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Let λ denote the Liouville function. A well-known conjecture of Chowla asserts
that, for any distinct natural numbers h1, . . . , hk , one has∑

1≤n≤X

λ(n+ h1) · · · λ(n+ hk)= o(X)

as X→∞. This conjecture remains unproven for any h1, . . . , hk with k ≥ 2. Us-
ing the recent results of Matomäki and Radziwiłł on mean values of multiplicative
functions in short intervals, combined with an argument of Kátai and Bourgain,
Sarnak, and Ziegler, we establish an averaged version of this conjecture, namely∑

h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n+ h1) · · · λ(n+ hk)

∣∣∣∣= o(H k X)

as X→∞, whenever H = H(X)≤ X goes to infinity as X→∞ and k is fixed.
Related to this, we give the exponential sum estimate∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx = o(HX)

as X→∞ uniformly for all α ∈ R, with H as before. Our arguments in fact give
quantitative bounds on the decay rate (roughly on the order of log log H/ log H )
and extend to more general bounded multiplicative functions than the Liouville
function, yielding an averaged form of a (corrected) conjecture of Elliott.

1. Introduction

Let λ : N→ {−1,+1} be the Liouville function, that is to say, the completely
multiplicative function such that λ(p)=−1 for all primes p. The prime number
theorem implies that1 ∑

1≤n≤X

λ(n)= o(X)

MSC2010: 11P32.
Keywords: multiplicative functions, Hardy–Littlewood circle method, Chowla conjecture.

1See page 2174 for our asymptotic notation conventions.
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as X→∞. More generally, a famous conjecture of Chowla [1965] asserts that, for
any distinct natural numbers h1, . . . , hk , one has∑

1≤n≤X

λ(n+ h1) · · · λ(n+ hk)= o(X) (1-1)

as X→∞.
Chowla’s conjecture remains open for any h1, . . . , hk with k ≥ 2. Our first main

theorem establishes an averaged form of this conjecture:

Theorem 1.1 (Chowla’s conjecture on average). For any natural number k, and
any 10≤ H ≤ X , we have∑
1≤h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n+ h1) · · · λ(n+ hk)

∣∣∣∣
� k

(
log log H

log H
+

1

log1/3000 X

)
H k X. (1-2)

In fact, we have the slightly stronger bound∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n)λ(n+ h2) · · · λ(n+ hk)

∣∣∣∣
� k

(
log log H

log H
+

1

log1/3000 X

)
H k−1 X. (1-3)

In the case k = 2 our result implies that∑
1≤h≤H

∣∣∣∣ ∑
1≤n≤X

λ(n)λ(n+ h)
∣∣∣∣= o(HX)

provided that H →∞ arbitrarily slowly with X→∞ (and H ≤ X ). Note that the
k = 2 case of Chowla’s conjecture is equivalent to the above asymptotic holding in
the case that H is bounded rather than going to infinity.

In fact, we have a more precise bound than (1-2) (or (1-3)) that gives more
control on the exceptional tuples (h1, . . . , hk) for which the sums of the form∑

1≤n≤X λ(n + h1) · · · λ(n + hk) are large; see Remark 5.2. In particular, in the
special case k = 2 we get the following result.

Theorem 1.2. Let δ ∈ (0, 1] be fixed. There is a large but fixed H = H(δ) such
that, for all large enough X ,∣∣∣∣ ∑

1≤n≤X

λ(n)λ(n+ h)
∣∣∣∣≤ δX (1-4)

for all but at most H 1−δ/5000 integers |h| ≤ H.
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One can also replace the ranges 1≤hj ≤H in Theorem 1.1 by bj+1≤hj ≤bj+H
for any bj = O(X); see Theorem 1.6.

The exponents 1/3000 and 1/5000 in the above theorems may certainly be
improved, but we did not attempt to optimize the constants here. However, our
methods cannot produce a gain much larger than 1/log H , as one would then have
to somehow control λ on numbers that are not divisible by any prime less than H ,
at which point we are no longer able to exploit the averaging in the h1, . . . , hk

parameters. It would be of particular interest to obtain a gain of more than 1/log X ,
as one could then potentially localize λ to primes and obtain some version of the
prime tuples conjecture when the h1, . . . , hk parameters are averaged over short
intervals, but this is well beyond the capability of our methods. (If instead one is
allowed to average the h1, . . . , hk over long intervals of scale comparable to X , one
can obtain various averaged forms of the prime tuples conjecture and its relatives,
by rather different methods than those used here; see [Balog 1990; Mikawa 1992;
Kawada 1993; 1995; Green and Tao 2010].)

Theorem 1.1 is closely related to the following averaged short exponential sum
estimate, which may be of independent interest.

Theorem 1.3 (exponential sum estimate). For any 10≤ H ≤ X , one has

sup
α∈R

∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx �

(
log log H

log H
+

1

log1/700 X

)
HX.

Actually, for technical reasons it is convenient to prove a sharper version of
Theorem 1.3 in which the Liouville function has been restricted to those numbers
that have “typical” factorization; see Theorem 2.3. This sharper version will then
be used to establish Theorem 1.1.

The relationship between Theorems 1.1 and 1.3 stems from the following Fourier-
analytic identity:

Lemma 1.4 (Fourier identity). For H > 0, if f : Z→ C is a function supported on
a finite set, then∫

T

(∫
R

∣∣∣∣ ∑
x≤n≤x+H

f (n)e(αn)
∣∣∣∣2dx

)2

dα =
∑
|h|≤H

(H − |h|)2
∣∣∣∣∑

n

f (n) f̄ (n+ h)
∣∣∣∣2.

Proof. Using the Fourier identity
∫

T
e(nα) dα = 1n=0, we can expand the left-hand

side as∑
n,n′,m,m′

f (n) f̄ (n′) f (m) f̄ (m′)1n+m−n′−m′=0

×

(∫
R

1x≤n,n′≤x+H dx
)(∫

R

1y≤m,m′≤y+H dy
)
.
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Writing n′ = n+ h, we see that both integrals are equal to H − |h| if |h| ≤ H and
vanish otherwise. The claim follows. �

Theorem 1.3 may be compared with the classical estimate

sup
α∈R

∣∣∣∣ ∑
1≤n≤X

λ(n)e(αn)
∣∣∣∣�A X log−A X

of Davenport [1937], valid for any A > 0. Indeed, one can view Theorem 1.3 as
asserting that a weak form of Davenport’s estimate holds on average in short intervals.
It would be of interest to also obtain nontrivial bounds on the larger quantity∫ X

0
sup
α∈R

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx (1-5)

but this appears difficult to establish with our methods.
As with other applications of the circle method, our proof of Theorem 1.3

splits into two cases, depending on whether the quantity α is on “major arc” or
on “minor arc”. In the “major arc” case we are able to use the recent results of
Matomäki and Radziwiłł [2015] on the average size of mean values of multiplicative
functions on short intervals. Actually, in order to handle the presence of complex
Dirichlet characters, we need to extend the results in [Matomäki and Radziwiłł
2015] to complex-valued multiplicative functions rather than real-valued ones; this
is accomplished in an appendix to this paper (Appendix A). In the “minor arc” case
we use a variant of the arguments of Kátai [1986] and Bourgain, Sarnak, and Ziegler
[Bourgain et al. 2013] (see also the earlier works of Montgomery and Vaughan
[1977] and Daboussi and Delange [1982]) to obtain the required cancellation. One
innovation here is to rely on a combinatorial identity of Ramaré (also used in
[Matomäki and Radziwiłł 2015]) as a substitute for the Turan–Kubilius inequality,
as this leads to superior quantitative estimates (particularly if one first restricts the
variable n to have a “typical” prime factorization).

