y ′, φ′), take
any Z in ZHp = Z′Hp , and take any pairs

(ϕ−2 : GrZ
−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)), ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ)

and
(ϕ′
−2 : GrZ

−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)), ϕ′0 : GrZ

0 −→
∼ Y ⊗Z Ẑ)

inducing (ϕ−2,H, ϕ0,H) and (ϕ′
−2,H, ϕ

′

0,H), respectively, and inducing the same
(ϕ−2,Hp , ϕ0,Hp) and (ϕ′

−2,Hp , ϕ
′

0,Hp). Then the injectivity of (A.4.2) follows from
that of (A.4.1). �

Lemma A.4.8. If (ZHp ,8Hp , δHp) is assigned to (ZH,8H, δH) under (A.4.1), then
we have a canonical isomorphism

08H −→
∼ 08Hp (A.4.9)

(see [KWL, Definition 6.2.4.1]). Moreover, we have a canonical isomorphism

S8Hp −→
∼ S8H, (A.4.10)

which induces a canonical isomorphism

(S8H)
∨

R −→
∼ (S8Hp )

∨

R (A.4.11)

matching P8H with P8Hp and P+8H
with P+8Hp , both isomorphisms being equivariant

with the actions of the two sides of (A.4.9) above.

Proof. Since p is a good prime, with Hp = G(Zp), the levels at p are not needed
in the constructions of 08H and S8H in [KWL, Sections 6.2.3–6.2.4], and hence
we have the desired isomorphisms (A.4.9) and (A.4.10). The induced morphism
(A.4.11) matches P8H with P8Hp and P+8H

with P+8Hp because both sides of (A.4.11)
can be canonically identified with the space of Hermitian forms over Y ⊗Z R, as
explained in the beginning of [KWL, Section 6.2.5], regardless of the levels H

and Hp. �

Therefore, we also have assignments

(8H, δH, σ ) 7→ (8Hp , δHp , σ p) (A.4.12)
and

[(8H, δH, σ )] 7→ [(8Hp , δHp , σ p)] (A.4.13)
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(see [KWL, Definition 6.2.6.2]), which are compatible with (A.4.1) and (A.4.2).
Here we have suppressed ZH and ZHp from the notation; also, σ ⊂ (S8H)

∨

R and
σ p
⊂ (S8Hp )

∨

R is the image of σ under the isomorphism (A.4.11).

Lemma A.4.14. The assignment (A.4.12) is bijective.

Proof. This follows from Lemma A.4.6 and the definition of (A.4.12), based on
Lemma A.4.8. �

Lemma A.4.15. The assignment (A.4.13) is bijective.

Proof. By [KWL, Definition 6.2.6.2], given any representative (8H, δH) of a cusp
label, the collection of the cones σ ⊂ (S8H)

∨

R defining the same equivalence class
[(8H, δH, σ )] form a 08H-orbit. Similarly, the collection of the cones σ p

⊂ (S8Hp )
∨

R

defining the same equivalence class [(8Hp , δHp , σ p)] form a 08Hp -orbit. Hence,
given (A.4.9), the lemma follows from Lemma A.4.7. �

Definition A.4.16. 6 is induced by6 p if, for each cusp label [(ZH,8H, δH)] of MH

represented by some (ZH,8H, δH), with assigned (ZHp ,8Hp , δHp) as in (A.4.1),
the cone decomposition 68H of P8H is the pullback of the cone decomposition
68Hp of P8Hp under (A.4.11).

By forgetting the p-parts of level structures, we obtain a canonical isomorphism

MH −→
∼ MHp ⊗Z Q (A.4.17)

over S0,Q (as in [KWL, 1.4.4.1]), by [KWL, Proposition 1.4.4.3 and Remark 1.4.4.4]
and by Assumption A.2.1. Given any 6 p for MHp , with induced 6 for MH as in
Definition A.4.16, by comparing the universal properties of Mtor

H,6 and Mtor
Hp,6 p as

in [KWL, Theorem 6.4.1.1(5)–(6)], the isomorphism (A.4.17) above extends to a
canonical isomorphism

