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Families of nearly ordinary Eisenstein series
on unitary groups

Xin Wan

With an appendix by Kai-Wen Lan

We use the doubling method to construct p-adic L-functions and families of
nearly ordinary Klingen Eisenstein series from nearly ordinary cusp forms on
unitary groups of signature (r, s) and Hecke characters, and prove the constant
terms of these Eisenstein series are divisible by the p-adic L-function, following
earlier constructions of Eischen, Harris, Li, Skinner and Urban. We also make pre-
liminary computations for the Fourier–Jacobi coefficients of the Eisenstein series.
This provides a framework to do Iwasawa theory for cusp forms on unitary groups.

1. Introduction 1955
2. Background 1960
3. Eisenstein series and Fourier–Jacobi coefficients 1974
4. Local computations 1984
5. Global computations 2021
Appendix: Boundary strata of connected components in positive

characteristics, by Kai-Wen Lan 2035
Acknowledgements 2051
References 2052

A list of symbols can be found on page 2034.

1. Introduction

Let p be an odd prime. Let K be a CM field with the maximal totally real subfield F
such that [F : Q] = d. Suppose p is totally split at K. We fix an isomorphism
ιp := Cp ' C and a CM type 6∞, which means a set of d different embeddings
K→ C such that 6∞ ∪6c

∞
, where c means complex conjugation, is the set of all

embeddings of K into C. This determines a set of embeddings K ↪→ Cp using ιp,
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which we denote by 6p. Let r ≥ s ≥ 0 be integers. We often write a = r − s
and b= s. Let U(r, s) be the unitary group associated to the skew-Hermitian matrix 1b

ζ

−1b

 ,
where ζ is a diagonal matrix such that i−1ζ is positive definite.

Eischen et al. [≥ 2015] constructed the p-adic L-function for an irreducible
cuspidal automorphic representation of U(r, s) that is nearly ordinary at all primes
dividing p, which interpolates (the algebraic part of) critical values of the standard
L-function of the representation twisted by general CM characters at far-from-
center critical points. The main tool used in [loc. cit.] is the doubling method of
Piatetski-Shapiro and Rallis. This paper can be thought of as a continuation of
their work, but instead using a more general pullback formula of Shimura (which is
actually due to Garrett [1984; 1989] and is called the “Garrett map”) to construct
p-adic families of Klingen Eisenstein series on U(r + 1, s+ 1) from the original
automorphic representation.

The motivation for doing this is to provide a framework to generalize the im-
portant work of Skinner and Urban [2014] on the Iwasawa main conjectures for
GL2 to forms on general unitary groups. The general strategy is, starting with a
family of cuspforms on the unitary group U(r, s) and a family of CM characters, we
construct a family of Klingen Eisenstein series on the bigger group U(r + 1, s+ 1).
One tries to prove the constant terms of the Klingen Eisenstein family are divisible
by the standard p-adic L-function of the cuspforms on U(r, s) and, therefore, the
Eisenstein family is congruent to cuspidal families modulo this p-adic L-function.
Passing to the Galois side, such congruences enable us to construct elements in
the Selmer groups, proving one divisibility of the corresponding Iwasawa main
conjecture.

We have been able to use it to prove one divisibility of the Iwasawa main
conjectures for Hilbert modular forms and some kinds of Rankin–Selberg p-adic L-
functions; see [Wan 2013; 2015]. C. Skinner has recently been able to use the result
of [Wan 2015] to prove a converse of a theorem of Gross, Zagier and Kolyvagin
that states that, if the rank of the Selmer group of an elliptic curve is one and the
p-part of the Shafarevich–Tate group is finite, then the Heegner point is nontorsion
and the central L-value vanishes at order exactly one [Skinner 2014]. The first step
towards the plan outlined above is to construct the family of Klingen–Eisenstein
series and study the p-adic properties of its Fourier–Jacobi coefficients, which is
the main task of the present paper.

In [Eischen et al. ≥ 2015] the interpolation formulas are proved at all arithmetic
points. However, in this paper we are only able to understand the pullback Eisenstein
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sections in the “generic case” (to be defined in Definition 4.42; basically this puts
restrictions on the ramification of the form at primes dividing p). The reason is
that it seems difficult in general to describe the nearly ordinary Klingen Eisenstein
sections. Fortunately, since along a Hida family the set of forms that are “generic”
is Zariski-dense, these computations are enough to construct the whole Hida family
of Klingen Eisenstein series (similar to the [Skinner and Urban 2014] case). Thus,
we only work with a Hida family of forms instead of a single cusp form, due to this
“generic” condition. We remark that when s = 0, by working with forms of general
vector-valued weights, we are able to construct a class of the p-adic L-function
and Klingen Eisenstein family for a single form unramified at p (not necessarily
ordinary; see [Eischen and Wan 2014]).

Now we state the main results. Let K∞ be the maximal abelian pro-p-extension
of K unramified outside p. We write 0K = Gal(K∞/K). This is a free Zp-module
whose rank should be d + 1, assuming the Leopoldt conjecture. Take a finite
extension L over Qp. Let OL be the integer ring of L . Let Our

L be the completion of
the integer ring of the maximal unramified extension of L . We define3K=OL [[0K]].
Let κ > 4 be an integer and τ0 a Hecke character of K×\A×K whose infinite types are(
−

1
2κ,

1
2κ
)

at all infinite places. We have a 3K-valued family of Hecke characters
of K×\A×K containing τ0 as a specialization (to be made precise later). Let 3 be
the weight algebra for U(r, s), defined later, and I a normal domain containing 3
which is finite over 3. Let Iur be the normalization of an irreducible component
of I⊗̂OL Our

L . (In fact, for each such irreducible component we can make the following
construction.) Let�∞∈C6∞ be the CM period of the CM field K and�p ∈ (Z

ur
p )
6∞

be the p-adic period (we refer to [Hida 2004a] for the definition). We write �6∞∞
for the product of the d elements of �∞ and define �6∞p similarly. Throughout
this paper, we write

zκ = 1
2(κ − r − s− 1),

z′κ =
1
2(κ − r − s).

Theorem 1.1. Let f be an I-coefficient, nearly ordinary, cuspidal eigenform on
GU(r, s) such that the specialization fφ at a Zariski-dense set of “generic” arith-
metic points φ is classical and generates an irreducible automorphic representation
of U(r, s). Let 6 be a finite set of primes containing all primes dividing any entry
of ζ , or the conductor of f , or K.

In the case when s 6= 0, we make the assumptions TEMPERED, Proj f ∨ and DUAL,
or assumptions TEMPERED, Proj f and Proj f ∨ (to be defined in Section 5A).

Then:

(i) There is an element L6
f ,τ0
∈ Iur
[[0K]]⊗Iur FIur such that, for a Zariski-dense subset

of arithmetic points φ ∈ Spec Iur
[[0K]] (to be specified in Definition 4.42), we have
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that, if s = 0, then L6
f ,τ0
∈ Iur
[[0K]] and

φ(L6
f ,τ0
)= c′κ(z

′

κφ
)

(
(−2)−d(a+2b)(2π i)d(a+2b)κφ (2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κφ − j − 1)d

)−1

·C p
fφ

×

∏
v|p

(
|pt1+···+tr |−κφ/2× p−((r+1)/2)

∑r
j=1 t j

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )

)

×
L6(π̃ fφ , τ̄

c
φ, κφ − r)�rκφ6∞

p

�
rκφ6∞
∞

.

If s 6= 0, then

φ(L6
f ,τ0
)

= c′κ(z
′

κφ
)

(
(−2)−d(a+2b)(2π i)d(a+2b)κφ (2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κφ − j − 1)d

)−1

·C p
fφ

×

∏
v|p

(
p(r+s)(r+s−1)/2

· (p− 1)r+s(∏r
i=1 pti ·(r+s−i)

)
·
(∏s

i=1 ptr+i (r+s−i)
)
·
∏r+s

j=1(p j − 1)

× p−ss2(1+a+2b)/2 p−
∑r

j=1 t j (a+1)/2 p
∑s

i=1 tr+i (a+b)
|pt1+···+tr+s·s2 |

−κφ/2

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )

)

×
L6(π̃ fφ , τ̄

c
φ, κφ − r − s)

〈ϕ̃ord
φ , ϕφ〉

,

where the χi are defined in Definition 4.42 and τφ,p = (τ1, τ
−1
2 ) such that τi has

conductor psi with s2 > s1. Also,

C p
fφ =

∏
v-p, v∈6

τ(yv ȳvxv)|(yv ȳv)2xv x̄v|
−zκ′

φ
−(a+2b)/2

v Vol(Yv)

(the xv and yv are the x and y in Section 4C1 and Yv is defined in Definition 4.11.)
The cκ(z) and c′κ(z) are defined in Lemma 4.3 and κφ is the weight associated to the
arithmetic point φ. The ϕφ and ϕ̃ord

φ are the specialization of f and the f ∨ provided
by the assumption Proj f ∨ (notice that they are ordinary vectors with respect to
different Borel groups, e.g., when s = 0, the level group for ϕφ at p is with respect
to the upper-triangular Borel subgroup, while that for ϕ̃ord

φ is with respect to the
lower-triangular Borel subgroup). The factor

p(r+s)(r+s−1)/2
· (p− 1)r+s(∏r

i=1 pti ·(r+s−i)
)
·
(∏s

i=1 ptr+i (r+s−i)
)
·
∏r+s

j=1(p j − 1)



Families of nearly ordinary Eisenstein series on unitary groups 1959

is the volume of a set K̃ ′ defined in Definition 4.34 (this is smaller than the level
group for ϕ̃ord

φ ). The FIur is the fraction field of Iur. The τφ are specializations
of the family of CM characters containing τ0. The pti are conductors of some
characters defined in Definition 4.21. The λ̃β,v is defined in (17), whose p-order is∑b

i=1 ta+b+i (a+ b− κ).

(ii) There is a set of formal q-expansions E f ,τ0 :=
{∑

β ah
[g](β)q

β
}
([g],h) for∑

β ah
[g](β)q

β
∈ (Iur

[[0K]]⊗̂Zp R[g],∞)⊗Iur FIur , where R[g],∞ is some ring to be
defined later, in Section 5, and ([g], h) are p-adic cusp labels (Definition 2.6) such
that, for a Zariski-dense set of arithmetic points φ ∈ Spec I[[0K]], φ(E f ,τ0) is the
Fourier–Jacobi expansion of the holomorphic, nearly ordinary Klingen Eisenstein
series E( fKling,φ, zκφ ,−) we construct in Section 5C (see the interpolation formula
in Proposition 5.8). Here, fKling is a certain “Klingen section” to be defined there.

(iii) The terms at
[g](0) are divisible by L6

f ,τ0
·L6

τ̄ ′0
, where L6

τ̄ ′0
is the p-adic L-function

of a Dirichlet character to be defined in the text.

The assumption “TEMPERED” is included so that we can easily write down the
explicit range of absolute convergence for pullback formulas. It is not serious
and may be relaxed using ideas of [Harris 1984]. Besides the theorem, we also
make some preliminary computations for the Fourier–Jacobi coefficients for Siegel
Eisenstein series. This is crucial for analyzing the p-adic properties of the Klingen
Eisenstein series we construct. When doing arithmetic application we need to prove
that certain Fourier–Jacobi coefficient of this Eisenstein family is prime to the
p-adic L-function.

This paper is organized as follows. In Section 2 we recall various backgrounds.
In Section 3 we recall the notion of p-adic automorphic forms on unitary groups
and Fourier–Jacobi expansion. In Section 4 we recall the notion of Klingen and
Siegel Eisenstein series, the pullback formulas relating them and their Fourier–
Jacobi coefficients, and then do the local calculations. (This is the most technical
part of this paper.) We manage to take the Siegel sections so that, when we are
moving our Eisenstein datum p-adically, these Siegel Eisenstein series also move
p-adic analytically. The hard part is to choose the sections at p-adic places. At
non-Archimedean cases prime to p the choice is more flexible. (We might change
this choice whenever doing arithmetic applications; see [Wan 2013; 2015].) At the
Archimedean places we restrict ourselves to the parallel scalar weight case, which
is enough for doing Hida theory. In Section 5 we make the global calculations and
construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel
Eisenstein series from a larger unitary group. Finally, we include an Appendix by
Kai-Wen Lan for detailed proofs of some facts used for the p-adic q-expansion
principle. (This is not strictly needed in our construction. But we think it is good to
include it for completeness and for the convenience of readers.)
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2. Background

In this section we recall notations for holomorphic automorphic forms on unitary
groups, Eisenstein series and Fourier–Jacobi expansions.

2A. Notation. Suppose F is a totally real field such that [F :Q] = d and K is a
totally imaginary quadratic extension of F . For a finite place v of F or K, we usually
write $v for a uniformizer and qv for the cardinality of its residue field. Let c be
the nontrivial element of Gal(K/F). Let r and s be two integers with r ≥ s ≥ 0.
We fix an odd prime p that splits completely in K/Q. We fix i∞ : Q ↪→ C and
ι : C' Cp and write i p for ι ◦ i∞. Let 6∞ be the set of Archimedean places of F .
We take a CM type of K, still denoted by 6∞ (thus 6∞ t6c

∞
are all embeddings

K→ C, where 6c
∞
= {τ ◦ c | τ ∈6∞}).

We use ε to denote the cyclotomic character and ω the Teichmüller character.
We will often adopt the following notation: for an idele class character χ =

⊗
v χv ,

we write χp(x) =
∏
v|p χv(xv). For a character ψ of K×v or A×K , we often write

ψ ′ for the restriction to F×v or A×F . For a character τ of K× or A×K , we define τ c

by τ c(x)= τ(xc). (Note: we will write τ̄ (x) for the complex conjugation of τ(x)
while the “c” means taking complex conjugation for the source.)

If v is a prime of F with characteristic ` and dvOF,v = (dv), dv ∈ F×v is the
different of F/Q at v and, if ψv is a character of F×v and (cψ,v) ⊂ OF,v is the
conductor, then we define the local Gauss sums

g(ψv, cψ,vdv) :=
∑

a∈(OF,v/cψ,v)×
ψv(a)e

(
TrFv/Q`

(
a

cψ,vdv

))
,

where ` is the rational prime above v. If
⊗
ψv is an idele class character of A×F

then we set the global Gauss sum,

g
(⊗

ψv
)
:=

∏
v

ψ−1
v (cψ,vdv)g(ψ, cψ,vdv).

This is independent of all the choices of dv and Cψ,v . Also, if Fv 'Qp and (pt) is
the conductor for ψv , then we write g(ψv) := g(ψv, pt). We define the Gauss sums
for K similarly.

Let K∞ be the maximal abelian Zp-extension of K unramified outside p. Write
0K :=Gal(K∞/K) and GK the absolute Galois group of K. Define 3K :=Zp[[0K]].
For any finite extension A of Zp define3K,A := A[[0K]]. Let εK :GK→0K ↪→3×K
be the canonical character. We define 9K to be the composition of εK with the reci-
procity map of global class field theory, which we denote as recK :K

×
\A×K → Gab

K .
Here we used the geometric normalization of class field theory. We make the
corresponding definitions for F as well.
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Let Sm(R) be the set of matrices S ∈ Mm(R⊗OF OK) such that S = tS, where
conjugation is with respect to the second variable of R⊗OF OK. We write B = Bn

and N = Nn for the upper-triangular Borel subgroup and unipotent radical of the
group GLn . Let N opp or N− be the opposite unipotent radical of N . We define the
function eAQ

=
∏
v ev with ev the function on Q×v such that ev(xv)= e2π i ·{xv} for {xv}

the fractional part of xv and e∞(x)= e−2π i x . We will usually write η =
(
−1m

1m
)

if m is clear from the context.

2B. Unitary Groups. We define

θr,s =

 1s

ζ

−1s

 ,
where ζ is a fixed diagonal matrix such that i−1ζ is totally positive. Let V = V (r, s)
be the skew-Hermitian space over K with respect to this metric, i.e., Kr+s equipped
with the metric given by 〈u, v〉 := uθr,s

tv̄. We define algebraic groups GU(r, s)
and U(r, s) as follows: for any OF -algebra R, the R points are

GU(r, s)(R) := {g ∈ GLr+s(OK⊗OF R) | gθr,s g∗ = µ(g)θr,s, µ(g) ∈ R×}

(where g∗ = tḡ and µ : GU(r, s)→ Gm,F is called the similitude character) and

U(r, s)(R) := {g ∈ GU(r, s)(R) | µ(g)= 1}.

So the unitary group U(r, s) in this paper really means the unitary group with
respect to our fixed metric θr,s . Sometimes we write GUn and Un for GU(n, n)
and U(n, n). For two forms ϕ1, ϕ2 on U(r, s)(AF ), we define the inner product by

〈ϕ1, ϕ2〉 :=

∫
U(r,s)(F)\U(r,s)(AF )

ϕ1(g)ϕ2(g) dg,

where the measure is chosen so that U(r, s)(OFv )= 1 for all finite v and we take
the measure at Archimedean places as in [Shimura 1997, (7.14.5)].

We have the embedding

GU(r, s)×ResOK/OF Gm→ GU(r + 1, s+ 1),

g× x =

a b c
d e f
h l k

× x 7→


a b c
µ(g)x̄−1

d e f
h l k

x

 .
We write m(g, x) for the right-hand side. The image of the above map is the

Levi subgroup of the Klingen parabolic subgroup P of GU(r + 1, s + 1), which
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consists of matrices in GU(r + 1, s + 1) such that the off-diagonal entries of the
(s+1)-st column and the last row are 0. We denote this Levi subgroup by MP . We
also write NP for the unipotent radical of P . We also define B = B(r, s) to be the
standard Borel subgroup, consisting of matrices

g =
(

Ag Bg

Dg

)
,

where the blocks are with respect to the partition r + s and we require that Ag is
lower-triangular and Dg is upper-triangular.

We write −V (r, s)= V (s, r) for the Hermitian space whose metric is −θr,s . We
define some embeddings of GU(r + 1, s + 1)×GU(−V (r, s)) into some larger
unitary groups. These will be used in the doubling method. Recall we wrote a=r−s
and b = s at the beginning of the introduction; we define GU(r + s+ 1, r + s+ 1)′

to be the unitary similitude group associated to

1b

1
ζ

−1b

−1b

−1
−ζ

1b


and G(r + s, r + s)′ to be associated to

1b

ζ

−1b

−1b

−ζ

1b


.

We define an embedding

α :
{
g1× g2 ∈ GU(r + 1, s+ 1)×GU(−V (r, s))

∣∣ µ(g1)= µ(g2)
}

→ GU(r + s+ 1, r + s+ 1)′

by viewing g1 as a block matrix with respect to the partition s+ 1+ (r − s)+ s+ 1
(this means we use this partition to divide both the rows and the columns into blocks)
and g2 as a block matrix with respect to s+(r−s)+s, then we define α by requiring
the 1, 2, 3, 4, 5-th (blockwise) rows and columns of GU(r + 1, s+ 1) embed to the
1, 2, 3, 5, 6-th (blockwise) rows and columns of GU(r + s+ 1, r + s+ 1)′ and the
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1, 2, 3-rd (blockwise) rows and columns of GU(V (s, r)) embed to the 8, 7, 4-th
rows and columns (blockwise) of GU(r + s+ 1, r + s+ 1)′.

We also define an embedding

α′ :
{
g1× g2 ∈ GU(r, s)×GU(−V (r, s))

∣∣ µ(g1)= µ(g2)
}
→ GU(r + s, r + s)′

in a similar way to above: Consider GU(r, s) and GU(−V (r, s)) as block matrices
with respect to the partition s + (r − s)+ s. Put the 1, 2, 3-rd (blockwise) rows
and columns of the first GU(r, s) into the 1, 2, 4-th (blockwise) rows and columns
of GU(r + s, r + s)′ and put the 1, 2, 3-rd (blockwise) rows and columns of the
second GU(r, s) into the 6, 5, 4-th rows and columns of GU(r + s, r + s)′.

We also define isomorphisms

β : GU(r + s+ 1, r + s+ 1)′ −→∼ GU(r + s+ 1, r + s+ 1), g 7→ S−1gS,

and
β ′ : GU(r + s, r + s)′ −→∼ GU(r + s, r + s), g 7→ S′−1gS′,

where

S =



1b −
1
2 · 1b

1
1a −

1
2ζ

−1b
1
2 · 1b

1b
1
2 · 1b

1
−1a −

1
2ζ

−1b −
1
2 · 1b


(1)

and

S′ =



1b −
1
2 · 1b

1a −
1
2ζ

−1b
1
2 · 1b

1b
1
2 · 1b

−1a −
1
2ζ

−1b −
1
2 · 1b


. (2)

Remark 2.1 (about unitary groups). In order to have Shimura varieties for doing
p-adic modular forms and Galois representations, we need to use a unitary group
defined over Q. More precisely, consider V as a skew-Hermitian space over Q and
still write θr,s for the metric on it. Let T be a OK lattice that we use to define GU(r, s).
Then the correct unitary similitude group should be

GU0(r, s)(A) := {g ∈ GLOK⊗Z A(T ⊗Z A) | gθr,s g∗ = µ(g)θr,s, µ(g) ∈ A}

for any commutative ring A. This group is smaller than the one we defined before.
However, this group is not convenient for local computations, since we cannot treat
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the primes of F independently. So what we do (implicitly) is: For the analytic
construction, we write down forms on the larger unitary similitude group defined
above and then restrict to the smaller one. For the algebraic construction, we only
do the pullbacks for unitary (instead of similitude) groups.

We are going to fix some bases of the various Hermitian spaces. We let

y1, . . . , ys, w1, . . . , wr−s, x1, . . . , x s

be the standard basis of V such that the Hermitian forms is given above. Let
W be the span over K of w1, . . . , wr−s . Let X∨ = OKx1

⊕ · · · ⊕ OKx s and
Y =OK y1

⊕· · ·⊕OK ys . Let L be an OK-maximal lattice such that L p := L⊗Z Zp =∑r−s
i=1(OK⊗Z Zp)w

i . We define a OK-lattice M of V by

M := Y ⊕ L ⊕ X∨.

Let Mp = M ⊗Z Zp. A pair of sublattices Polp = {N−1, N 0
} of Mp is called an

ordered polarization of Mp if N−1 and N 0 are maximal isotropic direct summands
in Mp and they are dual to each other with respect to the Hermitian pairing. More-
over, we require that, for each v = wwc with w ∈ 6p, rank N−1

w = rank N 0
wc = r

and rank N−1
wc = rank N 0

w = s. The standard polarization of Mp is given by
M−1
v = Yw ⊕ Lw ⊕ Ywc and M0

v = Xwc ⊕ Lwc ⊕ Xw. We let −V be the Her-
mitian space V with the metric given by the negative of V . We let ỹ1, . . . , ỹs ,
w̃1, . . . , w̃r−s , x̃1, . . . , x̃ s be the corresponding basis. Let Kys+1

⊕Kx s+1 be a
2-dimensional Hermitian space with metric

(
−1

1). We define

W := V ⊕Kys+1
⊕Kx s+1

⊕ (−V ).

Let ϒ ∈ U(n+ 1, n+ 1)(Fp) be such that, for each v|p with v =wwc, where w is
in our p-adic CM type 6p, ϒw = S−1

w . We define another basis of W by

t(y1,..., ys+1,w1,...,wr−s,x1,...,x s+1, y1,..., ys,w1,...,wr−s,x1,...,x s)ϒ

=
t( y1,..., yr+s+1,x1,...,xr+s+1).

Then Y :=
⊕r+s+1

i=1 (OK⊗Z Zp) yi and X :=
⊕r+s+1

i=1 (OK⊗Z Zp)xi gives another
polarization (Y , X) of L p := Mp⊕ (−Mp)⊕OK ys+1

⊕OKx s+1.

2C. Automorphic forms.

2C1. Hermitian symmetric domain. Suppose r ≥ s > 0. Then the Hermitian
symmetric domain for G := GU(r, s) is

X+= Xr,s =

{
τ =

( x
y

) ∣∣∣ x ∈Ms(C
6), y ∈M(r−s)×s(C

6), i(x∗−x)>−iy∗θ−1 y
}
.
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For α ∈ GU(r, s)(F∞), where F∞ := F ⊗Q R, we write

α =

a b c
d e f
h l d


according to the standard basis of V together with the block decomposition with
respect to s+(r−s)+s. There is an action of α ∈G(F∞)+ (here the superscript +
means the component with positive similitude factor at all Archimedean places)
on Xr,s , defined by

α

(
x
y

)
=

(
ax + by+ c
gx + ey+ f

)
(hx + ly+ d)−1.

If rs=0, Xr,s consists of a single point, written x0, with the trivial action of G(F∞)+.
For an open compact subgroup U of G(AF, f ), put

MG(X+,U ) := G(F)+\X+×G(AF, f )/U,

where U is an open compact subgroup of G(AF, f ). We let

Cr,s
= C(6c)s ⊗C(6c)r−s

⊗C(6)s

and define a map cr,s on it by (u1, u2, u3)cr,s = (ū1, ū2, u3). We define the map
p(τ ) : V ⊗Q R' Cr,s by p(τ )v = vB(τ )cr,s . Let

B(τ )=

x∗ y∗ x
0 ζ y
1s 0 1s

 .
We define the automorphic factors κ(α, τ ) and µ(α, τ) by

αB(τ )= B(ατ)(κ(α, τ ), µ(α, τ ))

for α ∈ G(R) and τ ∈ X+. We sometimes write κr,s(α, τ ), µr,s(α, τ ) to emphasize
the group U(r, s). We define j (g, z) := det(µ(g, z)). For z ∈ Xr+1,s+1, we define
℘(z) ∈ Xr,s to be the lower-right r × s submatrix. For z1 =

(x1
y1

)
and z ∈

(x
y

)
, we

define η(z1, z)= i(x∗1 − x)− y∗1 (iζ
−1)y and δ(z1, z)= 2−s det(η(z1, z)).

2C2. Automorphic forms. We will mainly follow [Hsieh 2014] to define the space
of automorphic forms, with slight modifications. We define a cocycle

J : RF/QG(R)+× X+→ GLr (C
6)×GLs(C

6) := H(C),

(α, τ ) 7→ (κ(α, τ ), µ(α, τ )),
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where

κ(α, τ )=

(
h̄ tx + d̄ h̄ ty+ l θ̄

−θ̄−1(ḡ tx + f̄ ) −θ̄−1ḡ ty+ θ̄−1ēθ̄

)
and µ(α, τ)= hx + ly+ d

for τ =
(

x
y

)
and α =

a b c
g e f
h l d

 .
Let i be the point

(i1s
0

)
on the Hermitian symmetric domain for GU(r, s) (here 0

means the (r − s)× s matrix 0). Let GU(r, s)(R)+ be the subgroup of GU(r, s)(R)
whose similitude factor is totally positive. Let K+

∞
be the compact subgroup of

U(r, s)(R) stabilizing i and K∞ be the group generated by K+
∞

and diag(1r+s,−1s).
Then J : K+

∞
→ H(C), k∞ 7→ J (k∞, i), defines an algebraic representation of K+

∞
.

Definition 2.2. A weight k is defined by a set {kσ }σ∈6∞ where

kσ = (cr+s,σ , . . . , cs+1,σ ; c1,σ , . . . , cs,σ )

with c1,σ ≥ · · · ≥ cs,σ ≥ cs+1,σ + r + s ≥ · · · ≥ cs+r,σ + r + s for the ci,σ in Z.

Remark 2.3. Our convention is different from others in the literature. For example,
in [Hsieh 2014] the ar+1−i there for 1 ≤ i ≤ r is our −cs+i , and bs+1− j there for
1≤ j ≤ s is our c j . We let k ′ := (a1, . . . , ar ; b1, . . . , bs). We also note that if each
kσ = (0, . . . , 0; κ, . . . , κ) then Lk(C) is 1-dimensional with ρk(h)= detµ(h, i)κ .

For a weight k = (cr+s, . . . , cs+1; c1, . . . , cs), we define the representation of
GLr ×GLs with minimal weight −k by

Lk = { f ∈ OGLr ×GLs | f (tn+g)= k ′−1(t) f (g), t ∈ Tr × Ts, n+ ∈ Nr ×
tNs},

where OGLr ×GLs is the structure sheaf of the algebraic group GLr ×GLs ; see
[Hsieh 2014, Section 3]. The group action is denoted by ρk . We define the
functional/lk on Lk by evaluating at the identity and define a model Lk(C) of the
representation H(C) with the highest weight k as follows. The underlying space of
Lk(C) is Lk(C) and the group action is defined by

ρk(h)= ρk(
th−1), h ∈ H(C).

For a weight k, define ‖k‖ = {‖k‖σ }σ∈6 ∈ Z6 by

‖k‖σ := −cs+1,σ − · · ·− cs+r,σ + c1σ + · · ·+ cs,σ

and |k| ∈ Z6t6
c

by

|k| =
∑
σ∈6

(c1,σ + · · ·+ cs,σ ) · σ − (cs+1,σ + · · ·+ cs+r,σ ) · σ
c.
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Let χ be a Hecke character of K with infinite type |k|, i.e., the Archimedean part
of χ is given by

χ(z∞)=
(∏

σ

z(c1,σ+···+cs,σ )
σ · z−(cs+1,σ+···+cs+r,σ )

σ c

)
.

Definition 2.4. Let U be an open compact subgroup in G(AF, f ). We denote by
Mk(U,C) the space of holomorphic Lk(C)-valued functions f on X+×G(AF, f )

such that, for τ ∈ X+, α ∈ G(F)+ and u ∈U , we have

f (ατ, αgu)= µ(α)−‖k‖ρk(J (α, τ )) f (τ, g).

Now we consider automorphic forms on unitary groups in the adelic language.
Let i ∈ X+ and K+

∞
⊂ U(r, s)(F∞) be the stabilizer of i . The space of au-

tomorphic forms of weight k and level U with central character χ consists of
smooth and slowly increasing functions F : G(AF )→ Lk(C) such that, for every
(α, k∞, u, z) ∈ G(F)× K+

∞
×U × Z(AF ),

F(zαgk∞u)= ρk(J (k∞, i)−1)F(g)χ−1(z).

2C3. The group GU(s, r). Now we consider the unitary group GU(s, r) which has
the same Hermitian space as GU(r, s) but with the metric 〈 , 〉s,r := −〈 , 〉r,s . We
define the symmetric domain Xs,r = Xr,s but with the complex structure such that
a function is holomorphic on Xs,r if and only if it is holomorphic on Xr,s after
composition with the map

Xr,s→ Xs,r ,

(
x
y

)
7→

(
−x̄
−ȳ

)
.

We let Cs,r
= C(6)s ⊗ C(6)r−s

⊗ C(6c)s and define cs,r by (u1, u2, u3)cs,r =

(u1, u2, ū3). For GU(s, r), we define p(τ ) : V ⊗Q R' Cs,r by p(τ )v = vB(τ )cs,r .
We define the automorphic factors κs,r (α, τ ) and µs,r (α, τ ) by

αB(τ )= B(ατ)(µs,r (α, τ ), κs,r (α, τ )).

We define a weight k of U(r, s) such that k = (cr+1,σ , . . . , cr+s,σ ; c1,σ , . . . , cr,σ )σ

with c1,σ ≥ · · · ≥ cr,σ ≥ cr+1,σ + r + s ≥ · · · ≥ cr+s,σ + r + s. Using these we can
develop the theory of holomorphic automorphic forms on GU(s, r) similar to the
GU(r, s) case.

2C4. Embeddings of symmetric domains. We still follow [Shimura 1997]. Pick one
Archimedean place. Write z =

(x
y

)
∈ Xr+1,s+1, Xr,s , and w =

(u
v

)
∈ Xs,r . We define

the embeddings ι from Xr+1,s+1× Xs,r or Xr,s × Xs,r to Xr+s+1,r+s+1 or Xr+s,r+s
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by

ι(z, w)→

 x 0 0
y 1

2ζ 0
−ζ−1v∗y −v∗ −u∗

 .
(The ζ really means the image of ζ at this Archimedean place.) Let U = RT Q,

for

Q =



1 −
1
2

1
1 1

2ζ

1 1
2

−1 −
1
2

1
−1 −

1
2ζ

−1 1
2


, RT =



11+s

2−11r−s −2−11r−s

1s

A
−ζ−1

−ζ−1

1s


,

where A=
(

1s

1). (The U here is the Uv defined in [Shimura 1997, Section 22] and
other notations are slightly different.) We also define Q′ to be Q with the second
and sixth rows and columns (blockwise) deleted. Let

R′T ′ =



1s

2−11r−s −2−11t

1s

A′

−ζ−1
−ζ−1

1s


with A′ = 1s . Define U ′ = R′T ′Q′. Let ℘(z) be the lower-right r × s block for
z ∈ Xr+1,s+1 and ιU (z, w)= (U−1ι(z, w) as in [Shimura 1997, (22.2.1)]. If z =

(x
y

)
and z1=

(x1
y1

)
, let δ(z1, z)=2s−r det[i(x∗1−x)−y∗1θ

−1 y]. If we write [h]S for S−1hS
then we have [diag(g, g1)]SιU (z, w) = ιU (gz, g1w), [diag(g, g1)]S′ ιU ′(z, w) =
ιU ′(gz, g1w) and

j
(
[diag(g,g1)]S,ιU (z,w)

)
= δ(w,℘ (z))−1δ(gw,℘(g1z))det(γ ) jg(w) jg1(z). (3)

For a function g on Xr+s+1,r+s+1 or Xr+s,r+s , we define the pullback g◦ to be
the function on Xr+1,s+1× Xs,r or Xr,s × Xs,r given by

g◦(z, w)= δ(w,℘ (z))−k g(ιU (z, w)).

Definition 2.5. We define a scalar weight κ of U(s, r) to be the weight

(−κ, . . . ,−κ︸ ︷︷ ︸
s

; 0, . . . , 0︸ ︷︷ ︸
r

).
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2D. Shimura varieties and Igusa varieties. Fix a neat open compact subgroup K
of GU0(r, s)(A f ) whose p-component is GU0(r, s)(Zp); we refer to [Hsieh 2014]
for the definitions and arithmetic models of Shimura varieties over the reflex field E ,
which we denote by SG(K ). It parameterizes isomorphism classes of the quadruples
(A, λ, ι, η̄(�))/S , where � is a finite set of primes, (A, λ) is a polarized abelian
variety over some base ring S, λ is an orbit (see [Hsieh 2014, Definition 2.1])
of prime-to-� polarizations of A, ι is an embedding of OK into the endomor-
phism ring of A, and η̄(�) is some prime-to-� level structure of A. To each point
(τ, g) ∈ X+×G(AF, f ), we attach a quadruple as follows:

• The abelian variety Ag(τ ) := V ⊗Q R/M[g](M[g] := H1(Ag(τ ), Ẑp)).

• The polarization of A is given by the pullback of −〈 , 〉r,s on Cr,s to V ⊗Q R

via p(τ ).

• The complex multiplication ι is the OK-action induced by the action on V .

• The prime-to-p level structure η(p)g :M⊗Ẑp
'M[g] is defined by η(p)g (x)= g∗x

for x ∈ M .

We have a similar theory for Shimura varieties for GU(s, r) as well.
There is also a theory of compactifications of SG(K ), developed in [Lan 2008].

We let SG(K ) be a fixed choice of a toroidal compactification and S∗G(K ) the
minimal compactification.

We define some level groups at p, as in [Hsieh 2014, Section 1.10]. Recall that
G(A f )⊇ K =

∏
V Kv is an open compact subgroup such that K p = G(Zp) and let

6 be a finite set of primes including all primes above p such that Kv is spherical
for all v 6∈6. If we write gp =

( A
C

B
D

)
for the p-component of g, then define

K n
=

{
g ∈ K

∣∣∣∣ gp ≡

(
1r ∗

0 1s

)
mod pn

}
,

K n
1 = {g ∈ K | A ∈ Nr (Zp) mod pn, D ∈ N−s (Zp) mod pn, C = 0},

K n
0 = {g ∈ K | A ∈ Br (Zp) mod pn, D ∈ B−s (Zp) mod pn, C = 0}.

Now we recall briefly the notion of Igusa schemes over Ov0 (the localization of
the integer ring of the reflex field at the p-adic place v0 determined by ιp : C' Cp)
in [Hsieh 2014, Section 2]. Let V be the Hermitian space for U(r, s), M be a
standard lattice of V and Mp = M ⊗Z Zp. Let Polp = {N−1, N 0

} be a polarization
of Mp. The Igusa variety IG(K n) of level pn is the scheme representing the usual
quadruple for a Shimura variety together with

j : µpn ⊗Z N 0 ↪→ A[pn
],
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where A is the abelian variety in the quadruple. Note that the existence of j implies
that if p is nilpotent in the base ring then A must be ordinary. For any integer m> 0,
let Om := Ov0/pm .

Igusa schemes over SG(K ). To define p-adic automorphic forms one needs Igusa
schemes over SG(K ). We fix such a toroidal compactification and refer to [Hsieh
2014, Section 2.7.6] for the construction. We still denote it by IG(K n). Then,
over Om , IG(K n) is a Galois covering of the ordinary locus of the Shimura vari-
ety with Galois group

∏
v|p GLr (OF,v/pn)×GLs(OF,v/pn). We write IG(K n

0 )=

IG(K n)K n
0 and IG(K n

1 )= IG(K n)K n
1 over Om .

Cusps. Let 1 ≤ t ≤ s. We let Pt be the maximal parabolic subgroup of GU(r, s)
consisting of matrices which, in the block form with respect to t + (r + s− 2t)+ t ,
are of the form × × ×× ×

×

 .
Let G Pt be the unitary similitude group with respect to the skew-Hermitian space
for ζ . Let Yt be the OK span of {y1, . . . , yt

}. We define the set of cusp labels by

Ct(K ) := (GL(Yt)×G Pt (A f ))NPt (A f )\G(A f )/K .

This is a finite set. We write [g] for the class represented by g ∈ G(A f ). For
each such g whose p-component is 1, we define K g

Pt
= G Pt (A f ) ∩ gK g−1 and

write S[g] := SG Pt
(K g

Pt
) the corresponding Shimura variety for the group G P with

level group K g
Pt
). By the strong approximation we can choose a set C t(K ) of

representatives of Ct(K ) consisting of elements g = pk0 for p ∈ Pt(A
6
f ) and

k0
∈ K 0 for K 0 the spherical compact subgroup.

Definition 2.6 (p-adic cusps). As in [Hsieh 2014], each pair (g, h)∈Ct(K )×H(Zp)

can be regarded as a p-adic cusp, i.e., cusps of the Igusa tower.

Igusa schemes for unitary groups. We refer to [Hsieh 2014, Section 2.5] for the
notion of Igusa schemes for the unitary groups U(r, s) (not the similitude group). It
parameterizes quintuples (A, λ, ι, η̄(p), j)/S similar to the Igusa schemes for unitary
similitude groups but requiring λ to be a prime-to-p polarization of A (instead of an
orbit). In order to use the pullback formula algebraically we need a map of Igusa
schemes, given by

i
(
[(A!, λ!, ι1, η

p
!

K!, j1)], [(A2, λ2, ι2, η
p
2 K2, j2)]

)
= [(A1× A2, λ1× λ2, ι1, ι2, (η

p
1 × η

p
2 )K3, j1× j2)].
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Similar to [Hsieh 2014], we know that, taking the change of polarization into
consideration,

i([z, g], [w, h])= [ι(z, w), (g, h)ϒ]

(ϒ is as defined at the end of Section 2B).

2D1. Geometric modular forms. Let H =
∏
v|p(GLr ×GLs) and let N ⊂ H be∏

v|p(Nr×
tNs). To save notation we also write H =

∏
v|p GLr (OF,v)×GLs(OF,v)

and let N ⊂ H be
∏
v|p Nr (OF,v)×

tNs(OF,v). We define ω = e∗�G/SG(K ) for �
the sheaf of differentials on the universal semiabelian scheme G over the toroidal
compactification (see [Hsieh 2014, Section 2.7.2] for a brief discussion). Recall that
for v|p we have v = ww̄ in K with w ∈6p. Let ew and ew̄ be the corresponding
projections for Kv ' Kw×Kw̄; then ω = ewω⊕ ew̄ω. We also define

E+ := Isom(Or
SG(K )

, ewω),

E− := Isom(Os
SG(K )

, ew̄ω),

E := E+⊕E−.

This is an H -torsor over SG(K ). We can define the automorphic sheaf ωk=E×H Lk .
A section f of ωk is a morphism f : E→ Lk such that

f (x, hw)= ρk(h) f (x,ω), h ∈ H, x ∈ SG(K ).

2E. p-adic automorphic forms on unitary groups. Let R be a p-adic Zp-algebra
and let Rm := R/pm . Let Tn,m := IG(K n)/Rm . Define

Vn,m = H 0(Tn,m,OTn,m ),

Vk(K n
•
, Rm)= H 0(Tn,m/Rm

, ωk)
K n
• .

Let V∞,m = lim
−−→n Vn,m and V∞,∞ = lim

←−−m V∞,m . Define Vp(G, K ) := V N
∞,∞, the

space of p-adic modular forms. Let T = T (Zp)⊂ H and let 3T := Zp[[T ]]. The
Galois action of T on V N

∞,m makes the space of p-adic modular forms a discrete
3T -module.

Suppose n ≥ m. To each Rm-quintuple (A, j) of level K n , we can attach a
canonical basis ω( j) of H 0(A, �A). Therefore, we have a canonical isomorphism

H 0(Tn,m/Rm , ωk)' Vn,m ⊗ Lk(Rm)

given by

f 7→ f̂ (A, j)= f (A, j,ω( j)).

We call f̂ the p-adic avatar of f .
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Similarly, we can define an embedding of geometric modular forms into p-adic
modular forms by

f 7→ f̂ (A, j)= f (A,ω( j)).

We also define the morphism

βk : Vk(K n
1 , Rm)→ V N

n,m, f 7→ βk( f ) := lk( f̂ ).

We can also pass to the limit for m → ∞ to get the embedding of Vk(K n
1 , R)

into V N
∞,∞. We refer to [Hsieh 2014, Sections 3.8–3.9] for the definition of a Up

Hecke operator and define Hida’s ordinary projector

e := lim
n

U n!
p .

2F. Algebraic theory for Fourier–Jacobi expansions. We suppose s > 0 in this
subsection. Let X∨t = spanOK

{x1, · · · , x t
} and Yt = spanOK

{y1, . . . , yt
}. Let Wt be

the skew-Hermitian space spanOK
{yt+1, . . . , ys , w1, . . . , x t+1, . . . , x s

}. Let G0
t be

the unitary similitude group of Wt . Let [g] ∈Ct(K ) and KG Pt
=G Pt (A f )∩gK g−1

(we suppress the subscript [g] so as to not make the notation too cumbersome). Let
At be the universal abelian scheme over the Shimura variety SG Pt

(KG Pt
). Write

g∨ = kg∨i γ for γ ∈ G(F)+ and k ∈ K . Define X∨g = X∨t g∨i γ and Yg = Yt g∨i γ . Let
Xg = {y ∈ (Yt ⊗Q Z) · γ | 〈y, X∨g 〉 ∈ Z}. Then we have

i : Yg ↪→ Xg.

Let Z[g] be

HomOK(Xg,A∨t )×HomOK
(Yg,A

∨
t )

HomOK(Yg,At)

:= {(c, ct) | c(i(y))= λ(ct(y)), y ∈ Yg}.

Here the Hom are the obvious sheaves over the big étale site of SG Pt
, represented by

abelian schemes. Let c and c∨ be the universal morphisms over HomOK(Xg,A∨t )

and HomOK(Yg,At). Let NPt be the unipotent radical of Pt and Z(NPt ) be its center.
Let H[g] := Z(NPt (F))∩ gi K g−1

i . Note that if we replace the components of K at
v|p by K n

1 then the set H[g] remains unchanged. Let 0[g] := GLK(Yt)∩ gi K g−1
i .

Let PAt be the Poincaré sheaf over A∨t ×At/Z[g] and P×At
its associated Gm-torsor.

Let S[g] := Hom(H[g],Z). For any h ∈ S[g], let c(h) be the tautological map
Z[g]→A∨t ×At and L(h) := c(h)∗P×At

its associated Gm torsor over Z[g].
It is well known (see [Lan 2008, Chapter 7], for example) that the minimal

compactification S∗G(K ) is the disjoint union of boundary components corresponding
to each t=1, . . . , s. Let OCp be the valuation ring for Cp. The following proposition
is proved in [Lan 2008, Proposition 7.2.3.16]. Let [g] ∈Ct(K ) and x̄ be a OCp -point
of the t-stratum of S∗G(K )(1/E) corresponding to [g].
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Proposition 2.7. Let [g] and x̄ be as above. We write the subscript x̄ to mean
formal completion along x̄ . Let π be the map SG(K )→ S∗G(K ). Then π∗(OSG(K ))x̄

is isomorphic to {∑
h∈S+

[g]

H 0(Z[g],L(h))x̄qh
}0[g]

.

Here S+
[g] means the totally nonnegative elements in S[g]. The qh is just regarded as

a formal symbol and 0[g] acts on the set by a certain formula, which we omit.

For each [g] ∈Ct(K ) we fix an x̄ corresponding to it as above. Now we consider
the diagram

Tn,m
πn,m
−−−→ T ∗n,my y

SG(K )[1/E]Om

π
−−−→ S∗G(K )[1/E]Om ,

where Tn,m → T ∗n,m → S∗G(K )[1/E]Om is the Stein factorization. By [Lan 2013b,
Corollary 6.2.2.8], T ∗n,m is finite étale over S∗G(K )[1/E]Om . Take a preimage of x̄
in T ∗n,m , which we still denote by x̄ . (To do this, we have to extend the field of
definition to include the maximal unramified extension of L .) Then the formal
completion of the structure sheaf of T ∗n,m and S∗G(K )[1/E]Om at x̄ are isomorphic.
So, for any p-adic automorphic form f ∈ lim

←−−m lim
−−→n H 0(Tn,m,On,m) (with trivial

coefficients), we have a Fourier–Jacobi coefficient

FJ( f ) ∈
{ ∏

h∈S+
[g]

lim
←−−

m
lim
−−→

n
H 0(Z[g],L(h))x̄ · qh

}
[g]

(4)

by considering f as a global section of π∗n,m(OTn,m )= OT ∗n,m and pullback at the x̄ .
Note that if t = s = 1 then there is no need to choose the x̄ and pullback, since the
Shimura variety for G t is 0-dimensional (see [Hsieh 2014, (2.18)]). In application,
when we construct families of Klingen Eisenstein series in terms of Fourier–Jacobi
coefficients, we will take t = 1 and define

R[g],∞ :=
∏

h∈S+
[g]

lim
←−−

m
lim
−−→

n
H 0(Z[g],L(h))x̄ · qh . (5)

We remark that the map FJ is injective on the space of forms with prescribed
nebentypus at p (this is not needed for our result though). This can be seen using
the discussion in [Skinner and Urban 2014] right before Section 6.2 (which in turn
uses result of Hida [2011] about the irreducibility of Igusa towers for the group
SU(r, s)⊂U(r, s), the kernel of the determinant map). In particular, to see this injec-
tivity we need the fact that there is a bijection between the irreducible components
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of the generic and special fibers of S∗G(K ) (see [Lan 2008, Section 6.4.1]) and that
there is at least one cusp of any given genus on the ordinary locus of each irreducible
component. (Note that the signature is (r, s) for r ≥ s > 0 at all Archimedean
places, so there is at least one cusp in Ct(K ) at each irreducible component. Since
p splits completely in K, the cusps of minimal genus must be in the ordinary locus.
On the other hand by the construction of minimal compactification the closure of
the stratum of any genus r is the union of all stratums of genus less than or equal
to r . Note also that, since the geometric fibers of the minimal compactification are
normal, their irreducible components are also connected components. This implies
the existence of such a cusp on the ordinary locus.) See the Appendix for more
details.

3. Eisenstein series and Fourier–Jacobi coefficients

The materials of this section are straightforward generalizations of parts of [Skinner
and Urban 2014, Sections 9 and 11] and we use the same notations as there, so
everything in this section should work out the same as [Skinner and Urban 2014]
when specialized to the group GU(2, 2)/Q.

3A. Klingen Eisenstein series. Let gu(R) be the Lie algebra of GU(r, s)(R). Let
δ be a character of the Klingen parabolic subgroup P such that δa+2b+1

= δP (the
modulus character of P).

3A1. Archimedean picture. Let v be an infinite place of F , so that Fv ' R. Let
i ′ and i be the points on the Hermitian symmetric domain for GU(r, s) and
GU(r + 1, s + 1) which are

(i1s
0

)
and

(i1s+1
0

)
, respectively (here 0 means the

(r − s)× s or (r − s)× (s + 1) matrix 0). Let GU(r, s)(R)+ be the subgroup of
GU(r, s)(R) whose similitude factor is positive. Let K+

∞
and K+,′

∞
be the compact

subgroups of U(r + 1, s + 1)(R) and U(r, s)(R) stabilizing i or i ′, and let K∞
(resp. K ′

∞
) be the group generated by K+

∞
(resp. K+,′

∞
) and diag(1r+s+1,−1s+1)

(resp. diag(1r+s,−1s)).
Now let (π, H) be a unitary tempered Hilbert representation of GU(r, s)(R) with

H∞ the space of smooth vectors. We define a representation of P(R) on H∞ as
follows: for p = mn, where n ∈ NP(R) and m = m(g, a) ∈ MP(R) with a ∈ C×,
g ∈ GU(r + 1, s+ 1)(R), put

ρ(p)v := τ(a)π(g)v, v ∈ H∞.

We define a representation by smooth induction, I (H∞) := IndGU(r+1,s+1)(R)
P(R) ρ and

write I (ρ) for the space of K∞-finite vectors in I (H∞). For f ∈ I (ρ) we also
define, for each z ∈ C, a function

fz(g) := δ(m)(a+2b+1)/2+zρ(m) f (k), g = mk ∈ P(R)K∞,
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and an action of GU(r + 1, s+ 1)(R) on it by

(σ (ρ, z)(g) f )(k) := fz(kg).

Let (π∨, V ) be the irreducible (gu(R), K ′
∞
)-module given by π∨(x)=π(η−1xη)

for

η =

 1b

1a

−1b


and x in gu(R) or K ′

∞
(this does not mean the contragradient representation!). Let

ρ∨, I (ρ∨), I∨(H∞), σ(ρ∨, z) and I (ρ∨) be the representations and spaces defined
as above but with π and τ replaced by π∨ ⊗ (τ ◦ det) and τ̄ c. We are going to
define an intertwining operator. Let

w =

 1b+1

1a

−1b+1

 .
For any z ∈ C, f ∈ I (H∞) and k ∈ K∞, consider the integral

A(ρ, z, f )(k) :=
∫

NP (R)

fz(wnk) dn. (6)

This is absolutely convergent when Re(z) > 1
2(a + 2b + 1) and A(ρ, z,−) in

HomC(I (H∞), I∨(H∞)) intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).
Suppose π is the holomorphic discrete series representation associated to the

(scalar) weight (0, . . . , 0; κ, . . . , κ); then it is well known that there is a unique (up
to scalar) vector v ∈ π such that k · v = detµ(k, i)−κ (here µ means the second
component of the automorphic factor J instead of the similitude character) for
any k ∈ K+,′

∞
. Then, by the Frobenius reciprocity law, there is a unique (up to

scalar) vector ṽ ∈ I (ρ) such that k · ṽ = detµ(k, i)−κ ṽ for any k ∈ K+
∞

. We fix v
and multiply ṽ by a constant so that ṽ(1)= v. In π∨, π(w)v has the action of K+

∞

given by multiplying by detµ(k, i)−κ . We define w′ ∈ U(r + 1, s+ 1) by

w′ =


1b

1
1a

1b

−1

 .
There is a unique vector ṽ∨ ∈ I (ρ∨) such that the action of K+

∞
is given by

detµ(k, i)−κ and ṽ∨(w′)=π(w)v. Then, by uniqueness, there is a constant c(ρ, z)
such that A(ρ, z, ṽ)= c(ρ, z)ṽ∨.

Definition 3.1. We define Fκ ∈ I (ρ) to be the ṽ as above.
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3A2. Prime-to-p picture. Our discussion here follows [Skinner and Urban 2014,
§9.1.2]. Let (π, V ) be an irreducible, admissible representation of GU(r, s)(Fv)
which is unitary and tempered. Let ψ and τ be unitary characters of K×v such
that ψ is the central character for π . We define a representation ρ of P(Fv) as
follows. For p=mn, where n ∈ NP(Fv) and m =m(g, a) ∈ MP(Fv) with a ∈ K×v
and g ∈ GU(Fv), let

ρ(p)v := τ(a)π(g)v, v ∈ V .

Let I (ρ) be the representation defined by admissible induction, that is, I (ρ) =
IndGU(r+1,s+1)(Fv)

P(Fv) ρ. As in the Archimedean case, for each f ∈ I (ρ) and each z ∈C

we define a function fz on GU(r + 1, s+ 1)(Fv) by

fz(g) := δ(m)(a+2b+1)/2+zρ(m) f (k) for g = mk ∈ P(Fv)Kv

and a representation σ(ρ, z) of GU(r + 1, s+ 1)(Fv) on I (ρ) by

(σ (ρ, z)(g) f )(k) := fz(kg).

Let (π∨, V ) be given by π∨(g)=π(η−1gη). This representation is also tempered
and unitary. We denote by ρ∨, I (ρ∨) and (σ (ρ∨, z), I (ρ∨)) the representations
and spaces defined as above but with π and τ replaced by π∨⊗ (τ ◦ det) and τ̄ c,
respectively.

For f ∈ I (ρ), k ∈ Kv and z ∈ C, consider the integral

A(ρ, z, v)(k) :=
∫

NP (Fv)
fz(wnk) dn. (7)

As a consequence of our hypotheses on π this integral converges absolutely and uni-
formly for z and k in compact subsets of

{
z
∣∣Re(z)> 1

2(a+2b+1)
}
×Kv . Moreover,

for such z, A(ρ, z, f ) ∈ I (ρ∨), and the operator A(ρ, z,−) ∈HomC(I (ρ), I (ρ∨))
intertwines the actions of σ(ρ, z) and σ(ρ∨,−z).

For any open subgroup U ⊆ Kv, let I (ρ)U ⊆ I (ρ) be the finite-dimensional
subspace consisting of functions satisfying f (ku)= f (k) for all u ∈U . Then the
function{

z ∈ C
∣∣ Re(z) > 1

2(a+ 2b+ 1)
}
→ HomC(I (ρ)U , I (ρ∨)U ), z 7→ A(ρ, z,−)

is holomorphic. This map has a meromorphic continuation to all of C.
We finally remark that, when π and τ are unramified, there is a unique (up to

scalar) unramified vector Fρv ∈ I (ρ).

3A3. Global picture. We follow [Skinner and Urban 2014, §9.1.4]. Let (π, V )
be an irreducible, cuspidal, tempered automorphic representation of GU(r, s)(AF ).
This is an admissible (gu(R), K ′

∞
)v|∞×GU(r, s)(A f )-module which is a restricted

tensor product of local irreducible admissible representations. Let ψ , τ : A×K→ C×
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be Hecke characters such that ψ is the central character of π . Let τ =
⊗
τw and

ψ =
⊗
ψw be their local decompositions, w running over places of F . Define a

representation of (P(F∞)∩ K∞)× P(AF, f ) by putting

ρ(p)v :=
⊗
(ρw(pw)vw),

Let I (ρ) be the restricted product
⊗

I (ρw) with respect to the Fρw at those w at
which τw, ψw and piw are unramified. As before, for each z ∈ C and f ∈ I (ρ), we
define a function fz on GU(r + 1, s+ 1)(AF ) as

fz(g) :=
⊗

fw,z(gw),

where fw,z are defined as before, and an action σ(ρ, z) of

(gu, K∞)⊗GU(r + 1, s+ 1)(A f )

on I (ρ) by σ(ρ, z) :=
⊗
σ(ρw, z). Similarly, we define ρ∨, I (ρ∨) and σ(ρ∨, z),

but with the corresponding things replaced by their ∨, and we have global versions
of the intertwining operators A(ρ, f, z).

Definition 3.2. Let6 be a finite set of primes of F containing all the infinite places,
primes dividing p, and places where π or τ is ramified. Then we call the triple
D= (π, τ,6) an Eisenstein datum.

3A4. Klingen-type Eisenstein series on G. We follow [Skinner and Urban 2014,
§9.1.5] in this subsubsection. Let π , ψ and τ be as above. For f ∈ I (ρ) and z ∈ C,
there are maps from I (ρ) and I (ρ∨) to spaces of automorphic forms on P(AF )

given by
f 7−→ (g 7→ fz(g)(1)).

In the following we often write fz for the automorphic form on P(AF ) given by
this recipe.

If g ∈ GU(r + 1, s+ 1)(AF ), it is well known that

E( f, z, g) :=
∑

γ∈P(F)\G(F)

fz(γ g) (8)

converges absolutely and uniformly for (z, g) in compact subsets of{
z ∈ C

∣∣ Re(z) > 1
2(a+ 2b+ 1)

}
×GU(r + 1, s+ 1)(AF ).

Therefore, we get some automorphic forms which are called Klingen Eisenstein
series.

Definition 3.3. For any parabolic subgroup R of GU(r + 1, s + 1) and an auto-
morphic form ϕ, we define ϕR to be the constant term of ϕ along R, defined
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by

ϕR(g)=
∫

n∈NR(F)\NR(AF )

ϕ(ng) dn.

The following lemma is well known (see [Skinner and Urban 2014, Lemma 9.2]).

Lemma 3.4. Let R be a standard F-parabolic subgroup of GU(r + 1, s+ 1) (i.e,
R ⊇ B, where B is the standard Borel subgroup). Suppose Re(z) > 1

2(a+ 2b+ 1).
Then:

(i) If R 6= P then E( f, z, g)R = 0.

(ii) E( f, z,−)P = fz + A(ρ, f, z)−z .

3B. Siegel Eisenstein series on Gn.

3B1. Local picture. Our discussion in this subsection follows [Skinner and Urban
2014, §§11.1–11.3] closely. Let Q = Qn be the Siegel parabolic subgroup of GUn

consisting of matrices
( Aq

0
Bq
Dq

)
. It consists of matrices whose lower-left n×n block

is zero.
For a finite place v of F and a character χ of K×v , we let In(χ) be the space of

smooth Kn,v-finite functions (here Kn,v means the open compact group Gn(OF,v))
f : Kn,v→ C such that f (qk)= χ(det Dq) f (k) for all q ∈ Qn(Fv)∩ Kn,v , where

we write q as a block matrix q =
( Aq

0
Bq
Dq

)
. For z ∈ C and f ∈ I (χ), we also define

a function f (z,−) : Gn(Fv)→ C by f (z, qk) := χ(det Dq)|det Aq D−1
q |

z+n/2
v f (k)

for q ∈ Qn(Fv) and k ∈ Kn,v.
For f ∈ In(χ), z ∈ C and k ∈ Kn,v, the intertwining integral is defined by

M(z, f )(k) := χ̄n(µn(k))
∫

NQn (Fv)
f (z, wnrk) dr.

For z in compact subsets of
{
Re(z) > 1

2 n
}
, this integral converges absolutely and

uniformly, with the convergence being uniform in k. In this case it is easy to see
that M(z, f ) ∈ In(χ̄

c). A standard fact from the theory of Eisenstein series says
that this has a continuation to a meromorphic section on all of C.

Let U⊆ C be an open set. By a meromorphic section of In(χ) on U we mean a
function ϕ :U→ In(χ) taking values in a finite-dimensional subspace V ⊂ In(χ)

and such that ϕ :U→ V is meromorphic.
For Archimedean places there is a similar picture (see [loc. cit.]).

3B2. Global picture. For an idele class character χ =
⊗
χv of A×K , we define a

space In(χ) to be the restricted tensor product defined using the spherical vectors
f sph
v ∈ In(χv), f sph

v (Kn,v)= 1, at the finite places v where χv is unramified.
For f ∈ In(χ) we consider the Eisenstein series

E( f ; z, g) :=
∑

γ∈Qn(F)\Gn(F)

f (z, γ g).
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This series converges absolutely and uniformly for (z, g) in compact subsets of{
Re(z) > 1

2 n
}
×Gn(AF ). The automorphic form defined is called Siegel Eisenstein

series.
Let ϕ : U → In(χ) be a meromorphic section; then we put E(ϕ; z, g) =

E(ϕ(z); z, g). This is defined at least on the region of absolute convergence and it
is well known that it can be meromorphically continued to all z ∈ C.

Now, for f ∈ In(χ), z ∈ C and k ∈
∏
v-∞ Kn,v

∏
v|∞ K∞, there is a sim-

ilar intertwining integral M(z, f )(k) as above, but with the integration being
over NQn (AF ). This again converges absolutely and uniformly for z in compact
subsets of

{
Re(z) > 1

2 n
}
× Kn . Thus, z 7→ M(z, f ) defines a holomorphic section{

Re(z) > 1
2 n
}
→ In(χ̄

c). This has a continuation to a meromorphic section on C.
For Re(z) > 1

2 n, we have

M(z, f )=
⊗

v M(z, fv), f =
⊗

fv.

The functional equation for Siegel Eisenstein series is

E( f, z, g)= χn(µ(g))E(M(z, f );−z, g),

in the sense that both sides can be meromorphically continued to all z ∈ C and the
equality is understood as of meromorphic functions of z ∈ C.

3B3. The pullback formulas. Let χ be a unitary idele class character of A×K . Given
a unitary, tempered, cuspidal eigenform ϕ on GU(r, s) which is a pure tensor, we
formally define the integral

Fϕ( f ; z, g) :=
∫

U(r,s)(AF )

f (z, S−1α(g, g1h)S)χ̄(det g1g)ϕ(g1h) dg1,

f ∈ Ir+s+1(χ), g ∈ GU(r + 1, s+ 1)(AF ), h ∈ GU(r, s)(AF ), µ(g)= µ(h).

This is independent of h. (We suppress the χ in the notation for Fϕ since its choice
is implicitly given by f .) We also formally define

F ′ϕ( f ; z, g) :=
∫

U(r,s)(AF )

f (z, S′−1α(g, g1h)S′)χ̄(det g1g)ϕ(g1h) dg1,

f ∈ Ir+s(χ), g ∈ GU(r, s)(AF ), h ∈ GU(r, s)(AF ), µ(g)= µ(h).

The pullback formulas are the identities in the following proposition.

Proposition 3.5. Let χ be a unitary idele class character of A×K .

(i) If f ∈ Ir+s(χ), then Fϕ( f ; z, g) converges absolutely and uniformly for (z, g)
in compact sets of {Re(z) > r + s}×GU(r, s)(AF ) and, for any h ∈ GU(r, s)(AF )
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such that µ(h)= µ(g),∫
U(r,s)(F)\U(r,s)(AF )

E( f ; z, S′−1α(g, g1h)S′)χ̄(det g1h)ϕ(g1h) dg1

= F ′ϕ( f ; z, g). (9)

(ii) If f ∈ Ir+s+1(χ), then Fϕ( f ; z, g) converges absolutely and uniformly for
(z, g) in compact sets of

{
Re(z) > r + s+ 1

2

}
×GU(r + 1, s+ 1)(AF ) and, for any

h ∈ GU(r, s)(AF ) such that µ(h)= µ(g),∫
U(r,s)(F)\U(r,s)(AF )

E( f ; z, S−1α(g, g1h)S)χ̄(det g1h)ϕ(g1h) dg1

=

∑
γ∈P(F)\G(r+1,s+1)(F)

Fϕ( f ; z, γ g), (10)

with the series converging absolutely and uniformly for (z, g) in compact subsets of{
Re(z) > r + s+ 1

2

}
×GU(r + 1, s+ 1)(AF ).

Proof. The global integral Fϕ and F ′ϕ can be written as a product of local integrals.
The absolute convergence of local integrals for F ′ϕ is proved in [Lapid and Rallis
2005, Lemma 2]. The absolute convergence for the global integral F ′ϕ follows
from this and the explicit computations in [Lapid and Rallis 2005] at all unramified
places, together with the assumption that ϕ is tempered. The absolute convergence
for Fϕ is proved in the same way. Then part (i) is proved by Piatetski-Shapiro and
Rallis [Gelbart et al. 1987] and (ii) is a straightforward generalization by Shimura
[1997], which is in turn due to earlier works of Garrett [1984; 1989]. Both are
straightforward consequences of the double coset decompositions in [Shimura 1997,
Propositions 2.4 and 2.7]. �

3C. Fourier–Jacobi expansion.

3C1. Fourier–Jacobi expansion. We will usually write eA(x) = eAQ
(TrAF/AQ

x)
for x ∈ AF . For any automorphic form ϕ on GU(r, s)(AF ), β ∈ Sm(F) for m ≤ s.
We define the Fourier–Jacobi coefficient at g ∈ GU(r, s)(AF ) as

ϕβ(g)=
∫

Sm(F)\Sm(AF )

ϕ


1s 0

S 0
0 0

0 1r−s 0
0 0 1s

 g

 eA(−Tr(βS)) d S.

In fact, we are mainly interested in two cases: m = s, or r = s and arbitrary m ≤ s.
In particular, suppose G =Gn =GU(n, n), 0≤m ≤ n are integers, and β ∈ Sm(F).
Let ϕ be a function on G(F)\G(A). The β-th Fourier–Jacobi coefficient ϕβ of ϕ
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at g is defined by

ϕβ(g) :=
∫
ϕ

1n
S 0
0 0
1n

 g

 eA(−TrβS) d S.

Now we prove a useful formula on the Fourier–Jacobi coefficients for Siegel
Eisenstein series.

Definition 3.6. Put

Z :=


1n

z 0
0 0

0n 1n

 ∣∣∣∣ z ∈ Sm(K)

 ,

V :=




1m x z y
1n−m y∗ 0

1m0n
−x∗ 1n−m

 ∣∣∣∣ x, y ∈ Mm(n−m)(K), z− xy∗ ∈ Sm(K)

 ,

X :=




1m x
0n1n−m

1m0n
−x∗ 1n−m

 ∣∣∣∣ x ∈ Mm(n−m)(K)

 ,

Y :=


1n

z y
y∗ 0

0n 1n

 ∣∣∣∣ y ∈ Mm(n−m)(K)

 .
From now on we will usually write wn for

(
−1n

1n
)
.

Proposition 3.7. Let f be in In(τ ) and suppose β ∈ Sm(F) is totally positive. If
E( f ; z, g) is the Siegel Eisenstein series on GUn defined by f for some Re(z)
sufficiently large, then the β-th Fourier–Jacobi coefficient Eβ( f ; z, g) satisfies

Eβ( f ; z, g)

=

∑
γ∈Qn−m(F)\GUn−m(F)

∑
y∈Y

∫
Sm(A)

f

wn

1n
S y
tȳ 0
1n

αn−m(1, γ )g

eA(−TrβS) d S,

where

αn−m(γ )=


1

D C
1

B A


if g1 =

( A
C

B
D

)
, where A, B, C and D are (n−m)× (n−m) matrices.
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Proof. We follow [Ikeda 1994, Section 3]. Let H be the normalizer of V in G.
Then

Gn(F)=
m⊔

i=1

Qn(F)ξi H(F)

for

ξi :=


0m−i 0 −1m−i 0
0 1n−m+i 0 0
1m−i 0 0m−i 0
0 0n−m+i 0 1n−m+i

 .
Unfolding the Eisenstein series, we get

Eβ( f ; z, g)=
∑
i>0

∑
γ∈Qn(F)\Qn(F)ξi H(F)

∫
f

γ
1n

S 0
0 0
1n

 g

 eA(−Tr(βS)) d S

+

∑
γ∈Qn(F)\Qn(F)ξ0 H(F)

∫
f

γ
1n

S 0
0 0
1n

 g

 eA(−Tr(βS)) d S.

By [Ikeda 1994, Lemma (3.1)] (see [ibid., p. 628]), the first term vanishes. Also,
we have [loc. cit.]

Qn(F)\Qn(F)ξ0 H(F)= ξ0 Z(F)X (F)Qn−m(F)\Gn−m(F)

= ξ0 X (F) · Qn−m(F)\Gn−m(F) · Z(F)

= wnY (F)Sm(F)wn−m Qn−m(F)\Gn−m(F)

(note that Sm commutes with X and Gn−m). So

Eβ( f ; z, g)=
∑

γ∈Qn−m(F)\Gn−m(F)

∑
y∈Y (F)

∫
Sm(A)

f

wn

1n
S y
tȳ 0
1n

αn−m(1, γ )g


×eA(−Tr(βS)) d S

Note that the final integral is essentially a product of local ones. �

Now we record some useful formulas:

Definition 3.8. If gv ∈ Un−m(Fv) and x ∈ GLm(Kv), then define

FJβ( fv; z, y, g, x)

=

∫
Sm(Fv)

f

wn

1n
S y
tȳ 0
1n

α(diag(x, tx̄−1), g)

 eFv (−TrβS) d S,
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where

α(g1, g2)=


A B

D′ C ′

C D
B ′ A′

 if g1 =

(
A B
C D

)
, g2 =

(
A′ B ′

C ′ D′

)
.

We also define

fv,β,z(g) := f
(

z, wn

(
1n S

1n

)
g
)

ev(−TrβS) d S.

Since1n
S X
tX

1n




1m

Ā−1

1m

B Ā−1 A

=


1m X B Ā−1

Ā−1

1m

B Ā−1 A




1n
S− X B tX X A

Ā tX

1n

 ,
it follows that:

FJβ

(
f ; z, X,

(
A B Ā−1

Ā−1

)
g, Y

)
= τ c

v (det A)−1
|det AĀ|z+n/2

v ev(−Tr( tXβX B))FJβ( f ; z, X A, g, Y ).

Also, we have

FJβ( f ; z, y, g, x)= τv(det x)|det x x̄ |−(z+n/2−m)
A FJ tx̄βx( f ; z, x−1 y, g, 1).

3C2. Weil representations. We define the Weil representations which will be used
in calculating local Fourier–Jacobi coefficients in the next section.

The local set-up. Let v be a place of F . Let h ∈ Sm(Fv), det h 6= 0. Let Uh be
the unitary group of this metric and denote by Vv the corresponding Hermitian
space. Let Vn−m := K(n−m)

v ⊕K(n−m)
v := Xv ⊕ Yv be the skew-Hermitian space

associated to U(n − m, n − m). Let W := Vv ⊗Kv
Vn−m,v. Then (−,−) :=

TrKv/Fv (〈−,−〉h ⊗Kv
〈−,−〉n−m) is a Fv linear pairing on W that makes W into

a 4m(n−m)-dimensional symplectic space over Fv. The canonical embedding of
Uh ×Un−m into Sp(W ) realizes the pair (Uh,Un−m) as a dual pair in Sp(W ). Let
λv be a character of K×v such that λv|F×v = χ

m
K/F,v. It is well known (see [Kudla

1994]) that there is a splitting Uh(Fv)×Un−m(Fv) ↪→Mp(W, Fv) of the metaplectic
cover Mp(W, Fv)→ Sp(W, Fv) determined by the character λv. This gives the
Weil representation ωh,v(u, g) of Uh(Fv) × Un−m(Fv), where u ∈ Uh(Fv) and
g ∈Un−m(Fv), via the Weil representation of Mp(W, Fv) on the space of Schwartz
functions S(Vv ⊗Kv

Xv). Moreover, we write ωh,v(g) to mean ωh,v(1, g). For
X ∈Mm×(n−m)(Kv), we define 〈X, X〉h := tXβX (note this is an (n−m)×(n−m)
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matrix). We record here some useful formulas for ωh,v which are generalizations
of the formulas in [Skinner and Urban 2014, Section 10]:

• ωh,v(u, g)8(X)= ωh,v(1, g)8(u−1 X).

