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We define a new class of sets — stable sets — of primes in number fields. For
example, Chebotarev sets PM/K (σ ), with M/K Galois and σ ∈ G(M/K ), are
very often stable. These sets have positive (but arbitrarily small) Dirichlet density
and they generalize sets with density one in the sense that arithmetic theorems
such as certain Hasse principles, the Grunwald–Wang theorem, and Riemann’s
existence theorem hold for them. Geometrically, this allows us to give examples
of infinite sets S with arbitrarily small positive density such that Spec OK,S is a
K(π, 1) (simultaneously for all p).
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1. Introduction

The main goal of this article is to define a new class of sets of primes of positive
Dirichlet density in number fields — stable sets. These sets have a positive but
arbitrarily small density and they generalize, in many aspects, sets of density one.
In particular, most of the arithmetic theorems, such as certain Hasse principles, the
Grunwald–Wang theorem, Riemann’s existence theorem, K(π, 1)-property, etc.,
which hold for sets of density one (see [NSW 2008, Chapters IX and X]), also hold
for stable sets. Our goals are on the one hand to prove these arithmetic results, and
on the other hand to give many examples of stable sets.

The idea is as follows: let λ> 1. A set S of primes in a number field K is λ-stable
for the extension L/K if there is a subset S0 ⊆ S, a finite subextension L/L0/K
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and some a > 0 such that we have δL(S0) ∈ [a, λa) for all finite subextensions
L/L/L0, where δL is the Dirichlet density. We call the field L0 a λ-stabilizing
field for S for L/K . A more restrictive version is the notion of persistent sets: S is
persistent if the function L 7→ δL(S0) gets constant in the tower L/K beginning
from some finite subextension L0/K (see Definition 2.4). In particular, for any
λ > 1, a λ-stable set is persistent.

The main result in this article is the following theorem, which links stability to
vanishing of certain Shafarevich–Tate groups. Let X1 denote the usual Shafarevich–
Tate group, consisting of global cohomology classes which vanish locally in a given
set of primes. If A is a module over a finite group G, then H1

∗
(G, A) denotes

the subgroup of H1(G, A) consisting of precisely those classes which vanish after
restriction to all cyclic subgroups of G. Moreover, if L/L is a Galois extension
of fields, then GL/L denotes its Galois group, and if A is a GL/L -module, then
L(A)/L denotes the trivializing extension of A.

Theorem 4.1. Let K be a number field, T a set of primes of K and L/K a Galois
extension. Let A be a finite GL/K -module. Assume that T is p-stable for L/K ,
where p is the smallest prime divisor of |A|. Let L be a p-stabilizing field for T
for L/K . Then

X1(L/L , T ; A)⊆ H1
∗
(L(A)/L , A).

In particular, if H1
∗
(L(A)/L , A)= 0, then X1(L/L , T ; A)= 0.

This theorem has numerous applications to the structure of the Galois group
GK,S := Gal(KS/K ), where K is a number field and S is stable. To explain our
results, we need some notation. If S, R are two sets of primes of a number field K ,
then we denote by K R

S the maximal extension of K , which is unramified outside S
and completely split in R. Moreover, we denote by GR

K,S the Galois group of
K R

S /K . Let L/K be any Galois extension. For a prime p of K we denote by Lp

the completion of L at a (any) extension of p to L (the isomorphism class of the
completion Lp does not depend on the particular choice of the extension of p to L

as L/K is Galois, and we suppress this choice in our notation). Furthermore,
Gp denotes the absolute Galois group of Kp, and Kp(p) (resp. K nr

p (p)) denotes
the maximal (resp. maximal unramified) pro-p extension of Kp. Moreover, for
a profinite group G, we denote the pro-p completion of G by G(p). For more
notation, see also the end of this introduction.

Theorem (cf. Theorems 5.1 and 6.4). Let K be a number field, p a rational prime,
p a prime of K and T ⊇ S ⊇ R sets of primes of K with R finite. Assume that S is
p-stable1 for K R

S (µp)/K . Then:

1In fact a weaker condition would suffice; see Theorem 5.1.
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(A) (Local extensions)

K R
S,p ⊇

{
Kp(p) if p ∈ S \ R,
K nr
p (p) if p 6∈ S.

(B) (Riemann’s existence theorem) Let I ′p(p) denote the Galois group of the max-
imal pro-p extension of K R

S,p and let K ′T (p)/K R
S denote the maximal pro-p

subextension of KT /K R
S . The natural map

φR
T,S : ∗

p∈R(K R
S )

Gp(p) ∗ ∗
p∈(T \S)(K R

S )

I ′p(p)−→∼ GK ′T (p)/K R
S

is an isomorphism (where ∗ is to be understood in the sense of [NSW 2008,
Chapter IV]).

(C) (Cohomological dimension) Assume that either p is odd or K is totally imagi-
nary. Then

cdp GR
K,S = scdp GR

K,S = 2.

(D) (K(π, 1)-property) Assume additionally that R =∅, S ⊇ S∞ and that either
p is odd or K is totally imaginary. Then Spec OK,S is a K(π, 1) for p (see
Definition 6.1).

There are also corresponding results for the maximal pro-p quotient GR
K,S(p)

of GR
K,S . These results are essentially well-known (see [NSW 2008]) if δK (S)= 1

and respectively if S ⊇ Sp ∪ S∞. Also, A. Schmidt showed recently that if T0 is any
fixed set with δK (T0)= 1 and S is an arbitrary finite set of primes, then there is a
finite subset T1 ⊆ T0 (depending on S) such that the pro-p versions of the above
results essentially (e.g., except the result on scdp) hold if one replaces S by S ∪ T1

(see [Schmidt 2007; 2009; 2010]).
A further application of stable sets concerns a generalization of the Neukirch–

Uchida theorem, which is a result of anabelian nature. More details on this can be
found in [Ivanov 2013, Section 6]. Now we see many examples of stable (even
persistent) sets:

Corollary 3.4. Let M/K be finite Galois and let σ ∈GM/K . Let Sw PM/K (σ ) (i.e.,
up to a density-zero subset, S is equal to PM/K (σ )). Let L/K be any extension. Then
S is persistent — or, equivalently, stable (see Corollary 3.6) — for L/K if and only if

GM/M∩L ∩C(σ ;GM/K ) 6=∅,

where C(σ ;GM/K ) denotes the conjugacy class of σ in GM/K . In particular:

(i) If σ = 1, then S w PM/K (1)= cs(M/K ) is persistent for any extension L/K .

(ii) If M ∩L= K , then S w PM/K (σ ) is persistent for L/K .
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Outline. In Section 2 we introduce stable, sharply p-stable, strongly p-stable and
persistent sets. Section 3 is devoted to examples: in particular, we introduce almost
Chebotarev sets, which provide us with a rich supply of persistent sets (Section 3B),
and we show essentially that an almost Chebotarev set is sharply and strongly
p-stable for almost all p (Section 3C). In Section 4A we prove our main result
which is a general Hasse principle. In Sections 4B–4D we discuss some further
Hasse principles and uniform bounds on Shafarevich–Tate groups for stable sets. In
Section 5 we deduce arithmetic applications such as the Grunwald–Wang theorem,
realization of local extensions, Riemann’s existence theorem and cohomological
dimension. In Section 6 we use results from Section 5 to deduce the K(π, 1)-
property at p for Spec OK,S with S being sharply p-stable.

Notation. Our notation essentially coincides with the notation in [NSW 2008]. We
collect some of the most important notation here. For a profinite group G we denote
by G(p) its maximal pro-p quotient. For a subgroup H ⊆ G, we denote by NG(H)
its normalizer in G. If σ ∈ G, then we write C(σ ;G) for its conjugacy class. For
two finite groups H ⊆ G, we write mG

H (or mH , if G is clear from the context) for
the character of the induced representation IndG

H 1H .
For a Galois extension M/L of fields, GM/L denotes its Galois group and L(p)

denotes the maximal pro-p extension of L (in a fixed algebraic closure). By K
we always denote an algebraic number field, that is, a finite extension of Q. If
p is a prime of K and L/K is a Galois extension, then Dp,L/K ⊆ GL/K denotes
the decomposition subgroup of p. We write 6K for the set of all primes of K and
S, T, R, . . . will usually denote subsets of 6K . If L/K is an extension and S a set
of primes of K , then we denote the pull-back of S to L by SL , S(L) or S (if no
ambiguity can occur). We write K R

S /K for the maximal extension of K , which
is unramified outside S and completely split in R, and we write GR

S := GR
K,S for

its Galois group. We use the abbreviations KS := K∅
S and GS := G∅

S . Further,
for p ≤ ∞ a (archimedean or nonarchimedean) prime of Q, we let Sp = Sp(K )
denote the set of all primes of K lying over p. Further, if S ⊆ 6K , we write
N(S) := N∩O∗K,S , i.e., p ∈ N(S) if and only if Sp ⊆ S.

We write δK for the Dirichlet density on 6K . For S, T subsets of 6K , we use
(following [NSW 2008, Definition 9.1.2])

S ∼⊂ T :⇔ δK (S \ T )= 0, S w T :⇔ (S ∼⊂ T ) and (T ∼⊂ S).

Thus S ∼⊂ T if S is contained in T up to a set of primes of density zero. For a finite
Galois extension M/K and σ ∈ GM/K , we have the Chebotarev set

PM/K (σ )= {p ∈6K : p is unramified in M/K and (p,M/K )= C(σ ;GM/K )},

where (p,M/K ) denotes the conjugacy class of Frobenius elements corresponding
to primes of M lying over p.
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2. Stable and persistent sets

2A. Warm-up: preliminaries on Dirichlet density. Let PK denote the set of all
subsets of 6K . The Dirichlet density δK is not defined for all elements in PK .
Moreover, there are examples of finite extensions L/K and S ∈PK such that S has
a density but the pull-back SL of S to L has no density. To avoid dealing with such
sets we make the following convention, which holds until the end of this article.

Convention 2.1. If S ∈PK is a set of primes of K , then we assume implicitly that,
for all finite extensions L/K , all finite Galois extensions M/L and all σ ∈ GM/L ,
the set SL ∩ PM/L(σ ) has a Dirichlet density.2

Convention 2.1 is satisfied for all sets lying in the rather large subset

AK :=

{
S ⊆6K : S w

⋃
i

PL i/Ki (σi )K for some K/Ki/Q

and L i/Ki finite Galois and σi ∈ GL i/Ki

}
of PK , where the unions are disjoint and countable (or finite or empty). The
set AK cannot be closed simultaneously under (arbitrary) unions and complements:
otherwise it would be a σ -algebra and hence would be equal to PK .

To compute the density of pull-backs of sets we use the following two lemmas.
Let L/K be a finite extension of degree n (not necessarily Galois). For 0≤ m ≤ n,
define the sets

Pm(L/K ) := {p ∈6K : p is unramified and has exactly m degree-1 factors in L}.

In particular, Pn(L/K )= cs(L/K ), Pn−1(L/K )=∅. Recall that if H ⊆G are finite
groups, then mH denotes the character of the G-representation IndG

H 1. One has

mH (σ )= |{gH : 〈σ 〉g ⊆ H}| = |{〈σ 〉gH : 〈σ 〉g ⊆ H}|,

where 〈σ 〉 ⊆ G denotes the subgroup generated by σ and where 〈σ 〉g := g−1
〈σ 〉g.