Extension to more general multiplicative functions. Define a 1-bounded multi-
plicative function to be a multiplicative function f : N→ C such that | f (n)| ≤ 1
for all n ∈N. Given two 1-bounded multiplicative functions f , g and a parameter
X ≥ 1, we define the distance D( f, g; X) ∈ [0,+∞) by the formula

D( f, g; X) :=
(∑

p≤X

1−Re( f (p)g(p))
p

)1/2

.

This is known to give a (pseudo)metric on 1-bounded multiplicative functions; see
[Granville and Soundararajan 2007, Lemma 3.1]. We also define the asymptotic
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counterpart D( f, g;∞) ∈ [0,+∞] by the formula

D( f, g;∞) :=
(∑

p

1−Re( f (p)g(p))
p

)1/2

.

We informally say that f pretends to be g if D( f, g; X) (or D( f, g;∞)) is small
(or finite).

For any 1-bounded multiplicative function g and real number X >1, we introduce
the quantity

M(g; X) := inf
|t |≤X

D(g, n 7→ nit
; X)2, (1-6)

and then the more general quantity

M(g; X, Q) := inf
q≤Q;χ(q)

M(gχ; X)= inf
|t |≤X;q≤Q;χ(q)

D(g, n 7→ χ(n)nit
; X)2,

where χ ranges over all Dirichlet characters of modulus q ≤ Q. Informally,
M(g; X) is small when g pretends to be like a multiplicative character n 7→ nit ,
and M(g; X, Q) is small when g pretends to be like a twisted Dirichlet character
of modulus at most Q and twist of height at most X . We also define the asymptotic
counterpart

M(g;∞,∞)= inf
χ,t

D(g, n 7→ χ(n)nit
;∞)2

where χ now ranges over all Dirichlet characters and t ranges over all real numbers.
Elliott proposed in [1992, Conjecture II] the following more general form of

Chowla’s conjecture, which we phrase here in contrapositive form.

Conjecture 1.5 (Elliott’s conjecture). Let g1, . . . , gk : N→ C be 1-bounded mul-
tiplicative functions, and let a1, . . . , ak , b1, . . . , bk be natural numbers such that
any two of the pairs (a1, b1), . . . , (ak, bk) are linearly independent in Q2. Suppose
that there is an index 1≤ j0 ≤ k such that

M(gj0;∞,∞)=∞. (1-7)
Then ∑

1≤n≤X

k∏
j=1

gj (aj n+ bj )= o(X) (1-8)

as X→∞.

Informally, this conjecture asserts that for pairwise linearly independent pairs
(a1, b1), . . . , (ak, bk) and any 1-bounded multiplicative g1, . . . , gk , one has the
asymptotic (1-8) as X→∞, unless each of the gj pretends to be a twisted Dirichlet
character n 7→χ j (n)nitj . Note that some condition of this form is necessary, since if
g(n) is equal to χ(n)nit then g(n)g(n+ h) will be biased to be positive for large n,
if h is fixed and divisible by the modulus q of χ ; one also expects some bias when
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h is not divisible by this modulus since the sums
∑

n∈Z/qZ χ(n)χ(n+ h) do not
vanish in general. From the prime number theorem in arithmetic progressions it
follows that

M(λ;∞,∞)=∞,

so Elliott’s conjecture implies Chowla’s conjecture (1-1).
When one allows the functions gj to be complex-valued rather than real-valued,

Elliott’s conjecture turns out to be false on a technicality; one can choose 1-bounded
multiplicative functions gj which are arbitrarily close at various scales to a sequence
of functions of the form n 7→nitm (which allows one to violate (1-8)) without globally
pretending to be nit (or χ(n)nit ) for any fixed t ; we present this counterexample
in Appendix B. However, this counterexample can be removed by replacing (1-7)
with the stronger condition that

M(gj0; X, Q)→∞ (1-9)

as X→∞ for each fixed Q. In the real-valued case, (1-9) and (1-7) are equivalent
by a triangle inequality argument of Granville and Soundararajan which we give in
Appendix C.

As evidence for the corrected form of Conjecture 1.5 (in both the real-valued and
complex-valued cases), we present the following averaged form of that conjecture:

Theorem 1.6 (Elliott’s conjecture on average). Let 10 ≤ H ≤ X and A ≥ 1. Let
g1, . . . , gk : N → C be 1-bounded functions, and let a1, . . . , ak , b1, . . . , bk be
natural numbers with aj ≤ A and bj ≤ AX for j = 1, . . . , k. Let 1 ≤ j0 ≤ k, and
suppose that gj0 is multiplicative. Then one has

∑
1≤h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

gj (aj n+ bj + hj )

∣∣∣∣
� A2k

(
exp(−M/80)+

log log H
log H

+
1

log1/3000 X

)
H k X (1-10)

where

M := M(gj0; 10AX, Q) and Q :=min(log1/125 X, log20 H).

In fact, we have the slightly stronger bound

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )

∣∣∣∣
� A2k

(
exp(−M/80)+

log log H
log H

+
1

log1/3000 X

)
H k−1 X. (1-11)
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Note that if a1, . . . , ak , b1, . . . , bk are fixed, gj0 is independent of X and obeys
the condition (1-9) for any fixed Q, and H = H(X) is chosen to go to infinity
arbitrarily slowly as X →∞, then the quantity M in the above theorem goes to
infinity (note that M(g; X, Q) is nondecreasing in Q), and (1-11) then implies an
averaged form of the asymptotic (1-8). Thus Theorem 1.6 is indeed an averaged
form of the corrected form of Conjecture 1.5. (We discovered the counterexample
in Appendix B while trying to interpret Theorem 1.6 as an averaged version of the
original form of Conjecture 1.5.) Interestingly, only one of the functions g1, . . . , gk

in Theorem 1.6 is required to be multiplicative;2 one can use a van der Corput
argument to reduce matters to obtaining cancellation for a sum roughly of the form∑

h≤H

∣∣∑
1≤n≤X gj0(n)gj0(n+ h)

∣∣2, which can then be treated using Lemma 1.4.
For g(n)= λ(n) and X , Q, M as in the above theorem, one obtains, for every

ε > 0, the bound

M ≥ inf
|t |≤X;q≤Q;χ(q)

∑
exp((log X)2/3+ε)≤p≤X

1+Reχ(p)pit

p

≥

(
1
3
− ε

)
log log X + O(1).

(1-12)

The last inequality is established via standard methods from the Vinogradov–
Korobov type zero-free region{

σ + it : σ > 1−
c

max{log q, (log(3+ |t |))2/3(log log(3+ |t |))1/3}

}
for L(s, χ) and some absolute constant c > 0, which applies since χ has conduc-
tor q ≤ (log X)1/125 (so that there are no exceptional zeros); see [Montgomery
1994, §9.5]. Hence Theorem 1.6 implies Theorem 1.1. The same argument gives
Theorem 1.1 when the Liouville function λ is replaced by the Möbius function µ.
We remark that, as our arguments make no use of exceptional zeroes, all the implied
constants in our theorems are effective.