• ωh,v(diag(A, t Ā−1))8(X)= λ(det A)|det A|K8(X A).

• ωh,v(r(S))8(x)=8(x)ev(Tr〈X, X〉h S).

• ωh,v(η)8(x)= |det h|v
∫
8(Y )ev(TrKv/Fv (Tr〈Y, X〉h)) dY .

Global setup. Let h ∈ Sm(F) be positive definite. We can define global versions of
Uh , GUh , X , Y , W , and (−,−), analogously to the local case. Fixing an idele class
character λ=

⊗
λv of A×K/K

× such that λ|F× = χm
K/F , the associated local splitting

described above then determines a global splitting Uh(AF )×U1(AF ) ↪→Mp(W,AF )

and hence an action ωh := ⊗ωh,v of Uh(AF )× U1(AF ) on the Schwartz space
S(VAK ⊗K X).

4. Local computations

In this section we do the local computations for Klingen Eisenstein sections real-
ized as the pullbacks of Siegel Eisenstein sections. We will compute the Fourier
and Fourier–Jacobi coefficients for the Siegel sections and the pullback Klingen
Eisenstein sections.

4A. Archimedean computations. Let v be an Archimedean place of F .

4A1. Fourier coefficients.

Definition 4.1. fκ,n(z, g)= Jn(g, i1n)
−κ
|Jn(g, i1n)|

κ−2z−n.

Now we recall [Skinner and Urban 2014, Lemma 11.4]. Let Jn(g, i1n) :=

det(Cgi1n + Dg) for g =
( Ag

Cg

Bg
Dg

)
.

Lemma 4.2. Suppose β ∈ Sn(R). Then the function z 7→ fκ,β(z, g) has a meromor-
phic continuation to all of C. Furthermore, if κ ≥ n then fκ,n,β(z, g) is holomorphic
at zκ := 1

2(κ − n) and, for y ∈ GLn(C), fκ,n,β(zκ , diag(y, tȳ−1))= 0 if detβ ≤ 0,
while, if detβ > 0, then

fκ,n,β(zκ , diag(y, tȳ−1))

=
(−2)−n(2π i)nκ(2/π)n(n−1)/2∏n−1

j=0(κ − j − 1)!
ev(i Tr(βy tȳ)) det(β)κ−n det ȳκ .

4A2. Pullback sections. Now we assume that our π is the holomorphic discrete
series representation associated to the (scalar) weight (0, . . . , 0; κ, . . . , κ) and let
ϕ be the unique (up to scalar) vector such that the action of K+,

′

∞
(see Section 3A)

is given by detµ(k, i)−κ . Recall also that in Section 3A we defined the Klingen
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section Fκ(z, g) (denoted Fκ ). Recall we have defined S and S′ in equations (1)
and (2). Let

i :=


1
2 i1b

i
1
2ζ

1
2 i1b

 or

1
2 i1b

1
2ζ

1
2 i1b


be the distinguished point in the symmetric domain for GU(n, n) or GU(n+1, n+1),
for n = a+ 2b. We define Archimedean sections to be

fκ(g)= Jn+1(g, i)−κ |Jn+1(g, i)|κ−2z−n−1

and
f ′κ(g)= Jn(g, i)−κ |Jn(g, i)|κ−2z−n

and the pullback sections on GU(a+ b+ 1, b+ 1) and GU(a+ b, a) to be

Fκ(z, g) :=
∫

U(a+b,b)(R)
fκ(z, S−1α(g, g1)S)τ̄ (det g1)π(g1)ϕ dg1

and

F ′κ(z, g) :=
∫

U(a+b,b)(R)
f ′κ(z, S′−1α(g, g1)S′)τ̄ (det g1)π(g1)ϕ dg1.

Lemma 4.3. The integrals Fκ and F ′κ are absolutely convergent for Re(z) suffi-
ciently large and, for such z, we have

(i) Fκ(z, g)= cκ(z)Fκ,z(g);

(ii) F ′κ(z, g)= c′κ(z)π(g)ϕ;

where

c′κ(z, g)=2ν |det ζ |bv


π (av+bv)bv0bv

(
z+ 1

2(n+ κ)− av − bv
)

×0bv
(
z+ 1

2(n+ k)
)−1 if b > 0,

1 otherwise.

and cκ(z, g) = c′κ
(
z + 1

2 , g
)
. Here 0m(s) := πm(m+1)/2∏m−1

k=0 0(s − k) and ν :=
(a+ 2b)db (recall that d = [F :Q]).

Proof. See [Shimura 1997, Propositions 22.2 and A2.9]. Note that the action
of (β, γ ) ∈ U(r, s)×U(s, r) is given by (β ′, γ ′), defined there. Taking this into
consideration, our conjugation matrix S is Shimura’s S times 6−1 (with notation
as there), which is defined in (22.1.2) in [Shimura 1997]. Also our result differs
from [Skinner and Urban 2014, Lemma 11.6] by a power of 2, since we are using a
different S here. �
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4A3. Fourier–Jacobi coefficients. We write FJβ,κ for the Fourier–Jacobi coefficient
defined in Definition 3.8 with fv chosen as fκ,n .

Lemma 4.4. Let zκ = 1
2(κ − n), β ∈ Sm(R), m < n and detβ > 0. Then:

(i) FJβ,κ(zκ , x, η, 1)= fκ,m,β
(
zκ + 1

2(n−m), 1
)
e(i Tr( tXβX)).

(ii) If g ∈Un−m(R), then

FJβ,κ(zκ , X, g, 1)= e(i Trβ)cm(β, κ) fκ−m,n−m(zκ , g′)wβ(g′)8β,∞(x),

where

g′ =
(

1n

−1n

)
g
(

1n

1n

)
,

ct(β, κ)=
(−2)−t(2π i)tκ(2/π)t (t−1)/2∏t−1

j=0(κ − j − 1)
detβκ−t

and 8β,∞(x)= e−2π Tr(〈x,x〉β ).

Proof. Our proof is similar to [Skinner and Urban 2014, Lemma 11.5]. For (i) we first
assume that m ≤ 1

2 n; then there is a matrix U ∈Un−m such that XU = (0, A) for A
an m×m positive semidefinite Hermitian matrix. It follows that FJβ,κ(z, X, η, 1)=
FJβ,κ(z, (0, A), η, 1) and e(iT r( tXβX)) = e(i Tr(U−1 tXβXU )), so we are re-
duced to the case when X = (0, A).

Let C be an m×m positive definite Hermitian matrix defined by C =
√

A2+ 1.
(Since A is positive semidefinite Hermitian, this C exists by linear algebra.) We
have

1n

A

A
1n

=


C
1

C
AC−1 C−1

1
AC−1 C−1





C−1 C−1 A
1

C−1 C−1 A
−C−1 AC−1

1
−C−1 A C−1


.

Write k(A) for the second matrix in the right of the above, which belongs to K+n,∞;
then, as in [Skinner and Urban 2014, Lemma 11.5],

wn

1n
S X
tX

1n

=


C−1

1
× × C−1

× × ×

× × ×

× × ×

C
1

× × C


wn


U−1SU−1

1n

1n

 k(A).
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Thus,

FJβ,κ(zκ , (0, A), η, 1)= (det C)2m−2κ FJβ ′,κ(zκ , 0, η, 1), β ′ = CβC

= (det C)2m−2κ fκ,m,β ′
(
zκ + 1

2(n−m), 1
)

= fκ,m,β
(
z+ 1

2(n−m), 1
)
e(i Tr(CβC −β)).

But

e(i Tr(CβC −β))= e(i Tr(C2β −β))= e
(
i Tr((C2

− 1)β)
)

= e(i Tr(A2β))= e(i Tr(AβA)).

This proves part (i).
Part (ii) is proved completely the same as [Skinner and Urban 2014, Lemma 11.5].
In the case when m > 1

2 n, we proceed similarly as in [Skinner and Urban 2014,
Lemma 11.5], replacing a and u there by corresponding block matrices just as
above. We omit the details. �

4B. Finite primes, unramified case.

4B1. Pullback integrals.

Lemma 4.5. Suppose π , ψ and τ are unramified and ϕ ∈ π is a new vector. If
Re(z) > 1

2(a+ b) then the pullback integral converges and

Fϕ( f sph
v ; z, g)=

L(π̃, τ̄ c, z+ 1)∏a+2b−1
i=0 L(2z+ a+ 2b+ 1− i, τ̄ ′χ i

K)
Fρ,z(g),

where Fρ,z is the spherical section taking value ϕ at the identity and

Fϕ( f sph
v ; z, g)=

L
(
π̃ , τ̄ c, z+ 1

2

)∏a+2b−1
i=0 L(2z+ a+ 2b− i, τ̄ ′χ i

K)
π(g)ϕ.

This is computed in [Lapid and Rallis 2005, Proposition 3.3].

4B2. Fourier–Jacobi coefficients. Let v be a prime of F not dividing p and τ a
character of K×v . For f ∈ In(τ ) and β ∈ Sm(Fv), 0 ≤ m ≤ n, we define the local
Fourier–Jacobi coefficient to be

fβ(z; g) :=
∫

Sm(Fv)
f

z, wn

1n
S 0
0 0
1n

 g

 ev(−TrβS) d S.

We first record straightforward generalizations of [Skinner and Urban 2014,
Lemmas 11.7 and 11.8] to any fields [Shimura 1997, Propositions 18.14 and 19.2].
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Lemma 4.6. Let β ∈ Sn(Fv) and let r := rank(β). Then, for y ∈ GLn(Kv),

f sph
v,β (z, diag(y, tȳ−1))= τ(det y)|det y ȳ|−z+n/2

v D−n(n−1)/4
v

×

∏n−1
i=r L(2z+ i − n+ 1, τ̄ ′χ i

K)∏n−1
i=0 L(2z+ n− i, τ̄ ′χ i

K)
hv, t ȳβy(τ̄

′($)q−2z−n
v ),

where hv, t ȳβy ∈ Z[X ] is a monic polynomial depending on v and tȳβy but not on τ .
If β ∈ Sn(OF,v) and detβ ∈ O×F,v, then we say that β is v-primitive and, in this
case, hv,β = 1.

Lemma 4.7. Suppose v is unramified in K. Let β ∈ Sm(Fv) with detβ 6= 0 and
let β ∈ Sm(OFv ) and let λ be an unramified character of K×v such that λ|F×v = 1.
If β ∈ GLm(OFv ) then, for u ∈ Uβ(Fv),

FJβ( f sph
n ; z, x, g, u)= τ(det u)|det uū|−z+1/2

v

f sph
n−m(z, g)ωβ(u, g)80(x)∏m−1
i=0 L(2z+ n− i, τ̄ ′χ i

K)
.

4C. Prime-to-p ramified case.

4C1. Pullback integrals. Again let v be a prime of F not dividing p. We fix
some x and y in K which are divisible by some high power of $v (which can be
made precise from the proof of the following two lemmas). (When we are moving
things p-adically, the x and y are not going to change.) We define f †

∈ In+1(τ )

to be the Siegel section supported on the cell Q(Fv)wa+2b+1 NQ(OF,v), where
wa+2b+1 =

(
−1a+2b+1

1a+2b+1
)

and the value at NQ(OF,v) equals 1. Similarly, we
define f †,′

∈ In(τ ) to be the section supported in Q(Fv)wa+2b NQ(OF,v) that takes
value 1 on NQ(OF,v).

Definition 4.8. fv,sieg(g) := f †(gS̃−1
v γ̃v) ∈ In+1(τ ),

where γ̃v is defined to be

1b (1/x)1b

1
1a (1/(y ȳ))1a

1b (1/x̄)1b

1b

1
1a

1b


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and

S̃v =



1b −
1
2 1b

1
1
−1b

1
2 1b

1b
1
2 1b

1
1a

−1b −
1
2 1b


.

Similarly, we define f ′v,sieg(g) := f †,′(gS̃−1
v γ̃ ′v) for

S̃′v :=



1b −
1
2 1b

1a

−1b
1
2 1b

1b
1
2 1b

1a

−1b −
1
2 1b


and

γ̃v =



1b (1/x)1b

1a (1/(y ȳ))1a

1b (1/x̄)1b

1b

1a

1b


.

Lemma 4.9. Let K (2)
v be the subgroup of G(Fv) of matrices of the form


1b d
a 1 f b c

1a g
1b e

1

 ,

where e = − tā, b = td̄, g = −ζ t f̄ , b ∈ M(Ov), c − f ζ t f̄ ∈ OF,v, a ∈ (x),
e ∈ (x̄), f ∈ (y ȳ) and g ∈ (2ζ y ȳ). Then Fϕ(z; g, f ) is supported in PwK (2)

v and
is invariant under the action of K (2)

v .
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Proof. Let Sx,y consist of matrices

S :=


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


in the space of Hermitian (a+ 2b+ 1)× (a+ 2b+ 1) matrices (the blocks are with
respect to the partition b+ 1+ a + b) such that the entries of S13 and S23 (resp.
S14 and S24, S31 and S32, S41 and S42) are divisible by y (resp. x , ȳ, x̄), while
the entries of S33 (resp. S34, S43, S44) are divisible by y ȳ (resp. x ȳ, x̄ y, x x̄). Let
Qx,y := Q(Fv) ·

( 1
Sx,y 1

)
.

Write

η =

 1b

1a

−1b

 .
As in [Skinner and Urban 2014, Proposition 11.16], for

g =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

 ,

we have

γ (g, 1) ∈ supp fv,sieg ⇐⇒ S−1
v α(g, 1)Awa+2b+1dx,y γ̃

−1
∈ Qx,y

⇐⇒ S−1
v α(gw, η diag(x̄−1, 1, x))Aw′dy γ̃

−1
∈ Qx,y .

Here,

A =



1b

1
1a −

1
2ζ

1b

1b

1
−1a −

1
2ζ

1b


,

dx,y = diag(1, 1, y, x, 1, 1, ȳ−1, x̄−1),

dy = diag(1, 1, y, 1, 1, 1, ȳ−1, 1),
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w′ =



1b

1
1a

1b

1b

1
−1a

1b


and γ̃ =



1b

1
1a

1b

1b 1b

1
1a 1a

1b 1b


.

Here, x and y stand for the corresponding block matrices of the corresponding
size. Recall that γ (m(g1, 1), g1) ∈ Q; by multiplying this to the left for g1 =

diag(x̄, 1, x−1)η−1, we are reduced to proving that, if γ (g, 1)w′dy γ̃
−1
∈ Qx,y , then

g ∈ PwK (2)
v w−1. A computation tells us that γ (g, 1)w′dy γ̃

−1 equals the product

1b −
1
2 1b

1
1a

−1b
1
2 1b

1b

1
1a

−1b



×



a1 a2
1
2ζa3 y−a3 ȳ−1

−b1 b1 b2 a3 ȳ−1

a4 a5
1
2ζa6 y−a6 ȳ−1

−b3 b3 b4 a6 ȳ−1

1
2a7

1
2a8

1
4ζ y(a9−1)− 1

2(a9+1)ȳ−1
−

1
2 b5

1
2 b5

1
2 b6

1
2(a9+1)ȳ−1

1
c1 c2

1
2ζc3 y−c3 ȳ−1 1−d1 d1 d2 c3 ȳ−1

c4 c5
1
2ζc6 y−c6 ȳ−1

−d3 d3 d4 c6 ȳ−1

−za7 −za8 −
1
2(a9+1)y+z(a9−1)ȳ−1 zb5 −zb5 −zb6 z(1−a9)ȳ−1

a1−1 a2
1
2ζa3 y−a3 ȳ−1

−b1 b1 b2 a3 ȳ−1 1


,

where z= ζ−1.
One first proves that d4 6= 0 by looking at the second row of the lower left of

the above matrix, so by left-multiplying g by some matrix in NP , we may assume
that d2 = b2 = b4 = b6 = 0, then the result follows by an argument similarly to the
proof of Lemma 4.36 later on. �

Now recall that

g =

a5 a6 a4

a8 a9 a7

a2 a3 a1

 .
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Let Y be the set of g such that the entries of a2 are integers, the entries of a3

(resp. a1 − 1, 1− a5, a6, a4, a8, a7) are divisible by y ȳ (resp. x̄ , x , x̄ y, x x̄ ,
1
2 ȳ yζ , ȳ yxζ ), and 1− a9 = y ȳζ(1+ y ȳN ) for some N with integral entries.

Lemma 4.10. Let ϕx = π(diag(x̄, 1, x−1)η−1)ϕ, where ϕ is invariant under the
action of Y defined above; then:

(i) Fϕx ( fv,sieg; z, w)= τ(y ȳx)|(y ȳ)2x x̄ |−z−(a+2b+1)/2
v Vol(Y) ·ϕ.

(ii) F ′ϕx
( f ′v,sieg; z, w)= τ(y ȳx)|(y ȳ)2x x̄ |−z−(a+2b)/2

v Vol(Y) ·ϕ.

Proof. First, one computes

1
1

1
2 −

1
2

1
1 1

1
−ζ−1

−ζ−1

1 1





1
1

1
a1 a3 a2

1
1

a7 a9 a8

a4 a6 a5





1
1

1 −
1
2ζ

1
1

1
−1 −

1
2ζ

1



×



1
1

1
1

1
1

−1
1





1
1

y
1

1
1

ȳ−1

1





1
1

1
1
−1 1

1
−1 1

−1 1



=



1
1

1
2 a8

1
4ζ y(1−a9)−

1
2 ȳ−1(1+a9) −

1
2 a7

1
2 ȳ−1(1+a9) −

1
2 a8

−a2
1
2 a3ζ y+a3 ȳ−1 a1 −a3 ȳ−1 a2

−a2
1
2 a3ζ y+a3 ȳ−1 a1−1 1 −a3 ȳ−1 a2

1
ζ−1a8 −

1
2 y(1+ζ−1a9ζ )+ζ

−1 ȳ−1(1−a9)−ζ
−1a7 −ζ−1 ȳ−1(1−a9)−ζ

−1a8

1−a5
1
2 a6ζ y+a6 ȳ−1 a4 −a6 ȳ−1 a5


.

One checks the above matrix belongs to Qx,y if and only if the ai satisfy the
conditions required by the definition of Y. The lemma follows by a similar argument
to Lemma 4.38 below. �

Definition 4.11. We will sometimes write Yv for the Y above to emphasize the
dependence on v.
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4C2. Fourier–Jacobi coefficient. We first give a formula for the Fourier coefficients
for f̃v,sieg := ρ(γ̃v) f †

v,sieg and f̃ ′v,sieg := ρ(γ̃
′
v) f †,′

v,sieg.

Lemma 4.12. (i) Let β = (βi j ) ∈ Sn+1(Fv); then for all z ∈ C we have

f̃v,sieg,β(z, 1)= Vol(Sn+1(OF,v))ev

(
TrKv/Fv

(
βa+b+2,1+ · · ·+βa+2b+1,b

x

)
+
βb+2,b+2+ · · ·+βb+1+a,b+1+a

y ȳ

)
.

(ii) Let β = (βi j ) ∈ Sv(Fv). Then

f̃ ′v,sieg,β(z, 1)= Vol(Sn(OF,v))ev

(
TrKv/Fv

(
βa+b+1,1+ · · ·+βa+2b,b

x

)
+
βb+1,b+1+ · · ·+βb+a,b+a

y ȳ

)
.

The proof is straightforward.
Here we record a lemma on the Fourier–Jacobi coefficient for f †

v ∈ In(τv)

and β ∈ Sm(Fv).

Lemma 4.13. If β 6∈ Sm(OFv )
∗ then FJβ( f †

; z, u, g, hy)= 0. If β ∈ Sn(OFv )
∗ then

FJβ( f †
; z, u, g, h)= f †(z, g′η)ωβ(h, g′η)80,y(u) ·Vol(Sm(OFv )),

where g′ =
( 1n−m

−1n−m

)
g
(1n−m

−1n−m

)
.

The proof is similar to [Skinner and Urban 2014, Lemma 11.15].

4D. p-adic computations. In this subsection we first prove that, under some
“generic conditions”, the unique (up to scalar) nearly ordinary vector in I (ρ) is just
the unique (up to scalar) vector with certain prescribed action of level subgroup.
Then we construct a section F† in I (ρ∨)which is the pullback of a Siegel section f †

supported in the big cell. We can understand the action of the level group of this
section. Then we define F0 to be the image of F† under the intertwining operator.
By checking the action of the level subgroup on F0, we can prove that it is just the
nearly ordinary vector.

In our calculations we will usually use the projection to the first component of
Kv ' Kw×Kw̄ 'Qp×Qp.

4D1. Nearly ordinary sections. Let λ1, . . . , λn be n characters of F×v , which we
identify with Q×p , and π = IndGLn

B (λ1, . . . , λn).
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Definition 4.14. Let n = r + s and k = (cr+s, . . . , cs+1; c1, . . . , cs) be a weight.
We say (λ1, . . . λn) is nearly ordinary with respect to k if

{valpλ1(p),...,valpλn(p)}=
{
c1+s−1− 1

2 n+ 1
2 ,c2+s−2− 1

2 n+ 1
2 ,...,cs−

1
2 n+ 1

2 ,

cs+1+ r + s− 1− 1
2 n+ 1

2 ,...,cr+s + s− 1
2 n+ 1

2

}
.

We write the elements of the right side in order as κ1, . . . , κr+s , so κ1> · · ·>κr+s .
Let Ap := Zp[t1, t2, . . . , tn, t−1

n ] be the Atkin–Lehner ring of G(Qp), where ti
is defined by ti = N (Zp)αi N (Zp), αi =

(1n−i
p1i

)
. Then ti acts on π N (Zp) by

v|ti =
∑

x∈N |α−1
i Nαi

xiα
−1
i v.

We also define a normalized action with respect to the weight k, following [Hida
2004b]:

v‖ti := δ(αi )
−1/2 pκ1+···+κiv|ti

Definition 4.15. A vector v ∈ π is called nearly ordinary if it is an eigenvector for
all ‖ti with eigenvalues that are p-adic units.

We identify π as a set of smooth functions on GLn(Qp):

π = { f : GLn(Qp)→ C | f (bx)= λ(b)δB(b)1/2 f (x)}.

Here, λ(b) :=
∏n

i=1 λi (bi ) for

b =

b1 × ×
. . . ×

bn


and δB is the modulus function for the upper-triangular Borel subgroup. Let w` be
the longest Weyl element, 

1
1

. .
.

1

 ,
and let f ` be the element in π (which is unique up to scalar) that is supported in
Bw`N (Zp) and invariant under N (Zp). We have:

Lemma 4.16. f ` is an eigenvector for all ti .

Proof. Note that, for any i , f `|ti is invariant under N (Zp). By looking at the
definition of v|ti for the above model of π , it is not hard to see that f `|ti is
supported in B(Qp)w`B(Zp). So f `|ti must be a multiple of f `. �
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Lemma 4.17. Suppose that (λ1, . . . , λn) is nearly ordinary with respect to k and
suppose

νp(λ1(p)) > νp(λ2(p)) > · · ·> νp(λn(p));

then the eigenvalues of ‖ti acting on f ` are p-adic units. In other words, f ` is an
ordinary vector.

Proof. A straightforward computation gives that

f `‖ti = λ1 · · · λi (p−1)pκ1+···+κi f `,

which is clearly a p-adic unit by the definition of (λ1, . . . , λn) being nearly ordinary
with respect to k. �

Remark 4.18. Hida proved [2004b, Theorem 5.3] that the nearly ordinary vector
is unique up to scalar.

Lemma 4.19. Let λ1, . . . , λa+2b be characters of Q×p such that cond(λa+2b) >

· · · > cond(λb+1) > cond(λ1) > · · · > cond(λb). We define the subgroup Kλ of
GLa+2b(Zp) to be those matrices whose below-diagonal entries of the i-th column
are divisible by cond(λa+2b+1−i ) for 1≤ i ≤ a+ b, and the left-to-diagonal entries
of the j-th row are divisible by cond(λa+2b+1− j ) for a+ b+ 2 ≤ j ≤ a+ 2b. Let
λop be the character of Kλ defined by

λa+2b(g11)λa+2b−1(g22) · · · λ1(ga+2b a+2b).

Then f ` is the unique (up to scalar) vector in π such that the action of Kλ is given
by multiplying by λop.

Proof. We only need to prove the uniqueness. We use the model of induced
representation as above. Let n=a+2b and let e1, . . . , en be the standard basis of the
standard representation of GLn . Let pti be the conductor of λi . So ta+2b =max{ti }i .
Write K0(p)⊂GLn(Zp) for the subgroup consisting of elements in B(Zp)modulo p.
Suppose f is any vector satisfying the requirement of the lemma. Let w be a Weyl
element of GLn such that f is not identically 0 on wK0(p). Then we see that
w · e1 = ea+2b by considering right-multiplication by diag(1+ pta+2b−1, 1, . . . , 1).
Continuing this argument, we see that w · e2 = ea+2b−1, . . . . Finally, we have
w = w` and the lemma is clear by Bruhat decomposition. �

We let

w1 :=



1
. . .

1
1

. .
.

1


.
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Now let B̃ = Bw1 and K̃λ = Kw1
λ .

Corollary 4.20. Denote ai := νp(λi (p)). Suppose λ1, . . . , λa+2b are such that
cond(λ1) > · · ·> cond(λa+2b) and a1 < · · ·< aa+b < aa+2b < · · ·< aa+b+1. Then
the unique (up to scalar) ordinary section with respect to B̃ is

f ord(x)=
{
λ1(g11) · · · λa+2b(ga+2b,a+2b) if g ∈ K̃λ,

0 otherwise.

Proof. We only need to prove that π(w1) f ord(x) is ordinary with respect to B̃w1= B.
Let λ′1 = λa+b+1, . . . , λ

′

b = λa+2b, λ′b+1 = λa+b, . . . , λ
′

a+2b = λ1. Then λ′ satisfies
Lemma 4.17 and thus the ordinary section for B (up to scalar) is f `λ′ . Since λ′ also
satisfies the assumptions of Lemma 4.19, f `λ′ is the unique section such that the
action of Kλ is given by λ′a+2b(g11) · · · λ

′

1(ga+2b,a+2b). But λ is clearly regular, so
IndGLa+2b

B (λ) ' IndGLa+2b
B (λ′). So the ordinary section of IndGLa+2b

B (λ) for B also
has the action of Kλ given by this character. It is easy to check that π(w1) f ord has
this property and the uniqueness (up to scalar) gives the result. �

4D2. Pullback sections. In this subsubsection we construct a Siegel section on
U(a+2b+1, a+2b+1) which pulls back to the nearly ordinary Klingen sections
on U(a+ b+ 1, b+ 1). We need to rearrange the basis since we are going to study
large block matrices and the new basis will simplify the explanation. One can check
that the Klingen Eisenstein series we construct in this subsection, when going back
to our previous basis, is nearly ordinary with respect to the Borel subgroup

B1 :=


∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗

∗ ∗

 ,
where the first four blocks are upper-triangular and the fifth is lower-triangular. But
the one we need is nearly ordinary with respect to the Borel subgroup

B2 :=


∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗

∗ ∗


(it is for this one that we can use the 3-adic Fourier–Jacobi expansions). (Here the
blocks are with respect to the partition b+ 1+ a+ b+ 1.) There is a Weyl element
wBorel of GLa+2b+2 such that w−1

Borel B2wBorel= B1. This wBorel is in fact in the Weyl
group of GLb+1+a embedded as the upper-left minor. In the case of the doubling
method (U(r, s)×U(s, r) ↪→ U(r + s, r + s)) we have a corresponding change of
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index and we write w′Borel for the corresponding Weyl element. In Section 4D4 we
will come back to the original basis.

Now we explain the new basis. Let Va,b and Va,b+1 be the Hermitian space with
respective matricesζ1a

1b

−1b

 and

ζ 1b+1

−1b+1

 .
(These are our skew-Hermitian spaces for U(r, s) and U(r + 1, s + 1) under the
new basis.) The matrix S for the embedding U(Va,b)×U(Va,b+1) ↪→ U(Va+2b+1)

becomes 

1 −
1
2ζ

1 1
2

1
−1 1

2
−1 −

1
2ζ

1 1
2

1
−1 −

1
2


.

Godement sections at p. Let v|p be a prime of F and Kv ' Qp × Qp. Let τ
be a character of Q×p ×Q×p . Suppose τ = (τ1, τ

−1
2 ) and let psi be the conductor

of τi , i = 1, 2. Let χ1, . . . χa , χa+1, . . . χa+2b be characters of Q×p whose conductors
are pt1, . . . , pta+2b . Suppose we are in the generic case:

Definition 4.21 (generic case).

t1 > t2 > · · ·> ta+b > s1 > ta+b+1 > · · ·> ta+2b > s2.

Also, let ξi =χiτ
−1
1 for 1≤ i ≤ a+b and ξ j =χ

−1
j τ2 for a+b+2≤ j ≤ a+2b+1.

Let ξa+b+1 = 1.

Let 81 be the following Schwartz function on Ma+2b+1(Qp): let 0 be the
subgroup of GLa+2b+1(Zp) consisting of matrices γ = (γi j ) such that ptk divides
the below-diagonal entries (i.e., i > j) of the k-th column for 1 ≤ k ≤ a+ b and
ps1 divides γi j when a + b+ 2 ≤ i ≤ a + 2b+ 1 and j = a + b+ 1; while pt j−1

divides γi j when a+ b+ 2≤ j ≤ a+ 2b+ 1 and either i ≤ a+ b+ 1 or i > j .
Let ξ ′i = χiτ

−1
2 , 1 ≤ i ≤ a + b, ξ ′j = χ

−1
j τ1, a + b+ 2 ≤ j ≤ a + 2b+ 1, and

ξ ′a+b+1 = τ1τ
−1
2 . (Thus, ξ ′k = ξkτ1τ

−1
2 for any k.)

Definition 4.22. 81(x)=
{

0 if x 6∈ 0,∏a+b+1
k=1 ξ ′k(xkk) if x ∈ 0.

Now we define another Schwartz function 82 on Ma+2b+1(Qp).
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Let X be the following set: if

x =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 ∈ X
is in block matrix form with respect to the partition a+2b+1= a+b+1+b, then

• x has entries in Zp;

•

( A11
A21

A14
A24

)
has i-th upper-left minors Ai such that det Ai ∈Z×p for i=1, . . . , a+b;

and

• A42 has i-th upper-left minors Bi such that det Bi ∈ Z×p for i = 1, . . . , b.

We define

8ξ (x)=


0 if x 6∈ X,

ξ1

ξ2
(det A1) · · ·

ξa+b−1

ξa+b
(det Aa+b−1)ξa+b(det Aa+b)

×
ξa+b+2

ξa+b+3
(det B1) · · ·

ξa+2b

ξa+2b+1
(det Bb−1)ξa+2b+1(det Bb) if x ∈ X.

(11)
This is a locally constant function with compact support. Let

82(x) := 8̃ξ (x)=
∫

Ma+2b+1(Qp)

8ξ (y)ep(Tr y tx) dy

(where tilde stands for Fourier transform). Let 8 be the Schwartz function on
Ma+2b+1,2(a+2b+1)(Qp) defined by

8(X, Y ) :=81(X)82(Y )

and define a Godement section (terminology of Jacquet) by

f 8(g)= τ2(det g)|det g|−s+(a+2b+1)/2
p

×

∫
GLa+2b+1(Qp)

8((0, X)g)τ−1
1 τ2(det X)|det X |−2s+a+2b+1

p d×X.

Lemma 4.23. If γ ∈ 0, then

8ξ (
tγ X)=

a+2b+1∏
k=1

(ξk(γkk))8ξ (X).

Proof. This is straightforward. For example, to see that the A42 block of tγ X has
invertible upper-left minors (i.e., has determinants in Z×p ) for γ ∈ 0, X ∈ X, one
notes that all entries of the upper-right block of γ are zero modulo p, and that



Families of nearly ordinary Eisenstein series on unitary groups 1999

multiplying by invertible matrices which are lower-triangular modulo p does not
change the property that all upper-left minors are invertible. �

Fourier coefficients. For z in the absolutely convergent range and β ∈ Sa+2b+1(Qp)

(which is isomorphic to Ma+2b+1(Qp) through the first projection), the Fourier
coefficient is defined by

f 8β (1, z)=
∫

Ma+2b+1(Qp)

f 8
((

1a+2b+1

−1a+2b+1

)(
1 N

1

))
ep(−TrβN ) d N

=

∫
Ma+2b+1(Qp)

∫
GLa+2b+1(Qp)

8

(
(0, X)

(
1a+2b+1

−1a+2b+1 −N

))
× τ−1

1 τ2(det X)|det X |−2z+a+2b+1
p ep(−TrβN ) d N d×X

=

∫
GLa+2b+1(Qp)

81(−X)8ξ (− tX−1 tβ)τ−1
1 τ2(det X)|det X |−2z

p d×X

= τ−1
1 τ2(−1)Vol(0)8ξ ( tβ). (12)

Definition 4.24. Let f̃ †
= f̃ †

a+2b+1 be the Siegel section supported on

Q(Qp)wa+2b+1

(
1 Ma+2b+1(Zp)

1

)
and f̃ †

(
wa+2b+1

( 1 X
1

))
= 1 for X ∈ Ma+2b+1(Zp).

Lemma 4.25. f̃ †
β (1)=

{
1 if β ∈ Ma+2b+1(Zp),

0 if β 6∈ Ma+2b+1(Zp),

(here we used the projection of β onto its first component in Kv = Fv × Fv), where
the first component corresponds to the element inside our CM-type 6∞ under
ι := C' Cp (see Section 2A).

Definition 4.26. f †
:=

f 8

τ−1
1 τ2(−1)Vol(0)

.

Thus, f †
β =8ξ (

tβ).

We define

cn(τ
′, z) :=

{
τ ′(pnt)p2ntz−tn(n+1)/2 if t > 0,
p2nz−n(n+1)/2 if t = 0.

(13)

Now we recall a lemma from Skinner and Urban [2014, Lemma 11.12], which will
be useful later.

Lemma 4.27. Suppose v|p and β ∈ Sn(Qv), detβ 6= 0. Then:

(i) If β 6∈ Sn(Zv) then M(z, f̃ †
n )β(−z, 1)= 0.
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(ii) Suppose β ∈ Sn(Zv). Let t := ordv(cond(τ ′)). Then

M(z, f̃ †
n )β(−z, 1)= τ ′(detβ)|detβ|−2z

v g(τ̄ ′)ncn(τ
′, z).

Note that our f̃ † is the f † in [Skinner and Urban 2014] and our τ is their χ .
Now we want to write down our Godement section f 8 in terms of f̃ †. First we

prove the following:

Lemma 4.28. Suppose 8ξ,n is the function on Mn(Qp) defined as follows: If
cond(ξi )= (pti ) for t1 > · · ·> tn and ξi are characters of Q×p with conductor pti .
Let Xn be the subset of Mn(Zp) such that the i-th upper-left minor Mi has determi-
nant in Z×p . Define 8ξ,n to be

ξ1

ξ2
(det M1) · · ·

ξn−1

ξn
(det Mn−1)ξn(det Mn)

on Xn and 0 otherwise. Let

X̃ξ,n = X̃ξ := N (Zp)

p−t1Z×p
. . .

p−tn Z×p

 N opp(Zp).

Then the Fourier transform 8̂ξ of 8ξ is the function

8̃ξ (x)=
{

0 if x 6∈ X̃ξ ,∏n
i=1 g(ξi )

∏n
i=1 ξ̄i (xi pti ) if x ∈ X̃ξ ,

where x =

1 × ×
. . . ×

1

x1
. . .

xn

1
×
. . .

× × 1

 .
Proof. First suppose x is in the “big cell” N (Qp)T (Qp)N opp(Qp). It is easily seen
that we can write x in terms of block matrices,

x =
(

1n−1 u
1

)(
z
w

)(
1n−1

v 1

)
,

where z ∈ GLn−1(Qp), w ∈ Q×p , u ∈ Mn−1,1(Qp) and v ∈ M1,n−1(Qp). A first
observation is that 8̃ξ is invariant under right-multiplication by N opp(Zp) and
left-multiplication by N (Zp). We show that v ∈ M1×(n−1)(Zp) if 8̃ξ (x) 6= 0. By
definition,

8̃ξ (x)=
∫

Mn(Q p)

8ξ (y)ep(Tr y tx) dy,

so, writing

y =
(

1n−1

` 1

)(
a

b

)(
1 m

1

)
=

(
a am
`a `am+ b

)
,
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we have

8̃ξ (x)=
∫

a∈Xξ,n−1,m∈M(Zp), `∈M(Zp), b∈Z×p

8ξ

((
1
` 1

)(
a

b

)(
1 m

1

))
× ep

(
Tr
((

1
tm 1

)( ta
b

)(
1 t`

1

)(
1 u

1

)(
z
w

)(
1
v 1

)))
dy

=

∫
8ξ

((
a

b

))
ep

(
Tr
(

1
tm+ v 1

)( ta
b

)(
1 t`+ u

1

)(
z
w

))
dy

=

∫
8ξ

((
a

b

))
× ep

(
Tr
(( ta ta( t`+ u)
( tm+ v) ta ( tm+ v) ta( t`+ u)+ b

)(
z
w

)))
dy

=

∫
8ξ

((
a

b

))
ep
(
Tr( taz+ (( tm+ v) ta( t`+ u)+ b)w)

)
dy.

(Note that 8ξ is invariant under transpose.)
If 8̃ξ (x) 6= 0, then it follows from the last expression that w ∈ p−tn Z×p . Suppose

v 6∈ M1×(n−1)(Zp); then tm + v 6∈ M1×(n−1)(Zp). We let a, m and b be fixed
and let ` vary in M1×(n−1)(Zp); we find that this integral must be 0. (Notice
that a ∈ Xξ,n−1 and w ∈ p−tn Z×p , thus ( tm + v) taw 6∈ M1×n−1(Zp)). Thus, a
contradiction. Therefore, v ∈ M1×n−1(Zp), and similarly u ∈ Mn−1,1(Zp). Thus,
by the observation at the beginning of the proof, we may assume u = 0 and v = 0
without loss of generality.

Thus, if we write8ξ,n−1 as the restriction of8ξ to the upper-left (n−1)×(n−1)
minor,

8̃ξ (x)=
∫
8ξ

((
a

b

))
ep
(
Tr( taz+ ( tm ta t`+ b)w)

)
dy

= p−ntng(ξn)ξ̄n(wptn )

∫
a∈Xξ,n−1

8ξ,n−1(a)ep(
taz) dy.

By an induction procedure one gets

8̃ξ (x)=
{

0 if x 6∈ X̃ξ,n,
p−

∑n
i=1 i ti

∏n
i=1 g(ξi )

∏n
i=1 ξ̄i (xi pti ) if x ∈ X̃ξ,n.

We have thus proved that 8̃ξ,n , when restricted to the “big cell”, has support in X̃ξ,n .
Since X̃ξ,n is compact, 8̃ξ,n itself must be supported in X̃ξ,n . �



2002 Xin Wan

Lemma 4.29. Let X̃ξ be the support of 82 = 8̂ξ ; then a complete set of represen-
tatives of X̃ξ mod Ma+2b+1(Zp) is given by the elements


A B
C D

E

 ,

where the blocks are with respect to the partition a+b+1+b and
( A

C
B
D

)
runs over

the set
1 m12 · · · m1,a+b
. . .

. . .
...

. . . ma+b−1,a+b

1




x1
. . .

. . .
xa+b




1
n21

. . .
...

. . .
. . .

na+b,1 · · · na+b,a+b−1 1

 ,
where xi runs over p−ti Z×p mod Zp, mi j runs over Zp mod pt j , ni j runs over
Zp mod pti , and E runs over the set


1 k12 · · · k1,b
. . .

. . .
...

. . . kb−1,b

1




y1
. . .

. . .
yb




1
`21

. . .
...

. . .
. . .

`b,1 · · · `b,b−1 1

 ,
where yi runs over p−ti+a+b Z×p mod Zp, ki j runs over Zp mod pta+b+ j , and `i j runs
over Zp mod pta+b+i .

Proof. This is elementary and we omit it here. �

We also define, for g ∈ GLa+2b(Qp),

gι =

 1a×a

1b×b

1b×b

 g

 1b×b

1a×a

1b×b


and

gι =

 1a×a

1b×b

1b×b

−1

g

 1b×b

1a×a

1b×b

−1

.
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Corollary 4.30. We have

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)
f̃ †

z, g

1a+2b+1

A B
C D

E
1a+2b+1


 .

Here Ai is the i-th upper-left minor of A, Di is the (a+i)-th upper-left minor of( A
C

B
D

)
(not of D), Ei is the i-th upper-left minor of E , and the sum runs over the set

of representatives of Lemma 4.29.

Proof. We only need to check the Siegel Eisenstein sections on both sides coincide
on wNa+2b+1(Qp), since the big cell Qa+2b+1(Qp)wNa+2b+1(Qp) is dense in
GL2a+4b+2. To see this we just need to know that they have the same β-th Fourier
coefficients for all β ∈ Sa+2b+1(Qp). But this is seen by (12) and Lemmas 4.28
and 4.29. �

Now we define several sets. Let B′ be the set of (a+b)×(a+b) upper-triangular
matrices of the form

1 m12 · · · m1,a+b
. . .

. . .
...

. . . ma+b−1,a+b

1




x1
. . .

. . .
xa+b

 ,
where xi runs over Z×p mod pti and mi j runs over Zp mod pt j .

Let D′ be the set of b× b lower-triangular matrices of the form
1

n21
. . .

...
. . .

. . .
na+b,1 · · · na+b,a+b−1 1

 ,
where ni j runs over Zp mod pti+a+b .
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Let E′ be the set of b× b upper-triangular matrices of the form


1 k12 · · · k1,b
. . .

. . .
...

. . . kb−1,b

1

 ,

where ki j runs over Zp mod pta+b+ j .
Let C′ be the set of (a+ b)× (a+ b) lower-triangular matrices of the form


y1

. . .
. . .

yb




1
`21

. . .
...

. . .
. . .

`b,1 · · · `b,b−1 1

 ,

where yi runs over Z×p mod pti+a+b Zp and `i j runs over Zp mod pta+b+i .
Thus, if B ′, C ′, D′, E ′ run over the set B′, C′, D′, E′, respectively, then

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

ξ̄i (B ′i i )
b∏

i=1

ξa+b+i (C ′i i )

× f̃ †
(

z, gα
(

diag(B ′, 1,C ′1),
(

E ′

D′

)ι)(
2 A′

1

)
× α

(
diag(B ′, 1,C ′1),

(
E ′

D′

)ι)−1 )
= p−

∑a+b
i=1 i ti−

∑b
i=1 i ta+b+1+i∑

B ′,C ′,D′,E ′

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
B ′,C ′,D′,E ′

a+b∏
i=1

ξ̄i (B ′i i )
b∏

i=1

ξa+b+i (C ′i i )
a+b∏
i=1

τ̄1(B ′i i )
b∏

i=1

τ̄2(C ′i i )

× f̃ †
(

z, gα
(

diag(B ′, 1,C ′1),
(

E ′

D′

)ι)(
1 A′

1

))
,
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where

A′ =



p−t1

. . .
p−ta

p−ta+1

. . .
p−ta+b

0
p−ta+b+1

. . .
p−ta+2b


. (14)

We let

γ =



ζ−1
−ζ−1

1
1

1
1
2

1
2

1 1
1

1 1


and w′ =



1
1

1
1

−1
1

1
1


.

Definition 4.31 (pullback section). If f is a Siegel section and ϕ ∈ πp, then

Fϕ(z, f, g) :=
∫

GLa+2b(Qp)

f (z, γ α(g, g1)γ
−1)τ̄ (det g1)ρ(g1)ϕ dg1.

Now we define a subset K of GLa+2b+2(Zp) so that k ∈ K if and only if pti

divides the below-diagonal entries of the i-th column for 1≤ i ≤ a+b, ps1 divides
the below-diagonal entries of the (a+b+1)-th column, and pta+b+ j divides the right-
to-diagonal entries of the (a+b+1+ j)-th row for 1≤ j ≤ b− 1. We also define ν,
a character of K , by

ν(k)= τ1(ka+b+1,a+b+1)τ2(ka+2b+2,a+2b+2)

×

a+b∏
i=1

χi (ki i )

b∏
i=1

χa+b+i (ka+b+i+1,a+b+i+1)

for any k ∈ K .

Definition 4.32. We define ϒ to be the element in U(n, n)(Fv) (which equals
U(n, n)(Qp)) such that the projection to the first component of Kv = Fv × Fv
equals that of γ (note that γ 6∈ U(n, n)(Fv)).
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Lemma 4.33. Let K ′ ⊂ K be the compact subgroup defined by, for k ∈ K ,

k =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

 ∈ K ′

(here the blocks are with respect to the partition (a+ b+ 1+ b+ 1)) if and only if
pta+b+i+t j divides the (i, j)-th entry of c1 for 1≤ i ≤ b, 1≤ j ≤ a, and pta+b+i+ta+ j

divides the (i, j)-th entry of c2 for 1≤ i ≤ b, 1≤ j ≤ b. (It is not hard to check that
this is a group.)

Then Fϕ(z, ρ(ϒ) f †, gk)= ν(k)Fϕ(z, ρ(ϒ) f †, g) for any ϕ ∈ π and k ∈ K ′.

Proof. This follows directly from the action of K ′ on the Godement section f †. �

We define K ′′ to be the subgroup of K that consists of matrices
1

1
1

c1 c2 1
1


such that pt j divides the (i, j)-th entry of c1 for 1 ≤ i ≤ b, 1 ≤ j ≤ a, and pta+ j

divides the (i, j)-th entry of c2 for 1≤ i ≤ b, 1≤ j ≤ b.

Definition 4.34. Let K̃ ⊂ GLa+2b(Zp) be the set of matricesa1 a3 a2

a7 a9 a8

a4 a6 a5


(the blocks are with respect to the partition (b + a + b)) such that the columns
of a3 and a6 are divisible by pt1, . . . , pta , the columns of a4 are divisible by
pta+1, . . . , pta+b , pta+i divides the below-diagonal entries of the i-th column of a1

(1 ≤ i ≤ b), pt j divides the below-diagonal entries of the j-th column of a9

(1≤ j ≤ a), and pta+b+k divides the above-diagonal entries of the k-th row of a5.
Let K̃ ′ ⊂ K̃ be those matrices such that pta+b+i+ta+ j divides the (i, j)-th entry

of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b, and pta+b+i+t j divides the (i, j)-th entry of a6 for
1≤ i ≤ b, 1≤ j ≤ a. We also define K̃ ′′ to be the subset of K̃ consisting of matrices 1

1
a4 a6 1


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such that pta+ j divides the (i, j)-th entry of a4 for 1 ≤ i ≤ b, 1 ≤ j ≤ b, and pt j

divides the (i, j)-th entry of a6 for 1 ≤ i ≤ b, 1 ≤ j ≤ a. We also define ν̃, a
character of K̃ , by

ν̃(k)=
b∏

i=1

χa+i (ki,i )

a∏
i=1

χi (kb+i,b+i )

b∏
i=1

χa+b+i (ka+b+i,a+b+i ).

The following lemma will be useful in identifying our pullback section:

Lemma 4.35. Suppose Fϕ(z, ρ(ϒ) f †, g) as a function of g is supported in PwK
and

Fϕ(z, ρ(ϒ) f †, gk)= ν(k)Fϕ(z, ρ(ϒ) f †, g)

for k ∈ K ′, and Fϕ(z, ρ(ϒ) f †, w) is invariant under the action of (K̃ ′′)ι. Then
Fϕ(a, ρ(ϒ) f †, g) is the unique section (up to scalar) whose action by k ∈ K is
given by multiplying by ν(k).

Proof. This is easy from the fact that K = K ′K ′′ = K ′′K ′. The uniqueness follows
from Lemma 4.19. �

From now on in this subsection we use w to denote1a

1b+1

−1b+1

 or

1a

1b

−1b

 .
Lemma 4.36. If γα(g, 1)γ−1

∈ supp(ρ(ϒ) f †) then g ∈ PwK . (Here ρ denotes
the action of GUa+2b+1(Fv) on the Siegel sections given by right-translation.)

Proof. Since f † is of the form f †(g) =
∑

A∈X f̃ †
(
g
( 1 A

1

))
, where X is some set,

we only have to check the lemma for each term in the summation.
Recall we defined A′ in (14), where the blocks are with respect to the partition

(a+ b+ 1+ b). Let ζv and γv be the projection of ζ and γv to the first component
of Kv ' Fv × Fv; then

γv =



ζ−1
v −ζ−1

v

1b

1
1b

1
2 1a

1
2 1a

1b 1b

1
1b 1b


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=



2ζ−1
v −ζ−1

v

1b

1
1b

1
2 1a

1b

1
1b





1a

1b

1
1b

1a 1a

1b 1b

1
1b 1b


.

We denote the last term by γ̃v (different from the definition in the prime-to-p case).
Using the expression for f † involving the various B ′, C ′, D′ and E ′ as above and

the fact that γ (m(g, 1), g)∈ Q and that K is invariant under right-multiplication by
any B or C , we only need to check that if γ̃vα(g, 1)γ̃−1

v ∈ supp
(
ρ(ϒ)ρ

(( 1 A′
1

)))
f̃ †

then g ∈ PwK . Our calculations below are generalizations of the proof of [Skinner
and Urban 2014, Proposition 11.16]. If

gw =


a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4


then this is equivalent to

1a

1b

1
1b

1a 1a

1b 1b

1
1b 1b


.



a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9 b5 b6

1b

1c

c1 c2 c3 d1 d2

c4 c5 c6 d3 d4

1b


α(1, w−1)w′

×M



1a

1b

1
1b

−1a 1a

−1b 1b

1
−1b 1b


M−1w−1

a+2b+1
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being in supp f̃ †, where

M= diag(pt1, . . . , pta , 1b, 1, pta+1, . . . , pta+b , 1a, 1b, 1, p−ta+b+1, . . . , p−ta+2b)

temporarily, which is equivalent to

γ̃vα

gw,

 −1b

1a

1b

 diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )

w′γ̃−1
v

belonging to

supp
(
ρ(M−1wa+2b+1) f̃ †).

The right-hand side is contained in

Qt := Q ·


(

1
S 1

) ∣∣∣∣∣ S ∈ St =


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


 ,

where the blocks for St are with respect to the partition a+ b+ 1+ b and consist
of matrices Si j ∈ M(Zp) such that pti divides the i-th column of the matrix S
for 1≤ i ≤ a, pta+i divides the (a+b+1+i)-th column for 1≤ i ≤ b, pta+b+i divides
the (a+b+1+i)-th row for 1≤ i≤b, and the (i, j)-th entry of S41 and S44 is divisible
by pta+b+i+t j and pta+b+i+ta+ j , respectively. Observe that we have only to show that
if γ̃ α(gw, 1)w′γ̃−1

∈ Qt then g ∈ PwK , i.e., gw ∈ P Kw for Kw
:= wKw (note

that γ (m(g1, 1), g1) ∈ Q).
Let

γ̃vα(gw, 1)w′γ̃−1
v =



−a1 a2 a3 −b1 a1 b1 b2

−a4 a5 a6 −b3 a4 b3 b4

−a7 a8 a9 −b5 a7 b5 b6

1
−1− a1 a2 a3 −b1 a1 b1 b2

−c1 c2 c3 1− d1 c1 d1 d2

−c4 c5 c6 −d3 c4 d3 d4

−a4 a5− 1 a6 −b3 a4 b3 b4 1


:= H.

Thus, if H ∈ Qt , then 
a1 b1 b2

c1 d1 d2

c4 d3 d4

a4 b3 b4 1


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is invertible and there exists S ∈ St such that
−1− a1 a2 a3 −b1

−c1 c2 c3 1− d1

−c4 c5 c6 −d3

−a4 a5− 1 a6 −b3

=


a1 b1 b2

c1 d1 d2

c4 d3 d4

a4 b3 b4 1

 S.

By looking at the third row (blockwise), one finds d4 6= 0, so by left-multiplying g
by a matrix 

1a ×

1b ×

1 ×

1b ×

d−1
4


(which does not change the assumption and conclusion) we may assume that d4 = 1
and d2 = b2 = b4 = b6 = 0. So we assume that gw is of the form

a1 a2 a3 b1

a4 a5 a6 b3

a7 a8 a9

c1 c2 c3 d1

c4 c5 c6 d3 1

 .
Next, by looking at the second row (blockwise) and noting that d2 = 0, we find

that d1 is of the form 
Z×p Zp · · · · · · Zp

pta+1Zp Z×p
. . .

. . . Zp
... pta+2Zp Z×p

. . .
...

...
. . .

. . .
. . . Zp

pta+1Zp · · · · · · · · · Z×p

 .
So, by multiplying by a matrix of the form

1a

1b

1 ×
1b

1


on the left we may assume that b5 = 0. Also, by looking at the third row again
we see c4 = (pt1Zp, . . . , pta Zp), c5, c6 ∈ M(Zp) and d3 ∈ (pta+1, . . . , pta+b),
while, from the second row, c1 ∈ (Mb×1(pt1Zp),Mb×1(pt2Zp), . . . ,Mb×1(pta Zp)),
c2 ∈ Mb×b(Zp) and c3 ∈ Mb×1(Zp).
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By looking at the first row and noting that b2 = 0, we know

a1 ∈


Z×p Zp · · · · · · Zp

pt1Zp Z×p
. . .

. . . Zp
... pt2Zp Z×p

. . .
...

...
. . .

. . .
. . . Zp

pt1Zp · · · · · · · · · Z×p

 ,

a2, a3 ∈ M(Zp) and b1 ∈ (Ma×1(pta+1Zp),Ma×1(pta+2Zp), . . . ,Ma×1(pta+b Zp)).
Finally, looking at the fourth row (blockwise), we note that b4 = 0. Similarly,

a4 ∈ (Mb×1(pt1Zp),Mb×1(pt2Zp), . . . ,Mb×1(pta Zp)),

b3 ∈ (Mb×1(pta+1Zp),Mb×1(pta+2Zp), . . . ,Mb×1(pta+b Zp)),

a5− 1 ∈


M1×b(pta+b+1Zp)

M1×b(pta+b+2Zp)
...

M1×b(pta+2b Zp)

 and a6 ∈


pta+b+1Zp

pta+b+2Zp
...

pta+2b Zp

 .
Now we prove that gw ∈ P Kw using the properties proven above. First we

right-multiply gw by
1a

1b

1
−d−1

1 c1 −d−1
1 c2 −d−1

1 c3 d−1
1

−c4 −c5 −c6 −d3 1

 ∈ Kw,

which does not change the above properties or what needs to be proven, so without
loss of generality we assume that c4 = c5 = c6 = d3 = c1 = c2 = c3 = 0 and d1 = 1.
Moreover, we set

(a1
a4

a2
a5

)−1(a3
a6

)
:= T =

(T1
T2

)
. Then

1a T1

1b T2

1
1b

1

 ∈ Kw.

By multiplying 
1a −T1

1b −T2

1
1b

1


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to the right we get an element in P . So it is clear that gw ∈ P Kw. �

Now suppose that π is nearly ordinary with respect to k. We define ϕ to be
the unique (up to scalar) nearly ordinary vector in π with respect to the Borel
subgroup B̃. Let ϕw = π(w)ϕ.

Now write

ϕ′ = π

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw.
Compute the value Fϕ′(z, ρ(ϒ) f †, w). In fact, Fϕ′(z, ρ(ϒ) f †, w) is equal to

∑
B,C,D,E

∫
GLa+2b(Qp)

f̃ †

γ̃ α
w


B

1
C

1

w,
g1

(
E

D

)
M

 1b

1a

−1b

ι


×w′γ̃−14w−1
a+2b+1

τ̄ (detg1)ρ(gι1)ϕ
′dg1

with (temporarily)

M= diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . ),

4= diag(p−t1, . . . , p−ta , 1b, 1, p−ta+1, . . . , p−ta+b , 1a, 1b, 1, pta+b+1, pta+2b),

where the sum is over B ∈B′, C ∈ C′, D ∈D′ and E ∈ E′. A direct computation
gives

γ̃ α

1,

a1 a3 a2

a7 a9 a8

a4 a6 a5

ιw′γ̃−1
=



−1a 1a

1b

1
−a3 −a2 a1 a2

−a9− 1a −a8 a7 1a a8

−a3 −a2 a1− 1b 1b a2

1
−a6 1b− a5 a4 a5


.

Now we define Y to be the subset of GLa+2b(Zp) consisting of block matricesa1 a3 a2

a7 a9 a8

a4 a6 a5


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such that

γ̃ α

1,

a1 a3 a2

a7 a9 a8

a4 a6 a5

ιw′γ̃−1

is in the Qt defined in the proof of Lemma 4.36. It is not hard to prove that it can
be described as follows: the i-th columns of −a9− 1 and a3 (resp. a7 and a1− 1)
are divisible by pti (resp. pta+i ) for 1 ≤ i ≤ a, the (i, j)-th entry of a6 (resp. a4)
is divisible by pta+b+i+t j (resp. pta+b+i+ta+ j ), and the i-th row of 1− a5 is divisible
by pta+b+i . The entries in a2 and a8 are in Zp. Then the pullback section is equal to∑

B,C,D,E

∫
f̃ †(γ̃ α(1, gι1)w

′γ̃−14w−1
a+2b+1

)
τ̄ (det g1)π(gι1)ϕ dg1,

where

4= diag(p−t1, . . . , p−ta , 1, 1, p−ta+1, . . . , p−ta+b , 1, 1, 1, pta+b+1, . . . , pta+2b)

and the integration is over elements (with superscript w meaning conjugation by w)

g1 ∈

(
B

C

)w
ι

Y

(
E

D

)
conj

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+b , . . . )

for(
E

D

)
conj
:=

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+1, . . . )

(
E

D

)

× diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )

 −1b

1a

1b

 .
Lemma 4.37. If ϕw is invariant under the action of (K̃ ′′)ι, then

Fϕ′(z, ρ(ϒ) f †, w)

is such that the action of K̃ ι on it is given by ν̃.

Proof. By the above two lemmas we only need to check that Fϕ′(z, ρ(ϒ) f †, w) is
invariant under the action of K̃ ′′. We first claim that

∑
D,E π

((
E

D

)ι
conj

)
ϕ′ is invari-

ant under (K̃ ′′)ι. The claim follows from direct checking. Also, for any k1 ∈ K̃ ′′, we
can find a k2 ∈ K̃ ′′ such that k1

( B
C

)w
ι

k−1
2 runs over the same set of representatives

as
( B

C

)w
ι

. For any k1 ∈ K̃ ′′, we can find a k2 ∈ K̃ ′′ such that k1Yk−1
2 =Y. The

lemma follows from these observations. �
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The value of f̃ † at

g1 =

 1b

1a

−1b

 diag(pta+b+1, . . . , p−t1, . . . , p−ta+b , . . . )

is
τ((pta+b+1+···+ta+2b , pt1+···+ta+b))|pt1+···+ta+2b |

−z−(a+2b+1)/2.

So, a straightforward computation using the model for π = π(χ1, . . . , χa+2b)

tells us the following:

Lemma 4.38. If ϕ and ϕ′ are defined as after the proof of Lemma 4.36, then:

Fϕ′(z, ρ(ϒ) f †, w)

= τ((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |
−z−(a+2b+1)/2 Vol(K̃ ′)

× p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)ϕw.

Combining the three lemmas above, we get the following:

Proposition 4.39. With assumptions as in the above lemma, Fϕ′(z, ρ(ϒ) f †, g) is
the unique section supported in PwK such that the right action of K is given by
multiplying the character ν, and its value at w is

Fϕ′(z, ρ(ϒ) f †, w)

= τ((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |
−z− a+2b+1

2 Vol(K̃ ′)

× p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+1+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)ϕw.

Proof. Clearly φw is invariant under (K̃ ′′)ι. �

This Fϕ′(z, ρ(ϒ) f †, g) we constructed is not going to be the nearly ordinary
vector unless we apply the intertwining operator to it. So now we start with
some ρ = (π, τ ). We define our Siegel section f 0

∈ Ia+2b+1(τ ) to be

f 0(z; g) := M(−z, f †)z(g),

where f †
∈ Ia+2b+1(τ̄

c). We recall the following generalization of a proposition
from [Skinner and Urban 2014].

Proposition 4.40. Suppose our data (π, τ ) comes from the local component at v of
a global data. Then there is a meromorphic function γ (2)(ρ, z) such that

Fϕ∨(−z,M(z, f ), g)= γ (2)(ρ, z)A(ρ, z, Fϕ( f ; z,−))−z(g).
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Moreover, if πv 'π(χ1, . . . , χa+2b) then, if we write γ (1)(ρ, z)= γ (2)
(
ρ, z+ 1

2

)
,

then

γ (1)(ρ, z)= ψ(−1)cn(τ
′, z)g(τ ′p)

nε
(
π, τ c, z+ 1

2

)L
(
π̃ , τ̄ c, 1

2 − z
)

L
(
π, τ c, z+ 1

2

) ,
where cn(τ

′, z) is the constant appearing in Lemma 4.27.

Proof. The same as [Skinner and Urban 2014, Proposition 11.13]. �

Remark 4.41. Here we are using the L-factors for the base change from the unitary
groups, while [Skinner and Urban 2014] uses the GL2 L-factor for π , so our formula
appears slightly different.

Now we are going to show that

F0
v (z; g) := Fϕ′(z, ρ(ϒ) f 0, g)

is a constant multiple of the nearly ordinary vector if our ρ comes from the
local component of the global Eisenstein data (see Section 3A). Return to the
situation of our Eisenstein data. Suppose that at the Archimedean places our
representation is a holomorphic discrete series associated to the (scalar) weight
k= (0, . . . 0; κ, . . . κ)with r zeroes and s kappas. Here r =a+b and s=b. Suppose
π ' Ind(χ1, . . . , χa+2b) is nearly ordinary with respect to the weight k. We may
reorder the χi so that νp(χ1(p))= s− 1

2 n+ 1
2 , . . . , νp(χr (p))= r+ s−1− 1

2 n+ 1
2,

νp(χr+s(p))= κ− 1
2 n+ 1

2 , . . . , νp(χr+1(p))= κ+s−1− 1
2 n+ 1

2 , and τ = (τ1, τ
−1
2 )

is a character of Q×p ×Q×p with νp(τ1(p))= νp(τ2(p))= κ
2 , so

νp(χ1(p)) < · · ·< νp(χa+b(p)) < νp(τ2(p)p−zκ )

< νp(τ1(p)pzκ )

< νp(χa+2b(p)) < · · ·< νp(χa+b+1(p)),

where zκ = 1
2(κ − r − s− 1). It is easy to see that

I (ρv, zκ)' Ind(χ1, . . . χr+s, τ2| · |
zκ , τ1| · |

−zκ ).

By definition, I (ρv, zκ) is nearly ordinary with respect to the weight

(0, . . . , 0︸ ︷︷ ︸
r+1

; κ, . . . , κ︸ ︷︷ ︸
s+1

).

Definition 4.42. With assumptions and conventions as above, we say (π, τ ) is
generic if

cond(χ1) > · · ·> cond(χa+b) > cond(τ2)

> cond(χa+b+1) > · · ·> cond(χa+2b) > cond(τ1).
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We suppose also that the conductor of τi is psi . Notice that we have s2 > s1 by
our assumption, which is different from Definition 4.21 (since we have applied the
intertwining operator here).

Let us record the following formula for the ε-factor in Proposition 4.40:

ε
(
π, τ c, z+ 1

2

)
=

r∏
i=1

g(χ−1
i τ2)χiτ

−1
2 (pti ) ·

s∏
i=1

g(χ−1
r+iτ2)χr+iτ

−1
2 (ps2)

× |p
∑r

i=1 ti+s·s2 |
z+ 1

2

r+s∏
i=1

g(χiτ
−1
1 )χ−1

i τ1(pti ) · |p
∑r+s

i=1 ti |z+
1
2 . (15)

From the form of Fϕ′(z, ρ(ϒ) f †
; g) and the above proposition we have a descrip-

tion in the “generic” case for F0
v (z, g) as in [Skinner and Urban 2014, Lemma 9.6]:

it is supported in P(Qp)Kv, with

F0
v (z, 1)= γ (2)(ρ,−z)τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
z−(a+2b+1)/2 Vol(K̃ ′)p−

∑a+b
i=1 (i+1)ti−

∑b
i=1(i+1)ta+b+1+i

×

a+b∏
i=1

g(ξ †
i )ξi (−1)

b∏
i=1

g(ξ †
a+b+1+i )ξ

†
a+b+1+i (−1)ϕ

= cn
(
τ ′p,−z− 1

2

)
g(τ ′p)

n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
z−(a+2b+1)/2 Vol(K̃ ′)p−

∑a+b
i=1 i ti−

∑b
i=1 i ta+b+1+i

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε(π,τ c, z)ϕ

× |p
∑r

i=1 ti+s·s2 |
−z
· |p

∑r+s
i=1 ti |−z,

where the ξ †
i are the ξi defined in Definition 4.21 but using (π, τ̄ c) instead of (π, τ ).

Here we also used Proposition 4.40 and the formula for the epsilon factor there.
Notice that we have absorbed a factor p−

∑a+b
i=1 ti−

∑b
i=1 ta+b+1+i , which comes from

computing the image under the intertwining operator of Fϕ′(z, ρ(ϒ) f †
; g) to get

the factor p−
∑a+b

i=1 (i+1)ti−
∑b

i=1(i+1)ta+b+1+i in the above expression. The right action
of Kv is given by the character

χ1(g11) · · ·χa+b(ga+b a+b)τ2(ga+b+1 a+b+1)χa+b+1(ga+b+2 a+b+2)× · · ·

×χa+2b(ga+2b+1 a+2b+1)τ1(ga+2b+2 a+2b+2).

(It is easy to compute A(ρ, z, Fϕ′(ρ(ϒ) f †
; z,−))−z(1) and we use the uniqueness

of the vector with the required Kv action. Here, on the second row of the above
formula for F0

v (z, 1), the power for p is slightly different from that for the section



Families of nearly ordinary Eisenstein series on unitary groups 2017

F(z, f †, w). This comes from the computations for the intertwining operators for
Klingen Eisenstein sections.)

Thus, Corollary 4.20 tells us that F0
v (z, g) is a nearly ordinary vector in I (ρ).

Now we describe f 0:

Definition 4.43. Suppose (pt)= cond(τ ′) for t ≥ 1, then define ft to be the section
supported in Q(Qp)K Q(pt) with ft(k)= τ(det dk) on K Q(pt).

Lemma 4.44. f̃ 0
:= M(−z, f̃ †)z = ft,z.

Proof. This is just [Skinner and Urban 2014, Lemma 11.10]. �

Corollary 4.45. We have

f 0(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)
f̃t

z,g

1a+2b+1

A B
C D

E
1a+2b+1


 .

Here, Ai is the i-th upper-left minor of A, Di is the (a+i)-th upper-left minor
of
( A

C
B
D

)
and Ei is the i-th upper-left minor of E.

We define the Siegel section f 0′
∈ Ia+2b(τ ) by

f 0′(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)

× f̃t

z, gw′−1
Borel

1a+2b+1

A B
C D

E
1a+2b+1

w′Borel

 .
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Then, similar to before, the corresponding pullback section F ′ϕ′(z, ρ(ϒ
′) f 0′, 1)

equals

cn(τ
′

p,−z)g(τ ′p)
n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |

z−(a+2b)/2 Vol(K̃ ′)

× p−
∑
(i−1)ti−

∑
(i−1)ta+b+i

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (ps2)

×

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε
(
π, τ c, z+ 1

2

)
ϕ

× |p
∑r

i=1 ti+s·s2 |
−z+ 1

2 · |p
∑r+s

i=1 ti |−z+ 1
2 .

Fourier coefficients for f 0. We record a formula here for the Fourier coefficients
for f 0 which will be used in p-adic interpolation.

Lemma 4.46. Suppose |detβ| 6= 0; then:

(i) If β 6∈ Sa+2b+1(Zp) then f 0
β (z, 1)= 0.

(ii) Let t := ordp(cond(τ ′)). If β ∈ Sa+2b+1(Zp) then

f 0
β (z, 1)= τ̄ ′(detβ)|detβ|2z

p g(τ
′)a+2b+1ca+2b+1(τ̄

′,−z)8ξ ( tβ),

where ca+2b+1(−,−) is as defined in (13) and 8ξ is defined in (11).

Proof. This follows from [Skinner and Urban 2014, Lemma 11.12] and the argument
of Corollary 4.30, where we deduce the form of f † from the section f̃ †. �

4D3. Fourier–Jacobi coefficients. Now let m = b+ 1. For β ∈ Sm(Fv)∩GLm(Ov)

we are going to compute the Fourier–Jacobi coefficient for ft at β.

Lemma 4.47. Let x :=
( 1

D 1

)
(this is a block matrix with respect to (a+b)+(a+b)).

Then:

(a) FJβ( ft ; z, v, xη−1, 1)= 0 if D 6∈ pt Ma+b(Zp).

(b) If D ∈ pt Mn(Zp) then FJβ( ft ; z, v, xη−1, 1)= c(β, τ, z)80(v), where

c(β, τ, z) := τ̄ (− detβ)|detβ|2z+n−m
v g(τ ′)mcm

(
τ ′,−z− 1

2(n−m)
)

and cm is as defined in Lemma 4.27.

Proof. Similar to the proof of [Skinner and Urban 2014, Lemma 11.20]. We only
give the detailed proof for the case when a = 0. The case when a > 0 is even easier
to treat.
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Assuming a = 0, we temporarily write n for b and save the letter b for other use.
We have

w2n+1

12n+1
S v
tv̄ D
12n+1

α(1, η−1)=


1n+1

−1n

−1n+1 v −S
D −

tv̄ −1n

 .
This belongs to Q2n+1(Qp)K Q2n+1(p

t) (where K Q2n+1(p
t) consists of matrices

in Q2n+1(Zp) modulo pt ) if and only if S is invertible with S−1
∈ pt Mn+1(Ov),

S−1v ∈ pt M(n+1)×n(Ov) and tv̄S−1v − D ∈ pt Mn(Zp). Since v = γ t(b, 0) for
some γ ∈ SLn+1(Ov) and b ∈ Mn(Kv), we are reduced to the case v = t(b, 0).
Writing b = (b1, b2) with bi ∈ Mn(Qp), and S = (T, tT ) with T ∈ Mn+1(Qp)

and T−1
=
(a1

a3

a2
a4

)
, where a1 ∈ Mn(Qp), a2 ∈ Mn×1(Qp), a3 ∈ M1×n(Qp) and

a4 ∈ M1(Qp), the conditions on S and v can be rewritten as

det T 6= 0, ai ∈ pt Mn(Zp), a1b1 ∈ pt Mn(Zp), a3b1 ∈ pt M1×n(Zp),

ta1b2 ∈ pt Mn(Zp),
ta2b2 ∈ pt Zp,

tb2a1b1− D ∈ pt Mn(Zp).
(*)

Now we prove that if the integral for FJβ( ft ; z, v, xη−1, 1) is nonzero then
b1, b2 ∈ Mn(Zp). Suppose otherwise; then without loss of generality we assume b1

has an entry which has the maximal p-adic absolute value among all entries of b1

and b2, Suppose it is pw for w > 0 (w means this only inside this lemma). Also,
for any matrix A of given size, we say A ∈ tb∨2 if and only tb2 A has all entries
in Zp (of course we assume the sizes of the matrices are correct so that the product
makes sense).