The second equality follows immediately from the fact that if 〈σ 〉g ⊆ H , then
gH = 〈σ 〉gH .

Lemma 2.2. Let L/K be a finite extension and N/K a finite Galois extension
containing L , with Galois group G, such that L corresponds to a subgroup H ⊆ G.

2The optimal way to omit sets having no density would be to find an appropriate sub-σ -algebra
of PK (for any K ) such that the restriction of δK to it is a measure (and the pull-back maps PK →PL
attached to finite extensions L/K restrict to pull-back maps on these sub-σ -algebras). Unfortunately,
there is no satisfactory way to find such a σ -algebra BK , at least not if one requires that if S ∈BK ,
then T ∈BK for any T w S, or, if one requires the weaker condition that any finite set of primes of K
lies in BK . Indeed, countability of 6K would imply BK =PK in this case, but not all elements of PK
have a Dirichlet density.
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Then

Pm(L/K )w {p ∈ Pm(L/K ) : p is unramified in N/K } =
⋃

C(σ ;G)⊆G
mH (σ )=m

PN/K (σ ),

where the right-hand side is a disjoint union. In particular, Pm(L/K ) ∈AK and

δK (Pm(L/K ))= |G|−1
∑

C(σ ;G)⊆G
mH (σ )=m

|C(σ ;G)|.

Proof. The proof of the first statement is an elementary exercise in Galois theory:
if p is a prime of K unramified in N , then the primes of L lying over p are in
one-to-one correspondence with double cosets 〈σ 〉gH , where σ is arbitrary in the
Frobenius class of p; the residue field extension of a prime belonging to the coset
〈σ 〉gH over p has the Galois group 〈σ 〉g/〈σ 〉g ∩ H . The second statement follows
from the first and the Chebotarev density theorem. �

Lemma 2.3. Let L/K be a finite extension of degree n, let S be a set of primes of K
and let N/K be a Galois extension containing L such that G :=GN/K ⊇GN/L =: H.
Then

δL(S)=
n∑

m=1

mδK (S ∩ Pm(L/K ))=
∑

C(σ ;G)⊆G

mH (σ )δK (S ∩ PN/K (σ )).

If , in particular, L/K is Galois, we get the well-known formula

δL(S)= [L : K ]δK (S ∩ cs(L/K )).

Proof. The first equation is an easy computation and the second follows from
Lemma 2.2. �

2B. Key definitions. Let K be a number field and S a set of primes. If δK (S)= 0
(resp. = 1), then δL(S)= 0 (resp. = 1) for all finite L/K . Now, if 0< δK (S) < 1,
then it can happen that there is some finite L/K with δL(S) = 0 (take a finite
Galois extension L/K and set S :=6K \cs(L/K ); then δK (S)= 1−[L : K ]−1 and
δL(SL)= 0). For stable sets, defined below, this possibility is excluded.

Definition 2.4. Let S be a set of primes of K , let L/K be any extension and let
λ > 1. A finite subextension L/L0/K is called λ-stabilizing for S for L/K if there
exists a subset S0⊆ S and some a ∈ (0, 1] such that λa>δL(S0)≥ a> 0 for all finite
subextensions L/L/L0. Moreover, we call L0 persisting for S for L/K if there
exists a subset S0 ⊆ S such that δL(S0) = δL0(S0) > 0 for all finite subextensions
L/L/L0. Further:

(i) We call S λ-stable (resp. persistent) for L/K if it has a λ-stabilizing (resp.
persisting) extension for L/K .
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(ii) We call S stable for L/K if there is a λ > 1 such that S is λ-stable for L/K .

Assume that λ= p is a rational prime.

(iii) We call S sharply p-stable for L/K if µp ⊆ L and if S is p-stable for L/K ,
or if µp 6⊆ L and if S is stable for L(µp)/K .

In applications we will often use the case L = KS . Therefore, we provide the
following definition:

Definition 2.5. Let S be a set of primes of K and let λ > 1.

(i) We call S λ-stable (resp. stable, resp. persistent) if S is λ-stable (resp. stable,
resp. persistent) for KS/K .

Assume that λ= p is a rational prime.

(ii) We call S sharply p-stable if S is sharply p-stable for KS/K . Moreover, we
define the exceptional set E sharp(S) to be the set of all rational primes p such
that S is not sharply p-stable.

(iii) We call S strongly p-stable if S is p-stable for KS∪Sp∪S∞/K with a p-stabilizing
field contained in KS . Further, we call S strongly∞-stable if S is stable for
KS∪S∞/K . Moreover, we define the exceptional set E strong(S) to be the set of
all rational primes p or p =∞ such that S is not strongly p-stable.

Clearly, a strongly p-stable set is also p-stable and sharply p-stable. In particular,
we have E strong(S) ⊇ E sharp(S). On the other side, in general, neither one of the
properties ‘p-stable’ or ‘sharply p-stable’ implies the other.

Lemma 2.6. Let L/K be an extension and S a set of primes of K .

(i) Let λ≥ µ > 1. If S is µ-stable with µ-stabilizing field L0, then S is λ-stable
with λ-stabilizing field L0.

(ii) If L0 is a λ-stabilizing (resp. persisting) field for S for L/K , then any finite
subextension L/L1/L0 has the same property.

(iii) Let S′ be a further set of primes of K . If S ∼⊂ S′ and if S is λ-stable (resp.
persistent) for L/K , then S′ also has this property. Any λ-stabilizing (resp.
persisting) field for S has the same property for S′.

(iv) Let L/N/M/K be subextensions. If S is λ-stable (resp. persistent) for L/K
with λ-stabilizing (resp. persisting) field L0 ⊆ N, then SM is λ-stable (resp.
persistent) for N/M.

Lemma 2.7. Let L/K be an extension and S a set of primes of K . Assume that S
is sharply p-stable for L/K . There is a finite subextension L/L0/K such that, for
any subextensions L/N/L/L0 (with L/L0 finite), S is sharply p-stable for N/L.



8 Alexander Ivanov

The proofs of these lemmas are straightforward. The following proposition gives
another characterization of stable sets and shows, in particular, that if S is stable
for L/K , then any finite subfield L/L/K is λ-stabilizing for S with a certain λ > 1
depending on L .

Proposition 2.8. Let S be a set of primes of K and L/K an extension. The following
are equivalent:

(i) S is stable for L/K .

(ii) There exists some λ > 1 such that S is λ-stable for L/K with λ-stabilizing
field K .

(iii) There exists some ε > 0 such that δL(S) > ε for all finite L/L/K .

Proof. The directions (iii)⇒ (ii)⇒ (i) are trivial. We prove (i)⇒ (iii). Let λ > 1
and let S be λ-stable for L/K with λ-stabilizing field L0. Then there is some
a > 0 and a subset S0 ⊆ S such that a ≤ δL(S0) < λa for all L/L/L0. Suppose
there is no ε > 0 such that δL(S0) > ε for all L/L/K . This implies that there is a
family (Mi )

∞

i=1 of finite subextensions of L/K with δMi (S0)→ 0 as i→∞. Then
di = [L0 Mi : Mi ] = [L0 : L0 ∩Mi ] is bounded from above by [L0 : K ] and hence,
by Lemma 2.3,

δL0 Mi (S0)=

di∑
m=1

mδMi (S0 ∩ Pm(L0 Mi/Mi ))≤ [L0 : K ]δMi (S0)→ 0

for i→∞. This contradicts the λ-stability of S0 with respect to the λ-stabilizing
field L0. �

Here is a brief overview of the use of these conditions and some examples:

• Most examples of stable sets are given by (almost) Chebotarev sets, i.e., sets
of the form S w PM/K (σ ), or sets containing them (see Section 3B).

• If S is stable for L/K , then δL(S) > 0 for all finite L/L/K . The converse is
not true in general (see [Ivanov 2013, Section 3.5.4]), but it is true for almost
Chebotarev sets (see Section 3B).

• If an almost Chebotarev set is stable for an extension, then it is also persistent
for it (see Corollary 3.6). It is not clear whether there are examples of stable
but not persistent sets (but see [Ivanov 2013, Section 3.5.4]).

• For a stable almost Chebotarev set S, the set E sharp(S) is finite and E strong(S)
is either 6Q or finite (see Section 3C).

• Roughly speaking, p-stability (for L/K ) is enough to prove Hasse principles
in dimension 1 for p-primary (GL/K -)modules. See Section 4.



Stable sets of primes in number fields 9

• To prove Hasse principles in dimension 2 and Grunwald–Wang-type results for
p-primary GK,S-modules, we need strong p-stability. We will give examples
of persistent sets S together with a finite set T such that Grunwald–Wang (even
stably) fails, i.e., coker1(KS∪T /L , T ;Z/pZ) 6= 0 for all finite subextensions
KS/L/K . But it is not clear whether one can find such an example with
the additional requirement that T ⊆ S (and necessarily S being not strongly
p-stable). See Section 5B.

• On the other side, for applications of Grunwald–Wang (i.e., to prove Riemann’s
existence theorem, to realize local extensions by KS/K , to compute (strict)
cohomological dimension, etc.), it is enough to require that S is sharply p-stable.
See Sections 5A, 5C and 5D.

3. Examples

In this section we construct examples of stable sets. First, in Section 3A, we see
to which extent ‘stable’ is more general than ‘of density 1’. Then, in Sections 3B
and 3C, we introduce almost Chebotarev sets and determine when they are stable,
strongly p-stable, and sharply p-stable. Finally, in Section 3D, we construct a
stable almost Chebotarev set S with N(S)= {1}.

3A. Sets of density one. Stable and persistent sets generalize sets of density one.
In particular, every set of primes of K of density one is persistent for any extension
L/K with persisting field K and is strongly p-stable for each p. Nevertheless, sets
of density one have some properties which stable and persistent sets do not have
in general:

(i) The intersection of two sets of density one again has density one, which is not
true for stable and persistent sets: the intersection of two sets persistent for
L/K can be empty (see Corollary 3.4 and explicit examples below).

(ii) If S ⊆ 6K has density one, then there are infinitely many primes p ∈ 6Q

such that Sp ⊆ S (otherwise, for all primes p ∈ cs(K/Q) one could choose
a prime p ∈ Sp \ S of K and we would have δK (S) ≤ 1− [Kn

:Q]−1, where
Kn denotes the normal closure of K over Q). On the other side, it is easy to
construct a persistent set S ⊆6K with N(S)= {1}, i.e., S` 6⊆ S for all ` ∈6Q

(see Section 3D for an example).

Observe that, for sets S with N(S)= {1}, mentioned above, none of the `-adic
representations ρA,` : GK → GLd(Q`) which come from an abelian variety A/K
factor through the quotient GK � GK,S (indeed, the Tate-pairing on A shows that
the determinant of ρA,` is the `-part of the cyclotomic character of K and, in
particular, ρA,` is highly ramified at all primes of K lying over `. If ρA,` factored
over GK,S , then we would have S` ⊆ S). In particular, this makes it very hard, if
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not impossible, to study the group GK,S via the Langlands program (for example,
like in [Chenevier 2007] and [Chenevier and Clozel 2009], where a prime ` ∈N(S)
is always necessary). If S is additionally stable, then methods involving stability
allow us to study GK,S .

3B. Almost Chebotarev sets.

Definition 3.1. Let K be a number field and S a set of primes of K . Then S is
called a Chebotarev set (resp. an almost Chebotarev set) if S = PM/K (σ ) (resp.
S w PM/K (σ )), where M/K is a finite Galois extension and σ ∈ GM/K .