We also have a generalized form of Theorem 1.3:

Theorem 1.7 (exponential sum estimate). Let X ≥ H ≥10 and let g be a 1-bounded
multiplicative function. Then

sup
α∈T

∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

g(n)e(αn)
∣∣∣∣ dx

�

(
exp(−M(g; X, Q)/20)+

log log H
log H

+
1

log1/700 X

)
HX

2We thank the referee for observing this fact. In a previous version of this paper, all of the gj were
required to be multiplicative.
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where

Q :=min(log1/125 X, log5 H).

By (1-12), Theorem 1.7 implies Theorem 1.3.

Remark 1.8. In the recent preprint [Frantzikinakis and Host 2015], a different
averaged form of Elliott’s conjecture is established, in which one uses fewer av-
eraging parameters hi than in Theorem 1.6 (indeed, one can average over just a
single such parameter, provided that the linear parts of the forms are independent),
but the averaging parameters range over a long range (comparable to X ) rather
than on the short range given here. The methods of proof are rather different (in
particular, the arguments in [Frantzikinakis and Host 2015] rely on higher order
Fourier analysis). In the long-range averaged situation considered in [Frantzikinakis
and Host 2015], the counterexample in Appendix B does not apply, and one can
use the original form of Elliott’s conjecture in place of the corrected version. It
may be possible to combine the results here with those in [Frantzikinakis and Host
2015] to obtain an averaged version of Chowla’s or Elliott’s conjecture in which the
number of averaging parameters is small, and the averaging is over a short range,
but this seems to require nontrivial estimates on quantities such as (1-5), which we
are currently unable to handle.

Notation. Our asymptotic notation conventions are as follows. We use X � Y ,
Y� X , or X =O(Y ) to denote the estimate |X |≤CY for some absolute constant C .
If x is a parameter going to infinity, we use X = o(Y ) to denote the claim that
|X | ≤ c(x)Y for some quantity c(x) that goes to zero as x→∞ (holding all other
parameters fixed).

Unless otherwise specified, all sums are over the integers, except for sums over
the variable p (or p1, p2, etc.) which are understood to be over primes.

We use T := R/Z to denote the standard unit circle and let e : T→ C be the
standard character e(x) := e2π i x .

We use 1S to denote the indicator of a predicate S, thus 1S = 1 when S is true
and 1S = 0 when S is false. If A is a set, we write 1A(n) for 1n∈A, so that 1A is the
indicator function of A.

2. Restricting to numbers with typical factorization

To prove Theorem 1.6 and Theorem 1.7 (and hence Theorem 1.1 and Theorem 1.3),
it is technically convenient (as in the previous paper [Matomäki and Radziwiłł
2015]) to restrict the support of the multiplicative functions to a certain dense set S
of natural numbers that have a “typical” prime factorization in a certain specific
sense, in order to fully exploit a useful combinatorial identity of Ramaré (see (3-2)).
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This will lead to improved quantitative estimates in the arguments in subsequent
sections of the paper.

More precisely, we introduce the following sets S of numbers with typical prime
factorization, which previously appeared in [Matomäki and Radziwiłł 2015].

Definition 2.1. Let 10< P1 < Q1 ≤ X and
√

X ≤ X0 ≤ X be quantities such that
Q1 ≤ exp(

√
log X0). We then define Pj , Qj for j > 1 by the formulas

Pj := exp( j4 j (log Q1)
j−1 log P1), Qj := exp( j4 j+2(log Q1)

j )

for j > 1. Note that the intervals [Pj , Qj ] are disjoint and increase to infinity;
indeed, one easily verifies that

P1 < Q1 < exp(28 log Q1 log P1)= P2

and

Pj < exp( j4 j (log Q1)
j ) < Qj < exp(( j + 1)4( j+1)(log Q1)

j ) < Pj+1

for all j > 1. Let J be the largest index such that QJ ≤ exp(
√

log X0). Then we
define SP1,Q1,X0,X to be the set of all the numbers 1≤ n ≤ X which have at least
one prime factor in the interval [Pj , Qj ] for each 1≤ j ≤ J .

In practice, X will be taken to be slightly smaller than X2
0 . The need to have two

parameters X , X0 instead of one is technical (we need to have the freedom later in
the argument to replace X with a slightly smaller quantity X/d without altering J ),
but the reader may wish to pretend that X0 =

√
X for most of the argument.

This set is fairly dense if P1 and Q1 are widely separated:

Lemma 2.2. Let 10 < P1 < Q1 ≤ X and
√

X ≤ X0 ≤ X be quantities such that
Q1 ≤ exp(

√
log X0). Then, for every large enough X ,

#{1≤ n ≤ X : n 6∈ SP1,Q1,X0,X } �
log P1

log Q1
· X.

Proof. From the fundamental lemma of sieve theory (see, e.g., [Friedlander and
Iwaniec 2010, Theorem 6.17]) we know that, for any 1≤ j ≤ J and large enough X ,
the number of 1≤ n ≤ X that are not divisible by any prime in [Pj , Qj ] is at most

� X
∏

Pj≤p≤Qj

(
1−

1
p

)
�

log Pj

log Qj
X =

1
j2

log P1

log Q1
X.

Summing over j , we obtain the claim. �

Both Theorems 1.6 and 1.7 will be deduced from the following claim.

Theorem 2.3 (key exponential sum estimate). Let X, H,W ≥ 10 be such that

(log H)5 ≤W ≤min{H 1/250, (log X)1/125
}
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and let g be a 1-bounded multiplicative function such that

W ≤ exp(M(g; X, Q)/3). (2-1)

Set
S := SP1,Q1,

√
X ,X where P1 :=W 200, Q1 := H/W 3.

Then, for any α ∈ T, one has∫
R

∣∣∣∣ ∑
x≤n≤x+H

1S(n)g(n)e(αn)
∣∣∣∣ dx �

(log H)1/4 log log H
W 1/4 HX. (2-2)

In Section 5 we will show how this theorem implies Theorem 1.6. For now, let
us at least see how it implies Theorem 1.7:

Proof of Theorem 1.7 assuming Theorem 2.3. We may assume that X , H , and
M(g; X, Q) are larger than any specified absolute constant, since if one of these
expressions is bounded, then so is W . The claim (2-2) is then trivial with a suitable
choice of implied constant (discarding the (log H)1/4 log log H factor).

Choose H0 such that

log H0 :=min(log1/700 X log log X, exp(M(g; X, Q)/20)M(g; X, Q)).

We divide into two cases: H ≤ H0 and H > H0.
First suppose that H ≤ H0. Then if we set W := log5 H , one verifies that all the

hypotheses of Theorem 2.3 hold, and hence∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

1S(n)g(n)e(αn)
∣∣∣∣ dx �

log log H
log H

HX.

On the other hand, from Lemma 2.2, the choice of W , P1, Q1, and the bound on H ,
we see that

#{1≤ n ≤ X + H : n 6∈ S} �
log log H

log H
X

and thus, by Fubini’s theorem and the triangle inequality,∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

(1− 1S(n))g(n)e(αn)
∣∣∣∣ dx �

log log H
log H

HX.