Now let

0 :=

{
γ =

(
h j
k l

)
∈GLn(Zp)

∣∣∣∣h∈GLn+1(Zp), l ∈Z×p , h−1∈ tb∨2 ∩ pt Mn(Zp),

j ∈ Zn
p ∩

tb∨2 , k ∈ pt M1×n(Zp)

}
.

Suppose that our b1, b2 and D are such that there exist ai satisfying (*); then one
can check that 0 is a subgroup and, if T satisfies (*), so does T γ for any γ ∈ 0.
Let T denote the set of T ∈ Mn+1(Qp) satisfying (*). Then

FJβ

(
ft ; z, v,

(
1
D 1

)
η−1, 1

)
=

∑
T∈T/0

|det T |3n+2−2z
p

∫
0

τ ′(− det T γ )ep(−TrβT γ ) dγ.

Let T ′ := βT =
( c1

c3

c2
c4

)
(with blocks with respect to the partition (n+ 1)); then the

above integral is zero unless we have c1 ∈ p−t Mn(Zp)⊕ [
tb2]n×n , c4 ∈ p−t Zp,
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c2 ∈ p−t Mn+1(Zp) and c3 ∈ [
tb2]1×n ⊕M1×n(Zp). Here [ tb2]i×n means the set of

i × n matrices such that each row is a Zp-linear combination of the rows of tb2.
But then

β

(
b1

0

)
= T ′T−1

(
b1

0

)
=

(
c1a1b1+ c2a3b1

c3a1b1+ c4a3b1

)
.

Since β ∈ GLn+1(Zp), the left-hand side must contain some entry with p-adic
absolute value pw. But it is not hard to see that all entries on the right-hand side
have p-adic values strictly less than pw; a contradiction. Thus we conclude that
b1∈Mn(Zp) and b2∈Mn(Zp). By (*), b2

ta1b1−D∈ pt Mn(Zp) and a1∈ pt Mn(Zp).
So D ∈ pt Mn(Zp).

The value claimed in part (b) can be deduced similarly to in [Skinner and Urban
2014, Lemma 11.20] �

4D4. Original basis. Recall that we changed the basis at the beginning of this
subsection. Now we go back. We define the corresponding sections (we use the
same notations)

f †(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1
pti

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1
pta+i

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1
pta+b+i

)

× f̃ †


z, gw−1

Borel



1b C D
1

1a A B
1b E

1b

1
1a

1b


wBorel


,

and f 0(z, g) the same except using f̃t in place of f̃ †. Here, Ai is the i-th upper-left
minor of A, Di is the (a+i)-th upper-left minor of

( A
C

B
D

)
and Ei is the i-th upper-

left minor of E . The wBorel is the element in G(Fp) such that, for any v = ww̄
dividing p with w ∈6p, its projection to the first factor of Kv ' Kw ×Kw̄ is the
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Weyl element defined at the beginning of Section 4D2. We also define

f †′(z, g)= p−
∑a+b

i=1 i ti−
∑b

i=1 i ta+b+i

a+b∏
i=1

g(ξi )ξi (−1)
b∏

i=1

g(ξa+b+1+i )ξa+b+1+i (−1)

×

∑
A,B,C,D,E

a∏
i=1

ξ̄i

(
det Ai

det Ai−1

) b∏
i=1

ξ̄a+i,a+i

(
det Di

det Di−1

)

×

b∏
i=1

ξ̄a+b+1+i

(
det Ei

det Ei−1

)

× f̃ †


z, gw′−1

Borel



1b C D
1a A B

1b E
1b

1a

1b


w′Borel


,

and f 0′ the same except with f̃t instead of f̃ †. The corresponding pullback section
Fϕ′( f 0, z,−) is the nearly ordinary section with respect to the Borel B2 defined in
Section 4D2 such that Fϕ′( f 0, z, wBorel) is given by

cn+1
(
τ ′p,−z− 1

2

)
g(τ ′p)

n+1τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))

× |pt1+···+ta+2b |
−z−(a+2b+1)/2 Vol(K̃ ′)p−

∑
i ti−

∑
i ta+b+i

×

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (pti )

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε(π, τ c, z)ϕ.

Also, we have that F ′ϕ′(z, ρ(ϒ
′) f 0′, w′Borel) is given by

cn(τ
′

p,−z)g(τ ′p)
n τ̄ c((pt1+···+ta+b , pta+b+1+···+ta+2b))|pt1+···+ta+2b |

−z−(a+2b)/2 Vol(K̃ ′)

× p−
∑

i ti−
∑

i ta+b+i

r+s∏
i=r+1

g(χ−1
i τ2)χiτ

−1
2 (pti )

×

r∏
j=1

g(χ jτ
−1
1 )χ−1

j τ1(pt j )ε
(
π, τ c, z+ 1

2

)
ϕ.

5. Global computations

5A. p-adic interpolation.

5A1. Weight space and Eisenstein datum. Recall that we have the algebraic group
H =

∏
v|p GLr ×GLs such that H(/Zp) is the Galois group of the Igusa tower
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over the ordinary locus of the toroidal compactified Shimura variety. Let T/Zp

be the diagonal torus. Let T := T (1+Zp). We define the weight ring 3 = 3r,s

as OL [[T ]]. Fix throughout a finite-order character χ0 of T (Fp) (the torsion part
of T (Zp)); a Qp-point φ ∈ Spec3 is called arithmetic if there is a weight k =
(cs+1, . . . , cs+r ; c1, . . . , cs)= (0, . . . , 0; κ, . . . , κ) such that φ is given by a char-
acter χ0χφtcs+1

1 · · · tcr+s
r t−c1

r+1 · · · t
−cs
r+s of T for χφ a character of order and conductor

powers of p, with κ ≥ 2(a+ b+ 1). We write this κ as κφ . Let 3K = OL [[0K]].

Definition 5.1. For I a normal domain over 3 which is also a finite module over 3,
a Qp-point φ ∈ Spec I is called arithmetic if its image in Spec3 is arithmetic.

(i) If s>0, let V N
∞,∞(K , I, χ0) be the set of I-adic formal Fourier–Jacobi expansions{

fx =
∑
β

aβ(x, f )qβ
}

x

such that, for a Zariski-dense set of generic arithmetic points φ ∈ Spec I, the
specialization fφ is the formal Fourier–Jacobi expansion of a form on U(r, s)
whose p-part nebentype at diag(t1, . . . , tr+s) is given by

χ0χφω(t
cs+1
1 · · · tcs+r

r t−c1
r+1 · · · t

−cs
r+s )

for the weight (cs+1, . . . , cs+r ; c1, . . . , cs) = (0, . . . , 0; κφ, . . . , κφ). Here, by χφ
we also mean the character of T (Zp) restricting to χφ on T that is trivial on
the torsion part of T (Zp). We say f ∈ V N

∞,∞(K , I) is a family of eigenforms if
the specializations fφ above are eigenforms. We define V N ,ord

∞,∞ (K , I, χ0) for the
subspace such that the specializations above are nearly ordinary.

(ii) If s = 0, then let K =
∏
v Kv and let

K0(p)=
∏
v-p

Kv

∏
v|p

K0(p)v

(with K0(p)v ⊂ G(OFv ) be the set of matrices which are in B(OF,v) modulo p).
Then G(F)\G(AF )/K0(p) is a finite set with {gi }i a set of representatives. We
identify the set

SN
G (K ) := G(F)\G(AF )/K p N (OF,p)

with the disjoint union of gi · N−(pOF,p)T (OF,p) and endow the latter with the
p-adic topology on N−(pOF,p)T (OF,p). We define V N

∞,∞(K , I, χ0) to be the set
of continuous I-valued functions on SN

G (K ) such that, for a Zariski-dense set of
arithmetic points φ ∈ Spec I, the specialization fφ is a form on U(r, 0) whose p-part
nebentype at diag(t1, . . . , tr ) is given by

χ0χφω(t
c1
1 · · · t

cr
r )
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for the weight (0, . . . , 0). Note that, by the description of nebentypus at p, such
a family is determined by its values on gi · N−(pOF,p). Similarly we define
V N ,ord
∞,∞ (K , I, χ0) for the nearly ordinary part.

Remark 5.2. To see this is a good definition, we have to compare it with the
notion of Hida families in the literature. We refer to [Hida 2004b, Chapter 8;
Hsieh 2014, Sections 3–4] for the definition of Hida families. We have to check
that a Hida family in Hsieh’s terms does give a Hida family here. We need to
show that, if κφ � 0 (depending on the p-part of the conductor at φ) when s > 0,
then any nearly ordinary p-adic cusp form is classical. If s > 0 this is proved
by the argument of [Hsieh 2014, Theorem 4.19]. (It is assumed that s = 1 in
[loc. cit.]; however, the proof for this particular theorem works in the general case.)
If s = 0 the situation is even easier: the contraction property of the Up operator
[Hsieh 2014, Proposition 4.4] (which again works in our case as well) shows that the
specialization at φ is right-invariant under an open subgroup of U(r)(Zp) depending
only on the conductor of the nebentypus (note also that we have trivial weight
if s = 0), and is thus classical.

Definition 5.3. We define an Eisenstein datum as a quadruple D := (I, f , τ0, χ0),
where χ0 is a finite-order character of T (Zp), τ0 is a finite-order character of
K×\A×K whose conductors at primes above p divides (p), and f ∈ V N ,ord

∞,∞ (K , I) is
a Hida family of eigenforms defined as above. We define 3D :=3⊗OL 3K. We
call a Qp-point φ ∈ Spec3D is arithmetic if φ|I is arithmetic with some weight κφ
and φ(γ+)= (1+ p)κφ/2ζ+, φ(γ−)= (1+ p)κφ/2ζ− for p-power roots of unity ζ±.
We define τφ = φ ◦9K.

Let X be the set of arithmetic points. If fφ is classical and generates an irreducible
automorphic representation π fφ of U(r, s), we say that φ is generic if (π fφ , τ ) is
generic (see Definition 4.42). Let Xgen be the set of generic arithmetic points.

5B. Some assumptions.

5B1. Including types. Consider the group U(s, r). Suppose K p
=K6K6

⊂G(Ap
f )

for a finite set of primes 6 and let W6 be a finite OL -module on which K6

acts through a finite quotient. Let K ′6 ⊂ K6 be a normal subgroup contain-
ing

∏
v∈6\{v|p}Yv, defined in Definition 4.11 and acting trivially on W6 , and

let K ′ = G(Zp)K ′6K6 . The modules of modular forms of weight κ , type W6 and
character ψ are

Mκ(K ,W6;OL)= (Mκ(K ′;OL)⊗OL W6)
K6 .

Suppose for v ∈6\{v|p} we have open compact subgroups K̃ ′v ⊂ K̃v ⊂ G(Fv)
such that K̃ ′v is a normal subgroup of K̃v and an irreducible finite-dimensional rep-
resentation Wv of K̃v/K̃ ′v . Suppose ϕv ∈πv is a vector in Wv . We fix a K̃v-invariant
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measure and let v1, v2, . . . be a basis such that ϕv is v1. We also assume that K̃ ′v
includes the Yι

v defined in Section 4. We let W∨v be the dual representation and we
write v∨1 , v∨2 , . . . for the dual basis. We first prove the following lemma:

Lemma 5.4. Let G be a finite group and ρ : G → Aut(V ) an irreducible repre-
sentation on an n-dimensional vector space V . We fix a G-invariant norm and a
unitary basis v1, . . . , vn . Let ρ∨ be the dual representation on V∨ with dual basis
v∨1 , . . . , v

∨
n . Then, as elements in V ⊗ V∨,∑

g∈G

(gvi ⊗ gv∨j )= 0, i 6= j,

∑
g

(gvi ⊗ gv∨i )= |G|
n∑

i=1

vi ⊗ v
∨

i .

Proof. This is a straightforward application of the Schur orthogonal relation. �

Definition 5.5. We define W6\{p}=
∏
v∈6\{p}Wv and v1=

∏
v∈6\{p} vv,1 ∈W6\{p}.

We can also make a notion of W6\{p}-valued Hida families in a similar manner
to Definition 5.1.

5B2. Assumption TEMPERED. Let f be a Hida family of eigenforms as defined in
Definition 5.1. We say it satisfies the assumption “TEMPERED” if the specializations
fφ in the definition are tempered eigenforms.

5B3. Assumption DUAL. We first define an OL -involution ◦ :3→3 sending any
diag(t1, . . . , tn)∈ T (1+Zp) to diag(t−1

n , . . . , t−1
1 ). We define I◦ to be the ring I but

with the 3-algebra structure given by composing the involution ◦ with the original
3 structure map of I.

Let f be an I-adic cuspidal eigenform on U(r, s) such that, for a Zariski-dense
set of generic arithmetic points φ, the specialization fφ is classical and generates an
irreducible automorphic representation π fφ of U(r, s); we say it satisfies assumption
DUAL if there is an I◦-adic nearly ordinary cusp form f ∨ on U(s, r) such that
f ∨φ ∈ π

∨
fφ for all the arithmetic points φ ∈ Spec I that are in the image of some

point in Xgen. (Here we identified U(r, s) and U(s, r) in the obvious way. At an
arithmetic point both fφ and f ∨φ have scalar weight κ . Note also that we only
require the specialization fφ to be “generic” (not required for f ∨φ ).)

5B4. Assumptions Proj f ∨ and Proj f ∨ . We say a nearly ordinary cuspidal eigenform
f ∨ on U(s, r) satisfies assumption Proj f ∨ if (π f ∨ ⊗W6\{p})

K is 1-dimensional
and there is a Hecke operator 1 f ∨ on U(s, r) that is an L-coefficient polynomial
of Hecke operators outside 6 such that, for any g ∈ Mκ(K ,W6\{p}), we have that
eord
· g− 1 f ∨eord

· g is a sum of forms in irreducible automorphic representations
which are orthogonal to π f ∨ .
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We say a nonzero nearly ordinary cuspidal I◦-adic family of eigenforms f ∨

in (V N
∞,∞(K , I◦, χ−1

0 )⊗W6\{p})
K6 satisfies assumption Proj f ∨ if there is an ac-

tion eord acting on (V N
∞,∞(K , I◦, χ−1

0 )⊗W6\{p})
K6 interpolating the eord of spe-

cializations and there is a Hecke operator 1 f ∨ which is an FI polynomial of
Hecke operators outside 6 such that, for Zariski-dense set of arithmetic points
φ ∈ Spec I◦ in the image of Xgen, (π f ∨φ ⊗W6\{p})

K is 1-dimensional and, for any
g ∈ (V N

∞,∞(K , I◦, χ−1
0 ) ⊗ W6)

K6 , (eord
· g − 1 f ∨eord g)φ is a sum of forms in

irreducible automorphic representations which are orthogonal to π f ∨φ .

Remark 5.6. If r+s= 2 then these assumptions often hold, since the unitary group
is closely related to GL2 or quaternion algebras. It is easy to see DUAL by simply
taking f ∨ = f ⊗ (χ)−1 for χ the central character of f . To see Proj f and Proj f ∨ ,
we first suppose r = s = 1 and f is a Hida family of GL2 newforms with tame
level M such that (M, pδK)= 1 and trivial character. The existence of eord is as in
[Skinner and Urban 2014, Lemma 12.2] Since we have an isomorphism of algebraic
groups over F ,

GU(1, 1)∼ GL2×Gm ResK/F Gm,

we can obtain a family on U(1, 1) from f and the trivial character of A×K/K
×,

which we still denote by f . Take an arithmetic point φ and a GL2 Hecke operator t
involving only Hecke operators Tv at primes v outside 6 which are split in K/F
such that the t-eigenvalue t ( fφ) is different from its eigenvalues on other forms on
Sord
κφ
(00(M)∩01(ptφ ),C) (the space of ordinary cusp forms on U(1, 1) of weight

(0, κφ) and level 00(M)∩01(ptφ ), with ptφ being the p-part level at φ. Also here
we use the U(1, 1) Hecke operators at split primes v = ww̄ which are associated
to the elements (diag($w, 1), diag(1,$−1

w̄ ))). This is possible since any form in
Sord
κφ
(00(M)∩01(ptφ ),C) is the restriction of a form on GU(1, 1) obtained from

a GL2 form of conductor dividing NmK/FδK/F Mptφ and a character of A×K/K
×

unramified outside p. Note that any cuspidal automorphic representation on GL2 /F
with the same Hecke eigenvalue with fφ on split primes is π fφ or π fφ ⊗χK/F , and
that any element g ∈GL2(Fv) such that det(g)∈NmK/F (K

×
v ) can be written as ag′

with a∈K×v and g′∈U(1, 1)(Fv). A simple representation-theoretic argument shows
that the only forms in Sord

κφ
(00(M)∩01(ptφ ),C) with the same Hecke eigenvalues

with fφ at split primes are in the 1-dimensional space spanned by fφ . Let 3 be the
weight space for U(1, 1) and define

Sord(00(M), I) := Sord(00(M),3)⊗3 I.

It follows from Hida’s control theorem for unitary groups (see [Hsieh 2014, The-
orem 4.21], for example) that this is a free module over I of finite rank, and the
specialization of this free module to φ gives the space Sord

κφ
(00(M)∩01(ptφ ),OL) for

some L finite over Qp provided κφ � 0 with respect to the p-part of the conductor
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of φ. We consider det(T − t), where T is a variable and we regard t as an operator
on this free I-module. We thus obtain an I-coefficient polynomial of T . Moreover,
we can write det(T − t)= (T − t ( f )) · g(T ) for some polynomial g(T ). Then we
define

1 f =
g(t)
g( f )

(note that g(t ( f )) is not identically zero.) This proves Proj f , and Proj f ∨ is seen in
a similar way. If (r, s)= (2, 0) we observe that if we set

D = {g ∈ M2(K) | gtζḡ = det(g)ζ }

then D is a definite quaternion algebra over Q with local invariants invv(D) =
(−s,−DK/Q)v (the Hilbert symbol). The relation between GU(2) and D is ex-
plained by

GU(2)= D××Gm ResK/Q Gm .

We can similarly show that, if f is a Hida family of newforms on D× with trivial
character, tame level prime to p and all primes of δK such that D is unramified, and
is the trivial representation at primes where D is ramified, then we can produce a
family f on U(2, 0) from f and the trivial character of A×K/K

×. A similar argument
proves that Proj f and Proj f ∨ is true.

5C. Klingen Eisenstein series and p-adic L-functions.
5C1. Construction. Now we are going to construct the nearly ordinary Klingen
Eisenstein series (and will p-adically interpolate them in families). First of all, let τ
be a Hecke character which is of infinite type

(
−

1
2κ,

1
2κ
)

at all infinite places (here
the convention is that the first infinite place of K is inside our CM type). Recall
that we write D := {π, τ,6} for the Eisenstein data (see Definition 3.2). We define
the normalization factor

BD :=
�rκ6∞

p

�
rκ6∞
∞

(
(−2)−d(a+2b+1)(2π i)d(a+2b+1)κ(2/π)d(a+2b+1)(a+2b)/2∏a+2b

j=0 (κ− j−1)d

)−1

×

a+2b∏
i=0

L6(2zκ+a+2b+1−i, τ̄ ′χ i
K)
∏
v|p

(g(τ̄ ′v)
a+2b+1ca+2b+1(τ

′

v,−zκ))−1,

B ′D :=
�rκ6∞

p

�
rκ6∞
∞

(
(−2)−d(a+2b)(2π i)d(a+2b)κ(2/π)d(a+2b)(a+2b−1)/2∏a+2b−1

j=0 (κ− j−1)d

)−1

×

a+2b−1∏
i=0

L6(2zκ+a+2b−i, τ̄ ′χ i
K)
∏
v|p

(g(τ̄ ′v)
a+2bca+2b(τ

′

v,−z′κ))
−1.

Here, zκ = 1
2(κ − a− 2b− 1) and z′κ =

1
2(κ − a− 2b), cm is defined in (13), and

�∞ is the CM period in Section 2A.



Families of nearly ordinary Eisenstein series on unitary groups 2027

We construct a Siegel Eisenstein series Esieg associated to the Siegel section

fD,sieg = BD

∏
v|∞

fκ
∏
v|p

ρ(ϒv) f 0
v

∏
v∈6,v-p

f̃v,sieg
∏
v

f sph
v ∈ Ia+2b+1(τ, z)

and E ′sieg associated to the section

f ′D,sieg = B ′D
∏
v|∞

f ′κ
∏
v|p

ρ(ϒ ′v) f 0′
v

∏
v∈6,v-p

f̃ ′v,sieg

∏
v

f sph,′
v ∈ Ia+2b(τ, z).

Here ϒv and ϒ ′v are as defined in Definition 4.32. First note that, since π is nearly
ordinary with respect to the scalar weight κ , its contragradient is also nearly ordinary
on U(s, r) with respect to the scalar weight κ . We denote this representation by π̃ .
We consider E(γ (g,−)) as an automorphic form on U(s, r). For each v - p we
choose an open compact group K̃v,s ⊂ U(s, r)v such that∏

v∈6,v-p

ρ
(
γ (1, η diag(x̄−1

v , 1, xv).S̃−1
v )

)(
E(γ (g,−))⊗ τ̄ (det−)

)
is invariant under its action. We have the following lemma:

Lemma 5.7. There is a bounded measure ED,sieg on 0K× T (1+Zp) with values
in the space of p-adic automorphic forms on U(r + s+ 1, r + s+ 1) such that, for
all arithmetic points φ ∈ Xgen with the associated character φ̂ on 0K× T (1+Zp),
we have ∫

0K×T (1+Zp)

φ̂ dED,sieg

is the Siegel Eisenstein series ρ
(∏

v∈6,v-p γ (1, η diag(x̄−1
v , 1, xv)S̃−1

v )
)
Esieg,Dφ

,
where Esieg,Dφ

is the Siegel Eisenstein series we construct using the characters
(χ1,φ, . . . , χn,φ, τφ). Similarly, we can define a measure E′D,sieg interpolating the
E ′sieg,Dφ

.

Proof. It follows from our computations for Fourier coefficients, Lemmas 4.2, 4.6,
4.12 and 4.46, and [Skinner and Urban 2014, Lemma 11.2], that all the Fourier
coefficients of Esieg and E ′sieg are interpolated by elements in 3r,s[[0K]]. Then the
lemma follows from the abstract Kummer congruence. We refer to [Hsieh 2011,
Lemma 3.15, Theorem 3.16] for a detailed proof. �

Now we define our Klingen Eisenstein series using the pullback formula. Note
that by (3) the pullback of the Siegel Eisenstein series are still holomorphic auto-
morphic forms. Let β be the embedding given in Section 2B. Let K̃s be the open
compact subgroup of G(OF,6), which is K̃v,s as above for v ∈6\{v|p}, K̃v for v|p
and spherical otherwise. We define ED,Kling by, for any points x and x1 on the
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Igusa schemes of U(r + 1, s+ 1) and U(s, r),

eord,low
· 1low

f ∨ TrK̃/K̃s
(elow(β−1(ED,sieg) · τ̄ (det(g1)))⊗ v1)(x, x1)

= ED,Kling(x)� f ∨(x1)

(as a W6\{p}-valued form — recall v1 ∈ W6\{p}; see Section 5B1). Here we let
K̃6\{p} act on both ED,sieg and W6\{p}. We get a 3D-adic formal Fourier–Jacobi
expansion from the measure elowβ−1(ED,sieg) and then apply the Hecke operators to
the expansion. We also define the 6-primitive p-adic L-function L6

f ,K,τ0
∈ Iur
[[0K]]

by, for elements x and x1 in the Igusa schemes of U(r, s) and U(s, r),

eord,low
· 1low

f ∨ TrK̃/K̃s
(elowβ−1(E′D,sieg) · τ̄ (det g1)⊗ v1)(x, x1)

= L6
f ,K,τ0

f1(x)� f ∨(x1).

The f1 is the v∨1 -component of f (see Section 5B1). This is possible by Lemma 5.4.
Here note that the necessity of enlarging the coefficient ring to include Our

L is caused
when specifying points on Igusa schemes (recall Section 2F).

Here we used the superscript “low” to mean that, under

U(a+ b+ 1, b+ 1)×U(b, a+ b) ↪→ U(a+ 2b+ 1, a+ 2b+ 1),

the action is for the group U(b, a+ b).

5C2. Identify with Klingen Eisenstein series constructed before. We define a Klin-
gen Eisenstein section by

f �Dφ ,Kling(z, g)= BD

∏
v

Fϕv (z; fv,sieg, g),

where the Fϕv (z; fv,sieg, g) are the pullback sections we computed in Section 5 and
ϕv for v ∈6\{v|p} is the v∨1 -component, as in Sections 5B1 and 5B4. We first look
at places dividing p. The pairing 〈 , 〉 induces a natural pairing between π and π̃ .
Write

ϕw =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv
∏
v|p

ϕw,v.

Then〈∏
v-p

TrK̃v/K̃v,s ρ
(
γ (1, η diag(x̄−1

v , 1, xv).S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw〉
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equals〈
ρlow

(∏
v|p

diag(pta+b+1, . . . , pta+2b , 1a, 1b)
ι

)
×

∏
v-p

TrK̃v/K̃v,s ρ(γ (1, η diag(x̄−1
v , 1, xv)S̃−1

v ))
(
E(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(1b, pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw〉 .
Since Esieg(γ (g,−))τ̄ (det−) satisfies the property that, if K̃ ′′′ is the subgroup of
GLa+2b(Zp) (defined in the last section) consisting of matricesa1 a3 a2

a7 a9 a8

a4 a6 a5


such that the (i, j)-th entries of a7 and a4 are divisible by pti+ta+b+ j and pta+i+ta+b+ j ,
respectively, the i-th row of a8 and the right-to-diagonal entries of a9 are divisible by
pti for i = 1, . . . , a, the below-diagonal entries of the i-th column of a1 are divisible
by pta+b+i , the up-to-diagonal entries of the i-th row of a5 are divisible by pta+i , and
a2, a3, a6 ∈ M(Zp), then the right action of hι for h ∈ K̃ ′′′ on E(γ (g,−))τ̄ (det−)
is given by the character

λ(hι)= χ̄a+b+1(h11) · · · χ̄a+2b(hbb)χ̄1(hb+1,b+1) · · · χ̄(ha+b,a+b)

× χ̄a+1(ha+b+1,a+b+1) · · · χ̄a+b(ha+2b,a+2b).

(This is easily checked from the definition of the Godement section.) It is elementary
to check that the above expression equals∏
v|p

1∏b
i=1 pta+b+i (a+b)

×

〈∏
v|p

∑
y

ρlow(y)ρlow(diag(pta+b+1,...,1a,1b)
ι)

×

∏
v-p

TrK̃v/K̃v,sρ
(
γ (1,ηdiag(x̄−1

v ,1,xv)S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
,

ρ

∏
v|p

diag(1b, pt1 ..., pta+1,...)ι

 −1b

1a

1b

ιϕw〉, (15)
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where y runs over N (Zp)/βN (Zp)β
−1 for N consisting of matrices of the form( 1s

∗

0
1r

)
with ∗ having Zp-entries and β = diag(pta+b+1, . . . , 1a, 1b). Write the ex-

pression

eord,low
∏
v|p

∑
y

ρlow(y)ρlow(β ι)

×

∏
v-p

TrK̃v/K̃v,s ρ
(
γ (1, η diag(x̄−1

v , 1, xv)S̃−1
v )

)(
Esieg(γ (g,−))τ̄ (det−)

)
. (16)

Now let K̃ [ consists of matrices in GLb(Zp) whose below-diagonal entries of
the i-th row are divisible by pt

a+b+i for 1≤ i ≤ s. Let K̃ ] be the set of elements in
GLa+2b(Zp) whose right-to-diagonal entries of the i-th row are divisible by pti for
1≤ i ≤ a+ b and whose lower-right b× b block is in

diag(pta+b+1, . . . , pta+2b)K̃ [ diag(pta+b+1, . . . , pta+2b)−1.

Then a similar argument as in Section 4D1 shows that there is a unique (up to
scalar) vector ϕ̃]v ∈ π(χ−1

1 , . . . , χ−1
a+2b) such that the action of (ki j ) ∈ K ] is given

by the character diag(χ−1
1 (k11), . . . , χ

−1
a+2b(ka+2ba+2b)). We use the model of the

induced representation from χ−1
1 ⊗ · · ·⊗χ

−1
a+2b on the space of smooth functions

on GLa+2b(Zp). We take ϕ̃]v such that, if ϕ̃ord
v takes value 1 on identity in this model,

then ϕ̃]v also takes value 1 on identity (and has support K ]
⊂GLa+2b(Zp)). From the

action of the level group we know that the action of ρlow(K ]) on the left part of the in-
ner product in (15) is given by the character diag(χ−1

1 (k11), . . . , χ
−1
a+2b(ka+2ba+2b)).

For v|p define T low
β,v to be the Hecke operator corresponding to β just in terms of

double cosets acting on π∨ϕ (with no normalization factors involved). By checking
the actions of the level groups at primes dividing p (certain open compact subgroups
of G(OF,p)) we can see that the π̃ component of the left part, when viewed as an
automorphic form on U(a+ b, b), is a multiple of ϕ̃ord. Suppose the eigenvalue for
the Hecke operator T low

β,v on ϕ̃ord is λ̃β,v. It is easy to compute that

λ̃β,v = p
∑b

i=1 ta+b+i ((a+2b+1)/2−i)
·

b∏
j=1

χ−1
a+2b+1− j (p

ta+b+ j ) (17)

with the convention on the χi after Remark 4.41.
Let

ϕ′ =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv

×

∏
v|p

ρ

diag(p−ta+b+1, . . . , pt1, . . . , pta+1, . . .)ι

 −1b

1a

1b

ιϕw,v
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and

ϕ′′ =
∏
v|∞

ϕv
∏
v 6∈6

ϕsph
∏

v∈6,v-p

ϕv

×

∏
v|p

ρ

diag(1, . . . , pt1, . . . , pta+1, . . . )ι

 −1b

1a

1b

ιϕw,v.
Here, for v|∞, the ϕv is the unique vector mentioned before Definition 3.1. Define
the Klingen Eisenstein section promised in the introduction as

fDφ ,Kling = BDφ

( ∏
v∈6,v-p

|K̃v/K̃v,s |

)
f �Dφ ,Kling.

Then we have:

Proposition 5.8. For a classical generic arithmetic point φ, we have

φ(ED,Kling)

=

∏
v∈6,v-p

|K̃v/K̃v,s |
EKling( fDφ ,Kling, zκφ , g)

〈ϕ̃ord
φ , ϕφ〉

×

∏
v|p

( s∏
j=1

χr+ j (ptr+ j )

r∏
j=1

χ−1
j (pt j )p

∑s
i=1 ta+b+i ((a−1)/2+i)

·p−
∑r

j=1 t j ((a+1)/2− j)
)
.

Proof. Here, let 2 be the expression (15) and 4 the expression (16). We have

2

〈ϕ̃], ϕ′′〉
=

〈4, ϕ′′〉λ̃β,v∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
〈ϕ̃ord, ϕ′′〉

and

〈ϕ̃], ϕ′′〉 = 〈ϕ̃ord, ϕ′′〉 ·
∏
v|p

( ∏
1≤i≤ j≤s

pta+b+i−ta+b+ j

)
(e.g., using the model of the induced representation). So

〈4, ϕ′′〉

〈ϕ̃ord, ϕ′′〉
=
2
∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
λ̃β,v〈ϕ̃], ϕ′′〉

=
2
∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)∏
v|p

(∏
1≤i≤ j≤s pta+b+i−ta+b+ j

)
λ̃β,v〈ϕ̃ord, ϕ′′〉

.

We also have

〈ϕ̃ord, ϕ′′〉 =

r∏
j=1

χ j (pt j ) · p
∑r

j=1 t j ((a+1)/2− j).

The proposition follows. �
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Then parts (i) and (ii) of Theorem 1.1 are just a corollary of the above proposition
(except the statement in the s = 0 case, which we are going to consider next).

Similarly, we obtain an interpolation formula for the p-adic L-function as in
Theorem 1.1, using also the formula (15).

5C3. Interpolating Petersson inner products for definite unitary groups. To sim-
plify the exposition we only discuss the case when F = Q in this subsubsec-
tion. In the case when s = 0, we hope that the periods showing up are CM
periods. Thus, by our assumption, the Archimedean components of π are trivial
representations. For this purpose we prove that, under certain assumptions, the
Petersson inner products of two families can be interpolated by elements in the
Iwasawa algebra. Let K =

∏
v Kv be an open compact subgroup of U(r, s)(A f )

which is G(Zp) at all primes dividing p and K0(p), obtained from K by replacing
the v-component by K 1

0 at all primes v dividing p. Now we take a set {gi }i of
representatives for U(r, s)(F)\U(r, s)(AF )/K0(p). We take K sufficiently small
so that for all i we have U(r, s)(F) ∩ gi K g−1

i = 1. For the nearly ordinary
Hida family f ∨ of eigenforms (recall that this Hida family is nearly ordinary
with respect to the lower-triangular Borel subgroup) we construct a bounded
I-valued measure µi on N−(pZp) as follows. Let T− be the set of elements
diag(pa1, . . . , par ) with a1 ≤ · · · ≤ ar . We only need to specify the measure for
sets of the form nt−N−(Zp)(t−)−1, where n ∈ N−(Zp) and t− ∈ T−. We assign
its measure µi (nt−N−(Zp)(t−)−1) by f ∨(gi n · t−)λ(t−)−1, where λ(t−) is the
Hecke eigenvalue of f ∨ for Ut− . This does define a measure. We briefly explain
the point when r = 2 (the general case is only notationally more complicated).
Write π f ∨φ ,p = π(χ1,p, χ2,p) such that νp(χ1,p(p))= 1

2 , νp(χ2,p(p))=−1
2 . Then

λ(diag(1, pn))= (χ2,p(p) · p1/2)n . One checks that∑
m∈pn−1Zp/pnZp

π

((
1
m 1

)
p

)
π(diag(1, pn)p) f ∨φ,p

= (χ2,p(p) · p1/2)π(diag(1, pn−1)p) f ∨φ,p.

This implies that, for any m1 ∈ pZp/pn−1Zp,∑
m2∈pn−1Zp/pnZp

µi (m1m2 diag(1, pn)N−(Zp) diag(1, p−n))

= µi (m1 diag(1, pn−1)N−(Zp) diag(1, p1−n)),

i.e., this µi does define a measure.

Proposition 5.9. If we define

〈 f , f ∨〉 :=
∑

i

∫
n∈N−(pZp)

f (gi n) dµi ∈ I

then, for all φ ∈ Xgen, the specialization of 〈 f , f ∨〉 to φ is 〈 fφ, f ∨φ 〉 ·Vol(K̃φ)
−1.
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Proof. For each φ ∈ Xgen, we choose t− such that t−N−(pZp)(t−)−1
⊆ K̃φ . We

consider

〈 fφ, π∨fφ (t
−) f ∨φ 〉.

Unfolding the definitions, note χ−1
φ (t−)δB(t−) gives the Hecke eigenvalue λ(t−);

this gives δB(t−)χ−1
φ (t−)

∑
i

∫
n∈N−(pZp)

f (gi n) dµi ·Vol(K̃φ). On the other hand,
using the model of π fφ ,p and π f ∨φ ,p as the induced representation π(χ1,φ, . . . , χr,φ)

and π(χ−1
1,φ, . . . , χ

−1
r,φ ) of GLr (Qp), we get that

〈 fφ, π∨fφ (t
−) f ∨φ 〉 = δB(t−)χ−1

φ (t−)〈 fφ, f ∨φ 〉.

This proves that the specialization of 〈 f , f ∨〉 to φ is 〈 fφ, f ∨φ 〉 ·Vol(K̃φ)
−1. �

So, to see the main theorem in the case when s= 0, instead of applying the Hecke
operator eord

·1 f ∨ we pair the pullback of Siegel Eisenstein series (Iur
[[0K]]-valued)

with the measure determined by the Hida family f using the above lemma. That is,
considering

EKling(g, zκ)=
∑

i

∫
n∈N−(pOF,p)

Esieg(S−1α(g, gi n)S, zκ) dµi ,

where the {dµi }i are the measures constructed from f as above. In our situation,
when restricting to U(s, r), the level group at p for Eisenstein series is lower-
triangular modulo a certain power of p while that for f is upper-triangular modulo
a certain power of p. The above construction works in the same way. The powers of
CM and p-adic periods enter when applying the comparison between the standard
basis and the Néron basis for differentials of CM abelian varieties while doing
pullback (see [Hsieh 2014, (3.14)]).

5D. Constant terms. We explain part (iii) of the main theorem.

5D1. p-adic L-functions for Dirichlet characters. There is an element Lτ̄ ′ in3K,OL

such that φ(Lτ̄ ′)= L(τ̄ ′φ, κφ − r).τ ′φ(p
−1)pκφ−rg(τ̄ ′φ)

−1 at each arithmetic point φ
in Xpb. For more details see [Skinner and Urban 2014, §3.4.3].

5D2. Archimedean computation. As in [Skinner and Urban 2014], we calculate
the Archimedean part of the intertwining operator for Klingen Eisenstein sections
and prove the “intertwining operator” part (see Lemma 3.4) of the constant term
vanishes. Suppose π is associated to the weight (0, . . . , 0; κ, . . . , κ); then it is well
known that there is a unique (up to scalar) vector v ∈π such that k ·v=detµ(k, i)−κ

for any k ∈ K+,′
∞
v (with notations as in Section 3A1). Recall we defined c(ρ, z) in

Section 3A1.
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Lemma 5.10. With assumptions as above,

c(ρ, z)=πa+2b+1
b−1∏
i=0

(
1

z+ 1
2κ −

1
2 − i − a

1

z− 1
2κ +

1
2 − i

) a−1∏
i=0

1
−1+ i − 2z+ 2b

×
0(2z+ a)2−1−2z+2b

0
( 1

2(a+ 1)+ z+ 1
2κ
)
0
( 1

2(a+ 1)+ z− 1
2κ
) det

( 1
2 iζ

)−2
.

Proof. This follows the same way as [Skinner and Urban 2014, Lemma 9.3]. �

Corollary 5.11. When κ > 3
2a+ 2b, or κ ≥ 2b and a = 0, we have c(ρ, z)= 0 at

the point z = 1
2(κ − a− 2b− 1).

In the case when κ is sufficiently large, the intertwining operator

A(ρ, zκ , F)= A(ρ∞, zκ , Fκ)⊗ A(ρ f , zκ , F f )

and all terms are absolutely convergent. Thus, as a consequence of the above
corollary we have A(ρ, zκ , F) = 0. Therefore the constant term of EKling is
essentially

L6(π̃, τ̄ c, zκ + 1)
�2κ6
∞
〈ϕ̃ord, ϕ′′〉

.L6(2zκ + 1, τ̄ ′χa+2b
K )ϕ,

up to a product of normalization factors at local places. Interpolating the calculations
in p-adic families, part (iii) of Theorem 1.1 follows from the above discussion,
Lemma 3.4 and our local descriptions for the Fϕv (z; fv,sieg, g) in Section 4. (See
also the proof of [Skinner and Urban 2014, Theorem 12.11].)

Index of symbols

A(ρ, z,−) 1975 H 1965 MP 1962
B 1962 In(χ) 1978 NP 1962
δ(m) 1975 Jn 1984 P 1961
EP 1977 k 1966 φ′ 2012
ER 1977 K 2005 π∨ 1975
f̃ † 1999 K ′ 2006 Qn 1978
f † 1999 K ′′ 2006 ρ∨ 1975
fv,sieg 1989 K̃ 2006 S′ 1985
f 0 2014 K̃ ′′ 2006 θr,s 1961
Fκ 1976 K+,′

∞
1974 ϒ 2005

F0
v 2015 K ′

∞
1974 wn 1981

Fρv 1976 Kn,v 1978 X+ 1965
G 1961 lk 1966 〈X, X〉h 1983
γ 2005 M(z;−) 1979
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Appendix: Boundary strata of connected components
in positive characteristics

by Kai-Wen Lan

Under the assumption that the PEL datum involves no factor of type D and that the
integral model has good reduction, we show that all boundary strata of the toroidal
or minimal compactifications of the integral model (constructed in earlier works of
the author) have nonempty pullbacks to connected components of geometric fibers,
even in positive characteristics.

A.1. Introduction. Toroidal and minimal compactifications of Shimura varieties
and their integral models have played important roles in the study of arithmetic
properties of cohomological automorphic representations. While all known models
of them are equipped with natural stratifications, they often suffer from some impre-
cisions or redundancies due to their constructions. The situation is especially subtle
in positive or mixed characteristics, or when we need purely algebraic constructions
even in characteristic zero (for example, when we study the degeneration of abelian
varieties), where the constructions are much less direct than algebraizing complex
manifolds created by unions of explicit double coset spaces.

For example, integral models of Shimura varieties defined by moduli problems of
PEL structures suffer from the so-called failure of Hasse’s principle, because there
is no known way to tell the difference between two moduli problems associated with
algebraic groups which are everywhere locally isomorphic to each other. Similarly,
when their toroidal and minimal compactifications are constructed using the theory
of degeneration, the data for describing them are also local in nature. Unlike in the
complex analytic construction, one cannot just express all the boundary points as
the disjoint unions of some double coset spaces labeled by certain standard maximal
(rational) parabolic subgroups. (Even the nonemptiness of the whole boundaries
in positive characteristics was not straightforward — see the introduction to [Lan
2011].) As we shall see, in Example A.7.2, when factors of type D are allowed, it is
unrealistic to expect that the boundary stratifications in the algebraic and complex
analytic constructions match with each other.

Our goal here is a simple-minded one — to show that the strata of good reduction
integral models of toroidal and minimal compactifications constructed as in [Lan
2013a] have nonempty pullbacks to each connected component of each geometric
fiber, under the assumption that the data defining them involve no factors of type D
(in a sense we will make precise). We will also answer the analogous question for
the integral models constructed by normalization in [Lan 2014], allowing arbitrarily
deep levels and ramifications (that is, bad reductions in general).

This goal is motivated by the study of p-adic families of Eisenstein series,
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for which it is crucial to know that the strata on connected components of the
characteristic-p fibers are all nonempty. For example, this is useful for the consid-
eration of algebraic Fourier–Jacobi expansions. We expect it to play foundational
roles in other applications of a similar nature.

A.2. Main result. We shall formulate our results in the notation system of [Lan
2013a] — henceforth abbreviated [KWL] — which we shall briefly review. (We
shall follow [KWL, Notation and conventions, pp. xxi–xxiii] unless otherwise
specified. While for practical reasons we cannot explain everything we need from
there, we recommend the reader to make use of the reasonably detailed index and
table of contents there when looking for the numerous definitions.)

Let (O, ?, L , 〈 · , · 〉, h0) be an integral PEL datum, where O, ?, and (L , 〈 · , · 〉, h0)

are as in [KWL, Definition 1.2.1.3], satisfying [KWL, Condition 1.4.3.10], which
defines a group functor G over Z as in [KWL, Definition 1.2.1.6], and the reflex
field F0 (as a subfield of C), as in [KWL, Definition 1.2.5.4], with ring of integers OF0 .
Let p be any good prime, as in [KWL, Definition 1.4.1.1]. Let Hp be any open
compact subgroup of G(Ẑp) that is neat, as in [KWL, Definition 1.4.1.8]. Then
we have a moduli problem MHp over S0 = Spec(OF0,(p)), as in [KWL, Definition
1.4.1.4], which is representable by a scheme that is quasiprojective and smooth
over S0, by [KWL, Theorem 1.4.1.11 and Corollary 7.2.3.10]. By [KWL, Theorem
7.2.4.1 and Proposition 7.2.4.3], we have the minimal compactification Mmin

Hp of MHp ,
which is a scheme that is projective and flat over S0, with geometrically normal
fibers. Moreover, for each compatible collection 6 p of cone decompositions for
MHp , as in [KWL, Definition 6.3.3.4], we also have the toroidal compactification
Mtor

Hp,6 p of MHp , which is an algebraic space that is proper and smooth over S0, by
[KWL, Theorem 6.4.1.1], and which is representable by a scheme projective over
M0 when 6 p is projective, as in [KWL, Definition 7.3.1.3], by [KWL, Theorem
7.3.3.4]. Any such Mtor

Hp,6 p admits a canonical surjection
∮

Hp : M
tor
Hp,6 p → Mmin

Hp ,
which is constructed by Stein factorization as in [KWL, Section 7.2.3], whose fibers
are all geometrically connected. (The superscript “p” indicates that the objects are
defined using level structures “away from p”. We will also encounter their variants
without the superscript “p”, which also involve level structures “at p”.)

By [KWL, Theorem 7.2.4.1(4)], there is a stratification of Mmin
Hp by locally

closed subschemes Z[(8Hp ,δHp )], where [(8Hp , δHp)] runs through the (finite) set
of cusp labels for MHp (see [KWL, Definition 5.4.2.4]). The open dense sub-
scheme MHp is the stratum labeled by [(0, 0)]; we call all the other strata the
cusps of MHp . Similarly, by [KWL, Theorem 6.4.1.1(2)], there is a stratification
of Mtor

Hp,6 p by locally closed subschemes Z[(8Hp ,δHp ,σ p)], where [(8Hp , δHp , σ p)]

runs through equivalence classes, as in [KWL, Definition 6.2.6.1], with σ p
⊂ P+8Hp

and σ p
∈68Hp ∈6

p. By [KWL, Theorem 7.2.4.1(5)], the surjection
∮

Hp induces
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a surjection from the [(8Hp , δHp , σ p)]-stratum Z[(8Hp ,δHp ,σ p)] of Mtor
Hp,6 p to the

[(8Hp , δHp)]-stratum Z[(8Hp ,δHp )] of Mmin
Hp .

Let s → S0 be any geometric point with residue field k(s), and let U be any
connected component of the fiber MHp ×S0 s. Since Mmin

Hp → S0 is proper and has
geometrically normal fibers, the closure U min of U in Mmin

Hp ×S0 s is a connected
component of Mmin

Hp ×S0 s. Similarly, since Mtor
Hp,6 p → S0 is proper and smooth, the

closure U tor of U in Mtor
Hp,6 p ×S0 s is a connected component of Mtor

Hp,6 p ×S0 s. (In
these cases the connected components are also the irreducible components of the
ambient spaces.)

The stratifications of Mmin
Hp and Mtor

Hp,6 p induce stratifications of U min and U tor,
respectively, by pullback. We shall denote the pullback of Z[(8Hp ,δHp )] to U min

by U[(8Hp ,δHp )] and call it the [(8Hp , δHp)]-stratum of U min. Similarly, we shall
denote the pullback of Z[(8Hp ,δHp ,σ p)] to U tor by U[(8Hp ,δHp ,σ p)], and call it the
[(8Hp , δHp , σ p)]-stratum of U tor. By construction, the surjection

∮
Hp induces a

surjection U tor
→U min, which maps the [(8Hp , δHp , σ p)]-stratum U[(8Hp ,δHp ,σ p)]

of U tor surjectively onto the [(8Hp , δHp)]-stratum U[(8Hp ,δHp )] of U min. It is natural
to ask whether a particular stratum of U min or U tor is nonempty.

From now on, we shall assume the following:

Assumption A.2.1. The semisimple algebra O⊗Z Q over Q involves no factor of
type D (in the sense of [KWL, Definition 1.2.1.15]).

Our main result is the following:

Theorem A.2.2. With the setting as above, all strata of U min are nonempty.

An immediate consequence is the following:

Corollary A.2.3. With the setting as above, all strata of U tor are nonempty.

Proof. Since the canonical morphism U[(8Hp ,δHp ,σ p)]→U[(8Hp ,δHp )] is surjective for
each equivalence class [(8Hp , δHp , σ p)] with underlying cusp label [(8Hp , δHp)]

as above, the nonemptiness of U[(8Hp ,δHp )] implies that of U[(8Hp ,δHp ,σ p)]. �

Remark A.2.4. Each stratum Z[(8Hp ,ZHp )] (resp. Z[(8Hp ,ZHp ,σ p)]) is nonempty by
[KWL, Theorem 7.2.4.1(4)–(5), Corollary 6.4.1.2, and the explanation of the ex-
istence of complex points as in Remark 1.4.3.14]. The question is whether its
pullback to U min (resp. U tor) is still nonempty for every U as above.

Remark A.2.5. It easily follows from Theorem A.2.2 and Corollary A.2.3 that their
analogues are also true when the geometric point s→S0 is replaced with morphisms
from general schemes, although we shall omit their statements. In particular, we
can talk about connected components of fibers rather than geometric fibers.

The proof of Theorem A.2.2 will be carried out in Sections A.3, A.4, and A.5. In
Sections A.5 and A.6, we will also state and prove analogues of Theorem A.2.2 in
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zero and arbitrarily ramified characteristics, respectively (see Theorems A.5.1
and A.6.1). We will give some examples in Section A.7, including one (see
Example A.7.2) showing that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that O⊗Z Q involves no factor of type D.

A.3. Reduction to the case of characteristic zero. The goal of this section is to
prove the following:

Proposition A.3.1. Suppose Theorem A.2.2 is true when char(k(s))= 0. Then it is
also true when char(k(s))= p > 0.

Remark A.3.2. Proposition A.3.1 holds regardless of Assumption A.2.1.

Remark A.3.3. It might seem that everything in characteristic zero is well known
and straightforward. But Proposition A.3.1, which is insensitive to the crucial
Assumption A.2.1, shows that the key difficulty is in fact in characteristic zero.

By [KWL, Theorem 7.2.4.1(4)], each Z[(8Hp ,δHp )] is isomorphic to a boundary
moduli problem M

ZHp

Hp defined in the same way as MHp (but with certain integral
PEL datum associated with ZHp ). Then it makes sense to consider the minimal
compactification Zmin

[(8Hp ,δHp )] of Z[(8Hp ,δHp )], which is proper flat and has geometri-
cally normal fibers over MH, as in [KWL, Theorem 7.2.4.1 and Proposition 7.2.4.3].
(So the connected components of the geometric fibers of Zmin

[(8Hp ,δHp )] → S0 are
closures of those of Z[(8Hp ,δHp )]→ S0.) By considering the Stein factorizations of
the structural morphisms Zmin

[(8Hp ,δHp )]→ S0 (see [EGA III1 1961, Corollaire (4.3.3)
and Remarque (4.3.4), pp. 131–132]), we obtain the following:

Lemma A.3.4 (cf. [KWL, Corollary 6.4.1.2] and [Deligne and Mumford 1969,
Theorem 4.17]). Suppose char(k(s))= p > 0. Then there exists some discrete valu-
ation ring R that is flat over OF0,(p), with fraction field K and residue field k(s), the
latter lifting the structural homomorphism OF0,(p)→ k(s) such that, for each cusp
label [(8Hp , δHp)] and each connected component V of Z[(8Hp ,δHp )]⊗OF0,(p)

R, the
induced flat morphism V → Spec(R) has connected special fiber over Spec(k(s)).

Proof of Proposition A.3.1. Let R be as in Lemma A.3.4. Let Ũ denote the
connected component of MHp⊗OF0,(p)

R=Z[(0,0)]⊗OF0,(p)
R such that Ũ⊗R k(s)=U

as subsets of MHp ⊗OF0,(p)
k(s) = MHp ×S0 s, and let Ũ min denote its closure

in Mmin
Hp ⊗OF0,(p)

R, which is a connected component of Mmin
Hp ⊗OF0,(p)

R because
Mmin

Hp ⊗OF0,(p)
R is normal, by [KWL, Proposition 7.2.4.3(4)]. For each cusp label

[(8Hp , δHp)], let Ũ[(8Hp ,δHp )] denote the pullback of Z[(8Hp ,δHp )] to Ũ min. Then
Ũ[(8Hp ,δHp )] is an open and closed subscheme of Z[(8Hp ,δHp )] ⊗OF0,(p)

R such that
Ũ[(8Hp ,δHp )]⊗R k(s)=U[(8Hp ,δHp )] as subsets of Mmin

Hp ⊗OF0,(p)
k(s). By Lemma A.3.4,

it suffices to show that Ũ[(8Hp ,δHp )]⊗R K 6=∅ for some algebraic closure K of K .
Also by Lemma A.3.4, Ũ ⊗R K 6= ∅, and so Ũ min

⊗R K contains at least one
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connected component of Mmin
Hp ⊗OF0,(p)

K . Thus, Ũ[(8Hp ,δHp )]⊗R K 6=∅ under the
assumption of the proposition, as desired. �

A.4. Comparison of cusp labels. Let Hp := G(Zp) and H := HpHp, the latter
being a neat open compact subgroup of G(Ẑ). By the same references to [KWL] as
in Section A.2, we have the moduli problem MH and its minimal compactification
Mmin

H over S0,Q := S0⊗Z Q∼= Spec(F0). For each compatible collection 6′ of cone
decompositions for MH, we also have a toroidal compactification Mtor

H,6′ , together
with a canonical morphism

∮
H :M

tor
H,6′→Mmin

H , over S0,Q. (Here 6′ does not have
to be related to the 6 p above.)

Each cusp label [(ZH,8H, δH)] for MH (where ZH has been suppressed in the
notation for simplicity) can be described as an equivalence class of the H-orbit
(ZH,8H, δH) of some triple (Z,8, δ), where:

(1) Z = {Z−i }i∈Z is an admissible filtration on L ⊗Z Ẑ that is fully symplectic,
as in [KWL, Definition 5.2.7.1]. In particular, Z−i = (Z−i ⊗Z Q) ∩ (L ⊗Z Ẑ),
the symplectic filtration Z⊗Z Q on L ⊗Z A∞ extends to a symplectic filtration
ZA on Z⊗Z A, and each graded piece of Z or Z⊗Z Q is integrable, as in [KWL,
Definition 1.2.1.23], that is, it is the base extension of some O-lattice.

(2) 8 = (X, Y, φ, ϕ−2, ϕ0) is a torus argument, as in [KWL, Definition 5.4.1.3],
where φ : Y ↪→ X is an embedding of O-lattices with finite cokernel, and where
ϕ−2 : GrZ

−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)) and ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ are isomorphisms

matching the pairing 〈 · , · 〉20 : GrZ
−2×GrZ

0 → Ẑ(1) induced by 〈 · , · 〉 with the
pairing 〈 · , · 〉φ : Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1))× (Y ⊗Z Ẑ)→ Ẑ(1) induced by φ.

(3) δ : GrZ
−→∼ L is an O-equivariant splitting of the filtration Z.

(4) Two triples (ZH,8H, δH) and (Z′H,8
′

H, δ
′

H) are equivalent (as in [KWL, Defi-
nition 5.4.2.2]) if ZH = Z′H and there exists a pair of isomorphisms, γX : X ′ −→∼ X
and γY : Y −→∼ Y ′, matching 8H with 8′H.

Since H=HpHp, it makes sense to consider the p-part of (ZH,8H, δH), which
is the Hp-orbit of some triple (ZZp , (ϕ−2,Zp , ϕ0,Zp), δZp), where:

(1) ZZp = {ZZp,−i }i∈Z is a symplectic admissible filtration on L ⊗Z Zp, which
determines and is determined by a symplectic admissible filtration ZQp={ZQp,−i }i∈Z

of L⊗Z Qp by ZQp,−i = ZZp,−i⊗Z Q and ZZp,−i = ZQp,−i ∩ (L⊗Z Zp) for all i ∈Z.

(2) ϕ−2,Zp : Gr
ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)) and ϕ0 : Gr
ZZp
0 −→∼ Y ⊗Z Zp are

isomorphisms matching the pairing 〈 · , · 〉20,Zp :Gr
ZZp
−2 ×Gr

ZZp
0 →Zp(1) induced by

〈 · , · 〉 with the pairing 〈 · , · 〉φ,Zp :HomZp(X ⊗Z Zp,Zp(1))× (Y ⊗Z Zp)→ Zp(1)
induced by φ.

(3) δZp : GrZZp −→∼ L ⊗Z Zp is a splitting of the filtration ZZp .
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By forgetting its p-part, each representative (ZH,8H, δH) for MH induces a
representative (ZHp ,8Hp , δHp) for MHp , and this assignment is compatible with
the formation of equivalence classes. Therefore, we have well-defined assignments

(ZH,8H, δH) 7→ (ZHp ,8Hp , δHp) (A.4.1)
and

[(ZH,8H, δH)] 7→ [(ZHp ,8Hp , δHp)]. (A.4.2)

By construction, these assignments are compatible with surjections on both their
sides (see [KWL, Definition 5.4.2.12]). We would like to show that they are both
bijective.

Lemma A.4.3. Let k be any field over Z(p). Consider the assignment to each flag W
of totally isotropic O⊗Z k-submodules of L ⊗Z k (with respect to 〈 · , · 〉 ⊗Z k) its
stabilizer subgroup PW in G⊗Z k. Then each such PW is a parabolic subgroup
of G⊗Z k and the assignment is bijective. Moreover, given any minimal parabolic
subgroup PW0 of G ⊗Z k, which is the stabilizer of some maximal flag W0 of
totally isotropic O⊗Z k-submodules of L ⊗Z k, every parabolic subgroup of G⊗Z k
is conjugate under the action of G(k) to some parabolic subgroup of G ⊗Z k
containing PW0 , which is the stabilizer of some subflag of W0.

Although the assertions in this lemma are well known, we provide a proof because
we cannot find a convenient reference in the literature in the generality we need.

Proof. Let ksep be a separable closure of k. Since the characteristic of k is either 0
or p, the latter being a good prime by assumption, it follows from [KWL, Proposition
1.2.3.11] that each of the simple factors of the adjoint quotient of G⊗Z ksep is
isomorphic to one of the groups of standard type listed in the proof of [KWL,
Proposition 1.2.3.11]. Then we can make an explicit choice of a Borel subgroup B
of G⊗Zksep stabilizing a flag of totally isotropic submodules, with a maximal torus T
of G⊗Zksep contained in B which is isomorphic to the group of automorphisms of the
graded pieces of this flag. By [Springer 1998, Theorem 6.2.7 and Theorem 8.4.3(iv)],
since all parabolic subgroups of G⊗Z ksep are conjugate to one containing B, the
parabolic subgroups of G ⊗Z ksep are exactly the stabilizers of flags of totally
isotropic O⊗Z ksep-submodules of L ⊗Z ksep. Then the analogous assertion over k
follows, because the assignment of maximal parabolic subgroups of G⊗Z ksep is
compatible with the actions of Gal(ksep/k) on the set of flags of totally isotropic
submodules of L ⊗Z ksep and on the set of parabolic subgroups of G⊗Z ksep. The
last assertion of the lemma follows from [Springer 1998, Theorem 15.1.2(ii) and
Theorem 15.4.6(i)]. �

Lemma A.4.4. The assignment

ZH 7→ ZHp (A.4.5)
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is bijective.

Proof. Let ZZp = {ZZp,−i }i∈Z be a symplectic admissible filtration on L ⊗Z Zp

as above, which determines and is determined by a symplectic filtration ZQp =

{ZQp,−i }i∈Z on L ⊗Z Qp. By Lemma A.4.3, the action of G(Qp) on the set of
such filtrations ZQp is transitive, because the O-multirank (see [KWL, Definition
1.2.1.25]) of the bottom piece ZQp,−2 of any such ZQp is determined by the existence
of some isomorphism

ϕ−2,Zp : Gr
ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)).

Let P denote the parabolic subgroup of G⊗Z Qp stabilizing any such ZQp (see
Lemma A.4.3). Since p is a good prime by assumption, the pairing 〈 · , · 〉⊗Z Zp

is self-dual, and hence G(Zp) is a maximal open compact subgroup of G(Qp),
by [Bruhat and Tits 1972, Corollary 3.3.2]. Since G⊗Z Qp is connected under
Assumption A.2.1 (because the kernel of the similitude character of G ⊗Z Qp

factorizes over an algebraic closure of Qp as a product of connected groups, by
the proof of [KWL, Proposition 1.2.3.11]), we have the Iwasawa decomposition
G(Qp) = G(Zp)P(Qp), by [Bruhat and Tits 1972, Proposition 4.4.3] (see also
[Casselman 1980, (18) on p. 392] for a more explicit statement). Consequently,
Hp = G(Zp) acts transitively on the set of possible filtrations ZZp as above, and
hence the assignment (A.4.5) is injective.

As for the surjectivity of (A.4.5), it suffices to show that, for some symplectic ad-
missible filtration ZZp , an isomorphism ϕ−2,Zp :Gr

ZZp
−2 −→

∼ HomZp(X⊗Z Zp,Zp(1))
exists. By [Reiner 1975, Theorem 18.10] and [KWL, Corollary 1.1.2.6], it suffices
to show that there exists some symplectic filtration ZQp such that ZQp,−2 and
HomQp(X ⊗Z Qp,Qp(1)) have the same O-multirank. Or, rather, we just need
to notice that the O-multirank of a totally isotropic O⊗Z Qp-submodule can be
any O-multirank below a maximal one (with respect to the natural partial order),
by Assumption A.2.1 and by the classification in [KWL, Proposition 1.2.3.7 and
Corollary 1.2.3.10]. �

Lemma A.4.6. The assignment (A.4.1) is bijective.

Proof. It is already explained in the proof of Lemma A.4.4 that an isomor-
phism ϕ−2,Zp : Gr

ZZp
−2 −→

∼ HomZp(X ⊗Z Zp,Zp(1)) exists for any ZZp considered
there. Since p is a good prime, which forces both [L#

: L] and [X : φ(Y )] to
be prime to p, any choice of ϕ−2,Zp above uniquely determines an isomorphism
ϕ0 : Gr

ZZp
0 −→∼ Y ⊗Z Zp. Also, by the explicit classification in [KWL, Proposition

1.2.3.7 and Corollary 1.2.3.10] as in the proof of Lemma A.4.4, there exists a
splitting δZp :GrZZp −→∼ L⊗Z Zp and the action of G(Zp)∩P(Qp) acts transitively
on the set of possible triples (ϕ−2,Zp , ϕ0,Zp , δZp). Hence the assignment (A.4.1) is
bijective, as desired. �
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Lemma A.4.7. The assignment (A.4.2) is bijective.

Proof. By Lemma A.4.6, it suffices to show that (A.4.2) is injective. Suppose two
representatives (ZH,8H, δH) and (Z′H,8

′

H, δ
′

H) with 8H = (X, Y, φ, ϕ−2,H, ϕ0,H)

and 8′H = (X
′, Y ′, φ′, ϕ′

−2,H, ϕ
′

0,H) are such that the induced (ZHp ,8Hp , δHp) and
(Z′Hp ,8

′

Hp , δ
′

Hp) are equivalent to each other. By definition, ZHp = Z′Hp , so that
ZH = Z′H by Lemma A.4.4, and there exists a pair (γX : X ′ −→∼ X, γY : Y −→∼ Y ′)
matching 8Hp with 8′Hp . Hence we may assume that (X, Y, φ)= (X ′, Y ′, φ′), take
any Z in ZHp = Z′Hp , and take any pairs

(ϕ−2 : GrZ
−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)), ϕ0 : GrZ

0 −→
∼ Y ⊗Z Ẑ)

and
(ϕ′
−2 : GrZ

−2 −→
∼ Hom

Ẑ
(X ⊗Z Ẑ, Ẑ(1)), ϕ′0 : GrZ

0 −→
∼ Y ⊗Z Ẑ)

inducing (ϕ−2,H, ϕ0,H) and (ϕ′
−2,H, ϕ

′

0,H), respectively, and inducing the same
(ϕ−2,Hp , ϕ0,Hp) and (ϕ′

−2,Hp , ϕ
′

0,Hp). Then the injectivity of (A.4.2) follows from
that of (A.4.1). �

Lemma A.4.8. If (ZHp ,8Hp , δHp) is assigned to (ZH,8H, δH) under (A.4.1), then
we have a canonical isomorphism

08H −→
∼ 08Hp (A.4.9)

(see [KWL, Definition 6.2.4.1]). Moreover, we have a canonical isomorphism

S8Hp −→
∼ S8H, (A.4.10)

which induces a canonical isomorphism

(S8H)
∨

R −→
∼ (S8Hp )

∨

R (A.4.11)

matching P8H with P8Hp and P+8H
with P+8Hp , both isomorphisms being equivariant

with the actions of the two sides of (A.4.9) above.

Proof. Since p is a good prime, with Hp = G(Zp), the levels at p are not needed
in the constructions of 08H and S8H in [KWL, Sections 6.2.3–6.2.4], and hence
we have the desired isomorphisms (A.4.9) and (A.4.10). The induced morphism
(A.4.11) matches P8H with P8Hp and P+8H

with P+8Hp because both sides of (A.4.11)
can be canonically identified with the space of Hermitian forms over Y ⊗Z R, as
explained in the beginning of [KWL, Section 6.2.5], regardless of the levels H

and Hp. �

Therefore, we also have assignments

(8H, δH, σ ) 7→ (8Hp , δHp , σ p) (A.4.12)
and

[(8H, δH, σ )] 7→ [(8Hp , δHp , σ p)] (A.4.13)
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(see [KWL, Definition 6.2.6.2]), which are compatible with (A.4.1) and (A.4.2).
Here we have suppressed ZH and ZHp from the notation; also, σ ⊂ (S8H)

∨

R and
σ p
⊂ (S8Hp )

∨

R is the image of σ under the isomorphism (A.4.11).

Lemma A.4.14. The assignment (A.4.12) is bijective.

Proof. This follows from Lemma A.4.6 and the definition of (A.4.12), based on
Lemma A.4.8. �

Lemma A.4.15. The assignment (A.4.13) is bijective.

Proof. By [KWL, Definition 6.2.6.2], given any representative (8H, δH) of a cusp
label, the collection of the cones σ ⊂ (S8H)

∨

R defining the same equivalence class
[(8H, δH, σ )] form a 08H-orbit. Similarly, the collection of the cones σ p

⊂ (S8Hp )
∨

R

defining the same equivalence class [(8Hp , δHp , σ p)] form a 08Hp -orbit. Hence,
given (A.4.9), the lemma follows from Lemma A.4.7. �

Definition A.4.16. 6 is induced by6 p if, for each cusp label [(ZH,8H, δH)] of MH

represented by some (ZH,8H, δH), with assigned (ZHp ,8Hp , δHp) as in (A.4.1),
the cone decomposition 68H of P8H is the pullback of the cone decomposition
68Hp of P8Hp under (A.4.11).

By forgetting the p-parts of level structures, we obtain a canonical isomorphism

MH −→
∼ MHp ⊗Z Q (A.4.17)

over S0,Q (as in [KWL, 1.4.4.1]), by [KWL, Proposition 1.4.4.3 and Remark 1.4.4.4]
and by Assumption A.2.1. Given any 6 p for MHp , with induced 6 for MH as in
Definition A.4.16, by comparing the universal properties of Mtor

H,6 and Mtor
Hp,6 p as

in [KWL, Theorem 6.4.1.1(5)–(6)], the isomorphism (A.4.17) above extends to a
canonical isomorphism

Mtor
H,6 −→

∼ Mtor
Hp,6 p ⊗Z Q (A.4.18)

over S0,Q, mapping Z[(8H,δH,σ )] isomorphically to Z[(8Hp ,δHp ,σ p)] ⊗Z Q when
[(8Hp , δHp , σ p)] is assigned to [(8H, δH, σ )] under (A.4.13), such that the pullback
of the tautological semiabelian scheme over Mtor

Hp,6 p⊗Z Q is canonically isomorphic
to the pullback of the tautological semiabelian scheme over Mtor

H,6 . Consequently,
by [KWL, Theorem 7.2.4.1(3)–(4)] and the fact that the pullback of the Hodge
invertible sheaf over Mtor

Hp,6 p ⊗Z Q is canonically isomorphic to the pullback of the
Hodge invertible sheaf over Mtor

H,6 (because their definitions only use the tautological
semiabelian schemes), the canonical isomorphism (A.4.18) induces a canonical
isomorphism

Mmin
H −→

∼ Mmin
Hp ⊗Z Q (A.4.19)

over S0,Q, extending (A.4.17), compatible with (A.4.18) (under the canonical
morphisms

∮
H : M

tor
H,6 → Mmin

H and
∮

Hp ⊗ZQ : Mtor
Hp,6 p ⊗Z Q → Mmin

Hp ⊗Z Q),
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and mapping Z[(8H,δH)] isomorphically to Z[(8Hp ,δHp )]⊗Z Q when [(8Hp , δHp)] is
assigned to [(8H, δH)] under (A.4.2) (where we have suppressed ZH and ZHp from
the notation).

A.5. Complex analytic construction. By Proposition A.3.1, in order to prove
Theorem A.2.2 we may and we shall assume that char(k(s)) = 0. Thanks to
the isomorphisms (A.4.17) and (A.4.19), we shall identify U with a connected
component of MH⊗F0 k(s), U min with the connected component of Mmin

H ⊗F0 k(s)
that is the closure of U , and U[(8Hp ,δHp )] with U[(8H,δH)], the pullback of the stratum
Z[(8H,δH)] of Mmin

H under the canonical morphism U min
→Mmin

H , when [(8Hp , δHp)]

is assigned to [(8H, δH)] under (A.4.2).
Now, in characteristic zero we no longer need H to be of the form H=HpHp as in

Section A.4. We shall allow H to be any neat open compact subgroup of G(Ẑ). Then
MH and Mmin

H are still defined over M0,Q = Spec(F0), with the stratification on the
latter by locally closed subschemes Z[(8H,δH)] labeled by cusp labels [(8H, δH)] for
MH (see the same references as in Section A.2). For any geometric point s→ S0,Q

with residue field k(s) and for any connected component U of the fiber MHp ×S0 s,
we define U min to be the closure of U in Mmin

H ×S0 s and U[(8H,δH)] to be the pullback
of Z[(8H,δH)] to of U min for each cusp label [(8H, δH)]. (These are consistent with
what we have done before, when the settings overlap.)

Then we have the following analogue of Theorem A.2.2:

Theorem A.5.1. With the setting as above, every stratum U[(8H,δH)] is nonempty.

Since Mmin
H is projective over S0,Q, we may and we shall assume that k(s)∼= C.