Remark 3.2. M and the conjugacy class of σ are not unique, i.e., there are
pairs (M/K , σ ), (N/K , τ ) such that M 6= N and PM/K (σ ) w PN/K (τ ) (or even
PM/K (σ )= PN/K (τ )). If one restricts attention to pairs (M/K , σ ) such that σ is
central in GM/K , then (M/K , σ ) is indeed unique. See [Ivanov 2013, Remark 3.13].

Proposition 3.3. Let M/K be a finite Galois extension and let σ ∈GM/K . Let L/K
be any finite extension and set L0 := L ∩M. Then

δL(PM/K (σ )L)=
|C(σ ;GM/K )∩GM/L0 |

|GM/L0 |
.

Thus δL(PM/K (σ )L) 6= 0 if and only if C(σ ;GM/K )∩GM/L0 6=∅. In particular,
this is always the case if L0 = K or if σ = 1.

Proof. Let N/K be a finite Galois extension with N ⊇ ML . Define H :=GN/L and
H :=GM/L0 . We have a natural surjection H� H . Let 1σ denote the class function
on GM/K , which has value 1 on C(σ ;GM/K ) and 0 outside. Finally, let mH denote
the character on G := GN/K of the induced representation IndG

H 1H . Then we have

δL(PM/K (σ )L)=
∑

C(g;G) 7→C(σ ;GM/K )

δL(PN/K (g)L)=
∑

C(g;G) 7→C(σ ;GM/K )

mH (g)δK (PN/K (g))

=

∑
C(g;G) 7→C(σ ;GM/K )

mH (g)
|C(g;G)|
|G|

=
1
|G|

∑
g 7→C(σ ;GM/K )

mH (g)

= 〈mH , infG
GM/K

1σ 〉G = 〈1H , infH
GM/K

1σ 〉H = 〈1H , 1σ |H 〉H

=
|C(σ ;GM/K )∩ H |

|H |
.

The first equality follows from [Wingberg 2006, Proposition 2.1] and the second
from Lemma 2.3. The third-to-last equality is Frobenius reciprocity, and the second-
to-last equality follows from the easy fact that if H � H is a surjection of finite
groups and χ , ρ are two characters of H , then 〈infH

H
χ, infH

H
ρ〉H = 〈χ, ρ〉H . �
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Corollary 3.4. Let M/K be finite Galois and let σ ∈ GM/K . Let L/K be any
extension and set L0 := M ∩L. Then a set S w PM/K (σ ) is persistent for L/K if
and only if

C(σ ;GM/K )∩GM/L0 6=∅.

If this is the case, L0 is a persistent field for S for L/K . In particular:

(i) Any set S w cs(M/K ) is persistent for any extension L/K .

(ii) Any set S w PM/K (σ ) is persistent for any extension L/K with L∩M = K .

Example 3.5 (a persistent set). Let K be a number field, M/K a finite Galois
extension which is totally ramified in a prime p of K . Let σ ∈ GM/K and let S be
a set of primes of K such that S w PM/K (σ ) and p 6∈ S. Then S is persistent with
persisting field K . Indeed, we have KS ∩M = K by construction, and the claim
follows from Corollary 3.4.

Corollary 3.6. Let S be an almost Chebotarev set and L/K an extension. Then the
following are equivalent:

(i) S is stable for L/K .

(ii) S is persistent for L/K .

(iii) δL(S) > 0 for all finite L/L/K .

Proof. Suppose S w PM/K (σ ), with M/K a finite Galois extension and σ ∈ GM/K .
By Proposition 3.3, the density of S is constant and equal to some d ≥ 0 in the
tower L/L0 with L0 =L∩M . There are two cases: either d = 0 or d > 0. If d = 0,
then S is not stable and hence also not persistent for L/K by Proposition 2.8, i.e.,
(i), (ii) and (iii) do not hold in this case. If d > 0, then S is obviously persistent for
L/K with persisting field L0 and hence also stable, i.e., (i), (ii), (iii) hold. �

Remark 3.7. If S is any stable set, then (ii)⇒ (i)⇒ (iii) still holds. But (iii)⇒ (i)
fails in general (see [Ivanov 2013, Section 3.5.4]) and it is not clear whether
(i)⇒ (ii) holds.

3C. Finiteness of Esharp(S), Estrong(S) and examples.

Proposition 3.8. Let S w PM/K (σ ) with σ ∈ GM/K .

(i) If∞∈E strong(S), then E strong(S) contains all rational primes. If∞6∈E strong(S),
then E strong(S) is finite.

(ii) Assume S is stable. If µp ⊂ KS or if M/K is unramified in Sp \ S, then S is
sharply p-stable. In particular, if S is stable, then E sharp(S) is finite.

Proof. (i) If∞∈ E strong(S), then S does not have a stabilizing field for KS∪S∞/K
which is contained in KS . This is, by Proposition 2.8, equivalent to the fact that
S is not stable for KS∪S∞/K , which in turn is equivalent, by Corollary 3.6, to the
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fact that δL(S)= 0 for all KS∪S∞/L/L0, where L0 is some finite subextension of
KS∪S∞/K . Thus p ∈ E strong(S) for any p.

Now assume∞ 6∈ E strong(S). Set L0 := M ∩ KS∪S∞ and Lp := M ∩ KS∪Sp∪S∞ .
By Proposition 3.3, the density of S is constant in the towers KS∪S∞/L0 and
KS∪Sp∪S∞/Lp and equal to some real numbers d0 and dp, respectively. Since S is
stable for KS∪S∞/K , we have d0 > 0.

We claim that for almost all ps we have Lp = L0. More precisely, this is true for
all ps such that the set

{p ∈ (Sp \ S)L0 : p is ramified in M/L0}

is empty. In fact, if this set is empty for p, then the extension Lp/L0 is unramified
in Sp \ S(L0), since it is contained in M/L0. But, being contained in KS∪Sp∪S∞ and
unramified in Sp\S(L0), it is contained in KS∪S∞ , and hence also in M∩KS∪S∞= L0,
which proves our claim.

Now let p be such that Lp = L0. We claim that S is ([L0 : K ]d−1
0 )-stable for

KS∪Sp∪S∞/K with ([L0 : K ]d−1
0 )-stabilizing field K . Indeed, as Lp = L0, we have

dp = d0 > 0. Let KS∪Sp∪S∞/N/K be any finite subextension. We have

d0 = δL0 N (S)= [L0 N : N ]δN (S ∩ cs(L0 N/N ))≤ [L0 : K ]δN (S),

i.e., δN (S)≥ [L0 : K ]−1d0 for all N , and our claim follows.
Finally, almost all primes satisfy p> [L0 : K ]d−1

0 and Lp = L0. For such primes,
S is p-stable for KS∪Sp∪S∞/K with stabilizing field K .

(ii) The second assertion of (ii) follows from the first. If µp ⊆ KS , then S is sharply
p-stable by Corollary 3.6. Assume M/K is unramified in Sp \ S. Set L0 := M∩KS ,
L ′0 := L0(µp)∩ KS and Lp := M ∩ KS(µp). From these definitions and from our
assumption on M/K we have

(1) GKS(µp)/L ′0
∼=GKS/L ′0 ×GL0(µp)/L ′0 , and L0(µp)/L ′0 has no subextension unram-

ified in Sp \ S,

(2) Lp ∩ KS = L0, and

(3) Lp/L0 is unramified in Sp \ S.

By item (3) the extension Lp L ′0/L ′0 is unramified in Sp \ S, and by item (1) we get
Lp ⊆ Lp L ′0 ⊆ KS . Hence, (2) gives Lp = L0. Thus for all KS(µp)/L/L0 we have,
by Proposition 3.3, δL(S)= δLp(S)= δL0(S) > 0, since S is stable. �

Remark 3.9. Suppose S w PM/K (σ ). We have the following equivalences:

p 6∈ E sharp(S)⇔ S stable for KS(µp)/K⇔C(σ ;GM/K )∩G(M/M∩KS(µp)) 6=∅.

Example 3.10 (persistent sets with E strong(S) finite but nonempty). Let K be a
totally imaginary number field and let M/K be a finite Galois extension such that
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• M/K is totally ramified in a prime p ∈ Sp(K ),

• d := [M : K ]> p.

Let σ ∈ GM/K and let S be a set of primes of K such that

• S w PM/K (σ ),

• Ram(M/K ) \ S = {p}.

Then S is persistent (δL(S)= d−1 for all KS/L/K ) with persisting field K . Further,
S is not strongly p-stable, i.e., p ∈ E strong(S) and∞ 6∈ E strong(S), i.e., E strong(S)
is finite by Proposition 3.8. Indeed, M ⊆ KS∪Sp∪S∞ and there are two cases, σ = 1
and σ 6= 1. In the second case, the density of S in KS∪Sp∪S∞/K is zero beginning
from M , hence S is nonstable for this extension, and S is not strongly p-stable.
In the first case, we have δL(S) = 1 for all KS∪Sp∪S∞/L/M . Assume there is a
p-stabilizing field N ⊆ KS for S for KS∪Sp∪S∞/K , i.e., there is some S0 ⊆ S and
some a ∈ (0, 1] with a ≤ δL(S0) < pa for all KS∪Sp∪S∞/L/N . But this leads to a
contradiction. Indeed,

δMN (S0)= [MN : N ]δN (S0 ∩ cs(MN/N ))= [M : K ]δN (S0)≥ pδN (S0),

since N ∩M = K and S0 ⊆ S w cs(M/K ).

Example 3.11 (persistent sets with E strong(S) = ∅). Let M/K be a finite Galois
extension of degree d , with K totally imaginary, which is totally ramified in at least
two primes p and l with different residue characteristics `1 and `2, respectively.
Let S w PM/K (σ ) for some σ ∈ GM/K such that p, l 6∈ S. Then M ∩ KS = K ,
hence S is persistent with persisting field K . Let p be a rational prime. Then
M ∩ KS∪Sp∪S∞ = K , since M/K is totally ramified over primes with different
residue characteristics `1 and `2. Hence S is strongly p-stable for every prime p
and K is a persisting field for S for KS∪Sp∪S∞/K .

Example 3.12 (persistent sets with E strong(S)=∅). There is also another possibility,
to construct sets S with E strong(S) = ∅, using the same idea as in the preceding
example. Assume for simplicity that K is totally imaginary. Let M1, M2/K be two
Galois extensions of K , and let σ1 ∈ GM1/K , σ2 ∈ GM2/K . Assume Mi/K is totally
ramified in a nonarchimedean prime pi of K such that the residue characteristics of
p1, p2 are unequal. Then let S be a set of primes of K such that

• S ∼⊃ PM1/K (σ1)∪ PM2/K (σ2),

• {p1, p2} 6∈ S.

Then, by the same reasoning as in the preceding example, S is persistent with
persisting field K and E strong(S) = ∅. Moreover, for each rational prime p, the
field K is persisting for S for KS∪Sp∪S∞/K .
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3D. Stable sets with N(S) = {1}. Let M/K/K0 be two finite Galois extensions
of a number field K0. Then the natural map GM/K0 → Aut(GM/K ) induces an
exterior action

GK/K0 → Out(GM/K ),

thus inducing a natural action of GK/K0 on the set of all conjugacy classes of GM/K .
For any g ∈ GK/K0 and σ ∈ GM/K , we choose a representative of the conjugacy
class g ·C(σ ;GM/K ) and denote it by g · σ . Further, GK/K0 acts naturally on 6K ,
and we have

g · PM/K (σ )= PM/K (g · σ).