Mtor
H,6 −→

∼ Mtor
Hp,6 p ⊗Z Q (A.4.18)

over S0,Q, mapping Z[(8H,δH,σ )] isomorphically to Z[(8Hp ,δHp ,σ p)] ⊗Z Q when
[(8Hp , δHp , σ p)] is assigned to [(8H, δH, σ )] under (A.4.13), such that the pullback
of the tautological semiabelian scheme over Mtor

Hp,6 p⊗Z Q is canonically isomorphic
to the pullback of the tautological semiabelian scheme over Mtor

H,6 . Consequently,
by [KWL, Theorem 7.2.4.1(3)–(4)] and the fact that the pullback of the Hodge
invertible sheaf over Mtor

Hp,6 p ⊗Z Q is canonically isomorphic to the pullback of the
Hodge invertible sheaf over Mtor

H,6 (because their definitions only use the tautological
semiabelian schemes), the canonical isomorphism (A.4.18) induces a canonical
isomorphism

Mmin
H −→

∼ Mmin
Hp ⊗Z Q (A.4.19)

over S0,Q, extending (A.4.17), compatible with (A.4.18) (under the canonical
morphisms

∮
H : M

tor
H,6 → Mmin

H and
∮

Hp ⊗ZQ : Mtor
Hp,6 p ⊗Z Q → Mmin

Hp ⊗Z Q),
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and mapping Z[(8H,δH)] isomorphically to Z[(8Hp ,δHp )]⊗Z Q when [(8Hp , δHp)] is
assigned to [(8H, δH)] under (A.4.2) (where we have suppressed ZH and ZHp from
the notation).

A.5. Complex analytic construction. By Proposition A.3.1, in order to prove
Theorem A.2.2 we may and we shall assume that char(k(s)) = 0. Thanks to
the isomorphisms (A.4.17) and (A.4.19), we shall identify U with a connected
component of MH⊗F0 k(s), U min with the connected component of Mmin

H ⊗F0 k(s)
that is the closure of U , and U[(8Hp ,δHp )] with U[(8H,δH)], the pullback of the stratum
Z[(8H,δH)] of Mmin

H under the canonical morphism U min
→Mmin

H , when [(8Hp , δHp)]

is assigned to [(8H, δH)] under (A.4.2).
Now, in characteristic zero we no longer need H to be of the form H=HpHp as in

Section A.4. We shall allow H to be any neat open compact subgroup of G(Ẑ). Then
MH and Mmin

H are still defined over M0,Q = Spec(F0), with the stratification on the
latter by locally closed subschemes Z[(8H,δH)] labeled by cusp labels [(8H, δH)] for
MH (see the same references as in Section A.2). For any geometric point s→ S0,Q

with residue field k(s) and for any connected component U of the fiber MHp ×S0 s,
we define U min to be the closure of U in Mmin

H ×S0 s and U[(8H,δH)] to be the pullback
of Z[(8H,δH)] to of U min for each cusp label [(8H, δH)]. (These are consistent with
what we have done before, when the settings overlap.)

Then we have the following analogue of Theorem A.2.2:

Theorem A.5.1. With the setting as above, every stratum U[(8H,δH)] is nonempty.

Since Mmin
H is projective over S0,Q, we may and we shall assume that k(s)∼= C.

We shall denote base changes to C with a subscript, such as MH,C =MH⊗F0 C.
Let X denote the G(R)-orbit of h0, which is a finite disjoint union of Hermitian

symmetric domains, and let X0 denote the connected component of X containing h0.
Let G(Q)0 denote the finite index subgroup of G(Q) stabilizing X0. Let ShH :=

G(Q)\X×G(A∞)/H. By [Lan 2012, Lemma 2.5.1], we have a canonical bijection
G(Q)0\X0×G(A∞)/H→ G(Q)\X×G(A∞)/H. Let {gi }i∈I be any finite set of
elements of G(A∞) such that G(A∞)=

⊔
i∈I G(Q)0hi H, which exists because of

[Borel 1963, Theorem 5.1] and because G(Q)0 is of finite index in G(Q). Then we
have