We shall denote base changes to C with a subscript, such as MH,C =MH⊗F0 C.
Let X denote the G(R)-orbit of h0, which is a finite disjoint union of Hermitian

symmetric domains, and let X0 denote the connected component of X containing h0.
Let G(Q)0 denote the finite index subgroup of G(Q) stabilizing X0. Let ShH :=

G(Q)\X×G(A∞)/H. By [Lan 2012, Lemma 2.5.1], we have a canonical bijection
G(Q)0\X0×G(A∞)/H→ G(Q)\X×G(A∞)/H. Let {gi }i∈I be any finite set of
elements of G(A∞) such that G(A∞)=

⊔
i∈I G(Q)0hi H, which exists because of

[Borel 1963, Theorem 5.1] and because G(Q)0 is of finite index in G(Q). Then we
have

ShH = G(Q)0\X0×G(A∞)/H=
⊔
i∈I

0(gi )\X0, (A.5.2)

where 0(gi ) := (gi Hg−1
i )∩G(Q)0 for each i ∈ I . By applying [Baily and Borel

1966, Theorem 10.11] to each 0(gi )\X0, we obtain the minimal compactification
Shmin

H of ShH, which is the complex analytification of a normal projective variety
Shmin

H,alg over C. Thus, ShH is the analytification of a quasiprojective variety ShH,alg

(embedded in Shmin
H,alg).
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By [Lan 2012, Lemma 3.1.1], the rational boundary components XV of X0 (see
[Baily and Borel 1966, Section 3.5]) correspond to parabolic subgroups of G⊗Z Q

stabilizing symplectic filtrations V on L⊗ZQ with V−3=0⊂V−2⊂V−1=V⊥
−2⊂V0=

L⊗Z Q. Consider the rational boundary components of X×G(A∞) as in [Lan 2012,
Definition 3.1.2], which are G(Q)-orbits of pairs (V, g), where the V are as above and
g ∈ G(A∞). Consider the boundary components G(Q)\(G(Q)XV)×G(A∞)/H=
G(Q)0\(G(Q)0XV)×G(A∞)/H of ShH=G(Q)0\X0×G(A∞)/H. By the construc-
tion in [Baily and Borel 1966], each such component defines a nonempty, locally
closed subset and meets all connected components of Shmin

H , corresponding to a
nonempty, locally closed subscheme of Shmin

H,alg, called its G(Q)(V, g)H-stratum.
Thus, we obtain the following:

Proposition A.5.3 (Satake, Baily–Borel). Each G(Q)(V, g)H-stratum as above
meets every connected component of Shmin

H,alg.

For each g∈G(A∞), let L(g) denote the O-lattice in L⊗ZQ such that L(g)⊗Z Ẑ=

g(L ⊗Z Ẑ) in L ⊗Z A∞. Let r ∈ Q×>0 be the unique element such that ν(g) = ru
for some u ∈ Ẑ, and let 〈 · , · 〉(g) : L(g)× L(g)→ Z(1) denote the pairing induced
by r〈 · , · 〉⊗Z Q (see [Lan 2012, Section 2.4], the key point being that 〈 · , · 〉(g) is
valued in Z(1)).

Construction A.5.4. As explained in [Lan 2012, Section 3.1], we have an assign-
ment of a fully symplectic admissible filtration Z(g) on Z⊗Z Ẑ and a torus argument
8(g) = (X (g), Y (g), φ(g), ϕ(g)

−2 , ϕ
(g)
0 ) to G(Q)(V, g), by setting:

(1) F(g) := {F(g)
−i := V−i ∩ L(g)}i∈Z.

(2) Z(g) := {Z(g)
−i := g−1(F(g)

−i ⊗Z Ẑ)}i∈Z = {g−1(V−i ⊗Q A∞)∩ (L ⊗Z Ẑ)}i∈Z.

(3) X (g)
:= HomZ(F

(g)
−2,Z(1))= HomZ(GrF(g)

−2 ,Z(1)).

(4) Y (g) := GrF(g)
0 = F(g)0 /F(g)

−1.

(5) φ(g) : Y (g) ↪→ X (g), equivalent to the nondegenerate pairing

〈 · , · 〉
(g)
20 : GrF(g)

−2 ×GrF(g)
0 → Z(1)

induced by 〈 · , · 〉(g) : L(g)× L(g)→ Z(1).

(6) ϕ(g)
−2 : GrZ(g)

−2 −→
∼ Hom

Ẑ
(X (g)

⊗Z Ẑ, Ẑ(1)), the composition

GrZ(g)
−2

Gr−2(g)
−→∼ GrF(g)

−2 ⊗ZẐ−→∼ Hom
Ẑ
(X (g)

⊗Z Ẑ, Ẑ(1)).

(7) ϕ(g)0 : GrZ(g)
0 −→

∼ Y (g)⊗Z Ẑ, the composition

GrZ(g)
0

Gr0(g)
−→∼ GrF(g)

0 ⊗ZẐ−→∼ Y (g)⊗Z Ẑ.
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By the assumption that our integral PEL datum satisfies [Lan 2013a, Condition
1.4.3.10] and by the fact that maximal orders over Dedekind domains are hereditary
(see [Reiner 1975, Theorem 21.4 and Corollary 21.5]), there exists a splitting
ε(g) : GrF(g)

−→∼ L(g), whose base extension from Z to Ẑ defines, by pre- and post-
compositions with Gr(g) and g−1, a splitting δ(g) :GrZ(g)

−→∼ L⊗Z Ẑ. These define
an assignment

G(Q)(V, g) 7→ [(Z(g),8(g), δ(g))], (A.5.5)

which is compatible with the formation of H-orbits and induces an assignment

G(Q)(V, g)H 7→ [(Z(g)H ,8
(g)
H , δ

(g)
H )]. (A.5.6)

Definition A.5.7. For each cusp label [(ZH,8H, δH)], the [(8H, δH)]-stratum of
Shmin

H,alg is the union of all the G(Q)(V, g)H-strata such that [(ZH,8H, δH)] is as-
signed to G(Q)(V, g)H under (A.5.6).

Proposition A.5.8. Given the H-orbit ZH of any Z= {Z−i }i∈Z as above, there exists
some totally isotropic O⊗Z Q-submodule V−2 of L ⊗Z Q such that V−2⊗Q A∞ lies
in the H-orbit of Z−2⊗Z Q.

Proof. Up to replacing H with an open compact subgroup, which is harmless for
proving this proposition, we may and we shall assume that H=HSHS , where S is
a finite set of primes containing all bad ones for the integral PEL datum (see [KWL,
Definition 1.4.1.1]), such that HS

= G(ẐS) =
∏
`6∈S G(Z`) and HS ⊂ G(ẐS) =∏

`∈S G(Z`), where ` 6∈ S means that ` runs through all prime numbers not in S.
By Assumption A.2.1, by reduction to the case where O⊗Z Q is a product of

division algebras, by Morita equivalence (see [KWL, Proposition 1.2.1.14]) and,
by the local-global principle for isotropy in [Scharlau 1985, table on p. 347 and its
references], it follows that, if Z−2⊗Z Q is nonzero and extends to some isotropic
O⊗Z A-submodule of L ⊗Z A isomorphic to the base extension of some O-lattice,
then there exists some nonzero isotropic element in L ⊗Z Q. By induction on
the O-multirank of Z−2 ⊗Z Q — by replacing L ⊗Z Q (resp. L ⊗Z A∞) with the
orthogonal complement modulo the span of a nonzero isotropic element in L⊗Z Q

(resp. L ⊗Z A∞) — there exists some totally isotropic O⊗Z Q-submodule V0
−2 of

L ⊗Z Q such that V0
−2⊗Q A∞ and Z−2⊗Z Q have the same O-multirank.

Let G′ denote the derived subgroup of G⊗Z Q (see [SGA 3 I 1970, Définition
7.2(vii), p. 364 and Corollaire 7.10, p. 373]). Then the pullback to G′ induces a
bijection between the parabolic subgroups of G⊗Z Q and those of G′ (see [SGA 3 III

1970, Propositions 6.2.4 and 6.2.8, pp. 264–266; Springer 1998, Theorem 15.1.2(ii)
and Theorem 15.4.6(i)]), and they both are in bijection with the stabilizers of flags
of totally isotropic O ⊗Z Q-submodules, as in Lemma A.4.3. Therefore, there
exists some element h = (h`) ∈ G′(A∞), where the index ` runs through all prime
numbers, such that V0

−2⊗Q A∞ = h(Z−2⊗Z Q).
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Since G′ is simply connected, by Assumption A.2.1 (because the kernel of the
similitude character of G ⊗Z Q factorizes over an algebraic closure of Q as a
product of groups with simply connected derived groups, by the proof of [KWL,
Proposition 1.2.3.11]), by weak approximation (see [Platonov and Rapinchuk 1994,
Theorem 7.8]) there exists γ ∈ G′(Q) such that γ (h`)`∈S ∈ HS . On the other
hand, by using the Iwasawa decomposition at the places ` ∈ S as in the proof of
Lemma A.4.4, up to replacing h` with a right-multiple of h` by an element of
G′(Q`) stabilizing Z−2⊗Ẑ

Q`, we may assume that γ h` ∈G(Z`) for all ` 6∈ S. Thus,
we can conclude by taking V−2 := γ (V0

−2). �

Proposition A.5.9. For each cusp label [(ZH,8H, δH)], there exists some ratio-
nal boundary component G(Q)(V, g) of X×G(A∞) such that [(ZH,8H, δH)] is
assigned to G(Q)(V, g)H under (A.5.6).

Proof. Let (Z,8 = (X, Y, φ, ϕ−2, ϕ0), δ) be any triple whose H-orbit induces
[(ZH,8H, δH)] and let V−2 be as in Proposition A.5.8. Up to replacing (Z,8, δ)
with another such triple, we may and we shall assume that

Z−2 = (V−2⊗Q A∞)∩ (L ⊗Z Ẑ)= Z(1)
−2, (A.5.10)

where F(1) = {F(1)
−i }i∈Z, Z(1) = {Z(1)

−i }i∈Z and 8(1) = (X (1), Y (1), φ(1), ϕ(1)
−2, ϕ

(1)
0 ) are

assigned to (V, 1) as in Construction A.5.4, together with some noncanonical choices
of ε(1) and δ(1).

Let P denote the parabolic subgroup of G⊗ZQ stabilizing V−2 (see Lemma A.4.3).
By (A.5.10), the elements of P(A∞) also stabilize Z−2 ⊗Z Q. Therefore, for
each g ∈ P(A∞), the filtration Z(g) defined as in Construction A.5.4 coincides
with Z.

Using (A.5.10) and the compatibility among the objects, both φ⊗ZẐ and φ(1)⊗ZẐ

can be identified (under (ϕ−2, ϕ0) and (ϕ(1)
−2, ϕ

(1)
0 )) with the canonical morphism

〈 · , · 〉∗20 : GrZ
0→ Hom

Ẑ
(GrZ
−2, Ẑ(1)) (A.5.11)

induced by the pairing 〈 · , · 〉, which induce compatible isomorphisms

t(ϕ
(1)
−2 ◦ϕ

−1
−2) : X

(1)
⊗Z Ẑ−→∼ X ⊗Z Ẑ (A.5.12)

and
ϕ
(1)
0 ◦ϕ

−1
0 : Y ⊗Z Ẑ−→∼ Y (1)⊗Z Ẑ. (A.5.13)

By [KWL, Condition 1.4.3.10], there exists some maximal order O′ in O⊗Z Q,
containing O, such that the O-action on L extends to an O′-action; hence the O-actions
on Y and Y (1) also extend to O′-actions. Using the local isomorphisms given
by (A.5.13), by [Reiner 1975, Theorem 18.10] (which is applicable because we
are now considering modules of the maximal order O′) and [KWL, Corollary
1.1.2.6] there exists an element g0 ∈ GLO⊗ZA∞(GrZ

0⊗ZQ) and an O-equivariant
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embedding h0 : Y (1) ↪→ Y ⊗Z Q such that (h0(Y (1)))⊗Z Ẑ= (ϕ0⊗Z Q)(g0(GrZ
0))

in Y ⊗Z A∞. Let g−2 :=
tg−1

0 ∈ GLO⊗ZA∞(GrZ
−2⊗ZQ), where the transposition

is induced by (A.5.11). Then there is a corresponding O-equivariant embedding
h−2 : HomZ(X (1),Z(1)) ↪→ HomZ(X,Z(1))⊗Z Q such that(

h−2
(
HomZ(X (1),Z(1))

))
⊗Z Ẑ= (ϕ−2⊗Z Q)(g−2(GrZ

−2))

in HomZ(X,Z(1))⊗Z A∞.
Take g ∈ P(A∞) such that Gr−2(g) = g−2, Gr0(g) = g0, and ν(g) = 1, which

exists thanks to the splitting δ. Then X (g) and Y (g) are realized as the preimages
of X and Y under th−2 ⊗Z Q and h−1

0 ⊗Z Q, respectively, and the induced pair
(γX : X (g)

−→∼ X, γY : Y −→∼ Y (g)) matches 8(g) with 8. Such a (V, g) is what we
want. �

As explained in [Lan 2012, Section 2.5], there is a canonical open and closed
immersion

ShH,alg ↪→MH,C. (A.5.14)

As explained in [Kottwitz 1992, §8, p. 399] (see also [KWL, Remark 1.4.3.12]),
MH,C is the disjoint union of the images of morphisms like (A.5.14), from certain
Sh( j)

H,alg defined by some (O, ?, L( j), 〈 · , · 〉( j), h0) such that (L( j), 〈 · , · 〉( j))⊗Z Ẑ∼=

(L , 〈 · , · 〉)⊗Z Ẑ and (L( j), 〈 · , · 〉( j))⊗Z R∼= (L , 〈 · , · 〉)⊗Z R, but not necessarily
satisfying (L( j), 〈 · , · 〉( j))⊗Z Q∼= (L , 〈 · , · 〉)⊗Z Q, for all j in some index set J
(whose precise description is not important for our purpose). (Each (L( j), 〈 · , · 〉( j))

is determined by its rational version (L( j), 〈 · , · 〉( j))⊗Z Q by taking the intersection
of the latter with (L( j), 〈 · , · 〉( j))⊗ZẐ∼= (L , 〈 · , · 〉)⊗ZẐ in (L( j), 〈 · , · 〉( j))⊗ZA∞∼=

(L , 〈 · , · 〉)⊗Z A∞. Due to the failure of Hasse’s principle, J might have more than
one element.)

By [Lan 2012, Theorem 5.1.1], (A.5.14) extends to a canonical open and closed
immersion

Shmin
H,alg ↪→Mmin

H,C (A.5.15)

respecting the stratifications on both sides labeled by cusp labels (see Definition
A.5.7). Again, Mmin

H,C is the disjoint union of the images of morphisms like (A.5.15),
from the minimal compactifications Sh

( j),min
H,alg of Sh( j)

H,alg for all j ∈ J .
Everything we have proved remains true after replacing the objects defined by

(L , 〈 · , · 〉) with those defined by (L( j), 〈 · , · 〉( j)) for each j ∈ J . Thus, in order
to show that U[(8H,δH)] is nonempty, it suffices to note that, by Propositions A.5.3
and A.5.9, the [(8H, δH)]-stratum of Sh( j),min

H,alg meets every connected component
of Sh( j),min

H,alg for all j ∈ J . The proof of Theorem A.5.1 is now complete.

By Proposition A.3.1, and by the explanations in Section A.4 and in the beginning
of this section, the proof of Theorem A.2.2 is also complete.



Boundary strata of connected components 2049

A.6. Extension to cases of ramified characteristics. In this section, we shall no
longer assume that p is a good prime for the integral PEL datum (O, ?, L , 〈 · , · 〉, h0),
but we shall assume that the image Hp of H under the canonical homomorphism
G(Ẑ)→ G(Ẑp) is neat.

Even for such general H and p, for any collections of lattices stabilized by H

as in [Lan 2014, Section 2] we still have an integral model EMH of MH that is flat
over S0, constructed by “taking normalization” (see [Lan 2014, Proposition 6.1 and
also the introduction]). Moreover, we have an integral model EMmin

H of Mmin
H that is

projective and flat over S0 (see [Lan 2014, Proposition 6.4]), with a stratification
by locally closed subschemes EZ[(8H,δH)] labeled by cusp labels [(8H, δH)] for MH,
which extends the stratification of MH by the locally closed subschemes Z[(8H,δH)]

(see [Lan 2014, Theorem 12.1]). For certain (possibly nonsmooth) compatible
collections 6 (not the same ones for which we can construct Mtor

H,6 over M0,Q),
we also have the toroidal compactifications EMtor

H,6 of EMH that are projective and
flat over S0 (see [Lan 2014, Section 7]), with a stratification by locally closed
subschemes EZ[(8H,δH,σ )] (see [Lan 2014, Theorem 9.13]) and a canonical surjection
E
∮

H :
EMtor

H,6→
EMmin

H with geometrically connected fibers (see [Lan 2014, Lemma
12.9 and its proof]), inducing surjections EZ[(8H,δH,σ )]→

EZ[(8H,δH)] (see [Lan 2014,
Theorem 12.16]).

As in Section A.2, consider a geometric point s → S0 = Spec(OF0,(p)) with
algebraically closed residue field k(s) and consider a connected component U min of
the fiber EMmin

H ×S0 s. For each cusp label [(8H, δH)] for MH, we define U[(8H,δH)]

to be the pullback of EZ[(8H,δH)] to U min. Since the fibers of E
∮

H are geometrically
connected, the preimage of U min under E

∮
H×S0 s is a connected component U tor

of EMtor
H,6 ×S0 s. (In general, neither EMmin

H ×S0 s nor EMtor
H,6 ×S0 s is normal.) For

each equivalence class [(8H, δH, σ )] defining a stratum EZ[(8H,δH,σ )] of EMtor
H,6 , we

define U[(8H,δH,σ )] to be the pullback of EZ[(8H,δH,σ )]. Then we also have a canonical
surjection U[(8H,δH,σ )]→U[(8H,δH)] induced by E

∮
H.

Theorem A.6.1. With the setting as above, all strata of U min are nonempty.

By using the canonical surjection U[(8H,δH,σ )]→ U[(8H,δH)] (as in the proof of
Corollary A.2.3), Theorem A.6.1 implies the following:

Corollary A.6.2. With the setting as above, all strata of U tor are nonempty.

As in Section A.3, it suffices to prove the following:

Proposition A.6.3. Suppose Theorem A.6.1 is true when char(k(s))= 0. Then it is
also true when char(k(s))= p > 0.

Remark A.6.4. Since EMH⊗Z Q∼=MH and EMmin
H ⊗Z Q∼=Mmin

H by construction, by
Theorem A.5.1 the assumption in Proposition A.6.3 always holds. Nevertheless, the
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proof of Proposition A.6.3 will clarify that the deduction of Theorem A.6.1 from
Theorem A.5.1 does not require Assumption A.2.1 (cf. Remark A.3.2).

The remainder of this section will be devoted to the proof of Proposition A.6.3.
We shall assume that char(k(s))= p > 0.

While each Z[(8H,δH)] is isomorphic to some boundary moduli problem M
ZH
H ,

each stratum EZ[(8H,δH)] of EMmin
H is similarly isomorphic to some integral model

EM
ZH
H defined by taking normalization (see [Lan 2014, Proposition 7.4 and Theorems

12.1 and 12.16]). Hence it also makes sense to consider the minimal compactification
EZmin
[(8H,δH)]

of EZ[(8H,δH)], which is proper flat (with possibly nonnormal geometric
fibers) over S0, and we obtain the following:

Lemma A.6.5 (cf. Lemma A.3.4 and [Deligne and Mumford 1969, Theorem
4.17(ii)]). There exists some discrete valuation ring R that is flat over OF0,(p), with
fraction field K and residue field k(s), the latter lifting the structural homomorphism
OF0,(p) → k(s), such that, for each cusp label [(8H, δH)] and each connected
component V of EZmin

[(8H,δH)]
⊗OF0,(p)

R, the induced flat morphism V → Spec(R) has
connected special fiber over Spec(k(s)).

Proof of Proposition A.6.3. By [Lan 2014, Corollary 12.4], it suffices to show that
U[(8H,δH)] 6=∅ when [(8H, δH)] is maximal with respect to the surjection relations,
as in [KWL, Definition 5.4.2.13]. In this case, by [Lan 2014, Theorem 12.1],
EZ[(8H,δH)] is a closed stratum of EMmin

H and so EZ[(8H,δH)] =
EZmin
[(8H,δH)]

. Hence the
lemma follows from Theorem A.5.1 and the same argument as in the proof of
Proposition A.3.1, with the reference to Lemma A.3.4 replaced with an analogous
reference to Lemma A.6.5. �

As explained in Remark A.6.4, the proof of Theorem A.6.1 is now complete.

A.7. Examples.

Example A.7.1. Suppose O⊗Z Q is a CM field F with maximal totally subfield
F+, with positive involution given by the complex conjugation of F over F+.
Suppose L = O⊕a+b

F , where a ≥ b ≥ 0 are integers. Suppose (2π
√
−1)−1

〈 · , · 〉 is
the skew-Hermitian pairing defined in block matrix form 1b

S
−1b

 ,
where S is some (a−b)× (a−b) matrix over F such that

√
−1S is Hermitian and

either positive or negative definite. Then, for each 0≤ r ≤ b, the O-submodule Z(r)
−2

of L = O⊕(a+b)
F with the last a+ b− r entries zero is totally isotropic, and V(r)

−2 :=

F(r)
−2⊗ZQ is a totally isotropic F-submodule of L⊗ZQ= F⊕(a+b), which is maximal

when r = b. The stabilizer of V(r)
−2 either is the whole group (when r = 0) or defines a
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maximal (proper) parabolic subgroup P(r) of G⊗Z Q (when r > 0), and all maximal
parabolic subgroups of G⊗Z Q are conjugate to one of these standard ones, by
Lemma A.4.3. Similarly, Z(r)

−2 := F(r)
−2⊗Z Ẑ is a totally isotropic O⊗Z Ẑ-submodule

of L ⊗Z Ẑ, and the left G(Q)- and right H-double orbits of Z(r)
−2, for 0 ≤ r ≤ b,

exhaust all the possible ZH appearing in cusp labels [(ZH,8H, δH)] for MH, by
Proposition A.5.8. By Lemma A.4.7, by forgetting their p-parts, their left G(Q)- and
right Hp-double orbits also exhaust all the possible ZHp appearing in cusp labels
[(ZHp ,8Hp , δHp)] for MHp . Let us say that a cusp label [(ZH,8H, δH)] for MH

is of rank r if ZH is in the double orbit of Z(r)
−2, and that a cusp [(ZHp ,8Hp , δHp)]

for MHp is of rank r if it is assigned to one of rank r under (A.4.1). (This is
consistent with [KWL, Definitions 5.4.1.12 and 5.4.2.7].) On the other hand, as
a byproduct of the proof of Proposition A.5.9, any ZH in the double orbit of Z(r)

−2
does extend to some cusp label [(ZH,8H, δH)] for MH, inducing some cusp label
[(ZHp ,8Hp , δHp)] for MHp under (A.4.1). Then Theorem A.2.2 shows that, in the
boundary stratification of every connected component of every geometric fiber of
Mmin

Hp → S0 = Spec(OF0,(p)), there exist nonempty strata labeled by cusp labels
for MHp of all possible ranks 0 ≤ r ≤ b. (The theorem shows the more refined
nonemptiness for strata labeled by cusp labels, not just by ranks.)

The next example shows that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that O⊗Z Q involves no factor of type D.

Example A.7.2. Suppose O⊗Z Q is a central division algebra D over a totally
real field F , as in [KWL, Proposition 1.2.1.13] such that D⊗F,τ R∼= H, the real
Hamiltonian quaternion algebra, for every embedding τ : F→ R, with ?= � given
by x 7→ x� := TrD/F (x)− x . Suppose that D is nonsplit at strictly more than two
places. Suppose L is chosen such that L ⊗Z Q ∼= D⊕2. By the Gram–Schmidt
process, as in [KWL, Section 1.2.4] and by [KWL, Corollary 1.1.2.6], there is up
to isomorphism only one isotropic skew-Hermitian pairing over L ⊗Z Q. But we
do know the failure of Hasse’s principle (see [Kottwitz 1992, §7, p. 393]) in this
case (see [Scharlau 1985, Remark 10.4.6]), which means there exists a choice of
(L , 〈 · , · 〉) as above that is globally anisotropic but locally isotropic everywhere.
Thus, even when k(s)∼= C, there exists some connected component U of ShH,alg

and some nonzero cusp label [(8H, δH)] for MH such that U[(8H,δH)] =∅.
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Classifying orders in the Sklyanin algebra
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Let S denote the 3-dimensional Sklyanin algebra over an algebraically closed
field k and assume that S is not a finite module over its centre. (This algebra
corresponds to a generic noncommutative P2.) Let A=

⊕
i≥0 Ai be any connected

graded k-algebra that is contained in and has the same quotient ring as a Veronese
ring S(3n). Then we give a reasonably complete description of the structure
of A. This is most satisfactory when A is a maximal order, in which case we
prove, subject to a minor technical condition, that A is a noncommutative blowup
of S(3n) at a (possibly noneffective) divisor on the associated elliptic curve E . It
follows that A has surprisingly pleasant properties; for example, it is automatically
noetherian, indeed strongly noetherian, and has a dualising complex.
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1. Introduction

Noncommutative (projective) algebraic geometry has been very successful in using
techniques and intuition from algebraic geometry to study noncommutative graded
algebras, and many classes of algebras have been classified using these ideas. In
particular, noncommutative irreducible curves (or connected graded domains of
Gelfand–Kirillov dimension 2) have been classified [Artin and Stafford 1995] as
have large classes of noncommutative irreducible surfaces (or connected graded
noetherian domains of Gelfand–Kirillov dimension 3).

Indeed, the starting point of this subject was really the classification by Artin,
Tate, and Van den Bergh [Artin et al. 1990; 1991] of noncommutative projective
planes (noncommutative analogues of a polynomial ring k[x, y, z]). The generic
example here is the Sklyanin algebra

S = Skl(a, b, c)= k{x1, x2, x3}/(axi xi+1+ bxi+1xi + cx2
i+2 : i ∈ Z3),

where (a, b, c) ∈ P2 r S for a (known) finite set S. The geometric methods of
[Artin et al. 1990] were necessary to understand this algebra. See [Stafford and
Van den Bergh 2001] for a survey of many of these results.

In the other direction, one would like to classify all noncommutative surfaces,
and a programme for this has been suggested by Artin [1997]. This paper completes
a significant case of this programme by classifying the graded noetherian orders
contained in the Sklyanin algebra. In this introduction we will first describe our main
results and then discuss the historical background and give an idea of the proofs.

The main results. Fix a Sklyanin algebra S = Skl(a, b, c) defined over an al-
gebraically closed base field k. For technical reasons we mostly work inside the
3-Veronese ring T = S(3); thus T =

⊕
Tn with Tn= S3n for each n, under the natural

graded structure of S. The difference between these algebras is not particularly
significant; for example, the quotient category qgr-T of graded noetherian right
T -modules modulo those of finite length, is equivalent to qgr-S. Then T contains a
canonical central element g ∈ T1 = S3 such that the factor B = T/gT is a TCR or
twisted homogeneous coordinate ring B = B(E,M, τ ) of an elliptic curve E . Here
M is a line bundle of degree 9 and τ ∈ Autk(E) (see Section 2 for the definition).
We assume throughout the paper that |τ | =∞; equivalently, that T is not a finite
module over its centre.

Our main results are phrased in terms of certain blowups T (d)⊂ T , where d is a
divisor on E . These are discussed in more detail later in this introduction. Here we
will just note that, when p is a closed point of E , the blowup T ( p) is the subring
of T generated by those elements x ∈ T1 whose images in T/gT vanish at p. For
an effective divisor d (always of degree at most 8), T (d) has properties similar to
those of a (commutative) anticanonical homogeneous coordinate ring of the blowup
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of P2 along the divisor d. However, we also need algebras that should be considered
as blowups T (d ′) of T at noneffective divisors of the form d ′ = x − y+ τ−1( y),
where x and y are effective divisors on E , 0≤ deg d ′ ≤ 8 and certain combinatorial
conditions hold (see Definition 7.1 for the details). Such a divisor will be called
virtually effective.

Given domains U,U ′ with the same Goldie quotient ring Q(U )= Q(U ′)= Q,
we say that U and U ′ are equivalent orders if aUb ⊆U ′ and a′U ′b′ ⊆U for some
a, b, a′, b′ ∈ Qr {0}. If Q(U ) = Q(V ) for some ring V ⊇ U , then U is called a
maximal V -order if there exists no ring U ′ equivalent to U such that U (U ′ ⊆ V .
When V = Q(U ), U is simply termed a maximal order. These can be regarded
as the appropriate noncommutative analogues of integrally closed domains. The
algebra T is a maximal order. When Qgr(U )= Qgr(T ) the concepts of maximal
orders and maximal T -orders are essentially the only cases that will concern us
and, as the next result shows, they are closely connected.

In this result, an N-graded k-algebra A =
⊕

n≥0 An is called connected graded
(cg) if A0 = k and dimk An <∞ for all n. Also, for a cg algebra U ⊆ T , we write
U = (U + gT )/gT .

Proposition 1.1 (combine Theorem 8.11 with Proposition 6.4). Let U be a cg
maximal T -order, such that U 6= k. Then there exists a unique maximal order
F = F(U ) ⊇ U equivalent to U. Moreover, F is a finitely generated U-module
with GKdimU (F/U )≤ 1.

We remark that there do exist graded maximal T -orders U with U 6= F(U ) (see
Proposition 10.3).

Our results are most satisfactory for maximal T -orders, and our main result is
the following complete classification of such algebras.

Theorem 1.2 (Theorem 8.11). Let U be a cg maximal T -order with U 6= k. Then
there exists a virtually effective divisor d ′ = d− y+ τ−1( y) with deg(d ′)≤ 8 such
that the associated maximal order F(U ) is a blowup F(U )= T (d ′) of T at d ′.

Remarks 1.3. (1) Although in this introduction we are restricting our attention to
the Sklyanin algebra S = Skl, this theorem and indeed all the results of this paper
are proved simultaneously for certain related algebras; see Assumption 2.1 and
Examples 2.2 for the details.

(2) Theorem 1.2 is actually proved in the context of graded maximal T (n)-orders,
but as that result is a little more complicated to state, the reader is referred to
Theorem 8.11 for the details.

(3) The assumption that U 6= k in the theorem is annoying but necessary (see
Example 10.8). It can be bypassed at the expense of passing to a Veronese ring and
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then regrading the algebra. However, the resulting theorems are not as strong as
Theorem 1.2 (see Section 9 for the details).

One consequence of Theorem 1.2 is that maximal T -orders have very pleasant
properties. The undefined terms in the next result are standard concepts and are
defined in the body of the paper.

Corollary 1.4. Let U and F = F(U )= T (d ′) be as in Theorem 1.2.

(1) (Proposition 2.9 and Theorem 8.11(1)) Both U and F are finitely generated
k-algebras and are strongly noetherian: in other words, U ⊗k C and F ⊗k C
are noetherian for any commutative, noetherian k-algebra C.

(2) (Corollary 8.12) Both U and F satisfy the Artin–Zhang χ conditions, have
finite cohomological dimension and possess balanced dualising complexes.

(3) (Proposition 4.10 and Example 10.4) If F is the blowup at an effective divisor
then U = F. In this case F also satisfies the Auslander–Gorenstein and Cohen–
Macaulay conditions. These conditions do not necessarily hold when d ′ is
virtually effective.

In the other direction, we prove:

Theorem 1.5 (Theorem 7.4(3)). For any virtually effective divisor d ′ there exists a
blowup of T at d ′ in the sense described above.

The fact that U is automatically noetherian in Theorem 1.2 is one of the result’s
most striking features. In general, nonnoetherian graded subalgebras of T can be
rather unpleasant and so, in order to classify reasonable classes of nonmaximal
orders in T , we make a noetherian hypothesis. Given a connected graded noetherian
algebra U , one can easily obtain further noetherian rings by taking Veronese rings,
idealiser subrings I(J )= {θ ∈U : θ J ⊆ J } for a right ideal J of U , or equivalent
orders U ′ ⊆U containing an ideal K of U . We show that this suffices:

Corollary 1.6 (Corollary 9.5). Let U be a cg noetherian subalgebra of T with
Qgr(U )= Qgr(T (n)) for some n. Assume that U 6= k (as in Remarks 1.3, this can
be assumed at the expense of taking a Veronese ring and regrading).

Then U can be obtained from some virtual blowup R = T (d ′) by a combination
of Veronese rings, idealisers and equivalent orders K ⊆ U ⊆ V , where K is an
ideal of V with GKdim(V/K )≤ 1.

History. We briefly explain the history behind these results and their wider rel-
evance. As we mentioned earlier, noncommutative curves and noncommutative
analogues of the polynomial ring k[x, y, z] have been classified. Motivated by these
results, Artin suggested a program for classifying all noncommutative surfaces, but
in order to outline this program we need some notation.
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Given a cg domain A of finite Gelfand–Kirillov dimension, one can invert
the nonzero homogeneous elements to obtain the graded quotient ring Qgr(A)∼=
D[t, t−1

;α], for some automorphism α of the division ring D = Q(A)0 = Dgr(A).
This division ring will be called the function skewfield of A.

Let A be a noetherian, cg k-algebra. A useful intuition is to regard qgr-A as
the coherent sheaves over the (nonexistent) noncommutative projective scheme
Proj(A), although we will slightly abuse notation by regarding qgr-A itself as that
scheme. Under this intuition, a noncommutative surface is qgr-A for a noetherian
cg domain A with GKdim A = 3. (In fact, one should probably weaken this last
condition to the assumption that Dgr(A) has lower transcendence degree two in
the sense of [Zhang 1998], but that is not really relevant here.) There are strong
arguments for saying that noncommutative projective planes are the categories
qgr-A, as A ranges over the Artin–Schelter regular rings of dimension 3 with the
Hilbert series (1− t)−3 of a polynomial ring in three variables (see [Stafford and
Van den Bergh 2001, §11.2] for more details). These are the algebras classified in
[Artin et al. 1990] and for which the Sklyanin algebra S = S(a, b, c) is the generic
example. Van den Bergh [2011; 2012] has similarly classified noncommutative
analogues of quadrics and related surfaces.

Artin’s Conjectures 1.7. Artin conjectured that the only function skewfields of
noncommutative surfaces are the following:

(i) division rings D finite-dimensional over their centres F = Z(D), which are
then fields of transcendence degree two;

(ii) division rings of fractions D of Ore extensions k(X)[z; σ, δ] for some curve X ,
where D is not a finite module over its centre; and

(iii) the function skewfield D = Dgr(S) of a Sklyanin algebra S = S(a, b, c),
where S is not a finite module over its centre.

Artin then asked for a classification of the noncommutative surfaces qgr-A within
each birational class; that is, the cg noetherian algebras A with Dgr(A) being a
fixed division ring from this list.

The case of Artin’s programme when D = k(Y ) is the function field of a surface
and GKdim A= 3 has been completed in [Rogalski and Stafford 2009; Sierra 2011]
(if one strays from algebras of Gelfand–Kirillov dimension 3, then things become
more complicated, as [Rogalski and Sierra 2012] shows). As explained earlier, in
this paper we are interested in the other extreme, that of case (iii) from Artin’s list.

The first main results in this direction come from [Rogalski 2011], of which this
paper is a continuation. In particular, [ibid., Theorem 1.2] shows that the maximal
orders U ⊆ T = S(3) that have Qgr(U )= Qgr(T ) and are generated in degree one are
just the blowups T (d) for an effective divisor d on E with deg(d)≤ 7. We remark
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that in this case T (d) is simply the subalgebra of T generated by those elements
of T1 whose images in T/gT vanish on d. As such, T (d) is quite similar to a
commutative blowup and qgr-T (d) also coincides with the more categorical version
of a blowup in [Van den Bergh 2001]. In this paper we will also need T (d) when
deg(d)= 8, and this is harder to describe as it is not generated in degree one. Its
construction and basic properties are described in the companion paper [RSS 2015].

The proofs. For simplicity we assume here that U is a cg subalgebra of T with
Qgr(U )= Qgr(T ).

A key strategy in the description of the Sklyanin algebra S, and in the classifica-
tion of noncommutative projective planes in [Artin et al. 1990], was to understand
the factor ring S/gS, where g ∈ S3 = T1 is the central element mentioned earlier.
Indeed, one of the main steps in that paper was to show that S/gS ∼= B(E,L, σ )

for the appropriate L and σ . We apply a similar strategy. The nicest case is when
U ⊆ T is g-divisible in the sense that g ∈ U and U ∩ gT = gU . In particular,
U =U/gU is then a subalgebra of T with GKdim(U )= 2. As such U and hence U
are automatically noetherian (see Proposition 2.9). Much of this paper concerns the
classification of g-divisible algebras U , and the starting point is the following result.

Theorem 1.8 (Theorem 5.24). Let U be a g-divisible subalgebra of T such that
Qgr(U ) = Qgr(T ). Then U is an equivalent order to some blowup T (d) at an
effective divisor d on E with deg d ≤ 8.

It follows easily from this result that a g-divisible maximal T -order U equals
EndT (d)(M) for some finitely generated right T -module M (see Corollary 6.6).
When U is g-divisible, the rest of the proof of Theorem 1.2 amounts to showing
that, up to a finite-dimensional vector space, U = B(E,M(−d ′), τ ), for some
virtually effective divisor d ′ = d− y+ τ−1( y) (see Theorem 6.7). This is also the
key property in the definition of a blowup at such a divisor (see Definitions 6.9
and 7.1 for more details).

Now suppose that U is not necessarily g-divisible and set C = U 〈g〉 with g-
divisible hull

Ĉ = {θ ∈ T : gmθ ∈ C for some m ≥ 0}.

The remaining step in the proof of Theorem 1.2 is to show that U , C and Ĉ
are equivalent orders. This in turn follows from the following fact. Let V be a
graded subalgebra of T with g ∈ V and Qgr(V )= Qgr(T ). Then V has a minimal
sporadic ideal in the sense that V has a unique ideal I minimal with respect to
GKdim(V/I )≤ 1 and V/I being g-torsionfree (see Corollary 8.8).

Further results. The g-divisible subalgebras of T are closely related to subalgebras
of the (ungraded) localised ring T ◦ = T [g−1

]0. The algebra T ◦ is a hereditary
noetherian domain of GK-dimension 2 and can be thought of as a noncommutative
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coordinate ring of the affine space P2r E . By [RSS 2014], any subalgebra of T ◦

is noetherian and so the algebras U ◦ = U [g−1
]0 ⊆ T ◦ give a plentiful supply of

noetherian domains of GK-dimension 2. All the above results have parallel versions
for orders in T ◦. For example:

Corollary 1.9 (Corollary 7.10 and Corollary 8.5). Let A be a subalgebra of T ◦

with Q(A)= Q(T ◦).

(1) The algebra A has finitely many prime ideals and DCC on ideals.

(2) If A is a maximal T ◦-order then A = T (d ′)◦ for some virtually effective
divisor d ′.

Organisation of the paper. In Section 2 we prove basic technical results, including
the important, though easy, fact that any g-divisible subalgebra of T is strongly
noetherian (see Proposition 2.9). Section 3 is devoted to studying finitely generated
graded orders in k(E)[t; τ ]. The main result (Theorem 3.1) shows that any such
order is (up to finite dimension) an idealiser in a twisted homogeneous coordinate
ring. This improves on one of the main results from [Artin and Stafford 1995]
and has useful applications to the study of point modules over such an algebra.
Section 4 incorporates needed results from [RSS 2015] about right ideals of T and
the blowups T (d) at effective divisors.

Sections 5–7 are devoted to g-divisible algebras in T . The main result of
Section 5 is Theorem 1.8 from above. Section 6 is concerned with the structure of
V =EndT (d)(M), where M ⊂ T is a reflexive T (d)-module and d is effective. Most
importantly, Theorem 6.7 describes the factor V/gV . Section 7 pulls these results
together, proves Theorem 1.5 for g-divisible algebras and draws various conclusions.

In Section 8 we show that various algebras have minimal sporadic ideals. This
is then used to complete the proof of Theorem 1.2. Section 9 studies subalgebras
of the Veronese rings T (m) and algebras U with U = k. We apply this to prove
Corollary 1.6. Finally, Section 10 is devoted to examples. At the end of the paper
we also provide an index of notation.

2. Basic results

In this section we collect the basic definitions and results that will be used throughout
the paper.

Throughout the paper k is an algebraically closed field and all rings will be k-
algebras. If X is a projective k-scheme, L is an invertible sheaf on X , and σ : X→ X
is an automorphism, then there is a TCR or twisted homogeneous coordinate ring
B = B(X,L, σ ) associated to this data and defined as follows. Write Fσ

= σ ∗(F)
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for a pullback of a sheaf F on X and set Fn =F⊗Fσ
⊗· · ·⊗Fσ n−1

for n≥ 1. Then

B =
⊕
n≥0

H 0(X,Ln), with product x ∗ y = x ⊗ (σm)∗(y) for x ∈ Bm, y ∈ Bn.

In this paper X = E will usually be a smooth elliptic curve, and a review of some
of the important properties of B(E,L, σ ) in this case can be found in [Rogalski
2011]. It is well known, going back to [Artin et al. 1990], that much of the structure
of the Sklyanin algebra S is controlled by the factor ring S/gS ∼= B(E,L, σ ), and
this in turn can be analysed geometrically.

In fact, there are several different families of Sklyanin algebras, and we first
set up a framework which will allow our results to apply to subalgebras of any of
these (and, indeed, more generally). Recall that for an N-graded ring R=

⊕
n≥0 Rn

the d-th Veronese ring, for d ≥ 1, is R(d) =
⊕

n≥0 Rnd . Usually this is graded by
setting R(d)n = Rnd . However, we will sometimes want to regard R(d) as a graded
subring of R, in which case each Rnd maintains its degree nd; we will call this the
unregraded Veronese ring. In this paper it will be easier to work with the 3-Veronese
ring of the Sklyanin T = S(3) =

⊕
n∈Z Tn , largely because this ensures that the

canonical central element g lies in T1. Similar comments will apply to the other
families, and so in the body of the paper we will work with algebras satisfying the
following hypotheses.

Assumption 2.1. Let T be a cg k-algebra which is a domain with a central element
0 6= g ∈ T1, such that there is a graded isomorphism T/gT ∼= B = B(E,M, τ ) for a
smooth elliptic curve E , invertible sheaf M with µ= deg M≥ 2, and infinite-order
automorphism τ . Such a T is called an elliptic algebra of degree µ.

This assumption holds throughout the paper. In the language of [Van den Bergh
2001], the assumption can be interpreted geometrically to say that the surface qgr-T
contains the commutative elliptic curve qgr-B ' coh E as a divisor. We will need
stronger conditions on T in the main results of Section 8 (see Assumption 8.2).

Examples 2.2. The hypotheses of Assumption 2.1 are satisfied in a number of ex-
amples, in particular for Veronese rings of the following types of Sklyanin algebras.

(1) Let S be the quadratic Sklyanin algebra

S(a, b, c)= k{x0, x1, x2}/(axi xi+1+ bxi+1xi + cx2
i+2 : i ∈ Z3),

for appropriate [a, b, c] ∈ P2
k , and let T = S(d) for d = 3.

(2) Let S be the cubic Sklyanin algebra

S(a, b, c)= k{x0, x1}/(ax2
i+1xi + bxi+1xi xi+1+ axi x2

i+1+ cx3
i : i ∈ Z2),

for appropriate [a, b, c] ∈ P2
k and let T = S(d), for d = 4.
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(3) Let x have degree 1 and y degree 2, and set

S= S(a,b,c)=k{x, y}/(ay2x+cyxy+axy2
+bx5, ax2 y+cxyx+ayx2

+by2),

for appropriate [a, b, c] ∈ P2
k , and let T = S(d), for d = 6.

(4) There are other examples satisfying these hypotheses; for example, take
T = B(E,M, τ )[g], where M is an invertible sheaf on the elliptic curve E
with deg M≥ 2 and |τ | =∞.

The detailed properties of the examples above can be found in [Artin et al. 1990;
1991; Stephenson 1997]. In particular, the restrictions on the parameters {a, b, c}
in (1–3) are determined as follows. In each case, there exists a central element
g ∈ Sd such that S/gS ∼= B = B(E,L, σ ), for some L and σ . This factor ring
also determines the Sklyanin algebra, since g is the unique relation for B of
degree d [Artin et al. 1990, Theorem 6.8(1); Stephenson 1997, Theorem 4.1]. The
requirements on {a, b, c} are that E is an elliptic curve and that |σ | =∞. Explicit
criteria on the parameters are known for E to be an elliptic curve but not for
|σ | = ∞; nevertheless, this will be the case when the parameters are generic. In
these examples, deg L = 3, 2, 1, respectively, and hence T/gT ∼= B(E,M, σ d),
where M= Ld has degree µ= d · (deg L)= 9, 8, 6, respectively.

Notation 2.3. All algebras A considered in this paper are domains of finite Gelfand–
Kirillov dimension, written GKdim(A). If A is graded, then the set C of nonzero
homogeneous elements therefore forms an Ore set (see [McConnell and Robson
2001, Corollary 8.1.21] and [Năstăsescu and van Oystaeyen 1982, C.I.1.6]). By
[ibid., A.14.3], the localisation Qgr(A) = AC−1 is a graded division ring in the
sense that Qgr(A) is an Ore extension Qgr(A)= D[z, z−1

;α] of a division ring D
by an automorphism α; thus zd = dαz for all d ∈ D. The algebra D will be denoted
D = Dgr(A) and called the function skewfield of A, while Qgr(A) will be called the
graded quotient ring of A.

Notation 2.4. For the most part, the algebras A considered in this paper will be
connected graded, in which case we usually work in the category Gr-A of Z-graded
right A-modules, with homomorphisms HomGr-A(M, N ) being graded of degree
zero. In particular, an isomorphism of graded modules or rings will be assumed to
be graded of degree zero, unless otherwise stated. The category of noetherian graded
right A-modules will be written gr-A, while the category of ungraded modules
will be written Mod-A, and we reserve the term Hom(M, N )= HomA(M, N ) for
homomorphisms in the ungraded category. For M, N ∈ Gr-A, the shift M[n] is
defined by M[n]=

⊕
M[n]i for M[n]i =Mn+i . Similar comments apply to ExtGr-A

and ExtA as well as to EndA(M)= HomA(M,M). If fd-A denotes the category of
finite-dimensional (right) A-modules, then we write qgr-A for the quotient category
gr-A/ fd-A. Similarly, A-qgr= A-gr /A-fd is the quotient category of noetherian



2064 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

graded left modules modulo finite-dimensional modules. The basic properties of
this construction can be found in [Artin and Zhang 1994].

Notation 2.5. Write T(g) for the homogeneous localisation of T at the completely
prime ideal gT ; thus T(g) = T C−1 for C the set of homogeneous elements in
T rgT . Note that T(g)/gT(g)∼= Qgr(B)= k(E)[t, t−1

; τ ], a ring of twisted Laurent
polynomials over the function field of E . In particular, T(g)/gT(g) is a graded
division ring and by [Goodearl and Warfield 1989, Exercise 1Q] it is also simple as
an ungraded ring. Also, as will be used frequently in the body of the paper,

the only graded right or left ideals of T(g) are the gnT(g). (2.6)

For any graded vector subspace X ⊆ T(g), set

X̂ = {t ∈ T(g) : tgn
∈ X for some n ∈ N}.

We say that X is g-divisible if X ∩ gT(g) = gX . Note that if X is g-divisible and
1 ∈ X (as happens when X is a subring of T(g)), then g ∈ X . For any k-subspace Y
of T(g), write Y = (Y + gT(g))/gT(g) for the image of Y in T(g)/gT(g).

If R ⊆ T(g) is a subalgebra with g ∈ R, then the g-torsion submodule of a right
R-module M is torsg(M)= {m ∈ M : gnm = 0 for some n ≥ 1}. We say that M is
g-torsionfree if torsg(M)= 0 and g-torsion if torsg(M)= M .

We notice that the rings T automatically satisfy some useful additional prop-
erties. An algebra C is called just infinite if every nonzero ideal I of C satisfies
dimk C/I <∞.

Lemma 2.7. Let T satisfy Assumption 2.1. Then:

(1) T is generated as an algebra in degree 1.

(2) Any finitely generated, cg subalgebra of Qgr(T/gT ) = k(E)[z, z−1
; τ ], in

particular T/gT itself , is just infinite.

Proof. (1) Since µ≥ 2, the ring B = T/gT ∼= B(E,M, τ ) is generated in degree 1
[Rogalski 2011, Lemma 3.1]. Thus T2 = (T1)

2
+ gT1 = (T1)

2 and, by induction,
(T1)

n
= Tn for all n ≥ 1.

(2) This follows from [RSS 2014, Corollary 2.10 and §3]. �

As the next few results show, g-divisible algebras and modules have pleasant
properties. The first gives a useful, albeit easy, alternative characterisation of X̂
that will be used without particular reference.

Lemma 2.8. Let R ⊆ T(g) be a cg subalgebra with g ∈ R, and let X ⊆ T(g) be a
graded right R-module. Then X ⊆ X̂ , and X̂ is also a right R-module. Moreover:

X is g-divisible ⇐⇒ X = X̂ ⇐⇒ T(g)/X is a g-torsionfree R-module. �
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Proposition 2.9. (1) If R is any g-divisible cg subalgebra of T , then R is finitely
generated as a k-algebra.

(2) Let R be a finitely generated g-divisible cg subalgebra of T(g). Then R is
strongly noetherian.

Proof. (1) We have R ∼= (R + gT )/gT ⊆ T ∼= B(E,M, τ ) and so [RSS 2014,
Theorem 2.9] implies that R is noetherian. By [Artin et al. 1990, Lemma 8.2],
R is noetherian. Since the generators of R≥1 as an R-module also generate R as a
k-algebra, R is finitely generated as a k-algebra.

(2) In this case, R = R/gR ∼= (R+ gT(g))/gT(g) ⊆ Qgr(B)= k(E)[t, t−1
; τ ]. By

[RSS 2014, Corollary 2.10] R is noetherian. Also GKdim R ≤ 2, for instance by
[Artin and Stafford 1995, Theorem 0.1], and so R is strongly noetherian by [Artin
et al. 1999, Theorem 4.24]. Thus R is strongly noetherian by [Artin et al. 1990,
Lemma 8.2]. �

Lemma 2.10. Let R be a g-divisible cg subalgebra of T(g) with Dgr(R)= Dgr(T ).
Then

(1) Qgr(R)= Qgr(T ), and

(2) Qgr(R)= Qgr(T ).

Proof. (1) As g ∈ R1 we have

Qgr(T )= Dgr(T )[g, g−1
] = Dgr(R)[g, g−1

] = Qgr(R).

(2) Since Qgr(R)= Qgr(T ), there exists 0 6= x ∈ Rd such that xT1 ⊆ Rd+1. Then
xT 1 ⊆ R. As long as x 6= 0, this shows that the graded quotient ring of R contains
a generating set for T and we are done. On the other hand, if x = 0, then write
x = gi y with y ∈ T(g) r gT(g); equivalently y ∈ R r gR by g-divisibility. Then
gi yT1 ⊆ R ∩ gi T(g) = gi R, and so yT1 ⊆ R. Thus we are again done. �

If A is a cg domain with graded quotient ring Q = Qgr(A) and M ⊆ Q is a
finitely generated graded right A-submodule, we can and always will identify

EndA(M)= {q ∈ Q : q M ⊆ M} and

M∗ = HomA(M, A)= {q ∈ Q : q M ⊆ A}.
(2.11)

Clearly both EndA(M) and M∗ are graded subspaces of Q.

Lemma 2.12. Let R be any g-divisible subring of T(g) with Qgr(R) = Qgr(T(g)),
and let M,M ′ ⊆ T(g) be finitely generated nonzero right R-modules.

(1) If M * gT(g), then we can identify

HomR(M,M ′)= {x ∈ T(g) : x M ⊆ M ′} ⊆ T(g).
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(2) If M ′ is g-divisible, and M 6⊆ gT(g) (in particular if M is g-divisible) then
HomR(M,M ′)⊆ T(g) is also g-divisible.

(3) If M is g-divisible, then U =EndR(M)⊆ T(g) is g-divisible, and M is a finitely
generated left U-module. Moreover, U ⊆ EndR(M).

Proof. (1) Since M 6⊆ gT(g), it follows from (2.6) that MT(g) = T(g). In particular,

N = HomR(M,M ′)⊆ HomT(g)(MT(g),M ′T(g))⊆ T(g).

(2) Part (1) applies, and so N = HomR(M,M ′) ⊆ T(g). Next, let θ ∈ N ∩ gT(g);
say θ = gs for some s ∈ T(g). Then sgM = θM ∈ M ′ ∩ gT(g) = M ′g since M ′ is
g-divisible. Hence s M ⊆ M ′ and s ∈ N . Thus N ∩ gT(g) = gN .

(3) By part (2), U is g-divisible, and hence is noetherian by Proposition 2.9. As
Qgr(R) = Qgr(T(g)), there exists x ∈ T(g) r {0} so that x M ⊆ R. Then Mx M ⊆
M R = M . Hence (up to a shift) M ∼= Mx ⊆ U is finitely generated as a left
U -module.

Now
U = (U + gT(g))/gT(g) ⊆ T(g) = k(E)[t, t−1

; τ ].

Since Qgr(U )= Qgr(T(g)) by Lemma 2.10, as in (2.11) we identify EndR(M) with
{x ∈ T(g) : x M ⊆ M}. But since U M ⊆ M , clearly (U )(M)⊆ M . �

Lemma 2.13. Let R be a graded subalgebra of T(g) with Qgr(R)= Qgr(T(g)) and
let M ⊆ T(g) be a graded right R-submodule of T(g) such that M 6⊆ gT(g). Then:

(1) For any x ∈ T(g)r gT(g), we have x̂ M = x M̂.

(2) If R is g-divisible and M is a finitely generated R-module, then so is M̂.

(3) If R is g-divisible, then T(g)⊇M∗= M̂∗ and M∗ 6⊆ gT(g). Hence T(g)⊇M∗∗=
M̂∗∗. Moreover, we have (M̂)∗ = M∗ and (M̂)∗∗ = M∗∗.

Proof. (1) Let r ∈ M̂ . For some n we have rgn
∈ M , so xrgn

∈ x M . Since
xr ∈ T(g) it follows that xr ∈ x̂ M . Conversely, if r ∈ T(g) with rgn

∈ x M , then
rgn
= gnr ∈ gnT(g) ∩ xT(g). As gT(g) is a completely prime ideal and x 6∈ gT(g),

clearly gnT(g)∩xT(g)=gnxT(g). Thus r= xs for some s∈T(g) and x M 3rgn
= xsgn .

Therefore sgn
∈ M , whence s ∈ M̂ and r ∈ x M̂ . Thus x̂ M = x M̂ , as claimed.

(2) As in the proof of Lemma 2.12, there exists x ∈ T(g)r {0} so that x M ⊆ R. If
x = gy for some y ∈ T(g), then g(yM)⊆ R and so yM ⊆ R since R is g-divisible.
Thus we can assume that x ∈ T(g)r gT(g). Again by g-divisibility, x̂ M ⊆ R̂ = R.
By Proposition 2.9 x̂ M is a finitely generated right ideal of R. Up to a shift,
M̂ ∼= x M̂ = x̂ M by (1). This is finitely generated as an R-module.

(3) By Lemma 2.12(2), M∗ is equal to HomR(M, R)⊆ T(g) and is g-divisible, i.e.,
M∗ = M̂∗. Clearly then M∗ * gT(g), and so by the left-handed analogue of the
same argument, M∗∗ = M̂∗∗ ⊆ T(g) also.
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Now as M ⊆ M̂ , certainly (M̂)∗ ⊆ M∗. On the other hand, if θ ∈ M∗ and x ∈ M̂ ,
say with xgn

∈ M , then (θx)gn
= θ(xgn) ∈ R = R̂. Hence θx ∈ R. Thus θ ∈ (M̂)∗

and (M̂)∗ = M∗. Taking a second dual gives (M̂)∗∗ = M∗∗. �

We note next some special properties of modules of GK-dimension 1.

Lemma 2.14. Let R be a cg g-divisible subalgebra of T(g) and suppose that M is a
finitely generated, g-torsionfree R-module with GKdim(M)≤ 1. Then the Hilbert
series of M is eventually constant; that is, dimk Mn = dimk Mn+1 for all n � 0.
Moreover, M is a finitely generated k[g]-module.

Proof. By [Krause and Lenagan 1985, Proposition 5.1(e)], GKdim(M/Mg) ≤ 0
and so dimk M/Mg <∞. Thus Mr g = Mr+1 for all r � 0; say for r ≥ n0. In
particular, M = M≤n0k[g]. Moreover, since multiplication by g is an injective map
from Mr to Mr+1, it follows that dimk Mr = dimk Mr+1 for all r ≥ n0. �

A graded ideal I in a cg algebra R is called a sporadic ideal if GKdim(R/I )= 1
(these are called special ideals in [Rogalski 2011]). The name is justified since, as
will be shown in Section 8, orders in T have very few such ideals. The next lemma
will be useful in understanding them.

Lemma 2.15. Let R be a g-divisible finitely generated cg subring of T(g) with
Qgr(R)= Qgr(T ). Then:

(1) If J is a nonzero g-divisible graded ideal of R, then GKdim(R/J )≤ 1.

(2) Conversely, if J is a graded ideal of R such that GKdim(R/J )≤ 1, then Ĵ/J
is finite-dimensional.

(3) If K is any ideal of R, then K = gn I for some n ≥ 1 and ideal I satisfying
GKdim(R/I )≤ 1.

(4) Suppose that L ,M are graded subspaces of T(g) with L * gT(g) and M * gT(g)
and assume that I = L M is an ideal of R. Then GKdim(R/I )≤ 1.

Proof. (1) By Lemma 2.10, R ⊆ k(E)[t, t−1
; τ ] = Qgr(R) and, by Lemma 2.7(2),

R is just infinite. Since J is g-divisible, J * gR and so J 6= 0; thus dimk R/J <∞.
Equivalently, if R′ = R/J then dimk R′/gR′ <∞. It follows that R′m = gR′m−1 for
all m� 0, and hence that GKdim R′ ≤ 1.

(2) Once again, R is just infinite. Thus, since J ⊆ gR would lead to the contradiction
GKdim(R/J )≥ 2, we must have dimk R/(gR+ J )= dimk R/J <∞. Since Ĵ is
noetherian, gn Ĵ ⊆ J for some n. If J ′ is the largest right ideal inside Ĵ such that J ′/J
is finite-dimensional, then J ′ is an ideal and we can replace J by J ′ without loss. If
we still have J 6= Ĵ , then there exists x ∈ ĴrJ such that xg∈ J . Thus x(gR+J )⊆ J ,
and left multiplication by x defines a surjection R/(gR+ J )� (x R+ J )/J . We
have dimk(x R + J )/J = ∞ and dimk R/(gR + J ) <∞, a contradiction. Thus
Ĵ = J .
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(3) Write K = gn J with n as large as possible and J an ideal of R. Then J 6⊆ gR,
and so Lemma 2.7(2) again implies that dimk R/J <∞ and hence GKdim R/J ≤ 1.

(4) Since gT(g) is completely prime, I = L M * gT(g) and hence I * gR. Now
apply part (3). �

Next, we want to prove some general results about equivalent orders that will be
useful elsewhere. We recall that two cg domains A and B with a common (graded)
quotient ring Q= Qgr(A)= Qgr(B) are equivalent orders if a Ab⊆ B and cBd ⊆ A
for some a, b, c, d ∈ Qr {0}. Clearing denominators on the appropriate sides, one
can always assume that a, b, c, d ∈ B. One can also assume that a, b, c, d are
homogeneous; indeed, if a and b have leading terms an and bm , then an Abm ⊆ B.

Proposition 2.16. Suppose that U ⊆ R are g-divisible cg finitely generated sub-
algebras of T(g) such that Qgr(U ) = Qgr(R) = Qgr(T(g)). Then the following are
equivalent:

(1) U and R are equivalent orders in Qgr(U )= Qgr(T ).

(2) U/gU and R/gR are equivalent orders in Qgr(U/gU ).

Proof. (1) ⇒ (2) Choose nonzero homogeneous elements a, b ∈ U such that
a Rb⊆U . Write a= gna′ where a′ ∈UrgU . Then gna′Rb⊆U and so a′Rb⊆U
since U is g-divisible. Replacing a by a′, we can assume that a 6∈ gU and, similarly,
that b 6∈ gU . Then a Rb ⊆U , with a, b 6= 0, as required.

(2)⇒ (1) Set U =U/gU ⊆ R = R/gR. We first note that there is a subalgebra
U ⊆ S ⊆ R so that S is a noetherian right U -module and R is a noetherian left
S-module. Indeed, write a Rb⊆U for some nonzero a, b∈U and set S=U+RbU .
Clearly aS ⊆ U and Rb ⊆ S. As in the proof of Proposition 2.9, all subalgebras
of R are noetherian. In particular, S and U are noetherian and so these inclusions
ensure that SU and S R are finitely generated, as claimed.

Let F ⊆ R be a finite-dimensional vector space, containing 1, such that FU = S.
Set M = F̂U and V = EndU (M). Clearly Qgr(V ) = Qgr(U ) = Qgr(T ). Since
1 ∈ M and hence M * gT(g), we can and will use Lemma 2.12(1) to identify
V = {q ∈ Qgr(U ) : q M ⊆M} ⊆ T(g). By Lemma 2.12(3), V = V̂ and V M is finitely
generated, while, by Lemma 2.13, MU is finitely generated. As R is g-divisible
and FU ⊆ R, we have M ⊆ R. Since 1 ∈ M this implies that M R = R. Hence
V R = V M R = M R = R and V ⊆ R.

Let G, H ⊆ R be finite-dimensional vector spaces with V G = M and SH = R.
Then

R ⊇ V G H ⊇ FU H = SH = R.

Thus R = M H = V G H is finitely generated as a left V -module. Since g ∈ V+ =⊕
i>0 Vi ⊆ R+, this implies that R/(V+)R is a finitely generated left module over
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V/V+. By the graded analogue of Nakayama’s lemma, this implies that R is finitely
generated as a left V -module. Thus R and V are equivalent orders. As V and U are
equivalent orders (via the bimodule M), it follows that U and R are equivalent. �

3. Curves

The main result of [Artin and Stafford 1995] shows that any cg domain A of Gelfand–
Kirillov dimension two has a Veronese ring that is an idealiser inside a TCR. In this
section we strengthen this result for elliptic curves by proving that, for subalgebras
of a TCR over such a curve corresponding to an automorphism of infinite order,
the result holds without taking a Veronese ring, although at the cost of replacing
the idealiser by an algebra which is isomorphic to an idealiser in large degree.

Given graded modules M, N ⊆ P over a cg algebra A, we write M •

= N if
M and N agree up to a finite-dimensional vector space. If M, N ∈ gr-A, this is
equivalent to M≥n = N≥n for some n ≥ 0.

Theorem 3.1. Let A be a cg ring such that Qgr(A) = k(E)[z, z−1
; τ ] for some

infinite-order automorphism τ of a smooth elliptic curve E and z ∈ Qgr(A)1. Then
there are an ideal sheaf A and an ample invertible sheaf H on E so that

A •

=

⊕
n≥0

H 0(E,AHn).

Remarks 3.2. (1) The idealiser I(J )= IU (J ) of a right ideal J in a ring U is the
subring

I(J )= {u ∈U : u J ⊆ J }.

In the notation of the theorem, J =
⊕

n≥0 H 0(E,AHn) is a right ideal of the
TCR B(E,H, τ ); further, IU (J )

•

= k+ J . So, an equivalent way of phrasing the
theorem is to assert that (up to a finite-dimensional vector space) A is equal to the
idealiser I(J ) inside B(E,H, τ ).

(2) The assertion that z ∈ Qgr(A)1 can be avoided at the expense of regrading A,
although in the process one must replace τ by some τm in the definition of the Hn .

(3) The sheaf H is ample if and only if it has positive degree [Hartshorne 1977,
Corollary 3.3], if and only if H is τ -ample: that is, for any coherent F and for
n� 0, the sheaf F⊗Hn is globally generated with H 1(E,F⊗Hn)= 0 [Artin and
Van den Bergh 1990, Corollary 1.6].

Proof. The hypothesis on z ensures that Ap 6= 0 6= Ap+1 for all p� 0. Fix some
such p.

The conclusion of the theorem is, essentially, the same as that of [Artin and
Stafford 1995, Theorem 5.11], although that result has two hypotheses we need
to remove. The first, [ibid., Hypothesis 2.1] requires that the ring in question
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has a nonzero element in degree one, so does at least hold for the Veronese rings
A(p) and A(q), for q = p+ 1. The remaining hypothesis, [ibid., Hypothesis 2.15],
concerns τ -fixed points of E . In our situation, this automatically holds as E has no
such fixed points (see the discussion before [ibid., (2.9)]).

By the discussion above, [ibid., Theorem 5.11 and Remark 5.12(2)] can be
applied to the Veronese rings A(p) and A(q). This provides invertible sheaves
A,B,F,G with F,G ample such that

A(p) •=
⊕
n≥0

H 0(E,A⊗Fp,n) and A(q) •=
⊕
n≥0

H 0(E,B⊗Gq,n),

where in order to take account of the Veronese rings we have written Mr,n =

M⊗Mτ r
⊗· · ·⊗Mτ (n−1)r

for an invertible sheaf M. For n� 0 the sheaves A⊗Fp,nq

and B⊗Gq,np are generated by their sections Anpq and so A⊗Fp,nq =B⊗Gq,np

for such n. Replacing n by n+m, we obtain

A⊗Fp,nq ⊗Fτ npq

p,mq =A⊗Fp,(n+m)q =B⊗Gq,(n+m)p

=B⊗Gq,np⊗Gτ
npq

q,mp =A⊗Fp,nq ⊗Gτ
npq

q,mp

for all n +m > n � 0. Cancelling the first two terms and applying τ−npq gives
Fp,mq = Gq,mp for all m ≥ 1. In particular, it holds for m = n, and hence A=B.

Next, set H= G⊗ (Fτ )−1; thus the equation Fp,q = Gq,p gives

Hq,p = Fp,q ⊗ (F
τ )−1

q,p. (3.3)

We claim that F is the unique invertible sheaf F̃ satisfying Hq,p = F̃p,q ⊗ (F̃
τ )−1

q,p.
To see this, suppose that F̃ is a second sheaf satisfying this property and consider
associated divisors. Pick a closed point x ∈ E and write Ox ={x(i)= τ−i (x) : i ∈Z}

for the orbit of x under τ . Writing F= OE(F) and H= OE(H) for some divisors F
and H and restricting to O=Ox gives F |O =

∑
m(i)x(i) and H |O =

∑
r(i)x(i),

for some integers m(i), r(i) (the notation is chosen to avoid excessive subscripts).
Now, in terms of divisors, (3.3) gives∑

r(i)x(i)+ r(i)x(i + q)+ · · ·+ r(i)x(i + (p− 1)q)

=

∑
m(i)x(i)+m(i)x(i + p)+ · · ·+m(i)x(i + (q − 1)p)

−

∑
m(i)x(i + 1)+m(i)x(i + 1+ q)+ · · ·+m(i)x(i + 1+ (p− 1)q).

Equating coefficients of x(t) in the last displayed equation gives

m(t)+m(t − p)+ · · ·+m(t − (q − 1)p)

−m(t − 1)−m(t − 1− q)− · · ·−m(t − 1− (p− 1)q)

= r(t)+ r(t − q)+ · · ·+ r(t − (p− 1)q).
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Recall that m(i)= r(i)= 0 for |i | � 0. Therefore, solving this system from t � 0
through to t � 0 gives a unique solution for the m(i) in terms of the r( j). Finally,
doing this for every orbit involved in the divisors F and H shows that F is uniquely
determined by H , and so F is uniquely determined as claimed.

A direct calculation shows that if F̃=H1,p =Hp then Hq,p = F̃p,q ⊗ (F̃
τ )−1

q,p.
Thus F̃ = F and consequently H1,mp = Fp,m for all m ≥ 1. It follows from the
equation H= G⊗ (Fτ )−1 that G=H1,q , and thus H1,mq = Gq,m for all m ≥ 1 as
well. To summarise, we have found sheaves A and H such that

A(s) •=
⊕

n

H 0(E,AH1,ns)=
⊕

n

H 0(E,AHns) for s = p, p+ 1. (3.4)

It follows that (3.4) holds for all s� 0, but this is not quite enough to prove the
theorem since, as s increases, one has no control over the finitely many values of
n = n(s) for which A(s)n 6= H 0(E,AH1,ns). So we take a slightly different tack.

For 0≤ r ≤ p−1, write M(r)=
⊕

n≥0 Anp+r ; thus A=
⊕p−1

r=0 M(r). Fix some
such r . We can find 0 6= x ∈ A2p−r , since 2p− r > p. Thus x M(r) ⊆ A(p) and
so, by [ibid., Proposition 5.4] and (3.4), there exists an ideal sheaf I ⊆ OE such
that x M(r) •

=
⊕

n≥0 H 0(E,I⊗Hτ 2p

1,np) (in this formula, the twist by τ 2p is for
convenience only but it will simplify the computations). Since A is a domain, M(r)
is isomorphic to the shift x M(r)[2p− r ]. Hence, for some integer n0 independent
of r , [Keeler et al. 2005, Lemma 5.5] implies that

M(r)≥n0 =

⊕
n≥n0

H 0(E,I′⊗Hτ r

1,np)=
⊕
n≥n0

H 0(E,J(r)⊗Hr ⊗Hτ r

1,np) (3.5)

for some invertible sheaves I′ and J(r)=I′⊗(Hr )
−1. Possibly after increasing n0,

we may also assume that the sheaves in (3.4) and (3.5) are generated by their
sections for n ≥ n0. Now pick n ≥ n0 such that r + np = (p+ 1)m for some m.
Then comparing (3.4) and (3.5) shows that M(r)r+np generates the sheaves

J(r)⊗Hr+np = J(r)⊗Hr ⊗Hτ r

1,np =A⊗H1,(p+1)m =A⊗Hr+np.

Hence J(r) = A. Since this holds for all 0 ≤ r ≤ p − 1, it follows that An =

H 0(E,AHτ n
), for all n ≥ n0 p. �

Remark 3.6. We note that [Rogalski 2011, Lemma 3.2(2)] states a result similar to
Theorem 3.1, but the proof erroneously quotes the relevant theorems from [Artin and
Stafford 1995] without removing the hypothesis that rings should have a nonzero
element in degree one. Thus the above proof also corrects this oversight. In any
case, [Rogalski 2011, Lemma 3.2(2)] was only used in that paper for rings generated
in degree one.

If A is a cg algebra generated in degree one, then we define a point module
to be a cyclic module M =

⊕
i≥0 Mi , with dim Mi = 1 for all i ≥ 0. When A is
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not generated in degree one, a point module has this asymptotic structure, but the
precise definition can vary depending on circumstances, and so we will be careful
to explain which definition we mean should the distinction be important.

To end this section we give some applications of the previous theorem to the
structure of point modules, for which we need a definition. If M =

⊕
n Mn is a

graded module over a cg algebra A, we write sn(M) = (Mn A)[n]. The largest
artinian submodule of a noetherian module M is written S(M).