Summing, we obtain Theorem 1.7 in this case.
Now suppose that H > H0. Covering [0, H ] by O(H/H0) intervals of length H0,

we see that∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

g(n)e(αn)
∣∣∣∣ dx �

H
H0

∫ X+H

0

∣∣∣∣ ∑
x≤n≤x+H0

g(n)e(αn)
∣∣∣∣ dx .
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Also, observe from the choice of H0 that the quantity

exp(−M(g; X, Q)/20)+
log log H

log H
+

1

log1/700 X

is unchanged up to multiplicative constants if one reduces H to H0. Finally, from
Mertens’ theorem we see that M(g; X + H, Q)= M(g; X, Q)+ O(1). The claim
then follows from the H = H0 case (after performing the minor alteration of
replacing X with X + H ). �

We now begin the proof of Theorem 2.3. The first step is to reduce to the case
where g is completely multiplicative rather than multiplicative. More precisely, we
will deduce Theorem 2.3 from the following proposition.

Proposition 2.4 (completely multiplicative exponential sum estimate). Assume
X, H,W ≥ 10 are such that

(log H)5 ≤W ≤min{H 1/250, (log X)1/125
},

and let g be a 1-bounded completely multiplicative function such that

W ≤ exp(M(g; X,W )/3). (2-3)

Let d be a natural number with d < W . Set

S := SP1,Q1,
√

X ,X/d where P1 :=W 200, Q1 := H/W 3.

Then for any α ∈ T one has∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H/d

1S(n)g(n)e(αn)
∣∣∣∣ dx �

1
d3/4

(log H)1/4 log log H
W 1/4 HX. (2-4)

Let us explain why Theorem 2.3 follows from Proposition 2.4. Let the hypotheses
and notation be as in Theorem 2.3. The function g is not necessarily completely
multiplicative, but we may approximate it by the 1-bounded completely multi-
plicative function g1 : N→ C, defined as the completely multiplicative function
with g1(p) = g(p) for all primes p. By Möbius inversion we may then write
g= g1∗h where ∗ denotes Dirichlet convolution and h is the multiplicative function
h = g ∗µg1. Observe that, for all primes p, we have h(p) = 0 and |h(p j )| ≤ 2
for j ≥ 2. We now write

∑
x≤n≤x+H

1SP1,Q1,
√

X ,X
g(n)e(αn)=

∞∑
d=1

h(d)
∑

x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X
(dm)g1(m)e(dαm)
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and so by the triangle inequality we may upper bound the left-hand side of (2-2) by

∞∑
d=1

|h(d)|
∫

R

∣∣∣∣ ∑
x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X
(dm)g1(m)e(dαm)

∣∣∣∣ dx .

Let us first dispose of the contribution where d ≥W . Here we trivially bound this
contribution by ∑

d≥W

|h(d)|
∑

m≤(2X+H)/d

O(H)

(after moving the absolute values inside the m summation and then performing the
integration on x first). We can bound this in turn by

� HX
1

W 1/4

∞∑
d=1

|h(d)|
d3/4 .

From Euler products we see that
∑
∞

d=1 |h(d)|/d
3/4
= O(1), so the contribution of

this case is acceptable.
Now we consider the contribution d < W < P1. In this case we may reduce

1SP1,Q1,
√

X ,X
(dm)= 1SP1,Q1,

√
X ,X/d

(m)

and so this contribution to (2-2) can be upper bounded by∑
1≤d<W

|h(d)|
∫

R

∣∣∣∣ ∑
x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X/d
(m)g1(m)e(dαm)

∣∣∣∣ dx .

By Proposition 2.4, this is bounded by

∞∑
d=1

|h(d)|
d3/4

(log H)1/4 log log H
W 1/4 HX.

As before, we have
∑
∞

d=1 |h(d)|/d
3/4
= O(1), and Theorem 2.3 follows.

It remains to prove Proposition 2.4. For any α ∈ T, we know from the Dirichlet
approximation theorem that there exists a rational number a/q with (a, q)= 1 and
1≤ q ≤ H/W such that ∣∣∣∣α− a

q

∣∣∣∣≤ W
qH
≤

1
q2 .

In the next two sections, we will apply separate arguments to prove Proposition 2.4
in the minor arc case q > W and the major arc case q ≤W .
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3. Proof of minor arc estimate

We now prove Proposition 2.4 in the minor arc case q >W . It suffices to show that∫
R

θ(x)
∑

x/d≤n≤x/d+H/d

1S(n)g(n)e(αn) dx �
1

d3/4

(log H)1/4 log log H
W 1/4 HX (3-1)

whenever θ : R→ C is measurable, with |θ(x)| at most 1 for all x and supported
on [0, X ]. We will now use a variant of an idea of Bourgain, Sarnak, and Ziegler
[Bourgain et al. 2013] (building on earlier works of Kátai [1986], Montgomery and
Vaughan [1977] and Daboussi and Delange [1982]).

Let P be the set consisting of the primes lying between P1 and Q1. Then notice
that each n ∈ S has at least one prime factor from P . This leads to the following
variant of Ramaré’s identity (see [Friedlander and Iwaniec 2010, Section 17.3]):

1S(n)=
∑

p∈P,m:mp=n

1S ′(mp)
1+ #{q|m : q ∈ P}

, (3-2)

where S ′ is the set of all 1≤n≤ X/d that have at least one prime factor in each of the
intervals [Pj , Qj ] for j ≥ 2; the constraint n ≤ X/d arises from the corresponding
constraint in the definition of S.

Using this identity, we may write the left-hand side of (3-1) as∑
p∈P

∑
m

1S ′(mp)g(mp)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx .

As g is completely multiplicative, g(mp)= g(m)g(p). Thus it suffices to show that∑
p∈P

∑
m

1S ′(mp)g(m)g(p)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx

�
(log H)1/4 log log H

d3/4W 1/4 HX.

We can cover P by intervals [P, 2P] with P1� P � Q1 and P a power of two,
and observe that∑

P1�P�Q1
P=2 j

1
log P

� log log Q1− log log P1� log log H,

so by the triangle inequality it suffices to show that∑
p∈P

P≤p≤2P

∑
m

1S ′(mp)g(m)g(p)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx

�
(log H)1/4

d3/4W 1/4 log P
HX
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for each such P . We can rearrange the left-hand side as∑
m∈S ′

g(m)
1+ #{q|m : q ∈ P}

∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d dx .

Observe that the summand vanishes unless we have m ≤ X/dP . Crudely bounding3

g(m)/(1+#{q|m : q ∈ P}) in magnitude by 1 and applying Hölder’s inequality, we
may bound the previous expression in magnitude by(

X
dP

)3/4( ∑
m≤X/dP

∣∣∣∣ ∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d

∣∣∣∣4dx
)1/4

.

It thus suffices to show that∑
m≤X/dP

∣∣∣∣ ∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d dx
∣∣∣∣4

�
log H

W log4 P
H 4 XP3.

The left-hand side may be expanded as∑
p1,p2,p3,p4∈P

P≤p1,p2,p3,p4≤2P

∫
· · ·

∫
g(p1)g(p2)g(p3)g(p4)θ(x1)θ(x2)θ(x3)θ(x4)

×

∑
m≤X/(dpi )

xi/(dpi )≤m≤(xi+H)/(dpi )
∀i=1,2,3,4

e(m(p1+ p2− p3− p4)α) dx1 dx2 dx3 dx4.