Let K0 =Q and let σ ∈GM/K be an element such that C(σ ;GM/K ) is not fixed by
the action of GK/Q. Then set

S := cs(K/Q)K ∩ PM/K (σ ).

If p ∈6Q, f \cs(K/Q), then S∩Sp =∅. If p ∈ cs(K/Q) such that Sp∩S 6=∅, then
the action of g ∈ GK/K0 , chosen such that C(σ ;GM/K ) 6= C(g · σ ;GM/K ), defines
an isomorphism between the disjoint sets Sp ∩ PM/K (σ ) and Sp ∩ PM/K (g · σ),
hence the last of these two sets is nonempty. From this we obtain Sp 6⊆ S. Thus
N(S)= {1}. Moreover, if we choose σ such that the stabilizer of C(σ ;GM/K ) in
GK/Q is trivial, then for any p the intersection Sp ∩ S is either empty or contains
exactly one element.

Now we have to choose M in such a way that S is stable. This is easy: e.g, take
M/K such that it is totally ramified in a fixed prime which is (by definition of S)
not contained in S. Then KS ∩M = K , i.e., S is stable for KS/K with stabilizing
field K , as δK (cs(K/Q)K )= 1 and hence S w PM/K (σ ).

4. Shafarevich–Tate groups of stable sets

In this section we generalize many Hasse principles to stable sets and additionally
prove finiteness and uniform bounds of certain Shafarevich–Tate groups associated
with stable sets. The main result is the Hasse principle in Theorem 4.1. Further, there
are two variants of uniform bounds on the size of Xi : on the one side we can vary
the coefficients, and on the other side the base field. We study both variants, the first
in Section 4C and the second in Section 4D. These results are used in later sections.

4A. Stable sets and X1: key result. Let K be a number field and L/K a (possibly
infinite) Galois extension. Let A be a finite GL/K -module. Let now T be a set of
primes of K . Consider the i-th Shafarevich–Tate group with respect to T ,

Xi (L/K , T ; A) := ker(resi
: Hi (L/K , A)→

∏
p∈T

Hi (Gp, A)),



Stable sets of primes in number fields 15

where Gp= GK sep
p /Kp

is the local absolute Galois group (the map res is essentially
independent of the choice of this separable closure and we suppress it in the notation).
We also write Xi (KS/K ; A) instead of Xi (KS/K , S; A). We denote by K (A) the
trivializing extension for A, i.e., the smallest field between K and L such that the
subgroup GL/K (A) of GL/K acts trivially on A. It is a finite Galois extension of K .

Let G be a finite group and A a G-module. Following Serre [1964, §2] and
Jannsen [1982], let Hi

∗
(G, A) be defined by exactness of the sequence

0→ Hi
∗
(G, A)→ Hi (G, A)→

∏
H⊆G
cyclic

Hi (H, A).

Our key result is the following theorem. All subsequent results make use of this
theorem in a crucial way.

Theorem 4.1. Let K be a number field, T a set of primes of K and L/K a Galois
extension. Let A be a finite GL/K -module. Assume that T is p-stable for L/K ,
where p is the smallest prime divisor of |A|. Let L be a p-stabilizing field for T
for L/K . Then

X1(L/L , T ; A)⊆ H1
∗
(L(A)/L , A).

In particular, if H1
∗
(L(A)/L , A)= 0, then X1(L/L , T ; A)= 0.

Lemma 4.2. Let L/L/K be two Galois extensions of K and T a set of primes of K .
Let A be a GL/K -module such that for any p ∈ T one has AGL/L = ADp,L/L . Then
there is an exact sequence

0→X1(L/K , T ; AGL/L )→X1(L/K , T ; A)→X1(L/L , TL; A).

Proof. The proof is an easy and straightforward exercise. �

Lemma 4.3. Let L/K be a finite Galois extension, T a set of primes of K and
A a finite GL/K -module. Let i > 0. Assume that T is p-stable for L/K with
p-stabilizing field K , where p is the smallest prime divisor of |A|. Then

Xi (L/K , T ; A)⊆ Hi
∗
(L/K , A).

Proof. Since any p-stable set is `-stable for all ` > p, we can assume that A is
p-primary. We have to show that any cyclic p-subgroup of GL/K is a decomposition
subgroup of a prime in T . This is the content of the next lemma. �

Lemma 4.4. Let L/K be a finite Galois extension, T a set of primes of K and p
a rational prime such that T is p-stable for L/K with p-stabilizing field K . Then
any cyclic p-subgroup of GL/K is the decomposition group of a prime in T .

Remark 4.5. (i) This lemma shows automatically that there are infinitely many
primes in T for which the given cyclic group is a decomposition group.
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(ii) In some sense this lemma ‘generalizes’ Chebotarev’s density theorem, which
says, in particular, that if S has density one and L/K is finite Galois, then any
element of GL/K is a Frobenius of a prime in S.

Proof. Assume that the cyclic p-subgroup H⊆GL/K is not a decomposition group of
a prime in T . Let pH ⊆ H be the subgroup of index p. Then one computes directly
mpH (σ )= pmH (σ ) for any σ ∈ pH . Since H is not a decomposition subgroup of a
prime p ∈ T , no generator of H is a Frobenius at T , i.e., PL/K (σ )∩ T =∅ for any
σ ∈ H \ pH . By p-stability of T , there is a subset T0 ⊆ T and an a > 0 such that
pa>δL ′(T0)≥a for all L/L ′/K . Let L0= L H and L1= L pH . Then, by Lemma 2.3,

δL0(T0)=
∑
σ∈H

mH (σ )δK (PL/K (σ )∩ T0)=
∑
σ∈pH

mH (σ )δK (PL/K (σ )∩ T0)

= p−1
∑
σ∈pH

mpH (σ )δK (PL/K (σ )∩ T0)= p−1δL1(T0).

This contradicts our assumption on T0. �

Proof of Theorem 4.1. We can assume that L = K . By applying Lemma 4.2
to L/K (A)/K and using Lemma 4.3, we are reduced to showing that if A is a
trivial G-module, then X1(L/K , T ; A) = 0. Let T0 ⊆ T and a > 0 be such that
pa>δL ′(T0)≥a for all L/L ′/K . Let GT

L/K be the quotient of GL/K , corresponding
to the maximal subextension of L/K , which is completely split in T . We have then

X1(L/K , T ; A)= ker
(

Hom(GL/K , A)→
∏
p∈T

Hom(Gp, A)
)
= Hom

(
GT

L/K , A
)
.

If 0 6= φ ∈ Hom
(
GT

L/K , A
)
, then M := Lker(φ)/K is a finite extension inside L/K

with Galois group im(φ) 6= 0 and completely decomposed in T , and in particular
in T0. Thus

pa > δM(T0)= [M : K ]δK (T0 ∩ cs(M/K ))= |im(φ)|δK (T0)≥ pa,

since δK (T0)≥ a. This is a contradiction, and hence we obtain

X1(L/K , T ; A)= Hom
(
GT

L/K , A
)
= 0. �

4B. Hasse principles. Let K , S, T be a number field and two sets of primes of K .
Various conditions on S, T , A which imply the Hasse principles in cohomological
dimensions 1 and 2 are considered in [NSW 2008, Chapter IX, §1]. We prove
analogous results for stable sets. Before stating them, we refer the reader to [NSW
2008, Definitions 9.1.5 and 9.1.7] for definitions of the special cases.

Corollary 4.6. Let K be a number field, let T and S be sets of primes of K , and
let A be a finite GK,S-module. Assume that T is p-stable for KS/K , where p is the
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smallest prime divisor of |A|. If L is a p-stabilizing field for T for KS/K and if
H1
∗
(L(A)/L , A)= 0, then

X1(KS/L , T ; A)= 0.

In particular:

(i) Let L0 be a p-stabilizing field for T for KS/K which trivializes A. Then
X1(KS/L , T ; A)= 0 for any finite KS/L/L0.

(ii) Assume S ⊇ S∞ and n ∈N(S) with the smallest prime divisor equal p. If L0 is
a p-stabilizing field for T for KS/K , then X1(KS/L , T ;µn)= 0 for any finite
KS/L/L0 such that we are not in the special case (L , n, T ). In the special
case (L , n, T ) we have X1(KS/L , T ;µn)= Z/2Z.

The same also holds if one replaces GK,S by the quotient GK,S(c), where c is a
full class of finite groups in the sense of [NSW 2008, Definition 3.5.2].

Proof. (i) The first statement follows directly from Theorem 4.1. Since L0 is a
p-stabilizing field trivializing A, any finite subextension L of KS/L0 has the same
property. Hence (i) follows.

(ii) To prove (ii), we can assume n = pr . If we are not in the special case (L , pr ),
[NSW 2008, Proposition 9.1.6] implies H1(L(µpr )/L , µpr )= 0, i.e., we are done
by Theorem 4.1. Assume we are in the special case (L , pr ). In particular, we have
p = 2. Then H1(L(µ2r )/L , µ2r )= Z/2Z. Since by Theorem 4.1 we have

X1(KS/L(µ2r ), T ;µ2r )= 0,

we see from Lemma 4.2 that

X1(KS/L , T ;µ2r )=X1(L(µ2r )/L , T ;µ2r ).

Now the same argument as in the proof of [NSW 2008, Theorem 9.1.9(ii)] finishes
the proof. �

We turn to X2. For a GK,S-module A such that |A| ∈ N(S), we denote by

A′ := Hom(A,O∗KS,S)

the dual of A. As in [NSW 2008, Corollary 9.1.10], we obtain:

Corollary 4.7. Let K be a number field, S⊇ S∞ a set of primes of K , and A a finite
GK,S-module with |A| ∈ N(S). Assume that S is p-stable (i.e., p-stable for KS/K ),
where p is the smallest prime divisor of |A|. Let L be a p-stabilizing field for S for
KS/K such that H1

∗
(L(A′)/L , A′)= 0. Then

X2(KS/L; A)= 0.
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In particular:

(i) Let L0 be a p-stabilizing field for S for KS/K which trivializes A′. Then
X2(KS/L; A)= 0 for any finite KS/L/L0.

(ii) Let n ∈ N(S) with smallest prime divisor p. If L is a p-stabilizing field for S
and we are not in the special case (L , n, S), then X2(KS/L ,Z/nZ)= 0. In
the special case, we have X2(KS/L;Z/nZ)= Z/2Z.

Remark 4.8. The condition |A| ∈ N(S) is not necessary if A is trivial: we post-
pone the proof of this until all necessary ingredients (in particular the Grunwald–
Wang theorem, Riemann’s existence theorem and cdp GK,S = 2) are proven. See
Proposition 5.13.

Proof of Corollary 4.7. By Poitou–Tate duality [NSW 2008, Theorem 8.6.7] (this is
the reason why we need S ⊇ S∞ and |A| ∈ N(S)) we have

X2(KS/L , A)∼=X1(KS/L , A′)∨,

where X∨ := Hom(X,R/Z) is the Pontrjagin dual. An application of Theorem 4.1
to KS/K , the sets S= T and the module A′ gives the desired result. Now (i) and (ii)
follow from Corollary 4.6. �

4C. Finiteness of the Shafarevich–Tate group with divisible coefficients. As a
version of Corollary 4.6(i), we have the following proposition.