ShH = G(Q)0\X0×G(A∞)/H=
⊔
i∈I

0(gi )\X0, (A.5.2)

where 0(gi ) := (gi Hg−1
i )∩G(Q)0 for each i ∈ I . By applying [Baily and Borel

1966, Theorem 10.11] to each 0(gi )\X0, we obtain the minimal compactification
Shmin

H of ShH, which is the complex analytification of a normal projective variety
Shmin

H,alg over C. Thus, ShH is the analytification of a quasiprojective variety ShH,alg

(embedded in Shmin
H,alg).
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By [Lan 2012, Lemma 3.1.1], the rational boundary components XV of X0 (see
[Baily and Borel 1966, Section 3.5]) correspond to parabolic subgroups of G⊗Z Q

stabilizing symplectic filtrations V on L⊗ZQ with V−3=0⊂V−2⊂V−1=V⊥
−2⊂V0=

L⊗Z Q. Consider the rational boundary components of X×G(A∞) as in [Lan 2012,
Definition 3.1.2], which are G(Q)-orbits of pairs (V, g), where the V are as above and
g ∈ G(A∞). Consider the boundary components G(Q)\(G(Q)XV)×G(A∞)/H=
G(Q)0\(G(Q)0XV)×G(A∞)/H of ShH=G(Q)0\X0×G(A∞)/H. By the construc-
tion in [Baily and Borel 1966], each such component defines a nonempty, locally
closed subset and meets all connected components of Shmin

H , corresponding to a
nonempty, locally closed subscheme of Shmin

H,alg, called its G(Q)(V, g)H-stratum.
Thus, we obtain the following:

Proposition A.5.3 (Satake, Baily–Borel). Each G(Q)(V, g)H-stratum as above
meets every connected component of Shmin

H,alg.

For each g∈G(A∞), let L(g) denote the O-lattice in L⊗ZQ such that L(g)⊗Z Ẑ=

g(L ⊗Z Ẑ) in L ⊗Z A∞. Let r ∈ Q×>0 be the unique element such that ν(g) = ru
for some u ∈ Ẑ, and let 〈 · , · 〉(g) : L(g)× L(g)→ Z(1) denote the pairing induced
by r〈 · , · 〉⊗Z Q (see [Lan 2012, Section 2.4], the key point being that 〈 · , · 〉(g) is
valued in Z(1)).

Construction A.5.4. As explained in [Lan 2012, Section 3.1], we have an assign-
ment of a fully symplectic admissible filtration Z(g) on Z⊗Z Ẑ and a torus argument
8(g) = (X (g), Y (g), φ(g), ϕ(g)

−2 , ϕ
(g)
0 ) to G(Q)(V, g), by setting:

(1) F(g) := {F(g)
−i := V−i ∩ L(g)}i∈Z.

(2) Z(g) := {Z(g)
−i := g−1(F(g)

−i ⊗Z Ẑ)}i∈Z = {g−1(V−i ⊗Q A∞)∩ (L ⊗Z Ẑ)}i∈Z.

(3) X (g)
:= HomZ(F

(g)
−2,Z(1))= HomZ(GrF(g)

−2 ,Z(1)).

(4) Y (g) := GrF(g)
0 = F(g)0 /F(g)

−1.

(5) φ(g) : Y (g) ↪→ X (g), equivalent to the nondegenerate pairing

〈 · , · 〉
(g)
20 : GrF(g)

−2 ×GrF(g)
0 → Z(1)

induced by 〈 · , · 〉(g) : L(g)× L(g)→ Z(1).

(6) ϕ(g)
−2 : GrZ(g)

−2 −→
∼ Hom

Ẑ
(X (g)

⊗Z Ẑ, Ẑ(1)), the composition

GrZ(g)
−2

Gr−2(g)
−→∼ GrF(g)

−2 ⊗ZẐ−→∼ Hom
Ẑ
(X (g)

⊗Z Ẑ, Ẑ(1)).