From summing the geometric series, we observe that the summation over m is
O(min(H/P, 1/‖(p1+ p2− p3− p4)α‖)), where ‖z‖ denotes the distance from z
to the nearest integer. Also, the sum vanishes unless we have x1 = O(X) and
xi = x1 pi/p1 + O(H) for i = 2, 3, 4, so there are only O(XH 3) quadruples
(x1, x2, x3, x4) which contribute. Thus we may bound the previous expression by

O
(

XH 3
∑

p1,p2,p3,p4≤2P

min
(

H
P
,

1
‖(p1+ p2− p3− p4)α‖

))
and so we reduce to showing that∑

p1,p2,p3,p4≤2P

min
(

H
P
,

1
‖(p1+ p2− p3− p4)α‖

)
� log H

HP3

W log4 P
. (3-3)

3By using the Turan–Kubilius inequality here one could save a factor of log log H , but such a gain
will not make a significant impact on our final estimates.
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The quantity p1+ p2− p3− p4 is clearly of size O(P). Conversely, from a standard
upper bound sieve,4 the number of representations of an integer n = O(P) of the
form p1+ p2− p3− p4 with p1, p2, p3, p4 ≤ 2P prime is O(P3/log4 P). Thus it
suffices to show that ∑

n=O(P)

min
(

H
P
,

1
‖nα‖

)
�

log H
W

H.

But from the Vinogradov lemma (see, e.g., [Iwaniec and Kowalski 2004, page 346]),
the left-hand side is bounded by

O
((

P
q
+ 1
)(

H
P
+ q log q

))
�

H
q
+ P log q +

H
P
+ q log q

which, since

W 200
= P1� P � Q1 = H/W 3 and W ≤ q ≤ H/W,

is bounded by O(log H/W H) as required. �

4. Proof of major arc estimate

We now prove Proposition 2.4 in the major arc case q ≤ W . We will discard the
factor d1/4(log H)1/4 log log H and prove the stronger bound∫

R

∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(αn)
∣∣∣∣ dx �

HX
dW 1/4 . (4-1)

By hypothesis we have α = a/q+θ with q ≤W and θ = O(W/(Hq)). Integrating
by parts we see that∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(αn)
∣∣∣∣

�

∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(an/q)
∣∣∣∣

+
W
Hq

∫ H/d

0

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

1S(n)g(n)e(an/q)
∣∣∣∣ dH ′. (4-2)

4For instance, from [Montgomery and Vaughan 2007, Theorem 3.13] one sees that any num-
ber N = O(P) has O((N/φ(N ))(P/ log2 P)) representations as the sum of two primes; since∑

N=O(P) N 2/φ(N )2 = O(P) (see, e.g., [Montgomery and Vaughan 2007, Exercise 2.1.14]), the
claim then follows from the Cauchy–Schwarz inequality.
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Thus let us focus on bounding∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

1S(n)g(n)e(an/q)
∣∣∣∣ dx (4-3)

with 0≤ H ′ ≤ H/d . Splitting into residues classes we see that (4-3) is

≤

∑
b (mod q)

∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

n≡b (mod q)

1S(n)g(n)
∣∣∣∣ dx .

For n≡b (mod q)we have d0 := (b, q)|n. Therefore let us write b=d0b0, q=d0q0

and n= d0m, so that the condition n≡ b (mod q) simplifies to m≡ b0 (mod q0). In
addition, since g is completely multiplicative and since d0 ≤ q ≤W ≤ P1, we have

1S(n)g(n)= g(d0) · 1SP1,Q1,
√

X ,X/(dd0)
(m)g(m).

Finally we express m ≡ b0 (mod q0) in terms of Dirichlet characters noting that

1m≡b0 (mod q0)(m)=
1

ϕ(q0)

∑
χ (mod q0)

χ(b0)χ(m).

Putting everything together we see that (4-3) is less than∑
b (mod q)

1
ϕ(q0)

∑
χ (mod q0)

∫
R

∣∣∣∣ ∑
x/(dd0)≤m≤x/(dd0)+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dx .

In the integral we make the linear change of variable y = x/(dd0), so that the above
expression becomes

d
∑

b (mod q)

d0

ϕ(q0)

∑
χ (mod q0)

∫
R

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dy. (4-4)

We bound the part of the integral with y ≤ X/W 10 trivially. This produces in (4-3)
an error which is

� dq ·
X

W 10 · H
′
≤

HX
W 9 �

H X
dW 3

since q, d≤W and H ′≤H/d . We split the remaining range X/W 10
≤ y≤2X/(dd0)

into dyadic blocks X/W 10
≤ X ′≤ X/(dd0) with X ′ running through powers of two.

Thus the previous expression is

�d
∑

X ′

∑
b (mod q)

d0

ϕ(q0)

∑
χ (mod q0)

∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dy+
HX

dW 3 .
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At this point we apply Theorem A.2 with η = 1/20 (note that P1 ≥ (log Q1)
40/η)

to conclude that∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣2dy

�

(
exp(−M(gχ; X ′))M(gχ; X ′)+

(log H ′/d0)
1/3

P1/6−1/20
1

+
1

(log X ′)1/ 50

)
H ′2

d2
0

X ′.

Since P1 =W 200 and H ′/d0 ≤ H and W ≥ log5 H , we have

(log H ′/d0)
1/3

P1/6−1/20
1

≤
(log H)1/3

P1/6−1/20
1

�
1

W 5/2

and certainly
1

(log X ′)1/50 �
1

(log X)1/50 �
1

W 5/2 .

From Mertens’ theorem and definition of M(g, X,W ),

M(gχ; X ′)≥ M(gχ; X)− O(1)≥ M(g, X,W )− O(1)

and thus, by (2-3),

exp(−M(gχ; X ′))M(gχ; X ′)�
1

W 5/2 .

Putting all this together, we obtain∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣2dy�
1

W 5/2

H ′2

d2
0

X ′.

It follows from Cauchy–Schwarz that∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣ dy�W−5/4
·

H ′X ′

d0
.

Inserting this bound into (4-4) we see that (4-3) is bounded by

� dq ·
1

W 5/4 ·
H
d
·

X
d
�

qHX
dW 5/4 .

Therefore using (4-2) and using q ≤W we see that (4-1) is

�
qHX

dW 5/4 ·

(
1+

W
Hq
·

H
d

)
�

HX
dW 1/4 . �
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5. Elliott’s conjecture on the average

In this section we use Theorem 2.3 to prove Theorem 1.6, which will be de-
duced from the following result (compare also with Theorem 2.3 and deduction of
Theorem 1.7 from it). For brevity, we write 1Sg for the function n 7→ 1S(n)g(n).

Proposition 5.1 (truncated Elliott on the average). Let X, H,W, A ≥ 10 be such
that

log20 H ≤W ≤min{H 1/500, (log X)1/125
}.

Let g1, . . . , gk :N→ C be 1-bounded multiplicative functions, and let a1, . . . , ak ,
b1, . . . , bk be natural numbers with aj ≤ A and bj ≤ 3AX for j = 1, . . . , k. Let
1≤ j0 ≤ k be such that

W ≤ exp(M(gj0; 10AX, Q)/3).