Proposition 4.9. Let K be a number field, L/K a Galois extension, pm some
rational prime power (m ≥ 1). Let T be a set of primes of K which is pm-stable for
L/K , with pm-stabilizing field L0. Then

|X1(L/L , T ;Z/pr Z)|< pm

for any r > 0 and any finite subextension L/L/L0.

Proof. Let T0 ⊆ T and a > 0 be such that a ≤ δL(T0) < pma for all finite L/L/L0.
Let L/L/L0 be a finite extension. Assume that |X1(L/L , T ;Z/pr Z)| ≥ pm . Then

|X1(L/L , T0;Z/pr Z)| ≥ pm

and we have

X1(L/L , T0;Z/pr Z)∼= Hom
(
GT0

L/L(p),Z/pr Z
)
=
(
GT0

L/L(p)
ab/pr)∨.

Thus, |X1(L/L , T0;Z/pr Z)|≥ pm implies |GT0
L/L(p)

ab/pr
|≥ pm . Now, if M/L is

the subextension of L/L corresponding to GT0
L/L(p)

ab/pr , then it has a finite subex-
tension M1 of degree at least pm which is completely split in T0. Hence, we have
δM1(T0)≥ pmδL(T0), which is a contradiction to the pm-stability of T0. �
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Corollary 4.10. Let K be a number field, L/K a Galois extension, and T a set
of primes of K stable for L/K . Then X1(L/K , T ;Qp/Zp) is finite for any p.
Moreover, X1(L/K , T ;Q/Z) is finite.

Proof. For the first statement it is enough to show that |X1(L/K , T ;Z/pr Z)|

is uniformly bounded for r > 0. By Proposition 2.8, there is some m ≥ 1 such
that K is a pm-stabilizing field for T for L/K . Then Proposition 4.9 implies
|X1(L/K , T ;Z/pr Z)|< pm . For the last statement, we note the decomposition
X1(L/K , T ;Q/Z)=

⊕
p X

1(L/K , T ;Qp/Zp). The proven part shows that each
of the summands is finite. Moreover, almost all are zero: there is some λ > 1
such that K is a λ-stabilizing field for T for L/K . Thus, for any p ≥ λ, the group
X1(L/K , T ;Qp/Zp) vanishes. �

4D. Uniform bound. For later needs (see Section 5C) we prove the following
uniform bounds. The results of this section are not part of [Ivanov 2013].

Proposition 4.11. Let M/L/K be Galois extensions, let A be a finite GM/K -module
and let S be stable for L(A)/K . Then there is some C > 0 such that

|X1(M/L , S; A)|< C

for all finite subextensions L/L/K .

Proof. For each L/L/K , Lemma 4.2 applied to M/L(A)/L gives an exact sequence

0→X1(L(A)/L , S; A)→X1(M/L , S; A)→X1(M/L(A), SL(A); A). (4-1)

Now X1(L(A)/L , S; A)⊆H1(L(A)/L , A) and we have that GL(A)/L is a subgroup
of the finite group GK (A)/K , thus for all L/L/K we have

|X1(L(A)/L , S; A)|< m := 1+ max
H⊆GK (A)/K

H1(H, A).

As S is stable for L(A)/K , by Proposition 2.8 there is some ε > 0 such that
δN (S) > ε for all L(A)/N/K (A). Suppose that |X1(M/L(A), S, A)| ≥ ε−1 for
some L/L/K . Then, exactly as in the proof of Proposition 4.9, there is an extension
M/L(A) of degree ≥ ε−1 which is completely split in S. We obtain

δM(S)= [M : L(A)]δL(A)(S) > ε−1ε = 1,

which is a contradiction. Taking into account (4-1), we obtain the statement of the
proposition with respect to C := mε−1. �

Corollary 4.12. Let K be a number field, S and T sets of primes of K , and n a
natural number.
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(i) Assume that KS/L/K is a subextension such that S is stable for L/K and T
has density 0. Then there is some real C > 0 such that for any L/L/K one has

|X1(KS∪T /L , S \ T,Z/nZ)|< C.

(ii) Assume that T ⊇ (S∞ \ S) has density 0 and that n ∈ O∗K ,S∪T . Let KS/L/K be
a subextension such that S is stable for L(µn)/K . There is some real C > 0
such that for any L/L/K one has

|X1(KS∪T /L , S \ T, µn)|< C.

Remark 4.13. The case S stable for L/K , but not stable for L(µp)/K , still remains
mysterious: one can neither show such a uniform bound by the same methods nor
find counterexamples. Moreover, the same kind of arguments do not even show
that X1(KS∪T /K , S \ T, µp) must be finite.

5. Arithmetic applications

5A. Overview and results. In this section we will be interested in the applications
of the Hasse principles proven in the preceding section for stable sets. In particular,
we will show two versions of the Grunwald–Wang theorem for them, with varying
assumptions: we will have a strong Grunwald–Wang result if we assume strong
p-stability (Section 5B) and only a weaker lim

−→
-version (which is still enough for

applications) after weakening the assumption to sharp p-stability (Section 5C).
After this we will consider realization of local extensions, Riemann’s existence
theorem and the cohomological dimension of GK,S . For each of these three results
there is a profinite and a pro-p version respectively. We state them below and give
proofs in Section 5D. Further, in Section 5E we prove a Hasse principle for X2 for
constant p-primary coefficients without the assumption p ∈ O∗K,S (see Corollary 4.7
and Remark 4.8).

Theorem 5.1. Let K be a number field, p a rational prime and T ⊇ S ⊇ R sets of
primes of K with R finite.

(Ap) Assume S is sharply p-stable for K R
S (p)/K . Then

K R
S (p)p =

{
Kp(p) if p ∈ S \ R,
K nr
p (p) if p 6∈ S.

(A) Assume S is sharply p-stable for K R
S /K . Then

K R
S,p ⊇

{
Kp(p) if p ∈ S \ R,
K nr
p (p) if p 6∈ S.
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(Bp) Assume S is sharply p-stable for K R
S (p)/K . Then the natural map

φR
T,S(p) : ∗

p∈R(K R
S (p))

Gp(p) ∗ ∗
p∈(T \S)(K R

S (p))
Ip(p)−→∼ GKT (p)/K R

S (p)

is an isomorphism, where Ip(p) := GKp(p)/K nr
p (p) ⊆ Gp(p) := GKp(p)/Kp .

Let K ′T (p)/K R
S denote the maximal pro-p subextension of KT /K R

S .

(B) Assume S is sharply p-stable for K R
S /K . Then the natural map

φR
T,S : ∗

p∈R(K R
S )

Gp(p) ∗ ∗
p∈(T \S)(K R

S )

I ′p(p)−→∼ GK ′T (p)/K R
S

is an isomorphism, where I ′p(p) denotes the Galois group of the maximal
pro-p extension of K R

S,p.

Assume p is odd or K is totally imaginary.

(Cp) Assume S is sharply p-stable for K R
S (p)/K . Then

cd GR
K,S(p)= scd GR

K,S(p)= 2.

(C) Assume S is sharply p-stable for K R
S /K . Then

cdp GR
K,S = scdp GR

K,S = 2.

5B. Grunwald–Wang theorem and strong p-stability. Consider the cokernel of
the global-to-local restriction homomorphism

cokeri (KS/K , T ; A) := coker(resi
: Hi (KS/K , A)→

∏′

p∈T

Hi (Gp, A)),

where A is a finite GK,S-module, T is a subset of S and
∏
′ means that almost all

classes are unramified. If A is a trivial GK,S-module, then the vanishing of this co-
kernel is equivalent to the existence of global extensions unramified outside S, which
realize given local extensions at primes in T . If S has density 1, the set T is finite, A
is constant and we are not in a special case, this vanishing is essentially the statement
of the Grunwald–Wang theorem. Certain conditions on S, T , A, under which this
cokernel vanishes are considered in [NSW 2008, Chapter IX, §2]. All of them
require S to have certain minimal density. We prove analogous results for stable sets.

Corollary 5.2. Let K be a number field, T ⊆ S sets of primes of K with S∞ ⊆ S.
Let A be a finite GK,S-module with |A| ∈ N(S). Assume that T is finite and S is
p-stable, where p is the smallest prime divisor of |A|. For any p-stabilizing field L
for S for KS/K such that H1

∗
(L(A′)/L , A′)= 0, we have

coker1(KS/L , T ; A)= 0.
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Proof. Since T is finite and S is p-stable for KS/K , we have that S \ T is also
p-stable for KS/K , and the p-stabilizing fields for S and S \ T are equal. Let
L be as in the corollary. By Theorem 4.1 applied to KS/L , S \ T and A′, we
obtain X1(KS/L , S \ T ; A′) = 0. Then [NSW 2008, Lemma 9.2.2] implies that
coker1(KS/L , T ; A)= 0. �

Now we give a generalization of [NSW 2008, Theorem 9.2.7].

Theorem 5.3. Let K be a number field, S a set of primes of K . Let T0, T ⊆ S be
two disjoint subsets such that T0 is finite. Let p be a rational prime and r > 0 an
integer. Assume S \T is p-stable for KS∪Sp∪S∞/K with p-stabilizing field L0, which
is contained in KS . Then, for any finite KS/L/L0 such that we are not in the special
case (L , pr , S \ (T0 ∪ T )), the canonical map

H1(KS/L ,Z/pr Z)→
⊕

p∈T0(L)

H1(Gp,Z/pr Z)⊕
⊕

p∈T (L)

H1(Ip,Z/pr Z)Gp

is surjective, where Ip ⊆ Gp = GK sep
p /Lp

is the inertia subgroup. If we are in the
special case (L , pr , S \ (T0 ∪ T )), then p = 2 and the cokernel of this map is of
order 1 or 2.

Proof. This follows from Corollary 4.6(ii) in exactly the same way as [NSW 2008,
Theorem 9.2.7] follows from [NSW 2008, Theorem 9.2.3(ii)]. �

Remarks 5.4. (i) If δK (T )= 0, the condition ‘S \ T is p-stable for KS∪Sp∪S∞/K
with a p-stabilizing field contained in KS’ is equivalent to ‘S is strongly p-stable’.

(ii) If δK (S) = 1 and δK (T ) = 0, then L0 = K is a persisting field for S \ T for
any L/K and the condition in the theorem is automatically satisfied. Thus our
result is a generalization of [NSW 2008, Theorem 9.2.7]. To show that it is a
proper generalization, we give the following example. Let N/M/K be finite Galois
extensions of K such that N/K (and hence also M/K ) is totally ramified in a
nonarchimedean prime l of K , lying over the rational prime `. Suppose σ ∈ GM/K

and let σ̃ ∈ GN/K be a preimage of σ . Let S ⊇ T be such that

S w PM/K (σ ), l 6∈ S and T w PM/K (σ ) \ PN/K (σ̃ ).

Then S \ T w PN/K (σ̃ ) is persistent for KS∪Sp∪S∞/K for any p 6= `, and, moreover,
K is a persisting field (indeed, this follows from KS∪Sp∪S∞ ∩ N = K ). Hence the
sets S⊇ T satisfy the conditions of the theorem with respect to each p 6= `. Observe
that in this example T is itself persistent for KS∪Sp∪S∞/K with persisting field K .
In [NSW 2008, Theorem 9.2.7], the set T must have density zero.