(7) ϕ(g)0 : GrZ(g)
0 −→

∼ Y (g)⊗Z Ẑ, the composition

GrZ(g)
0

Gr0(g)
−→∼ GrF(g)

0 ⊗ZẐ−→∼ Y (g)⊗Z Ẑ.
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By the assumption that our integral PEL datum satisfies [Lan 2013a, Condition
1.4.3.10] and by the fact that maximal orders over Dedekind domains are hereditary
(see [Reiner 1975, Theorem 21.4 and Corollary 21.5]), there exists a splitting
ε(g) : GrF(g)

−→∼ L(g), whose base extension from Z to Ẑ defines, by pre- and post-
compositions with Gr(g) and g−1, a splitting δ(g) :GrZ(g)

−→∼ L⊗Z Ẑ. These define
an assignment

G(Q)(V, g) 7→ [(Z(g),8(g), δ(g))], (A.5.5)

which is compatible with the formation of H-orbits and induces an assignment

G(Q)(V, g)H 7→ [(Z(g)H ,8
(g)
H , δ

(g)
H )]. (A.5.6)

Definition A.5.7. For each cusp label [(ZH,8H, δH)], the [(8H, δH)]-stratum of
Shmin

H,alg is the union of all the G(Q)(V, g)H-strata such that [(ZH,8H, δH)] is as-
signed to G(Q)(V, g)H under (A.5.6).

Proposition A.5.8. Given the H-orbit ZH of any Z= {Z−i }i∈Z as above, there exists
some totally isotropic O⊗Z Q-submodule V−2 of L ⊗Z Q such that V−2⊗Q A∞ lies
in the H-orbit of Z−2⊗Z Q.

Proof. Up to replacing H with an open compact subgroup, which is harmless for
proving this proposition, we may and we shall assume that H=HSHS , where S is
a finite set of primes containing all bad ones for the integral PEL datum (see [KWL,
Definition 1.4.1.1]), such that HS

= G(ẐS) =
∏
`6∈S G(Z`) and HS ⊂ G(ẐS) =∏

`∈S G(Z`), where ` 6∈ S means that ` runs through all prime numbers not in S.
By Assumption A.2.1, by reduction to the case where O⊗Z Q is a product of

division algebras, by Morita equivalence (see [KWL, Proposition 1.2.1.14]) and,
by the local-global principle for isotropy in [Scharlau 1985, table on p. 347 and its
references], it follows that, if Z−2⊗Z Q is nonzero and extends to some isotropic
O⊗Z A-submodule of L ⊗Z A isomorphic to the base extension of some O-lattice,
then there exists some nonzero isotropic element in L ⊗Z Q. By induction on
the O-multirank of Z−2 ⊗Z Q — by replacing L ⊗Z Q (resp. L ⊗Z A∞) with the
orthogonal complement modulo the span of a nonzero isotropic element in L⊗Z Q

(resp. L ⊗Z A∞) — there exists some totally isotropic O⊗Z Q-submodule V0
−2 of

L ⊗Z Q such that V0
−2⊗Q A∞ and Z−2⊗Z Q have the same O-multirank.

Let G′ denote the derived subgroup of G⊗Z Q (see [SGA 3 I 1970, Définition
7.2(vii), p. 364 and Corollaire 7.10, p. 373]). Then the pullback to G′ induces a
bijection between the parabolic subgroups of G⊗Z Q and those of G′ (see [SGA 3 III

1970, Propositions 6.2.4 and 6.2.8, pp. 264–266; Springer 1998, Theorem 15.1.2(ii)
and Theorem 15.4.6(i)]), and they both are in bijection with the stabilizers of flags
of totally isotropic O ⊗Z Q-submodules, as in Lemma A.4.3. Therefore, there
exists some element h = (h`) ∈ G′(A∞), where the index ` runs through all prime
numbers, such that V0

−2⊗Q A∞ = h(Z−2⊗Z Q).
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Since G′ is simply connected, by Assumption A.2.1 (because the kernel of the
similitude character of G ⊗Z Q factorizes over an algebraic closure of Q as a
product of groups with simply connected derived groups, by the proof of [KWL,
Proposition 1.2.3.11]), by weak approximation (see [Platonov and Rapinchuk 1994,
Theorem 7.8]) there exists γ ∈ G′(Q) such that γ (h`)`∈S ∈ HS . On the other
hand, by using the Iwasawa decomposition at the places ` ∈ S as in the proof of
Lemma A.4.4, up to replacing h` with a right-multiple of h` by an element of
G′(Q`) stabilizing Z−2⊗Ẑ