Corollary 3.7. Let A satisfy the hypotheses of Theorem 3.1. Let M and M ′ be
1-critical graded right A-modules generated in degree zero. Then:

(1) the isomorphism classes of such modules are in one-to-one correspondence
with the closed points of E ;

(2) dim Mn ≤ 1 for all n ≥ 0, with dim Mn = 1 for n� 0;

(3) for n ≥ 0, either Mn = 0 or sn M is cyclic and 1-critical;

(4) if sn M ∼= sn M ′ 6= 0 for some n ∈ N, then M ∼= M ′.

Proof. It is well known that there is an equivalence of categories qgr-A ∼ coh(E),
and much of the corollary follows from this; thus we first review the details of
the equivalence. By [Artin and Stafford 1995, Theorem 5.11] and the left-right
analogue of Theorem 3.1, we can write

A •

=

⊕
n≥0

H 0(E,HnAτ n−1
)⊆ B = B(E,H, τ )

for some ideal sheaf A and invertible sheaf H. For n0� 0, the ideal

J = A≥n0 =

⊕
n≥n0

H 0(E,HnAτ n−1
)

is a left ideal of B. By [Stafford and Zhang 1994, Proposition 2.7] and its proof,
qgr-A∼ qgr-B under the maps α : N 7→ N⊗A B and β : N ′ 7→ N ′⊗B J . Moreover,
by [Artin and Van den Bergh 1990, Theorem 1.3], qgr-B ∼ coh(E). Under that
equivalence, for a closed point p of E the skyscraper sheaf k(p) ∈ coh(E) maps to
the module

M ′p =
⊕
n≥0

H 0(E, k(p)⊗Hn) ∈ qgr-B;

thus if Mp = M ′p/S(M ′p) then Mp is a 1-critical B-module with dim(Mp)n = 1
for n � 0. By [Stafford and Zhang 1994, Lemma 2.6] the same is true of the
1-critical A-module Np = β(Mp)/S(β(Mp)). Furthermore, the image in qgr-A of
any 1-critical graded A-module is a simple object, and so every 1-critical A-module
is equal in qgr-A to some Np.
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(2) We will reduce to the case of a TCR generated in degree one, where the result is
standard. If the result fails, there exists a 1-critical A-module M such that (possibly
after shifting) dim Mn ≤ 1 for all n ≥ 0 but dim M0 > 1. By replacing M by any
submodule generated by a 2-dimensional subspace of M0 we may assume that
dim(M0)= 2. Write M = (A⊕ A)/F .

Now consider W = α(M)/S(α(M)). Since W is equal in qgr-B to some Mp,
certainly dim(Wn)≤ 1 for all n� 0. Moreover, the natural A-module map M→W
must be injective since M is 1-critical, and so dim W0 ≥ 2. As α(M) is a factor
of B⊕ B/F B it follows that dim W0 = 2. Unfortunately, B need not be generated
in degree 1. However, for `� 0 (indeed ` ≥ 2) the Veronese ring C = B(`) =
B(E,H`, τ

`) will be generated in degree one (see [Rogalski 2011, Lemma 3.1(2)]).
We claim that X =W (`) will still be a critical C-module. If not, then, picking an
element 0 6= x ∈ Xm in the socle of X , we will have xC≥1 = 0, and so x ∈ Wm`

satisfies x Bi` = 0 for all i ≥ 1. Since Bi B j = Bi+ j for all i, j � 0 [Rogalski 2011,
Lemma 3.1(1)], it follows that x Bm = 0 for all m� 0, contradicting the 1-criticality
of W . Thus X is indeed a critical C-module, with dim X0 = 2; say X0 = ak⊕ bk.

Finally, given X , or any 1-critical C-module, then [Artin and Van den Bergh
1990] again implies that dim Xn = 1 for all n ≥ n0 � 0. By [Keeler et al. 2005,
Proposition 9.2] the map N 7→N≥1[1] is an automorphism on the set of isomorphism
classes of C-point modules. Applying the inverse of this map to the shift of X≥n0

shows that the two point modules aC and bC must be equal to this image and
hence be isomorphic; say bC = φ(aC). Set n = n0+ 1. As dimk Xn = 1, we can
write Cn−1 = ck+ annC(a)n−1 for some c ∈ Cn−1. Since annC(a) = annC(b), it
follows that ac = λbc for some λ ∈ k. Hence (a− λb)c = 0, which implies that
(a − λb)Cn−1 = 0. As C is generated in degree one, this forces a − λb ∈ S(X).
This contradicts the criticality of X and proves the result.

(3) This is immediate from part (2).

(4) If not, pick 1-critical modules M � M ′ such that there is an isomorphism
γ : sn M ∼= sn M ′ 6= 0 for some n> 0. Let n be the smallest integer with this property
and then let W ⊂ M be as large as possible a submodule of M for which γ extends
to an isomorphism γ :W →W ′ ⊂ M ′. Set

N =
M ⊕M ′

Z
and Z = {(a, γ (a)) : a ∈W }.

We claim that N is 1-critical. If not, pick a homogeneous element (u, u′) ∈
M⊕M ′ such that [(u, u′)+Z ] is a nonzero element of the socle of N . If p∈ r-ann(u),
then (u, u′)p ∈ (u, u′)A≥1 ⊆ Z . As up = 0, this forces (0, u′) ∈ Z , and hence
u′ p = 0. Similarly, u′ p = 0 forces up = 0, and hence r-ann(u) = r-ann(u′).
Thus, there is an isomorphism γ ′ : u A ∼= u′A, which restricts to an isomorphism
γ ′′ : u A∩W → u′A∩W ′.



2074 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

We claim that any other isomorphism ψ : u A∩W → u′A∩W ′ must be a scalar
multiple of γ ′′. Put P = u A∩W , which is 1-critical. As we have already proved,
dimk Pn ≤ 1 for all n with equality for n� 0. Choose n such that Pn 6= 0 and fix
0 6= x ∈ Pn . Then x A is also 1-critical and so x A •

= P . Now ψ(x) = λγ ′′(x) for
some λ ∈ k×, and this forces ψ to equal λγ ′′ on all of x A. Given homogeneous
y ∈ P with y 6∈ x A, then 0 6= yz ⊆ x A for some z ∈ Am , m� 0, and so it is easy
to see that this forces ψ(y)= λγ (y) also. Thus ψ = λγ ′′ and the claim follows.

Therefore, possibly after multiplying by a scalar, we can assume that γ ′′ =
γ ′|u A∩W =γ |u A∩W . Thus, we can extend γ to W+u A, contradicting the maximality
of W . Hence N is indeed critical. Finally, as M � M ′ with dim M0 = 1= dim M ′0,
certainly W ⊆ M≥1, and so dim N0 = 2, contradicting part (2).

(1) Since the tails M≥n0 of 1-critical A-modules are in one-to-one correspondence
with the points of E , this follows from part (4). �

We end the section with a technical consequence of these results for subalgebras of T .

Lemma 3.8. Let U be a noetherian cg algebra and M a finitely generated, graded
1-critical right U-module. Then r-annU (M) is prime and r-annU (M)= r-annU (N )
for every nonzero submodule N ⊆ M.

Proof. This is a standard application of ideal invariance; use, for example, [Mc-
Connell and Robson 2001, Corollary 8.3.16 and the proof of (iii)⇒ (iv) of Theo-
rem 6.8.26]. �

Corollary 3.9. Assume that T satisfies Assumption 2.1 and let U be a g-divisible
subalgebra of T(g) with Qgr(U ) = Qgr(T ). Suppose that M and N are 1-critical
right U-modules which are cyclic, generated in degree 0, with g ∈ r-annU (M). For
some n≥ 0 with Mn 6= 0, suppose that there exists m≥ 0 such that (r-annU Mn)≥m =

(r-annU Nn)≥m . Then M ∼= N.

Proof. By hypothesis, gm
∈ (r-annU Mn)≥m = (r-annU Nn)≥m . Then N0gn+m

⊆

Nngm
=0. As g is central and N is generated by N0, it follows that gn+m

∈ r-annU N
and hence g ∈ r-annU N by Lemma 3.8. Thus, both M and N are modules over
A =U , and to prove the lemma it suffices to consider modules over that ring. By
Lemma 2.10, Qgr(A)= Qgr(T )= k(E)[t, t−1

; τ ], and so A satisfies the hypotheses
of Theorem 3.1.

Clearly, Nn 6= 0. By Corollary 3.7(2), dim Mn = 1= dim Nn , and so

Mn A[n] ∼= A/I and Nn A[n] ∼= A/J

for some graded right ideals I, J . By hypothesis, I≥m = J≥m . However, as
I/I≥m is finite-dimensional and A/I is 1-critical, I/I≥m is the unique largest
finite-dimensional submodule of A/I≥m = A/J≥m . Hence I = J and Mn A∼= Nn A.
By Corollary 3.7(4), M ∼= N . �
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4. Right ideals of T and the rings T (d)

Throughout this section, let T satisfy Assumption 2.1. Our first aim in this section
is to describe certain graded right ideals J of T such that T/J is filtered by shifted
point modules. In fact, the main method we use in the next section to understand a
general subalgebra U of T is to compare its graded pieces with the graded pieces
of these right ideals J and their left-sided analogues. The easiest way to construct
the required right ideals J is to use some machinery from [Van den Bergh 2001].
The details will appear in a companion paper to this one [RSS 2015].

Definitions 4.1. Given a right ideal I of a cg algebra R, the saturation I sat of I is
the sum of the right ideals L ⊇ I with dimk L/I <∞. If I = I sat, we say that I is
saturated.

Recall that T/gT ∼= B = B(E,M, τ ), where deg M= µ. For divisors b, c on E ,
we write b ≥ c if b− c is effective. A list of divisors (d0, d1, . . . , dk−1) on E
is an allowable divisor layering if τ−1(di−1) ≥ di for all 1 ≤ i ≤ k − 1. By
convention, we define di

= 0 for all i ≥ k. Given an allowable divisor layering
d• = (d0, d1, . . . , dk−1) on E , let J (d•) be the saturated right ideal of T defined
in [RSS 2015, Definition 3.4].

We omit the precise definition of J (d•) because it is technical, and not essential
in this paper. Instead, what matters are the following properties of this right ideal,
which help explain the name “divisor layering”. For any graded right T -module M ,
we think of the B-module Mg j/Mg j+1 as the j-th layer of M . Recall that we
write π(N ) for the image of a finitely generated graded B-module N in the quotient
category qgr-B. Recall also from the proof of Corollary 3.7(1) that there is an
equivalence of categories coh E ' qgr-B given by F 7→ π

(⊕
n≥0 H 0(E,F⊗Mn)

)
.

Lemma 4.2 [RSS 2015, Lemma 3.5]. Let d• be an allowable divisor layering and
let J = J (d•) and M = T/J .

(1) If M j
= Mg j/Mg j+1, then as objects in qgr-B we have

π(M j )∼= π

(⊕
n≥0

H 0(E, (OE/OE(−d j ))⊗Mn)

)
.

In particular, the divisor d j determines the point modules that occur in a
filtration of M j by (tails of ) point modules.

(2) (J )sat
=
⊕

n≥0 H 0(E,Mn(−d0)).

(3) If d• = (d) has length 1, then J (d)=
⊕

n≥0{x ∈ Tn : x ∈ H 0(E,Mn(−d))}.

Note that, as a special case of part (3) of the lemma, if p ∈ E and d = p then
J (p) is simply the right ideal of T such that P(p)= T/J (p) is the point module
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corresponding to the point p. (We note that this will coincide with the earlier
definition of a point module, should T be generated in degree one.)

We will require primarily the following two special cases of the construction
above. Starting now, it will be sometimes convenient to employ the notation

pi = τ
−i (p) for any p ∈ E . (4.3)

Definition 4.4. Given any p∈ E , i ≥1, and 0≤r ≤d≤µ, we define Q(i, d, r, p)=
J (d•), where

d0
= dp+ dp1+ · · ·+ dpi−1,

d1
= dp1+ · · ·+ dpi−1,

...

di−2
= dpi−2+ dpi−1,

di−1
= r pi−1.

Intuitively, the divisor layers for Q are in the form of a triangle, but the vanishing
in the last layer is allowed to be of lower multiplicity than in the others. The other
special case we need is a similar triangle shape which allows for the involvement
of points from different orbits.

Definition 4.5. For any divisor d and k ≥ 1, we define M(k, d)= J (c•), where

c0
= d+ τ−1(d)+ · · ·+ τ−k+1(d),

c1
= τ−1(d)+ · · ·+ τ−k+1(d),
...

ck−1
= τ−k+1(d).

It is useful to also define M(k, d)= T by convention, for any k ≤ 0.

Note that M(k, dp)= Q(k, d, d, p) for any k, d ≥ 0. The right ideals M(k, d)
are also useful for defining important subalgebras of T .

Definition 4.6. For any divisor d with deg d < µ we set

T (d) :=
⊕
n≥0

M(n, d)n,

which by [RSS 2015, Theorem 5.3(2)] is a g-divisible subalgebra of T . More
generally, for any `≥ 0 we define

T≤` ∗ T (d) :=
⊕
n≥0

M(n− `, dτ
`

)n,

which by [RSS 2015, Proposition 5.2(2)] is a right g-divisible T (d)-module.
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When deg d ≤ µ− 2, but not in general, the module T≤` ∗ T (d) is equal to the
right T (d)-module T≤`T (d)⊆ T [RSS 2015, Theorem 5.3(6)], so the notation is
chosen to suggest multiplication. As is discussed in [Rogalski 2011] and [RSS
2015, §5], the ring T (d) should be thought of as corresponding geometrically to a
blowup of T at the divisor d.

There are left-sided versions of all of the above definitions and results, because
Assumption 2.1 is left-right symmetric. We quickly state these analogues, because
there are some nonobvious differences in the statements, which result from the
fact that the equivalence of categories coh E ' B-qgr has the slightly different
form F → π

(⊕
n≥0 H 0(E,Mn ⊗ Fτ n−1

)
)
. Generally, τ−1 appears in the left-

sided results wherever τ appears in the right-sided version. A list of divisors
d• = (d0, d1, . . . , dk−1) on E is a left allowable divisor layering if τ(di−1) ≥ di

for all 1≤ i ≤ k− 1. We indicate left-sided versions by a prime in the notation. In
particular, given a left allowable divisor layering, there is a corresponding saturated
left ideal J ′(d•) of T , defined in [RSS 2015, §6], which satisfies the following
analogue of Lemma 4.2.

Lemma 4.7 [RSS 2015, Lemma 6.1]. Let d• be a left allowable divisor layering
and let J ′ = J ′(d•) and M = T/J ′.

(1) If M j
= Mg j/Mg j+1 is the j-th layer of M , then in B-qgr we have

π(M j )∼= π

(⊕
n≥0

H 0(E,Mn ⊗ (OE/OE(−τ
−n+1(d j ))))

)
.

(2) (J ′)sat
=
⊕

n≥0 H 0(E,Mn(−τ
−n+1(d0))).

(3) If d• = (d) has length 1, then

J ′(d)=
⊕
n≥0

{x ∈ Tn : x ∈ H 0(E,Mn(−τ
−n+1(d)))}. �

Similarly as on the right, as a special case of part (3) we have that P ′(p) =
T/J ′(p) is the left point module of T corresponding to p.

Of course, we also have left-sided analogues of Definitions 4.4 and 4.5, but we
only need the former. Namely, given any p ∈ E , i ≥ 1, and 0 ≤ r ≤ d ≤ µ, we
define Q′(i, d, r, p)= J ′(d•), where

d0
= dp+ dp−1+ · · ·+ dp−i+1,

d1
= dp−1+ · · ·+ dp−i+1,

...

di−2
= dp−i+2+ dp−i+1,

di−1
= r p−i+1.
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The right ideals Q and their left-sided analogues Q′ will be used below to define
filtrations in which every factor is a shifted point module; we will then study how
an arbitrary subalgebra U of T intersects such filtrations. The relevant result for
this is as follows.

Lemma 4.8 [RSS 2015, Lemma 6.5]. Let i, r, d, n∈N, with i<n and 1≤r≤d≤µ,
and p ∈ E. Then:

(1) Q(i, r, d, p)⊆ Q(i, r − 1, d, p), with factor

[Q(i, r − 1, d, p)/Q(i, r, d, p)]≥n ∼= P(pi−n−1)[−n].

(2) Q′(i, r, d, p)⊆ Q′(i, r − 1, d, p), with factor

[Q′(i, r − 1, d, p)/Q′(i, r, d, p)]≥n ∼= P ′(p−i+n+1)[−n]. �

The left and right ideals defined above are actually closely related. In fact, by
[RSS 2015, Proposition 6.8] one always has Q(i, r, d, p)n = Q′(i, r, d, pi−n)n , as
we will exploit in the next section.

We conclude this section with a review of some important homological concepts.

Definition 4.9. A ring A is called Auslander–Gorenstein if it has finite injective di-
mension and satisfies the Gorenstein condition: if p<q are nonnegative integers and
M is a finitely generated A-module, then Extp

A(N , A)= 0 for every submodule N of
ExtqA(M, A). Set j (M)=min{r :ExtrA(M, A) 6= 0} for the homological grade of M .
Then an Auslander–Gorenstein ring A of finite Gelfand–Kirillov dimension is called
Cohen–Macaulay (or CM) provided that j (M)+GKdim(M)= GKdim(A) holds
for every finitely generated A-module M . A cg k-algebra A is called Artin–Schelter
(AS) Gorenstein if A has injective dimension d and dimk Ext j

A(k, A)= δ j,d for all
j ≥ 0. An AS Gorenstein algebra is called AS regular if it is also has finite global
dimension d .

As the next two results show, many of the algebras appearing in this paper do
satisfy these conditions, and this automatically leads to some nice consequences.

Proposition 4.10. Let R=T (d)⊆T for some effective divisor d with deg d≤µ−1,
in the notation of Assumption 2.1. Then the following hold:

(1) R/gR = B(E,M(−d), τ ).

(2) If deg d < µ − 1 then R is generated as an algebra in degree 1, while if
deg d = µ− 1 then R is generated as an algebra in degrees 1 and 2.

(3) Both R and R/gR are Auslander–Gorenstein and CM.

(4) R is a maximal order in Qgr(R)= Qgr(T ).

Proof. Combine [RSS 2015, Theorem 5.3] and [Levasseur 1992, Theorem 6.6]. �
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Lemma 4.11. Fix a cg noetherian domain A that is Auslander–Gorenstein and CM.
Set GKdim(A)= α.

(1) If N is a finitely generated graded right (or left) A-submodule of Q = Qgr(A)
then N ∗∗ is the unique largest submodule M ⊆ Q with GKdim(M/N )≤ α−2.

(2) In particular, there is no graded A-module A $ N ⊂ Q with GKdim(N/A)≤
GKdim(A)− 2.

(3) If J = J ∗∗ 6= A is a proper reflexive right ideal of A then A/J is (α− 1)-pure
in the sense that GKdim(I/J ) = GKdim(A/J ) = α − 1 for every nonzero
A-module I/J ⊆ A/J .

(4) If N is a finitely generated A-module, then Ext j (N )
A (N , A) is a pure module

with Gelfand–Kirillov dimension equal to GKdim(N ).

Proof. Part (1) follows from [Björk and Ekström 1990, Theorem 3.6 and Exam-
ple 3.2]. Parts (2) and (3) are special cases of (1), while part (4) follows by [ibid.,
Lemma 2.8]. �

5. An equivalent T (d)

Throughout this section, T will be an algebra satisfying Assumption 2.1, and we
maintain all of the notation introduced in Section 4. In this section we prove that
if U is a g-divisible graded subalgebra of T with Qgr(U )= Qgr(T ) then U is an
equivalent order to some T (d). This should be compared with [Rogalski 2011,
Theorem 1.2]: the rings T (d) with d effective of degree < µ− 1 are precisely the
maximal orders U ⊆ T with Qgr(U )= Qgr(T ) that are generated in degree 1.

We begin by studying U and related subalgebras of k(E)[t, t−1
; τ ]. We say

that two divisors x and y are τ -equivalent if, for every orbit O of τ on E , one
has deg(x|O) = deg( y|O). Two invertible sheaves OE(x) and OE( y) are then τ -
equivalent if the divisors x and y are τ -equivalent.

Lemma 5.1. Let N,N′ be ample invertible sheaves on E of the same degree. Let
R := B(E,N, τ ) and R′ := B(E,N′, τ ), and let F be an (R′, R)-subbimodule of
k(E)[t, t−1

; τ ]. Then FR is finitely generated if and only if R′F is finitely generated.
In this case, N and N′ are τ -equivalent.

Proof. Suppose that F is a finitely generated right R-module. By [Artin and
Van den Bergh 1990, Theorem 1.3] there is an invertible sheaf F on E so that
F •

=
⊕

n H 0(E,FNn). For m, n� 0, ampleness ensures that the sheaves N′m and
FNn are generated by their sections and, by construction, those sections are R′m =
H 0(E,N′m) and Fn = H 0(E,FNn), respectively, again for m, n� 0. Since F is a
left R′-submodule, R′m Fn ⊆ Fn+m for all m, n, and so these observations imply that

N′mFτm
Nτm

n ⊆ FNn+m
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for all n,m � 0. By hypothesis, N′mFτm
Nτm

n and FNn+m have the same degree,
and therefore they are equal. In addition, for n,m� 0 the sheaves N′m and Fτm

Nτm

n
have degree ≥ 3. Thus, by [Rogalski 2011, Lemma 3.1], the map

H 0(E,N′m)⊗ H 0(E,Fτm
Nτm

n )→ H 0(E,N′mFτm
Nτm

n )

is surjective. Thus, R′m Fn = Fn+m for all n,m� 0 and R′F is finitely generated.
By symmetry, if R′F is finitely generated then so is FR .

In either case, it follows that N′m = FNm(F
−1)τ

m
for all m � 0. The identity

N′(N′m)
τ
= N′m+1 gives

N′FτNτ
m(F

−1)τ
m+1
= N′(N′m)

τ
= N′m+1 = FNm+1(F

−1)τ
m+1
= FNNτ

m(F
−1)τ

m+1
.

Rearranging gives N′ = FN(F−1)τ , which is certainly τ -equivalent to N. �

We next need two technical results on subalgebras of B(E,M, τ ) that modify
the data given by Theorem 3.1.

Notation 5.2. Recall from (4.3) that given a closed point p ∈ E we write p0 = p
and pn = τ−n(p) for all n ∈ Z. We will also write xτ = τ−1(x) when x is
a divisor (or closed point) on E , to distinguish left and right actions, and set
xn = x+ xτ + · · ·+ xτ n−1

.

We start with a routine consequence of Theorem 3.1.

Corollary 5.3. Let A ⊆ B = B(E,M, τ ) be a cg algebra with Qgr(A) = Qgr(B).
Then there exist x, y ∈ Div(E) and k ∈ Z≥1 so that

An = H 0(E,Mn(− y− xn)) for all n ≥ k. (5.4)

Furthermore, µ > deg x ≥ 0, and

for any n ≥ k and divisor c> y+ xn we have An 6⊆ H 0(E,Mn(−c)). (5.5)

Proof. By Theorem 3.1, there exist an integer k ≥ 1, an ideal sheaf Y and an ample
invertible sheaf N on E so that

An = H 0(E,YNn) for all n ≥ k. (5.6)

Let Y = OE(− y) for some divisor y and write N = M(−x) for the appropriate
divisor x on E ; thus (5.4) is just a restatement of (5.6). Further, deg x =µ−deg N,
which, as N is ample, implies that deg x < µ. On the other hand, Riemann–Roch
implies that

µn = deg Mn = dim Bn ≥ dim An = n deg(N)− deg y = n(µ− deg x)− deg y

for n� 0. Therefore, deg x ≥ 0.
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Finally, since N is τ -ample, after possibly increasing k we can assume that
Mn(− y− xn) is generated by its sections An for all n ≥ k (see for example [Artin
and Stafford 1995, Lemma 4.2(1)]). Thus for any larger divisor c> y+ xn we will
have H 0(E,Mn(−c))$ H 0(E,Mn(− y− xn)). Thus (5.5) also holds. �

We next want to modify Corollary 5.3 so that x is replaced by an effective divisor,
although this will result in a weaker version of (5.4).

Proposition 5.7. Let A⊆ B = B(E,M, τ ) be a cg algebra with Qgr(A)= Qgr(B).
Then there is an effective divisor d on E , supported at points with distinct orbits
and with deg d < µ, so that A and C = B(E,M(−d), τ ) are equivalent orders.
Moreover, d and k ∈ Z≥1 can be chosen so that

An ⊆ H 0(E,Mn(−dτ
k
− · · ·− dτ

n−1
))

= H 0(E,OE(dk)⊗M(−d)n) for all n ≥ k. (5.8)

Proof. Let x and y be the divisors constructed in the proof of Corollary 5.3, and let k
be the integer from that result. Fix an orbit O of τ on E . By possibly enlarging k
we can pick p ∈O so that, using the notation of 5.2,

x|O is supported on {p = p0, . . . , pk}, and

y|O is supported on {p0, . . . , pk−1}.
(5.9)

Thus

y|O =
k−1∑
i=0

yi pi and x|O =
k∑

i=0

xi pi

for some integers yi and x j . For n ∈ N we have

(xn)|O =

k∑
i=0

xi (pi + pi+1+ · · ·+ pi+n−1).

Thus, for n ≥ k we calculate that

( y+xn)|O=(y0+x0)p0+· · ·+

(
y j+

∑
i≤ j

xi

)
p j+· · ·+

(
yk−1+

∑
i≤k−1

xi

)
pk−1

+

(∑
i≥0

xi

)
(pk + · · ·+ pn−1)+

(∑
i≥1

xi

)
pn + · · ·+

(∑
i≥ j

xi

)
pn+ j−1

+ · · ·+ xk pn+k−1. (5.10)

Let ep =
∑

xi . Since A ⊆ B(E,M, τ ), the divisor y+ xn is effective for n� 0,
and so

y j +
∑
i≤ j

xi ≥ 0 and
∑
i≥ j

xi ≥ 0 (5.11)
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for all 0≤ j ≤ k. In particular, ep ≥ 0. Let d =
∑

p ep p, where the sum is taken
over one closed point p in each orbit O of τ . Take the maximum of the values
of k occurring for the different orbits in the support of x and y, and call this also k.
From (5.10) and (5.11) we see that, on each orbit O and hence in general,

y+ xn ≥ dτ
k
+ · · ·+ dτ

n−1

for all n ≥ k. In other words, (5.8) holds for this d and k. By construction,
deg d = deg x < µ.

Finally, let N = M(−x) and let Y = OE(− y). Let C = B(E,M(−d), τ ) and
C ′ = B(E,N, τ ). Equation (5.8) can be rephrased as saying that

YNn ⊆Mn(−dτ
k
− · · ·− dτ

n−1
)= O(dk)⊗M(−d)n for all n ≥ k.

Thus, for n0� 0,

C ′
≥n0
⊆ N =

⊕
n≥n0

H 0(E, (Y−1
⊗O(dk))⊗M(−d)n).

Since M(−d) is τ -ample (because it has positive degree) and Y−1
⊗ O(dk) is

coherent, [Artin and Stafford 1995, Lemma 4.2(ii)] implies that N is a finitely
generated right C-module. Hence, so is C ′C . Since N=M(−x) with deg d= deg x,
we can apply Lemma 5.1 to conclude that C ′C is a finitely generated left C ′-module.
Thus C and C ′ are equivalent orders. By the proof of [ibid., Theorem 5.9(2)], C ′ is
a finitely generated right A-module. Thus C ′ and A are equivalent orders, and so C
and A are also equivalent. �

Definition 5.12. We say that ( y, x, k) as given by Corollary 5.3 is geometric data
for A. If (5.9) holds for p ∈O, we say p is a normalised orbit representative for
this data, and we say that d =

∑
ep p is a normalised divisor for ( y, x, k). To

avoid trivialities, the only orbits considered here are the (finite number of) orbits
containing the support of x and y. By construction, deg d = deg x < µ.

We now use these results to study subalgebras of T , and begin with a general idea
of the strategy. Let U be a g-divisible graded subalgebra of T so that Qgr(U ) =
Qgr(T ). By Proposition 2.9, U is automatically a finitely generated, noetherian
k-algebra, so the earlier results of the paper are available to us. Let ( y, x, k) be
geometric data for U and let d be a normalised divisor for ( y, x, k). We will show
that U and T (d) are equivalent orders.

Recall that the right T (d)-module T≤k ∗ T (d) =
⊕

n≥0 M(n − k, dτ k
)n from

Definition 4.6 is g-divisible, with

T≤k ∗ T (d)=
⊕
n≥0

H 0(E,Mn(−dτ
k
− · · ·− dτ

n−1
)),
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by Lemma 4.2. In other words, by (5.8),

U ⊆ T≤k ∗ T (d).

Our next goal is to show that this holds without working modulo g: that is, that

U ⊆ T≤k ∗ T (d). (5.13)

This will force Û T (d) to be finitely generated as a right T (d)-module, which is a
key step towards proving that U and T (d) are equivalent orders.

Suppose therefore that (5.13) fails, and so Un0 6⊆ (T≤k ∗ T (d))n0 for some n0.
Necessarily, n0 > k. We will find a right T -ideal Q(i, r, e, p) and a left T -ideal
Q′(i, r, e, q) such that if we set I = U ∩ Q(i, r, e, p) and J = U ∩ Q′(i, r, e, q)
then U/I and U/J are isomorphic to point modules in large degree. Further, we
can choose p and q so that In0 = Jn0 . However, Corollary 3.9 can be used to derive
precise formulæ for In0 and Jn0 , and we will see that these formulæ are inconsistent,
leading to a final contradiction.

In the next few results, we carry out this argument, using induction and a filtration
of T by the right ideals Q defined in Section 4. Recall the definition of I sat from
Definitions 4.1, and the definitions of J (d•), Q(i, r, d, p), and their left-sided
analogues from Section 4.

Lemma 5.14. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Suppose that n > i ≥ 1, 1≤ r ≤ e ≤ µ, and j ∈ Z. Suppose further that

(A) U≥n ⊆ Q(i, r − 1, e, p j ), but Un * Q(i, r, e, p j ); and

(B) U m * J (pi+ j−n−1)m = H 0(E,Mm(−pi+ j−n−1)) for all m ≥ n.

Let I =U ∩ Q(i, r, e, p j ), and let M =U/I sat. Then:

(1) Mn 6= 0.

(2) M is 1-critical and Mg = 0.

(3) (r-annU (Mn))m = (U ∩ J (pi+ j−n−1))m for all m� 0.

Proof. (1) Let L=U/I , so that M= L/L ′, where L ′ is the largest finite-dimensional
submodule of L . Since n > i , it follows from hypothesis (A) and Lemma 4.8(1)
that dim Lm ≤ 1 for all m ≥ n and that

Un J (pi+ j−n−1)⊆ Q(i, r, e, p j ). (5.15)

If Mn = 0, then LnUm = 0 for all m� 0. Then UnUm ⊆ Q(i, r, e, p j ) for all m� 0.
By hypothesis (B), Um + J (pi+ j−n−1)m = Tm for m ≥ n, so UnTm ⊆ Q(i, r, e, p j )

for m� 0 also. Since Q(i, r, e, p j ) is a saturated right T -ideal, Un ⊆ Q(i, r, e, p j ),
contradicting the hypotheses.
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(2) By Lemma 4.2(3), g ∈ J (pi+ j−n−1), whence M≥n · g = 0 and r-annU (M) ⊇
U≥ng = gU≥n . By construction, M has no finite-dimensional submodules, and so
Mg = 0. Thus M is a U -module. Also, dimk Mm ≤ dimk Lm ≤ 1 for all m ≥ n
and M 6= 0 by part (1), so GKdim(M) = 1. Since M is noetherian, it has a U -
submodule M ′ maximal with respect to the property GKdim(M/M ′) = 1. Then
M/M ′ is 1-critical. However, by Corollary 3.7(2) any 1-critical U -module N has
dim Nm = 1 for all m� 0. Thus M ′ is finite-dimensional; hence M ′ = 0 and M is
1-critical.

(3) Since M is 1-critical, its cyclic submodule N = MnU must also be 1-critical.
Thus dimk Mn = 1= dimk Nn for n� 0, forcing M •

= N . In particular, we must
have r-annU (Mn)m $Um for all m� 0. By (5.15), r-annU (Mn)⊇U∩ J (pi+ j−n−1).
Now Lemma 4.2(3) implies that J (pi+ j−n−1)m has codimension 1 in Tm for all
m ∈ N. Thus r-annU (Mn)m = (U ∩ J (pi+ j−n−1))m for all m� 0. �

Corollary 5.16. Assume that we have the hypotheses of Lemma 5.14. Assume in
addition to (A), (B) that we have e < µ and

(C) U≥n ⊆ J (ep j+i−1)= H 0(E,Mn(−ep j+i−1)), but

U n * J ((e+ 1)p j+i−1)= H 0(E,Mn(−(e+ 1)p j+i−1)).

Then Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)pi+ j−1).

Proof. Let
I = (U ∩ Q(i, r, e, p j ))

sat and M =U/I.

Similarly, let

H = (U ∩ J ((e+ 1)pi+ j−1))
sat with N =U/H.

Note that Q(1, d, d, p j+i−1)= J (dp j+i−1) for any d . Also, since g ∈ J (dp j+i−1),
hypothesis (C) is equivalent to U≥n ⊆ J (ep j+i−1) but Un * J ((e + 1)p j+i−1).
Thus, hypothesis (C) implies that the hypothesis (A) of Lemma 5.14 also holds
for (i ′, r ′, e′)= (1, e+ 1, e+ 1) and j ′ = i + j − 1. Also, hypothesis (B) for these
values is the same as hypothesis (B) for the old values. Since e<µ, the hypotheses
of Lemma 5.14 hold for (i ′, r ′, e′).

We may now apply Lemma 5.14 to M and N . Thus, Mn, Nn 6= 0, both M, N
are 1-critical and killed by g, and r-annU (Mn) and r-annU (Nn) are both equal to
U ∩ J (pi+ j−n−1) in large degree. By Corollary 3.9, we have M ∼= N and so I = H .
Thus, since Un ∩ Q(i, r, e, p j ) and Un ∩ J ((e+ 1)pi+ j−1) are already saturated in
degree n by Lemma 5.14(1), we have

Un ∩ Q(i, r, e, p j )= In = Hn =Un ∩ J ((e+ 1)pi+ j−1). �

We also need the left-sided versions of the two preceding results. Since the
statements and proofs of these are largely symmetric, we give a combined statement
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of the left-sided versions, with an abbreviated proof. We note that a consequence
of [RSS 2015, Lemmas 3.5 and 6.1] is that

J ′(dp j )n = J (dp j+n−1)n and

J ′(dp j )n = H 0(E,Mn(−dp j+n−1))= J (dp j+n−1)n.
(5.17)

Lemma 5.18. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Suppose that n > i ≥ 1, 1≤ r ≤ e < µ, and h ∈ Z. Suppose further that

(A′) U≥n ⊆ Q′(i, r − 1, e, ph), but Un * Q′(i, r, e, ph);

(B′) U m * J ′(ph−i+n+1)m = H 0(E,Mn(−ph−i+n+m)) for m ≥ n; and

(C′) U≥n ⊆ J ′(eph−i+1), but

U n * J ′((e+ 1)ph−i+1)n = H 0(E,Mn(−(e+ 1)ph−i+n)).

Then Un ∩ Q′(i, r, e, ph)=Un ∩ J ′((e+ 1)ph−i+1).

Proof. The equalities in (B′), (C′) follow from (5.17). The rest of the proof is
symmetric to the proofs of Lemma 5.14 and Corollary 5.16. In particular, one uses
part (2) of Lemma 4.8 in place of part (1). �

The next result is the heart of the proof that U and T (d) are equivalent orders.

Proposition 5.19. Let U be a g-divisible cg subalgebra of T with Qgr(U )=Qgr(T ).
Let ( y, x, k) be geometric data for U and let d =

∑
ep p be a normalised divisor

for this data. Then
U ⊆ T≤k ∗ T (d).

Proof. If d = 0 the result is trivial, so we may assume that d > 0. Suppose that
U 6⊆ T≤k ∗ T (d).

By [RSS 2015, Lemma 6.6], T≤k ∗ T (d) =
⋂

p T≤k ∗ T (ep p), where the inter-
section is over the normalised orbit representatives p. Thus there is some such p
so that U 6⊆ T≤k ∗ T (ep p). Let e= ep <µ. By [RSS 2015, Lemma 6.6], again, for
n ∈ N we have

(T≤k ∗ T (ep))n =
⋂
{Q(i, r, e, p j )n : i ≥ 1, k ≤ j ≤ n− i, 1≤ r ≤ e}.

Thus, there are i ≥ 1, 1≤ r ≤ e, and n, j ∈ N with 1≤ k ≤ j ≤ n− i such that

Un 6⊆ Q(i, r, e, p j )n. (5.20)

Without loss of generality we can assume that i is minimal such that we can achieve
this for some such n, j, r . Note that i ≥ 2, since Q(1, r, e, p j )= H 0(E,M(−r p j ))

by Lemma 4.2(2), and the sections in Un vanish to multiplicity e at p j by (5.10).
Then choose r minimal (for this i) so that (5.20) holds for some such n, j . Intuitively,
we are finding a “divisor triangle” of minimal size i such that the corresponding



2086 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

right ideal does not contain Un , with deepest layer vanishing condition in this
triangle to be of multiplicity r as small as possible.

Claim 1. Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)p j+i−1).

Proof. We check the hypotheses of Corollary 5.16. Hypothesis (A) follows by
minimality of r when r > 1. When r = 1, then we need U≥n ⊆ Q(i, 0, e, p j ). Now,
by [RSS 2015, (6.7)],

Q(i, 0, e, p j )= Q(i − 1, e, e, p j )∩ Q(i − 1, e, e, p j+1). (5.21)

Since U≥n is contained in both Q(i−1, e, e, p j ) and Q(i−1, e, e, p j+1) by the
minimality of i , hypothesis (A) holds in this case as well.

Note that, by (5.5), the equation (5.10) gives exactly the vanishing (with mul-
tiplicities) at points on the τ -orbit of p for the sections in U n ⊆ H 0(E,Mn). In
particular, (B) holds because i + j −n−1< 0. Similarly, (C) holds by (5.10) since
k ≤ j + i − 1≤ n− 1. Thus Corollary 5.16 gives the result. �

Claim 2. Un ∩ Q′(i, r, e, ph)=Un ∩ J ′((e+ 1)ph−i+1) for h = j + i − n.

Proof. This similarly follows from Lemma 5.18 once we verify the hypotheses
of that result. For (B′), note that h− i + n+m = j +m ≥ k +m and use (5.10).
Hypothesis (C′) follows again from (5.10) since h− i+n= j satisfies k ≤ j ≤ n−1.

It remains to verify (A′). We will use the equality

Q(k, r,m, p)n = Q′(k, r,m, pk−n)n, (5.22)

proven in [RSS 2015, Proposition 6.8(3)]. Thus, Un 6⊆ Q′(i, r, e, ph)n . Now let
n′ ≥ n. Suppose that r > 1. The minimality hypothesis on r means that, for
any j ′ with k ≤ j ′ ≤ n′− i , we have Un′ ⊆ Q(i, r − 1, e, p j ′)n′ . In particular, since
k ≤ j + n′− n ≤ n′− i , we have

Un′ ⊆ Q(i, r − 1, e, p j+n′−n)n′ = Q′(i, r − 1, e, ph)n′

by (5.22). Thus U≥n ⊆ Q′(i, r − 1, e, ph). If instead r = 1, then

Q′(i, 0, e, ph)n′ = Q(i, 0, e, p j−n+n′)

= Q(i − 1, e, e, p j−n+n′)∩ Q(i − 1, e, e, p j−n+n′+1)

by (5.21) and (5.22). But Un′ is contained in both Q(i − 1, e, e, p j−n+n′+1) and
Q(i − 1, e, e, p j−n+n′) by minimality of i . Thus U≥n ⊆ Q′(i, r − 1, e, ph) in this
case as well, and (A′) holds as needed. �

Claim 3. Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)p j ).
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Proof. As in the proof of Claim 2, we have Q(i, r, e, p j )n = Q′(i, r, e, p j+i−n)n ,
and so that claim gives

Un ∩ Q(i, r, e, p j )=Un ∩ Q′(i, r, e, p j+i−n)

=Un ∩ J ′((e+ 1)p j−n+1)

=Un ∩ J ((e+ 1)p j ),

where we use (5.17) in the last step. �

We can now complete the proof of Proposition 5.19. Combining Claims 1 and 3,
we have

Un ∩ J ((e+ 1)p j )=Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)pi+ j−1). (5.23)

Recall that U n = H 0(E,Mn(− y− xn)) and i ≥ 2. Thus, by (5.10) and (5.5) we see
that, after taking the image of (5.23) in B, the right-hand side vanishes to order e
at p j , while the left-hand side vanishes to order e+ 1 at p j . This contradiction
completes the proof of the proposition. �

We can now quickly prove our first main theorem.

Theorem 5.24. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Then there is an effective divisor d on E , supported on points with distinct
orbits and with deg d < µ, so that U is an equivalent order to T (d).

In more detail, for some d the (U, T (d))-bimodule M = Û T (d) is a finitely
generated g-divisible right T (d)-module with MT = T . Set W = EndT (d)(M).
Then U ⊆W ⊆ T , the bimodule M is finitely generated as a left W -module, while
W , U , and T (d) are equivalent orders.

Remark 5.25. Recall from Lemma 2.10 that, if U be a g-divisible graded subal-
gebra of T with Dgr(U ) = Dgr(T ), then Qgr(U ) = Qgr(T ) also holds. However,
some condition on quotient rings is required for the theorem, since clearly U = k[g]
is not equivalent to any T (d).

Proof. By Lemma 2.10, Qgr(U )= Qgr(T ) and so we can apply Proposition 5.7 to
A=U . Let d, k be as defined there; thus if R = T (d) then U and R are equivalent
orders. By Proposition 5.19, U ⊆ T≤k ∗ R.

Let M = Û R and W = EndR(M). By [RSS 2015, Theorem 5.3(5)], T≤k ∗ R is a
noetherian right R-module and so M⊆T≤k∗R is a finitely generated right R-module.
Clearly MT = T since 1 ∈ M ⊆ T and so W ⊆ T . Thus, by Lemma 2.12(3), W M
is finitely generated, and so W and R are equivalent orders. A routine calculation
shows that M is a left U -module and so U ⊆W .

Consider the (W , R)-bimodule M . This is finitely generated on both sides, since
the same is true of W MR . Thus W and R are equivalent orders, which, as R and U
are equivalent orders, implies that W and U are likewise. Finally, as U ⊆W ⊆ T ,
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the hypotheses of the theorem ensure that Qgr(U )= Qgr(W )= Qgr(T ). Thus, by
Proposition 2.16, U and W are equivalent orders, and hence so are U and R. �

Corollary 5.26. Suppose that u and v are two effective, τ -equivalent divisors with
degree deg u ≤ µ− 1. Then T (u) and T (v) are equivalent orders.

Proof. Consider the construction of the divisor d in Theorem 5.24 starting from the
algebra U =T (u). Thus d=

∑
ep p is the divisor constructed in Proposition 5.7 and

there is considerable flexibility in its choice. To begin, in the proof of Equation (5.4),
one sees that y= 0 and x = u. For each orbit O of τ , a point p is then chosen such
that u|O is supported on XO = {p0 = p(O), p1, . . . , pk}. For each such orbit, we
can replace p0 by some p−r and increase k so that both u|O and v|O are supported
on XO. Then d=

∑
O ep p(O), for these choices of points p(O), and ep=deg(u|O).

As u and v are τ -equivalent, deg(u|O)=deg(v|O) for each orbit O, and hence the di-
visor d is the same whether we started with T (u) or T (v). Hence, by Theorem 5.24,
T (u) and T (v) are both equivalent to T (d) and hence to each other. �

Remark 5.27. One disadvantage of Theorem 5.24 is that the (U, T (d))-bimodule
M constructed there need not be finitely generated as a left U -module. Using
[McConnell and Robson 2001, Proposition 3.1.14] and the fact that our rings are
noetherian, one can easily produce such a bimodule. However, this typically lacks
the extra structure inherent in M (notably that MT = T ) and so is less useful for
our purposes. As will be seen in the next section, this problem disappears when
one works with maximal orders (see Corollary 6.6, for example) and this will in
turn give extra information about the structure of such an algebra.

6. On endomorphism rings of T (d)-modules

Given a g-divisible algebra U ⊆ T , Theorem 5.24 provides a module M over some
blowup T (d) with U ⊆ EndT (d)(M). In this section, we reverse this procedure by
obtaining detailed properties of such endomorphism rings (see Proposition 6.4 and
Theorem 6.7). These results provide important information about the structure of
maximal T -orders that will in turn be refined over the next two sections to prove
the main result Theorem 1.2 from the introduction.

We begin with an expanded version of a definition from the introduction.

Definition 6.1. Let U ⊆ V be Ore domains with the same quotient ring Q(U ).
We say that U is a maximal V -order if there exists no order U $ U ′ ⊆ V that
is equivalent to U . We note that if U and V are graded (in which case requiring
that Qgr(U )= Qgr(V ) is sufficient) then this is the same as being maximal among
graded orders equivalent to U and contained in V . Indeed, suppose that U has the
latter property, but that U ( A ⊆ V for some equivalent order A. If A is given the
filtration induced from the graded structure of V , then the associated graded ring
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gr A will still satisfy U ( gr A ⊆ V and be equivalent to U , giving the required
contradiction.

When V = Q(U ), or V = Qgr(U ) if U is graded, a maximal V -order is simply
called a maximal order.

We are mostly interested in maximal T -orders. We introduce this concept because
maximal T -orders need not be maximal orders (see Proposition 10.3), although the
difference is not large (see Corollary 6.6). We first want to study the endomorphism
ring EndT (d)(M) arising from Theorem 5.24, and we begin with two useful lemmas.

Lemma 6.2. Let A be a noetherian domain with quotient division ring D. If N is a
finitely generated right A-submodule of D then EndA(N ∗∗) is the unique maximal
order among orders containing and equivalent to EndA(N ).

Proof. This is what is proved in [Cozzens 1976, Theorem 2.7], since EndA(N ∗)=
EndA(N ∗∗). �

Lemma 6.3. Let A and B be rings such that A is left noetherian and suppose that
M is an (A, B)-bimodule that is finitely generated on both sides, and that N is a
finitely generated right B-module. Then HomB(N ,M) is a finitely generated left
A-module. In particular, EndB(M) is a finitely generated left A-module, and if B
is left noetherian then N ∗ = HomB(N , B) is a finitely generated left B-module.

Proof. A surjective B-module homomorphism B⊕n
→ N induces an injective left

A-module homomorphism HomB(N ,M) ↪→ HomB(B⊕n,M)∼= M⊕n . Since M is
a noetherian left A-module, HomB(N ,M) is a finitely generated left A-module. �

We are now ready to prove the first significant result of the section. Until further
notice, all duals N ∗ will be taken as R-modules, for R = T (d).

Proposition 6.4. Let d be an effective divisor on E with deg d<µ and let R=T (d).
Let M⊆T(g) be a g-divisible finitely generated graded right R-module with MT =T
and set W = EndR(M) and F = EndR(M∗∗). Then:

(1) F , V = F ∩ T and W are g-divisible algebras with Qgr(W ) = Qgr(V ) =
Qgr(F)= Qgr(T ).

(2) F is the unique maximal order containing and equivalent to W , while V is the
unique maximal T -order containing and equivalent to W .

(3) There is an ideal K of F with K ⊆W and GKdim F/K ≤ 1.

(4) R = EndW (M)= EndF (M∗∗).

Proof. Since Qgr(R) = Qgr(T ) by Proposition 4.10, clearly the same is true for
W , V and F . As in (2.11), given a right R-module N ⊂ Qgr(R) we identify

N ∗ = HomR(N , R)= {θ ∈ Qgr(R) : θN ⊆ R},
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and similarly for left modules. By Lemma 2.12(3), W is g-divisible and W M is
finitely generated. Thus the left-sided version of Lemma 6.3 shows that EndW (M)
is a finitely generated right R-module. Moreover, by Proposition 4.10, R is a
maximal order and so R = EndW (M).

By Lemma 2.13(3), M∗∗ is g-divisible with M∗∗ ⊂ T(g). Since M∗∗ is clearly
a finitely generated right R-module, the same logic ensures that F is g-divisible,
F M∗∗ is finitely generated and EndF (M∗∗) = R. By Lemma 6.2, F ⊇ W and F
is the unique maximal order containing and equivalent to W . This automatically
ensures that V = F ∩ T is maximal among T -orders containing and equivalent
to W . Clearly V is also g-divisible.

It remains to find the ideal K . By Proposition 2.9, both W and F are noetherian.
By Proposition 4.10 and Lemma 4.11(1), GKdimR(M∗∗/M)≤GKdim(R)−2= 1.
Since M is g-divisible, X = M∗∗/M is g-torsionfree and so, by Lemma 2.14, X is
a finitely generated right k[g]-module. Since M ⊆ M∗∗ ⊂ T(g) the action of g is
central on X and so X is also a finitely generated left k[g]-module. Now, it is
routine to check that M∗∗ and hence X are left W -modules, while k[g] ⊆W since
W is g-divisible. Thus, X and hence M∗∗ are finitely generated left W -modules.
Moreover, GKdimW (X) ≤ GKdimk[g](X) ≤ 1 and so, by [Krause and Lenagan
1985, Lemma 5.3], I = `-annW (X) satisfies GKdim(W/I )≤ 1.

Now consider F . First,

(I F)M ⊆ I F M∗∗ ⊆ I M∗∗ ⊆ M

and hence I F = I ⊆W . Thus F is a finitely generated right W -module and (on the
left) GKdimW (F/W )≤GKdim(W/I )≤ 1. On the other hand, as W M∗∗ is finitely
generated, Lemma 6.3 implies that F = EndR(M∗∗) is a finitely generated left W -
module. Thus, by [ibid., Lemma 5.3], again, the right annihilator I ′= r-annW (F/W )

satisfies GKdim W/I ′ ≤ 1. Thus K = I ′ I is an ideal of both F and W . By the
symmetry of the GK-dimension of bimodules finitely generated on both sides
[ibid., Corollary 5.4] and the exactness of the GK-dimension [ibid., Theorem 6.14],
GKdim(F/K )≤ 1. �

Pairs of algebras (V, F) satisfying the conclusions of the proposition will appear
multiple times in this paper and so we turn those properties into a definition. For a
case when F 6= V , see Proposition 10.3.

Definition 6.5. A pair (V, F) is called a maximal order pair if

(1) F and V are g-divisible, cg algebras with V ⊆ F ⊆ T(g) and V ⊆ T ;

(2) F is a maximal order in Qgr(F) = Qgr(T ) and V = F ∩ T is a maximal
T -order;

(3) there is an ideal K of F with K ⊆ V and GKdim F/K ≤ 1.
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The next result illustrates the significance of Proposition 6.4 to the structure of
maximal T -orders.

Corollary 6.6. Let U ⊆ T be a g-divisible cg maximal T -order.

(1) There exists an effective divisor d on E , with deg d < µ, and a g-divisible
(U, T (d))-module M ⊆ T with MT = T that is finitely generated as both
a left U-module and a right T (d)-module. Moreover, U = EndT (d)(M) and
T (d)= EndU (M).

(2) (U, F = EndR(M∗∗)) is a maximal order pair; in particular, if U is a maximal
order then U = F.

(3) Suppose that every ideal I of T (d) satisfying GKdim(T (d)/I ) = 1 satisfies
GKdim T/I T ≤ 1 (in particular, this holds if T (d) has no such ideals I ). Then
U = F is a maximal order.

Proof. (1) By Theorem 5.24, there is an effective divisor d with deg d < µ so that

U ⊆ V = EndT (d)(M)⊆ T,

where M = Û T (d) is a finitely generated g-divisible graded right T (d)-module
with MT = T . By Theorem 5.24 again, V and U are equivalent orders. Since U is a
maximal T -order, this forces U = V . Finally, T (d)= EndU (M) by Proposition 6.4.

(2) As U = V , this is a restatement of Proposition 6.4(2).

(3) Just as in the proof of Proposition 6.4, J = r-annR M∗∗/M is an ideal of R with
GKdim(R/J )≤ 1. Note that since M is g-divisible, either M = M∗∗ and J = R,
or else GKdim(R/J )= 1.

In either case, the hypotheses imply that GKdim T/J T ≤ 1. Now M∗∗ J T ⊆
MT = T . Thus

GKdim(αT + T )/T ≤ GKdim T/J T ≤ 1

for any α∈M∗∗. By Proposition 4.10 and Lemma 4.11(1), this implies that M∗∗⊆T .
This in turn implies that M∗∗T = T and hence that F ⊆ T . Since U is a maximal
T -order, U = F is a maximal order. �

We now turn to the second main aim of this section, which is to describe the
structure of U for suitable endomorphism rings U = EndT (d)(M). The importance
of this result is that the pleasant properties of U can be pulled back to U .

Theorem 6.7. Let d be an effective divisor on E with deg d <µ, and let R = T (d).
Let M be a finitely generated g-divisible graded right R-module with R ⊆ M ⊆ T .
Let U = EndR(M) and F = EndR(M∗∗). Then there is an effective divisor y on E
so that

F •

=U •

= EndR(M)
•

= B(E,M(−x), τ ) for x = d− y+ τ−1( y). (6.8)

Moreover, if V = F ∩ T then U ⊆ V ⊆ F and (V, F) is a maximal order pair.
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The proof of Theorem 6.7 depends on a series of lemmas that will take the rest
of this section. Before getting to those results we make some comments and a
definition. We first want to regard the ring F from the theorem as a blowup of T at
the divisor x on E , even if x is not effective. We formalise this as follows.

Definition 6.9. Let x be a (possibly noneffective) divisor on E with 0≤ deg x <
µ= deg M. We say that a cg algebra F ⊆ T(g) is a blowup of T at x if

(i) F is part of a maximal order pair (V, F) with Qgr(F)= Qgr(T ); and

(ii) F •

= B(E,M(−x), τ ).

Remarks 6.10. (i) The reader should regard this definition of a blowup as temporary
in the sense that it will be refined in Definition 7.1 and justified in Remark 7.5.
One caveat about the concept is that there may not be a unique blowup of T at
the divisor x; in the context of Theorem 6.7 there may be different R-modules M
leading to distinct blowups F , which nonetheless have factors F which are equal
in large degree. See Example 10.4 and Remark 10.7(2).

(ii) It follows easily from Theorem 6.7 that a maximal order pair (V, F) does give
a blowup of T at an appropriate (possibly noneffective) divisor x. The details are
given in Theorem 7.4 which also gives a converse to Theorem 6.7.

(iii) We conjecture that, generically, the blowup T (d) will have no sporadic ideals
in Theorem 6.7 and so, by Corollary 6.6(3), U = F will then be a maximal order.
For an example where this happens see Example 10.4, and, conversely, for an
example when U 6= F and F 6⊆ T see Proposition 10.3.

Notation 6.11. For the rest of the section, we write N ∗ = HomU (N ,U ) provided
that the ring U is clear from the context. In particular, given a g-divisible left
ideal I of R, we have I ∗ = HomR(I/gI, R) while I ∗ = HomR(I, R). Recall from
Lemma 4.11 that a R-module M is α-pure provided GKdim(M)=GKdim(N )= α
for all nonzero submodules N ⊆ M .

The main technical result we will need is the following, showing that “bar and
star commute” (up to a finite-dimensional vector space).

Proposition 6.12. Let R = T (d) for an effective divisor d with deg d < µ.

(1) Let I be a proper, g-divisible left ideal of R for which R/I is 2-pure. Then
I ∗/R is a g-torsionfree, 2-pure right module; further, I ∗ ⊆ T(g) and I ∗ •= I ∗.

(2) If M is a finitely generated g-divisible graded right R-module with R⊆M ⊆ T ,
then M∗ •= M∗.

Proof. (1) By Lemma 4.11(2), I ∗/R is 2-pure. By Lemma 2.12, I ∗ ⊆ T(g) and
since R is g-divisible, T(g)/R and hence I ∗/R are g-torsionfree.
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From the exact sequence 0→ Rg → R → R → 0 we obtain the long exact
sequence of right R-modules

0→HomR(R/I, R)→Ext1R(R/I, Rg)→Ext1R(R/I, R)→Ext1R(R/I, R)
φ
−→ Ext2R(R/I, Rg)

ψ
−→ Ext2R(R/I, R)→ Ext2R(R/I, R)→ · · · . (6.13)

By Proposition 4.10, R is Auslander–Gorenstein and CM. Thus N = Ext2
R
(R/I , R)

has grade j (N )≥ 2 and hence GKdim(N )≤ 2− 2= 0. Therefore, by [RSS 2015,
Lemma 7.9], Ext2R(R/I, R)= N is finite-dimensional and the map ψ in (6.13) is
surjective in large degree. If E = Ext2R(R/I, R), this says that ψ : E[−1] → E is
surjective in large degree. Since dimk En <∞ for each n, this forces dimk En ≥

dimk En+1 for all n� 0 and so dimk En is eventually constant. In turn, this forces φ
to be zero in large degree.

Next, observe that Hom(R/I, R)= 0 since R/I is g-torsionfree. Since φ is zero
in high degree, the complex

0−→ Ext1R(R/I, Rg)−→ Ext1R(R/I, R)−→ Ext1R(R/I, R)−→ 0

is exact in high degree. Using [RSS 2015, Lemma 7.9] this can be identified with
the complex

0−→ (I ∗/R)[−1]
α
−→ I ∗/R −→ Ext1R(R/I , R)−→ 0,

where α is multiplication by g. As I ∗ is g-divisible by Lemma 2.12(2), it follows that

I ∗/R ∼= I ∗/(R+ I ∗g)= coker(α) •= Ext1R(R/I , R)= I ∗/R.

In particular, dimk I ∗ = dimk I ∗ for all n� 0, and as there is an obvious inclusion
I ∗ ⊆ I ∗ we conclude that I ∗ •= I ∗.

(2) Note that M∗∗/M is a g-torsionfree module of GK-dimension 1, as in the proof
of Proposition 6.4. By Lemma 2.14, dimk((M∗∗/M)⊗R R) <∞. Thus M∗∗ •= M .

Let J = M∗. Since J is a reflexive left ideal of R, the module R/J is 2-pure by
Lemmas 4.10(3) and 4.11(3). Thus part (1) applies and shows that J ∗ •= J ∗. Next,
J •

= J ∗∗ by another use of Lemmas 4.10(3) and 4.11(3). Finally, it is easy to see
that for any finitely generated graded R-modules N and Q contained in Qgr(R),
if N •

= Q then N ∗ •= Q∗. Putting the pieces above together, we conclude that

M∗ = J •

= J ∗∗ •= (J ∗)∗ •= M∗. �

The last ingredient we need for the proof of Theorem 6.7 is the following
description of the endomorphism ring of a torsion-free rank-one module over a
twisted homogeneous coordinate ring.
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Lemma 6.14. Let B = B(E,L, τ ), where E is a smooth elliptic curve, deg L≥ 1,
and τ is of infinite order. Let N be a finitely generated, graded right B-submodule
of k(E)[t, t−1

; τ ]; by [Artin and Van den Bergh 1990, Theorem 1.3],

N •

=

⊕
r≥0

H 0(E,O(q)⊗Lr )

for some divisor q. Let N ∗ = HomB(N , B)⊆ k(E)[t, t−1
; τ ]. Then:

(1) EndB(N )
•

= B(E,L(q− τ−1(q)), τ ).
(2) N N ∗ •= EndB(N ).

(3) N ∗ •=
⊕

n≥0 H 0(E,Ln ⊗O(−τ−n(q))).

Proof. (1) Write G = EndB(N ) ⊆ k(E)[t, t−1
; τ ] and, for each n, let Gn be the

subsheaf of the constant sheaf k(E) generated by Gn ⊆ k(E). Let Nn = O(q)⊗Ln;
thus Nn = H 0(E,Nn), and Nn generates the sheaf Nn , for n� 0, say n ≥ n0.

For n ≥ n0 and r ≥ 0, the equation Gr Nn ⊆ Nn+r forces Gr Nτ r

n ⊆Nn+r and thus

Gr ⊗ (O(q)⊗Ln)
τ r
⊆ O(q)⊗Ln+r .

Equivalently,
Gr ⊆ Lr (q− τ−r (q))= (L(q− τ−1(q)))r .

This shows that
G ⊆ B(E,L(q− τ−1(q)), τ ).

Reversing this calculation shows that

(L(q− τ−1(q)))r Nτ r

n ⊆ Nn+r

for r, n ≥ 0 and taking sections for n ≥ n0 shows that

B(E,L(q− τ−1(q)), τ )⊆ EndB(N≥n0).

To complete the proof we need to prove that G •

= EndB(N≥n0). This follows by
[Rogalski 2011, Lemma 2.2(2)] and [Artin and Zhang 1994, Proposition 3.5] or by
a routine computation.

(2) Clearly N N ∗ is an ideal of EndB(N ). However, by Lemma 2.7(2), EndB(N ) is
just infinite, and so N N ∗ •= EndB(N ).

(3) The proof is similar to that of (1) and, as it will not be used in the paper, is left
to the reader. �

Proof of Theorem 6.7. We first check that F •

=U . By Proposition 6.4 there exists
an ideal K of F contained in U and satisfying GKdim(F/K ) ≤ 1. In particular,
GKdim(F/U ) ≤ 1. By Lemma 2.12(3), U is g-divisible, and so N = F/U is
g-torsionfree. It follows from Lemma 2.14 that GKdim(F/U )= 0, and so U •

= F .
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Now it is obvious that U ⊇ M M∗. Thus, using Proposition 6.12(2),

U ⊇ (M)(M∗) •= (M)(M∗).

Conversely, by Lemma 2.12(3), U = EndR(M) ⊆ EndR(M). We also have
R = B(E,M(−d), τ ). Applying Lemma 6.14 to L=M(−d) and N = M gives

(M)(M∗) •= EndR(M)
•

= B(E,M(−x), τ ),

where, in the notation of that lemma, y= q and x= d− y+τ−1( y). That y is effec-
tive follows from R ⊆ M . Combining the last two displayed equations gives (6.8).

Since R ⊆ M , necessarily MT = T . Thus the second paragraph of the theorem
is just a restatement of Proposition 6.4. �

7. The structure of g-divisible orders

In this section we first refine the results from the last two sections to give strong struc-
tural results for a g-divisible maximal T -order U (see Theorem 7.4). Then we use
these results to analyse both arbitrary g-divisible orders and ungraded subalgebras of
D= Dgr(T ) (see Corollaries 7.6 and 7.10, respectively). In particular, we show that
U is part of a maximal order pair (U, F) for which F is a blowup of T at a (possibly
noneffective) divisor x = d− y+ τ−1( y) in the sense of Definition 6.9. Here, the
divisor y can have arbitrarily high degree but is not arbitrary, as we first explain.

Definition 7.1. Let x be a divisor on E . For each τ -orbit O in E pick p = p0 ∈O

such that x|O=
∑k

i=0 xi pi , where pi = τ
−i (p). Then x is called a virtually effective

divisor if for each orbit O and all j ∈ Z the divisor x satisfies∑
i≤ j

xi ≥ 0 and
∑
i≥ j

xi ≥ 0. (7.2)

If F is a blowup of T at a virtually effective divisor x then F is called a virtual
blowup of T .

The relevance of this condition is shown by the next result, in which the nota-
tion uk for a divisor u comes from Notation 5.2.

Proposition 7.3. (1) The divisor x in Theorem 6.7 is virtually effective.

(2) A divisor x is virtually effective if and only if x can be written as

x = u− v+ τ−1(v),

where u is an effective divisor supported on distinct τ -orbits and v is an
effective divisor such that 0≤ v ≤ uk for some k.
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Proof. (1) By Theorem 6.7, F •

= B(E,N, τ ), where N=M(−x). Since F •

=U ⊆
T = B(E,M, τ ), we must have Nn ⊆Mn for n� 0. Now compare this with the
computations in the proof of Corollary 5.3. In the notation of that proof, Y= OE

and hence y = 0. Therefore, as is explained in the proof of (5.11), this forces (7.2)
to hold.

(2) It is enough to prove this in the case that x is supported on a single τ -orbit O

in E .

(⇒) As in Definition 7.1, write x =
∑k

i=0 xi pi for a suitable point p0 ∈ O. Set
e =

∑
i∈Z xi and u = ep. For j ∈ N, let v j =

∑
i≥ j+1 xi and put v =

∑
j≥0 v j p j .

By (7.2), v is effective. Also, since
∑

i≤ j xi ≥ 0 for all j , we have

v j = e−
∑
i≤ j

xi ≤ e for 0≤ j ≤ k− 1,

while v j = 0 for j ≥ k. Therefore, 0≤ v ≤ uk =
∑k−1

i=0 epi . Finally,

u− v+ τ−1(v)= ep0−
∑
j≥0

( ∑
i≥ j+1

xi

)
p j +

∑
j≥0

( ∑
i≥ j+1

xi

)
p j+1

= ep0−

((∑
i≥1

xi

)
p0+

∑
j≥1

( ∑
i≥ j+1

xi

)
p j

)
+

∑
j≥1

(∑
i≥ j

xi

)
p j

=

∑
xi pi = x.

(⇐) Although this is similar to part (1), it seems easiest to give a direct proof.
Write u = ep = ep0 and v =

∑
vi pi for some point p and some v j ≥ 0. By

definition, uk =
∑k−1

i=0 epi , and so, by our assumptions, 0≤ vi ≤ e for 0≤ i ≤ k−1,
and vi = 0 for all other i . Therefore,

x = u− v+ τ−1(v)= (e− v0)p0+
∑
i≥1

(vi−1− vi )pi .

If j ≤ −1 then x j = 0 and
∑

i≤ j xi = 0. If j ≥ 0, then
∑

i≤ j xi = e − v j ≥ 0.
Similarly, if j ≤ 0 then

∑
i≥ j xi = e ≥ 0, while if j ≥ 1 then

∑
i≥ j

xi =

k∑
i= j

(vi−1− vi )= v j−1− vk = v j−1 ≥ 0.

Thus (7.2) is satisfied. �

We are now ready to state our main result on the structure of g-divisible maximal
T -orders.
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Theorem 7.4. (1) Let V ⊆ T be a g-divisible cg maximal T -order. Then the
following hold:

(a) There is a maximal order F ⊇ V such that (V, F) is a maximal order pair.
(b) F is a virtual blowup of T at a virtually effective divisor x=u−v+τ−1(v)

satisfying 0≤ deg x < µ.
(c) V •

= F •

= B(E,M(−x), τ ).

(2) If U ⊆ T is any g-divisible cg subalgebra with Qgr(U )= Qgr(T ), there exists a
maximal order pair (V, F) as in (1) such that U is contained in and equivalent
to V .

(3) Conversely, let x be a virtually effective divisor with deg x < µ. Then there
exists a blowup F of T at x.

Proof. (1) By definition, Qgr(V ) = Qgr(T ). Now combine Corollary 6.6(1–2),
Theorem 6.7 and Proposition 7.3.

(2) By Theorem 5.24, U is contained in and equivalent to some EndT (d)(M) which,
in turn, is contained in and equivalent to a maximal T -order by Proposition 6.4.

(3) Write x= u−v+τ−1(v), where u, v, k are defined by applying Proposition 7.3
to x. By [RSS 2015, Lemma 5.10], there is a g-divisible finitely generated right
T (u)-module M with T (u)⊆ M ⊆ MT = T so that

M •

=

⊕
n

H 0(E,Mn(−un + v)).

Let F = EndR(M∗∗) ⊇ U = EndR(M). By Theorem 6.7 and Lemma 6.14(1–2),
we have

F •

=U •

= M(M)∗ •= B(E,M(−x), τ ),

and (F ∩ T, F) is a maximal order pair. �

Remark 7.5. We should explain why F is called a virtual blowup of T at x both in
this theorem and in Definition 7.1. When x is effective this is amply justified in [Ro-
galski 2011] and, in that case, T (x) satisfies many of the basic properties of a commu-
tative blowup; in particular, it agrees with Van den Bergh’s more categorical blowup
[2001]. For noneffective x there are several reasons why the notation is reasonable.

(1) As we have shown repeatedly in this paper, the factor U of a g-divisible
algebra U controls much of U ’s behaviour and so Theorem 7.4(1c) shows that
F will have many of the basic properties of a blowup at an effective divisor.

(2) This is also supported by the fact that, by Theorem 5.24, F and T (u) are
equivalent maximal orders and, again, many properties pass through such a
Morita context.
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(3) Finally, in the commutative case virtual blowups are blowups, both because
virtually effective divisors are then effective and because equivalent maximal
orders are then equal.

Theorem 7.4 can be easily used to describe arbitrary g-divisible subalgebras
of T . We recall that the idealiser of a left ideal L in a ring A is the subring
I(L)= {θ ∈ A : Lθ ⊆ L}.

Corollary 7.6. Let U ⊆ T be a g-divisible subalgebra with Qgr(U ) = Qgr(T ).
Then U is an iterated subidealiser inside a virtual blowup of T . More precisely, we
have the following chain of rings:

(1) There is a virtually effective divisor x = u− v+ τ−1(v) with deg(x) < µ and
a blowup F of T at x such that V = F ∩ T contains and is equivalent to U ,
while (V, F) is a maximal order pair.

(2) There exist a g-divisible algebra W with U ⊆ W ⊆ V such that U is a right
subidealiser inside W and W is a left subidealiser inside V . In more detail,
(a) There exists a graded g-divisible left ideal L of V such either L = V

or else V/L is 2-pure, and a g-divisible ideal K of X = I(L) such that
K ⊆W ⊆ X and GKdimX (X/K )≤ 1;

(b) V is a finitely generated left W -module, while X/K is a finitely generated
k[g]-module and so X is finitely generated over W on both sides;

(c) the properties given for W ⊆ V also hold for the pair U ⊆W , but with left
and right interchanged.

Proof. (1) Use Theorem 7.4(1–2).

(2) By (1), aV b⊆U for some a, b ∈U r {0}. Set W ′ =U +V b and W = Ŵ ′. By
Lemma 2.13(1), aW = âW ′ ⊆ Û =U . By Proposition 2.9, W is noetherian and so
(modulo a shift) V ∼= V b is a finitely generated left W -module. Similarly, W is a
finitely generated right U -module. We will now just prove parts (2a) and (2b), leav-
ing the reader to check that the same argument does indeed work for the pair (U,W ).

Write V =
∑v

i=1 W ei for some ei . Then the right annihilator

K = r-annW (V/W )=
⋂

r-ann(ei )

is nonzero. Let L/K be the largest left V -submodule of V/K with GKdim(L/K )≤1.
Then either L = V , or else V/L is 2-pure. For a ∈W , the module (La+K )/K is a
homomorphic image of La/K a and hence of L/K . Thus GKdim((La+K )/K )≤ 1
and La ⊆ L; in other words, L is still a (V,W )-bimodule.