Set

S = SP1,Q1,
√

10AX ,10AX where P1 :=W 200, Q1 := H 1/2/W 3.

Then

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+b1)

k∏
j=2

1Sgj (aj n+bj+hj )

∣∣∣∣� k A2

W 1/20 H k−1 X. (5-1)

Proof of Theorem 1.6 assuming Proposition 5.1. We may assume that X , H , and M
are larger than any specified absolute constant, as the claim is trivial otherwise. We
first make some initial reductions. The first estimate (1-10) of Theorem 1.6 follows
from the second (1-11) after shifting b1 by h1 in (1-11) and averaging, provided
that we relax the hypotheses bj ≤ AX slightly to bj ≤ 2AX . Thus it suffices to
prove (1-11) under the relaxed hypotheses bj ≤ 2AX .

Let H0 be such that

log H0 =min{log1/3000 X log log X, exp(M(gj0; 10AX, Q)/80)M(gj0; 10AX, Q)}.
(5-2)

If H ≤ H0 we take W = log20 H and let S be as in Proposition 5.1. All the
assumptions of Proposition 5.1 hold and thus

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣� k A2

log H
H k−1 X.

Furthermore, from Lemma 2.2 we have∑
n≤10AX

n 6∈S

1� AX
log W
log H

. (5-3)



An averaged form of Chowla’s conjecture 2185

From this and the triangle inequality, we have

∑
1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )

=

∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )+ O
(

k AX
log W
log H

)
. (5-4)

Hence the claim follows in the case when H ≤ H0.
If H > H0, one can cover the summation over the hj indices by intervals of

length H0 and apply Theorem 1.6 to each subinterval (shifting the bj by at most
AX when doing so), and then sum, noting that the quantity

exp(−M(gj0; 10AX, Q)/80)+
log log H

log H
+

1

log1/3000 X

is essentially unchanged after replacing H with H0. �

Remark 5.2. By using larger choices of W , one can obtain more refined information
on the large values of the correlations

∑
1≤n≤X g1(a1n+b1)

∏k
j=2 gj (aj n+bj+hj ).

For instance, if we take W = H δ for some H , δ such that 10 ≤ H ≤ H0 and
20 log log H/log H ≤ δ ≤ 1/500, we see from Proposition 5.1, (5-4), and Markov’s
inequality that ∑

1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )� k A2δX

for all but at most O(H k−1/δH δ/20) tuples (h1, . . . , hk−1) with 1 ≤ hj ≤ H for
j = 2, . . . , k. Thus we can obtain a power saving in the number of exceptional
tuples, at the cost of only obtaining a weak bound on the individual correlations∑

1≤n≤X g1(a1n+ b1)
∏k

j=2 gj (aj n+ bj + hj ).

It remains to prove Proposition 5.1. We start by proving the following simpler
case to which the general case will be reduced.

Proposition 5.3. Let X, H,W ≥ 10 be such that

log20 H ≤W ≤min{H 1/250, (log X)1/125
}.

Let g : N→ C be a 1-bounded multiplicative function such that

W ≤ exp(M(g; X,W )/3).

Set

S = SP1,Q1,
√

X ,X where P1 :=W 200, Q1 := H/W 3.
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Then ∑
1≤h≤H

∣∣∣∣ ∑
1≤n≤X

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2� HX2

W 1/5 . (5-5)

To deduce Theorem 1.2 we let S be as in this proposition with W := H δ/900. The
argument of Lemma 2.2 actually gives #{1≤ n ≤ X : n 6∈ S} ≤ 2X log P1/log Q1 in
this case, and thus the numbers n with n 6∈ S or n+h 6∈ S contribute to the left-hand
side of (1-4) at most 9δ/10. Hence, recalling (1-12), the claim follows from the
previous proposition and Markov’s inequality.

Proof of Proposition 5.3. The claim follows once we have shown∑
|h|≤2H

(2H − |h|)2 ·
∣∣∣∣∑

n

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2� 1

W 1/5 H 3 X2.

Applying Lemma 1.4, it will suffice to show that∫
T

(∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx

)2

dα�
1

W 1/5 H 3 X2.

From the Parseval identity we have∫
T

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx dα =

∫
R

∑
x≤n≤x+2H

|1Sg(n)|2 dx � HX

so it suffices to show that

sup
α

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx �

1
W 1/5 H 2 X.

Using the trivial bound ∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣� H

we thus reduce to showing

sup
α

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣ dx �

HX
W 1/5 . (5-6)

This follows from Theorem 2.3 (using the lower bound W ≥ log20 H in the hypothe-
ses of Proposition 5.3 to absorb the log1/4 H log log H factors in Theorem 2.3). �

Proof of Proposition 5.1. We first remove the special treatment afforded to the g1

factor in (5-1). Note that we may assume

W 1/20
≥ k A2 (5-7)
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and thus

H ≥W 500
≥ (k A2)10000

since the claim is trivial otherwise.
Set H ′ :=

√
H . For any 1≤ h1 ≤ H ′/A, we may shift n by h1 and conclude that

∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )

=

∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj + aj h1)+ O(H ′)

and thus we may write the left-hand side of (5-1) as

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj + aj h1)

∣∣∣∣
+ O(H k−1 H ′).

If one shifts each of the hj for j = 2, . . . , k in turn by aj h1 = O(H ′), we may
rewrite this as

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣
+ O(H k−1 H ′)+ O(k H k−2 H ′X).

Averaging in h1, and replacing h1 by a1h1 (crudely dropping the constraint that
a1h1 is divisible by a1), we may thus bound the left-hand side of (5-1) by

�
A
H ′

∑
1≤h1≤H ′

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣
+ H k−1 H ′+ k H k−2 H ′X.

The g1 term may now be combined with the product over the remaining gj terms to
form

∏k
j=1 1Sgj (aj n+ bj + hj ). The error term H k−1 H ′+ k H k−2 H ′X is certainly

of size O((k A2/W 1/20)H k−1 X), so it suffices to show that

∑
1≤h1≤H ′

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 H k−1 H ′X.
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By covering the ranges 1 ≤ hj ≤ H by intervals of length H ′ and averaging, it
suffices (after relaxing the conditions bj ≤ 3AX to bj ≤ 4AX ) to prove that

∑
1≤h1,h2,...,hk≤H ′

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 (H

′)k X.

The situation is now symmetric with respect to permuting the indices 1, . . . , k, so
we may assume that the index j0 in Proposition 5.1 is equal to 1. By the triangle
inequality in h2, . . . , hk , it suffices to show that

∑
1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 H ′X

for all h2, . . . , hk . Writing G(n) :=
∏k

j=2 1Sgj (aj n+ bj + hj ), it thus suffices to
show that ∑

1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)G(n)
∣∣∣∣� A

W 1/20 H ′X

for any 1-bounded function G : Z→ C.
We use a standard van der Corput argument. By the Cauchy–Schwarz inequality,

it suffices to show that

∑
1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)G(n)
∣∣∣∣2� A2

W 1/10 (H
′)2 X2.

The left-hand side may be rewritten as∑
n,n′≤X

G(n)G(n′)
∑

1≤h1≤H ′
1Sg1(a1n+ b1+ h1)1Sgj (a1n′+ b1+ h1).