Q`, we may assume that γ h` ∈G(Z`) for all ` 6∈ S. Thus,
we can conclude by taking V−2 := γ (V0

−2). �

Proposition A.5.9. For each cusp label [(ZH,8H, δH)], there exists some ratio-
nal boundary component G(Q)(V, g) of X×G(A∞) such that [(ZH,8H, δH)] is
assigned to G(Q)(V, g)H under (A.5.6).

Proof. Let (Z,8 = (X, Y, φ, ϕ−2, ϕ0), δ) be any triple whose H-orbit induces
[(ZH,8H, δH)] and let V−2 be as in Proposition A.5.8. Up to replacing (Z,8, δ)
with another such triple, we may and we shall assume that

Z−2 = (V−2⊗Q A∞)∩ (L ⊗Z Ẑ)= Z(1)
−2, (A.5.10)

where F(1) = {F(1)
−i }i∈Z, Z(1) = {Z(1)

−i }i∈Z and 8(1) = (X (1), Y (1), φ(1), ϕ(1)
−2, ϕ

(1)
0 ) are

assigned to (V, 1) as in Construction A.5.4, together with some noncanonical choices
of ε(1) and δ(1).

Let P denote the parabolic subgroup of G⊗ZQ stabilizing V−2 (see Lemma A.4.3).
By (A.5.10), the elements of P(A∞) also stabilize Z−2 ⊗Z Q. Therefore, for
each g ∈ P(A∞), the filtration Z(g) defined as in Construction A.5.4 coincides
with Z.

Using (A.5.10) and the compatibility among the objects, both φ⊗ZẐ and φ(1)⊗ZẐ

can be identified (under (ϕ−2, ϕ0) and (ϕ(1)
−2, ϕ

(1)
0 )) with the canonical morphism

〈 · , · 〉∗20 : GrZ
0→ Hom

Ẑ
(GrZ
−2, Ẑ(1)) (A.5.11)

induced by the pairing 〈 · , · 〉, which induce compatible isomorphisms

t(ϕ
(1)
−2 ◦ϕ

−1
−2) : X

(1)
⊗Z Ẑ−→∼ X ⊗Z Ẑ (A.5.12)

and
ϕ
(1)
0 ◦ϕ

−1
0 : Y ⊗Z Ẑ−→∼ Y (1)⊗Z Ẑ. (A.5.13)

By [KWL, Condition 1.4.3.10], there exists some maximal order O′ in O⊗Z Q,
containing O, such that the O-action on L extends to an O′-action; hence the O-actions
on Y and Y (1) also extend to O′-actions. Using the local isomorphisms given
by (A.5.13), by [Reiner 1975, Theorem 18.10] (which is applicable because we
are now considering modules of the maximal order O′) and [KWL, Corollary
1.1.2.6] there exists an element g0 ∈ GLO⊗ZA∞(GrZ

0⊗ZQ) and an O-equivariant
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embedding h0 : Y (1) ↪→ Y ⊗Z Q such that (h0(Y (1)))⊗Z Ẑ= (ϕ0⊗Z Q)(g0(GrZ
0))

in Y ⊗Z A∞. Let g−2 :=
tg−1

0 ∈ GLO⊗ZA∞(GrZ
−2⊗ZQ), where the transposition

is induced by (A.5.11). Then there is a corresponding O-equivariant embedding
h−2 : HomZ(X (1),Z(1)) ↪→ HomZ(X,Z(1))⊗Z Q such that(

h−2
(
HomZ(X (1),Z(1))

))
⊗Z Ẑ= (ϕ−2⊗Z Q)(g−2(GrZ

−2))

in HomZ(X,Z(1))⊗Z A∞.
Take g ∈ P(A∞) such that Gr−2(g) = g−2, Gr0(g) = g0, and ν(g) = 1, which

exists thanks to the splitting δ. Then X (g) and Y (g) are realized as the preimages
of X and Y under th−2 ⊗Z Q and h−1