As W = Ŵ , it is routine to see that K is g-divisible, but since we use the
argument several times we give the details. So, suppose that θg ∈ K for some
θ ∈ V . Then (V θ)g ⊆ Ŵ = W , whence V θ ⊆ W and θ ∈ K , as required. It
follows that L/K is g-torsionfree and so, by Lemma 2.14, L/K is a finitely
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generated right k[g]-module. Thus, by [Krause and Lenagan 1985, Lemma 5.3],
I = `-annV (L/K ) satisfies GKdimV (V/I ) = GKdim(L/K ) ≤ 1. Again, I is g-
divisible. Also, if θ ∈ V has θg ∈ L then (Iθ)g ⊆ K and so Iθ ⊆ K . Hence
GKdim(V θ + K )/K ≤ GKdim(V/I )≤ 1 and θ ∈ L . So L is also g-divisible.

Finally, let X = IV (L)= {x ∈ V : Lx ⊆ L}. As usual, X is g-divisible. Clearly
I L is an ideal of X , and since I and L are g-divisible, GKdim(X/I L) ≤ 1, by
Lemma 2.15(4). Since X ⊃ K ⊇ I L , it follows that GKdim X/K ≤ 1. Finally,
since X/K is g-torsionfree of GK-dimension 1, it must be a finitely generated k[g]-
module by Lemma 2.14; in particular, X/W and hence X are finitely generated as
right W -modules. �

There is a close correspondence between subalgebras A of the function skewfield
D = Dgr(T ) and g-divisible subalgebras of T(g), and so we end the section by
studying the consequences of our earlier results for such an algebra A.

For a cg subalgebra R ⊆ T(g) with g ∈ R, define

R◦ = R[g−1
]0 =

⋃
n≥0

Rng−n
⊆ D = Dgr(T ).

Conversely, given an algebra A ⊆ T ◦, define

�A =
⊕
m≥0

(�A)m for (�A)m = {a ∈ Tm : ag−m
∈ A}.

Clearly �A is g-divisible with (�A)◦ = A and, if R ⊆ T , then �(R◦)= R̂; thus
we obtain a one-to-one correspondence between cg g-divisible subalgebras of T
and subalgebras of T ◦.

Given a left ideal I of R or a left ideal J of A we define I ◦ and �J by the same
formulæ. If R is g-divisible, the map I 7→ I ◦ gives a one-to-one correspondence
between g-divisible left ideals of R and left ideals of R◦, with analogous results
for two-sided ideals (see [Artin et al. 1991, Proposition 7.5]).

An algebra A ⊆ T ◦ is filtered by A =
⋃
0n A for 0n A = (�A)ng−n . By [RSS

2014, Lemmas 2.1 and 2.2],

gr0 A =
⊕

0n A/0n−1 A ∼=�A/g�A, (7.7)

where the isomorphism is induced by the map

0n Ar0n−1 A→�A, x = rg−n
7→ r.

Lemma 7.8. Let A, A′ be orders in T ◦. Then A and A′ are equivalent orders if and
only if �A and �A′ are equivalent orders in Qgr(T ).

Proof. Let 0 6= a ∈ 0m A′ and 0 6= b ∈ 0n A′. To prove the lemma, it suffices to show
that a Ab ⊆ A′ if and only if agm(�A)bgn

⊆�A′. However, if 0 6= α ∈�A, write
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α = xgk for some k and x ∈ A. Then

axb ∈ A′ ⇐⇒ axb ∈ 0m+n+k A′ ⇐⇒ agm(xgk)bgn
∈�A′,

as desired. �

Corollary 7.9. A subalgebra A ⊆ T is a maximal T ◦-order if and only if �(A) is
a maximal T -order. �

By [RSS 2014, Theorem 1.1], every subalgebra of T ◦ is finitely generated and
noetherian; these subalgebras thus give a rich supply of noetherian domains of
GK-dimension 2. Our earlier results about cg maximal T -orders translate easily to
results about maximal T ◦-orders. An ideal I of a k-algebra A is called cofinite if
dimk(A/I ) <∞.

Corollary 7.10. Let A be a subalgebra of T ◦ with Q(A)= Q(T ◦).

(1) There exists a maximal order pair (V, F), where F is a blowup of T at some
virtually effective divisor x, such that A is contained in and equivalent to the
maximal T -order V ◦.

(2) In part (1), F◦ is a maximal order in Q(T ◦)= Dgr(T ).

(3) The algebras V ◦ and F◦ have a cofinite ideal K ◦ in common. Also, we have
gr0 V •

= B(E,M(−x), τ ).

(4) Suppose that all nonzero ideals I of T (d)◦ generate cofinite right ideals of
T ◦ (in particular, this happens if T (d)◦ is simple) and that A is a maximal
T ◦-order. Then A is a maximal order.

Proof. (1) By Theorem 7.4(2), �A is contained in and equivalent to some such V .
Now use Lemma 7.8 and Corollary 7.9.

(2) Since F need not be contained in T , this does not follow directly from the
above discussion. However, it does follow from Lemma 6.2 combined with the fact
that, in the notation of Corollary 6.6,

F◦ = EndT (d)◦((M∗∗)◦)= EndT (d)◦((M◦)∗∗).

(3) By definition and Lemma 2.14, V and F have an ideal K in common such that
F/K is finitely generated as a k[g]-module. Consequently F◦/K ◦ and V ◦/K ◦ are
finite-dimensional. The final assertion follows from Theorem 7.4(1c).

(4) Use Corollary 6.6(3). �

We also have a converse to Corollary 7.10(3).

Corollary 7.11. Let x be a virtually effective divisor on E with deg x < µ. Then
there exists a maximal T ◦-order A with gr0 A •

= B(E,M(−x), τ ).
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Proof. Let U be the g-divisible maximal T -order given by Theorem 7.4(3); thus
U •

= B(E,M(−x), τ ) by part (1c) of that result. By (7.7), A = U ◦ satisfies the
conclusion of this corollary. �

Del Pezzo surfaces. The blowup of T at ≤ 8 points on E can be thought of as
a noncommutative del Pezzo surface. More carefully, it should be thought of as
the anticanonical ring of a noncommutative del Pezzo surface; this corresponds
to the fact that the central element g is in degree 1. Let U be a blowup of T at a
virtually effective divisor d ′ of degree ≤ 8. By analogy, we should think of U as
a (new type of) noncommutative del Pezzo surface, and the localisation U ◦ as a
particular kind of noncommutative affine surface. Corollary 7.10(3) can then be
reinterpreted as saying that any maximal order A ⊆ T ◦ is the coordinate ring of
just such a noncommutative affine surface.

In [Etingof and Ginzburg 2010], the authors study noncommutative affine surfaces
which are deformations of the commutative symplectic affine surfaces obtained
from removing an anticanonical divisor from P2. These surfaces are related to ours
but not the same; for example, we consider A = T ◦ ∼= T/(g− 1), but the algebra
A′ = S/(g− 1) is considered in [ibid.]. The algebra A′ is a rank 3 A-module, so
“Spec A′” is a triple cover of “Spec A” (inasmuch as these terms make sense in a
noncommutative context).

8. Sporadic ideals and g-divisible hulls

One of the main results in [Rogalski 2011] showed that the algebras considered
there have minimal sporadic ideals, in a sense we define momentarily. In this section
we show that, under minor assumptions, this generalises to cg subalgebras U ⊆ T
with g ∈U (see Corollary 8.8 for the precise statement). The significance of this
result is that it provides a tight connection between the algebra U and its g-divisible
hull Û and provides the final step in the proof of Theorem 1.2, that maximal orders
are noetherian blowups of T (see Theorem 8.11).

Recall that a graded ideal I of a cg graded algebra R is called sporadic if
GKdim(R/I )= 1.

Definition 8.1. An ideal I of a cg algebra R is called a minimal sporadic ideal if
GKdim(R/I )≤ 1 and, for all sporadic ideals J , we have dimk I/(J ∩ I ) <∞.

Note that one can make the minimal sporadic ideal I unique by demanding that
it be saturated, but we will not do so since this causes extra complications.

Beginning in this section, we need to strengthen our hypothesis on the ring T .

Assumption 8.2. In addition to Assumption 2.1, we assume that T has a minimal
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sporadic ideal and that there exists an uncountable algebraically closed field exten-
sion K ⊇ k such that, in the notation of [RSS 2015, Definition 7.2], Div(T ⊗k K )
is countable.

We emphasise that, by [RSS 2015, Theorem 8.8 and Proposition 8.7], these extra
assumptions do hold both for the algebras T from Examples 2.2(1–2) and for their
blowups T (d) at effective divisors d with deg d < µ.

For the rest of this section we assume that our algebras T satisfy Assumptions 2.1
and 8.2. We do not know if Assumption 8.2 holds for Stephenson’s algebras from
Examples 2.2(3). By a routine exercise, Examples 2.2(4) does not have a minimal
sporadic ideal, so Assumption 8.2 is strictly stronger than Assumption 2.1.

As noted above, the blowups T (d) with deg d < µ have a minimal sporadic
ideal, and the first goal of this section is to extend this to more general subalgebras
of T(g). We start with the case of g-divisible algebras.

Lemma 8.3. Let (V, F) be a maximal order pair, in the sense of Definition 6.5.
Then both F and V have a minimal sporadic ideal.

Proof. By Corollary 6.6, there exists an effective divisor d with deg d < µ and a
right R-module M ⊇ R, where R = T (d), such that

F = EndR(M∗∗)⊇ F ∩ T = V = EndR(M).

We will use a minimal sporadic ideal of R to construct such an ideal for F and
for V .

Set J = M∗ = M∗∗∗ ⊆ R; thus F = EndR(J ) as well. Also, write X = J J ∗,
a nonzero ideal of R, and W = J ∗ J , a nonzero ideal of F . By Lemma 2.13(3),
J and J ∗ = M∗∗ are g-divisible; in particular, J * gT(g) and J ∗ * gT(g). Thus, by
Lemma 2.15(4), GKdim(R/X) ≤ 1 and GKdim(F/W ) ≤ 1. By Assumption 8.2
and [RSS 2015, Proposition 8.7] we can choose a minimal sporadic ideal X ′

of R such that X ′ ⊆ X . Let I = J ∗X ′ J . Since GKdim(X ′) ≤ 1 and R is g-
divisible, GKdim R/gR = 2 and so X ′ * gT(g) also. Thus I is an ideal of F with
GKdim(F/I )≤ 1 by Lemma 2.15(4).

Now consider an arbitrary sporadic ideal L of F , if such an ideal exists. Since
F is g-divisible, L * gT(g) and so, just as in the previous paragraph, J L J ∗ is an
ideal of R satisfying GKdimR(R/J L J ∗)≤ 1. Hence J L J ∗ ⊇ X ′H for an ideal H
of R with dimk(R/H) <∞. Now, L ⊇ (J ∗ J )L(J ∗ J ) ⊇ J ∗X ′H J , and [Krause
and Lenagan 1985, Proposition 5.6] implies that dimk(J ∗X ′ J )/(J ∗X ′H J ) <∞.
Thus I is a minimal sporadic ideal of F .

In conclusion, F and V have a common ideal K with GKdim(F/K ) ≤ 1 (see
Proposition 6.4). Thus K I K is a minimal sporadic ideal for F that lies in V and
so it is also a minimal sporadic ideal for V . �
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Proposition 8.4. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
g-divisible graded algebra with Qgr(U )= Qgr(T ). Then U has a minimal sporadic
ideal.

Proof. By Theorem 7.4(2), U is contained in and equivalent to some g-divisible
maximal T -order V , say with aV b ⊆U for some nonzero homogeneous a, b ∈U .
Set U ′ = U +UaV ⊆ V , and W = Û ′. Thus aV ⊆ U ′ ⊆ W and U ′b ⊆ U . By
Lemma 2.13(1), W b = Û ′b ⊆ Û =U . Set J = `-annW V/W , noticing that J is a
nonzero ideal of W (since a ∈ J ) and a right ideal of V . Also, as W is g-divisible,
it follows that J is g-divisible. Thus, by Lemma 2.15(3), GKdim W/J ≤ 1.

If K is a minimal sporadic ideal in V given by Lemma 8.3, we claim that
J K is a minimal sporadic ideal in W . To see this, let L be any ideal of W with
GKdim W/L ≤ 1. Then I = V L J is an ideal of V . Since none of V , L , or J is
contained in gT(g), GKdim V/I ≤ 1 by Lemma 2.15(4). Hence I ⊇ K M for some
ideal M of V with dimk(V/M) <∞ and so L ⊇ J V L J ⊇ J K M . This implies
that J K is a minimal sporadic ideal for W . Finally, a symmetric argument, using
the fact that W is g-divisible with a minimal sporadic ideal, proves that U has such
an ideal. �

As in Section 7, results on g-divisible rings have close analogues for subalgebras
of T ◦.

Corollary 8.5. Suppose that T satisfies Assumptions 2.1 and 8.2. Let A be a
subalgebra of T ◦ with Q(A) = Q(T ◦). Then A has a unique minimal nonzero
ideal I , and dimk A/I < ∞. Further, A has DCC on ideals and finitely many
primes.

Proof. Recall from Section 7 that there is a one-to-one correspondence between
g-divisible ideals of �A and ideals of A. Since every nonzero g-divisible ideal of
�A is sporadic, when combined with Proposition 8.4 this gives the existence of I
as described. Since A/I is artinian it has finitely many prime ideals and DCC on
ideals. Thus the same holds for A. �

We now turn to a more general subalgebra U of T , with the aim of controlling
its sporadic ideals also. We achieve this by relating U to its g-divisible hull Û and
we begin with a straightforward lemma on subalgebras of TCRs. Recall that, for
any subalgebra U ⊆ T(g), we write U =U + gT(g)/T(g).

Lemma 8.6. Let B = B(E,M, τ ) for some smooth elliptic curve E , invertible
sheaf M of degree d > 0 and τ of infinite order. Then for any 0 6= x ∈ Bk we have
Bnx + x Bn = Bn+k for n� 0.

In particular, if A is a graded subalgebra of B such that A 6= k, then B is a
noetherian (A, A)-bimodule.
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Proof. By [Artin and Van den Bergh 1990, Theorem 1.3] and its left-right analogue,
there exist effective divisors x and x′ such that

x B≥n0 =

⊕
n≥n0

H 0(E,Mn+k(−x)) and (B≥n0)x =
⊕
n≥n0

H 0(E,Mn+k(−τ
−n x′))

(With a little thought one can see that this holds with n0 = 0 and x = x′, but that is
not relevant here.) Since |τ | =∞, we may choose n0 so that x ∩ τ−n x′ =∅ for all
n ≥ n0. For such n there is an exact sequence

0→ OE(−x− τ−n x′)→ OE(−x)⊕OE(−τ
−n x′)→ OE → 0.

Tensoring with Mn+k and taking global sections gives a long exact sequence that
reads, in part,

H 0(E,Mn+k(−x))⊕ H 0(E,Mn+k(−τ
−n x′)) // H 0(E,Mn+k) // H

x Bn ⊕ Bnx θ // Bn+k

for H = H 1(E,Mn+k(−x− τ−n x′)) and θ the natural map. Since

deg(Mn+k(−x− τ−n x)) > 0 for n� 0,

Riemann–Roch ensures that H = 0 and hence that θ is surjective for such n.
This implies that B is a noetherian (k〈x〉, k〈x〉)-bimodule, which certainly suf-

fices to prove the final assertion of the lemma. �

We now show that, under mild hypotheses, Û is equivalent to U . In this result
the hypothesis that U 6= k is annoying but necessary (see Example 10.8) but, as
will be shown in Section 9, there are ways of circumventing it.

Proposition 8.7. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a cg
subalgebra of T with Qgr(U )= Qgr(T ), g ∈U and U 6= k.

(1) There exists n ≥ 0 such that U ∩ T gm
= Û ∩ T gm

= gmÛ for all m ≥ n. Thus
U and Û are equivalent orders.

(2) If U is right noetherian then Û is a finitely generated right U-module.

Proof. (1) Let V =Û . Since T is g-divisible, V ⊆T . Working inside Qgr(T ), we get

{x ∈ T : xgk
∈U } = g−kU ∩ T,

and hence V =
⋃

k≥0 g−kU ∩ T . Now define Q(k)
= (g−kU ∩ T + gT )/gT ⊆ T .

Then, since g ∈U ,

U = Q(0)
⊆ Q(1)

⊆ · · · ⊆

⋃
k

Q(k)
= V .
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Each Q(i) is an U -subbimodule of T and so, by Lemma 8.6, Q(n)
= V for some n.

We claim that U ∩T gm
= V ∩T gm for all m ≥ n. If not, there exists y = xgm

∈

V ∩ T gm rU for some such m. Choose x of minimal degree with this property.
This ensures that y 6∈ gm+1T , since otherwise one could write y = gm+1x ′ with
deg(x ′)=deg(x)−1. Since x=[x+gT ]∈V =Q(n), we have x=w, wherewgn

∈U .
Thus wgn

−xgn
∈ V ∩T gn+1 and so w−x = vg, where vgn+1

∈ V ∩T gn+1. Since
deg v < deg x , the minimality of deg x ensures that vgn+1

∈U . Then xgn
=wgn

−

vgn+1
∈U , and so y = xgn(gm−n)∈U , a contradiction. Thus U ∩T gm

= V ∩T gm

as claimed. Finally, as gV = V ∩gT , an easy induction shows that V ∩T gm
= gm V .

(2) This is immediate from part (1). �

In the next result, we construct an ideal with a property that is slightly weaker
than being a minimal sporadic ideal. However, it will have the same consequences.

Corollary 8.8. Suppose that T satisfies Assumptions 2.1 and 8.2. Let C be a cg
subalgebra of T with Qgr(C) = Qgr(T ). Assume that g ∈ C and C 6= k. Then C
has a sporadic ideal K (possibly K = C) that is minimal among sporadic ideals I
for which C/I is g-torsionfree.

Proof. Note that Ĉ is noetherian by Proposition 2.9 and has a minimal sporadic
ideal, say J , by Proposition 8.4. By Lemma 2.15(2), Ĵ is also a minimal sporadic
ideal of Ĉ . Thus, replacing J by Ĵ , we can assume that Ĉ/J is g-torsionfree.

We will show that K = J ∩C satisfies the conclusion of the corollary. So, let I
be a sporadic ideal of C such that C/I is g-torsionfree (if such an ideal exists).
We first show that J ∩C ⊆ I . By Proposition 8.7, H = gnĈ ⊆ C for some n ≥ 1
and so I ⊇ H I H = g2nĈ I Ĉ . By Lemma 2.15(3), H I H = gr L for some r and
ideal L of Ĉ with GKdim(Ĉ/L)≤ 1. As J is sporadic, dimk J/(J ∩ L) <∞ and
so L∩ J ⊇ J≥s ⊇ gs J for some integer s. Combining these observations shows that
I ⊇ gt J for some integer t . Pick u minimal such that I ⊇ gu(J ∩C). If u 6= 0, then

I + gu−1(J ∩C)
I

=
I + gu−1(J ∩C)
I + gu(J ∩C)

is g-torsion, and hence zero since C/I is g-torsionfree by assumption. Hence u = 0
and I ⊇ J ∩C .

It remains to show that GKdim C/(C ∩ J ) ≤ 1. Since Ĉ/J is g-torsionfree,
Lemma 2.14 implies that M = Ĉ/J is a finitely generated k[g]-module. Then the
C-submodule (C+ J )/J ∼= C/(J ∩C) is also. Therefore, by [Krause and Lenagan
1985, Corollary 5.4],

GKdimC(C/(C ∩ J ))= GKdimk[g](C/(C ∩ J ))≤ 1.

Thus K = J ∩C satisfies the conclusions of the corollary. �
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Lemma 8.9. The set of orders {C ⊆ T with C 6= k and g ∈ C} satisfies ACC.

Proof. By Zorn’s lemma, it suffices to prove that any such ring C is finitely generated
as an algebra; equivalently, that C≥1 is finitely generated as a right ideal.

We first show that, for any m ≥ 1, C/(gm T ∩ C) is finitely generated as an
algebra. The result holds for m = 1 by [RSS 2014, Theorem 1.1(1)]. By induction,
choose a1, . . . , ak ∈ C≥1 whose images generate C/(gm−1T ∩ C) as an algebra.
Set X = (gm−1T ∩C)/(gm T ∩C). Then, up to shifts,

X ∼=
T ∩ g1−mC

gT ∩ g1−mC
∼=
(T ∩ g1−mC)+ gT

gT
⊆ T/gT

as C-bimodules. Thus, by Lemma 8.6, X is a finitely generated C-bimodule, say
by the images of b1, . . . , bn ∈ gm−1T ∩C . Then {a1, . . . , ak, b1, . . . , bn} generate
C/(gm T ∩C), completing the induction.

By Proposition 8.7, there exists ` ∈ N such that gmĈ = C ∩ gm T ⊆ C for all
m ≥ `. By the above, choose c1, . . . , cN ∈C≥1 whose images generate C/g`+1Ĉ as
an algebra. Then for any f ∈C≥1, there exists x ∈

∑
ci C so that f − x ∈ g`+1Ĉ =

g(g`Ĉ); thus f ∈ gC +
∑

ci C . Therefore, C≥1 is generated as a right ideal by
g, c1, . . . , cN . �

Proposition 8.10. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a cg
subalgebra of T with U 6= k and Dgr(U ) = Dgr(T ). Then there exists a nonzero
ideal of C =U 〈g〉 that is finitely generated as both a left and a right U-module.

Proof. By Lemma 8.9, there is a finitely generated cg subalgebra W of U with
C =U 〈g〉 =W 〈g〉. Note that Qgr(C)= Qgr(T ) as g ∈ C .

Fix n∈N. Observe that CW≥n=
∑

m W≥ngm
=W≥nC is an ideal of C . Moreover,

C/CW≥n is a homomorphic image of the polynomial ring (W/W≥n)[g]. Since
dimk(W/W≥n) <∞, it follows that C/CW≥n is a finitely generated k[g]-module.
In particular, by [Krause and Lenagan 1985, Corollary 5.4],

GKdimC(C/CW≥n)= GKdimk[g](C/CW≥n)≤ 1.

Moreover, Kn = torsg(C/CW≥n) is finite-dimensional.
Let Zn=C∩ĈW≥n; thus Zn/CW≥n=Kn . Note that C/Zn is a finitely generated

torsion-free, hence free, k[g]-module. Therefore, if dn denotes the rank of that free
module, then

dn = dimk(C/Zn)m for m� 0

= dimk(C/CW≥n)m for m� 0.

Also, CW≥n ⊇ CW≥n+1, whence Zn ⊇ Zn+1 and dn ≤ dn+1.
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Let J be a minimal sporadic ideal of Ĉ such that Ĉ/J is g-torsionfree; thus, by
Corollary 8.8 and its proof, C ∩ J is minimal among sporadic ideals of C such that
the factor is g-torsionfree. By construction, each Zn is either sporadic or equal to C ;
in either case Zn ⊇ C ∩ J . Now C/(C ∩ J ) ↪→ Ĉ/J , which, by Lemma 2.14, has
an eventually constant Hilbert series; say dimk(Ĉ/J )m = N for all m� 0. Hence
dim(C/Zn)m ≤ N for all such m and, in particular, dn ≤ N . Since dn ≤ dn+1, it
follows that dn = dn+1 for all n� 0; say for all n ≥ n0. Thus, by the last display,
CW≥n

•

= CW≥n0 for all n ≥ n0.
Finally, if W is generated as an algebra by elements of degree at most e, then

CW≥n0 W≥1 ⊇ CW≥n0+e. By the last paragraph, dimk(CW≥n0/CW≥n0+e) <∞,
and so dimk(CW≥n0/CW≥n0 W≥1) <∞. Thus, by the graded Nakayama’s lemma,
CW≥n0 =W≥n0C =W≥n0U 〈g〉 is finitely generated as a right W -module, and hence
as a right U -module. �

Finally, we can reap the benefits of the last few results.

Theorem 8.11. Suppose that T satisfies Assumptions 2.1 and 8.2. For some n ≥ 1,
let U be a cg maximal T (n)-order with U 6= k. Then U is strongly noetherian; in
particular, noetherian and finitely generated as an algebra. Moreover:

(1) If n = 1, so Qgr(U )= Qgr(T ), then U is g-divisible and U = F ∩ T , where F
is a blowup of T at a virtually effective divisor x = u− v+ τ−1(v) of degree
< µ.

(2) If Qgr(U ) 6= Qgr(T ), then there is a virtually effective divisor x of degree < µ
and a blowup F of T at x so that U = (F ∩ T )(n).

Proof. (1) Let C =U 〈g〉; thus Qgr(U )= Qgr(Ĉ)= Qgr(T ). By Proposition 8.10,
there exists an ideal X of C that is finitely generated as a right U -module. In
particular, as U is a right Ore domain and X ⊆ Qgr(U ), we can clear denominators
from the left to find q ∈ Qgr(U ) such that X ⊆ qU . As X is an ideal of C , we have
pC ⊆ X for any 0 6= p ∈ X and hence C ⊆ p−1qU . Thus C and U are equivalent
orders. By Proposition 8.7 it follows that U and Ĉ are equivalent orders and hence
U = Ĉ . Now apply Proposition 2.9 and Theorem 7.4.

(2) Keep C and X as above. In this case, as Qgr(U )= k(E)[gn, g−n, τ n
], clearly

U and C ′ =U 〈gn
〉 have the same graded quotient ring and, moreover, C ′ = C (n).

Therefore X (n) is an ideal of C (n) which, since it is a U -module summand of X , is
also finitely generated as a right (and left) U -module. The argument used in (1)
therefore implies that U and C (n) are equivalent orders and hence that U = C (n).
In particular, C =

∑n−1
i=0 gi C (n) is a finitely generated right U -module.

Consider Ĉ . As g ∈ C , we have Qgr(Ĉ)= Qgr(T ) and so, by Corollary 7.6(1),
there exists a cg maximal T -order V = V̂ ⊆ T containing and equivalent to Ĉ . By
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Proposition 8.7, V is equivalent to C . Further, V = F ∩ T where F is a blowup
of T at some virtually effective divisor x on E with deg x < µ.

Now, aV b ⊆ C for some a, b ∈ C r {0}. By multiplying by further elements
of C we may suppose that a, b ∈ C (n)

=U and hence that aV (n)b ⊆U . As U is a
maximal T (n)-order, and certainly V (n)

⊆ T (n), it follows that U = V (n). �

One consequence of the theorem is that maximal T (n)-orders have a number of
pleasant properties, as we next illustrate. The undefined terms in the following
corollary can be found in [Rogalski 2011, §2] and [Van den Bergh 1997].

Corollary 8.12. Suppose that T satisfies Assumptions 2.1 and 8.2. For some n ≥ 1,
let U be a cg maximal T (n)-order with U 6= k. Then qgr-U has cohomological
dimension ≤ 2, while U has a balanced dualising complex and satisfies the Artin–
Zhang χ conditions.

Proof. By Theorem 8.11, U = V (n) for a g-divisible maximal T -order V . Hence
V •

= B(E,N, τ ), by Theorem 6.7. Thus [Rogalski 2011, Lemma 2.2] and [Artin and
Zhang 1994, Lemma 8.2(5)] imply that qgr-V has cohomological dimension one,
and that V satisfies χ . The fact that V satisfies χ and that qgr-V has cohomological
dimension ≤ 2 then follow from [ibid., Theorem 8.8]. By [Artin and Stafford 1995,
Lemma 4.10(3)], V is a noetherian U -module and so, by [Artin and Zhang 1994,
Proposition 8.7(2)], these properties then descend to U . (With a little more work
one can show that qgr-V and qgr-U have cohomological dimension exactly 2.)
Finally, by [Van den Bergh 1997, Theorem 6.3], this implies the existence of a
balanced dualising complex. �

Let U be a maximal order in T with U 6= k. Theorem 8.11 also allows us to
determine the simple objects in qgr-U , although we do not formalise their geometric
structure.

Corollary 8.13. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a
cg maximal T -order with U 6= k. Then the simple objects in qgr-U are in one-to-
one correspondence with the closed points of the elliptic curve E together with a
(possibly empty) finite set.

Proof. A simple object in qgr-U equals π(M) for a cyclic critical right U -module M
with the property that every proper factor of M is finite-dimensional. Suppose first
that M is g-torsion; thus Mg= 0 by Lemma 3.8. Hence, by Theorems 8.11 and 7.4,
π(M) ∈ qgr-B for some TCR B = B(E,N, τ ). Thus, under the equivalence of
categories qgr-B ' coh(E), π(M) corresponds to a closed point of E .

On the other hand, if M is not annihilated by g, then Lemma 3.8 implies that M
is g-torsionfree. By comparing Hilbert series, it follows that GKdim(M/Mg) =
GKdim(M)− 1 and so, as dimk M/Mg <∞ by construction, GKdim(M)= 1. In
particular, M ′= M[g−1

]0 is then a finite-dimensional simple U ◦-module and hence
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is annihilated by the minimal nonzero ideal of U ◦ (see Corollary 8.5). Pulling back
to U , this says that M is killed by the minimal sporadic ideal K of U . Thus, by
Lemma 3.8, P = r-ann(M) is one of the finitely many prime ideals P minimal
over K .

In order to complete the proof we need to show that π(M) is uniquely determined
by P . Note that, as dimk(M/Mg) <∞, we have π(M) ∼= π(Mg) = π(M[−1])
in qgr-U , and so we do not need to worry about shifts. Next, as GKdim(M) =
GKdim(U/P), M is a (Goldie) torsion-free U/P-module and hence is isomorphic
to (a shift of) a uniform right ideal J of U/P . However, given a second uniform
right ideal J ′ ⊆ U/P , then J ′ is isomorphic to (a shift of) a submodule L ⊆ J
(use the proof of [McConnell and Robson 2001, Corollary 3.3.3]). Once again,
dimk(J/L) <∞ and so π(J )∼= π(J ′), as required. �

Corollary 8.14. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
noetherian cg algebra with Dgr(U )= Dgr(T ) and U 6= k. Then C =U 〈g〉 and Ĉ
are both finitely generated right (and left) U-modules.

Proof. Again, let X = CU≥n0 be the ideal of C that is finitely generated as a right
U -module given by Proposition 8.10. In this case, X is a noetherian right U -module
and hence so is C ∼= xC[n] for any 0 6= x ∈ Xn . The rest of the result follows from
Proposition 8.7. �

9. Arbitrary orders

The assumption U 6= k that appeared in most of the results from Section 8 is
annoying but, as Example 10.8 shows, necessary. Fortunately one can bypass the
problem, although at the cost of passing to a Veronese ring. In this section we
explain the trick and apply it to describe arbitrary cg orders in T .

Up to now graded homomorphisms of algebras have been degree-preserving, but
this will not be the case for the next few results, and so we make the following
definition. A homomorphism A→ B between N-graded algebras is called graded
of degree t if φ(An)⊆ Bnt for all n. The map φ is called semigraded if it is graded
of degree t for some t .

Proposition 9.1. Suppose that T satisfies Assumption 2.1 and that U is a cg noe-
therian subalgebra of T with U 6⊆ k[g]. Then there exist N ,M ∈N and an injective
graded homomorphism φ :U (N )

→T of degree M such that U ′=φ(U (N )) 6⊆k+gT .
In addition, Dgr(U )= Dgr(U ′)⊆ Dgr(T ).

Proof. For n ≥ 0, define f : N→ N∪ {−∞} by

f (n)=min{i :Un ⊆ gn−i T }, with f (n)=−∞ if Un = 0.
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Trivially, f (n) ∈ {0, 1, . . . , n} ∪ {−∞} for all n ≥ 0, and f (n) = 0 if and only if
Un = kgn .

We first claim that f (n)+ f (m)≤ f (n+m) for all m, n ≥ 0. As A is a domain,
this is clear if one of the terms equals −∞, and so we may assume that f (r)≥ 0
for r = n,m, n+m. Write Ur = Xr gr− f (r) for such r ; thus Xr ⊆ T but Xr 6⊆ gT .
Since gT is a completely prime ideal, Xn Xm ⊆ T but Xn Xm 6⊆ gT . In other words,
UnUm 6⊆ Y = g(n− f (n)+m− f (m)+1)T . Since UnUm ⊆Un+m it follows that Un+m 6⊆ Y
and hence that f (n+m)≥ f (n)+ f (m), as claimed.

A noetherian cg algebra is finitely generated by the graded Nakayama’s lemma,
so suppose that U is generated in degrees ≤ r . Then Un =

∑r
i=1 UiUn−i for all

n > r . Arguing as in the previous paragraph shows that

f (n)=max{ f (n− i)+ f (i) : 1≤ i ≤ r} for n > r, (9.2)

with the obvious conventions if any of these numbers equals −∞.
We claim that there exists N with f (N ) > 0 such that f (nN )= n f (N ) for all

n ≥ 1. This follows by exactly the same proof as in [Artin and Stafford 1995,
Lemma 2.7]. Namely, choose 1 ≤ N ≤ r such that λ = f (N )/N is as large as
possible; by induction using (9.2) it follows that f (n)≤ λn for all n ≥ 0, and this
forces f (nN )= n f (N ) for all n ≥ 0, as claimed.

Let M = f (N ) and note that M > 0 since U 6⊆ k[g]. Thus, for each n ≥ 0 we
have UnN ⊆ gnN−nM T but UnN 6⊆ gnN−nM+1T . Therefore the function UnN→ TnM

given by x 7→ xgn(M−N ) is well-defined, and it defines an injective vector space
homomorphism θ :U (N )

→ T with θ(U (N )) 6⊆ k+ gT . It is routine to see that θ is
an algebra homomorphism which is graded of degree M . The final claim of the
proposition is clear because Dgr(U )= Dgr(U (N ))= Dgr(U ′). �

Corollary 9.3. (1) Suppose T satisfies Assumption 2.1 and that U is a noetherian
subring of T generated in a single degree N , with U 6= k[gN

]. Then up to a
semigraded isomorphism we may assume that U 6⊆ k+ gT .

(2) Suppose also that T satisfies Assumption 8.2. If U is a noetherian maximal
T (N )-order generated in degree N then, again up to a semigraded isomorphism,
U ∼= V (M), where (V, F) is a maximal order pair and M ≤ N.

Proof. In this proof, Veronese rings are unregraded; that is, they are given the
grading induced from T .

(1) Pick M ∈ N minimal such that UN ⊆ gN−M T . Necessarily, M ≤ N . Then,
either directly or by Proposition 9.1, there is a semigraded monomorphism

φ :U =U (N )
→ T given by u 7→ gM−N u for u ∈UN .

Hence U ∼= φ(U ), and φ(U ) 6⊆ k+ gT by the choice of M .
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(2) As U is an order in T (N ), certainly φ(U ) is an order in T (M). So, suppose
that φ(U )⊆W ⊆ T (M) for some equivalent order W ; say with aW b ⊆ φ(U ), for
a, b ∈ φ(U ). Since M ≤ N , the map φ−1 extends to give a well-defined semigraded
homomorphismψ :T (M)

→T (N ) defined by γ 7→ gN−Mγ for all γ ∈TM . Therefore,
ψ(a)Uψ(b) ⊆ U ⊆ ψ(W ) ⊆ T (N ) and hence U = ψ(W ). Thus, φ(U ) = W is a
maximal order in T (M) with φ(U ) 6∈ k+ gT . Now apply Theorem 8.11(2). �

One question we have been unable to answer is the following.

Question 9.4. Suppose that U ⊆ T is a cg maximal T -order or, indeed, a maximal
order. Then is each Veronese ring U (n) also a maximal T (n)-order? The question is
open even when U is noetherian.

If this question has a positive answer, one can mimic the proof of Corollary 9.3
for any noetherian maximal order U to get a precise description of some Veronese
ring U (N ). However, the best we can do at the moment is to use the much less
precise result given by the next corollary, which also describes arbitrary noetherian
cg subalgebras of T .

Corollary 9.5. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
noetherian algebra with Dgr(U )= Dgr(T ). Then, up to taking Veronese subrings,
U is an iterated subidealiser inside a virtual blowup of T . More precisely, the
following hold.

(1) There is a semigraded isomorphism of Veronese rings U (N )∼=U ′, where U ′⊆T
is a noetherian algebra such that Dgr(U ′)= Dgr(T ) and U ′ 6⊆ k+ gT .

(2) If C = U ′〈g〉 and Z = Ĉ , then Z is a finitely generated (left and right) U ′-
module and Z is a noetherian algebra with Qgr(Z)= Qgr(T ). The g-divisible
algebra Z is described by Corollary 7.6.

Proof. By [Artin and Zhang 1994, Proposition 5.10], the Veronese ring U (N ) is
noetherian and so part (1) follows from Proposition 9.1. Part (2) then follows from
Corollary 8.14 (and Corollary 7.6). �

10. Examples

We end the paper with several examples that illustrate some of the subtleties involved
here. For simplicity, these examples will all be constructed from T = S(3) for the
standard Sklyanin algebra S of Examples 2.2(1); thus µ= deg M= 9.

We first construct a g-divisible, maximal T -order U that is not a maximal order
in Qgr(U ), as promised in Section 6. This shows, in particular, that the concept of
maximal order pairs is indeed necessary in that section. In order to construct the
example, we need the following notation.



2112 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

Notation 10.1. Fix 0 6= x ∈ S1 and let c = p+ q + r be the hyperplane section
of E where x vanishes. We can and will assume that no two of p, q, r lie on
the same σ -orbit on E , where S/gS ∼= B(E,L, σ ). Set R = T (c). By [Rogalski
2011, Example 11.3], R has a sporadic ideal I = x S2 R. Write N = xT1x−1 R and
M = x S5 R+ R. Finally, set d = σ−2(c)= σ−2(p)+ σ−2(q)+ σ−2(r) and hence
dτ = σ−5(c).

As we will see, U =EndR(M) will (essentially) be the required maximal T -order
with equivalent maximal order being F = EndR(N ). The proof will require some
detailed computations, which form the content of the next lemma. We note that for
subspaces of homogeneous pieces of S we use the grading on S, but for subspaces
that live naturally in T we use the T -grading. For example, we write T1S2 = S5.

Lemma 10.2. Keep the data from Notation 10.1.

(1) N I = x S5 R ⊆ M and M≥1 ⊆ N. Hence N ∗∗ = M∗∗ = (M̂)∗∗ = M̂∗∗.

(2) U ′ = EndR(M̂)⊆ T , but

(3) F = EndR(M∗∗)= EndR(N I )= xT (dτ )x−1. Moreover, F 6⊆ T .

Proof. (1) Clearly

N I = xT1S2 R = x S5 R ⊆ M = x S5 R+ R.

By [Rogalski 2011, Example 11.3], R1 = x S2+kg and so R1x ⊆ xT . Equivalently,
R1 ⊆ xT1x−1

⊆ N . As R = T (c) is generated in degree one by Proposition 4.10(2),
R ⊆ xT x−1. In particular, M≥1 = x S5 R+ R≥1 ⊆ N . As I is a sporadic ideal, it
follows from Proposition 4.10 and Lemma 4.11(1) that N ∗∗ = (N I )∗∗ and hence
that M∗∗ = N ∗∗.

Now consider M̂ . Since 1 ∈ M , certainly MT = T and so M∗∗ = (M̂)∗∗ = M̂∗∗

by Lemma 2.13(3).

(2) Since MT = T we have M̂T = T , from which the result follows.

(3) We will first prove that EndR(N ) = xT (dτ )x−1. As in (1), R1 = x S2 + kg.
Equivalently, (x−1 Rx)1= S2x+kg is a 7-dimensional subspace of T1 that vanishes
at the points σ−2(p), σ−2(q) and σ−2(r). Now, T (d)1 is also 7-dimensional
by [Rogalski 2011, Theorem 1.1(1)]. Consequently, (x−1 Rx)1 = T (d)1 and so
x−1 Rx = T (d), since both algebras are generated in degree 1 by Proposition 4.10(2).
Therefore,

x−1 N x = T1(x−1 Rx)= T1T (d)= T (dτ )T1,

where the final equality follows from [RSS 2015, Corollary 4.14]. Thus

xT (dτ )T1x−1
= N
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and so EndR(N ) ⊇ G = xT (dτ )x−1. Since N = GxT1x−1, Lemma 6.3 implies
that EndR(N ) is a finitely generated left G-module. But G is a maximal order
by [Rogalski 2011, Theorem 1.1(2)], and so EndR(N ) = G. Thus, by part (1)
and Lemma 6.2, EndR(N ) = EndR(N ∗∗) = End(M∗∗). Moreover, EndR(N ) ⊆
EndR(N I ) and we again have equality by Lemma 6.3.

It remains to prove that xT (dτ )x−1
6⊆ T . This will follow if we show that

x̄ X x̄−1
6⊆ T , where X = T (dτ ) and X = (X + gT(g))/T(g). So, assume that

x̄ X x̄−1
⊆ T . Then x X1 ⊆ T 1x = S3x . However, inside S4,

x X1 ⊆ H 0(E,L4(−p− q − r − σ−6(p)− σ−6(q)− σ−6(r))
)
,

and, since both are 6-dimensional, they are equal. On the other hand,

S3x = H 0(E,L4(−σ
−3(p)− σ−3(q)− σ−3(r))

)
.

Inside S4, vanishing conditions at ≤ 12 distinct points give independent conditions.
So there exists z that vanishes at the first 6 points p, . . . , σ−6(r) but not at the
points σ−3(p), σ−3(q), σ−3(r). This implies that x X1 6⊆ T 1x , and completes the
proof of the lemma. �

We are now able to give the desired example.

Proposition 10.3. There exists a maximal order pair (V, F) with V 6= F. In
particular, V is a maximal T -order that is not a maximal order.

In more detail, and using the data from Notation 10.1, F = EndR((M̂)∗∗) =
xT (dτ )x−1 is a blowup of T at x = c− τ−1(c)+ τ−2(c). The algebra F is also
Auslander–Gorenstein and CM.

Proof. As 1 ∈ M , Theorem 6.7 and Lemma 10.2 imply that F = EndR((M̂)∗∗)=
xT (dτ )x−1 is a maximal order with F 6⊆ T . By Theorem 6.7, again, V = T ∩ F is
a g-divisible maximal T -order, but V is not a maximal order as V 6= F . That F is
Auslander–Gorenstein and CM follows from Proposition 4.10.

Theorem 6.7 also implies that F is a blowup of T at some virtual divisor y, so it
remains to check that y= x. By Lemma 10.2, F = EndR(N I )= EndR(x S5 R) and
hence F ⊆ EndR(x S5 R). Now, for any n ≥ 2, one has

Rn−2 = H 0(E,M(−c− cτ − · · ·− cτ
n−3
)
)
,

and so

(x S5 R)n = H 0(E,M(−c− cτ
2
− cτ

3
− · · ·− cτ

n−1
)= H 0(E,O(cτ )M(−c)n).

Hence

F ⊆ EndR(x S5 R)= EndR

(⊕
n≥2

H 0(E,O(cτ )M(−c)n)
)
.
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Therefore, by Lemma 6.14(1), F •

= B(E,M(−x), τ ). By [Rogalski 2011, Theo-
rem 1.1(2)] and Riemann–Roch, dim Fn = 6n = dim B(E,M(−x), τ ), for n ≥ 1,
and hence F = B(E,M(−x), τ ), as required. �

When y is effective, the blowup T ( y) is both Auslander–Gorenstein and CM
(see Proposition 4.10), as is the blowup of T at x from Proposition 10.3. Despite
this example, neither the Auslander–Gorenstein nor the CM condition is automatic
for a blowup of T at virtually effective divisors.

Example 10.4. Let x = p− τ(p)+ τ 2(p) for a closed point p ∈ E and let U be
a blowup of T at x. Then U is a maximal order contained in T that is neither
Auslander–Gorenstein nor AS Gorenstein nor CM.

Proof. By Definition 6.9 and Corollary 6.6(2), U = EndT (q)(M), where M = M∗∗

satisfies MT = T and q is a closed point that is τ -equivalent to x and hence to p. By
[RSS 2015, Example 9.5], T (q) has no sporadic ideals and so, by Corollary 6.6(3),
U is a g-divisible maximal order contained in T .

Now consider U = U/gU . By Theorem 6.7, U •

= B = B(E,M(−x), τ ). We
emphasise that we always identify M(−x) and M with the appropriate subsheaves
of the field k(E) and B with the corresponding subring of the Ore extension
T(g)/gT(g) ∼= k(E)[z, z−1

; τ ]. We first want to show that U 6= B. Since

deg(M(−x))= deg M− deg x = 8,

[Hartshorne 1977, Corollary IV.3.2] implies that M(−x) is very ample and generated
by its sections B1= H 0(E,M(−x)). On the other hand, the inclusion U ⊆ T forces
U ⊆ T = B(E,M, τ ) and again T 1 generates M. Therefore, if U = B or even
if U 1 = B1 then M(−x) ⊆M. Since x is not effective, this is impossible and so
U 6= B, as claimed.

We now turn to the homological questions. By [Levasseur 1992, Theorem 5.10],
U is Auslander–Gorenstein, AS Gorenstein or CM if and only if the same holds
for U . Thus we can concentrate on U . Since B/U is a nonzero, finite-dimensional
vector space, and B is a domain, certainly Ext1

U
(k,U ) 6= 0 (on either side). Since

GKdim U =GKdim B = 2 this certainly implies that U is not CM. Moreover, if we
can prove that Ext2

U
(k,U ) 6= 0 on either side, then U will be neither AS Gorenstein

nor Auslander–Gorenstein.
By [Levasseur 1992, Proposition 6.5], ExtiB(k, B)= δi,2k, up to a shift in degree.

Therefore [Rotman 2009, Corollary 10.65], with A=k, B= S and R=C=U , gives

Ext2U (k,U )= Ext2U (B⊗B k,U )= Ext2B(k, J ) for J = HomU (B,U ). (10.5)

Since U •

= B, clearly L = B/J is also a nonzero finite-dimensional k-vector space.
We claim that the same is true of Ext2B(k, J ). As Ext1B(k, B)= 0, we have an exact



Classifying orders in the Sklyanin algebra 2115

sequence

0−→ Ext1B(k, L)−→ Ext2B(k, J )−→ Ext2B(k, B)−→ · · · . (10.6)

Since dimk Ext1B(k, L)<∞, the claim will follow once we show that Ext1B(k, L) 6=0.
As in [Artin and Zhang 1994, (7.1.2)], let I (L) denote the largest essential exten-

sion of L by locally finite-dimensional modules. If soc(L) denotes the socle of L ,
then L and soc(L) have the same injective hulls and hence the same torsion-injective
hulls I (L)= I (soc(L)). By [Rogalski 2011, Lemma 2.2(2)], B satisfies χ in the
sense of [Artin and Zhang 1994, Definition 3.2] and so, by [ibid., Proposition 7.7],
I (L) is a direct sum of copies of shifts of the vector space dual B∗. Since this is
strictly larger than L , Ext1B(k, L) 6= 0 and the claim follows.

In conclusion, by (10.6) we know that 0< dimk Ext2B(k, J ) <∞ and hence by
(10.5) it follows that (up to a shift) k ↪→ Ext2

U
(k,U ) as left U -modules. As noted

earlier, this shows that both Gorenstein conditions fail. �

Remark 10.7. (1) By expanding upon the above proof one can in fact show that U
from Example 10.4 will have infinite injective dimension.

(2) Explicit computation shows that U is not uniquely determined by x as a
subalgebra of T , although the factor U is determined in large degree. We do
not know whether U is unique up to isomorphism.

Let U be a noetherian subring of T with Qgr(U )= Qgr(T ). In Proposition 8.7,
we had to assume that U 6⊆ k+ gT in order to find a g-divisible, equivalent order
and this meant that the same assumption was needed for the rest of Section 8. In our
next example we show that the conclusions of Proposition 8.7 can fail without this
assumption, as does Theorem 8.11. Thus Proposition 9.1 is necessary for Section 9.

In order to define the ring, pick algebra generators of T in degree 1; say T =
k〈a1, . . . , ar 〉, set T g

= k〈ga1, . . . , gar 〉 and write U = T g
〈g〉 ⊂ T for the subring

of T generated by T g and g.

Example 10.8. Keep T g and U = T g
〈g〉 as above. Then:

(1) There is a semigraded isomorphism T g ∼= T . Thus U is noetherian and there
is a semigraded isomorphism T [x]/(x2

− g)∼=U mapping x to g. Moreover,
U (2)
= T g and so U ◦ = (T g)◦ ∼= T ◦.

(2) U ⊆ k+ gT and so U = k.

(3) gU is a prime ideal of U such that there is a semigraded isomorphism U/gU ∼=
B = T/gT .

(4) Û = T but T is not finitely generated as a right (or left) U -module.

(5) U is a maximal order with Qgr(U )= Qgr(T ).

Proof. (1–2) These are routine computations.
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(3) Under the identification U = T [x]/(x2
− g), clearly U/xU = T/gT .

(4) For any θ ∈ Tn one has gnθ ∈ T g
⊆ U and hence Û = T̂ g = T . If T were

finitely generated as a (right) U -module then the factor B = T/gT would be
finitely generated as a module over the image (U + gT )/gT =U of U in B. This
contradicts (2).

(5) Write U = T [x]/(x2
−g); thus x ∈U1 but the grading of T is shifted. If U is not

a maximal order then there exists a cg ring U ( V ⊂ Q(U ) such that either aV ⊆U
or V a⊆U for some 0 6= a ∈U . By symmetry we may assume the former, in which
case I V = I for the nonzero ideal I =UaV of U . Thus I (2)V (2)

= I (2), and I (2) 6= 0
since U is a domain. Since U (2)

= T is a maximal order by Proposition 4.10(4), it
follows that V (2)

=U (2)
= T . Let f ∈ V rU be homogeneous. Then f appears in

odd degree and so f x ∈ V (2)
=U (2)

= T and f = t x−1 for some t ∈ T . However,
T = V (2)

3 f 2
= (t x−1)2 = t2g−1. Hence t2

∈ gT which, since T/gT is a domain,
forces t = gt1 ∈ gT . But this implies that f = t x−1

= xt1 ∈U , a contradiction. Thus
U is indeed a maximal order. Moreover, as g ∈U , clearly each ai lies in Qgr(U )
and hence Qgr(T )= Qgr(U ). �

In this paper we have only been concerned with two-sided noetherian rings,
since we believe that this is the appropriate context for noncommutative geometry.
For one-sided noetherian rings there are further examples that can appear, as is
illustrated by the following example.

Example 10.9. Let J be a right ideal of T such that g ∈ J and GKdim(T/J )= 1.
Then the idealiser A = I(J ) is right but not left noetherian.

Proof. Let J = J/g J . Since B = T/gT is just infinite [Rogalski 2011, Lemma 3.2],
dimk T/T J < ∞. Since T J =

∑m
i=1 ti J for some t j , it follows that T J and

hence T are finitely generated right A-modules. Thus, by the proof of [Stafford
and Zhang 1994, Theorem 3.2], A is right noetherian. On the other hand, B is not
a finitely generated left A/gT -module, and so gT is an ideal of A that cannot be
finitely generated as a left A-module. �
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Index of notation

α-pure 2079
Allowable divisor layering d• 2075
Blowup at an arbitrary divisor 2092
CM and Gorenstein conditions 2078
dτ = τ−1(d) for a divisor d 2080
dn = d + dτ + · · · + dτn−1

for a divisor d
2080

Dgr(A), function skewfield 2063
Fn = F⊗Fτ

⊗· · ·⊗Fτn−1
for a sheaf F

2061
g-divisible 2064
Geometric data ( y, x, k) for A 2082
Hom(I, J )= HomMod-A(I, J ) 2063
HomGr-A(I, J ) 2063
Idealiser I(J ) 2069
Just infinite 2064
Left allowable divisor layering d• 2077
µ= deg M 2062
M(k, d) 2076
Maximal order pair (V, F) 2090
Maximal T -order 2088
Minimal sporadic ideal 2101
Normalised orbit representative, divisor

2082

pi = τ
−i (p) for a point p 2076, 2080

Point modules 2071
P(p), P ′(p) 2076, 2077
qgr-A, quotient category of gr-A 2064
Qgr(A), graded quotient ring 2063
Q(i, d, r, p) 2076
R◦, localisation of R 2099
Saturation I sat, saturated right ideal 2075
semigraded morphism 2109
Sporadic ideal 2067, 2101
τ , automorphism defining T 2062
τ -equivalent divisors and invertible sheaves

2079
T (d), effective blowup 2076
T(g), graded localisation 2064
T≤` ∗ T (d) 2076
TCR, twisted coordinate ring B(X,L, θ)

2061
Unregraded ring 2062
Virtual blowup 2095
Virtually effective divisor x=u−v+τ−1(v)

2095
X̂ , X 2064
•

=, equal in high degree 2069
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Congruence property in
conformal field theory

Chongying Dong, Xingjun Lin and Siu-Hung Ng

The congruence subgroup property is established for the modular representations
associated to any modular tensor category. This result is used to prove that the
kernel of the representation of the modular group on the conformal blocks of
any rational, C2-cofinite vertex operator algebra is a congruence subgroup. In
particular, the q-character of each irreducible module is a modular function on the
same congruence subgroup. The Galois symmetry of the modular representations
is obtained and the order of the anomaly for those modular categories satisfying
some integrality conditions is determined.

Introduction

Modular invariance of characters of a rational conformal field theory (RCFT) has
been known since the work of Cardy [1986], and it was proved by Zhu [1996] for
rational and C2-cofinite vertex operator algebras (VOA), which constitute a math-
ematical formalization of RCFT. The associated matrix representation of SL2(Z)

relative to the distinguished basis, formed by the trace functions of the irreducible
modules or primary fields, is a powerful tool in the study of vertex operator algebras
and conformal field theory. This matrix representation conceives many intriguing
arithmetic properties, and the Verlinde formula [1988] is certainly a notable example.
Moreover, it has been shown that these matrices representing the modular group
are defined over a certain cyclotomic field [de Boer and Goeree 1991].

An important characteristic of the modular representation ρ associated with
a RCFT is its kernel. It has been conjectured by many authors that the kernel
is a congruence subgroup of a certain level n (see [Moore 1987; Eholzer 1995;
Eholzer and Skoruppa 1995; Dong and Mason 1996; Bauer et al. 1997]). Eholzer
further conjectured that this representation is defined over the n-th cyclotomic
field Qn . In this case, the Galois group Gal(Qn/Q) acts on the representation ρ by
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its entrywise action. Coste and Gannon [1994] proved that ρ determines a signed
permutation matrix Gσ for each automorphism σ of Qn . They also conjectured
that the representation σ 2ρ is equivalent to ρ under the intertwining operator Gσ .
These conjectural properties were summarized as the congruence property of the
modular data associated with RCFT in [Coste and Gannon 1999; Gannon 2006].
These remarkable properties of RCFT were established by Bantay [2003] under
certain assumptions, and by Coste and Gannon [1994] under the condition that the
order of the Dehn twist is odd. In the formalization of RCFT through conformal
nets, the congruence property was proved by Xu [2006].

In this paper we give a positive answer to the conjecture on the congruence
property for a rational and C2-cofinite vertex operator algebra V . Such a V has
only finitely many irreducible modules [Dong et al. 1998a] M0, . . . ,M p up to
isomorphism and there exist λi ∈ C for i = 0, . . . , p such that

M i
=

∞⊕
n=0

M i
λi+n

where M i
λi
6= 0 and L(0)|M i

λi+n
= λi +n for any n ∈ Z. Moreover, λi and the central

charge c are rational numbers (see [Dong et al. 2000]).
The trace function for v ∈ Vk on M i is defined as

Zi (v, q)= qλi−c/24
∞∑

n=0

(trM i
λi+n

o(v))qn

where o(v)= vk−1 is the (k−1)-st component operator of Y (v, z)=
∑

n∈Z vnz−n−1

which maps each homogeneous subspace of M i to itself. If v = 1 is the vacuum
vector we get the q-character χi (q) of M i . It is proved in [Zhu 1996] that if V
is C2-cofinite then Zi (v, q) converges to a holomorphic function on the upper
half-plane in variable τ where q = e2π iτ . By abusing the notation we also denote
this holomorphic function by Zi (v, τ ). There is another vertex operator algebra
structure on V [Zhu 1996] with grading V =⊕n∈ZV[n]. We will write wt[v] = n
if v ∈ V[n]. Then there is a representation ρV of the modular group SL2(Z) on the
space spanned by {Zi (v, τ ) | i = 0, . . . , p}:

Zi (v, γ τ)= (cτ + d)wt[v]
p∑

j=0

γi j Z j (v, τ )

where γ =
[a

c
b
d

]
∈ SL2(Z) and ρV (γ )= [γi j ] [Zhu 1996].

Theorem I. Let V be a rational, C2-cofinite, self-dual simple vertex operator
algebra. Then each Zi (v, τ ) is a modular form of weight wt[v] on a congruence
subgroup of SL2(Z) of level n, which is the smallest positive integer such that
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n(λi − c/24) is an integer for all i . In particular, each q-character χi is a modular
function on the same congruence subgroup.

We should remark that the modularity of the q-characters of irreducible modules
for some known vertex operator algebras such as those associated to the highest
weight unitary representations for Kac–Moody algebras [Kac and Peterson 1984;
Kac 1990] and the Virasoro algebra [Rocha-Caridi 1985] were previously known.
The readers are referred to [Dong et al. 2001] for the modularity of Zi (v, τ ) when
V is a vertex operator algebra associated to a positive definite even lattice.

According to [Huang 2008a; 2008b], the category CV of modules of a rational and
C2-cofinite vertex operator algebra V under the tensor product defined in [Huang
and Lepowsky 1995a; 1995b; 1995c; Huang 1995] is a modular tensor category
over C. To establish this theorem we have to turn our attention to general modular
tensor categories.

Modular tensor categories, or simply called modular categories, play an integral
role in the Reshetikhin–Turaev TQFT invariant of 3-manifolds [Turaev 2010]
and topological quantum computation [Wang 2010]. They also constitute another
formalization of RCFT [Moore and Seiberg 1990; Bakalov and Kirillov 2001].

Parallel to a rational conformal field theory, associated to a modular category A
are the invertible matrices s̃ and t̃ indexed by the set 5 of isomorphism classes of
simple objects of A. These matrices define a projective representation ρA of SL2(Z)

by the assignment

s :=

[
0 −1
1 0

]
7→ s̃ and t :=

[
1 1
0 1

]
7→ t̃,

and the well-known presentation SL2(Z)= 〈s, t | s
4
= 1, (st)3= s2

〉 of the modular
group. It was proved by Ng and Schauenburg [2010] that the kernel of this projective
representation of SL2(Z) is a congruence subgroup of level N , where N is the order
of t̃ . Moreover, both s̃ and t̃ are matrices over QN . For factorizable semisimple
Hopf algebras, the corresponding result was proved previously by Sommerhäuser
and Zhu [2012].

The projective representation ρA can be lifted to an ordinary representation
of SL2(Z) which is called a modular representation of A in [Ng and Schauenburg
2010]. There are only finitely many modular representations of A but, in general,
none of them is a canonical choice. However, if A is the Drinfeld center of a
spherical fusion category, then A is modular (see [Müger 2003b]) and it admits a
canonical modular representation defined over QN whose kernel is a congruence
subgroup of level N (see [Ng and Schauenburg 2010]). The canonical modular
representation of the module category over the Drinfeld double of a semisimple
Hopf algebra was shown to have a congruence kernel as well as Galois symmetry
(see Theorem II (iii) and (iv)) in [Sommerhäuser and Zhu 2012].
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The second main theorem of this paper is to prove that the congruence property
and Galois symmetry holds for all modular representations of any modular category.

Theorem II. Let A be a modular category over any algebraically closed field k
of characteristic zero with the set of isomorphism classes of simple objects 5
and Frobenius–Schur exponent N. Suppose ρ : SL2(Z)→ GL5(k) is a modular
representation of A where GL5(k) denotes the group of invertible matrices over k
indexed by 5. Set s = ρ(s) and t = ρ(t). Then:

(i) ker ρ is a congruence subgroup of level n where n = ord(t) and, moreover,
N |n |12N.

(ii) ρ is Qn-rational, i.e., im ρ ≤GL5(Qn), where Qn =Q(ζn) for some primitive
n-th root of unity ζn ∈ k.

(iii) For σ ∈Gal(Qn/Q), the matrix Gσ = σ(s)s−1 is a signed permutation matrix,
and

σ 2(ρ(γ ))= Gσρ(γ )G−1
σ

for all γ ∈ SL2(Z). In particular, if (Gσ )i j = εσ (i)δσ̂ (i) j for some sign function
εσ and permutation σ̂ on 5, then σ 2(ti i )= tσ̂ (i)σ̂ (i) for all i ∈5.

(iv) Let a be an integer relatively prime to n with an inverse b modulo n. For the
automorphism σa of Qn given by ζn 7→ ζ a

n ,

Gσa = tastbstas−1.

We return to the modular tensor category CV associated to a rational, C2-cofinite
and self-dual vertex operator algebra V . This yields a projective representation
of SL2(Z) on space spanned by the equivalence classes of irreducible V-modules.
We show in Theorem 3.10 that the representation ρV of SL2(Z) is a modular
representation of CV . This implies that the kernel of ρV is a congruence subgroup
of SL2(Z).

Although the congruence property proved in Theorem II is motivated by solving
the congruence property conjecture on the trace functions of vertex operator algebras,
the result has its own importance. We will discuss this in the rest of the introduction.

It was also shown in [Sommerhäuser and Zhu 2012] that the (unnormalized)
T-matrix t̃ of the module category over a factorizable Hopf algebra also enjoys the
Galois symmetry σ 2(t̃)= Gσ t̃G−1

σ for any σ ∈ Gal(QN/Q). However, this extra
symmetry does not hold for a general modular category A (see Example 4.6). This
condition is, in fact, related to the order of the quotient of the Gauss sums, called
the anomaly, of A. It is proved in Proposition 4.7 that Galois symmetry of the
T-matrix is equivalent to the condition that the anomaly is a fourth root of unity.
We will prove in Proposition 6.7 that the anomaly of any integral modular category
is always a fourth root of unity. Therefore, the T-matrix of any integral modular
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category enjoys the Galois symmetry. For a weakly integral modular category, such
as the Ising model, the anomaly is always an eighth root of unity (Theorem 6.10).

Using Theorem II, we uncover some relations among the global dimension dimA,
the Frobenius–Schur exponent N and the order of the anomaly α of a modular
category A. We define

JA = (−1)1+ordα

to record the parity of the order of the anomaly. If N is not a multiple of 4, then
JA dimA has a square root in QN . If, in addition, dimA is an odd integer, then JA
coincides with the Jacobi symbol

(
−1

dimA
)
. The consequence of this observation is a

result closely related to the Cauchy theorem of integral fusion category.
The organization of this paper is as follows: Section 1 covers some basic def-

initions, conventions and preliminary results on spherical fusion categories and
modular categories. In Section 2, we prove the congruence property, Theorem II
(i) and (ii), by proving a lifting theorem of modular projective representations
with congruence kernels. In Section 3, we prove the associated representation of
modular invariance of trace functions of a rational, C2-cofinite vertex operator
algebra V is a modular representation of its module category. Using Theorem II
(i) and (ii), we prove Theorem I: the trace functions of V are modular forms. In
Section 4, we assume the technical Lemma 4.2 to prove the Galois symmetry
of modular categories as well as RCFTs, Theorem II (iii) and (iv). Section 5 is
devoted to the proof of Lemma 4.2 by using generalized Frobenius–Schur indicators.
In Section 6, we use the congruence property and Galois symmetry of modular
categories (Theorem II) to uncover some arithmetic relations among the global
dimension, the Frobenius–Schur exponent and the anomaly of a modular category.
In particular, we determine the order of the anomaly of a modular category satisfying
certain integrality conditions.

1. Basics of modular tensor categories

In this section, we will collect some conventions and preliminary results on spherical
fusion categories and modular categories. Most of these results are quite well-known,
and the readers are referred to [Turaev 2010; Bakalov and Kirillov 2001; Ng and
Schauenburg 2007a; 2007b; 2008; 2010] and the references therein.

Throughout this paper, k is always assumed to be an algebraically closed field
of characteristic zero. The group of invertible matrices over a commutative ring K
indexed by5 is denoted by GL5(K ), and we will write PGL5(K ) for its associated
projective linear group. If5={1, . . . , r} for some positive integer r , then GL5(K )
(resp. PGL5(K )) will be denoted by the standard notation GLr (K ) (resp. PGLr (K ))
instead.
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For any primitive n-th root of unity ζn ∈ k, we let Qn :=Q(ζn) be the smallest
subfield of k containing all the n-th roots of unity in k. Recall that Gal(Qn/Q) is
isomorphic to U (Zn), the group of units of Zn . Let a be an integer relatively prime
to n. The associated σa ∈ Gal(Qn/Q) is defined by

σa(ζn)= ζ
a
n .

Define Qab=
⋃

n∈N Qn , the abelian closure of Q in k. Since Qn is Galois over Q,
we have σ(Qn) = Qn for all automorphisms σ of Qab. Moreover, the restriction
map Aut(Qab)

res
−→Gal(Qn/Q) is surjective for all positive integers n. Thus, for

any integer a relatively prime to n, there exists a σ ∈Aut(Qab) such that σ |Qn = σa .

1.1. Spherical fusion categories. In a left rigid monoidal category C with tensor
product ⊗ and unit object 1, we denote a left dual V∨ of V ∈ C with morphisms
dbV : 1→ V ⊗ V∨ and evV : V∨⊗ V → 1 by the triple (V∨, dbV , evV ). The left
duality can be extended to a monoidal functor (−)∨ : C→ Cop, and so (−)∨∨ : C→ C
defines a monoidal equivalence. Moreover we can choose 1∨=1. A pivotal structure
of C is an isomorphism j : IdC→ (−)∨∨ of monoidal functors. One can respectively
define the left and the right pivotal traces of an endomorphism f : V → V in C as

ptr`( f )=
(

1
dbV∨
−−→ V∨⊗ V∨∨

id⊗ j−1
V

−−−−→ V∨⊗ V
id⊗ f
−−−→ V∨⊗ V

evV
−−→ 1

)
and

ptrr ( f )=
(

1 dbV
−−→ V ⊗ V∨

f⊗ id
−−−→ V ⊗ V∨

jV⊗ id
−−−→ V∨∨⊗ V∨

evV∨
−−→ 1

)
.

The pivotal structure is called spherical if the two pivotal traces coincide for all
endomorphisms f in C.

A pivotal (resp. spherical) category (C, j) is a left rigid monoidal category C
equipped with a pivotal (resp. spherical) structure j . We will simply denote the pair
(C, j) by C when there is no ambiguity. The left and the right pivotal dimensions
of V ∈ C are defined as d`(V )= ptr`(idV ) and dr (V )= ptrr (idV ) respectively. In a
spherical category, the pivotal traces and dimensions will be denoted by ptr( f ) and
d(V ) (or dim V ), respectively.

A fusion category C over the field k is an abelian k-linear semisimple (left) rigid
monoidal category with a simple unit object 1, finite-dimensional morphism spaces
and finitely many isomorphism classes of simple objects (see [Etingof et al. 2005]).
We will denote by 5C the set of isomorphism classes of simple objects of C, and
by 0 the isomorphism class of 1, unless stated otherwise. If i ∈5C , we write i∗ for
the (left) dual of the isomorphism class i . Moreover, i 7→ i∗ defines a permutation
of order at most 2 on 5C .

In a spherical fusion category C over k, d(V ) can be identified with a scalar in k
for V ∈ C. We use the abbreviation di ∈ k for the pivotal dimension of i ∈5C . By
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[Müger 2003a, Lemma 2.8], di = di∗ for all i ∈5C . The global dimension dim C
of C is defined by

dim C =
∑
i∈5C

d2
i .

A pivotal category (C, j) is said to be strict if C is a strict monoidal category and if
the pivotal structure j and the canonical isomorphism (V ⊗W )∨(1/2)→W∨⊗V∨

are identities. It has been proved in [Ng and Schauenburg 2007b, Theorem 2.2] that
every pivotal category is pivotally equivalent to a strict pivotal category.

1.2. Representations of the modular group. The modular group SL2(Z) is the
group of 2× 2 integral matrices with determinant 1. It is well-known that the
modular group is generated by

s=

[
0 −1
1 0

]
, t=

[
1 1
0 1

]
with defining relations (st)3 = s2, s4

= id . (1-1)

We denote by0(n) the kernel of the reduction modulo n epimorphism πn :SL2(Z)→

SL2(Zn). A subgroup L of SL2(Z) is called a congruence subgroup of level n if
n is the least positive integer for which 0(n)≤ L .

For any pair of matrices A, B ∈ GLr (k), with r ∈ N, satisfying the conditions

A4
= id and (AB)3 = A2,

one can define a representation ρ : SL2(Z)→ GLr (k) such that ρ(s) = A and
ρ(t)= B via the presentation (1-1) of SL2(Z).

Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation of SL2(Z). A
lifting of ρ is an ordinary representation ρ : SL2(Z)→GLr (k) such that η ◦ρ = ρ,
where η : GLr (k)→ PGLr (k) is the natural surjection map. One can always lift ρ
to a representation ρ : SL2(Z)→ GLr (k) as follows: let Â, B̂ ∈ GLr (k) such that
ρ(s)= η( Â) and ρ(t)= η(B̂). Then

Â4
= µs id and ( Â B̂)3 = µt Â2

for some scalars µs, µt ∈ k×. Take λ, ζ ∈ k such that λ4
= µs and ζ 3

= µt/λ, and
set A = Â/λ and B = B̂/ζ . Then we have

A4
= id and (AB)3 = A2.

Therefore, the assignment ρ : s 7→ A, t 7→ B defines a lifting of ρ.
Let ρ be a lifting of ρ. Suppose x ∈k is a 12-th root of unity. Then the assignment

ρx : s 7→
1
x3ρ(s), t 7→ xρ(t) (1-2)
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also defines a lifting of ρ. If ρ ′ : SL2(Z)→ GLr (k) is another lifting of ρ, then

ρ ′(s)= aρ(s) and ρ ′(t)= bρ(t)

for some a, b ∈ k×. It follows immediately from (1-1) that a4
= 1 and (ab)3 = a2.

This implies b12
= 1 and b−3

= a. Therefore, we have ρ ′ = ρb and so ρ has at most
12 liftings.

For any 12-th root of unity x ∈ k, the assignment χx : s 7→ x−3, t 7→ x defines a
linear character of SL2(Z). It is straightforward to check that χx ⊗ ρ is isomorphic
to ρx as representations of SL2(Z). Therefore, the lifting of ρ is unique up to a
linear character of SL2(Z).

1.3. Modular categories. Following [Kassel 1995], a twist (or ribbon structure)
of a left rigid braided monoidal category C with a braiding c is an automorphism θ

of the identity functor IdC satisfying

θV⊗W = (θV ⊗ θW ) ◦ cW,V ◦ cV,W , θ∨V = θV∨

for V,W ∈ C. Associated to the braiding c is the Drinfeld isomorphism u : IdC→

(−)∨∨. When C is a braided fusion category over k, there is a one-to-one corre-
spondence between twists θ and spherical structures j of C given by θ = u−1 j (see
[Ng and Schauenburg 2007a, p. 38] for more details).