From this we obtain the following classical form of the Grunwald–Wang theorem.
The proof is the same as in [NSW 2008, Theorem 9.2.8].
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Corollary 5.5. Let T ⊆ S be sets of primes of a number field K . Let A be a finite
abelian group. Assume that T is finite and that, for any prime divisor p of |A|, S
is p-stable for KS∪Sp∪S∞/K with stabilizing field K . For all p ∈ T , let Lp/Kp be a
finite abelian extension such that its Galois group can be embedded into A. Assume
that we are not in the special case (K , exp(A), S \ T ). Then there exists a global
abelian extension L/K with Galois group A, unramified outside S, such that L has
completion Lp at p ∈ T .

Example 5.6 (a set with persistent subset for which Grunwald–Wang stably fails).
Let p be an odd prime and assume µp ⊂ K (in particular, K is totally imaginary and
we can ignore the infinite primes). Let S be a set of primes of K . For V = Sp \ S,
let T ⊇ V be a finite set of primes of K . By [NSW 2008, Theorem 9.2.2] we have
for all KS/L/K a short exact sequence (recall that µp ∼= Z/pZ by assumption)

0→X1(KS∪T /L , S ∪ T ;Z/pZ)→X1(KS∪T /L , S \ T ;Z/pZ)

→ coker1(KS∪T /L , T ;Z/pZ)∨→ 0.

Assume now that S is p-stable with p-stabilizing field K . Then

X1(KS∪T /L , S ∪ T ;Z/pZ)⊆X1(KS/L , S;Z/pZ)= 0

and hence we have

coker1(KS∪T /L , T ;Z/pZ)∼=X1(KS∪T /L , S \ T ;Z/pZ)∨.

We can find such a set S for which additionally X1(KS∪T /L , S \ T ;Z/pZ) 6= 0
for each KS/L/K . For an explicit example, assume K =Q(µp) and let T ⊇ Sp(K )
be a finite set of primes of K (Sp(K ) consists of exactly one prime). Let M/K be a
Galois extension of degree p with ∅ 6=Ram(M/K )⊆ T (e.g., M=Q(µp2)). Define
S := cs(M/K ). Then M ∩ KS = K and hence ML ∩ KS = L for each KS/L/K .
Thus S is persistent with persisting field K . Further, ML/L is a Galois extension
of degree p which is completely split in S \ T and unramified outside S ∪ T , hence
the subgroup GKS∪T /ML ( GKS∪T /L is the kernel of a nontrivial homomorphism
0 6= φM ∈X1(KS∪T /L , S \ T ;Z/pZ). Hence this group is nontrivial.

Thus, S is persistent but not strongly p-stable — in particular, no p-stabilizing
field for S w S ∪ T for KS∪Sp∪S∞/K is contained in KS — and Grunwald–Wang
does not hold for S ∪ T ⊇ T (i.e., the cokernel in Theorem 5.3 is nonzero). It is
still unclear whether there is an example of sets S̃ ⊇ T̃ such that S̃ is persistent but
not strongly p-stable and Grunwald–Wang fails for S̃ ⊇ T̃ .

Finally, we have two corollaries generalizing [NSW 2008, Theorems 9.2.4
and 9.2.9] to stable sets.

Corollary 5.7. Let K be a number field, T ⊆ S sets of primes of K with T finite.
Let KS/L/K be a finite Galois subextension with Galois group G. Let p be a
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prime and A = Fp[G]n a GK,S-module. Assume S is p-stable for KS∪Sp∪S∞/K with
p-stabilizing field L. Then the restriction map

H1(KS/K , A)→
⊕
p∈T

H1(Gp, A)

is surjective.

Proof. (See [NSW 2008, Corollary 9.2.4]) We have the following commutative
diagram, in which the vertical maps are Shapiro-isomorphisms:

H1(KS/K , A)

∼

��

//
⊕
p∈T

H1(Gp, A)

∼

��

H1(KS/L , Fn
p )

//
⊕

P∈T (L)
H1(GP, Fn

p )

The lower map is surjective by Theorem 5.3, and so is the upper. �

Corollary 5.8. Let K be number field, S a set of primes of K . Let KS/L/K be a
finite Galois subextension with Galois group G. Let p be a prime and A= Fp[G]n a
GK,S-module. Assume that S is p-stable for KS∪Sp∪S∞/L with p-stabilizing field L.
Then the embedding problem

GK,S

����

1 // A // E // G // 1

is properly solvable.

Proof. It follows from Corollary 5.7 in the same way as [NSW 2008, Proposition
9.2.9] follows from [NSW 2008, Corollary 9.2.4]. �

5C. Grunwald–Wang cokernel in the limit and sharp p-stability. If one is inter-
ested (motivated by Theorem 5.1, we are) in the vanishing of the direct limit over
KS/L/K of the Grunwald–Wang cokernel, rather than in the vanishing of the
cokernel for each L , one can use sharp p-stability instead of strong p-stability,
which is considerably weaker.

Theorem 5.9. Let K be a number field, S a set of primes of K and L ⊆ KS a
subextension normal over K such that S is sharply p-stable for L/K . Let T be a
finite set of primes of K containing (Sp ∪ S∞) \ S. If p∞|[L : K ], then

lim
−→

L/L/K ,res

coker1(KS∪T /L , T,Z/pZ)= 0.
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Proof. For any finite subextension L/L/K we have the short exact sequence

0→X1(KS∪T /L , S ∪ T ;µp)→X1(KS∪T /L , S \ T ;µp)

→ coker1(KS∪T /L , T ;Z/pZ)∨→ 0.

Dualizing, we see that it is enough to show that

lim
−→

L/L/K ,cor∨
X1(KS∪T /L , S \ T ;µp)

∨
= 0.

For any two finite subextensions L/L ′/L/K we have the maps

resL ′
L :X

1(KS∪T /L , S \ T ;µp)�X1(KS∪T /L ′, S \ T ;µp) : corL ′
L . (5-1)

Lemma 5.10. There is a finite subextension L/L1/K such that, for all L/L ′/L/L1,
the map resL ′

L is an isomorphism.

Proof. First we claim that resL ′
L is injective if L is big enough. Assume first that

µp ⊆ L and that S is p-stable for L/K . Let L/L0/K be a finite subextension
which p-stabilizes S and contains µp. Then any finite subextension L/L/L0

satisfies the same. Assume resL ′
L is not injective, i.e., there is some nonzero φ in

X1(KS∪T /L , S \ T ;Z/pZ) with resL ′
L (φ)= 0 (we have chosen some trivialization

of µp). This φ can be seen as a homomorphism φ : GKS∪T /L → Z/pZ which is
trivial on all decomposition subgroups of primes in S \T . Define M := (KS∪T )

kerφ .
This is a finite Galois extension of L with Galois group Z/pZ and cs(M/L)⊇ S\T .
But then

δM(S)= [M : L]δL(S ∩ cs(M/L))= pδL(S),

since T is finite. Now resL ′
L (φ) = 0 implies M ⊆ L ′ ⊆ L and hence we get a

contradiction to the p-stability of S.
Now assume that µp 6⊆ KS . Then resL ′

L is always injective. Indeed, suppose there
is a nonzero x in

X1(KS∪T /L , S \ T ;µp)

= {x ∈ L∗/p : x ∈UpL∗,pp for p 6∈ S ∪ T and x ∈ L∗,pp for p ∈ S \ T }

with resL ′
L (x) = 0. This implies x ∈ L ′,∗,p. Let y p

= x with y ∈ L ′. Then
L(y)⊆ L ′ ⊆L. Since the polynomial T p

− x is irreducible over L (since x 6∈ L∗,p),
the conjugates of y over L are precisely the roots of this polynomial, which are
clearly {ζ i y}p−1

i=0 for ζ ∈µp(K )\{1}. Since L is normal over L , these conjugates lie
in L. In particular, we deduce that ζ ∈ L, which contradicts µp 6⊆ L. This finishes
the proof of the injectivity claim.

By Corollary 4.12(ii), there is a constant C > 0 such that

|X1(KS∪T /L , S \ T, µp)|< C



26 Alexander Ivanov

for all L/L/K . Together with the injectivity shown above, this shows that there
is a finite subextension L/L1/K such that, for all L/L ′/L/L1, the map resL ′

L is
bijective. �

Now we can finish the proof of Theorem 5.9. Assume L1 is as in Lemma 5.10.
Let L/L/L1. Since p∞|[L : K ], there is a further extension L/L ′/L such that p
divides [L ′ : L]. In the situation of (5-1) we have cor ◦ res= [L ′ : L] = 0 since µp

is p-torsion. Dualizing gives res∨ ◦ cor∨ = (cor ◦ res)∨ = 0. But, along with res,
res∨ is also an isomorphism, hence we obtain cor∨ = 0. This shows that

lim
−→

L/L/K ,cor∨
X1(KS∪T /L , S \ T ;µp)

∨
= 0. �

We have the same arguments for X2.

Proposition 5.11. Let K be a number field, S a set of primes of K and L ⊆ KS

a subextension normal over K such that S is sharply p-stable for L/K . Let
T ⊇ S ∪ Sp ∪ S∞ be a further set of primes. If p∞|[L : K ], then

lim
−→

L/L/K ,res

X2(KT /L , T ;Z/pZ)= 0.

Proof. By Poitou–Tate duality this is equivalent to

lim
−→

L/L/K ,cor∨
X1(KT /L , T ;µp)

∨
= 0.

This follows in the same way as in the proof of Theorem 5.9. �

5D. Consequences. Here we prove Theorem 5.1.

Lemma 5.12. Let S ⊇ R be sets of primes of K . Assume that R is finite and that
S ∩ cs(K (µp)/K ) is infinite. Then p∞|[K R

S (p) : K ].

Proof. By [NSW 2008, Corollary 10.7.7], for any C > 0 there is some finite subset
SC ⊆ S ∩ cs(K (µp)/K ) such that R ⊆ SC and

dimFp H1(GR
K ,SC

(p),Z/pZ) > C.

Since each group GR
K ,SC

(p) is a quotient of GR
K,S(p), the lemma follows. �

Proof of Theorem 5.1. (Ap), (A): Let p be a prime of K which is not contained in R.
Since the local group Gp(p) is solvable and the assumptions carry over to extensions
of K in K R

S (p), it is enough to show that any class αp ∈ H1(Gp(p),Z/pZ) (which
has to be unramified if p 6∈ S) is realized by a global class after a finite extension.
Define T := {p}∪ R ∪ Sp ∪ S∞ and let (αq) ∈

∏
q∈T H1(Gp(p),Z/pZ) such that αq

is unramified if q 6∈ S and 0 if p∈ R. By Theorem 5.9, there is some finite extension
K R

S (p)/L/K such that (αq) comes from a global class α ∈ H1(GR
L ,S∪T (p),Z/pZ).
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The Z/pZ-extension of L corresponding to α is unramified outside S, completely
split in R and hence contained in K R

S (p). (A) has analogous proof.

(Bp): The proof of this part essentially coincides with the proofs of [NSW 2008,
Theorem 10.5.8] and [Ivanov 2013, Theorem 4.26]. As done there, we can restrict
ourselves to the case T ⊇ Sp∪ S∞. All cohomology groups in the proof have Z/pZ-
coefficients and we omit them from the notation. After computing the cohomology
on the left side, by [NSW 2008, Proposition 1.6.15] we have to show that the map

Hi (φR
T,S(p)) : H

i (KT (p)/K R
S (p))→

⊕′

p∈R(K R
S (p))

Hi (Gp(p))⊕
⊕′

p∈(T \S)(K R
S (p))

Hi (Ip(p))

induced by φR
T,S(p) in the cohomology is bijective for i = 1 and injective for i = 2.