0 ⊗Z Q, respectively, and the induced pair
(γX : X (g)

−→∼ X, γY : Y −→∼ Y (g)) matches 8(g) with 8. Such a (V, g) is what we
want. �

As explained in [Lan 2012, Section 2.5], there is a canonical open and closed
immersion

ShH,alg ↪→MH,C. (A.5.14)

As explained in [Kottwitz 1992, §8, p. 399] (see also [KWL, Remark 1.4.3.12]),
MH,C is the disjoint union of the images of morphisms like (A.5.14), from certain
Sh( j)

H,alg defined by some (O, ?, L( j), 〈 · , · 〉( j), h0) such that (L( j), 〈 · , · 〉( j))⊗Z Ẑ∼=

(L , 〈 · , · 〉)⊗Z Ẑ and (L( j), 〈 · , · 〉( j))⊗Z R∼= (L , 〈 · , · 〉)⊗Z R, but not necessarily
satisfying (L( j), 〈 · , · 〉( j))⊗Z Q∼= (L , 〈 · , · 〉)⊗Z Q, for all j in some index set J
(whose precise description is not important for our purpose). (Each (L( j), 〈 · , · 〉( j))

is determined by its rational version (L( j), 〈 · , · 〉( j))⊗Z Q by taking the intersection
of the latter with (L( j), 〈 · , · 〉( j))⊗ZẐ∼= (L , 〈 · , · 〉)⊗ZẐ in (L( j), 〈 · , · 〉( j))⊗ZA∞∼=

(L , 〈 · , · 〉)⊗Z A∞. Due to the failure of Hasse’s principle, J might have more than
one element.)

By [Lan 2012, Theorem 5.1.1], (A.5.14) extends to a canonical open and closed
immersion

Shmin
H,alg ↪→Mmin

H,C (A.5.15)

respecting the stratifications on both sides labeled by cusp labels (see Definition
A.5.7). Again, Mmin

H,C is the disjoint union of the images of morphisms like (A.5.15),
from the minimal compactifications Sh

( j),min
H,alg of Sh( j)

H,alg for all j ∈ J .
Everything we have proved remains true after replacing the objects defined by

(L , 〈 · , · 〉) with those defined by (L( j), 〈 · , · 〉( j)) for each j ∈ J . Thus, in order
to show that U[(8H,δH)] is nonempty, it suffices to note that, by Propositions A.5.3
and A.5.9, the [(8H, δH)]-stratum of Sh( j),min

H,alg meets every connected component
of Sh( j),min

H,alg for all j ∈ J . The proof of Theorem A.5.1 is now complete.

By Proposition A.3.1, and by the explanations in Section A.4 and in the beginning
of this section, the proof of Theorem A.2.2 is also complete.
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A.6. Extension to cases of ramified characteristics. In this section, we shall no
longer assume that p is a good prime for the integral PEL datum (O, ?, L , 〈 · , · 〉, h0),
but we shall assume that the image Hp of H under the canonical homomorphism
G(Ẑ)→ G(Ẑp) is neat.

Even for such general H and p, for any collections of lattices stabilized by H

as in [Lan 2014, Section 2] we still have an integral model EMH of MH that is flat
over S0, constructed by “taking normalization” (see [Lan 2014, Proposition 6.1 and
also the introduction]). Moreover, we have an integral model EMmin

H of Mmin
H that is

projective and flat over S0 (see [Lan 2014, Proposition 6.4]), with a stratification
by locally closed subschemes EZ[(8H,δH)] labeled by cusp labels [(8H, δH)] for MH,
which extends the stratification of MH by the locally closed subschemes Z[(8H,δH)]

(see [Lan 2014, Theorem 12.1]). For certain (possibly nonsmooth) compatible
collections 6 (not the same ones for which we can construct Mtor

H,6 over M0,Q),
we also have the toroidal compactifications EMtor

H,6 of EMH that are projective and
flat over S0 (see [Lan 2014, Section 7]), with a stratification by locally closed
subschemes EZ[(8H,δH,σ )] (see [Lan 2014, Theorem 9.13]) and a canonical surjection
E
∮

H :
EMtor

H,6→
EMmin

H with geometrically connected fibers (see [Lan 2014, Lemma
12.9 and its proof]), inducing surjections EZ[(8H,δH,σ )]→

EZ[(8H,δH)] (see [Lan 2014,
Theorem 12.16]).