A modular tensor category over k (see [Turaev 2010; Bakalov and Kirillov
2001]), also called a modular category, is a braided spherical fusion category A
over k such that the S-matrix of A defined by

s̃i j = ptr(cVj ,Vi∗ ◦ cVi∗ ,Vj )

is nonsingular, where Vj denotes an object in the class j ∈ 5A. In this case, the
associated ribbon structure θ is of finite order N (see [Vafa 1988; Bakalov and
Kirillov 2001]). Let θVi = θi idVi for some θi ∈ k. Since θ1 = id1, we have θ0 = 1.
The T-matrix t̃ of A is defined by t̃i j = δi jθj for i, j ∈5A. It is immediate to see
that ord(t̃)= N , which is called the Frobenius–Schur exponent of A and denoted
by FSexp(A), is finite (see [Ng and Schauenburg 2007a, Theorem 7.7]).

The matrices s̃, t̃ of a modular category A satisfy the conditions

(s̃ t̃)3 = p+A s̃2, s̃2
= p+A p−A C, Ct̃ = t̃C, C2

= id, (1-3)

where p±A =
∑

i∈5A
d2

i θ
±1
i are called the Gauss sums, and C = [δi j∗]i, j∈5A is called

the charge conjugation matrix of A. The quotient p+A /p−A is a root of unity (see
[Bakalov and Kirillov 2001, Theorem 3.1.19] or [Vafa 1988]), and

p+A p−A = dimA 6= 0. (1-4)
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Moreover, s̃ satisfies
s̃i j = s̃j i and s̃i j∗ = s̃i∗j (1-5)

for all i, j ∈5A.
The relations (1-3) imply that

ρA : s 7→ η(s̃), t 7→ η(t̃) (1-6)

defines a projective representation of SL2(Z), where η : GL5A(k)→ PGL5A(k) is
the natural surjection. By [Ng and Schauenburg 2010, Theorem 6.8], ker ρA is a
congruence subgroup of level N .

It is well-known that ρA can be lifted to an ordinary representation (see [Bakalov
and Kirillov 2001, Remark 3.1.9] or Section 1.2). Following [Ng and Schauenburg
2010], a lifting ρ of ρA is called a modular representation of A. By (1-4), for any
6-th root ζ ∈ k of p+A /p−A , we have that (p+A /ζ

3)2 = dimA. It follows from (1-3)
that the assignment

ρζ : s 7→
ζ 3

p+A
s̃, t 7→

1
ζ

t̃ (1-7)

defines a modular representation of A.
Thus, if ρ is a modular representation of A, it follows from Section 1.2 that

ρ = ρ
ζ
x for some 12-th root of unity x ∈ k. Thus ρ(s)2 = ±C . More precisely,

ρ(s)2 = x6C .
A modular category A is called anomaly-free if the quotient p+A /p−A equals 1.

The terminology addresses the associated anomaly-free TQFT with such a modular
category [Turaev 2010]. In this spirit, we will simply call the quotient αA := p+A /p−A
the anomaly of A.

If A is an anomaly-free modular category, then p+A is a canonical choice of square
root of dimA, and hence a canonical modular representation of A is determined
by the assignment

ρA : s 7→
1

p+A
s̃, t 7→ t̃ . (1-8)

For any modular category A over C, we have that dimA > 0 (see [Etingof
et al. 2005]). The central charge c of A is a rational number modulo 8 defined
by exp(π i c/4) = p+A /

√
dimA where

√
dimA denotes the positive square root

of dimA, and so the anomaly α of A is given by

α = exp
(
π i c

2

)
. (1-9)

We will show in Theorem 3.10 that the central charge c of the modular category CV

is equal to central charge c of V modulo 4.
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Remark. The S- and T-matrices of a modular category are preserved by equivalence
of braided pivotal categories over k, and so are the dimensions of simple objects,
the global dimension, the Gauss sums and the anomaly. By the last paragraph of
Section 1.1, without loss of generality, we may assume that the underlying pivotal
category of a modular category over k is strict.

1.4. Quantum doubles of spherical fusion categories. Let C be a strict monoidal
category. The left Drinfeld center Z(C) of C is a category whose objects are
pairs of the form X = (X, σX ), where X is an object of C, and the half-braiding
σX (−) : X ⊗ (−) → (−)⊗ X is a natural isomorphism satisfying the properties
σX (1)= idX and

(idV ⊗ σX (W )) ◦ (σX (V )⊗ idW )= σX (V ⊗W )

for all V,W ∈ C. It is well-known that Z(C) is a braided strict monoidal category
(see [Kassel 1995]) with unit object (1, σ1) and tensor product (X, σX )⊗(Y, σY ) :=

(X ⊗ Y, σX⊗Y ), where

σX⊗Y (V )= (σX (V )⊗ idY ) ◦ (idX ⊗ σY (V )), σ1(V )= idV

for V ∈ C. The forgetful functor Z(C)→ C, X = (X, σX ) 7→ X , is a strict monoidal
functor.

When C is a (strict) spherical fusion category over k, by Müger’s result [2003b],
the center Z(C) is a modular category over k with the inherited spherical structure
from C. In addition,

p+Z(C) = dim C = p−Z(C).

Therefore, Z(C) is anomaly-free and it admits a canonical modular representation
ρZ(C) described in (1-8). In particular,

ρZ(C)(t)= t̃ and ρZ(C)(s)=
1

dim C s̃, (1-10)

which is called the canonical normalization of the S-matrix of Z(C). By [Ng and
Schauenburg 2010, Theorems 6.7 and 7.1], ker ρZ(C) is a congruence subgroup
of level N , and im ρZ(C) ≤ GL5Z(C)(QN ), where N = ord(t̃).

2. Rationality and kernels of modular representations

In this section, we prove the congruence property given in (i) and (ii) of Theorem II.
Recall that a projective representation ρ : G→ PGLr (k) of a group G determines
a cohomology class κρ ∈ H 2(G, k×). For any section ι : PGLr (k)→GLr (k) of the
natural surjection η : GLr (k)→ PGLr (k), the function γι : G×G→ k× given by

ρι(ab)= γι(a, b)ρι(a)ρι(b)
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determines a 2-cocycle in κρ , where ρι= ι◦ρ. The cohomology class κρ is trivial if
and only if ρ can be lifted to a linear representation ρ :G→GLr (k), i.e., η◦ρ = ρ
(see [Karpilovsky 1985, p. 72]).

Let π : L→ G be a group homomorphism. For any 2-cocycle γ ∈ Z2(G, k×),
we have γ ◦ (π ×π) ∈ Z2(L , k×). The assignment γ 7→ γ ◦ (π ×π) of 2-cocycles
induces the group homomorphism π∗ : H 2(G, k×)→ H 2(L , k×), which is called
the inflation map along π . In particular, π∗κρ ∈ H 2(L , k×) is associated with the
projective representation ρ ◦π : L→ PGLr (k).

The homology group H2(G,Z) is often called the Schur multiplier of G [Weibel
1994]. Since k× is a divisible abelian group, H 2(G, k×) is naturally isomorphic
to Hom(H2(G,Z), k×) for any group G. This natural isomorphism allows us
to summarize the result of Beyl [1986, Theorem 3.9 and Corollary 3.10] on the
Schur multiplier of SL2(Zm) as the following theorem. A proof of the statement is
provided for the sake of completeness. The case for odd integers m was originally
proved by Mennicke [1967].

Theorem 2.1. Let k be an algebraically closed field of characteristic zero and
let m be an integer greater than 1. Then H 2(SL2(Zm), k×) is isomorphic to Z2

when 4 | m and is trivial otherwise. Moreover, the image of the inflation map
π∗ : H 2(SL2(Zm), k×) → H 2(SL2(Z2m), k×) along the natural reduction map
π : SL2(Z2m)→ SL2(Zm) is always trivial.

Proof. The first statement is a direct consequence of [Beyl 1986, Theorem 3.9].
For the second statement, it suffices to consider the case m = 2aq with a ≥ 2
and q odd. Then, by the Chinese Remainder Theorem, there are split surjections
p : SL2(Zm)→ SL2(Z2a ) and p′ : SL2(Z2m)→ SL2(Z2a+1) such that the following
diagram of group homomorphisms commutes, where π ′ is the reduction map:

SL2(Z2m)
p′ //

π

��

SL2(Z2a+1)

π ′

��
SL2(Zm)

p // SL2(Z2a )

Applying the functor H 2(−, k×) to this commutative diagram, we obtain the fol-
lowing commutative diagram of abelian groups:

H 2(SL2(Z2m), k×) H 2(SL2(Z2a+1), k×)
(p′)∗oo

H 2(SL2(Zm), k×)

π∗

OO

H 2(SL2(Z2a ), k×)
p∗

oo

(π ′)∗

OO
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Since p and p′ are split surjections, both p∗ and (p′)∗ are injective. Hence, by the
first statement, they are isomorphisms. By [Beyl 1986, Corollary 3.10], (π ′)∗ is
trivial, and so is π∗. �

Theorem 2.1 is essential to the proof of the following lifting lemma for projective
representations of SL2(Z).

Lemma 2.2. Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation for
some positive integer r such that ker ρ is a congruence subgroup of level n. Let
ρn :SL2(Zn)→PGLr (k) be the projective representation which satisfies ρ=ρn◦πn ,
where πn : SL2(Z)→ SL2(Zn) is the reduction modulo n map and κ denotes the
associated second cohomology class in H 2(SL2(Zn), k×). Then:

(i) The class κ is trivial if and only if ρ admits a lifting whose kernel is a congru-
ence subgroup of level n.

(ii) If κ is not trivial, then 4 |n and ρ admits a lifting whose kernel is a congruence
subgroup of level 2n.

In particular, there exists a lifting ρ of ρ such that ker ρ is a congruence subgroup
containing 0(2n).

Proof. (i) If κ is trivial, there exists a linear representation ρn : SL2(Zn)→ GLr (k)
such that η ◦ ρn = ρn . Then ρ := ρn ◦πn is a lifting of ρ since

η ◦ ρ = η ◦ ρn ◦πn = ρn ◦πn = ρ.

In particular, ker ρ is a congruence subgroup of level at most n. Obviously, ker ρ ≤
ker ρ. Since ker ρ is of level n, the level of ker ρ is at least n. Therefore, ker ρ is
of level n.

Conversely, assume ρ : SL2(Z)→ GLr (k) is a representation whose kernel is
a congruence subgroup of level n and assume ρ = η ◦ ρ. Then ρ factors through
SL2(Zn) and so there exists a linear representation ρn : SL2(Zn)→ GLr (k) such
that ρ = ρn ◦πn . Since

η ◦ ρn ◦πn = η ◦ ρ = ρ = ρn ◦πn,

we have η ◦ ρn = ρn . Therefore, ρn is a lifting of ρn and hence κ is trivial.

(ii) Now we consider the case when κ is not trivial. By Theorem 2.1, 4 divides n and
π∗(κ) ∈ H 2(SL2(Z2n), k×) is trivial, where π : SL2(Z2n)→ SL2(Zn) is the natural
surjection (reduction) map. The composition ρn◦π :SL2(Z2n)→PGLr (k) defines a
projective representation of SL2(Z2n), and its associated class in H 2(SL2(Z2n), k×)
is π∗(κ). Since π∗(κ) is trivial, ρn ◦ π can be lifted to a linear representation
f : SL2(Z2n) → GLr (k), i.e., η ◦ f = ρn ◦ π . Thus, we have the following
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commutative diagram:

SL2(Z2n) f

&&

π

''

SL2(Z)

ρ &&
πn

��

π2n

ff

GLr (k)

η

��
SL2(Zn)

ρn

// PGLr (k)

The commutativity of the upper quadrangle is given by

η ◦ f ◦π2n = ρn ◦π ◦π2n = ρn ◦πn = ρ.

Set ρ = f ◦ π2n . Then η ◦ ρ = ρ and so 0(2n) ≤ ker ρ. Suppose 0(m) ≤ ker ρ
for some positive integer m < 2n and suppose m |2n. Then 0(m)≤ ker ρ ≤ ker ρ.
Since ker ρ is of level n, we have that n |m. Thus, m = n, and hence ker ρ is a
congruence subgroup of level n. It follows from (i) that κ is trivial, a contradiction.
Therefore, ker ρ is of level 2n. �

Now we can prove the following lifting theorem for projective representations
of SL2(Z) with congruence kernels.

Theorem 2.3. Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation for
some positive integer r such that ker ρ is a congruence subgroup of level n. Then
the kernel of any lifting of ρ is a congruence subgroup of level m where n |m |12n.

Proof. By Lemma 2.2, ρ admits a lifting ξ such that ker ξ is congruence subgroup
containing 0(2n). Let ρ be a lifting of ρ. By Section 1.2, ρ= ξx ∼=χx⊗ ξ for some
12-th root of unity x ∈ k. Note that SL2(Z)/SL2(Z)

′ ∼= Z12 and 0(12)≤ SL2(Z)
′;

see for example [Beyl 1986, Lemma 1.13]. Therefore, 0(12)≤ kerχx and hence

ker(χx ⊗ ξ)⊇ SL2(Z)
′
∩0(2n)⊇ 0(12)∩0(2n)⊇ 0(12n).

Therefore, ρ has a congruence kernel containing 0(12n) and so m | 12n. Since
0(m)≤ ker ρ ≤ ker ρ and ker ρ is of level n, we have n | m. �

A consequence of Theorem 2.3 is a proof for the statements (i) and (ii) of
Theorem II.

Proof of Theorem II (i) and (ii). By [Ng and Schauenburg 2010, Theorem 6.8],
the projective modular representation ρA of a modular category A over k has
a congruence kernel of level N where N is the order of the T-matrix of A. It
follows immediately from Theorem 2.3 that every modular representation ρ has
a congruence kernel of level n where N |n |12N . By Lemma A.1, ord(ρ(t))= n.
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Now the statement Theorem II (ii) follows directly from [Ng and Schauenburg
2010, Theorem 7.1]. �

The congruence property, Theorem II (i) and (ii), is essential to the proof of
Theorem I and to the Galois symmetry of modular categories in Sections 4 and 5.

Definition 2.4. Let A be a modular category over k with FSexp(A)= N .

(i) By virtue of Theorem II (i), a modular representation ρ of A is said to be of
level n if ord(ρ(t))= n.

(ii) The projective modular representation ρA of A factors through a projective
representation ρA,N of SL2(ZN ). We denote by κA the cohomology class in
H 2(SL2(ZN ), k×) associated with ρA,N .

By Theorem 2.1, the order of κA is at most 2. If 4 -FSexp(A), then κA is trivial.
However, if 4 |FSexp(A), Lemma 2.2 provides the following criterion to decide the
order of κA.

Corollary 2.5. Let A be a modular category over k. Suppose N = FSexp(A) and
suppose ζ ∈ k is a 6-th root of the anomaly of A. Then κA is trivial if and only if
(x/ζ )N

= 1 for some 12-th root of unity x ∈ k. In this case, x3 p+A /ζ
3
∈ QN . In

particular, if 4 -N , then there exists a 12-th root of unity x ∈ k such that

(x/ζ )N
= 1 and x3 p+A /ζ

3
∈QN .

Proof. By (1-7), ζ determines the modular representation ρζ of A given by

ρζ : s 7→
ζ 3

p+A
s̃, t 7→

1
ζ

t̃ .

By Lemma 2.2 (i) and the last two paragraphs of Section 1.2, κA is trivial if and
only if there exists a 12-th root of unity x ∈ k such that ρζx is a level N modular
representation of A. By Theorem II (i), this is equivalent to id = (x t̃/ζ )N or
(x/ζ )N

= 1. In this case, Theorem II (ii) implies ζ 3/(x3 p+A )s̃ ∈ GL5A(QN ) and
hence ζ 3/(x3 p+A )∈QN . The last statement follows immediately from Theorem 2.1.

�

The corollary implies some arithmetic relations among the Frobenius–Schur
exponent, the global dimension and the anomaly of a modular category. These
arithmetic consequences will be discussed in Section 6.

3. Modularity of trace functions for rational vertex operator algebras

In this section we prove that the trace functions of a rational, C2-cofinite vertex
operator algebra V are modular forms on some congruence subgroup by showing
that the representation ρV of SL2(Z), defined by modular transformation of the
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trace functions of V , is a modular representation of CV . The congruence subgroup
property obtained in Section 2 is then applied to ρV to conclude the modularity of
the trace functions of V .

Preliminaries. In this subsection we briefly review some basics of vertex operator
algebras following [Frenkel et al. 1988; Frenkel et al. 1993; Dong et al. 1997;
1998a; Lepowsky and Li 2004; Zhu 1996].

Let V = (V, Y,1, ω) be a vertex operator algebra. Then V is C2-cofinite if
the subspace C2(V ) of V spanned by all elements of type a−2b for a, b ∈ V has
finite codimension in V . Recall from [Dong et al. 1998a] that V is rational if
any admissible module is completely reducible. The component operator L(n)
of Y (ω, z)=

∑
n∈Z L(n)z−n−2 will be used frequently. It is proved in [Dong et al.

1998a] that if V is rational then V has only finitely many irreducible admissible
modules M0, . . . ,M p up to isomorphism and there exist λi ∈ C for i = 0, . . . , p
such that

M i
=

∞⊕
n=0

M i
λi+n

where M i
λi
6=0 and L(0)|M i

λi+n
=λi+n for any n∈Z. Moreover, if V is also assumed

to be C2-cofinite, then λi and the central charge c of V are rational numbers (see
[Dong et al. 2000]). In this paper we always assume that V is simple and we take
M0 to be V .

Another important concept is the contragredient module. Let M =
⊕

λ∈C Mλ

be a V-module. Let M ′ =
⊕

λ∈C M∗λ be the restricted dual of M . It is proved in
[Frenkel et al. 1993] that M ′ = (M ′, Y ′) is naturally a V-module such that

〈Y ′(a, z)u′, v〉 = 〈u′, Y (ezL(1)(−z−2)L(0)a, z−1)v〉,

for a ∈ V , u′ ∈ M ′ and v ∈ M , and that (M ′)′ ' M . Moreover, if M is irreducible,
so is M ′. A V-module M is said to be self-dual if M and M ′ are isomorphic. In
this paper, we’ll always assume that the vertex operator algebra V satisfies the
following assumptions:

(V1) V =
⊕

n≥0 Vn with dim V0 = 1 is simple and self-dual.

(V2) V is C2-cofinite and rational.

The assumption (V2) is equivalent to the regularity [Dong et al. 1997]. That is,
any weak module is completely reducible.

We now recall the notion of intertwining operators and fusion rules from [Frenkel
et al. 1993]. Let W i

= (W i , YW i ) for i = 1, 2, 3 be weak V-modules. Then an
intertwining operator Y( · , z) of type

( W 3

W 1 W 2

)
is a linear map

Y( · , z) :W 1
→ Hom(W 2,W 3){z}, v1

7→ Y(v1, z)=
∑
n∈C

v1
nz−n−1
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satisfying the following conditions:

(i) For any v1
∈W 1, v2

∈W 2 and λ∈C, we have v1
n+λv

2
= 0 for n ∈Z sufficiently

large.

(ii) For any a ∈ V , v1
∈W 1, we have

z−1
0 δ

(
z1− z2

z0

)
YW 3(a, z1)Y(v1, z2)− z−1

0 δ

(
z1− z2

−z0

)
Y(v1, z2)YW 2(a, z1)

= z−1
2 δ

(
z1− z0

z2

)
Y(YW 1(a, z0)v

1, z2).

(iii) For v1
∈W 1, we have d

dzY(v
1, z)= Y(L(−1)v1, z).

The sum in the definition of intertwining operator in [Frenkel et al. 1993] is over
rational numbers. For a rational vertex operator algebra, this is true. In general, the
sum should be over complex numbers. All of the intertwining operators of type( W 3

W 1 W 2

)
form a vector space denoted by IV

( W 3

W 1 W 2

)
. The dimension of IV

( W 3

W 1 W 2

)
is

called the fusion rule of type
( W 3

W 1 W 2

)
for V , which is denoted by N W 3

W 1,W 2 .
The following properties of the fusion rule are well-known (see [Frenkel et al.

1993]).

Proposition 3.1. Let V be a vertex operator algebra, and let M i , M j , Mk be three
irreducible V-modules. Then:

(i) N i
j,k = N k∗

j,i∗ , where we use W i∗ to denote (W i )′ and where N i
j,k = N M i

M j ,Mk .

(ii) N i
j,k = N i

k, j .

Let M1 and M2 be two V-modules. A tensor product for the ordered pair
(M1,M2) is a pair (M, F( · , z)), which consists of a V-module M and an in-
tertwining operator F( · , z) of type

( M
M1 M2

)
, such that the following universal

property holds: for any V-module X and any intertwining operator I ( · , z) of
type

( X
M1 M2

)
, there exists a unique V-homomorphism φ from M to X such that

I ( · , z)= φ ◦ F( · , z). Note that if there is a tensor product, then it is unique by the
universal mapping property. In this case we will denote it by M1 � M2.

In a series of papers [Huang and Lepowsky 1995a; 1995b; 1995c; Huang 1995;
2008a; 2008b], the tensor product � of the modules for a vertex operator algebra V
has been defined and studied extensively. We have the following result (see [Abe
et al. 2004, Corollary 10] and [Huang and Lepowsky 1995a, Proposition 4.13]).

Theorem 3.2. Let V be a rational and C2-cofinite vertex operator algebra, and let
M i , M j , Mk be any three irreducible modules of V . Then:

(i) The fusion rules N k
i, j are finite.

(ii) The tensor product M i � M j of M i and M j exists and is equal to
∑

k N k
i, j Mk .
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We finally review some facts about the modular transformation of trace functions
of irreducible modules of a vertex operator algebra from [Zhu 1996]. Let V be
a rational and C2-cofinite vertex operator algebra, and let M0, . . . ,M p be the
irreducible V-modules as before. There is another VOA structure on V , given by
(V, Y [ · , z],1, ω− c/24) and introduced in [Zhu 1996]. In particular,

V =
⊕
n≥0

V[n].

We will write wt[v] = n if v ∈ V[n]. For each v ∈ Vn , we denote vn−1 by o(v) and
extend to V linearly. Recall that M i

=
⊕
∞

n=0 M i
λi+n . For v ∈ V we set

Zi (v, q)= trM i o(v)q L(0)−c/24
=

∑
n≥0

(trM i
λi+n

o(v))qλi+n−c/24,

which is a formal power series in variable q. The constant c here is the central
charge of V , and Zi (1, q) is sometimes called the q-character of M i . Then Zi (v, q)
converges to a holomorphic function in 0< |q|< 1 [Zhu 1996]. As usual we let
h= {τ ∈ C | im τ > 0} and q = e2π iτ with τ ∈ h. We also denote the holomorphic
function Zi (v, q) by Zi (v, τ ) when we discuss modular transformations of these
functions.

The full modular group SL2 (Z) acts on h by

γ : τ 7→
aτ + b
cτ + d

, γ =

[
a b
c d

]
∈ SL2(Z).

The following theorem was established in [Zhu 1996].

Theorem 3.3. Let V be a rational and C2-cofinite vertex operator algebra, and let
M0, . . . ,M p be the irreducible V-modules. Then for any γ ∈ SL2(Z) there exists a
ρV (γ )= [γi j ]i, j=0,...,p ∈ GLp+1(C) such that, for any 0≤ i ≤ p and v ∈ V[n],

Zi (v, γ τ)= (cτ + d)n
p∑

j=0

γi j Z j (v, τ ).

Theorem 3.3, in fact, gives a group homomorphism ρV : SL2(Z)→ GLp+1(C).
We call ρV (γ ) the genus one modular matrices. In particular,

S = ρV

([
0 −1
1 0

])
and T = ρV

([
1 1
0 1

])
.

are respectively called the genus one S- and T-matrices of V . It is immediate to see
that Tjk = δjke2π i(λj−c/24).

One of our main goals is to show that the kernel of ρV is a congruence subgroup.
We need the following results on the Verlinde formula [1988] from [Huang

2008a; 2008b] (also see [Moore and Seiberg 1990]).
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Theorem 3.4. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the genus one S-matrix of V defined above has the following properties:

(i) S is symmetric and S2
= C , where Ci j = δi j∗ . In particular, C has order at

most 2 and is also symmetric.

(ii) S−1
i j = Si∗j = Si j∗ .

(iii) (Verlinde formula) For any i, j, k ∈ {0, . . . , p},

N k
i, j =

p∑
q=0

Siq Sjq Sk∗q

S0q
.

Unitarity of S. In this subsection, we will prove that the genus one S-matrix of V
defined on page 2137 is unitary and consequences of this fact. Our approach is
slightly different from that given in [Etingof et al. 2005] for the unitarity of a
normalized S-matrix of a modular category. Recall that S2

= C . In fact, this
equality holds for any symmetric matrix satisfying the Verlinde formula as follows:

Lemma 3.5. Let C be a fusion category over C with commutative Grothendieck
ring. Suppose A is a complex symmetric matrix indexed by 5C such that A0r 6= 0
for all r ∈5C and suppose A satisfies the Verlinde formula in the sense that

N k
ij =

∑
r∈5C

Air Ajr Ak∗r

A0r
(3-1)

for all i, j, k ∈5C , where N k
ij is the fusion rule of C. Then we have A0r ∈ R and

A2
= C , and we have that A is unitary, where Ci j = δi j∗ for i, j ∈5C .

Proof. By the Verlinde formula (3-1),
∑

r∈5C
Air Ajr = N 0

i j = δi j∗ for any i, j ∈5C .
This implies A is invertible and (A−1)i j = Ai j∗ = Ai∗j for i, j ∈5C . Hence, we have
Ai∗j∗ = Ai j and A0 j = A0 j∗ for all i, j ∈5C . Let K0(C) be the Grothendieck ring
of C and let KC(C) = K0(C)⊗Z C. Note that KC(C) is commutative C-algebra.
For b ∈5C , let

eb = A0b

∑
a∈5C

Aab a ∈ KC(C),

and E = {eb | b ∈5C}. Then

eaeb = A0a A0b

∑
c,d

Aac Abdcd = A0a A0b

∑
c,d,r

Aac Abd N r
cdr

= A0a A0b

∑
c,d,r,z

Aac Abd
Acz Adz Ar∗z

A0z
r = A0a A0b

∑
r,z

δaz∗δbz∗ Ar∗z

A0z
r

= δab A2
0a

∑
r

Ar∗a∗

A0a∗
r = δab A0a

∑
r

Arar = δabea.
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Hence, E is the set of all primitive idempotents of KC(C).
The duality permutation defined on 5C can be extended to a sesquilinear linear

map † on KC(C), i.e., (∑
x∈5C

αx x
)†

=

∑
x∈5C

αx x∗

for αx ∈ C. Moreover, † is an R-algebra automorphism of KC(C), but † is not
C-linear. In particular, e†

b is in E and hence † defines a permutation on E .
For x ∈ KC(C), denote by ε(x) the coefficient of the unit object 0 in x . Then

ε(ab)= N 0
ab = δab∗ for a, b ∈5C .

We now define the sesquilinear form ( · , · ) on KC(C) by

(x, y)= ε(xy†).

Note that (x, x) > 0 for x 6= 0. Thus

0< (eb, eb)= ε(ebe†
b).

Therefore, e†
b=eb and so (eb, eb)= A2

0b>0 and A0b Aab= A0b Aa∗b for all a, b∈5C .
The former implies A0b ∈ R and hence Aab = Aa∗b for all a, b ∈5C . Therefore,
A is unitary. �

The following corollary is an immediate consequence of Lemma 3.5 and the
modularity of CV presented in Theorem 3.9.

Corollary 3.6. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the genus one S-matrix of V defined on page 2137 is unitary and satisfies S = SC.

The following result can be proved easily by using Corollary 3.6.

Corollary 3.7. Let V be a vertex operator algebra satisfying (V1) and (V2). For
any u ∈ V[m], v ∈ V[n], γ =

[a
c

b
d

]
∈ SL2(Z) and τ1, τ2 ∈ h we have∑

i

Zi (u, γ τ1)Zi (v, γ τ2)= (cτ1+ d)m(cτ2+ d)n
∑

i

Zi (u, τ1)Zi (v, τ2).

In particular,
∑

0≤i≤p |χi (τ )|
2 is invariant under the action of SL2(Z).

Proof. Note that T is a diagonal matrix with diagonal entries e2π i(λj−c/24) for
j = 0, . . . , p which is clearly a unitary matrix, as λj and c are rational numbers. It
follows from Corollary 3.6 that the representation ρ is unitary. Set

f (τ1, τ2)=
∑

i

Zi (u, τ1)Zi (v, τ2).
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Then

f (γ τ1, γ τ2)=
∑

i

Zi (u, γ τ1)Zi (v, γ τ2)

= (cτ1+ d)m(cτ2+ d)n
∑
i, j,k

γi j Z j (u, τ1)γik Zk(v, τ2)

= (cτ1+ d)m(cτ2+ d)n
∑

i

Zi (u, τ1)Zi (v, τ2). �

Here we use Corollary 3.7 to study the extensions of vertex operator algebras.
As before we assume that V is a vertex operator algebra satisfying (V1) and (V2).
We also assume that U is an extension of V satisfying (V1) and (V2). Then
U =

∑
i ni M i as a V-module, where ni is nonnegative and n0 = 1, as the vacuum

vector is unique. The main goal is to determine the possible values of ni . There have
been a lot of discussions on this in the literature using the modular invariance of the
characters (see, for example, [Cappelli et al. 1987a; 1987b; Gannon 2005]). It seems
that using the characters of irreducible modules is not good enough, as the characters
of irreducible modules are not linearly independent in general. In this section we
use the conformal blocks instead of the characters to approach the problem.

For u, v ∈ V , we set

fV (u, v, τ1, τ2)=

p∑
i=0

Zi (u, τ1)Zi (v, τ2)

(see Corollary 3.7). Similarly we can define

fU (u, v, τ1, τ2)=
∑

M

Z M(u, τ1)Z M(v, τ2)

for u, v∈U where M ranges through the equivalent classes of irreducible U-modules.
Since each irreducible U-module M is a direct sum of irreducible V-modules, we
see that, for u, v ∈ V ,

fU (u, v, τ1, τ2)=

p∑
i, j=0

X i j Zi (u, τ1)Z j (v, τ2)

for some X i j ∈ Z+ and all i , j . If u = v = 1 and τ1 = τ2 = τ , then fU (1,1, τ, τ ),
which is the sum of square norms of the irreducible characters of U , is SL2(Z)-
invariant. We now determine the matrix X = [X i j ]. It will be clear from our proof
below that the SL2(Z)-invariance of fU (1,1, τ, τ ) is not good enough to determine
the matrix X .

Proposition 3.8. The matrix X satisfies X00= 1 and Xγ = γ X , where γ ∈ SL2(Z),
and is identified with the modular transformation matrix ρV (γ ).
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Proof. For any u ∈ V[m], let

Z(u, τ )=

Z0(u, τ )
...

Zp(u, τ )

 .
Then

Z(u, γ τ )= (cτ + d)mγ Z(u, τ ) and fU (u, v, τ1, τ2)= Z(u, τ1)
T X Z(v, τ2).

By Corollary 3.7,

(cτ1+ d)m(cτ2+ d)n Z(u, τ1)
T X Z(v, τ2)

= fU (u, v, γ τ1, γ τ2)= Z(u, γ τ1)
T X Z(v, γ τ2)

= (cτ1+ d)m(cτ2+ d)n Z(u, τ1)
T γ T X γ̄ Z(v, τ2).

This implies that

Z(u, τ1)
T X Z(v, τ2)= Z(u, τ1)

T γ T X γ̄ Z(v, τ2)

for all u, v. Since γ is unitary, it is enough to show that if Z(u, τ1)
T AZ(v, τ2)= 0

for all u, v ∈ V where A = [ai j ] is a fixed matrix, then A = 0.
Next note the equality Z(u, τ1)

T AZ(v, τ2) =
∑

i j ai j Zi (u, τ1)Z j (v, τ2). For
simplicity, set qj = e2π iτj for j = 1, 2. Then

0= Z(u, τ1)
T AZ(v, τ2)

=

∑
i, j

∑
mi ,nj≥0

ai j (trM i
λi+mi

o(u)trM j
λj+nj

o(v))qλi+mi−c/24
1 qλj+nj−c/24

2 .

This implies that each coefficient of qm
1 qn

2 for any rational numbers m, n must
be zero. We now prove that ai j = 0 for all i , j . Fix i and j . Then the coefficient of
qλi−c/24

1 q̄λj−c/24
2 in Z(u, τ1)

T AZ(v, τ2) is∑
k,l

akl trMk
λk+mk

o(u)trM l
λl+nl

o(v)

where k, l ∈{0, . . . , p} satisfy mk+λk=λi , nl+λl =λj . Fix n≥0 such that n≥mk

and n ≥ nl for all k, l occurring in the summation above. Recall from [Dong et al.
1998b] that there is a finite dimensional semisimple associative algebra An(V ) such
that Mk

mk+λk
, M l

nl+λl
are the inequivalent simple modules of An(V ). As a result we

can choose u, v ∈ V such that o(u)= 1 on M i
λi

and o(u)= 0 on all other Mk
λk+mk

,
and such that o(v)= 1 on M j

λj
and o(v)= 0 on all other M l

λl+nl
. Therefore, for this

u and v, we have that the coefficient of qλi−c/24
1 q̄λj−c/24

2 in Z(u, τ1)
T AZ(v, τ2) is

a nonzero multiple of ai j . This forces ai j = 0, completing the proof. �
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The congruence property theorem. Now we come back to the theories of vertex
operator algebras. Let V be a rational and C2-cofinite vertex operator algebra. For
any V-module M , set θM = e2π i L(0). The following result from [Huang 2008a,
Theorem 4.1] is important in this paper.

Theorem 3.9. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the V-module category CV with the dual M ′ (M a V-module), braiding σ which is
denoted by C in [Huang 2008a, p. 877] and twist θ is a modular tensor category
over C.

Note that EndV (M i ) = C, 0 ≤ i ≤ p. Recall from discussions in Sections 1.1
and 1.3 that the pivotal dimension di of the simple V-module is a nonzero real
number and the global dimension dim CV =

∑p
i=0 d2

i is at least 1. Let s̃ and t̃ be
the S- and T-matrices of CV , and D =

√
dim CV the positive square root of dim CV ,

and c the central charge of CV . We fix the normalization s = s̃/D, and simply call s
the normalized S-matrix of CV . We will prove in Theorem 3.10 that s is identical to
the genus one S-matrix of V up to a sign.

Theorem 3.10. Let V be a vertex operator algebra satisfying (V1) and (V2). Then:

(i) The normalized S-matrix s of CV and the genus one S-matrix of V are identical
up to a sign.

(ii) The representation ρV defined by modular transformation of trace functions
is a modular representation of CV . In particular, ker ρV is a congruence
subgroup of level n where n is the order of the genus one T-matrix of V , and
ρV is Qn-rational.

(iii) The central charge c of CV is equal to the central charge c of V modulo 4.

Proof. Let
σM i M j : M i � M j

→ M j � M i

be the braiding of CV . It is proved in [Huang 2008a] that the pivotal trace of
σM i∗M jσM j M i∗ on M j � M i∗ equals Si j/S00. This implies that S = λs where
λ = S00/s00. Using the unitarity of s and S, we conclude that λ is a complex
number of norm 1. This forces λ=±1, which proves the first statement.

It follows from Theorem 3.9 that the T-matrix of CV is given by t̃=[δi jθi ]i, j=0,...,p

and θj = e2π iλj . Therefore, that genus one T-matrix of V is given by T = t̃ e−2π ic/24,
where c is the central charge of V . In particular, ρV is a modular representation
of CV . The second part of the second statement is an immediate consequence of
Theorem II (i) and (ii).

By (i), (1-3) and Theorem 3.4 we see that

C = (ST )3 =±(st̃e−2π ic/24)3 =±
p+

D
e−6π ic/24C,
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where p+ is the Gauss sum of CV . This implies that ±1 = (p+/D)e−π ic/4 or
p+/D =±eπ ic/4. In particular, c= c mod 4. �

Theorem I now follows from Theorem 3.10 immediately.
We next discuss two different definitions of dimension of modules of rational

and C2-cofinite vertex operator algebras given in [Dong et al. 2013; Bakalov and
Kirillov 2001]. As before we assume that V is a vertex operator algebra satisfying
(V1) and (V2). Recall the following definition of quantum dimension from [Dong
et al. 2013]. Let M be a V-module. Set Z M(τ )= chq M = Z M(1, τ ). The quantum
dimension of M over V is defined as

qdimV M = lim
y→0

Z M(iy)
ZV (iy)

where y is real and positive. It is shown in [Dong et al. 2013] that if V is a vertex
operator algebra satisfying (V1) and (V2) with the irreducibles M i for i = 0, . . . , p
such that λi > 0 for i 6= 0, then

qdimV M i
=

Si0

S00
. (3-2)

On the other hand, because V is a vertex operator algebra satisfying (V1) and (V2),
the tensor category CV of V-modules is modular by Theorem 3.9. The pivotal
dimension di = dim M i of M i is also defined in the modular tensor category CV .
We now prove that these two dimensions coincide.

Proposition 3.11. Let V be a vertex operator algebra satisfying (V1) and (V2),
and suppose λi > 0 for i 6= 0. Then for any irreducible V-module M i , we have
dim M i

= qdimV M i .

Proof. Since dim M i
= di = s0i/s00, the result follows from Theorem 3.10 and (3-2)

immediately. �

The modular transformation property on the conformal blocks has been used
extensively in the study of rational vertex operator algebras. The modular transfor-
mation property gives an estimation of the growth conditions on the dimensions of
homogeneous subspaces as the q-character of an irreducible module is a component
of a vector-valued modular function [Knopp and Mason 2003]. The growth condi-
tion helps us to show that a rational and C2-cofinite vertex operator algebra with
central charge less than one is an extension of the Virasoro vertex operator algebra
associated to the discrete series [Dong and Zhang 2008], and to characterize vertex
operator algebra L(1/2, 0)⊗ L(1/2, 0) [Zhang and Dong 2009; Dong and Jiang
2010]. The congruence subgroup property of the action of the modular group on
the conformal block is expected to play an important role in the classification of
rational vertex operator algebras. Since the q-character of an irreducible module is
a modular function on a congruence subgroup and the sum of the square norms of
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the q-characters of the irreducible modules is invariant under SL2(Z), this gives a lot
of information on the dimensions of homogeneous subspaces of vertex operator
algebras. For example, one can use these properties to determine the possible
characters of the rational vertex operator algebras of central charge 1 [Kiritsis 1989].
This will avoid some difficult work in [Dong and Jiang 2011; 2013] of determining
the dimensions of homogenous subspaces of small weights when characterizing
certain classes of rational vertex operator algebras of central charge one.

4. Galois symmetry of modular representations

It was conjectured by Coste and Gannon that the representation of SL2(Z) associated
with a RCFT admits a Galois symmetry (see [Coste and Gannon 1999, Conjecture 3;
Gannon 2006, Conjecture 6.1.7]). Under certain assumptions, the Galois symmetry
of these representations of SL2(Z) was established by Coste and Gannon [1999]
and by Bantay [2003].

In this section, we will prove that such Galois symmetry holds for all modular
representations of a modular category as stated in Theorem II (iii) and (iv). It will
follow from Theorem 3.10 that this Galois symmetry holds for the representation ρV

defined by modular transformation of the trace functions of any VOA V satisfying
(V1) and (V2).

The Galois symmetry for the canonical modular representation of the Drinfeld
center of a spherical fusion category (Lemma 4.2) plays a crucial for the general
case, and we will provide its proof in the next section.

Galois action on a normalized S-matrix. Let A be a modular category over k with
Frobenius–Schur exponent N , and let ρ be a level n modular representation of A.
By virtue of Theorem II (i) and (ii), N |n |12N and ρ(SL2(Z))≤GL5(Qn), where
5A is simply abbreviated as 5.

A fixed 6-th root ζ of the anomaly of A determines the modular representation ρζ

of A (see (1-7)). It follows from Section 1.2 that ρ = ρζx for some 12-th root of
unity x ∈ k. Let

s = ρ(s) and t = ρ(t).

Then

s =
ζ 3

x3 p+A
s̃, t =

x
ζ

t̃ ∈ GL5(Qn). (4-1)

Thus s2
= x6C = ±C , where C is the charge conjugation matrix [δi j∗]i, j∈5. Set

sgn(s)= x6.
Following [de Boer and Goeree 1991, Appendix B], [Coste and Gannon 1994]

or [Etingof et al. 2005, Appendix], for each σ ∈ Aut(Qab), there exists a unique
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permutation, denoted by σ̂ , on 5 such that

σ

(
si j

s0 j

)
=

si σ̂ ( j)

s0σ̂ ( j)
for all i, j ∈5. (4-2)

Moreover, there exists a function εσ :5→ {±1} such that

σ(si j )= εσ (i)sσ̂ (i) j = εσ ( j)si σ̂ ( j) for all i, j ∈5. (4-3)

Define Gσ ∈ GL5(Z) by (Gσ )i j = εσ (i)δσ̂ (i) j . Then (4-3) can be rewritten as

σ(s)= Gσ s = sG−1
σ (4-4)

where (σ (y))i j = σ(yi j ) for y ∈ GL5(Qn). Since Gσ ∈ GL5(Z), this equation
implies that the assignment,

Aut(Qab)→ GL5(Z), σ 7→ Gσ

defines a representation of the group Aut(Qab) (see [Coste and Gannon 1994]).
Moreover,

σ 2(s)= Gσ sG−1
σ , (4-5)

Gσ = σ(s)s−1
= σ(s−1)s. (4-6)

Note that the permutation σ̂ on 5 depends only on the modular category A, as
si j/s0 j = s̃i j/s̃0 j in (4-2). However, the matrix Gσ does depend on s, and hence the
representation ρ.

Suppose t̃ = [δi jθj ]i, j∈5. Then t = x t̃/ζ is a diagonal matrix of order n. If
σ |Qn = σa for some integer a relatively prime to n, then

σ(t)= σa(t)= ta.

By virtue of (4-5), to prove Theorem II (iii), it suffices to show that

σ 2(t)= Gσ tG−1
σ . (4-7)

We first establish the following simple observation.

Lemma 4.1. For any integers a, b such that ab ≡ 1 (mod n), we have

s2
= (tastbsta)2.

Proof. It follows from direct computation that

s2
≡

[
0 −a
b 0

]2

≡ (tastbsta)2 (mod n).

By Theorem II (i), ρ factors through SL2(Zn) and so we obtain the equality. �
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Galois symmetry of Drinfeld doubles. Before we return to prove the Galois sym-
metry for general modular categories, we need to settle the special case, stated in
the following lemma, when A is the Drinfeld center of a spherical fusion category
over k, and ρ is the canonical modular representation of A.

Lemma 4.2. Let C be a spherical fusion category over k, and take σ ∈ Aut(Qab).
Suppose Gσ is the signed permutation matrix determined by the canonical normal-
ization s = s̃/dim C of the S-matrix of the center Z(C), i.e., Gσ = σ(s)s−1. Then
the T-matrix t̃ of Z(C) satisfies

σ 2(t̃)= Gσ t̃G−1
σ . (4-8)

In particular, if (Gσ )i j = εσ (i)δσ̂ (i) j for some sign function εσ and permutation σ̂
on 5Z(C), then σ 2(t̃i i )= t̃σ̂ (i)σ̂ (i) for all i ∈5Z(C). Moreover, for any integers a, b
relatively prime to N = ord(t̃) such that σ |QN = σa and ab ≡ 1 (mod N ),

Gσ = t̃ast̃bst̃as−1.

The proof of this lemma, which requires the machinery of generalized Frobenius–
Schur indicators, will be developed independently in Section 5.

Galois symmetry of general modular categories. Let c be the braiding of the mod-
ular category A. Without loss of generality, we further assume the underlying
pivotal category of A is strict. We set

σX⊗Y (V )= (cX,V ⊗ Y ) ◦ (X ⊗ c−1
V,Y )

for any X, Y, V ∈A. Then (X ⊗ Y, σX⊗Y ) is a simple object of Z(A) if X , Y are
simple objects of A. Moreover, if Vi denotes a representative of i ∈5, then

{(Vi ⊗ Vj , σVi⊗Vj ) | i, j ∈5}

forms a complete set of representatives of simple objects in Z(A) (see [Müger 2003b,
Section 7]). Let (i, j) ∈5×5 denote the isomorphism class of (Vi ⊗ Vj , σVi⊗Vj )

in Z(A). Then we have 5Z(A) = 5×5 and the isomorphism class of the unit
object of Z(A) is (0, 0) ∈5Z(A).

Let s̃ and t̃ = [δi jθi ]i, j∈5 be the S- and T-matrices of A respectively. Then the
S- and T-matrices of the center Z(A), denoted by s̃ and t̃ respectively, are indexed
by 5×5. By [Ng and Schauenburg 2010, Section 6],

s̃i j,kl = s̃ik s̃jl∗, t̃i j,kl = δikδjl
θi

θj
.

Thus FSexp(A)= ord( t̃)= ord(t̃)= N .
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Proof of Theorem II (iii) and (iv). The canonical normalization s of s̃ is

si j,kl =
1

dimA
s̃ik s̃jl∗ = sgn(s)siksjl∗,

where sgn(s)=±1 is given by s2
=sgn(s)C (see (4-1)). Moreover, s∈GL5×5(QN ).

For σ ∈ Aut(Qab), we have

σ(si j,kl)= sgn(s)εσ (i)εσ ( j)sσ̂ (i)ksσ̂ ( j)l∗ = εσ (i)εσ ( j)sσ̂ (i)σ̂ ( j),kl = εσ (i, j)sσ̂ (i, j),kl,

where εσ and σ̂ are respectively the associated sign function and permutation on
5×5. Thus,

εσ (i, j)= εσ (i)εσ ( j), σ̂ (i, j)= (σ̂ (i), σ̂ ( j))

and so
(Gσ )i j,kl = εσ (i)εσ ( j)δσ̂ (i)kδσ̂ ( j)l

where Gσ is the associated signed permutation matrix of σ on s. By Lemma 4.2,
we find

σ 2
(
θi

θj

)
= σ 2( t̃i j,i j )= t̃σ̂ (i, j),σ̂ (i, j) = t̃σ̂ (i)σ̂ ( j),σ̂ (i)σ̂ ( j) =

θσ̂ (i)

θσ̂ ( j)

for all i, j ∈5. Since θ0 = 1,

θσ̂ (i)

σ 2(θi )
=

θσ̂ (0)

σ 2(θ0)
= θσ̂ (0)

for all i ∈5. By (4-1), t = ζ̃−1 t̃ where ζ̃ = ζ/x . Then

tσ̂ (i)σ̂ (i) =
θσ̂ (i)

ζ̃
=
σ 2(θi )θσ̂ (0)

ζ̃
= σ 2(ti i )β (4-9)

for all i ∈5, where β= tσ̂ (0)σ̂ (0) ·σ 2(ζ̃ )∈k×. Suppose σ |Qn =σa for some integer a
relatively prime to n. Then (4-9) is equivalent to the equalities

Gσ tG−1
σ = βta2

or G−1
σ ta2

Gσ = β
−1t. (4-10)

Now it suffices to show that β = 1.
Apply σ 2 to the equation (s−1t)3 = id. It follows from (4-10) that

id= Gσ s−1G−1
σ ta2

Gσ s−1G−1
σ ta2

Gσ s−1G−1
σ ta2

= β−2(Gσ s−1ts−1ts−1G−1
σ ta2

).

This implies

id= β−2(s−1ts−1ts−1G−1
σ ta2

Gσ )= β
−3(s−1ts−1ts−1t)= β−3 id .

Therefore, β3
= 1.
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Apply σ−1 to the equality sts = t−1st−1. Since σ−1
|Qn = σb where b is an

inverse of a modulo n, we have

G−1
σ stbsGσ = t−bsGσ t−b or stbs = Gσ t−bsGσ t−bG−1

σ .

This implies

G−1
σ tastbstaGσ = G−1

σ taGσ t−bsGσ t−bG−1
σ taGσ

= σ−1(G−1
σ ta2

Gσ )t−bsGσ t−bσ−1(G−1
σ ta2

Gσ )

= σ−1(β−1)tbt−bsGσ t−bσ−1(β−1)tb

= σ−1(β−2)sGσ .

Therefore,
tastbsta

= σ−1(β−2)Gσ s. (4-11)

Note that
(Gσ s)2 = Gσ sGσ s = sG−1

σ Gσ s = s2.

Square both sides of (4-11) and apply Lemma 4.1. We obtain

s2
= σ−1(β−4)s2.

Consequently, σ−1(β−4)= 1 and this is equivalent to β4
= 1. Now we can conclude

that β = 1 and so
Gσ tG−1

σ = ta2
.

By (4-11), we also have Gσ = tastbstas−1. �

Remark 4.3. For the case A=Rep(D(H)), where H is a semisimple Hopf algebra,
the T-matrix t̃ of A was proven to satisfy σ 2(t̃i i )= t̃σ̂ (i)σ̂ (i) in [Sommerhäuser and
Zhu 2012, Proposition 12.1]. The underlying modular representation of A, in the
context of Theorem II (iii) and (iv), is the canonical modular representation of A
described in Section 1.4.

We can now establish the Galois symmetry of RCFT as a corollary.

Corollary 4.4. Let V be a vertex operator algebra satisfying (V1) and (V2) with
simple V-modules M0, . . . ,M p. Then the genus one S- and T-matrices of V admit
the Galois symmetry: for σ ∈ Aut(Qab), there exists a signed permutation matrix
Gσ ∈ GLp+1(C) such that

σ(S)= Gσ S = SGσ and σ 2(T )= GσT G−1
σ

where the associated permutation σ̂ ∈ Sp+1 of Gσ is determined by

σ

(
Si j

S0 j

)
=

Si σ̂ ( j)

S0σ̂ ( j)
for all i, j = 0, . . . , p.
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In particular, σ 2(Ti i )= Tσ̂ (i)σ̂ (i). If n = ord(T ) and σ |Qn = σa for some integer a
relatively prime to n, then

Gσ = T a ST b ST a S−1

where b is an inverse of a modulo n.

Proof. The result is an immediate consequence of Theorem 3.10 and Theorem II
(iii) and (iv). �

Remark 4.5. The modular representation ρ factors through a representation given
by ρn : SL2(Zn)→ GL5(k). For any integers a, b such that ab ≡ 1 (mod n), the
matrix

da =

[
a 0
0 b

]
≡ tastbstas−1 (mod n)

is uniquely determined in SL2(Zn) by the coset a + nZ of Z. Moreover, the
assignment u : Gal(Qn/Q)→ SL2(Zn), σa 7→ da , defines a group monomorphism.
Theorem II (iv) implies that the representation φρ :Gal(Qn/Q)→GL5(Z), σ 7→Gσ ,
associated with ρ, also factors through ρn , satisfying the following commutative
diagram:

Gal(Qn/Q)
φρ //

u
��

GL5(k)

SL2(Zn)

ρn
88

SL2(Z)πn
oo

ρ

OO

The Galois symmetry enjoyed by the T-matrix of the Drinfeld center of a spherical
fusion category (Lemma 4.2) does not hold for a general modular category, as
demonstrated in the following example.

Example 4.6. Consider the Fibonacci modular category A over C which has only
one isomorphism class of non-unit simple objects. We abbreviate this non-unit
class by 1 (see [Rowell et al. 2009, Section 5.3.2]). Thus, 5A = {0, 1}. The S- and
T-matrices are given by

s̃ =
[

1 ϕ

ϕ −1

]
, t̃ =

[
1 0
0 e

4π i
5

]
.

where ϕ = (1+
√

5)/2. The central charge is c= 14/5 and the global dimension
is dimA= 2+ϕ. Therefore, α = e7π i/5 is the anomaly of A and ζ = e7π i/30 is a
6-th root of α (see (1-9)). Thus

s = ρζ (s)=
1

√
2+ϕ

s̃, t = ρζ (t)=

[
e
−7π i

30 0
0 e

17π i
30

]
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and ρζ is a level 60 modular representation of A by Theorem II. In Gal(Q60/Q), the
unique nontrivial square is σ49. Since σ7(

√
5)=−

√
5, we have σ7(s̃i0/s̃00)= s̃i1/s̃01.

Therefore, σ̂7 is the transposition (0, 1) on 5A, and

σ 2
7 (t)= σ49(t)=

[
e

17π i
30 0
0 e

−7π i
30

]
=

[
t11 0
0 t00

]
.

However, the Galois symmetry does not hold for t̃ , as

σ 2
7 (t̃)=

[
1 0
0 e

6π i
5

]
6=

[
t̃11 0
0 t̃00

]
.

We close this section with the following proposition which provides a necessary
and sufficient condition for such Galois symmetry of the T-matrix t̃ of a modular
category.

Proposition 4.7. Suppose A is a modular category over k with Frobenius–Schur
exponent N and T-matrix t̃ = [δi jθi ]i, j∈5A . Let ζ ∈ k be a 6-th root of the anomaly
α = p+A /p−A of A. Then, for any σ ∈ Aut(Qab) and i ∈5A,

θσ̂ (i)

σ 2(θi )
= θσ̂ (0) =

ζ

σ 2(ζ )
. (4-12)

Moreover, the following statements are equivalent:

(i) θσ̂ (0) = 1 for all σ ∈ Aut(Qab).

(ii) σ 2(θi )= θσ̂ (i) for all σ ∈ Aut(Qab).

(iii) (p+A /p−A )
4
= 1.

Proof. By (1-7), the assignment

ρζ (s)= s = λ−1s̃, ρζ (t)= t = ζ−1 t̃

defines a modular representation of A where λ = p+A /ζ
3. For σ ∈ Aut(Qab) and

i ∈5A, Theorem II (iii) implies that

σ 2
(
θi

ζ

)
= σ 2(ti i )= tσ̂ (i)σ̂ (i) =

θσ̂ (i)

ζ
.

Thus (4-12) follows, as θ0 = 1.
By (4-12), the equivalence of (i) and (ii) is obvious. Statement (i) is equivalent to

σ 2(ζ )= ζ for all σ ∈ Aut(Qab). (4-13)

Since the anomaly α is a root of unity, so is ζ . By Lemma A.2, (4-13) holds if and
only if ζ 24

= 1 or α4
= 1. �
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Remark 4.8. For a modular category A over C, it follows from (1-9) that the
anomaly of A is a fourth root of unity if and only if its central charge c is an integer
modulo 8.

5. Galois symmetry of quantum doubles

In this section, we provide a proof for Lemma 4.2 which is a special case of
Theorem II (iii) and (iv), but which is also crucial to the proof of the theorem. We
will invoke the machinery of generalized Frobenius–Schur indicators for spherical
fusion categories introduced in [Ng and Schauenburg 2010].

Generalized Frobenius–Schur indicators. Frobenius–Schur indicators for group
representations have been recently generalized to the representations of Hopf
algebras [Linchenko and Montgomery 2000] and quasi-Hopf algebras [Mason
and Ng 2005; Schauenburg 2004; Ng and Schauenburg 2008]. A version of the
second Frobenius–Schur indicator was introduced in conformal field theory [Bantay
1997], and some categorical versions were studied in [Fuchs et al. 1999; Fuchs
and Schweigert 2003]. All these different contexts of indicators are specializations
of the Frobenius–Schur indicators for pivotal categories introduced in [Ng and
Schauenburg 2007b].

The most recent introduction of the equivariant Frobenius–Schur indicators
for semisimple Hopf algebras by [Sommerhäuser and Zhu 2012] has motivated
the discovery of generalized Frobenius–Schur indicators for pivotal categories
[Ng and Schauenburg 2010]. The specialization of these generalized Frobenius–
Schur indicators to spherical fusion categories carries a natural action of SL2(Z).
This modular group action has played a crucial role for the congruence subgroup
theorem [Ng and Schauenburg 2010, Theorem 6.8] of the projective representation
of SL2(Z) associated with a modular category. These indicators also admit a
natural action of Aut(Qab) which will be employed to prove the Galois symmetry
of quantum doubles in this section. For the purpose of this paper, we will only
provide relevant details of generalized Frobenius–Schur indicators for our proof
to be presented here. The readers are referred to [Ng and Schauenburg 2010] for
more details.

Suppose C is a strict spherical fusion category over k with Frobenius–Schur
exponent N . For any pair (m, l) of integers, V ∈ C and X = (X, σX ) ∈ Z(C),
there is a naturally defined k-linear operator E (m,l)X,V on the finite-dimensional
k-space C(X, V m) (see [Ng and Schauenburg 2010, Section 2]). Here, V 0

= 1;
V m
= (V∨)−m if m < 0; and V m is the m-fold tensor product of V if m > 0. The

(m, l)-th generalized Frobenius–Schur indicator for X ∈ Z(C) and V ∈ C is

νX
m,l(V ) := tr

(
E (m,l)X,V

)
(5-1)
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where tr denotes the ordinary trace map. In particular, for m > 0 and f ∈ C(X, V m),
the operator E (m,1)X,V ( f ) is the following composition:

X
X⊗ dbV∨
−−−−−→ X⊗V∨⊗V

σX (V∨)⊗V
−−−−−−→V∨⊗X⊗V

V∨⊗ f⊗V
−−−−−→V∨⊗V m

⊗V
evV⊗V m

−−−−−→V m .

It can be shown by graphical calculus that, for m, l ∈ Z with m 6= 0,

E (m,l)X,V =
(
E (m,1)X,V

)l and
(
E (m,1)X,V

)m N
= id (5-2)

(see [Ng and Schauenburg 2010, Lemmas 2.5 and 2.7]). Hence, for m 6= 0, we have

νX
m,l(V )= tr

((
E (m,1)X,V

)l)
. (5-3)

Note that ν1
m,1(V ) coincides with the Frobenius–Schur indicator νm(V ) of V ∈ C

introduced in [Ng and Schauenburg 2007b].

Galois group action on generalized Frobenius–Schur indicators. Let K(Z(C))
denote the Grothendieck ring of Z(C) and let Kk(Z(C))= K(Z(C))⊗Z k. For any
matrix y ∈ GL5(k), we define the linear operator F(y) on Kk(Z(C)) by

F(y)( j)=
∑
i∈5

yi j i for all j ∈5,

where 5=5Z(C). Then F : GL5(k)→ Autk(Kk(Z(C)) is a group isomorphism.
In particular, every representation ρ :G→GL5(k) of a group G can be considered
as a G-action on Kk(Z(C)) through F . More precisely, for g ∈ G, we define

g j = F(ρ(g))( j) for all j ∈5.

Let s̃ and t̃ be the S- and T-matrices of Z(C). The SL2(Z)-action on Kk(Z(C))
associated with the canonical modular representation ρZ(C) of Z(C) is then given by

s j =
∑
i∈5

si j i and t j = θj j, (5-4)

where t̃ = [δi jθj ]i, j∈5 and s = s̃/dim C (see (1-10)). Note that s ∈ GL5(QN ) by
Theorem II (ii), since N = ord(t̃).

Now we extend the generalized indicator νX
m,l(V ) linearly via the basis 5 to

a functional IV ((m, l),−) on Kk(Z(C)). Let V ∈ C and (m, l) ∈ Z2, and let
z =

∑
i∈5 αi i ∈ Kk(Z(C)) for some αi ∈ k. Then we define

IV ((m, l), z)=
∑
i∈5

αiν
Xi
m,l(V )

where Xi denotes an arbitrary object in the isomorphism class i . The SL2(Z)-
actions on Z2 and on Kk(Z(C)) are related by these functionals on Kk(Z(C)). In
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the following theorem, we summarize some results on these generalized indicators
relevant to the proof of Lemma 4.2 (see Section 5 of [Ng and Schauenburg 2010]).

Theorem 5.1. Let C be a spherical fusion category C over k with Frobenius–Schur
exponent N . Suppose z ∈Kk(Z(C)), X = (X, σX ) ∈ Z(C), V ∈ C, (m, l) ∈ Z2 and
J =

[ 1
0

0
−1

]
. Then:

(i) νX
m,l(V ) ∈QN .

(ii) νX
1,0(V )= dimk C(X, V ).

(iii) IV ((m, l)γ, z)= IV ((m, l), γ J z) for γ ∈ SL2(Z), where γ J
= Jγ J .

In particular, Aut(Qab) acts on the generalized Frobenius–Schur indicators νX
m,l(V ).

�

For σ ∈ Aut(Qab), the matrix Gσ = σ(s)s−1 is also given by

(Gσ )i j = εσ (i)δσ̂ (i) j

for some sign function εσ and permutation σ̂ on 5 (see (4-2), (4-3) and (4-4)).
Define fσ = F(Gσ ). Then

fσ j = εσ (σ̂−1( j))σ̂−1( j) for j ∈5. (5-5)

Since the assignment Aut(Qab)→GL5(Z), σ 7→Gσ is a representation of Aut(Qab),

fσ fτ = fστ for all σ, τ ∈ Gal(QN/Q).

Therefore, by direct computation,

fσ−1 j = f−1
σ j = εσ ( j)σ̂ ( j) for j ∈5.

Remark 5.2. Since s ∈GL5(QN ), if σ, σ ′∈Aut(Qab) such that σ |QN =σ
′
|QN , then

Gσ = Gσ ′ and so fσ = fσ ′ .

Now we can establish the following lemma which describes a relation between
the Aut(Qab)-action on Kk(Z(C)) and the SL2(Z)-action in terms of the functionals
IV ((m, l),−).

Lemma 5.3. Take V ∈ C and let a, l be nonzero integers such that a is relatively
prime to lN . Suppose σ ∈Aut(Qab) satisfies σ |QN = σa . Then, for all z ∈Kk(Z(C)),

IV ((a, l), z)= IV ((1, 0), t−alfσ z).

Proof. Let Xj be a representative of j ∈5. By (5-2), (5-3) and Theorem 5.1 (i), for
any nonzero integer m, there is a linear operator Em = E (m,1)Xj ,V on a finite-dimensional
space such that (Em)

mN
= id and

ν
Xj
m,k(V )= tr(Ek

m) ∈QN
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for all integers k. In particular, the eigenvalues of Em are |mN|-th roots of unity.
Suppose τ ∈Aut(Qab) such that τ |Q|lN| = σa . Then τ |QN = σa = σ |QN . Therefore,

σ(ν
Xj
l,−1(V ))= τ(tr(E

−1
l ))= tr(E−a

l )= ν
Xj
l,−a(V )= IV ((l,−a), j) (5-6)

and

σ(ν
Xj
1,l(V ))= σa(tr(E l

1))= tr(E la
1 )= ν

Xj
1,la(V )

= IV ((1, la), j)= IV ((1, 0)tla, j)= IV ((1, 0), t−la j). (5-7)

Here, the last equality follows from Theorem 5.1 (iii).
On the other hand, by Theorem 5.1 (iii), we have

ν
Xj
1,l(V )= IV ((1, l), j)= IV ((l,−1)s−1, j)= IV ((l,−1), s j)=

∑
i∈5

si jν
Xi
l,−1(V ).

Therefore, (5-6) and Theorem 5.1 (iii) imply

σ(ν
Xj
1,l(V ))= σ

(∑
i∈5

si jν
Xi
l,−1(V )

)
=

∑
i∈5

εσ ( j)si σ̂ ( j)σ(ν
Xi
l,−1(V ))

=

∑
i∈5

εσ ( j)si σ̂ ( j) IV ((l,−a), i)= IV ((l,−a), εσ ( j)s σ̂ ( j))

= IV ((l,−a), s(fσ−1 j))= IV ((l,−a)s−1, fσ−1 j)= IV ((a, l), fσ−1 j).

It follows from (5-7) that, for all j ∈5,

IV ((a, l), fσ−1 j)= IV ((1, 0), t−la j)

and so

IV ((a, l), fσ−1 z)= IV ((1, 0), t−laz)

for all z ∈ Kk(Z(C)). The assertion follows by replacing z with fσ z. �

Remark 5.4. Some related equalities for the representation categories of semi-
simple Hopf algebras were obtained in [Sommerhäuser and Zhu 2012, Corol-
lary 12.4] with a similar strategy. Because of the conceptual differences of the
definitions of generalized Frobenius–Schur indicators for spherical fusion categories
and the counterpart for semisimple Hopf algebras introduced in that paper, their
approach generally cannot be adapted in fusion categories.

Proof of Lemma 4.2. Let σ ∈ Aut(Qab) and let σ |QN = σa for some integer a
relatively prime to N . Then σ−1

|QN = σb where b is an inverse of a modulo N .
By Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime q
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such that q ≡ b (mod N ) and q -a. By Lemma 5.3 and Theorem 5.1 (iii), for j ∈5,

IV ((1, 0), t−1fσ t
q fσ−1 j)

= IV ((1, 0), t−aq fσ t
q fσ−1 j)= IV ((a, q), tq fσ−1 j)

= IV ((a, q)t−q , fσ−1 j)= IV ((a, q − aq), fσ−1 j)

= IV ((1, 0), t−aq+a2q fσ fσ−1 j)= IV ((1, 0), t−1+a j). (5-8)

Using (5-4) and (5-5), we can compute directly the two sides of (5-8). This implies

θ−1
j θ

q
σ̂ ( j)ν

Xj
1,0(V )= θ

a−1
j ν

Xj
1,0(V )

for all V ∈ C. Take V = Xj to be the underlying C-object of Xj . We then have
ν

Xj
1,0(Xj )= dimk C(Xj , Xj )≥ 1. Therefore, we have θ−1

j θ
q
σ̂ ( j) = θ

a−1
j , and hence

θ
q
σ̂ ( j) = θ

a
j or θσ̂ ( j) = θ

a2

j .

This is equivalent to the equality

σ 2(t̃)= Gσ t̃G−1
σ .

Since t̃ st̃ st̃ = s, we find that

Gσ s = σ(s)= σ(t̃ st̃ st̃)= t̃asG−1
σ t̃aGσ st̃a

= t̃asG−1
σ t̃a2bGσ st̃a

= t̃as(G−1
σ t̃a2

Gσ )
bst̃a
= t̃ast̃bst̃a. (5-9)

Therefore,
Gσ = t̃ast̃bst̃as−1. �

6. Anomaly of modular categories

In this section, we apply the congruence property and Galois symmetry of a modu-
lar category (Theorem II) to deduce some arithmetic relations among the global
dimension, the Frobenius–Schur exponent and the order of the anomaly.

Let A be a modular category over k with Frobenius–Schur exponent N . Since
d(V ) ∈ QN for V ∈ A (see [Ng and Schauenburg 2010, Proposition 5.7]), the
anomaly α = p+A /p−A of A is a root of unity in QN . Therefore, αN

= 1 if N is even,
and α2N

= 1 if N is odd.
Let us define JA = (−1)1+ordα to record the parity of the order of the anomaly α

of A. Note that JA is intrinsically defined by A. It will become clear that JA is closely
related to the Jacobi symbol

(
∗

∗

)
in number theory. When 4 - N , the quantity JA

determines whether dimA has a square root in QN .

Theorem 6.1. Let A be a modular category over k with Frobenius–Schur exponent
N such that 4 -N. Then JA dimA has a square root in QN and −JA dimA does not
have any square root in QN .
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Proof. Let ζ ∈ k be a 6-th root of the anomaly α = p+A /p−A of A. By Corollary 2.5,
there exists a 12-th root of unity x ∈ k such that(

x
ζ

)N

= 1 and
x3 p+A
ζ 3 ∈QN .

Note that (p+A /ζ
3)2 = dimA.

Set N ′ = N if N is odd and N ′ = N/2 if N is even. In particular, N ′ is odd.
Then (x/ζ )N ′

=±1 and so

αN ′
= ζ 6N ′

= x6N ′
= x6.

By straightforward verification, one can show that x6
= JA. Therefore,(

x3 p+A
ζ 3

)2

= x6 dimA= JA dimA.

Suppose −JA dimA also has a square root in QN . Since JA dimA has a square
root in QN , so does −1. Therefore, 4 |N , a contradiction. �

When dimA is an odd integer, we will show that JA =
(
−1

dimA
)
. Let us fix our

convention in the following definition for the remainder of this paper.

Definition 6.2. Let A be a modular category over k.

(i) A is called mock integral if its global dimension dimA is an integer.

(ii) A is called integral if d(V ) ∈ Z for all V ∈A.

Remark 6.3. The standard definition of integral fusion categories is defined in
terms of Frobenius–Perron dimensions. Following [Etingof et al. 2005], a fusion
category C is called integral (resp. weakly integral) if FPdim V ∈Z for all V ∈C (resp.
FPdim C ∈ Z). Moreover, any weakly integral spherical fusion category C satisfies
the pseudounitary condition: FPdim C = dim C. Therefore, weakly integral modular
categories are obviously mock integral. The Deligne product of the Fibonacci
modular category (see [Rowell et al. 2009, Section 5.3.2]) with its Galois conjugate
is a mock integral modular category but not weakly integral.

It follows from [Hong and Rowell 2010, Lemma A.1] and [Etingof et al. 2005,
Proposition 8.24] that d(V ) ∈ Z for all objects V in a modular category A if and
only if FPdim V ∈ Z for all V ∈ A. Therefore, these two definitions of integral
modular categories are equivalent. A weakly integral modular category can also be
characterized by the integrality of d(V )2 as in the following lemma.

Lemma 6.4. A modular category A over k is weakly integral if and only if d(V )2

is an integer for any simple object V ∈A.
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Proof. By the modularity of A, we have that FPdimA = dimA/d(U )2 for some
simple object U . If d(V )2 ∈ Z for all simple objects V ∈ A, then dimA ∈ Z and
hence FPdimA ∈ Z. Conversely, if FPdimA ∈ Z, then FPdimA = dimA and
(FPdim V )2 ∈ Z for all simple objects V ∈ A by [Etingof et al. 2005, Proposi-
tions 8.24 and 8.27]. Since d(V )2 ≤ (FPdim V )2, the pseudounitarity of A implies
d(V )2 = (FPdim V )2 ∈ Z. �

Proposition 6.5. Let A be a mock integral modular category over k with Frobenius–
Schur exponent N and odd global dimension dimA. Then JA =

(
−1

dimA
)
. In

particular,

JA =
{

1 if dimA≡ 1 (mod 4),
−1 if dimA≡ 3 (mod 4).

Moreover, the square-free part of dimA is a divisor of N .

Proof. We may simply assume A contains a non-unit simple object. By [Etingof
2002, Theorem 5.1], N divides (dimA)3. In particular, N is odd. Let ϕ :QN → C

be any embedding. It follows from the proof of [Etingof et al. 2005, Proposition 2.9]
that ϕ(di ) is real for i ∈5A, and so ϕ(dimA)> 1. We can identify QN with ϕ(QN ).

If dimA is the square of an integer, then JA = 1 by Theorem 6.1, and we have(
−1

dimA
)
= 1. In this case, the last statement is trivial. Suppose dimA is not the

square of any integer. It follows from Theorem 6.1 that Q(
√

JA dimA) is a quadratic
subfield of QN . Note that Q(

√
p∗) is the unique quadratic subfield of Qp` for any

odd prime p and positive integer ` (see [Washington 1997]), where p∗ =
(
−1
p

)
p,

and that Q(
√

m) 6= Q(
√

m′) for any two distinct square-free integers m, m′. Let
p1, . . . , pk be the distinct prime factors of N . By counting the order 2 elements
of Gal(QN/Q), the quadratic subfields of QN are of the form Q(

√
d∗) where d is

a positive divisor of p1 · · · pk and where d∗ =
(
−1
d

)
d .