(Here
⊕
′ means the restricted direct sum in the sense of [NSW 2008, Definition

4.3.13].) Now H1(φR
T,S(p)) is injective since φR

T,S(p) is clearly surjective. To show
surjectivity for i = 1, consider, for any finite subset T1 ⊆ T \ S which contains
(Sp ∪ S∞) \ S and any finite K R

S (p)/L/K , the composed maps

H1(KS∪T1(p)/L)→
⊕

p∈(R∪T1)(L)

H1(Gp)�
⊕

p∈R(L)

H1(Gp)⊕
⊕

p∈T1(L)

H1(Ip)
Gp,

where Ip = IKp/Lp
⊆ GKp/Lp

= Gp is the inertia subgroup. Passing to the direct
limit over K R

S (p)/L/K , we obtain by Theorem 5.9 the surjection

H1(KS∪T1(p)/K R
S (p))�

⊕′

p∈R(K R
S (p))

H1(Gp(p))⊕
⊕′

p∈T1(K R
S (p))

H1(IKp/Kp
)
GKp/KR

S,p(p),

which is, after passing to the direct limit over all finite T1 ⊆ T \ S, exactly
H1(φR

T,S(p)), since by (Ap) we have K R
S (p)p = K nr

p (p) for p ∈ T \ S and hence

H1(IKp/Kp
)
GKp/KR

S,p(p) = H1(Ip(p))

(see the proofs of [NSW 2008, Theorem 10.5.8] and [Ivanov 2013, Theorem 4.26]).
Finally, the injectivity of H2(φR

T,S(p)) follows by passing to the limit and using
Proposition 5.11.

(B): By Lemma 2.7, there is some K R
S /L0/K such that, for all K R

S /L/L0, the set S
is sharply p-stable for LR

S (p)/L . Thus (B) follows from (Bp) as we have

I ′p(p)= lim
←−

K R
S /L/K

ILp(p)/Lp and GK ′T (p)/K R
S
= lim
←−

K R
S /L/K

GLT (p)/LR
S (p)

.

(Cp), (C): The proof essentially coincides with the proofs of [NSW 2008, Theorem
10.5.10 and Corollary 10.5.11] and [Ivanov 2013, Theorem 4.31, Corollary 4.33].
To avoid many repetitions, we only recall the argument for cd GR

K,S(p)≤ 2 in the
case R = ∅ (which differs in one aspect from the cited proofs). Therefore, set
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V = (Sp ∪ S∞) \ S and consider the Hochschild–Serre spectral sequence (E i j
n , δ

i j
n )

for the Galois groups of the global extensions KS∪V (p)/KS(p)/K . By [NSW 2008,
Proposition 8.3.18 and Corollary 10.4.8], we have

cd GK ,S∪V (p)≤ cdp GK ,S∪V ≤ 2.

By Riemann’s existence theorem, (Bp), the group GKS∪V (p)/KS(p) is a free pro-p
group. Hence E i j

n degenerates in the second tableau and, in particular, we have
(omitting Z/pZ-coefficients from the notation)

coker(δ11
2 )= E30

3 = E30
∞
⊆ H3(GK ,S∪V (p))= 0,

i.e., δ11
2 is surjective. Again by Riemann’s existence theorem we have

H1(KS∪V (p)/KS(p))∼=
⊕
p∈V

IndGK,S(p)
Dp,KS (p)/K

H1(Ip(p)).

This and Shapiro’s lemma imply

E11
2 =

⊕
p∈V

H2(Kp(p)/Kp). (5-2)

Further, we have the following commutative diagram with exact rows and columns:⊕
p∈S

H2(Kp(p)/Kp)
� _

��

// // H0(KS∪V /K , µp)
∨

=

��

H2(KS∪V (p)/K ) //

��

⊕
p∈S∪V

H2(Kp(p)/Kp) // //

����

H0(KS∪V /K , µp)
∨

��

H1(KS(p)/K ,H1(KS∪V (p)/KS(p)))
∼
//

δ11
2
����

⊕
p∈V

H2(Kp(p)/Kp) // 0

H3(KS(p)/K )

The second row comes from the Poitou–Tate long exact sequence. The first map
in the third row is the isomorphism (5-2). The map in the first row is surjective
since its dual map µp(K )→

⊕
p∈S µp(Kp) is injective. Now (in contrast to proofs

cited from [NSW 2008] and [Ivanov 2013]) the first map in the second row is not
necessarily injective, but one can simply replace the first entry in the second row by
H2(KS∪V (p)/K )/X2(KS∪V /K , S∪V ;Z/pZ), as both maps in the diagram which
start at this entry factor through this quotient. Now apply the snake lemma to the
second and third row and obtain H3(KS(p)/K )= 0 and hence also cd GK,S(p)≤ 2
by [NSW 2008, Proposition 3.3.2]. �
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5E. Vanishing of X2(GS;Z/ pZ) without p ∈ O∗K,S. We generalize Corollary 4.7
for the constant module. The proof makes use of Theorem 5.1 parts (A), (B), (C)
along with the result of Neumann showing the vanishing of certain cohomology
groups. Its special case δK (S)= 1 is not contained in [NSW 2008].

Proposition 5.13. Let K be a number field, S a set of primes of K . Let p be a
rational prime, r > 0 an integer. Assume that either p is odd or KS is totally
imaginary. Then the following hold:

(i) [Ivanov 2013, Proposition 4.34] Assume S is strongly p-stable and L0 is a
p-stabilizing field for S for KS∪Sp∪S∞/K . Assume p is odd or L0 is totally
imaginary. Then

X2(KS/L;Z/pr Z)= 0

for any finite KS/L/L0 such that we are not in the special case (L , pr , S).

(ii) Let KS/L/K be a normal subextension. Assume that S is sharply p-stable for
L/K and p∞|[L : K ]. Then

lim
−→

L/L/K

X2(KS/L;Z/pr Z)= 0.

Proof. Define V := (Sp ∪ S∞) \ S. We write H∗( · ) instead of H∗( · ,Z/pr Z)

and X∗( · , · ) instead of X∗( · , · ;Z/pr Z). Let K ′S∪V (p) be the maximal pro-p
subextension of KS∪V /KS . Let KS/L/K be a finite subextension and consider the
tower of extensions

KS∪V

N

GL ,S∪V

K ′S∪V (p)

H

G′L ,S∪V (p)KS

GL ,S

L

with N :=GKS∪V /K ′S∪V (p), H :=GK ′S∪V (p)/KS and G′L ,S∪V (p) :=GK ′S∪V (p)/L . We claim
that for any such L we have under the assumptions of (i) the natural isomorphisms

X2(K ′S∪V (p)/L , S ∪ V )=X2(KS∪V /L , S ∪ V ) for any KS/L/K ,

X2(KS/L , S)=X2(K ′S∪V (p)/L , S ∪ V ) for any KS/L/L0, (5-3)

and under (ii) the natural isomorphism

lim
−→

L/L/K

X2(KS/L , S)= lim
−→

L/L/K

X2(K ′S∪V (p)/L , S ∪ V ). (5-4)
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Once this claim is shown, (i) follows immediately from Corollary 4.7 and (ii)
follows from Proposition 5.11. Thus it is enough to prove the above claim. The
first isomorphism in (5-3) follows immediately from the definition of X2, once we
know that the inflation map H2(G′L ,S∪V (p))→ H2(GL ,S∪V ) is an isomorphism. To
show this last assertion, consider the Hochschild–Serre spectral sequence

E i j
2 = Hi (G′L ,S∪V (p),H j (N ))⇒ Hi+ j (GL ,S∪V ).

A result of Neumann [NSW 2008, Theorem 10.4.2] applied to KS∪V /K ′S∪V (p)
(the upper field is p-(S ∪ V )-closed, the lower is p-(Sp ∪ S∞)-closed) implies
E i j

2 = 0 for j > 0. Hence the sequence degenerates in the second tableau and

Hi (G′S∪V (p))= Hi (GS∪V ),

for i ≥ 0, proving our claim. Thus we are reduced to showing that the second map
in (5-3) and the map in (5-4) are isomorphisms. For p ∈ V , let K ′p(p) denote the
maximal pro-p extension of KS,p. Define

I ′p(p) := GK ′p(p)/KS,p .

(Observe that if p ∈ S∞, then I ′p(p)= 1. Indeed, if p > 2, this is always the case,
and if p = 2, then KS,p = C using the assumption that KS is totally imaginary.) By
[Ivanov 2013, Lemma 4.23] (which was only shown there under strong p-stability
assumption on S, but due to Theorem 5.1(A) it also holds under sharp p-stability
assumption with exactly the same proof), we have I ′p(p)= Dp,K ′S∪V (p)/KS . Next, by
Riemann’s existence theorem, Theorem 5.1(B), applied to K ′S∪V (p)/KS/K , we have

H ∼= ∗
p∈V (KS)

I ′p(p).

By [Ivanov 2013, Corollary 4.24], the groups I ′p(p) are free pro-p groups, and
hence H is a free pro-p group. Thus cdp H ≤ 1. Consider the exact sequence

1→ H → G′L ,S∪V (p)→ GL ,S→ 1

and the corresponding Hochschild–Serre spectral sequence

E i j
2 = Hi (GL ,S,H j (H))⇒ Hi+ j (G′L ,S∪V (p)).

Since by Theorem 5.1(C) we know that cdp GL ,S = 2, we have E i j
2 = 0 if i > 2 or

j > 1. Moreover, we have

H1(H)=
⊕′

V (KS)

H1(I ′p(p))=
⊕
V (L)

IndGL ,S
Dp,KS/L

H1(I ′p(p))

as GL ,S-modules, where Dp,KS/L ⊆ GL ,S is the decomposition group at p, which is
in particular procyclic and has an infinite p-Sylow subgroup (by Theorem 5.1(A)).
Using this, an easy computation involving Frobenius reciprocity, Shapiro’s lemma
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and [Ivanov 2013, Lemma 4.24] allows us to compute the terms E01
2 and E11

2 . We
obtain the exact sequence

0 // H1(GL ,S) // H1(G′L ,S∪V (p)) //
⊕

V (L)
H1(I ′p(p))

Dp,KS/L //

δ
// H2(GL ,S) // H2(G′L ,S∪V (p))

d
//
⊕

V (L)
H2(Gp) // 0,

where δ := δ01
2 : E

01
2 → E20

2 denotes the differential in the second tableau. Assume
first that we are in the situation of (i) and let L be as introduced there. Then we
have the surjections

H1(G′L ,S∪V (p))�
⊕

p∈V (L)

H1(Gp)=
⊕

p∈V (L)

H1(Dp,K ′S∪V (p)/L)�
⊕
V (L)

H1(I ′p(p))
Dp,KS/L .

The first map is surjective by Grunwald–Wang (Theorem 5.3), and the second and
the third maps follow from [Ivanov 2013, Lemma 4.24]. Hence the map preceding
δ is surjective and hence δ = 0. Thus the lower row of the above 6-term exact
sequence gives the short exact sequence

0 //X2(KS/L , S) //X2(K ′S∪V (p)/L , S) d
//
⊕

V (L)
H2(Gp).