As in Section A.2, consider a geometric point s → S0 = Spec(OF0,(p)) with
algebraically closed residue field k(s) and consider a connected component U min of
the fiber EMmin

H ×S0 s. For each cusp label [(8H, δH)] for MH, we define U[(8H,δH)]

to be the pullback of EZ[(8H,δH)] to U min. Since the fibers of E
∮

H are geometrically
connected, the preimage of U min under E

∮
H×S0 s is a connected component U tor

of EMtor
H,6 ×S0 s. (In general, neither EMmin

H ×S0 s nor EMtor
H,6 ×S0 s is normal.) For

each equivalence class [(8H, δH, σ )] defining a stratum EZ[(8H,δH,σ )] of EMtor
H,6 , we

define U[(8H,δH,σ )] to be the pullback of EZ[(8H,δH,σ )]. Then we also have a canonical
surjection U[(8H,δH,σ )]→U[(8H,δH)] induced by E

∮
H.

Theorem A.6.1. With the setting as above, all strata of U min are nonempty.

By using the canonical surjection U[(8H,δH,σ )]→ U[(8H,δH)] (as in the proof of
Corollary A.2.3), Theorem A.6.1 implies the following:

Corollary A.6.2. With the setting as above, all strata of U tor are nonempty.

As in Section A.3, it suffices to prove the following:

Proposition A.6.3. Suppose Theorem A.6.1 is true when char(k(s))= 0. Then it is
also true when char(k(s))= p > 0.

Remark A.6.4. Since EMH⊗Z Q∼=MH and EMmin
H ⊗Z Q∼=Mmin

H by construction, by
Theorem A.5.1 the assumption in Proposition A.6.3 always holds. Nevertheless, the
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proof of Proposition A.6.3 will clarify that the deduction of Theorem A.6.1 from
Theorem A.5.1 does not require Assumption A.2.1 (cf. Remark A.3.2).

The remainder of this section will be devoted to the proof of Proposition A.6.3.
We shall assume that char(k(s))= p > 0.

While each Z[(8H,δH)] is isomorphic to some boundary moduli problem M
ZH
H ,

each stratum EZ[(8H,δH)] of EMmin
H is similarly isomorphic to some integral model

EM
ZH
H defined by taking normalization (see [Lan 2014, Proposition 7.4 and Theorems

12.1 and 12.16]). Hence it also makes sense to consider the minimal compactification
EZmin
[(8H,δH)]

of EZ[(8H,δH)], which is proper flat (with possibly nonnormal geometric
fibers) over S0, and we obtain the following:

Lemma A.6.5 (cf. Lemma A.3.4 and [Deligne and Mumford 1969, Theorem
4.17(ii)]). There exists some discrete valuation ring R that is flat over OF0,(p), with
fraction field K and residue field k(s), the latter lifting the structural homomorphism
OF0,(p) → k(s), such that, for each cusp label [(8H, δH)] and each connected
component V of EZmin

[(8H,δH)]
⊗OF0,(p)

R, the induced flat morphism V → Spec(R) has
connected special fiber over Spec(k(s)).

Proof of Proposition A.6.3. By [Lan 2014, Corollary 12.4], it suffices to show that
U[(8H,δH)] 6=∅ when [(8H, δH)] is maximal with respect to the surjection relations,
as in [KWL, Definition 5.4.2.13]. In this case, by [Lan 2014, Theorem 12.1],
EZ[(8H,δH)] is a closed stratum of EMmin

H and so EZ[(8H,δH)] =
EZmin
[(8H,δH)]

. Hence the
lemma follows from Theorem A.5.1 and the same argument as in the proof of
Proposition A.3.1, with the reference to Lemma A.3.4 replaced with an analogous
reference to Lemma A.6.5. �

As explained in Remark A.6.4, the proof of Theorem A.6.1 is now complete.