Let a be the square-free part of dimA. Then we have that
(
−1

dimA
)
=
(
−1
a

)
and Q(

√
JAa) = Q(

√
JA dimA). By the preceding paragraph, a | p1 · · · pk and

JA =
(
−1
a

)
. �

Remark 6.6. In [Sommerhäuser and Zhu 2009], integral modular categories with
the special Galois property

σ(s̃i j )= s̃σ̂ (i) j (6-1)

were discussed. These conditions are not satisfied by some common modular cate-
gories such as the Ising and Fibonacci modular categories. However, for semisimple
quasi-Hopf algebras with modular module categories, the first statement of the
preceding proposition was proved in [Sommerhäuser and Zhu 2009, Theorem 5.3].

A number of new results appear in the serious revision [Sommerhäuser and Zhu
2013] of [Sommerhäuser and Zhu 2009]. In Theorem 2.6 and Proposition 3.5 of
these papers, the same statement was established for integral modular categories
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satisfying (6-1) by considering the quadratic subfields of QN but using a different
approach.

The following proposition on modular categories is a slight variation of [Coste
and Gannon 1999, Proposition 3], and it was essentially proved [loc. cit.] under the
assumption of Galois symmetry which has been proved in the previous sections.

Proposition 6.7. Let A be a modular category over k, and let ρ be a modular
representation of A. Set s = ρ(s), t = [δi j ti ]i, j∈5A = ρ(t), n = ord(t) and

Kb =Q(sib/s0b | i ∈5A) for b ∈5A.

(i) Then σ 2(tb)= tb for σ ∈ Gal(Qn/Kb).

(ii) If A is integral, then the anomaly α = p+A /p−A of A is a 4-th root of unity.

(iii) Let K=Q(sib/s0b | i, b∈5A), and let k be the conductor of K, i.e., the smallest
positive integer k such that K⊆Qk . Then Gal(Qn/K) is an elementary 2-group,
and |Gal(Qn/Qk)| is a divisor of 8. Moreover, n/k is a divisor of 24, and
gcd(n/k, k) divides 2.

Proof. (i) For σ ∈ Gal(Qn/Kb), let εσ be the sign function determined by s (see
(4-3)). Suppose s2

= sgn(s)C where sgn(s)=±1. Then, by (4-2),

sgn(s)
s2

0b

=

∑
i∈5A

sibsib∗

s2
0b

=

∑
i∈5A

(
sib

s0b

)(
sib∗

s0b

)
=

∑
i∈5A

(
sib

s0b

)(
si∗b

s0b

)
∈ Kb.

Therefore, s2
0b ∈ Kb and so σ(s2

0b) = s2
0b. Since σ(s0b) = εσ (b)s0σ̂ (b), we have

s0σ̂ (b) = εs0b for some sign ε. Now, for i ∈5A,

sib

s0b
= σ

(
sib

s0b

)
=

si σ̂ (b)

s0σ̂ (b)
=
εsi σ̂ (b)

s0b
.

Thus, sib= εsi σ̂ (b) for all i ∈5A. If σ̂ (b) 6= b, then the b-th and the σ̂ (b)-th columns
of s are linearly dependent but this contradicts the invertibility of s. Therefore,
σ̂ (b)= b and hence, by Theorem II (iii), σ 2(tb)= tσ̂ (b) = tb.

(ii) If A is integral, then K0 = Q and hence σ 2(t0) = t0 for all σ ∈ Gal(Qn/Q).
Recall from Section 1.3 that t0 = x/ζ for some 6-th root ζ of α and some 12-th
root of unity x ∈ k. By Lemma A.2, x/ζ is a 24-th root of unity. Therefore,

α4
= ζ 24

= (ζ/x)24
= 1.

(iii) By (i), for σ ∈ Gal(Qn/K), we have σ 2(tb)= tb for all b ∈5A. Since Qn is
generated by tb (b ∈5A), we have σ 2

= id. Therefore, Gal(Qn/K) is an elementary
2-group, and so is Gal(Qn/Qk). Thus, for any integer a relatively prime to n such
that a ≡ 1 (mod k), we have a2

≡ 1 (mod n). By Lemma A.3, we have that n/k is
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a divisor of 24 and that gcd(n/k, k) |2. Moreover, |Gal(Qn/Qk)| = φ(n)/φ(k) is a
divisor of 8. �

Remark 6.8. The proof of the preceding proposition is a mere adaptation of [Coste
and Gannon 1999, Proposition 3]. For integral modular categories satisfying (6-1)
(see Remark 6.6), Proposition 6.7 (ii) and (iii) also appear in the final version of
[Sommerhäuser and Zhu 2013, Theorems 2.3.2 and 3.4] with similar ideas. The
following corollary was also established for factorizable quasi-Hopf algebras in
Theorem 4.3 of [Sommerhäuser and Zhu 2009; 2013] with a different approach.

Corollary 6.9. Let A be an integral modular category with anomaly α = p+A /p−A .
If dimA is odd, then α =

(
−1

dimA
)
.

Proof. If dimA is odd, then so is the Frobenius–Schur exponent N of A, as
N | (dimA)3. Since α ∈ QN and α4

= 1, we have α2
= 1. It follows from

Proposition 6.5 that

α = (−1)1+ordα
= JA =

(
−1

dimA

)
. �

The Ising modular category is an example of a weakly integral modular category
(see [Rowell et al. 2009, Section 5.3.4]) and its central charge is c= 1/2. Therefore,
its anomaly is eπ i/4, an eighth root of unity, and this holds for every weakly integral
modular category.

Theorem 6.10. The anomaly α = p+A /p−A of any weakly integral modular category
A is an eighth root of unity.

Proof. Suppose ζ ∈ k is a 6-th root of the anomaly α of a weakly integral modular
category A. Then λ = p+A /ζ

3 is a square root of dimA. Consider the modular
representation ρζ of A given by

ρζ : s 7→ s := 1
λ

s̃, t 7→ t := 1
ζ

t̃ .

Let t̃ = [δi jθi ]i, j∈5A be the T-matrix of A. Since s2
0i = d2

i /dimA ∈Q, we have, for
σ ∈ Aut(Qab),

s2
0i = σ(s

2
0i )= s2

0σ̂ (i)

or d2
i = d2

σ̂ (i) for all i ∈5A. By Theorem II (iii),

σ 2
(∑

i∈5A

d2
i
θi

ζ

)
=

∑
i∈5A

d2
i
θσ̂ (i)

ζ
=

∑
i∈5A

d2
σ̂ (i)

θσ̂ (i)

ζ
=

∑
i∈5A

d2
i
θi

ζ
.

Thus, we have
σ 2(p+A )

p+A
=
σ 2(ζ )

ζ
.
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Since dimA is a positive integer, σ 2(λ)= λ and so

σ 2(ζ 3)

ζ 3 =
σ 2(p+A /λ)

p+A /λ
=
σ 2(p+A )

p+A
=
σ 2(ζ )

ζ
.

Therefore, we find σ 2(ζ 2)/ζ 2
= 1 for all σ ∈Aut(Qab). It follows from Lemma A.2

that ζ 48
= 1 and so α8

= 1. �

Corollary 6.9 and the Cauchy theorem for Hopf algebras [Kashina et al. 2006] as
well as quasi-Hopf algebras [Ng and Schauenburg 2007a] suggest a more general
version of the Cauchy theorem may hold for spherical fusion categories or modular
categories over k. We finish this paper with two equivalent questions.

Question 6.11. Let C be a spherical fusion category over k with Frobenius–Schur
exponent N . Let O denote the ring of integers of QN . Must the principal ideals
O(dim C) and ON of O have the same prime ideal factors?

Since Z(C) is a modular category over k and (dim C)2= dim Z(C), the preceding
question is equivalent to the following:

Question 6.12. Let A be a modular category over k with Frobenius–Schur exponent
N . Let O denote the ring of integers of QN . Must the principal ideals O(dimA)
and ON of O have the same prime ideal factors?

By [Etingof 2002], (dimA)3/N ∈O. Therefore, the prime ideal factors of ON
are a subset of O dimA. The converse is only known to be true for the representation
categories of semisimple quasi-Hopf algebras, by [Ng and Schauenburg 2007a,
Theorem 8.4]. Question 6.11 was originally raised for semisimple Hopf algebras in
[Etingof and Gelaki 1999, Question 5.1], which had been solved in [Kashina et al.
2006, Theorem 3.4].

Appendix

The first lemma in this appendix could be known to some experts. An analogous
result for PSL2(Z) was proved by Wohlfahrt [1964, Theorem 2] (see also Newman’s
proof [1972, Theorem VIII.8]). However, we do not see the lemma as an immediate
consequence of Wohlfahrt’s theorem for PSL2(Z).

Lemma A.1. Let H be a congruence normal subgroup of SL2(Z). Then the level
of H is equal to the order of tH in SL2(Z)/H.

Proof. Let m be the level of H and let n = ord tH . Since tm ∈ 0(m)≤ H , we have
tm ∈ H and hence n |m.
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Suppose γ =
[a

c
b
d

]
∈ 0(n). Since ad − bc = 1, by Dirichlet’s theorem, there

exists a prime p -m such that p = d + kc for some integer k. Then

t−kγ tk =

[
a′ b′

c p

]
∈ 0(n)

for some integers a′, b′. In particular,

a′ p− b′c = 1, p ≡ a′ ≡ 1 (mod n) and c ≡ b′ ≡ 0 (mod n).

Since p -m, there exists an integer q such that pq ≡ 1 (mod m). Thus we have
pq ≡ 1 (mod n) and so q ≡ 1 (mod n). One can verify directly that[

a′ b′

c p

]
≡ tb

′qs−1t(−c+1)pstqstp (mod m).

Therefore,

t−kγ tk H = tb
′qs−1t(−c+1)pstqstp H = s−1tststH = s−1sH = H.

This implies t−kγ tk ∈ H , and hence γ ∈ H . Therefore, 0(n)≤ H and so m |n. �

The following fact should be well-known. We include the proof here for the
convenience of the reader.

Lemma A.2. Let ζ be a root of unity in k. Then σ 2(ζ )= ζ for all σ ∈ Aut(Qab) if
and only if ζ 24

= 1.

Proof. Let m be the order of ζ . Then Gal(Q(ζ )/Q) ∼= U (Zm). Note that the
group U (Zm) has exponent at most 2 if and only if m |24. Since Q(ζ ) is a Galois
extension over Q, the restriction map Aut(Qab)

res
−→ Gal(Q(ζ )/Q) is surjective.

Thus, if σ 2(ζ )= ζ for all σ ∈ Aut(Qab), then the exponent of Gal(Q(ζ )/Q) is at
most 2, and hence m |24. Conversely, if m |24, then the exponent of Gal(Q(ζ )/Q)
is at most 2, and so σ 2(ζ )= ζ for all σ ∈ Aut(Qab). �

The next lemma is a variation of the argument used in the proof of [Coste and
Gannon 1999, Proposition 3].

Lemma A.3. Let k be a positive divisor of a positive integer n. Suppose that, for
any integer a relatively prime to n such that a≡ 1 (mod k), we have a2

≡ 1 (mod n).
Then gcd(n/k, k) divides 2 and n/k is a divisor of 24. Moreover, φ(n)/φ(k) is a
divisor of 8.

Proof. Let π :U (Zn)→U (Zk) be the reduction map. The assumption implies that
kerπ is an elementary 2-group. It follows from the exact sequence

0→ kerπ→U (Zn)
π
→U (Zk)→ 0

that φ(n)/φ(k) is a power of 2, and so is gcd(n/k, k). Thus, if 2-gcd(n/k, k), then
gcd(n/k, k)= 1. By the Chinese remainder theorem, for any integer y relatively
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prime to n/k, there exists an integer a such that a≡ y (mod n)/k and a≡1 (mod k).
Thus, a2

≡ 1 (mod n), and hence y2
≡ 1 (mod n)/k. This implies the exponent

of U (Zn/k) is at most 2, and therefore n/k |24. Moreover, φ(n)/φ(k)= φ(n/k) is
a factor of 8.

Suppose 2 | gcd(n/k, k). Then k = 2uk ′ for some positive integer u and odd
integer k ′. The aforementioned conclusion implies n = 2vn′k ′ where v > u and
gcd(n′, 2vk ′)= 1. By the Chinese remainder theorem, the given condition implies
the kernel of the reduction map U (Z2v )→U (Z2u ) is an elementary 2-group. There-
fore, 2≤ v ≤ 3 if u = 1, and v = u+1 if u > 1. In both cases, gcd(n/k, k)= 2 and
φ(2v)/φ(2u) is a divisor of 4. By the aforementioned argument, for any integer y
relatively prime to n′, we have y2

≡ 1 (mod n)′. Therefore, n′ |24 and hence n′ |3.
Thus, n/k = n′2v−u

|12, and

φ(n)
φ(k)

= φ(n′)
φ(2v)
φ(2u)

is also a divisor of 8. �
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An averaged form of Chowla’s conjecture
Kaisa Matomäki, Maksym Radziwiłł and Terence Tao

Let λ denote the Liouville function. A well-known conjecture of Chowla asserts
that, for any distinct natural numbers h1, . . . , hk , one has∑

1≤n≤X

λ(n+ h1) · · · λ(n+ hk)= o(X)

as X→∞. This conjecture remains unproven for any h1, . . . , hk with k ≥ 2. Us-
ing the recent results of Matomäki and Radziwiłł on mean values of multiplicative
functions in short intervals, combined with an argument of Kátai and Bourgain,
Sarnak, and Ziegler, we establish an averaged version of this conjecture, namely∑

h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n+ h1) · · · λ(n+ hk)

∣∣∣∣= o(H k X)

as X→∞, whenever H = H(X)≤ X goes to infinity as X→∞ and k is fixed.
Related to this, we give the exponential sum estimate∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx = o(HX)

as X→∞ uniformly for all α ∈ R, with H as before. Our arguments in fact give
quantitative bounds on the decay rate (roughly on the order of log log H/ log H )
and extend to more general bounded multiplicative functions than the Liouville
function, yielding an averaged form of a (corrected) conjecture of Elliott.

1. Introduction

Let λ : N→ {−1,+1} be the Liouville function, that is to say, the completely
multiplicative function such that λ(p)=−1 for all primes p. The prime number
theorem implies that1 ∑

1≤n≤X

λ(n)= o(X)

MSC2010: 11P32.
Keywords: multiplicative functions, Hardy–Littlewood circle method, Chowla conjecture.

1See page 2174 for our asymptotic notation conventions.
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as X→∞. More generally, a famous conjecture of Chowla [1965] asserts that, for
any distinct natural numbers h1, . . . , hk , one has∑

1≤n≤X

λ(n+ h1) · · · λ(n+ hk)= o(X) (1-1)

as X→∞.
Chowla’s conjecture remains open for any h1, . . . , hk with k ≥ 2. Our first main

theorem establishes an averaged form of this conjecture:

Theorem 1.1 (Chowla’s conjecture on average). For any natural number k, and
any 10≤ H ≤ X , we have∑
1≤h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n+ h1) · · · λ(n+ hk)

∣∣∣∣
� k

(
log log H

log H
+

1

log1/3000 X

)
H k X. (1-2)

In fact, we have the slightly stronger bound∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

λ(n)λ(n+ h2) · · · λ(n+ hk)

∣∣∣∣
� k

(
log log H

log H
+

1

log1/3000 X

)
H k−1 X. (1-3)

In the case k = 2 our result implies that∑
1≤h≤H

∣∣∣∣ ∑
1≤n≤X

λ(n)λ(n+ h)
∣∣∣∣= o(HX)

provided that H →∞ arbitrarily slowly with X→∞ (and H ≤ X ). Note that the
k = 2 case of Chowla’s conjecture is equivalent to the above asymptotic holding in
the case that H is bounded rather than going to infinity.

In fact, we have a more precise bound than (1-2) (or (1-3)) that gives more
control on the exceptional tuples (h1, . . . , hk) for which the sums of the form∑

1≤n≤X λ(n + h1) · · · λ(n + hk) are large; see Remark 5.2. In particular, in the
special case k = 2 we get the following result.

Theorem 1.2. Let δ ∈ (0, 1] be fixed. There is a large but fixed H = H(δ) such
that, for all large enough X ,∣∣∣∣ ∑

1≤n≤X

λ(n)λ(n+ h)
∣∣∣∣≤ δX (1-4)

for all but at most H 1−δ/5000 integers |h| ≤ H.
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One can also replace the ranges 1≤hj ≤H in Theorem 1.1 by bj+1≤hj ≤bj+H
for any bj = O(X); see Theorem 1.6.

The exponents 1/3000 and 1/5000 in the above theorems may certainly be
improved, but we did not attempt to optimize the constants here. However, our
methods cannot produce a gain much larger than 1/log H , as one would then have
to somehow control λ on numbers that are not divisible by any prime less than H ,
at which point we are no longer able to exploit the averaging in the h1, . . . , hk

parameters. It would be of particular interest to obtain a gain of more than 1/log X ,
as one could then potentially localize λ to primes and obtain some version of the
prime tuples conjecture when the h1, . . . , hk parameters are averaged over short
intervals, but this is well beyond the capability of our methods. (If instead one is
allowed to average the h1, . . . , hk over long intervals of scale comparable to X , one
can obtain various averaged forms of the prime tuples conjecture and its relatives,
by rather different methods than those used here; see [Balog 1990; Mikawa 1992;
Kawada 1993; 1995; Green and Tao 2010].)

Theorem 1.1 is closely related to the following averaged short exponential sum
estimate, which may be of independent interest.

Theorem 1.3 (exponential sum estimate). For any 10≤ H ≤ X , one has

sup
α∈R

∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx �

(
log log H

log H
+

1

log1/700 X

)
HX.

Actually, for technical reasons it is convenient to prove a sharper version of
Theorem 1.3 in which the Liouville function has been restricted to those numbers
that have “typical” factorization; see Theorem 2.3. This sharper version will then
be used to establish Theorem 1.1.

The relationship between Theorems 1.1 and 1.3 stems from the following Fourier-
analytic identity:

Lemma 1.4 (Fourier identity). For H > 0, if f : Z→ C is a function supported on
a finite set, then∫

T

(∫
R

∣∣∣∣ ∑
x≤n≤x+H

f (n)e(αn)
∣∣∣∣2dx

)2

dα =
∑
|h|≤H

(H − |h|)2
∣∣∣∣∑

n

f (n) f̄ (n+ h)
∣∣∣∣2.

Proof. Using the Fourier identity
∫

T
e(nα) dα = 1n=0, we can expand the left-hand

side as∑
n,n′,m,m′

f (n) f̄ (n′) f (m) f̄ (m′)1n+m−n′−m′=0

×

(∫
R

1x≤n,n′≤x+H dx
)(∫

R

1y≤m,m′≤y+H dy
)
.
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Writing n′ = n+ h, we see that both integrals are equal to H − |h| if |h| ≤ H and
vanish otherwise. The claim follows. �

Theorem 1.3 may be compared with the classical estimate

sup
α∈R

∣∣∣∣ ∑
1≤n≤X

λ(n)e(αn)
∣∣∣∣�A X log−A X

of Davenport [1937], valid for any A > 0. Indeed, one can view Theorem 1.3 as
asserting that a weak form of Davenport’s estimate holds on average in short intervals.
It would be of interest to also obtain nontrivial bounds on the larger quantity∫ X

0
sup
α∈R

∣∣∣∣ ∑
x≤n≤x+H

λ(n)e(αn)
∣∣∣∣ dx (1-5)

but this appears difficult to establish with our methods.
As with other applications of the circle method, our proof of Theorem 1.3

splits into two cases, depending on whether the quantity α is on “major arc” or
on “minor arc”. In the “major arc” case we are able to use the recent results of
Matomäki and Radziwiłł [2015] on the average size of mean values of multiplicative
functions on short intervals. Actually, in order to handle the presence of complex
Dirichlet characters, we need to extend the results in [Matomäki and Radziwiłł
2015] to complex-valued multiplicative functions rather than real-valued ones; this
is accomplished in an appendix to this paper (Appendix A). In the “minor arc” case
we use a variant of the arguments of Kátai [1986] and Bourgain, Sarnak, and Ziegler
[Bourgain et al. 2013] (see also the earlier works of Montgomery and Vaughan
[1977] and Daboussi and Delange [1982]) to obtain the required cancellation. One
innovation here is to rely on a combinatorial identity of Ramaré (also used in
[Matomäki and Radziwiłł 2015]) as a substitute for the Turan–Kubilius inequality,
as this leads to superior quantitative estimates (particularly if one first restricts the
variable n to have a “typical” prime factorization).

Extension to more general multiplicative functions. Define a 1-bounded multi-
plicative function to be a multiplicative function f : N→ C such that | f (n)| ≤ 1
for all n ∈N. Given two 1-bounded multiplicative functions f , g and a parameter
X ≥ 1, we define the distance D( f, g; X) ∈ [0,+∞) by the formula

D( f, g; X) :=
(∑

p≤X

1−Re( f (p)g(p))
p

)1/2

.

This is known to give a (pseudo)metric on 1-bounded multiplicative functions; see
[Granville and Soundararajan 2007, Lemma 3.1]. We also define the asymptotic
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counterpart D( f, g;∞) ∈ [0,+∞] by the formula

D( f, g;∞) :=
(∑

p

1−Re( f (p)g(p))
p

)1/2

.

We informally say that f pretends to be g if D( f, g; X) (or D( f, g;∞)) is small
(or finite).

For any 1-bounded multiplicative function g and real number X >1, we introduce
the quantity

M(g; X) := inf
|t |≤X

D(g, n 7→ nit
; X)2, (1-6)

and then the more general quantity

M(g; X, Q) := inf
q≤Q;χ(q)

M(gχ; X)= inf
|t |≤X;q≤Q;χ(q)

D(g, n 7→ χ(n)nit
; X)2,

where χ ranges over all Dirichlet characters of modulus q ≤ Q. Informally,
M(g; X) is small when g pretends to be like a multiplicative character n 7→ nit ,
and M(g; X, Q) is small when g pretends to be like a twisted Dirichlet character
of modulus at most Q and twist of height at most X . We also define the asymptotic
counterpart

M(g;∞,∞)= inf
χ,t

D(g, n 7→ χ(n)nit
;∞)2

where χ now ranges over all Dirichlet characters and t ranges over all real numbers.
Elliott proposed in [1992, Conjecture II] the following more general form of

Chowla’s conjecture, which we phrase here in contrapositive form.

Conjecture 1.5 (Elliott’s conjecture). Let g1, . . . , gk : N→ C be 1-bounded mul-
tiplicative functions, and let a1, . . . , ak , b1, . . . , bk be natural numbers such that
any two of the pairs (a1, b1), . . . , (ak, bk) are linearly independent in Q2. Suppose
that there is an index 1≤ j0 ≤ k such that

M(gj0;∞,∞)=∞. (1-7)
Then ∑

1≤n≤X

k∏
j=1

gj (aj n+ bj )= o(X) (1-8)

as X→∞.

Informally, this conjecture asserts that for pairwise linearly independent pairs
(a1, b1), . . . , (ak, bk) and any 1-bounded multiplicative g1, . . . , gk , one has the
asymptotic (1-8) as X→∞, unless each of the gj pretends to be a twisted Dirichlet
character n 7→χ j (n)nitj . Note that some condition of this form is necessary, since if
g(n) is equal to χ(n)nit then g(n)g(n+ h) will be biased to be positive for large n,
if h is fixed and divisible by the modulus q of χ ; one also expects some bias when
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h is not divisible by this modulus since the sums
∑

n∈Z/qZ χ(n)χ(n+ h) do not
vanish in general. From the prime number theorem in arithmetic progressions it
follows that

M(λ;∞,∞)=∞,

so Elliott’s conjecture implies Chowla’s conjecture (1-1).
When one allows the functions gj to be complex-valued rather than real-valued,

Elliott’s conjecture turns out to be false on a technicality; one can choose 1-bounded
multiplicative functions gj which are arbitrarily close at various scales to a sequence
of functions of the form n 7→nitm (which allows one to violate (1-8)) without globally
pretending to be nit (or χ(n)nit ) for any fixed t ; we present this counterexample
in Appendix B. However, this counterexample can be removed by replacing (1-7)
with the stronger condition that

M(gj0; X, Q)→∞ (1-9)

as X→∞ for each fixed Q. In the real-valued case, (1-9) and (1-7) are equivalent
by a triangle inequality argument of Granville and Soundararajan which we give in
Appendix C.

As evidence for the corrected form of Conjecture 1.5 (in both the real-valued and
complex-valued cases), we present the following averaged form of that conjecture:

Theorem 1.6 (Elliott’s conjecture on average). Let 10 ≤ H ≤ X and A ≥ 1. Let
g1, . . . , gk : N → C be 1-bounded functions, and let a1, . . . , ak , b1, . . . , bk be
natural numbers with aj ≤ A and bj ≤ AX for j = 1, . . . , k. Let 1 ≤ j0 ≤ k, and
suppose that gj0 is multiplicative. Then one has

∑
1≤h1,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

gj (aj n+ bj + hj )

∣∣∣∣
� A2k

(
exp(−M/80)+

log log H
log H

+
1

log1/3000 X

)
H k X (1-10)

where

M := M(gj0; 10AX, Q) and Q :=min(log1/125 X, log20 H).

In fact, we have the slightly stronger bound

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )

∣∣∣∣
� A2k

(
exp(−M/80)+

log log H
log H

+
1

log1/3000 X

)
H k−1 X. (1-11)
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Note that if a1, . . . , ak , b1, . . . , bk are fixed, gj0 is independent of X and obeys
the condition (1-9) for any fixed Q, and H = H(X) is chosen to go to infinity
arbitrarily slowly as X →∞, then the quantity M in the above theorem goes to
infinity (note that M(g; X, Q) is nondecreasing in Q), and (1-11) then implies an
averaged form of the asymptotic (1-8). Thus Theorem 1.6 is indeed an averaged
form of the corrected form of Conjecture 1.5. (We discovered the counterexample
in Appendix B while trying to interpret Theorem 1.6 as an averaged version of the
original form of Conjecture 1.5.) Interestingly, only one of the functions g1, . . . , gk

in Theorem 1.6 is required to be multiplicative;2 one can use a van der Corput
argument to reduce matters to obtaining cancellation for a sum roughly of the form∑

h≤H

∣∣∑
1≤n≤X gj0(n)gj0(n+ h)

∣∣2, which can then be treated using Lemma 1.4.
For g(n)= λ(n) and X , Q, M as in the above theorem, one obtains, for every

ε > 0, the bound

M ≥ inf
|t |≤X;q≤Q;χ(q)

∑
exp((log X)2/3+ε)≤p≤X

1+Reχ(p)pit

p

≥

(
1
3
− ε

)
log log X + O(1).

(1-12)

The last inequality is established via standard methods from the Vinogradov–
Korobov type zero-free region{

σ + it : σ > 1−
c

max{log q, (log(3+ |t |))2/3(log log(3+ |t |))1/3}

}
for L(s, χ) and some absolute constant c > 0, which applies since χ has conduc-
tor q ≤ (log X)1/125 (so that there are no exceptional zeros); see [Montgomery
1994, §9.5]. Hence Theorem 1.6 implies Theorem 1.1. The same argument gives
Theorem 1.1 when the Liouville function λ is replaced by the Möbius function µ.
We remark that, as our arguments make no use of exceptional zeroes, all the implied
constants in our theorems are effective.

We also have a generalized form of Theorem 1.3:

Theorem 1.7 (exponential sum estimate). Let X ≥ H ≥10 and let g be a 1-bounded
multiplicative function. Then

sup
α∈T

∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

g(n)e(αn)
∣∣∣∣ dx

�

(
exp(−M(g; X, Q)/20)+

log log H
log H

+
1

log1/700 X

)
HX

2We thank the referee for observing this fact. In a previous version of this paper, all of the gj were
required to be multiplicative.
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where

Q :=min(log1/125 X, log5 H).

By (1-12), Theorem 1.7 implies Theorem 1.3.

Remark 1.8. In the recent preprint [Frantzikinakis and Host 2015], a different
averaged form of Elliott’s conjecture is established, in which one uses fewer av-
eraging parameters hi than in Theorem 1.6 (indeed, one can average over just a
single such parameter, provided that the linear parts of the forms are independent),
but the averaging parameters range over a long range (comparable to X ) rather
than on the short range given here. The methods of proof are rather different (in
particular, the arguments in [Frantzikinakis and Host 2015] rely on higher order
Fourier analysis). In the long-range averaged situation considered in [Frantzikinakis
and Host 2015], the counterexample in Appendix B does not apply, and one can
use the original form of Elliott’s conjecture in place of the corrected version. It
may be possible to combine the results here with those in [Frantzikinakis and Host
2015] to obtain an averaged version of Chowla’s or Elliott’s conjecture in which the
number of averaging parameters is small, and the averaging is over a short range,
but this seems to require nontrivial estimates on quantities such as (1-5), which we
are currently unable to handle.

Notation. Our asymptotic notation conventions are as follows. We use X � Y ,
Y� X , or X =O(Y ) to denote the estimate |X |≤CY for some absolute constant C .
If x is a parameter going to infinity, we use X = o(Y ) to denote the claim that
|X | ≤ c(x)Y for some quantity c(x) that goes to zero as x→∞ (holding all other
parameters fixed).

Unless otherwise specified, all sums are over the integers, except for sums over
the variable p (or p1, p2, etc.) which are understood to be over primes.

We use T := R/Z to denote the standard unit circle and let e : T→ C be the
standard character e(x) := e2π i x .

We use 1S to denote the indicator of a predicate S, thus 1S = 1 when S is true
and 1S = 0 when S is false. If A is a set, we write 1A(n) for 1n∈A, so that 1A is the
indicator function of A.

2. Restricting to numbers with typical factorization

To prove Theorem 1.6 and Theorem 1.7 (and hence Theorem 1.1 and Theorem 1.3),
it is technically convenient (as in the previous paper [Matomäki and Radziwiłł
2015]) to restrict the support of the multiplicative functions to a certain dense set S
of natural numbers that have a “typical” prime factorization in a certain specific
sense, in order to fully exploit a useful combinatorial identity of Ramaré (see (3-2)).
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This will lead to improved quantitative estimates in the arguments in subsequent
sections of the paper.

More precisely, we introduce the following sets S of numbers with typical prime
factorization, which previously appeared in [Matomäki and Radziwiłł 2015].

Definition 2.1. Let 10< P1 < Q1 ≤ X and
√

X ≤ X0 ≤ X be quantities such that
Q1 ≤ exp(

√
log X0). We then define Pj , Qj for j > 1 by the formulas

Pj := exp( j4 j (log Q1)
j−1 log P1), Qj := exp( j4 j+2(log Q1)

j )

for j > 1. Note that the intervals [Pj , Qj ] are disjoint and increase to infinity;
indeed, one easily verifies that

P1 < Q1 < exp(28 log Q1 log P1)= P2

and

Pj < exp( j4 j (log Q1)
j ) < Qj < exp(( j + 1)4( j+1)(log Q1)

j ) < Pj+1

for all j > 1. Let J be the largest index such that QJ ≤ exp(
√

log X0). Then we
define SP1,Q1,X0,X to be the set of all the numbers 1≤ n ≤ X which have at least
one prime factor in the interval [Pj , Qj ] for each 1≤ j ≤ J .

In practice, X will be taken to be slightly smaller than X2
0 . The need to have two

parameters X , X0 instead of one is technical (we need to have the freedom later in
the argument to replace X with a slightly smaller quantity X/d without altering J ),
but the reader may wish to pretend that X0 =

√
X for most of the argument.

This set is fairly dense if P1 and Q1 are widely separated:

Lemma 2.2. Let 10 < P1 < Q1 ≤ X and
√

X ≤ X0 ≤ X be quantities such that
Q1 ≤ exp(

√
log X0). Then, for every large enough X ,

#{1≤ n ≤ X : n 6∈ SP1,Q1,X0,X } �
log P1

log Q1
· X.

Proof. From the fundamental lemma of sieve theory (see, e.g., [Friedlander and
Iwaniec 2010, Theorem 6.17]) we know that, for any 1≤ j ≤ J and large enough X ,
the number of 1≤ n ≤ X that are not divisible by any prime in [Pj , Qj ] is at most

� X
∏

Pj≤p≤Qj

(
1−

1
p

)
�

log Pj

log Qj
X =

1
j2

log P1

log Q1
X.

Summing over j , we obtain the claim. �

Both Theorems 1.6 and 1.7 will be deduced from the following claim.

Theorem 2.3 (key exponential sum estimate). Let X, H,W ≥ 10 be such that

(log H)5 ≤W ≤min{H 1/250, (log X)1/125
}
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and let g be a 1-bounded multiplicative function such that

W ≤ exp(M(g; X, Q)/3). (2-1)

Set
S := SP1,Q1,

√
X ,X where P1 :=W 200, Q1 := H/W 3.

Then, for any α ∈ T, one has∫
R

∣∣∣∣ ∑
x≤n≤x+H

1S(n)g(n)e(αn)
∣∣∣∣ dx �

(log H)1/4 log log H
W 1/4 HX. (2-2)

In Section 5 we will show how this theorem implies Theorem 1.6. For now, let
us at least see how it implies Theorem 1.7:

Proof of Theorem 1.7 assuming Theorem 2.3. We may assume that X , H , and
M(g; X, Q) are larger than any specified absolute constant, since if one of these
expressions is bounded, then so is W . The claim (2-2) is then trivial with a suitable
choice of implied constant (discarding the (log H)1/4 log log H factor).

Choose H0 such that

log H0 :=min(log1/700 X log log X, exp(M(g; X, Q)/20)M(g; X, Q)).

We divide into two cases: H ≤ H0 and H > H0.
First suppose that H ≤ H0. Then if we set W := log5 H , one verifies that all the

hypotheses of Theorem 2.3 hold, and hence∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

1S(n)g(n)e(αn)
∣∣∣∣ dx �

log log H
log H

HX.

On the other hand, from Lemma 2.2, the choice of W , P1, Q1, and the bound on H ,
we see that

#{1≤ n ≤ X + H : n 6∈ S} �
log log H

log H
X

and thus, by Fubini’s theorem and the triangle inequality,∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

(1− 1S(n))g(n)e(αn)
∣∣∣∣ dx �

log log H
log H

HX.

Summing, we obtain Theorem 1.7 in this case.
Now suppose that H > H0. Covering [0, H ] by O(H/H0) intervals of length H0,

we see that∫ X

0

∣∣∣∣ ∑
x≤n≤x+H

g(n)e(αn)
∣∣∣∣ dx �

H
H0

∫ X+H

0

∣∣∣∣ ∑
x≤n≤x+H0

g(n)e(αn)
∣∣∣∣ dx .



An averaged form of Chowla’s conjecture 2177

Also, observe from the choice of H0 that the quantity

exp(−M(g; X, Q)/20)+
log log H

log H
+

1

log1/700 X

is unchanged up to multiplicative constants if one reduces H to H0. Finally, from
Mertens’ theorem we see that M(g; X + H, Q)= M(g; X, Q)+ O(1). The claim
then follows from the H = H0 case (after performing the minor alteration of
replacing X with X + H ). �

We now begin the proof of Theorem 2.3. The first step is to reduce to the case
where g is completely multiplicative rather than multiplicative. More precisely, we
will deduce Theorem 2.3 from the following proposition.

Proposition 2.4 (completely multiplicative exponential sum estimate). Assume
X, H,W ≥ 10 are such that

(log H)5 ≤W ≤min{H 1/250, (log X)1/125
},

and let g be a 1-bounded completely multiplicative function such that

W ≤ exp(M(g; X,W )/3). (2-3)

Let d be a natural number with d < W . Set

S := SP1,Q1,
√

X ,X/d where P1 :=W 200, Q1 := H/W 3.

Then for any α ∈ T one has∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H/d

1S(n)g(n)e(αn)
∣∣∣∣ dx �

1
d3/4

(log H)1/4 log log H
W 1/4 HX. (2-4)

Let us explain why Theorem 2.3 follows from Proposition 2.4. Let the hypotheses
and notation be as in Theorem 2.3. The function g is not necessarily completely
multiplicative, but we may approximate it by the 1-bounded completely multi-
plicative function g1 : N→ C, defined as the completely multiplicative function
with g1(p) = g(p) for all primes p. By Möbius inversion we may then write
g= g1∗h where ∗ denotes Dirichlet convolution and h is the multiplicative function
h = g ∗µg1. Observe that, for all primes p, we have h(p) = 0 and |h(p j )| ≤ 2
for j ≥ 2. We now write

∑
x≤n≤x+H

1SP1,Q1,
√

X ,X
g(n)e(αn)=

∞∑
d=1

h(d)
∑

x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X
(dm)g1(m)e(dαm)
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and so by the triangle inequality we may upper bound the left-hand side of (2-2) by

∞∑
d=1

|h(d)|
∫

R

∣∣∣∣ ∑
x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X
(dm)g1(m)e(dαm)

∣∣∣∣ dx .

Let us first dispose of the contribution where d ≥W . Here we trivially bound this
contribution by ∑

d≥W

|h(d)|
∑

m≤(2X+H)/d

O(H)

(after moving the absolute values inside the m summation and then performing the
integration on x first). We can bound this in turn by

� HX
1

W 1/4

∞∑
d=1

|h(d)|
d3/4 .

From Euler products we see that
∑
∞

d=1 |h(d)|/d
3/4
= O(1), so the contribution of

this case is acceptable.
Now we consider the contribution d < W < P1. In this case we may reduce

1SP1,Q1,
√

X ,X
(dm)= 1SP1,Q1,

√
X ,X/d

(m)

and so this contribution to (2-2) can be upper bounded by∑
1≤d<W

|h(d)|
∫

R

∣∣∣∣ ∑
x/d≤m≤x/d+H/d

1SP1,Q1,
√

X ,X/d
(m)g1(m)e(dαm)

∣∣∣∣ dx .

By Proposition 2.4, this is bounded by

∞∑
d=1

|h(d)|
d3/4

(log H)1/4 log log H
W 1/4 HX.

As before, we have
∑
∞

d=1 |h(d)|/d
3/4
= O(1), and Theorem 2.3 follows.

It remains to prove Proposition 2.4. For any α ∈ T, we know from the Dirichlet
approximation theorem that there exists a rational number a/q with (a, q)= 1 and
1≤ q ≤ H/W such that ∣∣∣∣α− a

q

∣∣∣∣≤ W
qH
≤

1
q2 .

In the next two sections, we will apply separate arguments to prove Proposition 2.4
in the minor arc case q > W and the major arc case q ≤W .
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3. Proof of minor arc estimate

We now prove Proposition 2.4 in the minor arc case q >W . It suffices to show that∫
R

θ(x)
∑

x/d≤n≤x/d+H/d

1S(n)g(n)e(αn) dx �
1

d3/4

(log H)1/4 log log H
W 1/4 HX (3-1)

whenever θ : R→ C is measurable, with |θ(x)| at most 1 for all x and supported
on [0, X ]. We will now use a variant of an idea of Bourgain, Sarnak, and Ziegler
[Bourgain et al. 2013] (building on earlier works of Kátai [1986], Montgomery and
Vaughan [1977] and Daboussi and Delange [1982]).

Let P be the set consisting of the primes lying between P1 and Q1. Then notice
that each n ∈ S has at least one prime factor from P . This leads to the following
variant of Ramaré’s identity (see [Friedlander and Iwaniec 2010, Section 17.3]):

1S(n)=
∑

p∈P,m:mp=n

1S ′(mp)
1+ #{q|m : q ∈ P}

, (3-2)

where S ′ is the set of all 1≤n≤ X/d that have at least one prime factor in each of the
intervals [Pj , Qj ] for j ≥ 2; the constraint n ≤ X/d arises from the corresponding
constraint in the definition of S.

Using this identity, we may write the left-hand side of (3-1) as∑
p∈P

∑
m

1S ′(mp)g(mp)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx .

As g is completely multiplicative, g(mp)= g(m)g(p). Thus it suffices to show that∑
p∈P

∑
m

1S ′(mp)g(m)g(p)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx

�
(log H)1/4 log log H

d3/4W 1/4 HX.

We can cover P by intervals [P, 2P] with P1� P � Q1 and P a power of two,
and observe that∑

P1�P�Q1
P=2 j

1
log P

� log log Q1− log log P1� log log H,

so by the triangle inequality it suffices to show that∑
p∈P

P≤p≤2P

∑
m

1S ′(mp)g(m)g(p)e(mpα)
1+ #{q|m : q ∈ P}

∫
R

θ(x)1x/d≤mp≤(x+H)/d dx

�
(log H)1/4

d3/4W 1/4 log P
HX
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for each such P . We can rearrange the left-hand side as∑
m∈S ′

g(m)
1+ #{q|m : q ∈ P}

∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d dx .

Observe that the summand vanishes unless we have m ≤ X/dP . Crudely bounding3

g(m)/(1+#{q|m : q ∈ P}) in magnitude by 1 and applying Hölder’s inequality, we
may bound the previous expression in magnitude by(

X
dP

)3/4( ∑
m≤X/dP

∣∣∣∣ ∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d

∣∣∣∣4dx
)1/4

.

It thus suffices to show that∑
m≤X/dP

∣∣∣∣ ∑
p∈P

P≤p≤2P

1mp≤X/d g(p)e(mpα)
∫

R

θ(x)1x/d≤mp≤(x+H)/d dx
∣∣∣∣4

�
log H

W log4 P
H 4 XP3.

The left-hand side may be expanded as∑
p1,p2,p3,p4∈P

P≤p1,p2,p3,p4≤2P

∫
· · ·

∫
g(p1)g(p2)g(p3)g(p4)θ(x1)θ(x2)θ(x3)θ(x4)

×

∑
m≤X/(dpi )

xi/(dpi )≤m≤(xi+H)/(dpi )
∀i=1,2,3,4

e(m(p1+ p2− p3− p4)α) dx1 dx2 dx3 dx4.

From summing the geometric series, we observe that the summation over m is
O(min(H/P, 1/‖(p1+ p2− p3− p4)α‖)), where ‖z‖ denotes the distance from z
to the nearest integer. Also, the sum vanishes unless we have x1 = O(X) and
xi = x1 pi/p1 + O(H) for i = 2, 3, 4, so there are only O(XH 3) quadruples
(x1, x2, x3, x4) which contribute. Thus we may bound the previous expression by

O
(

XH 3
∑

p1,p2,p3,p4≤2P

min
(

H
P
,

1
‖(p1+ p2− p3− p4)α‖

))
and so we reduce to showing that∑

p1,p2,p3,p4≤2P

min
(

H
P
,

1
‖(p1+ p2− p3− p4)α‖

)
� log H

HP3

W log4 P
. (3-3)

3By using the Turan–Kubilius inequality here one could save a factor of log log H , but such a gain
will not make a significant impact on our final estimates.
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The quantity p1+ p2− p3− p4 is clearly of size O(P). Conversely, from a standard
upper bound sieve,4 the number of representations of an integer n = O(P) of the
form p1+ p2− p3− p4 with p1, p2, p3, p4 ≤ 2P prime is O(P3/log4 P). Thus it
suffices to show that ∑

n=O(P)

min
(

H
P
,

1
‖nα‖

)
�

log H
W

H.

But from the Vinogradov lemma (see, e.g., [Iwaniec and Kowalski 2004, page 346]),
the left-hand side is bounded by

O
((

P
q
+ 1
)(

H
P
+ q log q

))
�

H
q
+ P log q +

H
P
+ q log q

which, since

W 200
= P1� P � Q1 = H/W 3 and W ≤ q ≤ H/W,

is bounded by O(log H/W H) as required. �

4. Proof of major arc estimate

We now prove Proposition 2.4 in the major arc case q ≤ W . We will discard the
factor d1/4(log H)1/4 log log H and prove the stronger bound∫

R

∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(αn)
∣∣∣∣ dx �

HX
dW 1/4 . (4-1)

By hypothesis we have α = a/q+θ with q ≤W and θ = O(W/(Hq)). Integrating
by parts we see that∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(αn)
∣∣∣∣

�

∣∣∣∣ ∑
x/d≤n≤(x+H)/d

1S(n)g(n)e(an/q)
∣∣∣∣

+
W
Hq

∫ H/d

0

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

1S(n)g(n)e(an/q)
∣∣∣∣ dH ′. (4-2)

4For instance, from [Montgomery and Vaughan 2007, Theorem 3.13] one sees that any num-
ber N = O(P) has O((N/φ(N ))(P/ log2 P)) representations as the sum of two primes; since∑

N=O(P) N 2/φ(N )2 = O(P) (see, e.g., [Montgomery and Vaughan 2007, Exercise 2.1.14]), the
claim then follows from the Cauchy–Schwarz inequality.
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Thus let us focus on bounding∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

1S(n)g(n)e(an/q)
∣∣∣∣ dx (4-3)

with 0≤ H ′ ≤ H/d . Splitting into residues classes we see that (4-3) is

≤

∑
b (mod q)

∫
R

∣∣∣∣ ∑
x/d≤n≤x/d+H ′

n≡b (mod q)

1S(n)g(n)
∣∣∣∣ dx .

For n≡b (mod q)we have d0 := (b, q)|n. Therefore let us write b=d0b0, q=d0q0

and n= d0m, so that the condition n≡ b (mod q) simplifies to m≡ b0 (mod q0). In
addition, since g is completely multiplicative and since d0 ≤ q ≤W ≤ P1, we have

1S(n)g(n)= g(d0) · 1SP1,Q1,
√

X ,X/(dd0)
(m)g(m).

Finally we express m ≡ b0 (mod q0) in terms of Dirichlet characters noting that

1m≡b0 (mod q0)(m)=
1

ϕ(q0)

∑
χ (mod q0)

χ(b0)χ(m).

Putting everything together we see that (4-3) is less than∑
b (mod q)

1
ϕ(q0)

∑
χ (mod q0)

∫
R

∣∣∣∣ ∑
x/(dd0)≤m≤x/(dd0)+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dx .

In the integral we make the linear change of variable y = x/(dd0), so that the above
expression becomes

d
∑

b (mod q)

d0

ϕ(q0)

∑
χ (mod q0)

∫
R

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dy. (4-4)

We bound the part of the integral with y ≤ X/W 10 trivially. This produces in (4-3)
an error which is

� dq ·
X

W 10 · H
′
≤

HX
W 9 �

H X
dW 3

since q, d≤W and H ′≤H/d . We split the remaining range X/W 10
≤ y≤2X/(dd0)

into dyadic blocks X/W 10
≤ X ′≤ X/(dd0) with X ′ running through powers of two.

Thus the previous expression is

�d
∑

X ′

∑
b (mod q)

d0

ϕ(q0)

∑
χ (mod q0)

∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
g(m)χ(m)

∣∣∣∣ dy+
HX

dW 3 .
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At this point we apply Theorem A.2 with η = 1/20 (note that P1 ≥ (log Q1)
40/η)

to conclude that∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣2dy

�

(
exp(−M(gχ; X ′))M(gχ; X ′)+

(log H ′/d0)
1/3

P1/6−1/20
1

+
1

(log X ′)1/ 50

)
H ′2

d2
0

X ′.

Since P1 =W 200 and H ′/d0 ≤ H and W ≥ log5 H , we have

(log H ′/d0)
1/3

P1/6−1/20
1

≤
(log H)1/3

P1/6−1/20
1

�
1

W 5/2

and certainly
1

(log X ′)1/50 �
1

(log X)1/50 �
1

W 5/2 .

From Mertens’ theorem and definition of M(g, X,W ),

M(gχ; X ′)≥ M(gχ; X)− O(1)≥ M(g, X,W )− O(1)

and thus, by (2-3),

exp(−M(gχ; X ′))M(gχ; X ′)�
1

W 5/2 .

Putting all this together, we obtain∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣2dy�
1

W 5/2

H ′2

d2
0

X ′.

It follows from Cauchy–Schwarz that∫ 2X ′

X ′

∣∣∣∣ ∑
y≤m≤y+H ′/d0

1SP1,Q1,
√

X ,X/(dd0)
(m)g(m)χ(m)

∣∣∣∣ dy�W−5/4
·

H ′X ′

d0
.

Inserting this bound into (4-4) we see that (4-3) is bounded by

� dq ·
1

W 5/4 ·
H
d
·

X
d
�

qHX
dW 5/4 .

Therefore using (4-2) and using q ≤W we see that (4-1) is

�
qHX

dW 5/4 ·

(
1+

W
Hq
·

H
d

)
�

HX
dW 1/4 . �
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5. Elliott’s conjecture on the average

In this section we use Theorem 2.3 to prove Theorem 1.6, which will be de-
duced from the following result (compare also with Theorem 2.3 and deduction of
Theorem 1.7 from it). For brevity, we write 1Sg for the function n 7→ 1S(n)g(n).

Proposition 5.1 (truncated Elliott on the average). Let X, H,W, A ≥ 10 be such
that

log20 H ≤W ≤min{H 1/500, (log X)1/125
}.

Let g1, . . . , gk :N→ C be 1-bounded multiplicative functions, and let a1, . . . , ak ,
b1, . . . , bk be natural numbers with aj ≤ A and bj ≤ 3AX for j = 1, . . . , k. Let
1≤ j0 ≤ k be such that

W ≤ exp(M(gj0; 10AX, Q)/3).

Set

S = SP1,Q1,
√

10AX ,10AX where P1 :=W 200, Q1 := H 1/2/W 3.

Then

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+b1)

k∏
j=2

1Sgj (aj n+bj+hj )

∣∣∣∣� k A2

W 1/20 H k−1 X. (5-1)

Proof of Theorem 1.6 assuming Proposition 5.1. We may assume that X , H , and M
are larger than any specified absolute constant, as the claim is trivial otherwise. We
first make some initial reductions. The first estimate (1-10) of Theorem 1.6 follows
from the second (1-11) after shifting b1 by h1 in (1-11) and averaging, provided
that we relax the hypotheses bj ≤ AX slightly to bj ≤ 2AX . Thus it suffices to
prove (1-11) under the relaxed hypotheses bj ≤ 2AX .

Let H0 be such that

log H0 =min{log1/3000 X log log X, exp(M(gj0; 10AX, Q)/80)M(gj0; 10AX, Q)}.
(5-2)

If H ≤ H0 we take W = log20 H and let S be as in Proposition 5.1. All the
assumptions of Proposition 5.1 hold and thus

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣� k A2

log H
H k−1 X.

Furthermore, from Lemma 2.2 we have∑
n≤10AX

n 6∈S

1� AX
log W
log H

. (5-3)
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From this and the triangle inequality, we have

∑
1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )

=

∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )+ O
(

k AX
log W
log H

)
. (5-4)

Hence the claim follows in the case when H ≤ H0.
If H > H0, one can cover the summation over the hj indices by intervals of

length H0 and apply Theorem 1.6 to each subinterval (shifting the bj by at most
AX when doing so), and then sum, noting that the quantity

exp(−M(gj0; 10AX, Q)/80)+
log log H

log H
+

1

log1/3000 X

is essentially unchanged after replacing H with H0. �

Remark 5.2. By using larger choices of W , one can obtain more refined information
on the large values of the correlations

∑
1≤n≤X g1(a1n+b1)

∏k
j=2 gj (aj n+bj+hj ).

For instance, if we take W = H δ for some H , δ such that 10 ≤ H ≤ H0 and
20 log log H/log H ≤ δ ≤ 1/500, we see from Proposition 5.1, (5-4), and Markov’s
inequality that ∑

1≤n≤X

g1(a1n+ b1)

k∏
j=2

gj (aj n+ bj + hj )� k A2δX

for all but at most O(H k−1/δH δ/20) tuples (h1, . . . , hk−1) with 1 ≤ hj ≤ H for
j = 2, . . . , k. Thus we can obtain a power saving in the number of exceptional
tuples, at the cost of only obtaining a weak bound on the individual correlations∑

1≤n≤X g1(a1n+ b1)
∏k

j=2 gj (aj n+ bj + hj ).

It remains to prove Proposition 5.1. We start by proving the following simpler
case to which the general case will be reduced.

Proposition 5.3. Let X, H,W ≥ 10 be such that

log20 H ≤W ≤min{H 1/250, (log X)1/125
}.

Let g : N→ C be a 1-bounded multiplicative function such that

W ≤ exp(M(g; X,W )/3).

Set

S = SP1,Q1,
√

X ,X where P1 :=W 200, Q1 := H/W 3.
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Then ∑
1≤h≤H

∣∣∣∣ ∑
1≤n≤X

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2� HX2

W 1/5 . (5-5)

To deduce Theorem 1.2 we let S be as in this proposition with W := H δ/900. The
argument of Lemma 2.2 actually gives #{1≤ n ≤ X : n 6∈ S} ≤ 2X log P1/log Q1 in
this case, and thus the numbers n with n 6∈ S or n+h 6∈ S contribute to the left-hand
side of (1-4) at most 9δ/10. Hence, recalling (1-12), the claim follows from the
previous proposition and Markov’s inequality.

Proof of Proposition 5.3. The claim follows once we have shown∑
|h|≤2H

(2H − |h|)2 ·
∣∣∣∣∑

n

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2� 1

W 1/5 H 3 X2.

Applying Lemma 1.4, it will suffice to show that∫
T

(∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx

)2

dα�
1

W 1/5 H 3 X2.

From the Parseval identity we have∫
T

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx dα =

∫
R

∑
x≤n≤x+2H

|1Sg(n)|2 dx � HX

so it suffices to show that

sup
α

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣2dx �

1
W 1/5 H 2 X.

Using the trivial bound ∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣� H

we thus reduce to showing

sup
α

∫
R

∣∣∣∣ ∑
x≤n≤x+2H

1Sg(n)e(αn)
∣∣∣∣ dx �

HX
W 1/5 . (5-6)

This follows from Theorem 2.3 (using the lower bound W ≥ log20 H in the hypothe-
ses of Proposition 5.3 to absorb the log1/4 H log log H factors in Theorem 2.3). �

Proof of Proposition 5.1. We first remove the special treatment afforded to the g1

factor in (5-1). Note that we may assume

W 1/20
≥ k A2 (5-7)
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and thus

H ≥W 500
≥ (k A2)10000

since the claim is trivial otherwise.
Set H ′ :=

√
H . For any 1≤ h1 ≤ H ′/A, we may shift n by h1 and conclude that

∑
1≤n≤X

1Sg1(a1n+ b1)

k∏
j=2

1Sgj (aj n+ bj + hj )

=

∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj + aj h1)+ O(H ′)

and thus we may write the left-hand side of (5-1) as

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj + aj h1)

∣∣∣∣
+ O(H k−1 H ′).

If one shifts each of the hj for j = 2, . . . , k in turn by aj h1 = O(H ′), we may
rewrite this as

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ a1h1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣
+ O(H k−1 H ′)+ O(k H k−2 H ′X).

Averaging in h1, and replacing h1 by a1h1 (crudely dropping the constraint that
a1h1 is divisible by a1), we may thus bound the left-hand side of (5-1) by

�
A
H ′

∑
1≤h1≤H ′

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)

k∏
j=2

1Sgj (aj n+ bj + hj )

∣∣∣∣
+ H k−1 H ′+ k H k−2 H ′X.

The g1 term may now be combined with the product over the remaining gj terms to
form

∏k
j=1 1Sgj (aj n+ bj + hj ). The error term H k−1 H ′+ k H k−2 H ′X is certainly

of size O((k A2/W 1/20)H k−1 X), so it suffices to show that

∑
1≤h1≤H ′

∑
1≤h2,...,hk≤H

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 H k−1 H ′X.
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By covering the ranges 1 ≤ hj ≤ H by intervals of length H ′ and averaging, it
suffices (after relaxing the conditions bj ≤ 3AX to bj ≤ 4AX ) to prove that

∑
1≤h1,h2,...,hk≤H ′

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 (H

′)k X.

The situation is now symmetric with respect to permuting the indices 1, . . . , k, so
we may assume that the index j0 in Proposition 5.1 is equal to 1. By the triangle
inequality in h2, . . . , hk , it suffices to show that

∑
1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

k∏
j=1

1Sgj (aj n+ bj + hj )

∣∣∣∣� A
W 1/20 H ′X

for all h2, . . . , hk . Writing G(n) :=
∏k

j=2 1Sgj (aj n+ bj + hj ), it thus suffices to
show that ∑

1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)G(n)
∣∣∣∣� A

W 1/20 H ′X

for any 1-bounded function G : Z→ C.
We use a standard van der Corput argument. By the Cauchy–Schwarz inequality,

it suffices to show that

∑
1≤h1≤H ′

∣∣∣∣ ∑
1≤n≤X

1Sg1(a1n+ b1+ h1)G(n)
∣∣∣∣2� A2

W 1/10 (H
′)2 X2.

The left-hand side may be rewritten as∑
n,n′≤X

G(n)G(n′)
∑

1≤h1≤H ′
1Sg1(a1n+ b1+ h1)1Sgj (a1n′+ b1+ h1).

By the triangle inequality, it thus suffices to show that

∑
n,n′≤X

∣∣∣∣ ∑
1≤h1≤H ′

1Sg1(a1n+ b1+ h1)1Sg1(a1n′+ b1+ h1)

∣∣∣∣� A2

W 1/10 H ′X2.

To abbreviate notation we now write h = h1, g = g1, a = a1, b = b1. By the
Cauchy–Schwarz inequality, it suffices to show that

∑
n,n′≤X

∣∣∣∣ ∑
1≤h≤H ′

1Sg(an+ b+ h)1S ḡ(an′+ b+ h)
∣∣∣∣2� A4

W 1/5 (H
′)2 X2.
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Replacing n, n′ by an+ b, an′+ b respectively, it suffices to show that∑
n,n′

∣∣∣∣ ∑
1≤h≤H ′

1Sg(n+ h)1S ḡ(n′+ h)
∣∣∣∣2� A4

W 1/5 (H
′)2 X2

where we have extended 1Sg by zero to the negative integers. The left-hand side
can be rewritten as ∑

|h|<H ′
(bH ′c− |h|)

∣∣∣∣∑
n

1Sg(n)1S ḡ(n+ h)
∣∣∣∣2,

and the claim follows from Proposition 5.3. �

Appendix A: Mean values of complex multiplicative functions
in short intervals

In this section we prove a complex variant of results in [Matomäki and Radziwiłł
2015] in the case that f is not pit pretentious. In particular, we show that the
mean value of a 1-bounded nonpretentious multiplicative function is small for most
short intervals:

Theorem A.1. Let f be a 1-bounded multiplicative function and let M( f ; X) be
as in (1-6). Then, for X ≥ h ≥ 10,

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

f (n)
∣∣∣∣2dx�exp(−M( f ; X))M( f ; X)+

(log log h)2

(log h)2
+

1
(log X)1/50 .

Actually, as in [Matomäki and Radziwiłł 2015] and earlier in this paper, one
gets better quantitative results if one first restricts to a subset of n with a typical
factorization. Let us first define such a subset S in this setting.

Let η ∈ (0, 1/6), and let X0 be a quantity with
√

X ≤ X0 ≤ X . (The results in
[Matomäki and Radziwiłł 2015] used the choice X0 = X , but for technical reasons
we will need a more flexible choice of this parameter.) Consider a sequence of
increasing intervals [Pj , Qj ], j ≥ 1 such that:

• Q1 ≤ exp(
√

log X0).

• The intervals are not too far from each other; precisely, for all j ≥ 2,

log log Qj

log Pj−1− 1
≤

η

4 j2 . (A-1)

• The intervals are not too close to each other; precisely, for all j ≥ 2,

η

j2 log Pj ≥ 8 log Qj−1+ 16 log j. (A-2)
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For example, given 0 < η < 1/6, the sequence of intervals [Pj , Qj ] defined in
Definition 2.1 can be verified to obey the above estimates if

exp(
√

log X0)≥ Q1 ≥ P1 ≥ (log Q1)
40/η

and if P1 is sufficiently large.
Let S be the set of integers X ≤ n ≤ 2X having at least one prime factor in each

of the intervals [Pj , Qj ] for j ≤ J , where J is chosen to be the largest index j such
that Qj ≤ exp((log X0)

1/2). We will establish the following variant of [Matomäki
and Radziwiłł 2015, Theorem 3].

Theorem A.2. Let f be a 1-bounded multiplicative function. Let S be as above
with η ∈ (0, 1/6). If [P1, Q1] ⊂ [1, h], then for all X > X (η) large enough and
all h ≥ 3,

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx� exp(−M( f ; X))M( f ; X)+

(log h)1/3

P1/6−η
1

+
1

(log X)1/50 .

The proof of Theorem A.2 proceeds as the proof of [Matomäki and Radziwiłł
2015, Theorem 3]. The first step is a Parseval bound:

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx�

∫ 1+i X/h1

1
|F(s)|2 |ds|+ max

T≥X/h1

X/h1

T

∫ 1+i2T

1+iT
|F(s)|2 |ds|.

This follows exactly in the same way as [Matomäki and Radziwiłł 2015, Lemma 14]
but there is no need to split the integral into two parts, and one can just work as for
V (x) there. Theorem A.2 now follows immediately from the following variant of
[Matomäki and Radziwiłł 2015, Proposition 1].

Proposition A.3. Let f be a 1-bounded multiplicative function. Let S be as above,
and let

F(s)=
∑

X≤n≤2X
n∈S

f (n)
ns .

Then, for any T ,∫ T

0
|F(1+ it)|2 dt

�

(
T

X/Q1
+ 1
)(
(log Q1)

1/3

P1/6−η
1

+ exp(−M( f ; X))M( f ; X)+
1

(log X)1/50

)
.

Proof. Since the mean value theorem gives the bound O(T/X +1), we can assume
T ≤ X/2 and M( f ; X)≥ 1.
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Now let t1 be the value of t which attains the minimum in

M( f ; X)= inf
|t |≤X

D(g, n 7→ nit
; X)2.

We split the integration into three ranges:

T0 = {0≤ t ≤ T : |t − t1| ≤ exp(M( f ; X))/M( f ; X)},

T1 = {0≤ t ≤ T : exp(M( f ; X))/M( f ; X)≤ |t − t1| ≤ (log X)1/16
},

T2 = {0≤ t ≤ T : |t − t1| ≥ (log X)1/16
}.

Notice that by the definition of t1, the triangle inequality and arguing as in (1-12),
for any |t | ≤ X with |t − t1| ≥ 1, and any ε > 0,

2D( f, pit
; X)≥ D( f, pit

; X)+D( f, pit1; X)≥ D(1, pi(t−t1))

≥

(
1
√

3
− ε

)√
log log X + O(1),

so that by Halasz’s theorem, for every |t | ≤ T ,

F(1+ it)� (log X)−1/16
+

1
1+ |t − t1|

.

In the region |t − t1| ≥ (log X)1/16, the above implies the following in exactly
the same way as [Matomäki and Radziwiłł 2015, Lemma 3].

Lemma A.4. Let X ≥ Q ≥ P ≥ 2. Let t1 be as above and let

G(s)=
∑

X≤n≤2X

f (n)
ns ·

1
#{p ∈ [P, Q] : p|n}+ 1

.

Then, for any t ∈ T2,

|G(1+ it)| �
log Q

(log X)1/16 log P
+ log X · exp

(
−

log X
3 log Q

log
log X
log Q

)
.

This was the only part in the proof [Matomäki and Radziwiłł 2015, Proposition 1]
that needed f to be real-valued, and thus we get∫

T2

|F(1+ it)|2 dt �
(

T
X/Q1

+ 1
)(
(log Q1)

1/3

P1/6−η
1

+
1

(log X)1/50

)
.

Using the estimate F(1+ it)� 1/|t − t1| for t ∈ T1 and, from Halasz’s theorem,
the estimate F(1+ it)� exp(−M( f ; X))M( f ; X) for t ∈ T0, we obtain∫

T0∪T1

|F(1+ it)|2 dt � exp(−M( f ; X))M( f ; X),

and the claim follows. �
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Proof of Theorem A.1. Let η = 1/12, P1 = (log h)480, Q1 = h, let Pj and Qj for
j ≥ 2 be as in Definition 2.1, and let S be as above. Then

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

f (n)
∣∣∣∣2dx≤

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n∈S

f (n)
∣∣∣∣2dx+

1
X

∫ 2X

X

∣∣∣∣1h ∑
x≤n≤x+h

n 6∈S

1
∣∣∣∣2dx .

The contribution from the first integral is acceptable by Theorem A.2. We rewrite
the second integrand as∣∣∣∣1h ∑

x≤n≤x+h
n 6∈S

1
∣∣∣∣= ∣∣∣∣1+ O(1/h)−

1
h

∑
x≤n≤x+h

n∈S

1
∣∣∣∣

≤

∣∣∣∣ 1
X

∑
X≤n≤2X

n∈S

1−
1
h

∑
x≤n≤x+h

n∈S

1
∣∣∣∣+ ∣∣∣∣ 1

X

∑
X≤n≤2X

n 6∈S

1
∣∣∣∣+ O(1/h),

and the claim follows from [Matomäki and Radziwiłł 2015, Theorem 3 with f = 1]
and Lemma 2.2. �

Appendix B: Counterexample to the uncorrected Elliott conjecture

In this appendix we present a counterexample to Conjecture 1.5. More precisely:

Theorem B.1 (counterexample). There exists a 1-bounded multiplicative function
g : N→ C such that ∑

p

1−Re(g(p)χ(p)p−it)

p
=∞ (B-1)

for all Dirichlet characters χ and t ∈ R (i.e., one has M(g;∞,∞) = ∞), but
such that ∣∣∣∣∑

n≤tm

g(n)g(n+ 1)
∣∣∣∣� tm (B-2)

for all sufficiently large m and some sequence tm going to infinity.

Proof. For each prime p, we choose g(p) from the unit circle S1
:= {z : |z| = 1} by

the following iterative procedure involving a sequence t1 < t2 < t3 < · · · :

(1) Initialize t1 := 100 and m := 1, and set g(p) := 1 for all p ≤ t1.

(2) Now suppose recursively that g(p) has been chosen for all p≤ tm . As the quan-
tities log p are linearly independent over the integers, the (continuous) sequence
t 7→ (t log p mod 1)p≤tm is equidistributed in the torus

∏
p≤tm T and, equiv-

alently, the sequence t 7→ (pit)p≤tm is equidistributed in the torus
∏

p≤tm S1.
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Thus one can find a quantity sm+1 > exp(tm) such that, for all p ≤ tm ,

pism+1 = g(p)
(

1+ O
(

1
t2
m

))
. (B-3)

(3) Set tm+1 := s2
m+1, and then set

g(p) := pism+1 (B-4)

for all tm < p ≤ tm+1. Now increment m to m+ 1 and return to step (2).

Clearly the tm go to infinity, so g(p) is defined for all primes p. We then define

g(n) := µ(n)2
∏
p|n

g(p), (B-5)

which is clearly a 1-bounded multiplicative function.
Suppose that n ≤ tm+1 is squarefree. Then n is the product of distinct primes less

than or equal to tm+1, including at most tm primes less than or equal to tm . From
(B-5) we then have

g(n)= nism+1

(
1+ O

(
1
t2
m

))O(tm)

= nism+1 + O
(

1
tm

)
.

If n is not squarefree, then g(n) of course vanishes. Thus, for t3/4
m+1 ≤ n ≤ tm+1− 1,

we have

g(n)g(n+ 1)= µ2(n)µ2(n+ 1)
(

n+ 1
n

)ism+1

+ O
(

1
tm

)
= µ2(n)µ2(n+ 1)+ O

(
sm+1

t3/4
m+1

)
+ O

(
1
tm

)
= µ2(n)µ2(n+ 1)+ O

(
1
tm

)
,

and the claim (B-2) then easily follows since the sequence µ2(n)µ2(n + 1) has
positive mean value.

Now we prove (B-1). From (B-4), we have∑
p

1−Re(g(p)χ(p)p−it)

p
≥

∑
tm<p≤tm+1

1−Re(χ(p)pi(sm+1−t))

p

≥

∑
exp((log tm+1)5/6)<p≤tm+1

1−Re(χ(p)pi(sm+1−t))

p

since exp((log tm+1)
5/6) ≥ exp((2tm)5/6) ≥ tm . We see as in (1-12) that the right-

hand side goes to infinity as m→∞ for any fixed χ , t , and the claim follows. �
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It is easy to see that the function g constructed in the above counterexample
violates (1-9), and so is not a counterexample to the corrected form of Conjecture 1.5.
It is also not difficult to modify the above counterexample so that the function g is
completely multiplicative instead of multiplicative, using the fact that most numbers
up to tm+1 have fewer than tm prime factors less than tm (counting multiplicity); we
leave the details to the interested reader.

Appendix C: An argument of Granville and Soundararajan

In this appendix we show the equivalence of the hypotheses (1-7) and (1-9) for
Elliott’s conjecture in the case that the multiplicative function gj0 is real. The key
lemma is the following estimate, essentially due to Granville and Soundararajan.

Lemma C.1. Let f :N→[−1, 1] be a multiplicative function, let x ≥ 100, and let
χ be a fixed Dirichlet character. For 1≤ |α| ≤ x , one has

D( f, n 7→ χ(n)niα
; x)≥

1
4

√
log log x + Oχ (1). (C-1)

When χ2 is nonprincipal, this holds for all |α| ≤ x.
If χ2 is principal (i.e., χ is a quadratic character), then, for |α| ≤ 1, one has

D( f, n 7→ χ(n)niα
; x)≥

1
3

D( f, χ; x)+ O(1). (C-2)

Proof. To establish (C-1), we notice that, by conjugation symmetry and the triangle
inequality,

D( f, n 7→ χ(n)niα
; x)=

1
2
(D( f, n 7→ χ(n)niα

; x)+D( f, n 7→ χ(n)n−iα
; x))

≥
1
2

D(n 7→ χ(n)n−iα, n 7→ χ(n)niα
; x)

=
1
2

(∑
p≤x

1−Reχ2(p)p2iα

p

)1/2

which implies the claim for |α| ≥ 1 or for nonprincipal χ2 by the zero-free (and
pole-free) region for Dirichlet L-functions (see (1-12) for a related argument).

To establish (C-2), notice first that since χ2 is principal, χ is real-valued which
together with the triangle inequality implies

D( f, n 7→ χ(n)niα
; x)= D( f χ, n 7→ niα

; x)≥ D(1, f χ; x)−D(1, n 7→ niα
; x).

Now D(1, n 7→ niα
; x) = D(1, n 7→ n2iα

; x)+ O(1) for |α| ≤ 1 since, from the
prime number theorem, D(1, n 7→ niα

; x)2 = log(1+|α| log x)+ O(1), so that the
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claim follows unless D(1, n 7→ n2iα
; x)≥ (2/3)D(1, f χ; x). But in the latter case,

the triangle inequality gives

2
3

D( f, χ; x)=
2
3

D(1, f χ; x)

≤ D(1, n 7→ n2iα
; x)

= D(n 7→ n−iα, n 7→ niα
; x)

≤ D( f χ, n 7→ n−iα
; x)+D( f χ; n 7→ niα

; x)

= 2D( f, n 7→ χ(n)niα
; x),

and the claim (C-2) follows. �

From this lemma, we see that if gj0 is a real 1-bounded multiplicative function,
then, for given Q, the condition (1-9) is equivalent to

D(gj0, χ; X)→∞

when X→∞ for all quadratic characters χ of modulus at most Q. But this follows
from (1-7). The converse implication is trivial.
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