On the other side, by definition of X2, we have that the kernel of d is precisely
X2(K ′S∪V (p)/K , S ∪ V ), which shows the second equality in (5-3). The equality
in (5-4) follows from the assumptions in (ii) by the same arguments after taking
lim
−→

over L/L/K (and using Theorem 5.9 instead of Theorem 5.3). �

6. K(π, 1)-property

Assume that either p is odd or K is totally imaginary, and let X = Spec OK,S . While
it is well known that X is a K(π, 1) for p if either S ⊇ Sp ∪ S∞ (‘wild case’) or
δK (S) = 1, it is a challenging problem to determine whether X is a K(π, 1) if S
is finite and does not necessarily contain Sp ∪ S∞. Until recently there were no
nontrivial examples of (K , S) such that X is a K(π, 1) for p or a pro-p K(π, 1) and,
say, S∩ Sp =∅. Recent results of Schmidt [2007; 2009; 2010] show that any point
of Spec OK has a basis for Zariski-topology consisting of pro-p K(π, 1)-schemes.
More precisely, given K , a finite set S of primes of K , a rational prime p and any
set T of primes of K of density 1, Schmidt showed that one can find a finite subset
T1 ⊆ T such that X \ T1 is pro-p K(π, 1). The main ingredient in the proof is the
theory of mild pro-p groups, developed by Labute. We conjecture that one can
replace the condition δK (T )= 1 in Schmidt’s work by the weaker condition that T
is strongly p-stable (or even that T is sharply p-stable for KT (p)/K ).
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In the present section we enlarge the set of the examples of such pairs (K , S) for
which X is a K(π, 1) for p and prove essentially that if S is sharply p-stable, then X
is a K(π, 1) for p. In particular, if S is a stable almost Chebotarev set with S∞ ⊆ S,
then X is a K(π, 1) for almost all primes p (see Proposition 3.8 and Example 3.10),
and if E sharp(S)=∅ and K is totally imaginary, then X is a K(π, 1).

6A. Generalities on the K(π, 1)-property. There are many equivalent ways to
characterize the K(π, 1)-property of schemes (see [Stix 2002, Appendix A], where
they are discussed in detail). Without repeating all of it, we want to introduce a
small refinement of terminology which is better adapted to formulating our results.

Let X be a connected scheme, Xét the étale site on X . Fix a geometric point
x̄ ∈ X and let π := π1(X, x̄) be the étale fundamental group of X . Let Bπ denote
the site of continuous π-sets endowed with the canonical topology. Further, let p
be a rational prime and let Bπp denote the site of continuous π (p)-sets, where π (p)

is the pro-p completion of π . As in [Stix 2002, Appendix A.1], we have natural
continuous maps of sites:

Xét
γ
//

γp ##

Bπ

��

Bπp

For a site Y , let S(Y ) denote the category of sheaves of abelian groups on Y ,
let S(Y ) f be the subcategory of locally constant torsion sheaves, and S(Y )p the
subcategory of locally constant p-primary torsion sheaves. Let A ∈ S(Bπ) f and
B ∈ S(Bπp)p. Then we have the natural transformations of functors id→ Rγ∗γ

∗

and id→ Rγp,∗γ
∗

p , which induce maps in the cohomology:

ci
A : H

i (π, A)−→ Hi (Xét, γ
∗A), ci

p,B : H
i (π (p), B)−→ Hi (Xét, γ

∗

p B).

Let X̃ (resp. X̃(p)) denote the universal (resp. universal pro-p) covering of X . Since

H1(X̃ét, A)= H1(X̃(p)ét, B)= 0

for each A, B, the maps ci
A, ci

p,B are isomorphisms for i = 0, 1 and injective for i = 2.

Definition 6.1. Let X be a connected scheme.

(i) X is a K(π, 1) if ci
A is an isomorphism for all A ∈ S(Bπ) f and i ≥ 0.

(ii) X is a K(π, 1) for p if ci
A is an isomorphism for all A ∈ S(Bπ)p and i ≥ 0.

(iii) X is a pro-p K(π, 1) if ci
p,B is an isomorphism for all B ∈ S(Bπp)p and i ≥ 0.

Note that we use a shift in definitions compared with [Schmidt 2007] or [Wingberg
2007]: what there is called a K(π, 1) for p, we call here a pro-p K(π, 1). Parts (i)
and (iii) of our definition coincide with the definition of a K(π, 1) in [Stix 2002,
Definition A.1.2]. By decomposing any sheaf into p-primary components we obtain:
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Lemma 6.2. X is a K(π, 1) if and only if it is a K(π, 1) for all p.

Now we have a criterion for being K(π, 1). For a scheme X , let FetX (resp. Fet(p)X )
denote the category of all finite étale coverings (resp. finite étale p-coverings) of X .
For a number field K , let

δK =

{
1 if µp ⊆ K ,
0 otherwise.

Proposition 6.3. Let K be a number field, S ⊇ S∞ a set of primes of K such that
either δK = 0 or Sf 6=∅. Assume that either p is odd or K is totally imaginary. Let
X = Spec OK,S . The following are equivalent:

(i) X is a K(π, 1) for p.

(ii) lim
−→

Y∈FetX

H2(Yét,Z/pZ)= 0.

The same also holds if one replaces ‘K(π, 1) for p’ by ‘pro-p K(π, 1)’ and ‘FetX ’
by ‘Fet(p)X ’ respectively.

Proof. For the full proof, see [Ivanov 2013, Proposition 5.5]. For convenience, we
sketch here the main steps. (i)⇒ (ii) holds for any connected scheme and follows
from [Stix 2002, Proposition A.3.1] and (ii)⇒ (i) follows from the well-known
criterion [Stix 2002, Proposition A.3.1] and the fact that, for every q > 0 and every
locally constant p-primary torsion sheaf A on Xét, we have

lim
−→

Y∈FetX

Hq(Yét, A|Y )= 0.

Since A is trivialized on some Y ∈ FetX , we can assume that A is constant. By
dévissage we are reduced to the case A = Z/pZ. The elements of H1(Yét,Z/pZ)

can be interpreted as torsors, which kill themselves, i.e., the case q = 1 follows.
Further by [Artin et al. 1973, Exposé X, Proposition 6.1], Hq(Yét,Z/pZ)= 0 for
q > 3. The case q = 3 follows from Artin–Verdier duality. Finally, (ii) implies the
case q = 2. The pro-p case has a similar proof. �

6B. K(π, 1) and sharp p-stability.

Theorem 6.4. Let K be a number field, S ⊇ S∞ a set of primes of K and p a
rational prime. Assume that either p is odd or K is totally imaginary. Then:

(i) If S is sharply p-stable for KS(p)/K , then Spec OK,S is a pro-p K(π, 1).

(ii) If S is sharply p-stable, then Spec OK,S is a K(π, 1) for p.

Remark 6.5. If K is totally imaginary or in the pro-p case, the assumption S∞ ⊆ S
is superfluous as GS(p) = GS∪S∞(p): if p > 2, then this is true in general and if
p = 2, then this is true since we have assumed that K is totally imaginary.
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Corollary 6.6. Let K be a number field, S ⊇ S∞ a stable set of primes of K such
that E sharp(S) is finite (in particular, S can be any stable almost Chebotarev set with
S ⊇ S∞). Then Spec OK,S is a K(π, 1) for almost all primes p. If E sharp(S) = ∅
and K is totally imaginary, then Spec OK,S is a K(π, 1).

Example 6.7. Let K be totally imaginary. Define K̃ :=
⋃

p K (µp). Let M/K be
finite Galois with M ∩ K̃ = K and let σ ∈ GM/K . Assume that S w PM/K (σ ) is
stable. Then Spec OK,S is a K(π, 1).

Proof of Theorem 6.4. The proof essentially coincides with that of [Ivanov 2013,
Theorem 5.12]. We only prove (ii) (the pro-p case (i) has a similar proof). Define
X :=Spec OK,S . As L goes through finite subextensions of KS/K , the normalization
Y of X in L goes through all finite étale connected coverings of X . Define V := Sp\S.
For any such Y we have a decomposition

Y \ V j
↪→ Y i

←↩ V

in an open and a closed part. Now we see that Y \ V is a K(π, 1) for p and that
π1(Y \ V )= GL ,S∪V . Hence

ci
A : H

i (GL ,S∪V )−→
∼ Hi ((Y \ V )ét, A) (6-1)

is an isomorphism for any i ≥ 0 and any p-primary GL ,S∪V -module A. We have
the Lerray spectral sequence for j :

Emn
2 = Hm(Y, Rn j∗Z/pZ)⇒ Hm+n(Y \ V,Z/pZ).

Let us compute the terms in this spectral sequence. First of all we have

Rn j∗Z/pZ=


Z/pZ if n = 0,⊕

p∈V H1(Ip,Z/pZ) if n = 1,
0 if n > 1,

where Ip⊆Gp denotes the inertia subgroup of the full local Galois group at p. Thus

E01
2 =

⊕
p∈V

H1(Ip,Z/pZ)G
nr
p ,

E11
2 = H1

(
Yét,

⊕
p∈V

H1(Ip,Z/pZ)

)
=

⊕
p∈V

H2(Gp,Z/pZ),

and Emn
2 = 0 if n > 1 or if n = 1 and m > 1 (as cdp(G

nr
p )= 1). Further, Em0

2 = 0 for
m> 3, as cdp Y ≤ 3 and E30

2 =H3(Y,Z/pZ)= 0 by [Ivanov 2013, Lemma 5.9], and

E10
2 = H1(Yét,Z/pZ)= H1(GL ,S,Z/pZ).
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Thus we have the following nonzero entries in the second tableau:⊕
p∈V

H1(Ip,Z/pZ)G
nr
p

δ01
2

++

⊕
p∈V

H2(Gp,Z/pZ) 0 0

Z/pZ H1(GL ,S,Z/pZ) H2(Yét,Z/pZ) 0

From this and the isomorphism (6-1) we obtain the following exact sequence (from
now on, we omit the Z/pZ-coefficients):

0 // H1(GL ,S) // H1(GL ,S∪V ) //
⊕
p∈V

H1(Ip)
Gnr
p

δ01
2
//

// H2(Yét) // H2(GL ,S∪V ) //
⊕
p∈V

H2(Gp) // 0

By Proposition 6.3 it is enough to show that lim
−→Y∈FetX

H2(Yét)= 0. Taking the limit
over all Y ∈ FetX of this sequence, we see by Theorem 5.9 that the direct limit of
the maps preceding δ01

2 is surjective, hence we obtain

lim
−→

Y∈FetX

H2(Yét)∼= lim
−→

Y∈FetX

X2(KS∪V /L , V ;Z/pZ).

To finish the proof consider the following commutative diagram with exact rows:

H2(GL ,S∪V ) //

��

⊕
p∈S∪V

H2(Gp) //

��

µp(L)∨ //

��

0

0 //
⊕
p∈V

H2(Gp)
=
//
⊕
p∈V

H2(Gp) // 0 // 0

Here the first map in the upper row becomes injective after taking the limit by
Proposition 5.11. The snake lemma shows that

lim
−→

Y∈FetX

H2(Yét)∼= lim
−→

Y∈FetX

X2(KS∪V /L , V ;Z/pZ)⊆ lim
−→

Y∈FetX

⊕
p∈S

H2(Gp),

and the last limit vanishes as p∞|[KS,p : Kp] for all p ∈ S by Theorem 5.1(A). This
finishes the proof of (ii). �
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