A.7. Examples.

Example A.7.1. Suppose O⊗Z Q is a CM field F with maximal totally subfield
F+, with positive involution given by the complex conjugation of F over F+.
Suppose L = O⊕a+b

F , where a ≥ b ≥ 0 are integers. Suppose (2π
√
−1)−1

〈 · , · 〉 is
the skew-Hermitian pairing defined in block matrix form 1b

S
−1b

 ,
where S is some (a−b)× (a−b) matrix over F such that

√
−1S is Hermitian and

either positive or negative definite. Then, for each 0≤ r ≤ b, the O-submodule Z(r)
−2

of L = O⊕(a+b)
F with the last a+ b− r entries zero is totally isotropic, and V(r)

−2 :=

F(r)
−2⊗ZQ is a totally isotropic F-submodule of L⊗ZQ= F⊕(a+b), which is maximal

when r = b. The stabilizer of V(r)
−2 either is the whole group (when r = 0) or defines a
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maximal (proper) parabolic subgroup P(r) of G⊗Z Q (when r > 0), and all maximal
parabolic subgroups of G⊗Z Q are conjugate to one of these standard ones, by
Lemma A.4.3. Similarly, Z(r)

−2 := F(r)
−2⊗Z Ẑ is a totally isotropic O⊗Z Ẑ-submodule

of L ⊗Z Ẑ, and the left G(Q)- and right H-double orbits of Z(r)
−2, for 0 ≤ r ≤ b,

exhaust all the possible ZH appearing in cusp labels [(ZH,8H, δH)] for MH, by
Proposition A.5.8. By Lemma A.4.7, by forgetting their p-parts, their left G(Q)- and
right Hp-double orbits also exhaust all the possible ZHp appearing in cusp labels
[(ZHp ,8Hp , δHp)] for MHp . Let us say that a cusp label [(ZH,8H, δH)] for MH

is of rank r if ZH is in the double orbit of Z(r)
−2, and that a cusp [(ZHp ,8Hp , δHp)]

for MHp is of rank r if it is assigned to one of rank r under (A.4.1). (This is
consistent with [KWL, Definitions 5.4.1.12 and 5.4.2.7].) On the other hand, as
a byproduct of the proof of Proposition A.5.9, any ZH in the double orbit of Z(r)

−2
does extend to some cusp label [(ZH,8H, δH)] for MH, inducing some cusp label
[(ZHp ,8Hp , δHp)] for MHp under (A.4.1). Then Theorem A.2.2 shows that, in the
boundary stratification of every connected component of every geometric fiber of
Mmin

Hp → S0 = Spec(OF0,(p)), there exist nonempty strata labeled by cusp labels
for MHp of all possible ranks 0 ≤ r ≤ b. (The theorem shows the more refined
nonemptiness for strata labeled by cusp labels, not just by ranks.)

The next example shows that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that O⊗Z Q involves no factor of type D.

Example A.7.2. Suppose O⊗Z Q is a central division algebra D over a totally
real field F , as in [KWL, Proposition 1.2.1.13] such that D⊗F,τ R∼= H, the real
Hamiltonian quaternion algebra, for every embedding τ : F→ R, with ?= � given
by x 7→ x� := TrD/F (x)− x . Suppose that D is nonsplit at strictly more than two
places. Suppose L is chosen such that L ⊗Z Q ∼= D⊕2. By the Gram–Schmidt
process, as in [KWL, Section 1.2.4] and by [KWL, Corollary 1.1.2.6], there is up
to isomorphism only one isotropic skew-Hermitian pairing over L ⊗Z Q. But we
do know the failure of Hasse’s principle (see [Kottwitz 1992, §7, p. 393]) in this
case (see [Scharlau 1985, Remark 10.4.6]), which means there exists a choice of
(L , 〈 · , · 〉) as above that is globally anisotropic but locally isotropic everywhere.
Thus, even when k(s)∼= C, there exists some connected component U of ShH,alg

and some nonzero cusp label [(8H, δH)] for MH such that U[(8H,δH)] =∅.
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