By the triangle inequality, it thus suffices to show that

∑
n,n′≤X

∣∣∣∣ ∑
1≤h1≤H ′

1Sg1(a1n+ b1+ h1)1Sg1(a1n′+ b1+ h1)

∣∣∣∣� A2

W 1/10 H ′X2.

To abbreviate notation we now write h = h1, g = g1, a = a1, b = b1. By the
Cauchy–Schwarz inequality, it suffices to show that

∑
n,n′≤X

∣∣∣∣ ∑
1≤h≤H ′

1Sg(an+ b+ h)1S ḡ(an′+ b+ h)
∣∣∣∣2� A4

W 1/5 (H
′)2 X2.
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Replacing n, n′ by an+ b, an′+ b respectively, it suffices to show that∑
n,n′

∣∣∣∣ ∑
1≤h≤H ′

1Sg(n+ h)1S ḡ(n′+ h)
∣∣∣∣2� A4

W 1/5 (H
′)2 X2

where we have extended 1Sg by zero to the negative integers. The left-hand side
can be rewritten as ∑

|h|<H ′
(bH ′c− |h|)

∣∣∣∣∑
n

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2,

and the claim follows from Proposition 5.3. �

Appendix A: Mean values of complex multiplicative functions
in short intervals

In this section we prove a complex variant of results in [Matomäki and Radziwiłł
2015] in the case that f is not pit pretentious. In particular, we show that the
mean value of a 1-bounded nonpretentious multiplicative function is small for most
short intervals:

Theorem A.1. Let f be a 1-bounded multiplicative function and let M( f ; X) be
as in (1-6). Then, for X ≥ h ≥ 10,

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

f (n)
∣∣∣∣2dx�exp(−M( f ; X))M( f ; X)+

(log log h)2

(log h)2
+

1
(log X)1/50 .

Actually, as in [Matomäki and Radziwiłł 2015] and earlier in this paper, one
gets better quantitative results if one first restricts to a subset of n with a typical
factorization. Let us first define such a subset S in this setting.

Let η ∈ (0, 1/6), and let X0 be a quantity with
√

X ≤ X0 ≤ X . (The results in
[Matomäki and Radziwiłł 2015] used the choice X0 = X , but for technical reasons
we will need a more flexible choice of this parameter.) Consider a sequence of
increasing intervals [Pj , Qj ], j ≥ 1 such that:

• Q1 ≤ exp(
√

log X0).

• The intervals are not too far from each other; precisely, for all j ≥ 2,

log log Qj

log Pj−1− 1
≤

η

4 j2 . (A-1)

• The intervals are not too close to each other; precisely, for all j ≥ 2,

η

j2 log Pj ≥ 8 log Qj−1+ 16 log j. (A-2)
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For example, given 0 < η < 1/6, the sequence of intervals [Pj , Qj ] defined in
Definition 2.1 can be verified to obey the above estimates if

exp(
√

log X0)≥ Q1 ≥ P1 ≥ (log Q1)
40/η

and if P1 is sufficiently large.
Let S be the set of integers X ≤ n ≤ 2X having at least one prime factor in each

of the intervals [Pj , Qj ] for j ≤ J , where J is chosen to be the largest index j such
that Qj ≤ exp((log X0)

1/2). We will establish the following variant of [Matomäki
and Radziwiłł 2015, Theorem 3].

Theorem A.2. Let f be a 1-bounded multiplicative function. Let S be as above
with η ∈ (0, 1/6). If [P1, Q1] ⊂ [1, h], then for all X > X (η) large enough and
all h ≥ 3,

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx� exp(−M( f ; X))M( f ; X)+

(log h)1/3

P1/6−η
1

+
1

(log X)1/50 .

The proof of Theorem A.2 proceeds as the proof of [Matomäki and Radziwiłł
2015, Theorem 3]. The first step is a Parseval bound:

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx�

∫ 1+i X/h1

1
|F(s)|2 |ds|+ max

T≥X/h1

X/h1

T

∫ 1+i2T

1+iT
|F(s)|2 |ds|.

This follows exactly in the same way as [Matomäki and Radziwiłł 2015, Lemma 14]
but there is no need to split the integral into two parts, and one can just work as for
V (x) there. Theorem A.2 now follows immediately from the following variant of
[Matomäki and Radziwiłł 2015, Proposition 1].

Proposition A.3. Let f be a 1-bounded multiplicative function. Let S be as above,
and let

F(s)=
∑

X≤n≤2X
n∈S

f (n)
ns .

Then, for any T ,∫ T

0
|F(1+ it)|2 dt

�

(
T

X/Q1
+ 1
)(
(log Q1)

1/3

P1/6−η
1

+ exp(−M( f ; X))M( f ; X)+
1

(log X)1/50

)
.

Proof. Since the mean value theorem gives the bound O(T/X +1), we can assume
T ≤ X/2 and M( f ; X)≥ 1.
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Now let t1 be the value of t which attains the minimum in

M( f ; X)= inf
|t |≤X

D(g, n 7→ nit
; X)2.

We split the integration into three ranges:

T0 = {0≤ t ≤ T : |t − t1| ≤ exp(M( f ; X))/M( f ; X)},

T1 = {0≤ t ≤ T : exp(M( f ; X))/M( f ; X)≤ |t − t1| ≤ (log X)1/16
},

T2 = {0≤ t ≤ T : |t − t1| ≥ (log X)1/16
}.

Notice that by the definition of t1, the triangle inequality and arguing as in (1-12),
for any |t | ≤ X with |t − t1| ≥ 1, and any ε > 0,

2D( f, pit
; X)≥ D( f, pit

; X)+D( f, pit1; X)≥ D(1, pi(t−t1))

≥

(
1
√

3
− ε

)√
log log X + O(1),

so that by Halasz’s theorem, for every |t | ≤ T ,

F(1+ it)� (log X)−1/16
+

1
1+ |t − t1|

.

In the region |t − t1| ≥ (log X)1/16, the above implies the following in exactly
the same way as [Matomäki and Radziwiłł 2015, Lemma 3].

Lemma A.4. Let X ≥ Q ≥ P ≥ 2. Let t1 be as above and let

G(s)=
∑

X≤n≤2X

f (n)
ns ·

1
#{p ∈ [P, Q] : p|n}+ 1

.

Then, for any t ∈ T2,

|G(1+ it)| �
log Q

(log X)1/16 log P
+ log X · exp

(
−

log X
3 log Q

log
log X
log Q

)
.

This was the only part in the proof [Matomäki and Radziwiłł 2015, Proposition 1]
that needed f to be real-valued, and thus we get∫

T2

|F(1+ it)|2 dt �
(

T
X/Q1

+ 1
)(
(log Q1)

1/3

P1/6−η
1

+
1

(log X)1/50

)
.

Using the estimate F(1+ it)� 1/|t − t1| for t ∈ T1 and, from Halasz’s theorem,
the estimate F(1+ it)� exp(−M( f ; X))M( f ; X) for t ∈ T0, we obtain∫

T0∪T1

|F(1+ it)|2 dt � exp(−M( f ; X))M( f ; X),

and the claim follows. �
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Proof of Theorem A.1. Let η = 1/12, P1 = (log h)480, Q1 = h, let Pj and Qj for
j ≥ 2 be as in Definition 2.1, and let S be as above. Then

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

f (n)
∣∣∣∣2dx≤

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx+

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n 6∈S

1
∣∣∣∣2dx .

The contribution from the first integral is acceptable by Theorem A.2. We rewrite
the second integrand as∣∣∣∣1h ∑

x≤n≤x+h
n 6∈S

1
∣∣∣∣= ∣∣∣∣1+ O(1/h)−

1
h

∑
x≤n≤x+h

n∈S

1
∣∣∣∣

≤

∣∣∣∣ 1
X

∑
X≤n≤2X

n∈S

1−
1
h

∑
x≤n≤x+h

n∈S

1
∣∣∣∣+ ∣∣∣∣ 1

X

∑
X≤n≤2X

n 6∈S

1
∣∣∣∣+ O(1/h),

and the claim follows from [Matomäki and Radziwiłł 2015, Theorem 3 with f = 1]
and Lemma 2.2. �

Appendix B: Counterexample to the uncorrected Elliott conjecture

In this appendix we present a counterexample to Conjecture 1.5. More precisely:

Theorem B.1 (counterexample). There exists a 1-bounded multiplicative function
g : N→ C such that ∑

p

1−Re(g(p)χ(p)p−it)

p
=∞ (B-1)

for all Dirichlet characters χ and t ∈ R (i.e., one has M(g;∞,∞) = ∞), but
such that ∣∣∣∣∑

n≤tm

g(n)g(n+ 1)
∣∣∣∣� tm (B-2)

for all sufficiently large m and some sequence tm going to infinity.

Proof. For each prime p, we choose g(p) from the unit circle S1
:= {z : |z| = 1} by

the following iterative procedure involving a sequence t1 < t2 < t3 < · · · :

(1) Initialize t1 := 100 and m := 1, and set g(p) := 1 for all p ≤ t1.

(2) Now suppose recursively that g(p) has been chosen for all p≤ tm . As the quan-
tities log p are linearly independent over the integers, the (continuous) sequence
t 7→ (t log p mod 1)p≤tm is equidistributed in the torus

∏
p≤tm T and, equiv-

alently, the sequence t 7→ (pit)p≤tm is equidistributed in the torus
∏

p≤tm S1.
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Thus one can find a quantity sm+1 > exp(tm) such that, for all p ≤ tm ,

pism+1 = g(p)
(

1+ O
(

1
t2
m

))
. (B-3)

(3) Set tm+1 := s2
m+1, and then set

g(p) := pism+1 (B-4)

for all tm < p ≤ tm+1. Now increment m to m+ 1 and return to step (2).

Clearly the tm go to infinity, so g(p) is defined for all primes p. We then define

g(n) := µ(n)2
∏
p|n

g(p), (B-5)

which is clearly a 1-bounded multiplicative function.
Suppose that n ≤ tm+1 is squarefree. Then n is the product of distinct primes less

than or equal to tm+1, including at most tm primes less than or equal to tm . From
(B-5) we then have

g(n)= nism+1

(
1+ O

(
1
t2
m

))O(tm)

= nism+1 + O
(

1
tm

)
.

If n is not squarefree, then g(n) of course vanishes. Thus, for t3/4
m+1 ≤ n ≤ tm+1− 1,

we have

g(n)g(n+ 1)= µ2(n)µ2(n+ 1)
(

n+ 1
n

)ism+1

+ O
(

1
tm

)
= µ2(n)µ2(n+ 1)+ O

(
sm+1

t3/4
m+1

)
+ O

(
1
tm

)
= µ2(n)µ2(n+ 1)+ O

(
1
tm

)
,

and the claim (B-2) then easily follows since the sequence µ2(n)µ2(n + 1) has
positive mean value.

Now we prove (B-1). From (B-4), we have∑
p

1−Re(g(p)χ(p)p−it)

p
≥

∑
tm<p≤tm+1

1−Re(χ(p)pi(sm+1−t))

p

≥

∑
exp((log tm+1)5/6)<p≤tm+1

1−Re(χ(p)pi(sm+1−t))

p

since exp((log tm+1)
5/6) ≥ exp((2tm)5/6) ≥ tm . We see as in (1-12) that the right-

hand side goes to infinity as m→∞ for any fixed χ , t , and the claim follows. �
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It is easy to see that the function g constructed in the above counterexample
violates (1-9), and so is not a counterexample to the corrected form of Conjecture 1.5.
It is also not difficult to modify the above counterexample so that the function g is
completely multiplicative instead of multiplicative, using the fact that most numbers
up to tm+1 have fewer than tm prime factors less than tm (counting multiplicity); we
leave the details to the interested reader.

Appendix C: An argument of Granville and Soundararajan

In this appendix we show the equivalence of the hypotheses (1-7) and (1-9) for
Elliott’s conjecture in the case that the multiplicative function gj0 is real. The key
lemma is the following estimate, essentially due to Granville and Soundararajan.

Lemma C.1. Let f :N→[−1, 1] be a multiplicative function, let x ≥ 100, and let
χ be a fixed Dirichlet character. For 1≤ |α| ≤ x , one has

D( f, n 7→ χ(n)niα
; x)≥

1
4

√
log log x + Oχ (1). (C-1)

When χ2 is nonprincipal, this holds for all |α| ≤ x.
If χ2 is principal (i.e., χ is a quadratic character), then, for |α| ≤ 1, one has

D( f, n 7→ χ(n)niα
; x)≥

1
3

D( f, χ; x)+ O(1). (C-2)

Proof. To establish (C-1), we notice that, by conjugation symmetry and the triangle
inequality,

D( f, n 7→ χ(n)niα
; x)=

1
2
(D( f, n 7→ χ(n)niα

; x)+D( f, n 7→ χ(n)n−iα
; x))

≥
1
2

D(n 7→ χ(n)n−iα, n 7→ χ(n)niα
; x)

=
1
2

(∑
p≤x

1−Reχ2(p)p2iα

p

)1/2

which implies the claim for |α| ≥ 1 or for nonprincipal χ2 by the zero-free (and
pole-free) region for Dirichlet L-functions (see (1-12) for a related argument).

To establish (C-2), notice first that since χ2 is principal, χ is real-valued which
together with the triangle inequality implies

D( f, n 7→ χ(n)niα
; x)= D( f χ, n 7→ niα

; x)≥ D(1, f χ; x)−D(1, n 7→ niα
; x).

Now D(1, n 7→ niα
; x) = D(1, n 7→ n2iα

; x)+ O(1) for |α| ≤ 1 since, from the
prime number theorem, D(1, n 7→ niα

; x)2 = log(1+|α| log x)+ O(1), so that the
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claim follows unless D(1, n 7→ n2iα
; x)≥ (2/3)D(1, f χ; x). But in the latter case,

the triangle inequality gives

2
3

D( f, χ; x)=
2
3

D(1, f χ; x)

≤ D(1, n 7→ n2iα
; x)

= D(n 7→ n−iα, n 7→ niα
; x)

≤ D( f χ, n 7→ n−iα
; x)+D( f χ; n 7→ niα

; x)

= 2D( f, n 7→ χ(n)niα
; x),

and the claim (C-2) follows. �

From this lemma, we see that if gj0 is a real 1-bounded multiplicative function,
then, for given Q, the condition (1-9) is equivalent to

D(gj0, χ; X)→∞

when X→∞ for all quadratic characters χ of modulus at most Q. But this follows
from (1-7). The converse implication is trivial.
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